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Abstract

Benchmarked hard disk drive performance characterization and optimization

based on Design of Experiments techniques

Yu-wei Lin

This paper describes an experimental study offered by Designs of Experiments

(DOE) within the defined factor domains to evaluate the factor effects of simulta-

neous characteristics on the benchmarked hard disk drive performance by propos-

ing well-organized statistical models for optimizations. The numerical relations

of the obtained models permit to predict the behaviors of benchmarked disk per-

formances as functions of significant factors to optimize relevant criteria based on

the needs.

The experimental data sets were validated to be in satisfying agreement with

predicted values by analyzing the response surface plots, contour plots, model

equations, and optimization plots. The adequacy of the model equations were

verified effectively by a prior generation disk drive within the same model family.

The retained solutions for potential industrializations were the concluded response

surface models of benchmarked disk performance optimizations.

The comprehensive benchmarked performance modeling procedure for hard

disk drives not only saves experimental costs on physical modeling but also leads

to hard-to-find quality improvement solutions to manufacturing decisions.
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Chapter 1

Introduction

1.1 Overview of Benchmarked Hard Disk Drive

Performance Modeling

Rapid advancements in high-capacity, low-cost hard disk drives have been one

of the key factors enforcing the development of the information technology in

modern societies that deeply rely on digital data. The deployments of hard disk

drives range from consumer electronics and home computers to enterprise storage

arrays and network servers. It is critical to identify and resolve hard disk drive

performance issues when dealing with increasing amount of digital data to be

accessed. In the real world, it is intense to deliver an operational and optimal

solution while facing stringent challenges of diversified market demands, rapid

time-to-market, huge capital investment, and cost-sensitive competition.

Hard disk drive performance was one of the most underrated aspects back

when the disk storage density was the primary concern of hard drive revolution.

Over the past few decades, the price per gigabyte of disk storage has dropped from

about $850 [19] in 1994 to about $0.07 [19] and lower in 2009. The researchers’

attention has therefore gradually shifted from the subject of disk density to disk

performance of the fundamental disk operations [6].

Hard disk drive performance means different things to different people and how
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the hard disk drive is used in a system. One common way to gauge the performance

is to benchmark hard disk drives using high-level benchmark programs specifically

developed for the purpose of measuring the performance of a system or components

based on logic and analysis. These programs are application-derived benchmarks

that simulate the impact of hard disk drive performance on the use of popular real

world input/output bound applications such that a lot of reading and writing to

the hard disk drive are required. The intention of benchmarking is to express the

overall performance of a system or individual components in numeric terms.

It is essential for hard disk drive manufacturers to flexibly and efficiently use

the existing resources and capability to evaluate the benefits and impact of the

proposed solutions for performance improvements as quick responses to market

demands and competitiveness over competitors. The fast evolving complexity of

hard disk drive technology makes it difficult to quickly identify and resolve per-

formance issues with associated economic and operational costs. The research in

the field of hard disk drive performance often involves both analytical or simula-

tion models to compare alternative approaches. From performance optimization’s

point of view, an analytical model applying design of experiments (DOE) tech-

nique is more suitable to characterize the benchmarked disk performance due to

the fact that an accurate simulator is not able to be fully developed without

knowing how the particular metric of interest, typically known as the ”benchmark

score”, which was defined by the vendor when the benchmarking software was

written. Nevertheless, only few extant DOE models regarding overall hard disk

drive performance benchmarking have been published.

Thousands of companies have provided documented stories of substantial sav-

ings to their business through the application of DOE. Especially during the tough

times of recent economic recession, most manufacturers are challenged to find more

economical and cost-effective ways to maintain market share without impacting

product quality and delivery. DOE is an effectively organized approach designed

to have minimal disruption to normal business operations which not only saves

2



industrial experimental costs but also greatly increases the odds of identifying the

hard-to-find solution to quality problems, reducing product variation, and opti-

mizing product performance [27].

This empirical study contributes to benchmarked hard disk drive performance

characterization by applying the DOE approach to develop statistical models.

Such models express the way hard disk drive technologies cooperate to perform

various tasks and workloads. Furthermore, the performance of future storage

devices within the same model family can be predicted based on the major trend

of the current model as a function of the significant factors.

1.2 Previous Work

Hard disk drive performance has been studied by many researchers in the past

decade. Grochowski et al. [1] pointed out that the characteristics of future hard

disk drives can be estimated by analyzing the specification trends of the disk drive

designs with the assumption that no major change in hard disk drive technology

will occur. In fact, not all advances in hard disk drive technology are necessar-

ily beneficial to disk drive performance. The considerations of how or where an

advance should be applied when weighing technology options for hard disk drive

designs have been studied [2]. As a result, the researchers’ attentions have focused

on increased rotational speeds, faster seek times, and higher data transfer rates as

the principal drivers of hard disk drive performance optimization.

Ruemmler et al. [4] emphasized the importance of a high quality and accurate

disk performance model by proposing a detailed simulation model in terms of I/O

time and describing general techniques for disk drive modeling. The introduction

of the demerit figure is used as the metric for hard disk drive performance eval-

uations. This simulation model has been validated and implemented by Kotz et

al. [12] and Triantafillou et al. [6] with detailed analytical characterizations of

modern disk behaviors, such as command queuing to minimize rotational delay.
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Ng [11] proposed a simple analytic queuing model to improve overall subsystem

performance via reducing rotational latency and rotational position sensing (RPS)

miss delay.

Automated hard disk drive characterization programs such as Disk Extraction

(DIXtrac), presented by Schindler et al. [13], quickly and automatically char-

acterized disk drives via extraction of disk layout, mechanics parameters, cache

parameters, and command processing overhead. Shim and Park [10] developed

Disk Geometry Analyzer (DIG) which efficiently extracted comprehensive inter-

nal information and characterized the performance metric of hard disk drives.

Although there was an awareness for hard disk drive performance character-

ization, these studies have neither reported on detailed simulation models nor

explored the hard disk drives closely enough to provide insights into the interac-

tions between the factors.

The Design of Experiments (DOE) methodology has been commonly used

for optimizing mechanics parameter settings of the hard disk drives. Hao et al.

[16] proposed a self-tuning robust control scheme based on the Response Surface

Methodology (RSM) to optimize the performance of the hard disk drive servo

system. The optimization process of actuator dynamics, as one of the most sig-

nificant design factors, was studied by Oh et al. [17] based on the RSM to insure

volume production capability with reasonable amount of tolerances. Li et al. [18]

discussed the application of RSM to suppress the cogging torque to an acceptable

level as an effective way to optimize the performance of the hard disk drive spindle

motor. However, reports on the feasibility of the DOE methodology have been

rare in the literature for benchmarked hard disk drive performance.

This study is unique in that the data is collected based on parameter set-

tings typically only available from the hard disk drive manufacturers but provides

insight into the depth of detailed benchmarking result that is often studied by

end-users. The real-world application of DOE is applied to improve benchmarked

performance score in selected Western Digital hard disk drives.
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Chapter 2

Experiment Setup

2.1 Characteristics of Parameters

Many parameters are relevant to hard disk drive performance, such as cache size,

data density, data rate, drive form factor, interface, overhead, platter diameter,

platter count, recording technology, rotation speed, seek time, and etc. This

study focused on the impacts of data rate, seek time, and overhead on hard disk

drive performance benchmarked using PCMark software. The ranges of these

parameter settings were determined based on the technical specifications of each

hard disk drive under investigation and knowledge of the experienced engineers

participated in this project. All other parameters were held constant throughout

the experiments to avoid response variations induced by uncontrollable factors.

2.1.1 Data Rate

Modern hard drives employ a Zoned Bit Recording (ZBR) technique that allows

different read speeds depending on where the data is located. With this technique,

tracks are grouped into zones based on their distances from the center of the disk,

and each zone is assigned a number of sectors per track to scale the tremendous

amount of data in bytes stored on each track as shown in Figure 2.1.
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Figure 2.1: A graphical illustration of Zoned Bit Recording (ZBR) [25].

The number of sectors per track is determined by the linear bit density lim-

itations throughout the whole disk where the tracks are concentric circles. As

moving from the outer zones through inner zones, each zone contains fewer sec-

tors per track than the one before. ZBR technique allows for more efficient use of

the space in outer tracks that were generally underutilized by non-ZBR techniques

such that every track had the same number of sectors as the innermost zone.

Figure 2.2: Data rate versus cylinder radius due to ZBR [25].

Due to the constant angular velocity throughout the platters, the data rate is

the fastest when reading the outermost cylinders which the zone contains the most

data. Figure 2.2 shows that the data rate decreases in gradual steps as moving

towards inner cylinders. The gradual steps across the entire platter surface are

the consequences of ZBR technique as the tracks within the same zone have the

6



same number of sectors and therefore the same data rate.

The selected Western Digital hard disk drives in this study have a few thousand

tracks which have been divided into eight zones. Each zone has different number

of tracks and different number of sectors. The size (length) of a sector remains

fairly constant over the entire surface of the disk.

Since the data rate by its name is obviously the amount of data transferred per

unit of time. The sequential transfer rate can be derived from the amount of data

transferred per cylinder and the time per cylinder transfer. These representations

are measured on a per cylinder basis because a sequential transfer rate covers an

entire cylinder on a disk.

2.1.2 Seek Time

Seek time is the time measured for the read and write head movements between

cylinders to position over data blocks before accessing on a specific track. The

default seek profile is a lookup table that provides the expected seek time value

for a given seek distance in cylinders [7] and often referred as the worst case seek

time. The performance of a hard disk drive can often be improved by adjusting

the seek profile to be closer to the average of the actual seek time [8].

The seek distance up to where a square root relationship exists between the

seek time and seek distance in cylinder is considered to be short seeks and the seek

distance after this boundary is so called long seeks where a linear relationship exists

between the seek time and seek distance.

Ts(d) =


Ts0 + k

√
d d < d′

T ′
s0 + k′d d ≥ d′

(2.1)

Equation 2.1 describes the relationship between seek time and seek distance, where

k and k′ are the coefficients, d is the seek distance, d′ is the boundary between

short seeks and long seeks, Ts0 and T ′
s0 are the settle time for short seeks and long

7



seeks, respectively. Short seeks spend almost all of their time in the constant-

acceleration phase, and their time is proportional to the square root of the seek

distance plus the settle time. Long seeks spend most of their time moving at a

constant speed, taking time that is proportional to distance plus the settle time

[3].

The seek profile can be broken into a small number of distance groups that have

similar variance value between the start and destination cylinders. On a Western

Digital hard disk drive, the distance between the start and destination cylinders is

typically divided into eight zones with the seven boundaries: 10, 41, 154, 400, 1000,

1500, and 4500 in cylinders. Each zone has its own data collection, calculation,

and adjustment. Read and write operations are separated and each has its own

eight zones. The variance of each distance group is the difference between adjusted

seek profile and average of the actual seek time, where the adjusted seek profile is

an attempt for adjusting seek time measurements and is manually created during

servo characterization.

Adjusted seek profile = Default seek profile + Seek profile variable offset

+Seek profile fixed offset (2.2)

Adjusted seek profile can be described as in Equation 2.2, where seek profile

variable offset is the average of the difference between the actual seek time and

the default seek profile. Normally, this is a negative value as the actual seek time

should be less than the worst case seek time.

The seek time parameter discussed in this study is referred to the seek profile

fixed offset, which is an explicitly conservative value included to account for the

variability. It is normally a positive value, and the smaller this value is the closer

the adjusted seek profile is to the actual seek time. It is stored as byte number 64

to 79 (total 16 bytes) in the reserved file (id 0x4002). The first three bytes, byte

8



number 64 to 66, are referred to short seek reads follow by the next five bytes,

byte number 67 to 71, as long seek reads. The next eight bytes of the seek profile

fixed offset are for the write operation; where byte number 72 to 74 are referred

to short seek writes, and byte number 75 to 79 are long seek writes. Each byte

refers to a value measured in wedges as number of sectors on disk, and corresponds

to each zone of the variance groups. The seek profile fixed offset ranges from 0

to 127 in wedges for each byte as only positive delay offset can be added. The

seek profile fixed offset in wedges can be converted to units in time domain by

multiplying a wedge-to-wedge time. The wedge-to-wedge time is different from

drive to drive because it is affected by the rotational speed and number of wedges

per track. The wedge-to-wedge time for each hard disk drive under investigation

in this study was provided by Western Digital Corporation.

After powering up, seek profile variable offset and seek profile fixed offset of

each zone and the initialized bit will be loaded from the reserved file to the static

buffer. The Adaptive seek feature will be enabled if bit 0 of byte 80, the initialized

bit is set. This feature can be disabled by resetting this bit to 0.

2.1.3 Overhead

Overhead is the time it takes for the controller to process an interrupt service rou-

tine (ISR) and handle servo hook code requests. The interrupt signal is generated

every wedge to signify the determination of the correction factor in response to

the servo hook codes loaded from the event detector; hence, there is an interaction

with the wedge-to wedge time.

While the read and write heads are moving, they periodically read the servo

hook codes written in special data areas on the disk which provide information

about the locations of the heads. Servo hook codes are embedded during man-

ufacturing either completely on one side of each platter or among the data in

non-writable and engineered positions, not able to be modified. Each track loads

different codes to the closed-loop control logic to dynamically guide the actuator
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to the correct track. The positions of the read and write heads are adjusted to

compensate for any changes in the platter or head dimensions due to thermal ex-

pansion or physical stress [20]. The ISR mentioned in this chapter results from

the actuator arm movement to a specific position. As the cycles prior to the

execution become shorter, the process by which the read and write heads posi-

tioning becomes much faster. Therefore, lower overhead yields higher disk drive

performance.

As mentioned earlier, the overhead is associated with wedge-to-wedge time

since the ISR is processed every wedge to handle servo hook code requests. From

the perspective of CPU utilization, overhead can be represented as how much

system resource, such as CPU time, is required. The higher the percentage of the

CPU time is used for overhead, the less resource can be devoted to other tasks

and thus can cause slowdowns. Available CPU resources remaining after overhead

can be represented as Equation 2.3, where the CPU clock is in megahertz.

CPU clock× (wedge-to-wedge time− overhead)

wedge-to-wedge time
× 100% (2.3)

Another key issue is that each drive may have different CPU clock and wedge-

to-wedge time. It is totally invalid to compare the CPU utilization of different

drives without normalizing this consideration.

2.2 Hardware Setup

The experimental data acquisition setup was a workstation with a RAID controller

custom-built by Western Digital Corporation specifically for this study. Four

different Western Digital hard disk drives were selected for investigation.

2.2.1 Workstation

The custom-built workstation was a Dell Precision Firmware Workstation T3400

that is powered by Intel Core 2 Quad Q6600 (2.40GHz/1066MHz/2X4MB L2)
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Figure 2.3: Customized workstation with RAID controller connected.

along with 2GB of 667MHz DDR2 SDRAM Memory and configured dual-boot

with Windows Vista Business and Windows XP Business.

2.2.2 RAID Controller

The RAID controller was a Promise SuperTrak EX STEX8658 RAID Controller

with 8 external ports that supports both SAS and SATA 3Gb/s drives and main-

tains configuration optimization for performance. The card incorporates a single

chip solution for optimized reliability with 512MB data cache onboard, and an x8

PCI-Express interface to the host.

2.2.3 Hard Disk Drives

The hard disk drives under investigation in this study were known as Mars-RE,

Viking, and Mercury. Atlantis-RE disk drive was used to confirm the Mars-RE

models. The official product names and technical specifications of these hard disk

drives are summarized in the following subsections.

Mars-RE

Mars-RE, model: WD1002FBYS has an official product name known as WD

terabyte RAID Edition 3 (RE3) which is a third-generation RE disk drive. The

RE3 is a 3.5-inch enterprise-class hard drive which uses the three 334GB platters
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backed by 32MB of cache, spins them at 7,200RPM, and shares a 3 Gb/s Serial

ATA interface.

Atlantis-RE

Atlantis-RE, Model: WD5002ABYS is officially known as WD 500GB RAID Edi-

tion 3 (RE3) which is in the same product family of Western Digital’s RAID

Edition 3 as Mars-RE. The 500 GB version is also a 3.5-inch enterprise-class,

7,200 RPM drive, and shares a 3 Gb/s Serial ATA interface. However, it only

comes with 16 MB of cache memory.

Mercury

Mercury has the model number: WD5000BEVT, which is known as WD Scorpio

Blue for its official product name. This 2.5-inch, 500 GB Scorpio Blue that spins

at 5400 RPM utilizes a SATA 3 Gb/s interface and comes with 8 MB of cache

memory. Its low power consumption and cool operation in addition to its high

performance making them ideal for notebooks and other portable devices.

Viking

Viking, model number: WD3000BLFS is officially known as WD VelociRaptor

for its product name. Western Digital’s standout 10,000 RPM and SATA 3 Gb/s

interface Raptor family offers maximum speed, low power consumption, and cool

operation. This WD VelociRaptor is available in a 2.5-inch form-factor, 300 GB

and comes with 16 MB of cache memory for use in enterprise applications.

2.3 Software Setup

2.3.1 Windex

Windows Drive Exerciser (Windex) is a Windows-based, Western Digital propri-

etary test interface that enables the user to adjust the settings of performance

12



parameters such as seek time and overhead by editing the header format file of a

hard disk drive.

2.3.2 HD Tach

HD Tach is a Windows-based low-level benchmark tool used for testing the se-

quential read speed, the random access speed, interface burst speed, and CPU

utilization of the random access read/write storage device attached. The data

rate parameter investigated in this study is the sequential read speed measured

at various points on the hard disk drive. The HD Tach sequential read test is a

little bit different from other benchmarks. HD Tach reads from areas all over the

hard drive and reports an average speed while most benchmarks create a file on

the hard drive and test within that file.

2.3.3 PCMark

From the perspective of benchmarking software, the most influential applications

regarding hard disk performance are I/O bound tasks which intensive reading from

the hard disk drive and writing to it are involved. Multimedia editing applications

which deal with large audio and video files are greatly influenced by the speed of

the storage devices. On top of these, the starting up of an operating system and

loading applications are also intensive I/O processes.

The performance characteristics measured during the experiment were stan-

dardized benchmarking software scores. Measurements were obtained using PC-

Mark05 in Windows XP and PCMark Vantage in Windows Vista emulating vari-

ous tasks, such as virus scanning, application loading, importing files, and media

editing.

PCMark05 and PCMark Vantage Hard Disk Drive (HDD) Suite measures the

hard disk drive performance based on the results of various tests with different

workloads within the suite. The individual test scores are combined using a geo-

metric mean. The geometric mean provides a fair mechanism to combine a large
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number of test results as compared to assigning arbitrary weights to individual

scores. It is scaled using a multiplier based on performance results from reference

hard disk drives to produce the appropriate range of scores. The general formula

for the geometric mean is described in Equation 2.4.

Geometric Mean = (Test1× Test2× Test3× . . .)
1

Number of Tests (2.4)

The formulas of PCMark05 and PCMark Vantage HDD Scores are described

in Equation 2.5 and Equation 2.6 respectively.

PCMark05 Score = 300× [Geometric Mean of HDD Suite Test Results]

= 300× (Windows XP Startup× Application Load

× General Usage× Virus Scan× File Write)
1
5 (2.5)

PCMark Vantage Score = 214.65× [Geometric Mean of HDD Suite Test Results]

= 214.65× (Windows Vista Startup×Windows Defender

× Windows Media Center×Gaming× Video Editing

× Adding Music× Importing Pictures

× Application Loading)
1
8 (2.6)

2.3.4 Minitab

Minitab is a commercially available statistical package that allows the user to gen-

erate a randomized experimental procedure for conducting the experiments and

statistical manipulation. The software sets up a variety of multi-level designed

experiments using the data set obtained from experiments and offers several an-

alytical and graphing tools for analysis. Minitab helps us understand the results

that can lead to potential improvement.
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Chapter 3

Design of Experiments (DOE)

A three phase experimental study was performed in order to illustrate various

aspects and benefits of the DOE methodology in the framework of benchmarked

hard disk drive performance optimization. The first experiment concerned the ex-

perimental design and Analysis of Variance (ANOVA). The performances of three

Western Digital hard disk drives: Mars-RE, Viking, and Mercury benchmarked

using PCMark05 and PCMark Vantage as functions of performance parameters:

data rate, seek time, and overhead were characterized using a two-level full fac-

torial design. The second experiment dealt with the study of regression analysis

which an equation was derived to describe the statistical relationship between fac-

tors: data rate, seek reads, seek writes, overhead and benchmarked Mars-RE disk

performance and to predict new observations. A three-level full factorial design

was applied. In the third case, the same experimental design was analyzed with

additional replicates through Response Surface Methodology (RSM) for response

optimization. The RSM models for Mars-RE disk drive performance benchmarked

using both PCMark05 and PCMark Vantage were verified with Atlantis-RE disk

drive, a prior generation hard drive of Mars-RE disk drive. It was reasonable to

use Atlantis-RE disk drive for the confirmatory experiment since it is within the

same model family as Mars-RE disk drive. The two hard disk drives therefore

have the same technical specifications for most uncontrollable parameters that
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may have impacts on benchmarked performance.

3.1 Experiment 1

The objective of the Design of Experiments (DOE) application during the initial

phase was supposed to be a screening experiment used to screen out the few sig-

nificant main effects among all factors. However, the factors: short seek reads,

overhead , and data rate were proposed by the engineers at Western Digital who

participated in this study as already known significant to benchmarked disk per-

formance in PCMark scores. This experiment is therefore focused on identifying

the characteristics of short seek reads, overhead, and data rate and better appre-

ciating their impacts on the disk performance of Mars-RE, Viking, and Mercury

disk drives benchmarked using PCMark software.

3.1.1 Methodology

A full factorial design is used to investigate the effects of each factor and the

interactions between them on a defined response by conducting all possible com-

binations of the factor levels. The factor settings are varied simultaneously rather

than one-at-a-time in order to detect the important interactions between the fac-

tors.

In a two-level full factorial design, each factor has only two levels. The two

levels are often referred as upper level and lower level and denoted as ”+1” and

”-1” respectively. The experimental runs therefore include 2n combinations of

factor levels for n factors. Even though a two-level full factorial design is only

able to explore within a limited factor space, it indicates the direction of major

trends with relatively few runs for small number of factors. This information is

extremely useful for optimization in a wider region.
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3.1.2 Experimental Design

The general procedure of DOE usually begins with experimental design, which

defines the objective and selects controllable factors which the settings can be

adjusted accordingly and are independent of other factors. Often the experiment

also has to account for a number of uncontrollable factors which are held as close

to constant as possible. The experiments are replicated in randomized order for

execution to compensate the impact of uncontrollable factors on the response. The

DOE approach is planned out in a way such that the changes in response can be

observed and identified efficiently.

In this experiment, the three Western Digital hard disk drives under investi-

gation were with aliases: Mars-RE, Viking, and Mercury. The effects of the three

factors: short seek reads, overhead, and data rate were investigated on the re-

sponse identified as disk performance benchmarked using PCMark software. The

upper and lower levels adopted for the controllable factors were translated to

their numerical values with corresponding units as indicated in Table 3.1 for each

hard disk drive. The hard drives Mars-RE (1TB), Viking (300GB), and Mercury

(500GB) were partitioned to 100GB, 20GB, and 25GB respectively for the test

runs. The low level setting for short seek reads was determined based on its lowest

default setting. The high level setting was then determined by taking the largest

integer multiple of the low level setting which is less than or equal to 127 wedges.

Table 3.1: Factor levels for the two-level full factorial design.

Factor Unit Symbol Mars-RE Viking Mercury
Short Seek Reads wedge x1 14 126 6 126 13 117
Overhead µs x2 0 5 0 3 0 5
Data Rate MB/s x3 65.00 112.00 82.30 122.40 41.75 80.00

This two-level full factorial design of three factors includes 23 = 8 test runs.

The test runs are carried out at upper and lower experimental levels denoted using

+ and - respectively as listed in Table 3.2, usually referred as a design matrix.
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An interaction effect indicates that the effect of one factor is dependent upon the

level of one or more other factors. The algebraic signs for the interaction effects

are obtained by multiplying the corresponding factor columns row by row.

Table 3.2: Design matrix for the two-level full factorial design.

x1: Short Seek Reads x2: Overhead x3: Data Rate
Run x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

1 - - + - + + -
2 - - + + - - +
3 - + - - + - +
4 - + - + - + -
5 + - - - - + +
6 + - - + + - -
7 + + + - - - -
8 + + + + + + +

The two-level full factorial design with three factors can be displayed geomet-

rically as the cube shown in Figure 3.1 for a better understanding. Each axis

represents the range of a factor, and the two ends indicate the high and low levels

of this factor. The joint effects occur at the eight corners represent all unique

combinations of factor levels in this design.

Figure 3.1: Design cube for the two-level full factorial design [Minitab Help, 2007].
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3.1.3 Results and Discussion

The design was replicated three times, resulting in a total of 24 runs (i.e. 8 runs per

replicate). The test runs were carried out in randomized order. Table 3.3-3.5 show

the benchmarked disk performance in PCMark05 and PCMark Vantage scores for

the 8 combinations of short seek reads, overhead, and data rate settings to be done

in this two-level full factorial design for Mars-RE, Viking, and Mercury disk drive

respectively. The experimental runs are listed in standard order as demonstrated

in the design matrix in Table 3.2. For each combination of factor settings, the

responses of the three replications are denoted as y1, y2, and y3 respectively. ȳ is

the average and S is the standard deviation.

The experimental data in Table 3.3-3.5 were analyzed individually using Anal-

ysis of Variance (ANOVA) with a general linear model which includs terms up

through order 3 (three-way interaction). The ANOVA is a commonly used analy-

sis for statistical sensitivity which computes the contributions of individual factor

effects and their interactions and determines which effects can be regarded as sig-

nificant to the response. The name indicates that the analysis is based on estimates

of variance within responses of all combinations of factor levels in the design.

The ANOVA decomposes the total variability in the experimental data into

sources of variation along with their degrees of freedom, total sum of squares,

mean squares, F-statistics, and P-values. These statistics were computed using

Minitab and arranged in ANOVA tables as shown in Figure 3.2-3.7 for each exper-

iment. The F-statistics and P-values are useful for determining whether an effect

is significantly related to the response. Typically, the F-statistics are compared

against the critical F found in F-distribution table and the P-values are compared

against α = 0.05. It is common to declare an effect statistically significant if the

P-value is less than α = 0.05 or the F-statistic is greater than the critical F. The

smaller the P-value or the larger the F-statistic, the more significant is the effect.

19



Table 3.3: Benchmarked Mars-RE disk drive performance.

Mars-RE PCMark05 Mars-RE PCMark Vantage
Run y1 y2 y3 ȳ S Run y1 y2 y3 ȳ S

1 6373 6389 6345 6369 22.27 1 3810 3840 3821 3824 15.18
2 7419 7433 7423 7425 7.21 2 4542 4563 4550 4552 10.60
3 5931 5999 5942 5957 36.50 3 3585 3602 3592 3593 8.54
4 6760 6807 6842 6803 41.15 4 4244 4304 4308 4285 35.85
5 6008 6040 5947 5998 47.25 5 3661 3689 3690 3680 16.46
6 7024 6976 7037 7012 32.13 6 4357 4360 4390 4369 18.25
7 5691 5712 5760 5721 35.37 7 3490 3531 3512 3511 20.52
8 6544 6496 6583 6541 43.58 8 4127 4133 4182 4147 30.17

Figure 3.2: ANOVA table for Mars-RE disk drive benchmarked using PCMark05.

Mars-RE

The ANOVA in Figure 3.2 indicates that the effect of data rate (F = 4191.59)

contributes the most to the total variance and overhead (F = 954.16) is the

second most significant effect. The influences of short seek reads and data rate

interaction (P = 0.258) and short seek reads, overhead, and data rate interaction

(P = 0.781) on Mars-RE disk performance benchmarked using PCMark05 are low

and not statistically significant within the confined experimental domains.

The main effects plot and interaction plot are the graphical methods commonly
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used in conjunction with the ANOVA. A main effects plot connects the response

mean for each factor level to visually investigate how the response is affected by

different levels of a factor. The steeper slope represents the greater magnitude of

the main effect. An interaction plot compares the relative strength of the effects

across factors. Nonparallel lines on the interaction plots represent high interactions

between the factor pair and indicate that the effect of one factor on response is

dependent upon the level of another factor. The greater the difference in slope

between the lines, the higher is the significance of interaction.

Figure 3.3 shows the individual effects of all factors on main effects plots. Short

seek reads and overhead appear to affect Mars-RE disk performance benchmarked

using PCMark05 with a negative correlation. Higher disk performance can be

reached with smaller level settings of short seek reads and overhead. Data rate

affects Mars-RE performance with a positive correlation. Higher disk performance

is observed at higher level setting of data rate.

Figure 3.3: Main effects plots of Mars-RE disk drive benchmarked using PC-
Mark05.

Figure 3.4 indicates significant interactions between short seek reads and over-

head and between overhead and data rate. Parallel lines indicate no significant
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Figure 3.4: Interaction plots of Mars-RE disk drive benchmarked using PCMark05.

interaction between the short seek reads and data rate. As long as the factor levels

are kept within the confined ranges, the lower level of short seek reads in wedges,

lower level of overhead in microseconds, and higher level of data rate in megabytes

per second are always the better choices for achieving higher benchmarked Mars-

RE performance in PCMark05 scores.

Figure 3.5 shows that data rate (F = 6219.47) participates actively to the

benchmarked Mars-RE disk performance in PCMark Vantage scores. Overhead

(F = 650.07) is the second most significant effect. The interaction of short seek

reads, overhead, and data rate (P = 0.632) is the only insignificant term on Mars-

RE performance benchmarked using PCMark Vantage in the ANOVA table.

The individual effects of all factors in Figure 3.6 are similar to the main effects

plot for Mars-RE benchmarked using PCMark05 in Figure 3.3 except that the

benchmarked performance scoring scales are different. Similar conclusions on the

correlations between each factor and response are reached.

Figure 3.7 shows that there are significant interactions between short seek reads

and overhead, between short seek reads and data date, and between overhead and
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Figure 3.5: ANOVA table for Mars-RE disk drive benchmarked using PCMark
Vantage.

Figure 3.6: Main effects plots of Mars-RE disk drive benchmarked using PCMark
Vantage.

data rate. Short seek reads and overhead both have greater effects at the low level

than the high level; data rate has greater effect at its high level than low level.
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Figure 3.7: Interaction plots of Mars-RE disk drive benchmarked using PCMark
Vantage.

Viking

Table 3.4: Benchmarked Viking disk drive performance.

Viking PCMark05 Viking PCMark Vantage
Run y1 y2 y3 ȳ S Run y1 y2 y3 ȳ S

1 8002 8062 8042 8035 30.55 1 5444 5501 5513 5486 36.86
2 8914 8936 9003 8951 46.36 2 6062 6027 6015 6034 24.42
3 7121 7065 7144 7110 40.63 3 4853 4897 4799 4849 49.08
4 7668 7714 7751 7711 41.58 4 5322 5334 5361 5339 19.97
5 7613 7620 7632 7621 9.61 5 5202 5210 5252 5221 26.86
6 8590 8524 8540 8551 34.43 6 5843 5857 5859 5853 8.72
7 6920 6929 6887 6912 22.11 7 4830 4771 4823 4808 32.23
8 7573 7601 7580 7584 14.57 8 5252 5273 5286 5270 17.16

Figure 3.8 shows the ANOVA of the factor effects and interactions on bench-

marked Viking disk performance in PCMark05 scores. A significant factor effect

of overhead (F = 5245.05) is notably found. Data rate (F = 3457.33) also con-

tributes significantly to the total variance. There is no significant evidence for the

effects of short seek reads and data rate interaction (P = 0.126) and short seek
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reads, overhead, and data rate interaction (P = 0.293) on benchmarked Viking

disk performance in PCMark05 scores.

Figure 3.8: ANOVA table for Viking disk drive benchmarked using PCMark05.

The main effects plots on Figure 3.9 show very strong negative correlation be-

tween overhead and benchmarked performance of Viking disk drive in PCMark05

scores. This result confirms that overhead has the most significant factor effect

among the three factors as indicated in the ANOVA table. The positive correla-

tion between data rate and benchmarked performance of Viking disk drive is also

strong; short seek reads appears to influence the disk performance with decent

negative correlation.

It is easy to observe from Figure 3.10 that when short seek reads setting is lower,

its interaction with overhead is larger and a lower overhead setting has higher

interaction with data rate. Parallel lines indicate that there is no statistically

significant interaction between short seek reads and data rate on performance of

Viking disk drive benchmarked using PCMark05.

The ANOVA in Figure 3.11 indicates that all three factor effects are found

significant to benchmarked Viking disk performance in PCMark Vantage scores

especially the effects of overhead (F = 2358.28) and data rate (F = 1977.90).
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Figure 3.9: Main effects plots of Viking disk drive benchmarked using PCMark05.

Figure 3.10: Interaction plots of Viking disk drive benchmarked using PCMark05.

Within the factor domains, the interaction between short seek reads and data rate

(P = 0.260) is the only insignificant term to the performance of Viking disk drive

benchmarked using PCMark Vantage.

Main effects plots in Figure 3.12 concludes that the correlations between each
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Figure 3.11: ANOVA table for Viking disk drive benchmarked using PCMark
Vantage.

Figure 3.12: Main effects plots of Viking disk drive benchmarked using PCMark
Vantage.

factor and benchmarked performance of Viking disk drive in PCMark Vantage

scores are similar to the results from Figure 3.9, which the Viking disk performance

was benchmarked using PCMark05.
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Figure 3.13: Interaction plots of Viking disk drive benchmarked using PCMark
Vantage.

The interaction between short seek reads and data rate is again found not sta-

tistically significant on benchmarked performance of Viking disk drive in PCMark

Vantage scores on interaction plots in Figure 3.13. Lower short seek reads level

leads to larger interaction effect with overhead and lower overhead level has a

larger interaction effect with data rate.

Mercury

Figure 3.14 shows that the factor effects of data rate (F = 6760.30) has dominant

influence to benchmarked performance of Mercury disk drive in PCMark05 scores.

Short seek reads (F = 281.92) and overhead (F = 79.16) both also participate the

contributions to the total variance; however, their factor effects are nowhere closer

to data rate’s. The only interaction found statistically significant to Mercury disk

performance is between short seek reads and data rate (P = 0.008).

The Main effects plots in Figure 3.15 confirms that data rate is the most dom-

inant factor effect among all three factors to benchmarked Mercury disk perfor-

mance in PCMark05 scores by showing that data rate has the greatest magnitude
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Table 3.5: Benchmarked Mercury disk drive performance.

Mercury PCMark05 Mercury PCMark Vantage
Run y1 y2 y3 ȳ S Run y1 y2 y3 ȳ S

1 4192 4200 4210 4200 9.02 1 2391 2389 2405 2395 8.72
2 5028 5035 4998 5020 19.66 2 2662 2690 2682 2678 14.42
3 4098 4117 4115 4110 10.44 3 2338 2340 2358 2345 11.02
4 4960 4917 4918 4931 24.54 4 2695 2708 2622 2675 46.36
5 4048 4062 4054 4054 7.02 5 2349 2334 2348 2343 8.39
6 4867 4784 4854 4835 44.64 6 2663 2641 2640 2648 13.00
7 3978 3997 3997 3990 10.97 7 2280 2299 2309 2296 14.73
8 4764 4699 4744 4735 33.29 8 2608 2644 2568 2606 38.02

Figure 3.14: ANOVA table for Mercury disk drive benchmarked using PCMark05.

of main effect. The performance of Mercury disk drive benchmarked using PC-

Mark05 increases significantly when data rate moves from its low level to high

level. Both short seek reads and overhead at their low levels have higher disk

performance means than at their high levels.

In Figure 3.16, the interaction plots of short seek reads versus data rate am-

biguously show nonparallel lines which indicate a slightly significant interaction to

benchmarked disk performance of Mercury in PCMark05 scores. The interactions

between short seek reads and overhead and between overhead and data rate are
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Figure 3.15: Main effects plots of Mercury disk drive benchmarked using PC-
Mark05.

Figure 3.16: Interaction plots of Mercury disk drive benchmarked using PC-
Mark05.

not significant as the two lines remain parallel over all confined factor levels.

The ANOVA of benchmarked performance of Mercury disk drive in PCMark

Vantage scores in Figure 3.17 shows similar results as benchmarked using PC-
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Figure 3.17: ANOVA table for Mercury disk drive benchmarked using PCMark
Vantage.

Mark05 in Figure 3.14. The F-statistics of data rate (F = 1014.70) indicates that

it has extremely strong effect to benchmarked disk performance of Mercury in

PCMark Vantage scores while factor effects of short seek reads (F = 26.66) and

overhead (F = 13.51) are also significant but contribute very little to the total

variance. There is no significant evidence for any of the interactions within the

confined factor ranges as all the corresponding P-values are greater than α = 0.05.

Main effects plots in Figure 3.18 show strong influence to benchmarked perfor-

mance of Mercury disk drive in PCMark Vantage scores from data rate. Data rate

at its high level has a higher disk performance mean than at its low level, which

indicates a positive correlation between data rate and benchmarked disk perfor-

mance. On the other hand, benchmarked Mercury disk performance increases

when either short seek reads or overhead moves from its high level to low level.

Figure 3.19 shows that there are significant interactions between short seek

reads and overhead and between overhead and data rate. However, the factor effect

of data rate alone to disk performance of Mercury benchmarked using PCMark

Vantage is extremely dominant as indicated in the ANOVA table. None of the
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Figure 3.18: Main effects plots of Mercury disk drive benchmarked using PCMark
Vantage.

Figure 3.19: Interaction plots of Mercury disk drive benchmarked using PCMark
Vantage.

interactions contributes enough to total variance to be considered significant to

disk performance.

The two-level full factorial design with three factors was analyzed with the
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ANOVA using Minitab. The total variability in the experimental data was de-

composed into three factor effects (x1, x2, x3), three two-way interactions (x1x2,

x1x3, x2x3), and one three-way interaction (x1x2x3). The F-statistic and its prob-

ability value (P-value) provide useful information for determining the statistical

significance of all given effects to the benchmarked disk performance. Main effects

plot and interaction plot help visually judge the presence of main effects and inter-

actions over confined factor levels and compare their strength. The information

provided by the DOE techniques quantified some common sense to make well-

founded assumptions for further investigation. The analysis results of Mars-RE,

Viking, and Mercury disk drives are summarized in Table 3.6 for comparison.

Table 3.6: Summary of ANOVA results in Experiment 1.

x1: Short Seek Reads x2: Overhead x3: Data Rate
Disk Benchmarking Significant Significant
Drive Software Main Effect(s) Interaction Effect(s)

Mars-RE
PCMark05 x1, x2, x3 x1x2, x2x3

PCMark Vantage x1, x2, x3 x1x2, x1x3, x2x3

Viking
PCMark05 x1, x2, x3 x1x2, x2x3

PCMark Vantage x1, x2, x3 x1x2, x2x3, x1x2x3

Mercury
PCMark05 x1, x2, x3 x1x3

PCMark Vantage x1, x2, x3 None

The significant interactions between factors identified in this experiment in-

dicate that the change in benchmarked disk performance as the setting of one

factor moves between its low and high levels is dependent upon the level of one

of more other factors. However, different benchmarking software evaluates the

performance of the same disk drive with different tests which may be influenced

specifically by certain interactions between factors.

The benchmarked disk performance of Mars-RE, Viking, and Mercury disk

drives cannot be compared with each other due to the fact that they are all in

different model families. Impacts on benchmarked disk performance due to un-

controllable parameters such as clock speed, revolutions per minute, architecture,

etc., are usually different from one model family to another. The significance
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of the same interaction onto the performance of different hard disk drive would

therefore be different even though they are evaluated with the same benchmarking

software.

3.2 Experiment 2

In Section 3.1, the two-level full factorial design provided quick identification of

major trends within a small number of experimental runs. The ANOVA eval-

uated the significant contributions of the factor effects and their interactions to

benchmarked hard disk drive performance. The objective of Experiment 2 was to

describe the statistical relationship between the factors and a response by a math-

ematical equation for new observation predictions through regression analysis.

Rather than continuing to use the original three factors proposed by engi-

neers at Western Digital Corporation, the interrelationship between seek time sub-

factors: short seek reads, long seek reads, short seek writes, and long seek writes

was studied from engineering aspects for a better understanding as described in

Section 2.1.2. Since the partitioned hard disk drive capacity also determines which

distance group (zone) is covered, it is reasonable to consider short seek reads (first

three zones) and long seek reads (next five zones) as a single factor, seek reads,

by setting all eight zones with the same level. Similar settings are applied for seek

writes.

Mars-RE, known as a mainstream desktop disk drive manufactured by Western

Digital Corporation was the only hard disk drive studied during this experimental

phase and throughout the rest of this research due to time constraint. A three-

level full factorial design was used to obtain more information about the main

effects of newly defined factors.
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3.2.1 Methodology

The data set observed from a full factorial design can be described in terms of a

functional relationship between the factors and a response by fitting a regression

model. The mathematical form of a multiple linear regression model, which de-

pends on n independent factors x1, x2, . . ., xn, can be expressed as in Equation

3.1, where ŷ is a single, dependent response prediction and the regression coeffi-

cient. β0, is the y-intercept of the regression model and is defined as the grand

average of all response observations and βi’s (0 < i ≤ n) are linear coefficients

correspond to the expected change in response y per unit change in xi, when all

the remaining independent variables are held constant.

ŷ = β0 +
n∑

i=1

βixi (3.1)

Fitting a linear multiple regression model essentially involves using the exper-

imental observations to estimate the regression coefficients such that the critical

terms can be determined and included in the final model. Lower-order regression

models are often used to provide good approximations of the relationship between

factors and response.

A linear regression model shows a steady rate of increase or decrease in the

response observations. Regression generally uses the least squares method which

derives the equation for model fitting by minimizing the sum of the square of the

residuals. A residual represents the difference between an observed response y and

its corresponding fitted value ŷ as in Equation 3.2.

e = y − ŷ (3.2)

3.2.2 Experimental Design

During this experimental phase, the factors under investigation were data rate,

seek reads, seek writes, and overhead. The four factors are designated as x1, x2,
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x3, and x4 respectively, each has the low, middle, and high levels as indicated in

Table 3.7 for the three-level full factorial design. Unit conversions were performed

for a more meaningful interpretation of results. The units of seek reads and seek

writes are converted from wedges to microseconds by multiplying a specified Mars-

RE wedge-to-wedge time of 28.82 µs/wedge. The unit of overhead is converted

from microseconds to megahertz as described in Equation 2.3.

Table 3.7: Factor levels for the three-level full factorial design.

Factor Unit Symbol Level
Data Rate MB/s x1 65 80 110
Seek Reads µs x2 144.1 1729.2 3458.4
Seek Writes µs x3 144.1 1729.2 3458.4
Overhead MHz x4 75 96 126

The three-level full factorial design consists of 34 = 81 possible factor combi-

nations for the four factors each with three levels. Each treatment was run three

times in randomized order. A total of 81× 3 = 243 test runs were included in the

full factorial design for Equation 3.3.

The regression analysis indicates the significance and direction of the statistical

relationship between the factors and response by estimating the regression coeffi-

cients of the fitted model through the T-statistics and their P-values. A P-value

can be found from Student’s T-distribution table and compared against α = 0.05

after the T-statistic is calculated.

3.2.3 Results and Discussion

The statistical relationship between the four factors and the response is derived

by substituting the value of 4 for n in Equation 3.1 since there are four parameters

under investigation in this experiment. Equation 3.3 predicts the Mars-RE disk

performance benchmarked using PCMark05 given specified factor settings of data

rate, seek reads, seek writs, and overhead.
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ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 (3.3)

The regression analysis relates the overall mean effect (β0) and the effects of

the factors (βi’s, 0 < i ≤ n) at different levels. The integration of the linear

multiple regression model in Equation 3.4 gives an approximation of the response

based on the experimental results.

ŷ = 3557 + 21.1x1 − 0.157x2 − 0.039x3 + 8.75x4 (3.4)

Figure 3.20 summarizes the significance of each regression coefficient in the

linear multiple regression model in Equation 3.4. The low probability values

(P = 0.000’s) of all linear effects indicate their significances to Mars-RE disk

performance benchmarked using PCMark05. The application of T-test deter-

mines that data rate (T = 49.26) has the most dominant effect and seek writes

(T = −6.64) has the least effect among the four parameters to Mars-RE disk

performance benchmarked using PCMark05.

The adjusted coefficient of multiple determination (R2
Adj) is the percentage

of response variable variation, adjusted for the number of factors in the model.

This measure is explained by its correlation with one or more factors for testing

the goodness of fit of the regression equation. The R2
Adj of 93.9% in Figure 3.20

indicates how close the data points will fall along the fitted regression line. The

four linear effects account for 93.9% of the variance of Mars-RE disk performance

benchmarked using PCMark05 by this linear multiple regression model.

The sign of each regression coefficient indicates the direction of the relationship

between the factors and response. Positive regression coefficients of data rate and

overhead suggest increases in these factors for achieving maximal Mars-RE disk

performance benchmarked using PCMark05. On the other hand, seek reads and

seek writes should follow the opposite direction.

The regression coefficients represent the mean change in a response per unit
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Figure 3.20: Regression analysis for Mars-RE disk drive benchmarked using PC-
Mark05.

change in a factor while holding the other factors constant. Specifically, Mars-RE

disk performance benchmarked in PCMark05 scores was expected to increase by

21.073 per megabyte increase in data rate, to decrease by 0.157 per microsecond

increase in seek reads, to decrease by 0.039 per microsecond increase in seek reads,

and to increase by 8.752 per megahertz increase in overhead. The adequacy and

significance of this model fit to the experimental data is tested in the form of

Analysis of Variance (ANOVA) summarized in Figure 3.21.

Figure 3.21: ANOVA table for Mars-RE disk drive benchmarked using PCMark05.

This multiple regression model is found highly significant, according to the

low probability value of P = 0.000. This result suggests that the factors identified

in this model are in fact of significant importance to the Mars-RE disk perfor-

mance benchmarked using PCMark05. The model is concluded to be adequate for

response prediction within the factor domains employed.

3.3 Experiment 3 - PCMark05

A linear multiple regression model that predicts Mars-RE disk performance bench-

marked using PCMark05 as a function of relevant controllable factors: data rate,
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seek reads, seek writes, and overhead was obtained in Section 3.2. The Response

Surface Methodology (RSM) is a collective use of Design of Experiments (DOE)

techniques, Analysis of Variance (ANOVA), and regression models employed dur-

ing this experimental phase to optimize the derived model equation for gaining

precise operating conditions of all significant factors within the observation space

for maximum benchmarked Mars-RE disk drive performance in PCMark scores.

3.3.1 Methodology

The Response Surface Methodology (RSM) involves a combination of computation

and visualization for optimizing a response in a desired direction by iteratively

adjusting parameter settings. The response surface model is generalized as in

Equation 3.5, where the notations remain the same as the linear multiple regression

model described in Section 3.2.

ŷ = β0 +
n∑

i=1

βixi +
n∑

i<j

βijxixj +
n∑

i=1

βiix
2
i (3.5)

This frequently used quadratic model consists of the linear regression model in

the first half of the equation and additional interactions and squares in the second

half of the equation. Higher-order terms would follow if necessary. The response

surface of a model with linear terms alone, such as the linear multiple regression

model derived in Equation 3.4, represents a two-dimensional plane within the

three-dimensional factor space. Additional interactions and higher-order terms

describe the local shape of the response surface such that the interactions allow

for warping of the plane and the squares indicate an optimal response that is either

the maximum or minimum on the response surface. An adequate response surface

model helps optimize the experimental design with much ease through statistical

and graphical analyses.

The results of the linear multiple regression analysis in Section 3.2 showed that

all the linear effects of the parameters are significant to Mars-RE disk performance

benchmarked using PCMark05.
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A three-level full factorial design and a general full factorial design were selected

with the four factors proposed in Section 3.2: data rate, seek reads, seek writes,

and overhead. Even though a full factorial design might not be the best design

choice for the application of RSM, it was a more suitable design specifically for

this study due to the fact that the levels of proposed factors were with associated

constraints such as the adjustment step sizes and unit conversions that limited

level selections.

3.3.2 Experimental Design

Variable designations from Section 3.2 continued to be used during this experi-

mental phase. The level selections for the applications of RSM remained the same

as for the linear multiple regression analysis discussed in Section 3.2. The low,

middle, and high levels of each controllable factor were indicated in Table 3.8. The

application of RSM was planned and conducted with two additional replications

for each test run in randomized order.

Table 3.8: Factor levels for the three-level full factorial design (PCMark05).

Factor Unit Symbol Level
Data Rate MB/s x1 65 80 110
Seek Reads µs x2 144.1 1729.2 3458.4
Seek Writes µs x3 144.1 1729.2 3458.4
Overhead MHz x4 75 96 126

The three-level full factorial design conducted with four controllable factors

has 34 = 81 combinations of factor settings each with five replicates. A total of

405 (i.e. 81 runs per replicate) runs were conducted in this experiment.

The response observations benchmarked under different factor conditions were

first fitted to a linear model which was the same as the linear regression model

obtained in Section 3.2. However, higher precision was expected since two more

replicates were taken into account during this experimental phase.

The adequacy of the fitted linear response surface model can be verified by
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examining the least squares assumptions in the ANOVA and regression analysis

through residual plots, which are commonly used for examining the goodness of

model fit.

Figure 3.22: Normal probability plot of residuals of the Mars-RE linear response
surface model (PCMark05).

The three assumptions to be fulfilled are: normal distribution, independence,

and constant variance of the residuals. A normal probability plot can be used to

detect the normality by verifying how the points fall along the distribution line

and between the 95% confidence intervals as shown in Figure 3.22. A summary

table with distribution parameter estimates along with the Anderson-Darling (AD)

statistic and P-value helps evaluate the distribution fit statistically. The practical

interpretation of the small Anderson-Darling statistic and P-value over α = 0.05,

statistically confirmed that the model fitted the experimental data set adequately.

The residuals on a residuals versus order plot should exhibit no clear pattern to

detect time-independence of residuals as shown in Figure 3.23. A residuals versus

fitted values plot should show no recognizable pattern of residuals on both sides

of zero to detect constant variance as shown in Figure 3.24.

Since the three statistical assumptions are all satisfied for the linear response

surface model fit to the data, this model is expected to produce unbiased coefficient

estimates with minimum variance. A response surface model with higher degrees
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Figure 3.23: Residuals versus order plot of the Mars-RE linear response surface
model (PCMark05).

Figure 3.24: Residuals versus fitted values plot of the Mars-RE linear response
surface model (PCMark05).

or additional interactions may not necessarily fit the data set better than this

linear response surface model; therefore it is futile to seek a more complex model

which may end up with infinite number of inadequate solutions. It is usually the

best to choose a model with the lowest possible degree to keep it as simple as

possible but also without being under-specified to avoid misleading conclusions.
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3.3.3 Results and Discussion

The linear response surface model consists of only the linear terms of Equation

3.5, where ŷ is the predicted response benchmarked using PCMark05. Four con-

trollable factors were involved in this study and hence by substituting the value 4

for n in Equation 3.5 as described in Equation 3.6, where x1, x2, x3, and x4 des-

ignated the controllable factors: data rate, seek reads, seek writes, and overhead

respectively.

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 (3.6)

The summary of the response surface coefficients of Equation 3.7 and their

significance is listed in Figure 3.25. The adjusted coefficient of multiple determi-

nation, R2
Adj for Equation 3.7 is 98.06% which indicates a high-degree of correlation

between the observed and predicted responses. Only about 2% of the total varia-

tions are not explained by this linear response surface model. The applications of

T-values and P-values are used to check the significance of each coefficient.

Figure 3.25: Response Surface Methodology for Mars-RE disk drive benchmarked
using PCMark05.

Figure 3.25 shows that the coefficients of all the linear effects are statistically

significant, with P-values less than α = 0.05. Equation 3.7 is the linear response

surface model fitted to the data set obtained from the three-level full factorial

design.
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ŷ = 3553 + 21.1x1 − 0.159x2 − 0.039x3 + 8.74x4 (3.7)

The summary of the ANOVA for the linear response surface model is shown in

Figure 3.26. The ANOVA table indicates that this linear response surface model

is highly significant within the range of the four controllable factors employed,

as is evident from the large F-statistic (1531.12) and its low probability value

(P = 0.000).

Figure 3.26: ANOVA table for Mars-RE disk drive benchmarked using PCMark05.

However, the small probability value (P = 0.000) of lack-of-fit statistic in

Figure 3.26 suggests significant inadequacy of model fit to the experimental data

observed in this three-level full factorial design. This obviously happens when the

model does not well describe the experimental data but it can also arise when the

model adequately represents the data but the precision of the replicates is so high

that their variance is very small. Therefore, a significant lack-of-fit statistic does

not necessarily mean that the model is unusable.

A better understanding of what could cause the lack-of-fit statistic to be signif-

icant may help determine the adequacy of the model. The formula for lack-of-fit

statistic is described in Equation 3.8 [26], where MS is the mean square value.

Lack-of-fit F-test =
Lack-of-fit MS

Pure Error MS
(3.8)

The numerator in this equation is the variation between the actual values and

the values predicted from the model. The denominator is the variation between

the replicates that is an estimate of the normal variation that cannot be accounted
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for by any model. By definition, a significant lack-of-fit statistic suggests that the

variation of the replicates about their mean values is less than the variation of the

actual points about their predicted values.

In these experiments, the replicates were actually run more like repeated mea-

surements on a single disk drive of the same factor combination rather than

running on multiple of the same disk drives independently under the same ex-

perimental conditions. The pure error of the natural variation could have been

underestimated and that possibly led to a small denominator in the lack-of-fit

formula.

Although the predicted linear response surface fits the model points well as in-

dicated by the distributional properties of the residuals in Figure 3.22, the greater

differences between the actual data points and the response plane than the dif-

ferences between the replicates triggers the significant lack-of-fit statistic. In this

case, the lack-of-fit statistic is no longer valid to the model. Decisions about

whether this model is a good fit or not can be made based on how well the resid-

uals are normally distributed and falls within 95% confidence intervals. During

this experimental phase, the low lack-of-fit statistic can be ignored since the dis-

tribution of the residuals is quite satisfactory.

3.3.4 Response Optimizer

Minitab provides a response optimizer tool that calculates an optimal solution

for user-defined response and draws the corresponding parameter levels on the

plot based on the derived model equation. By interactively adjusting the fac-

tor settings, the response optimizer shows how different parameter combinations

affect the predicted model responses on the optimization plot. In this research,

the response optimizer was used to search for factor settings with a maximum

response of disk performance benchmarked using PCMark05. Each factor effect

on the PCMark05 response is shown on the optimization plot. The vertical red

lines correspond to the current factor settings indicated in red at the top column.
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The horizontal blue dashed-line represents the response for current factor level

combination as indicated in blue at the left column.

The response of disk performance benchmarked using PCMark05 is maximized

when data rate and overhead are at their highest levels, 110 MB/s and 126 MHz

respectively and seek reads and seek writes are at their lowest levels, both 144.1

µs.

Figure 3.27: Optimization plot for the linear response surface model (PCMark05).

The optimization plot in Figure 3.27 indicates the corresponding response pre-

diction to the parameter settings when moving the red factor level lines for each

factor. This tool is extremely useful for exploring the sensitivity of response to

significant factor changes, predicting the response of a specific factor level combi-

nation, searching for lower-cost factor settings nearby the optimal, or discovering

the neighborhood of a local solution. These optimal factor settings for the max-

imal response of disk performance are required for graphical analysis in the next

section.

3.3.5 Graphical Analysis

The surface plot and contour plot are the graphical representations of the response

surface model generated from different perspectives using Minitab. These visual
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representations are useful for establishing desirable response predictions and opti-

mizing parameter conditions. No curvature was formed in the underlying response

surface since the linear model does not include any interactions or squares in the

equation.

A surface plot provides a clear three-dimensional view of the linear response

surface model in the factor space. The predicted response is plotted on the z-axis

versus the selected pair of factors on the x-axis and y-axis. The two factors on the

surface plot are inspected through various characterization sequences within the

defined factor domains. The remaining factors are held constant at their optimal

levels, as suggested by Minitab’s response optimizer in previous section.

The projection of the response surface onto the selected factors is represented

on the two-dimensional contour plot. The two axes denote the selected pair of

parameters being inspected while the remaining factors are held constant at their

optimal levels as specified on a surface plot. Each contour line of constant response

connects all points that have the same response prediction. No curved contour

line was drawn in the plane due to the fact of the flat surface on surface plot.

Figure 3.28 shows the effect of data rate and seek reads while keeping the

level settings of seek writes and overhead at their optimal values of 144.1 µs and

126 MHz respectively. It can be seen that disk performance benchmarked using

PCMark05 is increased with increase in data rate and reduction in seek reads.

The maximum predicted response is reached at a data rate of 105-110 MB/s and

a seek reads of 144.1-1000 µs. Both the surface plot and contour plot agree that

the maximum Mars-RE disk performance benchmarked using PCMark05 under

the stated conditions falls within the 6750-7000 score range.

Apparent improvement in response prediction is observed over an increase for

data rate in comparison to moderate improvement over a reduction for seek reads.

The response stability indicates various combinations of data rate and seek reads

settings attributed to the same response prediction along a contour line on contour

plot.
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Figure 3.28: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus data rate and seek reads.

Figure 3.29: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus data rate and seek writes.

Figure 3.29 shows how Mars-RE disk performance benchmarked using PC-

Mark05 varies with data rate and seek writes at the optimal seek reads setting

of 144.1 µs and overhead setting of 126 MHz. Apparent disk performance im-

provement in PCMark05 scores is observed over an increase for data rate from

65 MB/s to 110 MB/s at a constant level of seek writes. On the other hand, a

trivial response improvement in PCMark05 scores is observed over a reduction for

seek writes from 3458.4 µs to 144.1 µs at a constant data rate level. The maximal

response in PCMark05 scores occurs within 6800-7000 score range at a data rate
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of 105-110 MB/s and a seek writes of 144.1-1000 µs.

The contour lines in Figure 3.29 are roughly parallel to the seek writes-axis

which suggests that seek writes has a relatively weak effect within the factor do-

mains. According to the ANOVA summarized in Table 3.18, data rate (T=63.267,

P=0.000) is much more dominant to Mars-RE disk performance benchmarked us-

ing PCMark05 when compared with seek writes (T=-8.395, P=0.000). Therefore,

the disk performance of Mars-RE tends to be more consistent within this factor

space.

Figure 3.30: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus data rate and overhead.

The surface plot and contour plot in Figure 3.30 describe Mars-RE disk per-

formance benchmarked using PCMark05 as a function of data rate and overhead

at fixed levels of seek reads and seek writes, both 144.1 µs.

The response prediction improves over the increases for both data rate and

overhead. The maximal Mars-RE disk performance is reached at a data rate of

105-110 MB/s and an overhead of 120-126 MHz. The targeted Mars-RE disk

performance benchmarked using PCMark05 is between the scores of 6800 and

7000 as indicated on both surface plot and contour plot.

Figures 3.31-3.33 show surface plots and contour plots that describe the pre-

dicted response variation of this linear model versus seek reads and seek writes,

seek reads and overhead, and seek writes and overhead respectively.
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Figure 3.31: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus seek reads and seek writes.

Figure 3.32: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus seek reads and overhead.

Although the surface plot and contour plot serve as useful analysis tools, they

are not as effective if the optimal operating conditions of the parameters have not

been determined. If the optimal parameter settings are not known beforehand,

the settings of the factors not being inspected on the plots will be held constant at

the central conditions, which are their mid-levels. However, these plots will only

indicate the response prediction in the neighborhood of the central conditions of

the parameters. Based on the results from the surface plot and contour plot under

the central conditions of parameter settings, the optimal range of each parameter
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Figure 3.33: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark05 versus seek writes and overhead.

can be determined on the plots for a desired response prediction. The plots can

then be generated again with the settings of factors not on the plots held constant

at levels selected within the determined optimal ranges.

When the central conditions of data rate at 87.5 MB/s, seek reads at 1801.25

µs, seek writes at 1801.25 µs, and an overhead of 100.5 MHz are used as a starting

point, the improved Mars-RE disk performance benchmarked using PCMark05

can be yielded by increasing the levels of data rate and overhead and reducing

the seek reads and seek writes settings. Specifically, the maximal response can be

achieved by optimizing the parameter conditions at a data rate of 105-110 MB/s,

a seek reads and a seek writes both of 144.1-500 µs, and an overhead of 120-126

MHz.

The relationship among these four parameters can be described by the linear

response surface model as a significant synergistic effect when analyzing a targeted

Mars-RE disk performance benchmarked using PCMark05 within this factor space.

As a consequence, such a targeted response may possibly be realized under several

data rate, seek reads, seek writes, and overhead level combinations. Increasing

one of the factor levels gives different opportunities to increase or decrease the

other factor settings in order to reach the same targeted response. All the surface

plots and contour plots in Figures 3.28-3.33 suggest that the maximal Mars-RE
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disk performance benchmarked using PCMark05 falls within 6900-7000 score range

and is closer to the 6900 contour line. This maximal response can be reached at

optimal data rate of 105-110 MB/s, seek reads and a seek writes both of 144.1-500

µs, and overhead of 120-126 MHz. The results from these graphical analyses agree

with the optimal settings of data rate at 110 MB/s, seek reads at 144.1 µs, seek

writes at 144.1 µs, and overhead at 126 MHz obtained using Minitab’s response

optimizer to reach maximal Mars-RE disk performance of 6945.75 in PCMark05

scores.

The main purpose of the graphical analysis is to provide a visual representation

of the response predictions in the neighborhood of the indicated parameter set-

tings. A large amount of surface plots and contour plots is required to be analyzed

when there are quite a few significant factors to the response due to the fact that

surface plot and contour plot only analyze the response variation of one pair of

factors at a time. However, these plots are useful for confirming the optimal values

of response predictions or parameter ranges suggested by the model equation in

an efficient manner.

3.3.6 Verification of Model

A confirmatory experiment is usually conducted to confirm the accuracy and sta-

bility of the fitted model. Typically, this is done by running the experiment with

optimal settings to make sure that the observed response value is reasonably close

to the predicted value. The confirmatory experiment conducted for this study

is different from a standard confirmatory test. Rather than validating the linear

response surface models with the same Mars-RE disk drive, a technically similar

hard disk drive, Atlantis-RE was chosen for model verification. Atlantis, 3.5”, 500

GB, SATA 3 Gb/s, 16 MB Cache, 7,200 RPM is a prior generation disk drive from

the same model family as Mars-RE but with different capacity, buffer size, and

drive GB/platter.

Overhead setting of this Atlantis-RE disk drive was not adjustable. The level
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of overhead was held constant at a delay of 0 µs, equivalent to 114 MHz. The

parameter settings of data rate, seek reads, and seek writes were randomly se-

lected to compensate the factor variations with prerequisites for compromising

the technical specifications of Atlantis-RE disk drive.

Settings of data rate were chosen based on the sequential read speed plot of the

Atlantis-RE disk drive measured using HD Tach RW version 3.0.1.0. Each disk

partition under investigation was 12.5 GB. The settings of seek reads and seek

writes were randomly selected with the lowest boundary of 150.95 µs and highest

boundary of 3441.66 µs that are within the factor space of the original Mars-RE

experiments.

Table 3.9: Validation results of the linear response surface model (PCMark05).

Run x1 x2 x3 x4 y ŷ
1 104 150.95 150.95 114 6875 6713
2 104 150.95 3441.66 114 6665 6586
3 104 3230.33 633.99 114 6147 6205
4 104 1720.83 2686.91 114 6418 6365
5 104 603.80 3320.90 114 6664 6518
6 104 3441.66 150.95 114 6032 6190
7 104 3441.66 3441.66 114 6021 6063
8 87 150.95 150.95 114 6568 6354
9 87 150.95 3441.66 114 6439 6227
10 87 3139.76 1267.98 114 5811 5836
11 87 483.04 3381.28 114 6495 6177
12 87 1509.50 2294.44 114 6284 6056
13 87 3441.66 150.95 114 5813 5831
14 87 3441.66 3441.66 114 5732 5704
15 72 150.95 150.95 114 6090 6038
16 72 150.95 3441.66 114 5902 5911
17 72 2777.48 2052.92 114 5431 5547
18 72 1811.40 3019.00 114 5688 5663
19 72 2143.49 1901.97 114 5649 5654
20 72 3441.66 150.95 114 5409 5515
21 72 3441.66 3441.66 114 5238 5388

The confirmatory experiment was carried out under 21 different parameter

combinations. Each parameter combination was run only once. The uncoded

parameter settings and their actual and predicted responses of this confirmatory
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experiment were analyzed using Minitab and listed in Table 3.9.

Figure 3.34 shows the observed response versus predicted response plot of

this confirmatory experiment. The experimental points were roughly distributed

around the ratio 1:1 diagonal line on the plot which indicated that this linear

response surface model makes decent performance predictions for hard disk drive

within Mars-RE model family when benchmarked using PCMark05.

Figure 3.34: Fitted response versus observed response plot for model verification
(PCMark05).

The DOE characterized Mars-RE disk drive with a linear response surface

model. Although this model equation was empirical, results of the confirmatory

experiment indicated that the experimental values were found to be significantly in

agreement with the predicted responses. The validation of this linear model using

Atlantis-RE, a prior generation disk drive of Mars-RE within the same model

family was quite satisfactory.

3.4 Experiment 3 - PCMark Vantage

3.4.1 Experimental Design

Another RSM experiment was conducted to evaluate the effects of data rate, seek

reads, seek writes, and overhead on the Mars-RE disk performance benchmarked
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using PCMark Vantage. This experiment was similar to the previous one where

the benchmarked Mars-RE disk performance in PCMark05 scores was studied.

However, there were some differences such as only two levels of seek writes were

investigated and each treatment had only three replicates due to time constraint.

Table 3.10 indicates the levels of each controllable factor.

Table 3.10: Factor levels for the general full factorial desgin (PCMark Vantage).

Factor Unit Symbol Level
Data Rate MB/s x1 65 80 110
Seek Reads µs x2 144.1 1729.2 3458.4
Seek Writes µs x3 144.1 3458.4
Overhead MHz x4 75 105 126

Figure 3.35: Normal probability plot of residuals of the Mars-RE linear response
surface model (PCMark Vantage).

A total of 162 runs (i.e. 3×3×2×3 = 54 runs per replicate) were conducted in

this general full factorial design with four controllable factors and three replicates.

The adequacy of the fitted linear response surface model can be verified by residual

plots as shown in Figure 3.35-3.37. The linear response surface model is concluded

as an adequate fit to the obtained data set since all three statistical assumptions

are all satisfied.
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Figure 3.36: Residuals versus order plot of the Mars-RE linear respons surface
model (PCMark Vantage).

Figure 3.37: Residuals versus fitted values plot of the Mars-RE linear respons
surface model (PCMark Vantage).

3.4.2 Results and Discussion

The linear response surface model fitted to the data set obtained from the general

full factorial design is derived in Equation 3.9. A summary of the Analysis of

Variance (ANOVA) for this linear response surface model is shown in Figure 3.38.

ŷ = 2463 + 13.28x1 − 0.121x2 − 0.100x3 + 4.988x4 (3.9)

The ANOVA table indicates that this linear response surface model is highly
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Figure 3.38: ANOVA table for Mars-RE disk drive benchmarked using PCMark
Vantage.

significant, as is evident from the large F-statistic (1315.41) and its very low

probability value (P = 0.000). This model was found to be adequate for prediction

within the range of the four controllable factors employed. Since the residuals are

normally distributed and falls within 95% confidence intervals as shown in Figure

3.35, the low probability value (P = 0.000) of lack-of-fit can be ignored.

A summary of the response surface coefficients of Equation 3.9 and their signif-

icance is listed in Figure 3.39. The adjusted coefficient of multiple determination,

R2
Adj is 97.03%, indicates a high-degree of correlation between the observed and

predicted responses. Only about 3% of the total variations are not explained by

this linear response surface model. Figure 3.39 shows that the coefficients of all

the terms are statistically significant, with P-values less than α = 0.05.

Figure 3.39: Response Surface Methodology for Mars-RE disk drive benchmarked
using PCMark Vantage.
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3.4.3 Response Optimizer

Minitab’s response optimizer suggests that the benchmarked Mars-RE disk per-

formance in PCMark Vantage scores is maximized when data rate and overhead

are at their highest settings, 110 MB/s and 126 MHz respectively and seek reads

and seek writes are at their lowest settings, both 144.1 µs as shown on the opti-

mization plot in Figure 3.40. These optimal factor settings are the same as for

the maximal Mars-RE disk performance benchmarked using PCMark05 and will

be used for graphical analysis in the next section.

Figure 3.40: Optimization plot for the linear response surface model (PCMark
Vantage).

3.4.4 Graphical Analysis

The response surface of a linear model alone represents a two-dimensional flat

plane within the three-dimensional factor space without any indication of local

shape or warp. Figures 3.41-3.46 show surface plots and contour plots that describe

the response variations of this linear model with data rate and seek reads, data

rate and seek writes, data rate and overhead, seek reads and seek writes, seek reads
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and overhead, and seek writes and overhead respectively. These plots demonstrate

how benchmarked Mars-RE disk performance in PCMark Vantage scores varies

with selected factor pair while the other two factors are held at their optimal

settings (data rate at 110 MB/s, seek reads at 144.1 µs, seek writes at 144.1 µs,

and overhead at 126 MHz) derived from Minitab’s response optimizer.

The contour lines on these contour plots are all straight and parallel to each

other since the response surface is a flat plane without any curvature. The contour

lines are parallel to a directions near one of the two diagonals of the plots which

indicate that the parameters have relatively similar effect to disk performance

benchmarked using PCMark Vantage due to the simplicity of this linear model.

According to the response surface analysis summarized in Figure 3.39, data rate

(T = 50.541, P = 0.000) has the most dominant effect, overhead (T = 21.234,

P = 0.000) is the least dominant, and seek reads (T = −33.336, P = 0.000) and

seek writes (T = −33.839, P = 0.000) have almost the same effects.

Figure 3.41: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus data rate and seek reads.

Figure 3.43 describes the benchmarked Mars-RE disk performance in PCMark

Vantage scores as a function of data rate and overhead, the most and least dom-

inant effects, respectively. The contour lines are parallel to a direction that is

near the overhead-axis which suggests that overhead has a relatively weaker effect

within the factor domains. Apparent improvement in Mars-RE disk performance
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Figure 3.42: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus data rate and seek writes.

of roughly 600 in PCMark Vantage scores is observed over an increase for data

rate from 65 MB/s to 110 MB/s at a constant level of overhead in comparison to

moderate improvement of roughly 200 in PCMark Vantage scores over an increase

for overhead from 75 MHz to 126 MHz at a constant data rate level.

Figure 3.43: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus data rate and overhead.

When the central conditions of data rate at 87.5 MB/s, seek reads at 1801.25

µs, seek writes at 1801.25 µs, and an overhead of 100.5 MHz are used as a starting

point, the improved Mars-RE disk performance benchmarked using PCMark Van-

tage can be yielded by increasing the levels of data rate and overhead and reduc-
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Figure 3.44: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus seek reads and seek writes.

Figure 3.45: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus seek reads and overhead.

ing the seek reads and seek writes settings. Specifically, these graphical analyses

suggest that the maximal response can be achieved by optimizing the parame-

ter conditions at a data rate setting of 105-110 MB/s, seek reads setting and seek

writes setting both of 144.1-500 µs, and an overhead setting of 120-126 MHz which

agrees with the optimal settings of data rate at 110 MB/s, seek reads at 144.1 µs,

seek writes at 144.1 µs, and overhead at 126 MHz derived from Minitab’s response

optimizer. All the surface plots and contour plots in Figures 3.41-3.46 suggest that

the maximal response prediction in PCMark Vantage scores falls within 4500-4600
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Figure 3.46: Surface plot and contour plot of Mars-RE disk performance bench-
marked using PCMark Vantage versus seek writes and overhead.

range and is close to the 4500 contour line which also agrees with the estimated

PCMark Vantage score of 4520 by Minitab’s response optimizer.

3.4.5 Verification of Model

Atlantis-RE disk drive was again used for the comparison of the 21 predicted

responses and their corresponding observed responses. Each factor combination

was run only once. The settings of data rate and overhead remained the same

as the settings of the confirmatory experiment of the model benchmarked using

PCMark05. Seek reads and seek writes settings were randomly selected within

the domains of the original Mars-RE experiments. Table 3.11 lists the uncoded

factor settings and their corresponding actual and predicted responses analyzed

using Minitab.

The experimental points on the observed response versus predicted response

plot in Figure 3.47 were roughly distributed around the diagonal line on the plot.

The result indicated that this empirical model equation as a function of data rate,

seek reads, seek writes, and overhead makes decent prediction for benchmarked

Mars-RE disk performance in PCMark Vantage scores.

62



Table 3.11: Validation results of the linear response surface model (PCMark Van-
tage).

Run x1 x2 x3 x4 y ŷ
1 104 150.95 150.95 114 4456 4482
2 104 150.95 3441.66 114 4073 4071
3 104 301.90 1267.98 114 4318 4325
4 104 2415.20 2928.43 114 3753 3848
5 104 513.23 2988.81 114 4114 4089
6 104 3441.66 150.95 114 3895 3976
7 104 3441.66 3441.66 114 3601 3631
8 87 150.95 150.95 114 4152 4245
9 87 150.95 3441.66 114 3865 3868
10 87 422.66 301.90 114 4128 4196
11 87 1781.21 1569.88 114 3825 3885
12 87 2807.67 452.85 114 3734 3844
13 87 3441.66 150.95 114 3672 3764
14 87 3441.66 3441.66 114 3397 3452
15 72 150.95 150.95 114 3987 3979
16 72 150.95 3441.66 114 3710 3632
17 72 1751.02 3351.09 114 3527 3476
18 72 543.42 2505.77 114 3779 3693
19 72 2083.11 271.71 114 3659 3725
20 72 3441.66 150.95 114 3487 3521
21 72 3441.66 3441.66 114 3253 3238
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Figure 3.47: Fitted response versus observed response plot for model verification
(PCMark Vantage).
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Chapter 4

Conclusions

4.1 Hard Disk Drive Performance Modeling

The primary goal of this study is to model the performance characteristics of se-

lected hard disk drives manufactured by Western Digital Corporation. This study

presents a comprehensive approach which allows us to highlight the impacts of

data rate, seek time, and overhead on performance of selected hard disk drives

benchmarked using PCMark software. Such analysis is made possible by the de-

ployment of Design of Experiments (DOE) methodology. The information gained

from DOE analysis can easily be used for optimization regarding the different

influences from the factors.

The DOE methodology offers a wide range of statistical techniques and graphi-

cal representations for planning experiments, analyzing data, and providing repro-

ducible results. This fact-based approach is extremely useful in making informed

decisions with confidence, even with very limited data, time, and resources given

in development cycle. Numerous combinations of factor settings can be evalu-

ated for the best overall combination in a small number of test runs. Significant

effects on the performance variability of selected hard disk drives benchmarked

using PCMark software were identified with efficient designs instead of the tran-

ditional hit-and-miss or trial-and-error approaches. The DOE methodology is a
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powerful tool that gives early warning of potential problems to avoid expensive

time-wasting projects, to reduce in cost due to testing, labor, and materials, and

to increase in quality and reliability.

The linear response surface models were derived to fit the Mars-RE disk per-

formance benchmarked using PCMark05 and PCMark Vantage. All the linear

effects were identified to be statistically significant. Both statistical models have

found that data rate is the most significant factor among all four factors under

investigation.

As mentioned earlier, the ”fine-tuned” performance factor settings for most

disk drive products in the market today may not be at their optimal levels in-

dicated by the model trends due to many practical concerns such as costs and

time-to-market. The parameter settings of the hard disk drive being character-

ized determine the direction of the prediction trend and the amount of setting

adjustments to achieve the goal of the next ”fine-tuned” generation. The fact of

the uncertainties further ahead outside the defined factor space makes it more

critical to require evolutionary operations to ensure robustness of the model by

continuously updating the design space of the predictive model. Each successive

experiment is then designed based on results thus far and can be shifted in the

direction of improvement. Under certain circumstances, a combination of factor

settings that is synergistic with these factors and meets conditions that are as

close to the optimal settings as possible may be chosen over others for a most

economical and beneficial solution of such performance improvement.

4.2 Future Work

There is great potential for a partially or fully automated data acquisition based

disk performance characterization system. Automation would remove or reduce

the chances of operational error (i.e. typo in factor level adjustments) or equipment

failure (i.e. SATA cable failure) caused by modifying the firmware or hardware
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settings repeatedly for each test run. The overall accuracy of measurements would

be improved and therefore less replications would be required for each run. It

would also be more time-efficient because less time would be spent on unnecessary

debugging and repeating the data acquisition process, and more test runs could

be completed within the time frame since no operator needs to be physically

presented.

It is left to future work to compare different data acquisition designs for a higher

quality or more accurate model prediction and to automate the data acquisition

process for efficiency in the sense of time. Although this study did provide a

complete Design of Experiments (DOE) procedure for the Western Digital Mars-

RE and Atlantis-RE model family, the future experiments will still require detailed

analyses during each stage to make appropriate adjustments for the design plan.

It is recommended to follow the principles of this study but not to be restricted

by it as outside of the empirical design space and future technology advancements

are still unknown to us at this moment.
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