
DESIGN, ANALYSIS, AND EXPERIMENTAL

VERIFICATION OF CONTINUOUS MEDIA RETRIEVAL

AND CACHING STRATEGIES FOR NETWORK-BASED

MULTIMEDIA SERVICES

DONG, LIGANG

(M.Eng.& B.Eng., Zhejiang University, PRC )

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48625452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgments

I would like to express my deepest gratitude to my supervisor, Assistant Professor Dr.Bharadwaj

Veeravali. His very friendly guidance, constant encouragement, insightful ideas, and rigor-

ous research style accompany the entire progress during which I study for the PhD degree.

I am also very grateful to my co-supervisor, Associate Professor Dr. Chi Chung Ko, for

his valuable suggestions and enlightening instructions on how to do researches and make

impressive presentations during the weekly seminar.

I would like to thank very much the National University of Singapore (NUS) for granting

me the research scholarship in past three years.

I am also very grateful to the support from the project - High Speed Information

Retrieval, Processing, Management and Communications on Very Large Scale Distributed

Networks (funded by SingAREN and NSTB Broadband 21 Programme).

My special thanks to my parents, sister, and brother-in-law for their continuous en-

couragement and supports. I could not have come so far in my long study life without

them.

My sincere thanks to my wife, Dan, who put up with a three-year-long separation

without a grudge. Her selfless love provided an important support for my study.

Finally, my thanks also go to all of my friends in Open Source Software Lab, Computer

Communication Network Lab, and Digital System Application Lab. The friendship with

i



them made my study and life in NUS fruitful and enjoyable.

ii



Contents

Summary vii

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Admission control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Placement strategies in storage devices . . . . . . . . . . . . . . . . . 4

1.1.4 Request scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Support of VCR functions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.6 CPU and I/O scheduling . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.7 Multiple-server approach . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.8 Reliability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.9 Overview of cache management . . . . . . . . . . . . . . . . . . . . . 13

1.1.10 Full caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.11 Partial caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



1.1.12 Distributed caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Issues to be Studied and Main Contributions . . . . . . . . . . . . . . . . . 27

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 System Modeling and Problem Setting 30

2.1 Network-Based Multimedia System . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Retrieval Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Caching Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Workload characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Multiple-Server/Multiple-Channel Retrieval Strategies 40

3.1 Why Multiple-Server/Multiple-Channel Retrieval? . . . . . . . . . . . . . . 40

3.2 Two Kinds of Retrieval Scheduling Strategies . . . . . . . . . . . . . . . . . 42

3.2.1 Scheduling strategy in the case of play-after-download . . . . . . . . 42

3.2.2 Scheduling strategy in the case of play-while-receive . . . . . . . . . 44

3.2.3 Comparison between two scheduling strategies . . . . . . . . . . . . 46

3.3 Asynchronous-Channel Retrieval Scheduling . . . . . . . . . . . . . . . . . . 50

3.4 Channel Partition Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Variable-Size Channel Retrieval Scheduling Strategies . . . . . . . . . . . . 54

3.5.1 Retrieval strategy for ensuring the continuous playback . . . . . . . 54

3.5.2 Retrieval strategy for improving the block ratio . . . . . . . . . . . . 55

3.5.3 Retrieval strategy for shortening the retrieval duration . . . . . . . . 56

iv



3.6 Multiple-Channel Retrieval Algorithm . . . . . . . . . . . . . . . . . . . . . 56

3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.1 Simulation test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.2 Simulation result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Variable Bit Rate Caching Strategies 69

4.1 Caching Strategy for the Variable Retrieval Bandwidth . . . . . . . . . . . . 69

4.2 Caching Strategy under the Non-Switch Constraint . . . . . . . . . . . . . . 72

4.2.1 Influence of the switching operation on the performance . . . . . . . 73

4.2.2 Strategies for reducing the switching operation . . . . . . . . . . . . 74

4.3 Allocation Strategy of the Cache Bandwidth . . . . . . . . . . . . . . . . . . 76

4.4 Variable Bit Rate Caching Algorithm . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Outline of the VBRC algorithm . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Simulation test-bed . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Effect on the performance due to the non-switch constraint . . . . . 86

4.5.3 Performance comparison between RBC and VBRC . . . . . . . . . . 90

4.5.4 Performance of VBRC in the case of variable retrieval bandwidth . . 94

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Experiments on the CM Data Retrieval 101

5.1 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Implementation Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Playback sub-system . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

v



5.2.2 Format of ASF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Retrieval bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.4 Number of installments . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.5 Retrieval sub-system . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions and Extensions to the Current Work 115

Bibliography 120

Appendix A: Author’s Publication 141

vi



Summary

Network-based multimedia services are attractive for both users and service providers.

Network-based multimedia applications have widely appeared in the recent years. Multi-

media is either continuous media (CM) (e.g., video and audio) or non-CM (e.g., text and

image). Owing to their large sizes, large playback rates, and the continuous-playback con-

straint, CM data pose more challenges than non-CM data on the design of services. In this

thesis, we carry out design, analysis, and experimental verification of retrieval and caching

strategies for CM data to improve the quality of service.

Requested CM documents are retrieved from the server for the playback at the client

using either of two modes - streaming or downloading. In the streaming mode, the users

enjoy a shorter start-up delay and need less storage spaces than the downloading mode.

The multiple-server retrieval strategy can reduce the load on a single server and achieves

a better performance by partitioning a retrieval task among several servers. In this the-

sis, we focus on the multiple-server retrieval strategy in the case of the streaming mode.

Our multiple-server retrieval is realized by using the Multiple-Channel Retrieval (MCR)

algorithm, which can be used in either a single-server or a multiple-server retrieval. The

MCR algorithm not only meets the requirement of a continuous playback, but also outper-

forms the single-channel and single-server retrieval in important performance metrics, e.g.,

start-up delay, block ratio, and retrieval duration. The MCR algorithm includes strategies

vii



of channel partition, static scheduling, and dynamic scheduling. The channel partition

strategy allocates available bandwidths to form retrieval channels. The static scheduling

strategy, which is applied before the playback begins, determines when and what data are

retrieved from synchronous or asynchronous channels. The dynamic scheduling strategy,

which is carried out during the retrieval process, handles variable-size channels caused by

variable network traffics. Besides, the server can dynamically change the channel size to

improve the acceptance ratio of coming requests.

The experiment of the multiple-channel and multiple-server retrieval has been carried

out. We retrieve video data from local and remote video servers by using HTTP and

TCP. This experiment gives more insights on designing the retrieval strategies. The ex-

periment complements the simulation and shows the advantage of the multiple-channel

and multiple-server retrieval. The experiment also implies the applicability of proposed

retrieval strategies.

Caching can reduce the load on the original server and improve the quality of services for

clients. The interval-level caching strategy is a class of most popular caching strategies for

CM documents. The interval-level caching strategy caches only a part of a CM document,

thus, less cache spaces are required. Nevertheless, there exist several drawbacks in past

interval-level caching strategies. Firstly, past interval-level caching strategies consider only

the constant-size interval. In fact, the bandwidth of a stream is neither fixed nor changeless,

therefore, an interval, which is formed by stream(s), will not be constant-size. Therefore,

the resource allocation should be dynamic. Secondly, past interval-level caching strategies

ignore the existence of switching operations, which happens when a stream finds no readable

data in the cache or there are not sufficient bandwidths. The switching operation will affect

the continuous playback, hence we propose some strategies to avoid switching operations.

These strategies direct the replacement operation among intervals. Finally, in past interval-

viii



level caching strategies, the bandwidth is reserved before the usage. Instead, we allocate

the bandwidth just-in-time to efficiently utilize the bandwidth resource.

In all, our research contribution is to improve performances in retrieval and caching

issues. They have very important effects on the quality of network-based multimedia ser-

vices.

ix



List of Tables

1.1 Taxonomy of disk scheduling algorithms/policies . . . . . . . . . . . . . . . 10

1.2 Taxonomy of cache replacement algorithms/policies . . . . . . . . . . . . . . 17

2.1 Typical storage capacities and bandwidths . . . . . . . . . . . . . . . . . . . 32

2.2 Important terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Important quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Skew factor value in the 70-20 access skew case . . . . . . . . . . . . . . . . 39

3.1 Known parameters (before calculation) in Example 3.1 . . . . . . . . . . . . 58

3.2 Optimal sizes of the portions in Example 3.1 . . . . . . . . . . . . . . . . . 59

3.3 System parameters in comparing the single-server retrieval and the multiple-

server retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 System parameters in the CM caching . . . . . . . . . . . . . . . . . . . . . 85

4.2 Number of the switching operation in GIC (1500 requests) . . . . . . . . . . 89

4.3 Effect of the non-switch constraint (1500 requests) . . . . . . . . . . . . . . 90

4.4 Number of the switching operation in RBC (1500 requests) . . . . . . . . . 94

4.5 Number of the switching operation in VBRC (V = 10% and 1500 requests) 97

4.6 Number of the switching operation in VBRC (V = 20% and 1500 requests) 98

4.7 Time overhead of VBRC (V = 20% and 1500 requests) . . . . . . . . . . . . 98

x



5.1 Input parameters of the retrieval scheduling . . . . . . . . . . . . . . . . . . 109

5.2 Results of the retrieval scheduling . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Results of the retrieval experiment . . . . . . . . . . . . . . . . . . . . . . . 111

xi



List of Figures

1.1 Comparison between the interval-level caching and the block-level caching . 20

1.2 Bandwidth requirement for a stream in retrieving a document . . . . . . . . 27

3.1 Timing diagrams of the multiple-channel retrieval scheduling . . . . . . . . 43

3.2 Timing diagram of the multiple-channel retrieval scheduling in the case of

play-while-receive (when bw1 ≥ r) . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Timing diagrams of the single-channel retrieval scheduling in the case of

play-while-receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Comparison between play-after-download and play-while-receive (1) . . . . 48

3.5 Comparison between play-after-download and play-while-receive (2) . . . . 48

3.6 Comparison between play-after-download and play-while-receive (3) . . . . 49

3.7 Comparison between play-after-download and play-while-receive (4) . . . . 49

3.8 Timing diagrams of the asynchronous-channel retrieval scheduling (single

installment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Access time in the asynchronous-channel retrieval scheduling (single install-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Retrieval strategy for ensuring a continuous playback . . . . . . . . . . . . . 55

3.11 Timing diagram for Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 59

xii



3.12 Access time of the single-server retrieval and the multiple-server retrieval

(P = 100%, ATmax = 1min., and λ = 2s−1) . . . . . . . . . . . . . . . . . . 63

3.13 Block ratio of the single-server retrieval and the multiple-server retrieval

(P = 100%, ATmax = 1min., and λ = 2s−1) . . . . . . . . . . . . . . . . . . 64

3.14 Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, ATmax = 1min., and λ = 2s−1) . . . . . . . . . . . . . . . 64

3.15 Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, ATmax = 1min, and λ = 2s−1) . . . . . . . . . . . . . . . 65

3.16 Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and ATmax = 1min) . . . . . . . . . . . . . . 65

3.17 Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and ATmax = 1min.) . . . . . . . . . . . . . . 66

3.18 Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and λ = 2s−1) . . . . . . . . . . . . . . . . . . 66

3.19 Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and λ = 2s−1) . . . . . . . . . . . . . . . . . . 67

4.1 CBR (cache bandwidth reclaiming) strategy . . . . . . . . . . . . . . . . . . 71

4.2 CSR (cache space reclaiming) strategy . . . . . . . . . . . . . . . . . . . . . 71

4.3 ERS (exchange strategy for repositioning the streams) strategy . . . . . . . 72

4.4 How a stream overtakes another stream . . . . . . . . . . . . . . . . . . . . 73

4.5 Change from a reading stream to a writing stream . . . . . . . . . . . . . . 76

4.6 Bandwidth requirement for an interval . . . . . . . . . . . . . . . . . . . . . 77

4.7 Bandwidth requirement for two consecutive intervals . . . . . . . . . . . . . 78

4.8 BA (bandwidth allocation) strategy in the disk caching . . . . . . . . . . . 79

xiii



4.9 An example illustrating the BA (bandwidth allocation) strategy . . . . . . . 80

4.10 VBRC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 VBRC algorithm (continue) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 An example illustrating the form of a new interval . . . . . . . . . . . . . . 83

4.13 SA (space allocation) strategy in the disk caching . . . . . . . . . . . . . . . 83

4.14 Performance comparison between GIC and GIC+ (λ = 0.25s−1 and P = 80%) 86

4.15 Performance comparison between GIC and GIC+ (B = 500MB and P = 80%) 87

4.16 Performance comparison between GIC and GIC+ (B = 500MB and λ =

0.25s−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.17 Performance comparison between RBC and VBRC (BW = 20MB/s, λ =

0.25s−1, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.18 Performance comparison between RBC and VBRC (B = 5000MB, λ =

0.25s−1, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.19 Performance comparison between RBC and VBRC (B = 5000MB, BW =

20MB/s, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.20 Performance comparison between RBC and VBRC (B = 5000MB, BW =

20MB/s, and λ = 0.25s−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.21 Performance of VBRC with the variable retrieval bandwidth (BW = 20MB/s, λ =

0.25s−1, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.22 Performance of VBRC with the variable retrieval bandwidth (B = 20GB,λ =

0.25s−1, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.23 Performance of VBRC with the variable retrieval bandwidth (B = 20GB,BW =

20MB/s, and P = 80%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.24 Performance of VBRC with the variable retrieval bandwidth (B = 20GB,BW =

20MB/s, and λ = 0.25s−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiv



5.1 Network diagram for retrieval experiments . . . . . . . . . . . . . . . . . . . 102

5.2 Use case diagram of the system on the client computer . . . . . . . . . . . . 103

5.3 Format of ASF 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Format of a packet in streaming ASF Files . . . . . . . . . . . . . . . . . . . 105

5.5 Retrieval process of an ASF file . . . . . . . . . . . . . . . . . . . . . . . . . 108

xv



Chapter 1

Introduction

MultiMedia Information Technology (MMIT) provides an attractive means of communi-

cation in the modern day era. Network-based multimedia services [44] have been proven

efficient, cost-effective, and adaptable. The popularity of such network-based services is

increasingly becoming attractive. A significant advantage comes from providing a com-

plete flexibility in the presentation control to the users. Thus, users may interact with

a multimedia presentation just as they would do with a Video Cassette Recorder (VCR)

presentation. From service providers’ perspective, network-based services are attractive

in terms of attracting a large group of clients (maximizing the number of clients) while

promising a guaranteed Quality of Service (QoS) at a cheaper price.

As exemplified in the multimedia literatures [112], media are categorized into two types

- continuous media (CM) (or called streaming media), e.g., video and audio, and non-

continuous media, e.g., text and graphics. A significant challenge is posed in handling CM

as opposed to non-CM. This is primarily due to their large sizes, large storage require-

ments, large communication bandwidth consumption, etc. Furthermore, the temporal and

spatial properties inside CM are also important constraints that significantly affect QoS.

1



The respective details are discussed exhaustively in the available multimedia literature and

can be found in [23, 151].

Starting from the mid-1980s, the manifold development in CPU processing power, storage

device capacities, and network bandwidths, has made it feasible to support network-based

multimedia services. One of the most popular applications of such network-based multime-

dia services is Video-on-Demand (VoD) [144, 124, 103, 92], the research of which started

gaining attention in the late 1980s. Besides VoD, other typical services include digital

library [184], distance education [105], video conferencing [4], interactive TV [142], interac-

tive games [25], home shopping [161], and so on. Network-based multimedia applications

greatly challenge the computing, storage, and networking technologies. Most recently, con-

tent distribution/delivery network [29] is considered to provide efficient distribution and

delivery of multimedia contents (mainly for CM data). In this thesis, we particularly focus

on two different important issues - retrieval and caching of CM data.

1.1 Related Work

In this section, we shall discuss on the literatures that are closely related to the focus of

this thesis. In addition, we shall expose most of the relevant techniques that are currently

in place on the retrieval and caching of CM data. In this section, we will indistinguishably

use “video” and “CM document”. Besides, some researches for non-CM data are also

applicable for CM documents. When we introduce them, we use “object” or “document”

to refer to both non-CM and CM documents.

2



1.1.1 Admission control

Admission control policies are used to control the admission of user requests so as to guar-

antee the combined QoS requirement of all admitted requests. The capacity or throughput

of a multimedia system is usually represented with the maximum number of streams, which

the system can support while satisfying a certain level of QoS. Admission control algorithms

for CM data can be categorized into two types: deterministic and statistical (or called strict

and predictive [99]). Deterministic admission control algorithms make worst-case estimates

of the bit rate and disk access times, and are used when users cannot tolerate any losses.

Statistical admission control algorithms use estimated probability distributions of the bit

rate and disk access times to guarantee that deadlines will be met with a certain proba-

bility. Such algorithms achieve much higher utilization than deterministic algorithms, and

are used when clients can tolerate infrequent losses [164, 165]. For video data, if users can

allow some degree of data loss, then more requests can be admissible [116]. Mundur [110]

proposed and analyzed threshold-based admission control, which groups new requests into

priority classes. Priorities are based on popularity of videos.

1.1.2 Load balancing

Load balancing among disks or servers help to improve the total throughput of a system.

Load imbalance can be reduced by combining the storage device into striping groups and

interleaving the data among the devices. Wolf et al. [175] considered two load-balancing

schemes. The static component determines good assignments of videos to groups of striped

disks. The dynamic component carries out load balancing through a real-time disk retrieval

scheduling. In detail, in processing a block request for a replicated object, the server

will dynamically put the retrieval operation to the most lightly loaded disk to carry the

load balancing [114]. In [135], data are randomly allocated and partially replicated on

3



disks to achieve load balancing. Replication allows some of the load of the disks with

smaller Bandwidth to Space Ratio (BSR) to be redirected to the disks with higher BSR. In

[63], five different load allocation polices were designed and analyzed. Dynamic Policy of

Segment Replication (DPSR) divides multimedia files into fixed-size segments and replicates

segments (which have the highest payoff) from highly loaded disks to lightly loaded disks.

For copying from the highly loaded disks, the DPSR policy does not require an additional

stream but uses a stream that is already playing, which is called the copyback stream. The

Caching for Load Balancing (CLB) policy [146] attempts to balance the load among the

various storage devices by caching only streams from heavily loaded disks (whose load are

greater than the average load) or overloaded devices, hence it minimizes the rejection rate.

1.1.3 Placement strategies in storage devices

Good data placement policies result in a high operational efficiency of the server to achieve

a high utilization of the storage space as well as the bandwidth of the storage devices.

Firstly, we introduce the data placement in a single disk. Gemmell et al. [55] categorized

the placement strategies as being interleaved, noninterleaved, contiguous, or scattered. Of

them, the contiguous placement strategy is the most important. For eliminating intrafile

seeks, data in a file should be stored in contiguous blocks. An application may require

the presentation of multiple kinds of media (e.g., video and multiple sound tracks). One

approach is that the required multimedia data may be stored as a single file with multiplex-

ing of the various media streams, e.g., MPEG [52]. An alternative approach is to store the

individual streams as individual files and to transmit these files to the client. In this case,

the blocks of the files should be stored close together to facilitate a continuous retrieval

[125]. The organ-pipe placement policy [156] emphasized that most frequently referenced

blocks are placed in the location with the maximum block access rate (e.g., the periphery

4



of a multizone disk) to improve the throughput of the disk. Secondly, we can consider

the data placement from the viewpoint of disk arrays. In [15], two kinds of striping meth-

ods, RAID-3 and RAID-5, were compared in terms of the cost and the revenue-earning

potential. The result showed that for large-scale video servers, coarse-grained striping in

a RAID-5 style is more cost effective. In [168], the studied problem was how to replicate,

stripe, and place the CM documents over a minimum number of magnetic disk arrays, such

that a given access profile can be supported. The authors demonstrated that it is an NP-

hard problem, and presented some heuristic algorithms to find the near-optimal solutions.

In [86], the authors considered how to move (add or remove) disks to support dynamic

required retrieval bandwidths in striped disks without reorganizing the striping, as the cost

of reorganization is much higher than the movement cost of disks.

1.1.4 Request scheduling

Request scheduling considers how to maximize the capacity of an entire system through the

cooperation among requests. Originally, we allocate respective resources to every request

once the request arrives. It is called unicasting. In this case, all of the VCR functions

can be supported. However, this scheme is cost-expensive. The following strategies are

proposed to make the server support more requests.

Merging. Merging of multiple adjacent streams can reduce the bandwidth consumption.

One method of merging streams for the same video is to slow down the playback of leading

streams and/or speed up the playback of lagging streams. This method is called piggyback-

ing in [58]. Another merging strategy is to delay the streams through displaying some filler

materials such as previews [78]. In [78], the authors used merging to deal with the failure

or overloading situation. The authors in [16, 2, 83] considered optimal/heuristic stream

merging algorithm for minimizing the I/O consumption. In [17], the implementation details

5



of merging were provided.

Patching [6, 141, 74, 61]. In patching, a client will receive data from multiple streams.

The beginning part of a video (so-called “patch”) is from unicasting, and the other part is

from earlier opened stream(s). The client plays the patch part while it buffers data for the

late playback. In [24], the authors derived an optimal patching window, after which it is

more bandwidth efficient to start a complete stream rather than send the patch.

Bridging [133, 69, 70]. In bridging, two successive streams are bridged by buffering/caching

a segment of data between them, so that the server only needs to provide the bandwidth

of supporting one stream. Buffered/cached data can be stored in any node in the path

from the server to the client, e.g., server, proxy, and client. For instance, in [133], after

every retrieval begins, retrieved data will be retained in the server memory for a certain

period of time, which is termed as the viewer enrollment window, so that the requests that

arrive during the viewer enrollment window can get the data from the memory. Essentially,

bridging is interval caching [36] or generalized interval caching [39] (caching strategies will

be introduced later). If two bridging streams can be merged after a period of time, so that

the utilization of the buffer is saved.

Non-periodic multicasting (or called batching) [37, 38]. In the batching-by-timeout

(or called forced-wait) policy, the first queued request for each video is forced to wait for

a certain time interval. In the batching-by-size policy, a stream is opened only when a

specified number of requests for the same video are grouped together.

Periodic multicasting/broadcasting. With a periodic multicasting/broadcasting, the

total required bandwidth is constant for a server, irrespective of arrival rates of requests.

The basic idea is that each video is partitioned into several segments and broadcasted peri-

6



odically towards a goal of achieving a minimum start-up delay. Multicasting/broadcasting

provides the most cost-effective solution for popular videos. The simplest broadcasting

protocol is staggered broadcasting. However, the following broadcasting schemes provide

better performances (i.e., less bandwidth requirement when the maximum start-up de-

lay is limited in a fixed value) because the client receives data from multiple channels.

For instance, pyramid broadcasting [166], permutation-based pyramid broadcasting [3],

skyscraper broadcasting [60], fast broadcasting [67], harmonic broadcasting [66], fixed-

delay broadcasting [117] etc. The authors of [117] claimed that if given the bandwidth

with six times of the playback rate, then the waiting time will be less than 32 seconds for a

two-hour video. In the broadcasting, this video will be divided into 2046 segments. More

segments will further reduce the start-up delay. Besides, there is a kind of dynamic broad-

casting protocols [183], which are like common broadcasting protocols. However, dynamic

broadcasting protocols keep track of user requests, so that when there are less users, some

segment transmissions are skipped. Broadcasting is cost-efficient, nevertheless, there are

two main drawbacks. Firstly, VCR functions cannot be supported (except pause/resume).

Secondly, the allocation of bandwidth must be strictly satisfied, and the video must have

a constant bit rate, otherwise the continuous playback cannot be satisfied.

Combined scheme. When batching is combined to patching, a better performance (in

terms of the server bandwidth consumption) can be achieved than single patching at the

expense of higher latency [172]. In [30], a method of combining unicasting, patching, stag-

gered broadcasting, and stream-bundling broadcasting was proposed to meet the various

requirement of “hot”, “warm”, and “cold” videos. Lee [92] analyzed the combination of uni-

casting, patching, and staggered broadcasting. Poon et al. [121] considered the combination

of unicasting, bridging, and staggered broadcasting to minimize the reneging probability.

7



1.1.5 Support of VCR functions

The possible VCR functions include play forward, play backward, pause/resume, fast for-

ward, fast backward, slow forward, slow backward, jump forward, and jump backforward

[81]. In unicasting, VCR functions are easily supported. Here we introduce how to sup-

port VCR function in the case of batching or multicasting/broadcasting. Pause/resume

is the most common VCR operation. When a stream performs a pause operation, this

stream will leave the batching retrieval. In this case, there are two choices for this stream.

One method is the contingency channel policy [39], in which a small number of shared

contingency channels (which cannot be used by new requests) are set aside for handling

unpredictable demands due to VCR control operations. The emergency interactive channels

[5] have similar functions. In the other method, which is used in the split and merge policy

[98], required data are buffered in the proxy or the client, thus, the server need not trans-

mit the data again. Fast forward and fast backward probably cause additional bandwidth

requirement [41]. However, they also can be implemented using two approaches without

increasing bandwidth consumption. One method is that special files for fast-forward are

generated and stored beforehand. The other method is that selected frames or blocks are

transmitted from the server to the client [179]. For supporting VCR functions, the re-

source (i.e., buffer space and disk bandwidth) requirement for satisfying a certain QoS is

analyzed in [95]. The authors in [48, 81] studied how to support VCR functions in staggered

broadcasting in the segment-level and the block-level, respectively.

1.1.6 CPU and I/O scheduling

The scheduling policy determines how to allocate the utilization of resources among com-

petitive tasks/requests. In the multimedia application, the resources are mainly referred to

the CPU computing power and I/O bandwidth. For the multimedia application, we usually

8



adopt the scheduling strategy for real-time applications [55, 13]. Real-time applications in-

clude hard real-time applications, which require deterministic guarantees for the response

time of each task, and soft real-time applications, which require statistical guarantees for

the response time of each tasks. For the scheduling of periodic real-time tasks, there are

two scheduling priority policies [146]. In rate monotonic scheduling, the task with a shorter

interrequest time has higher priority. The deadline scheduling policy sets the priority of

each task to its deadline. Tasks with the same deadline are processed in an arbitrary order.

Besides, there are scheduling strategies for best-effort applications [126, 182]. For instance,

interactive applications require low response times, and throughput-intensive applications

require high throughputs. The authors in [140, 174, 132] proposed the disk scheduling

framework for meeting the mixed (i.e., including real-time and best-effort) service require-

ments of applications. They served a non-real-time request in a round, only if all the

remaining real-time requests in this round will not miss their deadlines. The hybrid rate

monotonic policy [124] classifies tasks into three types - isochronous, guaranteed-service,

and background. Isochronous tasks are real-time periodic tasks, such as video streams.

Guaranteed-service tasks are tasks that require guaranteed throughputs and bounded de-

lays, e.g., polling service drivers. Background tasks are low-priority tasks with no guaran-

tees of QoS. In [139], the authors focused the scheduling of a presentation, in which both

the intraobject time dependency and the interobject time dependency were considered.

The traditional objectives of disk scheduling policies are to maximize the disk throughput

and minimize the disk response time. In multimedia servers, an additional objective is to

ensure that each stream is able to retrieve its blocks without missing deadlines. Thus, we

can summarize that various disk scheduling algorithms consider some of three factors - (1)

Maximum throughput, (2) Minimum response time, and (3) Real-time. Table 1.1 is the

9



taxonomy of existing single disk scheduling algorithms/policies. The introduction of FCFS,

Table 1.1: Taxonomy of disk scheduling algorithms/policies

Algorithms Factor (1) Factor (2) Factor (3)

Shortest Seek Time First (SSTF), Smallest

Positioning Time First (SPTF)

•

FCFS, Shortest Total/Access Time First

(STF/SATF), Aged Shortest Access Time

First (ASATF)

•

EDF, round-robin •

SCAN/C-SCAN, LOOK/C-LOOK, V(R) • •

Priority SCAN, Shortest Seek Earliest Dead-

line by Order/Value (SSEDO and SSEDV),

Feasible Deadline SCAN (FD-SCAN),

SCAN-EDF, earliest deadline SCAN, GSS

• • •

SSTF, SPTF, SCAN/C-SCAN, and LOOK/C-LOOK can be found in [178]. STF/SATF

and ASATF can be found in [62]. SSEDO, SSEDO, and FD-SCAN can be found in [32]. In

round-robin, each stream is served according to a fixed order in a round, however the order

is randomly chosen. In disk scheduling, the Earliest Deadline First (EDF) policy [126] may

have a high seek overhead because only the deadline is considered to determine the service

order of I/O requests. In SCAN, the disk head repeatedly sweeps outward from the center

of the disk to the periphery and back to the center. The policy has lower seek overheads,

however the read-ahead buffer needed per stream is equal to that needed for two rounds in

round-robin. C-SCAN, a variant of the SCAN policy, performs sweeps in only one direction

10



(inward or outward). The SCAN-EDF policy [126] reduces the seek overhead associated

with EDF by grouping requests with deadlines in a small time interval Tgroup. V(R) is the

parameterized generation of SSTF and SCAN by adding a penalty for every change of the

direction. The Group Sweeping Scheduling (GSS) policy [182] obtains the tradeoff between

round-robin and SCAN. GSS partitions V active streams into Mgr groups, services Mgr

groups in round-robin order, and services the streams within each group using C-SCAN.

Pang et al. [114] proposed to give each disk an advance notification about the blocks that

have to be fetched in the impending time periods, so that the disk can optimize its service

schedule. Lau et al. [82] studied the retrieval scheduling from the magnetic tape for real-

time applications.

The scheduling theory can be classified into the share scheduling and the non-share schedul-

ing. The traditional scheduling theory [119, 22] is usually referred to the non-share schedul-

ing, in which, a job exclusively occupies the resource of one machine/processor. In mul-

timedia applications, the scheduling of either CPU or I/O belongs to share scheduling.

In the scheduling of CPU computing power, hierarchical scheduling [59] is about how to

partition the server between task groups. The partitioning of the server among various

groups is independent of the load on the groups, so that it is not possible for a task in any

group to maliciously or accidentally monopolize the server. A fair-share policy services the

various groups in a round-robin way. The fair-share policies include Weighted Fair Queuing

(WFQ) policy and Start-time Fair Queuing (SFQ) policy [59]. SFQ has greater fairness

and behaves better under variable loads. In I/O scheduling or retrieval scheduling, we

must determine how to partition the server bandwidth into several channels and allocate

channels among the streams. In [72], the share scheduling was converted to the non-share

scheduling by fixing the sizes of channels. The study mainly focused on minimizing the

11



number of tardy frames in the end-to-end delivery of CM data.

1.1.7 Multiple-server approach

As the single-server approach is expensive for large-scale applications [89], this motivates

us to aggregate the capacity and bandwidth of multiple servers to provide cost-efficient

scalable performances.

Parallel video servers (or called clustered servers or server arrays). Lee [87] gave a com-

prehensive study of architectural alternatives and approaches employed by existing (before

1998) parallel-server systems. For the parallel video server, there are two kind of service

models - server-push [88] and client-pull [89]. Under the server-push model, the server

schedules the periodic retrieval and transmission of video data, once a video session is

started. Under the client-pull model, the client periodically sends requests to the servers

to retrieve blocks of video data. Thus, for these two models, the data synchronization is

carried out in servers and clients, respectively. In [88, 89], various performance metrics

(such as service delay and client/server buffer requirement) have been analyzed. In [91],

the buffer requirement in the client-pull mode was analyzed in detail.

Multiple-server retrieval scheduling. Bharadwaj et al. [163] introduced a novel re-

trieval method, in which a single long duration multimedia document is retrieved from a

pool of servers as opposed to the idea of employing a single server in the network. This

is different from the parallel-server approach, as different servers are unrelated from each

other in [163]. The authors of [163] assumed that the clients cannot start the playback

of the ith portion until the client downloads it entirely from the ith server. Under this

assumption, the authors presented a schedule to minimize the access time. Ping et al.

also considered employing multiple servers to retrieve a CM document [120]. The authors

12



designed an optimal retrieval scheduling scheme that postpones the buffer overflow at the

client as much as possible. The study mainly focused on the design of buffer management

strategies.

1.1.8 Reliability issues

To reduce the impact of device failures, it is possible to replicate multimedia objects (e.g.,

mirroring) [80] or store redundant (parity) information (together with striping) [90]. The

parity approach requires less disk spaces while there is the overhead in re-computing un-

available data due to disk failures. Besides, Cohen et al. [34] proposed the SID scheme to

allow a tradeoff between data replications and parity encoding. Lee et al. [93] studied the

rebuild algorithms for rebuilding data stored in a failed disk into a spare disk.

1.1.9 Overview of cache management

Data can be stored in either an origin or a cache. An origin is an initial or original storage

location of data, whereas a cache is a storage location in which data are uploaded for future

accesses when documents are delivered from the origin to clients. Caching concerns the use

of the cache to avoid delays and/or overheads in accessing the origin.

There are two typical caching - memory caching and disk caching. In memory caching,

the high-speed main memory is used as the cache of the relatively slow-speed disk. In

disk caching, the near-distance disk (e.g., in proxy) is used as the cache of the far-distance

disk (e.g., in original server), or the disk is used as the cache of tertiary storage, e.g., CD,

tape. The bandwidth of a memory cache is rarely a bottleneck, i.e., the bandwidth of main

memory can be assumed to be virtually infinite. On the contrary, disk caching policies

have to consider constraints imposed by disk bandwidths as well as disk spaces.

13



Caches are used because of the following two advantages. Firstly, caches are usually

“nearer” to the client than origins or need less access times. Hence, the bandwidth con-

sumption of networks or the server I/O and the access time are reduced significantly. Thus,

caching increases the system capacity. Secondly, to a certain extent, clients can obtain the

data even when the origin cannot accept the requests under failure or overloaded situations.

Thus, we achieve a good persistence of data.

Buffering and caching are two similar techniques with a little differences. The storage lo-

cations of buffering and caching can be the same. However, in buffering, the data blocks,

which are transmitted from a sender to a receiver, are temporarily stored until the receiver

consumes them. The occupied buffer space is released when the data have been consumed

by the receiver. In caching, the data blocks are stored for future accesses. Unlike buffering,

the copy may be retained as long as there are storage spaces available to hold it.

Buffering may be used to connecting two continuous delivery process, e.g., communication

buffer, I/O buffer. Furthermore, buffering can smooth burstiness in the instantaneous data

consumption rate in various components in the delivery path, so as to avoid jitters in the

presentation of CM data.

In the caching problem, we are concerned on issues on who caches a document, when to

cache a document, where to cache a document, what documents to be cached, how to find

the cached documents, where to place the caches in the network, and consistency of cached

documents.

Consistency of cached documents. This issue is concerned with the update of any

stale cached documents that may exist in the system, owing to the presence of multiple

copies [104]. The consistency policies/protocols can be characterized by some parameters,

14



e.g., replica responsiveness, replica reaction, change distribution, write set, coherence group

[118]. The authors of [134] presented an overview of various policies. As different web doc-

uments have different features, Pierre et al. [118] decided separately the consistency policy

for each document to minimize the response time, the number of stale document, and the

consumed bandwidth.

Push caching and pull caching. This is a problem on who decides to cache the docu-

ments. The push caching scheme is also called the server-initiated strategy [18, 106], where

the origins decide on caching the documents. This scheme ensures a strong consistency,

however it does not cope up with the rapid changes in request arrival patterns (e.g., a burst

request arrival). In addition, in this case, the origins need an authority to command the

caches which are often autonomous. On the other hand, the pull caching scheme is also

called the client-initiated strategy, in which the documents are cached only when a client

requests them. As opposed to the former strategy, the client-initiated strategy adapts to

the request arrival pattern that is rapidly changing. However, in this case, the problem of

cache consistency arises. Besides, through making the content of cached video be known by

users, the users can adjust their requirement. Thus, the cached video can be fully utilized

[148, 149].

On-demand caching and on-command caching. This is a problem on when to cache

the documents. In the on-demand caching strategy [102], documents are cached when they

are accessed by the client. In other words, when there are no requests for a document,

we do not consider to cache that document in the cache. In contrast, in the on-command

caching strategy [102], the cache is set up to automatically retrieve certain documents, or

possibly replicating all the documents from an origin at regular intervals. The prefetching

strategy is a kind of on-command caching strategy. The basic prefetching techniques are

15



always prefetch [160] and stride prediction (e.g., RPT [33]). In prefetching, an estimate

of the future access probabilities (i.e., request rates) is computed and relevant documents

are cached for future accesses [46, 68]. In [35], a bi-dimensional spatial locality in images

was exploited for prefetching. In interactive and/or composite media documents, the ac-

cess pattern is not sequential but may follow a set of likely access sequences over many

small media objects. The access pattern can be modeled as navigation of a hypergraph,

where each node represents playback of a small media object. Thus, the most likely set of

follow-up nodes can be prefetched [146].

In the following Sections 1.1.10 and 1.1.11, we consider the problem on what documents

are cached, in terms of a partial document or a full document, respectively.

1.1.10 Full caching

Before determining which document is cached, the “importance” of the documents will be

measured by the following four factors.

(1) Temporal locality (or locality of reference). This aspect suggests that a recently ac-

cessed document is likely to be accessed again in the future. According to [65], long-term

popularity and short-term temporal correlation among requests (accesses) are two sources

of temporal locality. There is a detailed study about temporal locality in [147].

(2) Access frequency. This refers to the rate at which the requests arrive for a document.

(3) Document size. The size of a document is equal to the space requirement if that doc-

ument is cached. Therefore the size of a document has an importance effect on deciding

whether or not to cache a document.

(4) Miss penalty. This is the retrieval cost of a document from the origin upon a miss in

the cache [65].

16



Table 1.2 is the taxonomy of existing cache replacement algorithms/policies that consider

the above four factors. In addition to the above factors, the lifetime of a document and

the type of a document are also important factors that be considered in the design of re-

placement algorithms. Perfect LFU and in-cache LFU are two variants of LFU. Perfect

Table 1.2: Taxonomy of cache replacement algorithms/policies

Algorithms Factor (1) Factor (2) Factor (3) Factor (4)

FIFO

LRU (e.g., segmented LRU, EELRU [147]) •

LFU (e.g., perfect LFU, in-cache LFU) •

LFF (Largest File First) [20] •

Latency •

LRU-k [111], LRFU [84], LFU-DA [10] • •

LRUMIN, var-page-LRU [143] • •

GD (i.e., GreedyDual) [181] • •

LRV [129], GDS [27], size-adjusted LRU [3] • • •

Hybrid [177] • • •

GD-LFU [77],GDSF [9], GDSP [64], LNC-

W3 [136], GD* [65], LUV [14]

• • • •

LFU keeps track of all the past accesses to all the documents (using counters to register

these accesses) even when a document is evicted from the cache, whereas, in-cache LFU

removes the record of all the past accesses when a document is evicted from the cache [21].

Segmented LRU [8] is a variant of LRU, in which the documents that are referenced only

17



once will be evicted out quickly. Among the caching algorithms that consider identical set

of factors in the design, the difference lies in the amount of algorithm overheads incurred

and in the manner in which these factors is represented. In the literature, there are three

methods that are used to handle these factors. The first fashion is to combine the above

mentioned factors using a heuristic or analytical scheme with some weights assigned to each

of these factors, e.g., QoS in [1], utility value in [64]. Alternatively, one may prioritize some

of the above factors over others in key-based policies [173]. Finally, in regression-based

combination scheme proposed in [49], a past access record is used to do the regression

calculation to obtain an optimal set of weights for these factors. However, the computation

involved in the regression calculation is very large.

1.1.11 Partial caching

Because of large sizes of CM documents, it is not cost-efficient to store an entire document

in the cache [38]. In this case, instead, we cache partial data of a document. The prefix-

caching [138, 100, 115] caches the initial portion of the stream, and the prefix is transmitted

from the cache to the client, so that the start-up delay is reduced. Verscheure and Frossard

[50, 167] considered caching prefixes and patches (which are used in the patching method) to

minimize the backbone bandwidth consumption. In addition, the cache space requirement

was calculated. In layered caching, the multimedia document is (virtually) split into a

number of layers. The lowest level contains the most important data. The layered encoded

document is used to handle heterogeneous accesses [71]. If the network bandwidth to the

source is limited, then only the lowest layers are fetched and played [127].

Besides, there are two classes of caching strategies/algorithms for CM documents. One

class is the block-level algorithm, e.g. BASIC [113]. In a block-level caching algorithm,

a block of data is the basic caching entity and the cache space is allocated for a single

18



block. BASIC selects to replace a block that would not be accessed for the longest period

of time. The other class is the interval-level algorithm, e.g., DISTANCE [113], Interval

Caching (IC) [36], Resource-Based Caching (RBC) [157], and Generalized Interval Caching

(GIC) [38]. In an interval-level algorithm, the basic caching entity is an interval, which

is an amount of data between two adjacent streams. Once an interval is chosen to be

cached, its former stream places the read blocks in the cache upon consumption, so that

the latter stream always can read the date cached by the former stream. Here, a stream is

referred to a session that CM data are retrieved from the server (either the origin or the

cache). The cache space is allocated for a single interval. IC orders only current intervals,

in which both the former stream and the latter stream exist. However there is a kind of

“anticipated” interval, in which the latter stream has not arrived. The GIC policy orders

all the intervals (current or anticipated) in terms of increasing interval sizes and allocates

the cache space to as many intervals as possible. Thus, IC is suitable for streams accessing

long documents, and GIC extends IC so that both long and short CM documents can be

managed. DISTANCE is similar to IC. A distance in DISTANCE is an interval in IC. RBC

is a disk-caching algorithm while DISTANCE, IC, and GIC are memory-caching algorithms.

In the RBC policy, each cacheable entity (entire object or fragments of an object) has been

associated with resource requirements consisting of bandwidths and spaces.

Figure 1.1 compares the basic principles of the interval-level caching and the block-level

caching algorithms. In comparison with the interval-level caching algorithm (e.g., GIC and

RBC), the block-level caching algorithm (e.g., BASIC) has two drawbacks.

• In the block-level caching algorithm, the blocks are frequently ordered, then the

replacement operations are carried out. In the interval-level caching algorithm, the

intervals are ordered when intervals are generated or changed. Therefore the block-

19



Stream 2

In the above diagrams, the long rectangle represents a CM document. L is the
size of this document. In a document, the hashed part is cached data and the
blank part is uncached data. In case of the block-level caching, the hashed
part consists of cached blocks.
In the case of the interval-level caching, an interval of data between two
adjacent streams is cached. The former stream (e.g., stream 1 in (a)) writes
the data into the cache and the latter stream (e.g., stream 2 in (a)) reads
cached data. Unless there is a following stream, which forms another interval
together with stream 2, stream 2 will swap out read data from the cache.
In the case of the block-level caching, the stream chooses to cache important
blocks for following stream(s).  Following streams will not automatically swap
out read data from the cache.

(a) Interval-level caching (b) block-level caching

0 L

Stream 1

t = t1

t = t2> t1

Stream 2

0 L

Stream 1

Stream 2

0 L

Stream 1

Stream 2

0 L

Stream 1

Figure 1.1: Comparison between the interval-level caching and the block-level caching

20



level caching algorithm has much higher operational overheads than the interval-level

caching algorithm.

• The block-level caching algorithm caches unrelated sets of blocks and not continuous

blocks of data, hence, it is difficult to guarantee a continuous playback at the client

end.

Thus, designing block-level caching strategies is unrealistic to handle CM streams.

1.1.12 Distributed caches

Architecture of caches. There is probably single cache or multiple caches in a system. If

several caches share their cached documents among all the clients (i.e., not limited to local

clients), then the hit ratio will be improved greatly [43]. It is referred to as the cooperative

caching strategy [128, 123]. Wolman et al. [176] evaluated quantitatively the potential of

the performance improvement for the cooperative proxy caching using a trace-based method

as well as an analytical approach. Their research showed the cooperative web proxy caching

is an effective architecture for small individual caches that comprise user populations in

the tens of thousands. In cooperative caching, two kinds of architectures were proposed in

the literature [131] - mesh (or distributed) architecture [122] and hierarchical architectures

[31]. Tewari et al. [158] provided a performance comparison between these two architec-

tures and derived some design guidelines for a large-scale distributed cache environment.

In the hierarchical architecture, a client needs to pass several hops for accessing the data in

a distant proxy, while in a distributed architecture, a client is inclined to access neighboring

and/or directly-connected proxy. Therefore, the latter has a shorter response time.

Location of cached documents. This is a problem on how to find cached documents.

The research issue is to efficiently discover (i.e., routing of requests), select, and deliver

21



the desired document(s) from neighboring or remote caches in a cooperative-cache envi-

ronment, e.g., [11, 107]. In a distributed architecture, the order of looking for a document

follows from the local proxy to a neighboring proxy, and then to the original server. On

the other hand, in a hierarchical architecture, the order of looking for a document is from

the local proxy to parent proxies until an original server is reached. Basically, two topics

are studied. One topic is how to route the request to the appropriate cache to retrieve

the object. The ICP [170, 171] protocol allows proxy caches to broadcast requests for data

not in the cache and retrieve data. However, this broadcasting of the query is often low

efficient as we do not exactly know whether or not the required object is stored in a special

cache. Thus, the second topic appears. It is how to store the information about objects

and caches. For example, the directory of objects, load state of caches. This information

is used for the reference of choosing the cache. A CRISP [53] cache consists of a group of

cooperating caching servers sharing a central directory of cached objects. One alternative

on [53] is to fully replicate the directory on every proxy and asynchronously propagate local

changes in each cache to the rest to maintain all directories weakly consistent [54]. Another

alternative on [53] is to store only the subdirectory of objects, which are shared by more

than one cache, in the central directory [54]. A Cache Digest [26] or Summary Cache [47]

is a summary of the contents of caches. It contains, in a compact (i.e. compressed) format,

an indication of whether or not particular URLs are in the cache. Again, we return to the

first topic. Now it is how to route the request to the most appropriate cache. In [123], the

required object is retrieved directly from the Internet instead of the remote cache, when it

is faster in the former way than in the latter way. Now these researches have been extended

to the content distribution/delivery network [29].

Placement/replacement algorithms in distributed caches. This is a problem on

22



where (i.e., which cache) to cache documents. Sinnwell et al. [145] used cooperative caching

to minimize the mean response time in Networks Of Workstations (NOWs). In [42], coop-

erative caching algorithm for web objects was proposed and multiple performance metrics

were discussed. In [180], the authors considered cooperative caching for wireless multime-

dia streaming. The authors in [145, 180, 42] studied the caching strategies used in the

distributed architecture. In comparison, the caching strategies used in a hierarchical ar-

chitecture can be found in [19, 155]. In [19], an object is cached at the nodes that are a

fixed number of hops apart on the path from the client to the server. In [155], a dynamic

programming method was used to choose the caches, in which web objects are placed. The

CARP [162, 28] protocol divides a set of URLs among a set of loosely coupled proxy caches.

A hashing function is used to determine the proxy cache that should be requested for any

particular URL. The usage of CARP is tightly related to affinity routing [39], in which

requests are automatically routed to caches dedicated to caching a special set of objects.

By enhancing the content locality, the access time is improved.

Cache location. This is a problem on where to place the caches in the network. In [97, 79],

the placement of caches in the network is studied to maximize the service capability.

1.2 Motivation

Firstly, we explain why we concern the CM retrieval problem. In most of the existing lit-

erature, most of studies are limited to the retrieval using a single bandwidth channel from

a single server. In an environment with various traffics in the network and various loads

on different servers, if a long CM document is divided to several segments, each of which

is retrieved from different bandwidth channels in different servers, then the load on the

networks and servers will can balanced very well. Good load balancing makes the servers

23



in distributed networks accept more requests. This idea of employing a pool of servers

to retrieve CM documents makes more sense especially for very long duration videos, as

the amount of data to be transported is very large. In fact, many techniques in partial

caching already contain this idea. For instance, in prefix-caching [138, 100, 115], the prefix

and the remainder of a video come from different servers. Thus, we need consider how

to coordinate the retrieval from different servers. This problem is resolved by scheduling.

Bharadwaj et al. [163] employed multiple servers to retrieve a multimedia document. The

authors assumed that the clients cannot start the playback of the ith portion until the

client downloads it entirely from the ith server. In fact, the clients can adopt the playback-

while-receive (i.e., streaming) mode to further reduce the access time, i.e., the clients begin

the playback, once they receive the initiate portion (which is buffered for smoothing the

variable bit rate of data) of a CM document. Ping et al. [120] also considered employing

multiple servers to retrieve CM documents. Their study aims to minimize the consumption

of the buffer space at the client. However, in fact, a client usually only need to support

the buffering of one video, hence, the buffer space of the client is never insufficient. In

comparison, the access time and the block ratio are more important performance metrics

for the client. The above analysis motivates us to revisit the retrieval problem employing

the multiple-server retrieval of CM documents in the case of play-while-receive strategy.

In the rest of this section, we present the motivation of studying the CM caching. First of

all, we analyze the drawbacks in past interval-level caching algorithms.

Firstly, for any of the interval-level caching algorithms, there is a possibility of contacting

the origin when the required data are not available in the cache, referred to as switching

(also called hiccup in [85]) in this thesis. In detail, if a stream that is reading from the

cache finds that there are no required data in the cache before its retrieval finishes, this

24



stream has to retrieve the corresponding data from the origin. We refer to this simply

as switching back to the origin. In order to avoid any playback discontinuity owing to

the shortage of resources (refer to the I/O bandwidth and the network bandwidth), the

required amount of resources should be reserved in advance. However, in fact, this reser-

vation is impossible, as the estimation of reserved resources is very difficult. Furthermore,

the switching operation incurs additional operation overheads, and hence, it is undesir-

able. Thus, an efficient caching algorithm must also attempt to minimize the number of

switches to origin, apart from improving the byte hit ratio, which is the most important

performance metric in caching. Lee et al. [85] also noticed the disadvantage of switching

operations, and proposed the following strategy to eliminate the switching operation: an

interval is replaced only when the second stream of that interval can be serviced from a

disk. However the studies in [85] were only based on IC (i.e., interval caching) used in the

memory caching. In fact, the shortage of bandwidths in disk caching also may result in the

switching operation. Moreover, in disk caching, the implementation of the method in [85]

is difficult, as the cache server is far from the origin server, which is independent from the

cache server.

Secondly, previous interval-level algorithms assumed that two streams that form one inter-

val have the same retrieval bandwidth. However this assumption is not always true because

of the following reasons.

• Two streams can come from different servers and arrive at different clients with

different qualities of services (e.g., low-bandwidth or high-bandwidth).

• The retrieval bandwidth of a stream probably varies with time.

– CM data are transmitted through the underlying interconnection network. Thus,

time-varying network traffics can result in a time-varying retrieval bandwidth

25



consumption.

– At the client end, a stream may experience pause/resume, slow forward, fast

forward, and other VCR operations. These VCR operations are equivalent to a

variable bit rate retrieval situation for a stream. Although the authors of [39]

introduced a method to deal with the pause/resume in GIC, by and large, han-

dling a variable bit rate scenario, which is owing to several other VCR operations

for CM data caching systems, still remains as an open and challenging problem

to tackle.

– Servers probably adjust the retrieval bandwidth of streams for some purposes. If

the server can dynamically adjust the retrieval bandwidth, then the throughput

of an entire system can be improved. This issue will be demonstrated in Chapter

3.

In an interval, if the two streams have different retrieval bandwidths, then the cache space

requirement of this interval and the cache bandwidth requirement of these two streams

will be variable. Past interval-level caching algorithms allocate the resource (including the

bandwidth and the space) only once for every interval and every stream, and therefore past

interval-level caching algorithms clearly cannot handle the case of the variable retrieval

bandwidth.

Finally, in the case of the disk caching algorithm RBC, the allocation of the cache bandwidth

for a stream is often less efficient. In detail, once an interval is formed, the bandwidth is

allocated to the two streams that form that interval. However, the latter stream will not

use the bandwidth to read data from the cache until there are available cached data, which

are written by the former stream. As the cache bandwidth is crucial, if we can allocate the

bandwidth just-in-time instead of by a reservation method, then the caching performance

26



can be improved. Figure 1.2 shows this idea.

When t=t1, an interval is formed by stream 1 and stream2. In RBC, a certain
amount of cache bandwidths are reserved for stream2 when t=t1. However
stream2 does not use cache bandwidth to read the data from the cache until t=t2.
Therefore, if we do not allocate the cache bandwidth until t=t2. The utilization of
the cache bandwidth will be more efficient.

0 L

t = t2

Stream 2

0 L

Stream 1

In this diagram, the long rectangle
represents a CM document. L is the
size of this document. In the document,
the hashed part is cached data and the
blank part is uncached data.

t = t1

Stream 2 Stream 1

Figure 1.2: Bandwidth requirement for a stream in retrieving a document

1.3 Issues to be Studied and Main Contributions

The above-mentioned issues in Section 1.2 considerably motivate us to propose novel strate-

gies for the retrieval and caching of CM data.

As for the retrieval issue, we realize the multiple-server retrieval by adopting the multiple-

channel scheduling. Firstly, we present the partition strategy of the retrieval channel, i.e.,

allocate the bandwidth from one or multiple servers to form retrieval channels. Secondly.

we design a multiple-channel scheduling strategy used in the streaming mode. The re-

trieval scheduling includes synchronous-channel retrieval scheduling, asynchronous-channel

retrieval scheduling, static-size channel scheduling, and variable-size channel scheduling.

The static-size channel scheduling is carried out before the playback starts, while the

variable-size channel scheduling is carried out dynamically during the playback. The dy-

namic scheduling prevents some slow channels from missing their deadlines. Also, the

dynamic scheduling can reduce the retrieval duration and improve the block ratio of re-

27



quests. Thirdly, combining the above two parts, a complete Multiple-Channel Retrieval

(MCR) algorithm is presented. This algorithm can be used in either a single-server re-

trieval or a multiple-server retrieval. Finally, we compare the multiple-server retrieval and

the single-server retrieval by means of rigorous simulation studies. We also compare the

multiple-channel retrieval and the single-channel retrieval. Additionally, we implement the

multiple-channel and multiple-server retrievals in the experiment. This experiment not

only shows the advantage of the multiple-channel and multiple-server retrieval strategies,

but also imply the applicability of proposed strategies.

In tackling the caching issue, firstly, we propose some important rules to eliminate switch-

ing of streams. Secondly, we design strategies to handle the case of the variable retrieval

bandwidth. Thirdly, we design a bandwidth management strategy of caching CM data to

improve the efficiency of utilizing bandwidth. Fourthly, combining the above strategies, we

propose a novel caching algorithm referred to as the Variable Bit Rate Caching (VBRC)

algorithm. In this algorithm, the switching operation is avoided to the maximum extent.

As far as we know, VBRC is the first caching algorithm that can be used to cache variable

bit rate streams. Furthermore, VBRC will be shown to outperform RBC in the case of

disk caching. Finally, we carry out plenty of rigorous simulation experiments to show the

performances of all the strategies designed in this thesis. This simulation study is shown

to testify all our analytical findings.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe the main elements

in network-based multimedia system and analyze the significance of our research. Also,

we model the retrieval sub-system and the caching sub-system. Besides, we introduce

28



the terminology and simulation model used in this thesis. In Chapter 3, we design and

analyze the strategies for the multiple-server and multiple-channel retrieval. We focus on

the channel partition and the retrieval scheduling. Combining all the strategies in this

chapter, we present the Multiple-Channel Retrieval (MCR) algorithm, which can be used

in either single-server or multiple-server retrieval. In Chapter 4, we design and analyze

the strategies for improving past interval-level caching algorithms. We focus on how to

reduce the switching operation, how to handle variable bit rate, and how to efficiently

utilize the cache bandwidth. By combining all the strategies, we present the Variable Bit

Rate Caching (VBRC) algorithm. In Chapter 5, we implement the multiple-channel and

multiple-server retrieval, and testify the advantage and applicability of proposed strategies.

In Chapter 6, we summarize our research work and discuss on possible extensions.

29



Chapter 2

System Modeling and Problem

Setting

2.1 Network-Based Multimedia System

Network-based multimedia services are provided by network-based multimedia systems or

distributed multimedia systems. Li et al. [96] defined a distributed multimedia system

as a integrated communication, computing, and information system that enables the pro-

cessing, management, delivery, and presentation of synchronical multimedia information

with quality of service guarantees. Furht et al. [51] proposed a general architecture of the

network-based multimedia system to provide interactive services for thousands of users.

A typical network-based multimedia system consists of three parts: servers, networks, and

clients. Servers store CM data (In this thesis, we only consider CM data) and deliver data

to clients. When servers provide multimedia services to clients, the requirement of QoS

can be described in the following issues.

30



• Continuous playback. In this case, QoS means CM data should be delivered to the

client on or before the deadline, which is determined by the playback time of data.

• Short start-up delay (short access time). The start-up delay is the waiting time of

the clients from the time instant when the client sends a request to the server for

requiring a CM document to the time instant when the CM document is played back

at the client. The user will not wait for a long time before the playback begins at the

client.

• Low block probability/ratio (low rejection probability/ratio). A request for a CM

document is blocked (i.e., rejected) in the following two cases - (a) servers do not

store the requested document, and (b) the bandwidth resource in the server(s) is not

sufficient. Under these two cases, the requested CM document cannot be delivered

and consequently played back at the client in a bounded delay. Clearly, the client

does not wish to meet too frequent refusals. Enhancing the throughput of the server

can reduce the block ratio. A similar performance metric is the reneging probability,

which is the probability that users become impatient and cancel their requests as

users experience a long wait time. The reneging probability cannot be calculated

unless we determine the reneging behavior of users [121].

• Short retrieval duration. The user usually wish that all the requested data are re-

trieved as soon as possible since a long retrieval process is easily interrupted by the

network congestion or other factors.

• VCR function support. It is also an important QoS of allowing users to freely control

the presentation of CM documents.

Besides, jitter free is also concerned in QoS. Jitter can be easily resolved by buffering, so

we do not consider it in this thesis. Besides, scalability and reliability are two important

31



Table 2.1: Typical storage capacities and bandwidths

Resource Storage capacity (GB) Bandwidth (MB/s)

Disk (e.g., Seagate Cheetah 36ES[137]) 18.4 63.2

CD (e.g, Philips PCA36XCD) 600MB 5.3

DVD (e.g., Philips PCA532DK) 8.5 6.5

Tape (e.g., Quantum DLT-7000) 35 5

Main Memory (e.g., Micron Crucial 128MB 2.1GB/s

PC2100 DDR-SDRAM memory [108])

SCSI (e.g., Ultra2 Wide/Ultra 160) 80/160

PCI (e.g, 32-bit/64-bit) 133/266

NIC (e.g., 3COM Gigabit Server NIC) 125

LAN network (e.g., fast/Gigabit Ethernet) 12.5/125

objectives in designing a large-scale multimedia system. However they are not tightly re-

lated with our research, as these two objectives are usually considered in constructing a

entire multimedia system.

Good or acceptable QoS is not an easy task since available resources are limited. The

concerned resources are mainly referred to the storage space and the bandwidth capacity

in servers. The bandwidth capacity is determined by the minimum of the I/O bandwidth

and the network bandwidth. The I/O bandwidth is generally determined by the storage

device (e.g., disk, tape, CD, DVD) drives, the SCSI interface, the PCI bus, and the NIC

in the computers. Table 2.1 shows the typical values of storage spaces and bandwidths.

Obviously, hard disks have good storage capacities and bandwidths, therefore hard disks are

32



used as main storage devices in distributed multimedia systems. Tertiary storage devices

are usually used as the backup of data. Comparing with main memories, disks usually have

much larger spaces and smaller I/O bandwidths. A single disk has less bandwidths than

the SCSI interface, the PCI bus, and the NIC, therefore, disk arrays are often used instead

of a single disk. In this thesis, we do not consider CPU speed as a key resource, as the

technological advancement in the design of CPUs has improved at a more rapid pace than

memory systems (refer to the figure in [153]). Moreover, the retrieval of data in servers

is not a CPU-intense task. Besides, as pointed out in a recent article, the technology of

improving the capacity of network bandwidths is more faster than that of CPU and data

storage [152]. Thus, comparing with the network bandwidth, the I/O bandwidth easily

becomes the bottleneck.

As mentioned in [65], the growth rate of the information content and the traffic on the

Internet is much higher than the rate at which memory or disk sizes are likely to grow. For

example, the Internet traffic after 1997 doubles every 6 months [130] while the maximum

storage space of a single disk doubles only every year, in the past 5 years. In particular,

the number of multimedia documents with larger sizes keeps increasing on the Internet.

Experts predict that by the year 2005, more than 50% of the information available over the

Internet will be large multimedia documents [57]. Also, the percentage of requests to such

large-size multimedia documents increases more than a linear fashion with respect to time

[101]. Note that the large-size multimedia documents are mainly CM documents. Besides,

the increase of the I/O bandwidth is even much slow than the improvement on the storage

space because of various limits in IT technologies. Therefore, while both the bandwidth

and the storage space are important for achieving an excellent performance, the bandwidth

easily becomes the more important bottleneck.

33



In all, what we observe is that the rate at which client demands on networks for CM

documents overtakes the speed at which the storage space and bandwidth technology is

progressing. Therefore, how to efficiently utilize the resources while retrieving and caching

to obtain a satisfied QoS becomes a core concern of this thesis. Also, it is worth mention-

ing at this juncture that our research is applicable to various network-based multimedia

systems.

2.2 Retrieval Model

CM data can be retrieved from the server (through a network) using one of two methods

- downloading (or called as play-after-download) and streaming (or called as play-while-

receive). In the case of downloading, only after an entire data segment (even an entire

document) is received by the client, the playback can begin. This method results in a long

waiting time at the client. In the case of streaming, the audio and video content is being

delivered to clients while the playback can begin after a short start-up latency (only for

buffering to smooth the variable bit rate).

In streaming a CM document, the server can use unicasting (i.e., on-demand), batching,

or broadcasting. In this thesis, we consider the on-demand mode of the retrieval. In on-

demand, the client can control when the stream is started or stopped, e.g., VoD. When a

client sends a request to a server, one or multiple servers delivers the requested document

to the client if the request can be accepted from the perspective of resources. The retrieval

process excludes the transmission detail in networks.

34



2.3 Caching Model

In this thesis, we consider the memory caching, where the main memory is used as the

cache of the disk in the same computer, and the disk caching, where the disk in a cache

server is used as the cache of the disk in an original server. For a simple description, we

adopt two terms - cache and origin in the caching relation. Hence, in the memory caching,

the main memory is the cache and the disk is the origin. In the disk caching, the disk in

cache server is the cache and the disk in the original server is the origin.

The connection between the origin and the cache, or between the cache and the client is

via networks. In this thesis, for both disk caching and memory caching schemes, we only

consider a single cache case while the origin and the client can be multiple, as attempted

by other researchers [113, 36, 157, 38]. In other words, we do not consider the choice of

caches.

How the client retrieves the requested document from the cache and/or the origin can be

described as follows. At the beginning, we search the required document in cache. If there

is a miss, we contact the origin for the document.

2.4 Terminology

Some important terms cited in this thesis are listed in Table 2.2. Some common quantities

including the symbol and definition in this thesis are presented below in Table 2.3.

35



Table 2.2: Important terms

Term Description

Interval An interval is formed by a pair of consecutive streams (a former stream and

a latter stream) to the same document [39]. However, in an interval at a

certain time instant, there probably does not exist the former stream (i.e.,

the former stream has finished its retrieval) and/or the latter stream (i.e., the

latter stream has not arrived yet).

Channel A certain amount of bandwidths that are allocated for delivering CM data.

Cached Interval An interval has been allocated some cache spaces and bandwidths according

to the size of the interval and the retrieval bandwidth of streams, respectively.

2.5 Simulation Model

2.5.1 Performance metrics

In the retrieval problem, we study on how to minimize the access time, the block ratio, and

the retrieval duration while satisfying the continuity constraint of the playback.

In the caching problem, the performance metrics are different. The miss ratio [113] is

defined as the ratio of the total number of blocks accessed from the origin to the total

number of accessed blocks. With different retrieval bandwidths, blocks have different sizes.

Therefore, the miss ratio is an inaccurate performance metric to measure the reduction of

the network traffic. The hit ratio [157, 38] is defined as the ratio of the total number of

documents accessed from the cache and the total number of accessed documents. However,

in interval-level caching strategies, only part of an entire document is fetched from the cache.

36



Table 2.3: Important quantities

Symbol definition

r Playback rate of a CM document

L Size of an entire CM document

H Length of an entire CM document. H = L/r

bw Retrieval bandwidth (or called bit rate) of a stream

g Size of an interval. g = min(gf (t)− gl(t), L), where gf (t) is the retrieved size

of the former stream and gl(t) is the retrieved size of the latter stream.

h Length of an interval. h = g/r

Rs Cache space requirement of an interval. Rs = min(g, L−G), where G is total

size of the allocated space for other intervals on the same document.

Rb Cache bandwidth requirement of a stream. Rb is identical with bw of this

stream.

Thus, a measure on the number of “hits” cannot reflect the performance, as different hits

may access different amounts of cached data. Therefore, it is not accurate to use a simple

hit ratio as the performance metric. Finally, it may be noted that if an entire document

is cached, then the time of accessing the cached document is shorter than the time of

accessing the same document from the origin. However, when we cache a CM document by

interval-level caching strategies, the beginning blocks of a document is often not cached,

and hence, we still need to retrieve the initial blocks from the origin. It means that we

often cannot obtain the benefit on the access time from the interval-level caching strategy.

Therefore, the average access time cannot be an appropriate performance metric.

The design of caching strategies fundamentally aims to reduce the overload on the network,

37



through which the requested documents are transferred, and the origin. In other words,

a saving on the bandwidth is treated as the main benefit of the caching. Therefore, we

evaluate the caching strategies in terms of their abilities to improve the byte hit ratio. The

byte hit ratio is the ratio of the total number of bytes accessed from the cache to the

total number of bytes accessed. Thus, in all our simulation experiments, we analyze the

behaviour of the system by measuring the byte hit ratio with respect to several parameters

such as, cache size, disk bandwidth, and request arrival rate.

2.5.2 Workload characteristics

In our simulation, requests arrive according to the Poisson distribution with λ, which is

the most frequently adopted access pattern.

There are two kinds of probability distributions used to calculate access probabilities (or

access rates) of a document i, i = 1, ..., M (M is the number of documents). These are,

Zipf distribution [94]: pi =
e−θi

T
, where, T =

M∑

i=1

e−θi (2.1)

and

Zipf-like distribution [3]: pi =
i−θ

T
, where, T =

M∑

i=1

i−θ (2.2)

where, θ is the skew factor of the access probability distribution. In this thesis, we adopt

70−20 access skew (i.e., about 70% of the accesses are restricted to 20% of the documents)

as in [157]. From (2.1) or (2.2), we can calculate θ values corresponding to the 70−20 access

skew when M varies (see Table 2.4). In our simulation experiments, M CM documents

are divided into two groups [157]. The size of a group, which is called the large group, is

uniformly distributed between 125MB and 1000MB, and the size of the other group, which

is called the small group, is uniformly distributed between 5MB and 50MB. The large

38



Table 2.4: Skew factor value in the 70-20 access skew case

M 100 200 300 400 500

θ in (2.1) 0.06 0.03 0.02 0.015 0.012

θ in (2.2) 1.012 0.952 0.927 0.911 0.901

group refers to long videos (e.g., movies), whereas the small group refers to short videos

(e.g., advertisement clips and MTV). The default size (i.e., the number of documents) of

the large group is P ×M , where P is the percent of the large group in M documents.

39



Chapter 3

Multiple-Server/Multiple-Channel

Retrieval Strategies

3.1 Why Multiple-Server/Multiple-Channel Retrieval?

In this thesis, a “channel” is defined as a certain amount of bandwidths that are allocated

for retrieving CM data. In a single-channel retrieval, only a single channel, which is either a

constant bandwidth (i.e., constant-size channel) or a variable bandwidth (i.e., variable-size

channel), is used to retrieve a CM document. In the multiple-channel retrieval, multiple

independent channels are adopted in the retrieval of a CM document. Thus, the retrieval

of a single CM document is carried out with several channels, say, channel 1, channel 2,...,

channel N . N may be different for the retrievals of different CM documents, however N

must be at least 2 for the multiple-channel retrieval (N = 1 for the single-channel retrieval).

We design the multiple-channel retrieval to realize the multiple-server retrieval. In com-

parison with the single-server retrieval, the multiple-server retrieval has the following ad-

vantages.

40



• Resource utilization. In the single-server retrieval, suppose if a server has not enough

idle time to support the retrieval of a long-length video, or if it has an inadequate

retrieval bandwidth capacity that leads to a unbearable start-up delay, these server

resources will be discarded in the case of single-server retrieval. However, in the

multiple-server retrieval, such low-bandwidth servers can also participate by carefully

considering them during our scheduling process.

• Reliability. If multiple servers join the retrieval of a document, then the failure of a

single server will not have a fatal affect on the retrieval.

• Load balancing. In the single-server retrieval, the server that ensures the minimum

access time for that retrieval is not necessarily the server with the lightest load. In

the multiple-server retrieval, since the access time is only related to the first retrieved

portion and the first retrieval channel, we minimize the access time in channel 1, and

also consider to balance the load in other channels in other servers.

Besides the benefit from the multiple-server retrieval, the multiple-channel retrieval has

its benefit. In particular, variable network traffics cause the size of the actual retrieval

bandwidth to fluctuate with time, therefore most streams will have to re-buffer at some

time instants. Because of inferior QoS of streaming CM, some users would like to play the

document after downloading it. As a cost, users have to experience a long downloading

time. In the case of the multiple-channel retrieval, the possibility of the buffer operation

during the playback is greatly reduced.

When multiple channels are used to retrieve a CM document, we need suitable scheduling

strategies to achieve good performances.

41



3.2 Two Kinds of Retrieval Scheduling Strategies

We can adopt two fashions (play-after-download and play-while-receive) to retrieve CM

documents. For both of cases, once the playback of the CM document begins in the client,

the continuity of the playback should be satisfied until the retrieval is completed. Figure 3.1

shows the timing diagram of the multiple-channel retrieval scheduling when the retrieval

in different channels has the same starting time. These channels are synchronous channels.

3.2.1 Scheduling strategy in the case of play-after-download

Figure 3.1(a) shows the timing diagram of the multiple-channel retrieval scheduling in the

case of play-after-download (refer to [163]). From this figure, we can obtain

a1,1 = t0bw1, (3.1)

and

a1,j+1 = a1,1

j∏

k=1

ρk, j = 1, ..., n− 1, (3.2)

where,

ρk = bwk+1(
1

bwk
+

1
r
).

Also, we can obtain

ai+1,1 =
∑n

k=1 ai,kbw1

r
, i = 1, ..., m− 1, (3.3)

and

ai+1,j+1 = ai+1,jρj − ai,jbwj+1

r
, i = 1, ...,m− 1, j = 1, ..., n− 1. (3.4)

Using (3.2), (3.3), and (3.4), we can derive ai,j as follows.

ai,j = a1,1fi,j(bw1, ..., bwn, r), i = 1, ...,m, j = 1, ..., n, (3.5)

42



 

(a
) 

P
la

y-
af

te
r-

do
w

nl
oa

d 

t  
R

et
rie

va
l 

P
la

yb
ac

k 

C
ha

nn
el

 1
 

C
ha

nn
el

 j 

C
ha

nn
el

 j+
1 

C
ha

nn
el

 n
 

C
lie

nt
 (

r)
 

α
1,

1 

α
1,

1 

(b
w

1)
 

(b
w

j) 

(b
w

j+
1)

 

(b
w

n)
 

α
1,

j 
α

1,
j+

1 
α

1,
n 

α
1,

j α
1,

j+
1 

α
1,

n 

α
i,1

 

α
i,1
 

α
i,j

 
α

i,j
+

1 
α

i,n
 
α

i+
1,

1 
α

i+
1,

j 
α

i+
1,

j+
1 

α
i+

1,
n 

α
 i,

j α
 i,

j+
1 

α
i,n

 

α
i+

1,
1 

α
 i+

1,
j α

 i+
1,

j+
1 

α
 i+

1,
n 

α
m

,1
 

α
m

,j 
α

m
,j+

1 
α

m
,n

 

α
m

,1
 

 α
m

,j 

 α
m

,j+
1 

α
 m

,n
 

(b
) 

P
la

y-
w

hi
le

-r
ec

ei
ve

 (
w

he
n 

bw
j�

r, 
j =

1,
…

,n
) 

t 
R

et
rie

va
l 

P
la

yb
ac

k 

C
ha

nn
el

 1
 

C
ha

nn
el

 j 

C
ha

nn
el

 j+
1 

C
ha

nn
el

 n
 

C
lie

nt
 (

r)
 

α
1,

1 α
1,

1 

(b
w

1)
 

(b
w

j) 

(b
w

j+
1)

 

(b
w

n)
 

α
1,

j 
α

1,
j+

1 
α

1,
n 

α
1,

j α
1,

j+
1 

α
1,

n 

α
i,1
 

α
i,1
 

α
i,j

 
α

i,j
+

1 
α

i,n
 
α

i+
1,

1 
α

i+
1,

j 
α

i+
1,

j+
1 

α
i+

1,
n 

α
 i,

j 

α
 i,

j+
1 

α
 i,

n α
 i+

1,
1 

α
 i+

1,
j α

 i+
1,

j+
1 

α
 i+

1,
n 

α
m

,1
 

α
m

,j 
α

m
,j+

1 
α

m
,n

 

α
m

,1
 

α
 m

,j 

α
 m

,j+
1 

 α
m

,n
 

t 0
 

t 0
 

Figure 3.1: Timing diagrams of the multiple-channel retrieval scheduling
43



where, fi,j(bw1, ..., bwn, r) is the function of variables bw1, ..., bwn, and r.

In addition, we can obtain

m∑

i=1

n∑

j=1

ai,j = L.

So,

a1,1

m∑

i=1

n∑

j=1

fi,j = L (3.6)

Thus, a1,1 can be obtained by solving (3.6). Consequently, t0 and ai,j (for i = 1, ..., m, j =

1, ..., n) can be obtained by solving (3.1) and (3.5), respectively.

3.2.2 Scheduling strategy in the case of play-while-receive

In the case of play-while-receive, when bwj ≤ r (for j = 1, ..., n), the timing diagram of the

multiple-channel retrieval scheduling is shown in Figure 3.1(b). From this figure, we can

obtain

a1,1 =
t0rbw1

(r − bw1)
, (3.7)

and

a1,j+1 = a1,1

j∏

k=1

βk, j = 1, ..., n− 1, (3.8)

where,

βk =
rbwk+1

bwk(r − bwk+1)
.

Also, we can obtain

ai+1,1 =
∑n

k=2 ai,kbw1

r − bw1
, i = 1, ..., m− 1, (3.9)

and

ai+1,j+1 = ai+1,jβj − ai,j+1βjbwj

r
, i = 1, ...,m− 1, j = 1, ..., n− 1. (3.10)

44



 

t 
Retrieval 

Playback 

Channel 1 

Channel j 

Channel j+1 

Channel n 

Client (r) 

α1,1 

α1,1 

(bw1) 

(bwj) 

(bwj+1) 

(bwn) 

α1,j α1,j+1 α1,n 

α1,j 

α1,j+1 

α1,n 

Figure 3.2: Timing diagram of the multiple-channel retrieval scheduling in the case of

play-while-receive (when bw1 ≥ r)

Using a similar method used in the case of play-after-download, we can obtain t0 and ai,j

(for i = 1, ..., m, j = 1, ..., n).

Figure 3.2 shows the retrieval scheduling of one case when there is at least one channel

whose size is not less than r. We choose this channel as the first retrieval channel for mini-

mizing the access time. Thus, the access time is already zero even using single-installment

(i.e., m = 1). Moreover, the multiple-installment retrieval induces more operation over-

heads than the single-installment retrieval. Therefore, in this case, we only use the single-

installment retrieval. Thus, we can obtain

a1,j =
Lbwj∑n
k=1 bwk

, j = 1, ..., n, (3.11)

which ensures every channel completes the retrieval task at the same time instant.

45



3.2.3 Comparison between two scheduling strategies

Lemma 3.1 In both play-after-download and play-while-receive strategies, a1,1 is non-

increasing when m increases.

Proof. The proofs for play-after-download and play-while-receive strategies are similar, so

we only consider the play-after-download strategy.

Firstly, (3.5) shows that fi,j(bw1, ..., bwn, r) ≥ 0 for i = 1, ...,m and j = 1, ..., n. Secondly,

(3.4) shows ai+1,j+1 depends on ai+1,j and ai,j , and ai+1,j+1 is independent with m. Hence,

∑m
i=1

∑n
j=1 fi,j is non-decreasing when m increases. Therefore, according to (3.6), a1,1 is

non-increasing when m increases.

Lemma 3.1 means that {a1,1(m)} is a monotone sequence with respect to m. Every mono-

tone sequence has a limit [7]. However, the expression of a1,1(m) is difficult to be formu-

lated, hence the close form of the limit of {a1,1(m)} and the access time t0 are difficult to

be obtained.

If n channels comes from the same server, then we can treat this kind of multiple-channel

retrieval as a single-channel retrieval. In this case the access time t0 can be calculated as

follows (refer to Figure 3.3).

t0 =





L( 1∑n

k=1
bwk

− 1
r ) for r ≥ ∑n

k=1 bwk

0 otherwise
(3.12)

(3.12) can be treated as the lower bound of the access time in cases of both play-while-

receive and play-after-download strategies. Thus, we have the following two suppositions.

• Supposition 3.1 For both play-while-receive and play-after-download strategies, if

r ≥ ∑n
k=1 bwk, then, limm→∞ t0 = L∑n

k=1
bwk

− L
r .

46



 
 

t 
Retrieval 

Playback 

Channel 

Client (r) 

L (
�

bwi) 

L 

(a) r 
���

bwi  

t 
Retrieval 

Playback 

Channel 

Client (r) 

L 
(
�

bwi) 

L 

(b) r <
�

bwi  

t0=0 

t0 

Figure 3.3: Timing diagrams of the single-channel retrieval scheduling in the case of play-

while-receive

• Supposition 3.2 For both play-while-receive and play-after-download strategies, when

r <
∑n

k=1 bwk, then, limm→∞ t0 = 0.

We carried out a numerical experiment to compare the access time of play-after-download

and play-while-receive strategies. Simultaneously, we want to use this experiment to testify

the above two suppositions. In this experiment, the CM document size is 2GB, the playback

rate is 0.5MB/s, every channel has the same size of 0.2MB/s, the number of servers and

channels varied from 1 to 10. The experiment result shown in Figure 3.4 - 3.7 testifies

our analysis in Lemma 3.1, Supposition 3.1, and Supposition 3.2. All the figures show

that there are less access times by using the play-while-receive strategy than the play-

after-download strategy when an identical number of installments are adopted. When the

number of installments or channels is very large, the performance of play-after-download

is close to that of play-while-receive.

In practice, the retrieval duration of every portion, i.e., ai,j

bwj
, cannot be chosen to be smaller

than operation overheads, otherwise it is not efficient. We assume the minimum duration

of a portion is δt.

Theorem 3.1 There are less access times by using the play-while-receive strategy than the

play-after-download strategy when minimum duration of a1,1 is considered.

47



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Installments

A
cc

es
s 

T
im

e

Play-After-Receive: 1 channels
Play-While-Receive: 1 channels
Play-After-Receive: 4 channels
Play-While-Receive: 4 channels

Figure 3.4: Comparison between play-after-download and play-while-receive (1)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

350

400

450

Number of Installments

A
cc

es
s 

T
im

e

Play-After-Receive: 7 channels 
Play-While-Receive: 7 channels 
Play-After-Receive: 10 channels
Play-While-Receive: 10 channels

Figure 3.5: Comparison between play-after-download and play-while-receive (2)

48



1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Channels

A
cc

es
s 

T
im

e

Play-After-Receive: 1 installment
Play-While-Receive: 1 installment
Play-After-Receive: 4 installment
Play-While-Receive: 4 installment

Figure 3.6: Comparison between play-after-download and play-while-receive (3)

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Number of Channels

A
cc

es
s 

T
im

e

Play-After-Receive: 7 installment 
Play-While-Receive: 7 installment 
Play-After-Receive: 10 installment
Play-While-Receive: 10 installment

Figure 3.7: Comparison between play-after-download and play-while-receive (4)

49



Proof. Using the play-after-download strategy, the access time is calculated from (3.1),

i.e.,

t0 =
a1,1

bw1
.

When a1,1

bw1
= δt,

t0 = δt. (3.13)

Using the play-while-receive strategy, the access time is calculated from (3.7), i.e.,

t0 =





a1,1(r−bw1)
rbw1

for r ≥ bw1

0 otherwise.

When a1,1

bw1
= δt,

t0 =





δt(r−bw1)
r < δt, for r ≥ bw1

0 otherwise.
(3.14)

By comparing (3.13) and (3.14), we prove this theorem.

With the above numerical experiments and the theorem, we have shown: when the multiple-

channel retrieval is used, the play-while-receive strategy achieves less access times than the

play-after-download strategy. Therefore in the remainder of this chapter, we only consider

the play-while-receive strategy.

3.3 Asynchronous-Channel Retrieval Scheduling

In Section 3.2, the synchronous-channel case, in which all the channels have identical start-

ing times, has been studied. In this section, we shall further study the retrieval scheduling

when all the channels have not identical starting times. In other words, the channels are

asynchronous. In this case, we only consider the single installment.

50



 
 

 
 

 
 

 

 
 

 

(a)   r <= bwj,  r <= bwj+1 (b)   r >= bwj,  r >= bwj+1 

 
 

 
 

 
 

(c)   r >= bwj,  r <= bwj+1 (d)   r <= bwj,  r >= bwj+1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

ASTj 

ASTj+1 

ASTj 

ASTj+1 

ASTj 

ASTj+1 

ASTj 

ASTj+1 

t 
Retrieval 

Channel j 

Channel j+1 

(bwj) 

(bwj+1)

Channel j 

Channel j+1 

(bwj) 

(bwj+1) 

Playback 
Client (r) 

Client (r) 

α j 

α j 

α j 

α j 

α j 

α j 

α j 

α j 

α j+1 

α j+1 

α j+1 

α j+1 α j+1 

α j+1 

α j+1 

α j+1 

Figure 3.8: Timing diagrams of the asynchronous-channel retrieval scheduling (single in-

stallment)

We now derive recursive relationships among the playback rate of a CM document (r),

the retrieval bandwidth (bwj and bwj+1), and the starting times of channels (ASTj and

ASTj+1).

1. r ≤ bwj and r ≤ bwj+1 (Figure 3.8(a))

This is the case when the playback rate is less than the retrieval bandwidth.

ASTj+1 −ASTj =
aj

r
, j = 1, ..., n− 1 (3.15)

2. r ≥ bwj and r ≥ bwj+1 (Figure 3.8(b))

This is the case when the playback rate is greater than the retrieval bandwidth.

51



ASTj+1 −ASTj +
aj+1

bwj+1
=

aj

bwj
+

aj+1

r
, j = 1, ..., n− 1 (3.16)

3. r ≥ bwj and r ≤ bwj+1 (Figure 3.8(c))

This is the case when the jth channel has a smaller retrieval bandwidth than the playback

rate and the (j + 1)th channel has a greater retrieval bandwidth than the playback rate.

ASTj+1 −ASTj =
aj

bwj
, j = 1, ..., n− 1 (3.17)

4. r ≤ bwj and r ≥ bwj+1 (Figure 3.8(d))

This is the case when the jth channel has a greater retrieval bandwidth than the playback

rate and the (j + 1)th channel has a less retrieval bandwidth than the playback rate.

ASTj+1 −ASTj +
aj+1

bwj+1
=

(aj + aj+1)
r

, j = 1, ..., n− 1 (3.18)

We observe that the continuity relationships during presentation are inherently captured

in the above set of equations, involving bwj , r, and ASTj , for all j values, respectively.

In the asynchronous-channel retrieval scheduling, the access time t0 can be calculated as

follows (refer to Figure 3.9).

t0 = AST1 +





a1( 1
bw1

− 1
r ) for r ≥ bw1

0 otherwise
(3.19)

3.4 Channel Partition Strategies

In this section, we propose channel partition strategies, which are about how to allocate

bandwidths to form channels. Once the channels are partitioned, a CM document can

retrieved from these channels, i.e., channel 1, channel 2, ..., and channel n.

52



 
 

t 
Retrieval 

Playback 

Channel 1 

Client (r) 

 
 

(bw1) 

 
 

(a) r 
�

bw1  

t 
Retrieval 

Playback 

Channel 1 

Client (r) 

 
 (bw1) 

 
 

t0= AST1+α 1 (1/bw1 – 1/r) 

(b) r < bw1  
t0= AST1 

t0 

AST1 AST1 

t0 

α 1 

α 1 

α 1 

α 1 

α 1 
Figure 3.9: Access time in the asynchronous-channel retrieval scheduling (single install-

ment)

(a). Strategy for forming Channel 1

With channel 1, we transmit the first portion of a CM document and hence, channel 1

determines the access time of the CM document. According to Figure 3.9 and (3.19), a

small value of AST1 and a large size of channel 1 are beneficial for minimizing the access

time. For obtaining a large-size channel 1, we adopt an aggregate retrieval bandwidth from

a pool of servers. In other words, a group independent channels, which come from different

servers and have identical starting times, form channel 1 by using the scheduling strategy

shown in Figure 3.1 (b).

(b). Strategy for forming other channels

According to (3.19), a small value of a1 helps to reduce the access time. Also, from

equations (3.15)-(3.18), a small value of AST2 aids to decrease the value of a1. Therefore,

we should choose as small AST2 as possible for channel 2. Besides, our another objective

is to minimize the block ratio. To achieve this goal, we try to balance the total load among

the servers. The basic idea is to choose other channels (i.e., channel 2, ..., n) in servers

with the lightest load. The total number of channels in retrieving the CM document is not

strictly limited. However, two channels are at least needed. Channel 1 is used to realize

the goal of minimizing the access time, and channel 2 aids in balancing the server load.

53



3.5 Variable-Size Channel Retrieval Scheduling Strategies

Sections 3.2 and 3.3 present the constant-size channel retrieval scheduling, which is carried

out before the playback begins and hence called static scheduling. In this section, we

consider the variable-size channel retrieval scheduling, which is carried out during the

retrieval process and hence called dynamic scheduling. A variable-size channel is needed in

the following two cases.

• If a certain retrieval session is stopped by its users, or the latter part of the required

document can be retrieved from the cache server, then the previously allocated band-

width can be reclaimed. These extra bandwidths are not expected at the time when

we carry out the static scheduling.

• Because of the reasons from servers or networks, a channel is probably “freezed”.

Thus, the related stream may miss its deadline, i.e., the playback overtakes the re-

trieval. Thus, the continuous playback at the client cannot be satisfied.

In the section, we study the strategies of variable-size channel retrieval scheduling.

3.5.1 Retrieval strategy for ensuring the continuous playback

If every channel has a non-varying size, then no retrievals will miss their deadline, as is

ensured by the static scheduling . When the retrieval bandwidth of a stream probably varies

with time, we need the dynamic scheduling strategy to ensure that the retrieval of every

channel will not miss their deadlines. The idea is to let idle channels (extra bandwidths)

help channels that will probably miss their deadlines. In detail (refer to Figure 3.10), when

the channel i completes its retrieval task, it will help another channel to retrieve data.

Firstly, we find all the channels that will probably miss the deadline. Of these channels,

we further find the channel with the earliest deadline, e.g., channel j. Secondly, we assume

54



 
R 

Sj 

W 

t0=0 

Suppose that according to the retrieval bandwidth and the playback rate, the 
playback stream R will overtake the retrieval stream W at t1. For preventing the 
starvation of the playback stream, we let other channels to share the load with W, 
i.e., other idle channels retrieve the portion colored by grey.  

t1 

Figure 3.10: Retrieval strategy for ensuring a continuous playback

that the size of not retrieved data in channel j is sj . We also assume that t1 is the instant

when the playback stream will overtake the retrieval stream in channel j. We let channel i

help the channel j to retrieve the final portion with the data amount of sj − bwj(t1 − t0),

where t0 is the current instant and bwj is the current retrieval bandwidth of the channel j.

3.5.2 Retrieval strategy for improving the block ratio

If there are rich available bandwidths, then we usually form a large-size (i.e., more than

the playback rate) channel to retrieve data, so that the bandwidth is fully utilized and the

retrieval duration is shortened. However the after effect is that late arriving requests cannot

be supported with sufficient bandwidths. Thus, the block ratio may become worse. An

intuitive solution is when the new requests arrive, the size of previous allocated channels is

reduced. If so, a new problem may appear: the change of a channel size means the change

of the previous schedule, and it will probably affect the continuous playback of documents

that are being retrieved. So, we propose a novel strategy. With this strategy, the bandwidth

resource can be dynamically utilized, also, the continuous playback in previous scheduling

is still be ensured. Our strategy is described as follows.

• The maximum size of a channel is equal to the playback rate.

55



• Extra available bandwidths can be used to help any partitioned channel to retrieve

data, however extra available bandwidths will not be considered in the retrieval

scheduling.

Thus, we can flexibly allocate the extra available bandwidths to partitioned channels. Extra

available bandwidths will speed the retrieval in partitioned channels. This strategy can be

used by servers to improve the block ratio.

3.5.3 Retrieval strategy for shortening the retrieval duration

Assume there are n channels used for retrieving a requested document. When channel i

(with a size of bwi) has completed its retrieval task. Firstly, we find out the channel with

the longest retrieval task, e.g., channel j (with a size of bwj). We assume that the size of

not retrieved data in channel j is sj . Secondly, we let channel j share the retrieval task with

channel i, i.e., channel i retrieves the amount of sjbwi

bwi+bwj
, and channel j retrieves the amount

of sjbwj

bwi+bwj
. Thus, channel i and channel j are expected to stop retrieving at the same

instant. This strategy is similar to the strategy used to ensure the continuous playback.

As the continuous playback is more important than reducing the retrieval duration, we will

not carry out this strategy unless the retrieval of every channel will not miss the deadline.

3.6 Multiple-Channel Retrieval Algorithm

The problem we are attacking can be precisely described as follows at this juncture. There

are a group of CM documents requested by respective users. The problem is to determine

the exact (optimal) sizes of the portions to be retrieved from the respective servers in such

a fashion that the access time, the block ratio, and the retrieval duration are minimized

while ensuring the continuous playback of CM documents. To achieve this goal, we propose

56



the following algorithm.

Multiple-Channel Retrieval (MCR) Algorithm

Step A. Sort the CM documents in the order of importance.

Step B. Form n channels that can be used to retrieve every CM document. Every channel

has a ASTj (i.e., starting time of the retrieval).

Step C. Derive the schedule constraints, which include,

I . The temporal constraints imposed by the availability of channels (namely the values

of ASTj), i.e., (3.15)-(3.18);

II . The constraint of the CM document size.
∑n

j=1 aj = L

Step D. Calculate aj , j = 1, ..., n using the derived equations in Step C. On the whole, we

have n − 1 constraints of type I and one constraint of type II. Thus, we have n equations

involving n unknowns (aj values). Hence, we can obtain optimal sizes of the retrieved

portions of the CM document.

Step E. Once we obtain aj values, we can calculate the access time of the CM documents

by using (3.19). If the access time is less than allowed maximum access time, the CM

document will be retrieved according to the schedule, otherwise the request is blocked.

Step F. In the process of retrieving CM documents, we adopts the variable-size channel

strategies shown in Section 3.5.

Now we shall demonstrate the scheduling process through a numerical example presented

below. Example 3.1 clarifies all the calculations in detail and is presented for the ease of

understanding.

Example 3.1. Assume that there a request for a video and we have 3 channels. Their

57



Table 3.1: Known parameters (before calculation) in Example 3.1

Parameter Value (MB/s) Parameter Value (min.)

bw1 0.40 AST1 0

bw2 0.35 AST2 10

bw3 0.45 AST3 40

r 0.42 H 110

parameters are listed in Table 3.1. Then, we can obtain 3 constraint equations for the

video. They are the follows.

(1). Since r > bw1, r > bw2, we choose (3.16). Thus, we have,

AST2 −AST1 +
a2

bw2
=

a1

bw1
+

a2

r
(3.20)

(2). Since r > bw2, r < bw3, we choose (3.17). Thus, we have,

AST3 −AST2 =
a2

bw2
(3.21)

(3). The size constraint of this video is given by,

a1 + a2 + a3 = H × r (3.22)

Using the above set of equations, we obtain the optimal sizes (see Table 3.2) of the portions

of the video to be retrieved. Using (3.19), we can calculate the access time: t0 = 0.6min..

Thus, the entire timing diagram is as shown in Figure 3.11.

If we use a single channel 1 to retrieve the video as channel 1 has a minimum AST . The

result are: t0 = 5.5min. The comparison of results shows that the multiple-channel retrieval

strategy, in general, is better than the single-channel retrieval. The subsequent simulation

experiments will further demonstrate this fact.

58



Table 3.2: Optimal sizes of the portions in Example 3.1

Parameter a1 a2 a3

Value (MB) 309 684 1779

 
 

 

Movie 1 
  

AST1=0 

AST2 

Channel 1 

Channel 2 

Channel 3 
 

AST3 

 

t0 

α 1 

α 2 

α 3 

α 2 α 3 α 1 

α 1 Figure 3.11: Timing diagram for Example 3.1

59



3.7 Performance Evaluation

In this section, we compare the performance of the single-server retrieval and the multiple-

server retrieval.

3.7.1 Simulation test-bed

Clients retrieve CM documents from Ns servers. The performance metrics in our simulation

are the average access time and the block ratio under the following system dependent

parameters - server bandwidth, arrival rate of request, percentage of large documents, and

allowed maximum access time. The system parameters in this simulation are summarized in

Table 3.3. At the beginning of the simulation process, the servers have a light load. When

more requests come, the servers have a heavy load. What we want to obtain is actually

the performance in a variable-load process. As far as we know, in a real-life situation,

servers also experience either a light load or a heavy load at different times. Therefore,

our simulation acts in accord with the real scenario. Besides, if servers are always under

a heavy load, the multiple-server retrieval cannot show its benefit, since every server is

“busy”.

We set bwmax = 2MB/s according to our experiences. The transmit bandwidth of servers

and the receive bandwidth of client can be larger than 2MB/s (refer to the capacities of

computer components introduced in Chapter 2). However, the transmission of data from

servers to clients is via networks. Through longer network paths, more bottlenecks (in

backbone networks, WANs, or LANs) may be met. Hence it is known that the transmission

throughput often drops with greater distances.

60



Table 3.3: System parameters in comparing the single-server retrieval and the multiple-

server retrieval

System Parameters Symbol Parameter Values

Number of Servers Ns 10

Number of Different Documents M 100

Server Bandwidth Size BW 10− 50MB/s

Skew Factor of Access Prob. Distribution θ 0.06

Number of Requests N 500

Arrival Rate of Requests λ 0.5− 5.0s−1

Playback Rate r Uniform distribution

in 0.25− 0.75MB/s

Percentage of Large Documents P 0− 100%

Allowed Maximum Access Time ATmax 0.2− 2min

Allowed Maximum Retrieval Bandwidth for Re-

trieving a Document in a Server

bwmax 2MB/s

3.7.2 Simulation result

In our simulation, three retrieval policies are compared, i.e.,

I. Single-server, single-channel, and constant-size channel

II. Single-server, single-channel, and variable-size channel

III. Multiple-server, multiple-channel, and variable-size channel

Figure 3.12 and Figure 3.13 show the access time and the block ratio of Policies I, II, and

III, respectively, when the server bandwidth varies. With the increase in the server band-

61



width, all of three policies have a lower block ratio, as larger bandwidths can accommodate

more streams.

Figure 3.14 and Figure 3.15 show the access time and the block ratio of Policies I, II,

and III, respectively, when the fraction of requests for larger documents varies. With the

increase in the fraction of requests for larger documents, all of three policies have worse

block ratios, as to retrieve larger documents need more bandwidth resources.

Figure 3.16 and Figure 3.17 show the access time and the block ratio of Policies I, II, and

III, respectively, when the arrival rate of requests varies. With the increase in the arrival

rate, all of three policies have worse block ratios, as a larger arrive ratio means more re-

quests comes in the same time while the bandwidth resources are held constant. Therefore,

more requests are refused.

Figure 3.18 and Figure 3.19 show the access time and the block ratio of Policies I, II, and

III, respectively, when the allowed maximum access time varies. With the increase in the

allowed maximum access time, all of three policies keep the unchanged block ratio. In other

words, to enhance moderately the allowed maximum access time will not improve the block

ratio. Besides, it is obvious that the access time increase when allowed maximum access

time increases.

Figures 3.12, 3.14, and 3.16 show that the changes of the server bandwidth, the fraction

of requests for the larger documents, and the arrival rate of requests have no obvious cor-

relations with the access time. The reason is we only consider the average access time of

accepted requests. In addition, Figure 3.12, 3.14, 3.16, and 3.18 show that average access

time of accepted requests are similar for Policies I, II, and III.

In terms of the block ratio, Policy III is better than Policies I and II, and Policy II is better

62



10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

es
s 

T
im

e(
s)

Disk I/O Bandwidth Capacity(MB/s)

Policy I  
Policy II 
Policy III

Figure 3.12: Access time of the single-server retrieval and the multiple-server retrieval

(P = 100%, ATmax = 1min., and λ = 2s−1)

than Policy I. It means that the variable-size channel retrieval strategy outperforms the

constant-size channel retrieval strategy, and the multiple-server retrieval strategy shows

better performances than the single-server retrieval. Through efficient resource utilization

and load balancing, the multiple-server retrieval helps obtain smaller access time, conse-

quently, more requests are accepted, i.e., the block ratio is improved.

3.8 Concluding Remarks

Although, the multiple-channel retrieval has been adopted in downloading the document

from networks. However their retrieval is simple: every channel retrieves the data portion

with an equal size. Khan et al. [72] also consider the multiple-channel retrieval of CM

data. However our research is different from theirs in two issues. One is we schedule the

retrieval of an entire CM document while Khan et al. scheduled the retrieval of uniform

63



10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

Disk I/O Bandwidth Capacity(MB/s)

B
lo

ck
 R

at
io

Policy I  
Policy II 
Policy III

Figure 3.13: Block ratio of the single-server retrieval and the multiple-server retrieval

(P = 100%, ATmax = 1min., and λ = 2s−1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

es
s 

T
im

e(
s)

Percentage of Large Objects

Policy I  
Policy II 
Policy III

Figure 3.14: Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s,ATmax = 1min., and λ = 2s−1)

64



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
 R

at
io

Percentage of Large Objects

Policy I  
Policy II 
Policy III

Figure 3.15: Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s,ATmax = 1min, and λ = 2s−1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

es
s 

T
im

e(
s)

Arrival Rate

Policy I  
Policy II 
Policy III

Figure 3.16: Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and ATmax = 1min)

65



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
 R

at
io

Arrival Rate

Policy I  
Policy II 
Policy III

Figure 3.17: Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and ATmax = 1min.)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

es
s 

T
im

e(
s)

Maximum Allowed Access Time(s)

Policy I  
Policy II 
Policy III

Figure 3.18: Access time of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and λ = 2s−1)

66



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

B
lo

ck
 R

at
io

Maximum Allowed Access Time(s)

Policy I  
Policy II 
Policy III

Figure 3.19: Block ratio of the single-server retrieval and the multiple-server retrieval

(BW = 20MB/s, P = 100%, and λ = 2s−1)

units referred as an FMDs (frames of multimedia) [72]. This means that our scheduling is

high-level while Khan’s scheduling is low-level (disk level). The other one is Khan et al.

did not concern the channel partition strategy and the variable-size channel. In [72], the

channels have been given before the scheduling.

We realize the multiple-server retrieval using the multiple-channel retrieval. In this chapter,

we have provided a complete solution for the multiple-server/multiple-channel retrieval

problem. A three-step approach has been introduced to deal with a request for the retrieval

and the playback an CM document. Firstly, partition the channel from the available

bandwidth. Secondly, schedule the retrieval using allocated channels and determine the

exact size of the individual disjoint portions that will be retrieved from each of the channels.

Finally, apply variable-size channel retrieval strategies to complete the retrieval task. These

contents have included in the Multiple-Channel Retrieval (MCR) algorithm. In designing

67



the retrieval strategies, we synthetically satisfy/improve all of main performance metrics,

i.e., continuous playback, block ratio, access time, and retrieval duration, according to their

priorities.

68



Chapter 4

Variable Bit Rate Caching

Strategies

In this chapter, firstly, we present three basic strategies. They are,

(1). Caching strategy for the variable retrieval bandwidth

(2). Caching strategy under the non-switch constraint

(3). Allocation strategy of the cache bandwidth

Secondly, we present our caching algorithm that contains the above three strategies.

4.1 Caching Strategy for the Variable Retrieval Bandwidth

In Section 1.2 (about the motivation), we explained why the retrieval bandwidth is often a

variable. In this section, we shall present strategies to handle the variable retrieval band-

width.

In the case of constant retrieval bandwidths, once we allocate the cache bandwidth for a

69



stream, or allocate the cache space for an interval, we do not need to check the availabil-

ity of the bandwidth or the space until two streams in the interval finishes their retrieval.

When both of streams in the interval finish their retrieval, the allocated bandwidth or space

is reclaimed. However, in the case of variable retrieval bandwidth, the cache bandwidth

requirement of a stream and the cache space requirement of an interval are time-varying.

Therefore we need to check the availability of the bandwidth and the space in the cache

every service cycle D. D is tunable, e.g., D = 1s. On the one hand, a shorter service cycle

results in more operational overheads. On the other hand, a larger service cycle probably

cannot keep up with the change of the retrieval bandwidth.

For every service cycle, the availability of the bandwidth and the space in the cache is

checked. If the total requirement for the bandwidth (
∑

Rb) is greater than the cache band-

width capacity BW , some bandwidths will be reclaimed from some streams using a Cache

Bandwidth Reclaiming (CBR) strategy, shown in Figure 4.1.

The byte hit ratio is directly affected by the amount of data read from the cache. In

comparison, after data are written into the cache, these cached data are probably swapped

out of the cache before data are read because of insufficient cache spaces. Therefore, a

stream that is reading data from the cache is more important than a writing stream. As

a result, we do not reclaim the bandwidth from a stream that is reading from the cache

unless there is no writing stream.

Similarly, if the total requirement for the space (
∑

Rs) is greater than the cache space

capacity SP , some spaces will be reclaimed from some intervals (refer to the Cache Space

Reclaiming (CSR) strategy in Figure 4.2).

In the case of variable retrieval bandwidth, a following stream probably overtakes a pre-

70



The stream that is writing data into the cache must be the former stream of an

interval. Insert all the writing streams into a queue named Ψw in a descending

order of the interval size g of their respective intervals.

The stream that is reading data from the cache must be the latter stream of an

interval. Insert all the streams that are reading data from the cache into a queue

named Ψr in a descending order of the interval size g of their respective intervals.

Repeatedly carry out steps 1 and step 2 until (
∑

Rb ≤ BW ).

Step 1. When Ψw is not empty, pop a stream that is at the head location of Ψw and

reclaim the allocated cache bandwidth from this writing stream. Simultaneously, the

relative interval is swapped out of the cache, i.e., the allocated space for the relative

interval is reclaimed.

Step 2. When Ψw is empty and Ψr is not empty, pop a stream that is at the head

location of Ψr and reclaim the allocated cache bandwidth from this reading stream.

Figure 4.1: CBR (cache bandwidth reclaiming) strategy

Insert all the cached intervals into a queue named Ψi in a descending order of the

interval size g.

Repeatedly carry out the following step until (
∑

Rs ≤ SP ).

When Ψi is not empty, pop an interval that is at the head location of Ψi and

reclaim the allocated cache space from this interval.

Figure 4.2: CSR (cache space reclaiming) strategy

71



When t = t1, let us suppose a following stream S2 exceeds a preceding stream S1.

In other words, when t > t1, the size of the retrieved data by S2 is greater than S1.

At t = t1, the following steps 1, 2, and 3 are carried out.

Step 1. If, when t < t1, S1 and S2 form an interval H0, then when t ≥ t1, S1

becomes the latter stream of H0 and S2 becomes the former stream of H0.

Step 2. If, when t < t1, S1 is a latter stream of interval H1, then when t ≥ t1, S2

becomes the latter stream of H1.

Step 3. If, when t < t1, S2 is a former stream of interval H2, then when t ≥ t1, S1

becomes the former stream of H2.

Figure 4.3: ERS (exchange strategy for repositioning the streams) strategy

ceding stream which reads/writes the same document. For example, a preceding stream

may be paused by a VCR operation. In this case, to handle the repositioning of streams

within an interval, we propose a strategy referred to as Exchange strategy for Repositioning

the Streams (ERS) as shown in Figure 4.3. Figure 4.4 also explains this strategy.

In short, the CBR (cache bandwidth reclaiming) strategy, the CSR (cache space reclaim-

ing) strategy, and the ERS (exchange strategy for repositioning the streams) strategy are

specially designed for the case of the variable retrieval bandwidth. In other words, they are

not needed in the case of constant retrieval bandwidth. With these strategies, the resource

allocation in the case of variable retrieval bandwidth can be handled successfully.

4.2 Caching Strategy under the Non-Switch Constraint

In Section 1.2 (about the motivation), we explained the concept of switching. In detail, a

switching operation is due to two reasons.

• Shortage of cached data. A stream that is reading data from the cache cannot find

72



In this diagram, the long rectangle represents a CM document. L is the size of
this document.
When t<t1, S3 and S2 form interval H2, S2 and S1 form interval H0, S1 and S0 form
H1. When t >= t1, S3 and S1 form interval H2, S2 and S0 form H1. S1 becomes the
latter stream of interval H0 and S2 becomes the former stream of interval H0.

S2

0 L

S1

(a) t < t1

S3 S0

Interval H2

Interval H0

Interval H1

S1

0 L

S2

(b) t > t1

S3 S0

Interval H2

Interval H0

Interval H1

Figure 4.4: How a stream overtakes another stream

available cached data to read in the cache.

• Shortage of cache bandwidths. The allocated bandwidth for a stream that is reading

data from the cache is reclaimed.

Because of the shortage of cached data or cache bandwidths, the stream has to switch back

to the origin and begin to read data from the origin.

4.2.1 Influence of the switching operation on the performance

The switching operation affects the performance in two ways. One is the bandwidth reser-

vation. The other is the overhead of switching operations.

Firstly, since streams that are reading data from the cache probably switch back to the

origin, a solution of satisfying the playback continuity of these streams is to reserve enough

retrieval bandwidths in the origin. However the estimation is very difficult because of the

following reasons.

• In the case of disk caching, the cache and the access pattern in the cache are unknown

by the origin. When the number of switching operations is very large, the origin

73



probably cannot accept all the switching streams even the origin reserves all of its

bandwidth.

• In the case of memory caching, the disk bandwidth is much less than the memory

bandwidth. The number of streams reading data from the memory are probably

large, consequently, the number of switching streams is also unbearably high for the

disk with a smaller bandwidth.

Secondly, it may be noted that the switching operation causes additional operational over-

heads. As a block-level caching algorithm, BASIC caches unrelated sets of blocks, and

hence, BASIC cannot guarantee a continuous playback. Therefore, BASIC is not applicable

for the CM caching. In fact, the actual reason why BASIC cannot guarantee a continuous

playback is too many switching operations result in additional operational overheads that

are prohibitively high.

4.2.2 Strategies for reducing the switching operation

Since a switching operation worsens the performance, some strategies should be proposed

to reduce the probability of switching operations. In this section, a non-switch constraint

is presented. If the non-switch constraint is satisfied in the caching algorithm, the number

of switching operations will be reduced. In the case of constant retrieval bandwidth, the

switching operation can be eliminated completely. In the case of variable retrieval band-

width, the probability of a switching operation will be reduced to a maximum extent.

The following two rules constitute the non-switch constraint.

• Allocated retrieval bandwidths for a stream that is reading from the cache will not be

released until the current retrieval finishes. Thus, once a stream begins to read from

the cache, the stream will never switch back to the origin because of the shortage of

bandwidths.

74



• When a stream is reading the data from the cache, there is at least one preceding

stream, which is writing the data into the cache, or all the data of the requested

document have been cached. Thus, a stream can always read available data from the

cache, and the stream will not switch back to the origin because of the shortage of

cached data.

The above two rules inherently impose some limits in retrieving the data and the con-

sumption of bandwidths associated with the cache. Through satisfying the non-switch

constraint, the switching operation is eliminated or reduced, and therefore, the bandwidth

of servers and networks is saved to a significant extent. Consequently, the acceptance ratio

of requests in the entire system will be improved.

If the non-switch constraint is imposed in the CBR (cache bandwidth reclaiming) strategy

(Figure 4.1) and the CSR (cache space reclaiming) strategy (Figure 4.2), then, the following

should be observed in reclaiming strategies.

• Consider two cases. One is the space of the interval, in which the latter stream is

not reading data from the cache, is reclaimed. The other is the space of the interval,

in which the latter stream is reading data from the cache, is reclaimed. The second

case must cause a switching operation, hence we should handle the first case before

the second case.

• Consider two consecutive cached intervals, H1 and H2. S1 is the latter stream of H1

and the former stream of H2. If the space of H1 is reclaimed, then we try to make

S1 be a writing stream if the available bandwidth is sufficient. The caused benefit is

that the stream S2, which is the latter stream of H2, will not carry out a switching

operation in the future. Figure 4.5 provides a detailed explanation.

• The bandwidth of a writing stream is reclaimed before the bandwidth of a reading

75



0 L

Before the space of
interval H1 is released

0 L

In this diagram, the long rectangle represents a CM document. L is the size
of this document. In the document, the hashed part is cached data and the
blank part is uncached data. S0 and S1 form interval H1, S1 and S2 form
interval H2. When interval H1 is released space, S1 is changed to a writing
stream, so that S2 can avoid the switch operation in the future.

S1 S0S2

Interval H2 Interval H1

After the space of
interval H1 is released

S1 S0S2

Figure 4.5: Change from a reading stream to a writing stream

stream that is reading data from the cache, so that a switching operation is avoided

to the maximum extent for the stream that is reading data from the cache.

All the above strategies aim to reduce the possibility of switching operations.

4.3 Allocation Strategy of the Cache Bandwidth

Before presenting a better allocation strategy of the bandwidth, the bandwidth require-

ment in the case of disk caching is analyzed. Figure 4.6 and Figure 4.7 show the bandwidth

requirement for an interval and two consecutive intervals, respectively. For a simply de-

scription, the analyzed examples adopt constant retrieval bandwidths.

In RBC, when an interval is formed, the bandwidth is allocated for the former stream and

the latter stream. However, Figure 4.6 and Figure 4.7 show the allocated bandwidth for a

stream is not actually utilized until this stream start to read cached data. If we allocate the

cache bandwidth when it is actually needed by the stream, then the bandwidth resource

can be considerably saved. Our caching algorithm adopts this kind of so-called just-in-time

76



l2=0

S2

l1

S1

L l2=0

S2

l1

S1

L

L/r L/r

bw:bandwidth requirement

2r

l1 /r
t

bw:bandwidth requirement

(L - l1)/r
t

(L - l1)/r l1/r0 0

(c) l1 - l0 ����� (d) l1 - l0 > L/2

r

2r

r

δbw

: Actual bandwidth utilization

: Bandwidth allocation in RBC

(a) l1 - l0 ����� (t=0) (b) l1 - l0 > L/2 (t=0)

The diagrams (a) and (b) show two different cases. In (a) and (b), the long
rectangle represents a CM document. L is the size of this document. S is the
stream. S1 and S2 form an interval.

The diagrams (c) and (d) compare the bandwidth allocation in RBC and actual
bandwidth utilization, The diagram (c) shows the case of (a), and the diagram (d)
shows the case of (b).  For a simple description, (c) and (d) show the case of
constant retrieval bandwidth. Also the retrieval bandwidth is r, which is playback
rate of the document.

Figure 4.6: Bandwidth requirement for an interval

77



 

l3=0 

S3 

l1 

S1 

L l2 

S2 

d 

l3=0 

S3 

l1 

S1 

L l2 

S2 

The diagrams (c) and (d) compare the bandwidth allocation in RBC and actual 
bandwidth utilization. The diagram (c) shows the case of (a), and the diagram 
(d) shows the case of (b).  For simplicity, (c) and (d) show the case of constant 
retrieval bandwidth. Also the retrieval bandwidth is r, which is playback rate of 
the document.  

(c) l1 - d � L - l1 

: Actual bandwidth utilization 

: Bandwidth allocation in RBC 

d 

bw:bandwidth requirement 

(l1 – d)/r L/r
t (L - l1)/r 

bw:bandwidth requirement 

(L - l1)/r L/r 
t 0 

3r 

0 

r 
2r 

(L - l2)/r 
(l1 - l2-d)/r 

2r 
r 

(L - l2)/r 
(l1 - l2-d)/r 

3r 
δbw 

(a) l1 - d � L - l1 (t=0) (b) l1 - l2 -d � L - l1 < l1 – d (t=0)
 

The diagrams (a) and (b) show two cases. Because of limited spaces, we 
ignore the third case: L - l1 � l1 - l2 -d. S is the stream. S1 and S2, S2 and S3 
form two consecutive intervals. 

(l1 – d)/r 

(d) l1 - l2 -d � L - l1 < l1 – d  
 

Figure 4.7: Bandwidth requirement for two consecutive intervals

method instead of the reservation method employed in RBC. The saving of bandwidths in

our method, when compared to the bandwidth reservation method by RBC, is defined as,

G =
∫ L/r

0
δbwdt (4.1)

where, δbw is the difference between the bandwidth usage in RBC and actual bandwidth

requirement. Our calculation shows that the saving of bandwidth in both of Figure 4.6 (c)

and (d) is l1. The saving of bandwidth in both of Figure 4.7 (c) and (d) is (2l1 − l2 − 2d).

In our strategy, the bandwidth of the disk cache is allocated for a stream in the following

two cases. One case is when a stream begins to write the data into the cache, and the

78



Assume that the stream Si needs the bandwidth to read data from cache. Insert

all the writing streams whose following stream is not reading data from the cache

(so that the non-switch constraint can be satisfied) into a queue named Ψw in a

descending order of the interval size g of their respective intervals.

Repeatedly carry out the following step until (Rb ≤ Ab) or (Ψw is empty).

When Ψw is not empty, pop a stream that is at the head location of Ψw and

release the allocated cache bandwidth from the writing stream. Simultaneously,

the respective interval is swapped out of the cache, i.e., the allocated space for the

relative interval is released, otherwise the switching operation will happen in the

future (refer to an example in Figure 4.9).

However, if there are not enough bandwidths for Si, then Si continues to read data

from the origin.

Figure 4.8: BA (bandwidth allocation) strategy in the disk caching

other case is when a stream begins to read the data from the cache. For both of these two

cases, if there are available bandwidths, then the stream is allocated with the bandwidth.

Furthermore, in the latter case, if the available bandwidth Ab is less than the bandwidth

requirement of a stream Rb, then we capture the bandwidth from the writing streams

by using the Bandwidth Allocation (BA) strategy shown in Figure 4.8. With the BA

(bandwidth allocation) strategy in Figure 4.8, we try to reclaim the bandwidth from some

special streams that are writing data into the cache, since reading data from the cache is

more important than writing data into the cache.

4.4 Variable Bit Rate Caching Algorithm

Using the three strategies introduced in Sections 4.1 - 4.3, we design a new caching algorithm

- Variable Bit Rate Caching (VBRC) algorithm, which can be used in the disk caching or

the memory caching. Without any loss of the generality, we describe VBRC in the context

79



R2

L

W1

In this diagram, R represents a reading stream, and W represents a writing
stream. If at t1, we release bandwidth from W1, then W1 becomes R1.
Simultaneously, the cached data by W1 must be deleted, otherwise R2 will
has the switching operation at t2.

(a) t = t1   

0

R2

L0

(b) t = t2  

Interval H1

R1

Figure 4.9: An example illustrating the BA (bandwidth allocation) strategy

of the disk caching. When we ignore the bandwidth constraint, VBRC is directly applicable

for the memory caching.

4.4.1 Outline of the VBRC algorithm

We introduce the entire process of the VBRC algorithm in Figures 4.10 and 4.11.

4.4.2 Remarks

In the original GIC proposed in [39], the non-switch constraint was not considered. If the

non-switch constraint is imposed on the original GIC, then the resultant caching algorithm

is referred as GIC+. Clearly, the memory caching version of VBRC is identical with GIC+

when both of them are adopted in the case of constant retrieval bandwidth.

In the proposed algorithm VBRC, an interval size g is adopted to measure the importance

of intervals for the allocation of the bandwidth and the space. In fact, if the interval length

(h) is adopted instead of the interval size, then the performance of VBRC will not be

considerably affected.

In comparison with RBC, VBRC have two significant advantages except the consideration

80



This algorithm includes three phases, which are carried out once in every service

cycle D. D is chosen in such a fashion that it is at least much longer than the time

overhead of carrying out three phases.

Phase 1. For every unfinished stream, we choose one of the following three cases

appropriately.

Case 1. For a stream that is reading from the origin, if the block to be read is

available in the cache, then the stream is switched from the origin to the cache.

Meanwhile, the available bandwidth Ab decreases by an amount Rb, which is the

retrieval bandwidth of the stream.

Case 2. For a stream that is reading from the cache, if the stream is not the former

stream of an interval, the read block by the stream is swapped out of the cache.

Case 3. For a writing stream, the written data are cached.

If the stream will exceed the preceding stream during D, then the ERS strategy for

handling the exceeding stream is carried out as described in Figure 4.3.

Phase 2. Check the available bandwidth Ab and the available space As

1. If Ab < 0, then the CBR (cache bandwidth reclaiming) strategy (refer to Figure

4.1) is carried out. 2. If As < 0, then the CSR (cache space reclaiming) strategy

(refer to Figure 4.2) is carried out.

Phase 3. For every arriving request m for a document i, a stream Sm is formed.

Assume that the retrieval bandwidth of Sm is Rb. We choose one of the following

three cases appropriately.

Case 1. If the first block to be read has been cached, a new interval is formed (refer

to Figure 4.12 for an example).

• If the available bandwidth Ab is not enough (e.g., Rb > Ab), the BA (band-

width allocation) strategy (see Figure 4.8) is carried out.

• If the available bandwidth Ab is enough, then the stream begins to read data

from the cache.

Figure 4.10: VBRC algorithm

81



Case 2. If the first block has not been cached and there are not any preceding

streams for the same document i, then the stream starts to read data from the

origin.

• A new interval Hn is formed by stream Sm and another expected following

stream. Simultaneously, Sm becomes a writing stream.

• Check the space and bandwidth requirements (Rs and Rb) of Hn. If As is not

enough (i.e., Rs > As), then the Space Allocation (SA) strategy (see Figure

4.13) is carried out.

• If available bandwidths and spaces are not enough, then Hn is deleted and Sm

will not write data into the cache.

Case 3. If the first block has not been cached and there is a preceding stream for

the same document i, e.g., stream Sk, then the stream Sm starts to read data from

the origin.

• A new interval Hn is formed by stream Sm and Sk. Simultaneously, if Sk is

reading from the origin, then Sk becomes a writing stream.

• Check the space and bandwidth requirements of Hn. If As is not enough (i.e.,

Rs > As), then the SA (space allocation) strategy (see Figure 4.13) is carried

out.

• If available bandwidths and spaces are not enough, then Hn is deleted and Sk

will not write data into the cache.

Figure 4.11: VBRC algorithm (continue)

82



 

In this diagram, the long rectangle represents a CM document. L is the size of this 
document. The hashed part is cached data and the blank part is uncached data. 
Sk and Sm are streams. For both of cases (a) and (b), before Sm comes, there 
must exists an interval H1. When Sm comes, Sm becomes the latter stream of H1. 
Besides, a new interval, in which Sm is the former stream, is generated by Sm.  

Sm 

0 L 

Sk Sm 

0 L 

(a) (b) 

Figure 4.12: An example illustrating the form of a new interval

Assume that an interval Hn needs the space with the size of Rs. Insert all the

cached intervals, in which the interval size is greater than the size of Hn and there

are no streams which are reading data from the cache, into a queue named Ψi in a

descending order of the interval size g.

Repeatedly carry out the following step until (Rs ≤ As) or (Ψi is empty).

When Ψi is not empty, pop an interval that is at the head location of Ψi and

release the allocated cache space from this interval. However, if there are not enough

spaces for Hn, then Hn will be deleted.

Figure 4.13: SA (space allocation) strategy in the disk caching

83



of the non-switch constraint and the variable retrieval bandwidth.

• In VBRC, the allocation of the bandwidth adopts the just-in-time method instead of

the reservation method in RBC.

• In VBRC, the allocation of the space is carried out among intervals instead of intervals

and runs. A run [157] is formed by some consecutive intervals. By and large, an

interval is smaller in sizes than a run, hence the allocation of the space among intervals

is expected to be more efficient than the allocation of the space among runs.

Besides, both GIC and RBC do not analyze the bad effect of the switching operation and

not try to reduce the number of the switching operation, also these two algorithms cannot

directly used in the case of variable retrieval bandwidth.

4.5 Performance Evaluation

In this section, we conduct rigorous simulation experiments to testify all our strategies

presented in Section 4.4. In the simulation, we consider an architecture: “the origins - the

cache - the clients”. In detail, we shall present the following studies.

• Effect of the non-switch constraint on the performance

• Comparing the performance of RBC and VBRC

• Performance of VBRC

The performance metric in our study is the byte hit ratio under several influencing factors

such as, disk cache size, disk bandwidth, arrival rate, and percentage of requests for large

documents, respectively.

84



4.5.1 Simulation test-bed

Table 4.1 shows the system parameters that are used in our simulation experiments. These

parameters and their values used in our experiments below are typical to real-life situations,

and the similar values are considered in the past literatures [157, 39]. In the simulation

Table 4.1: System parameters in the CM caching

System Parameters Symbol Parameter Values

Number of Different documents M 100

Disk Cache Storage Size B 1G− 80GB

Disk Cache Bandwidth Size BW 10− 90MB/s

Memory Cache Storage Size B 100− 1000MB

Skew Factor of Access Prob. Distribution θ 0.06

Number of Requests N 1500

Arrival Rate of Requests λ 0.1− 1.0s−1

Service Cycle D 1s

Playback Rate r Uniform distribution

in 0.25− 0.75MB/s

Variable Scope of the Retrieval Bandwidth V 0− 20%

Percentage of Large Documents P 0− 100%

of caching strategies, the performance is usually measured in the steady stage [39, 157].

Similarly, we evaluate the performance of 1500 requests excluding the “warming up”. In

our simulation, the parameter V - the variable scope of the retrieval bandwidth is used

to simulate the variation of the retrieval bandwidth. In the case of constant retrieval

bandwidth, the retrieval bandwidth is equal to the playback rate (i.e., V = 0). In the

case of variable retrieval bandwidth, in every service cycle, the retrieval bandwidth of

85



every existing stream is randomly chosen following a uniform distribution in the range

[(1− V )× r, (1 + V )× r].

4.5.2 Effect on the performance due to the non-switch constraint

In this section, the non-switch constraint is imposed on GIC, which is the simplest caching

algorithm, so that the influence on the performance due to the non-switch constraint can

be observed. GIC is an algorithm introduced in [38] and GIC+ employs the non-switch

constraint presented in Section 4.2. Thus, the latter is a variant of conventional GIC

presented in [38]. Figure 4.14 shows the performance of GIC+ and GIC, when the

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Memory Cache Size (MB)

B
yt

e 
H

it 
R

at
io

GIC+
GIC 

Figure 4.14: Performance comparison between GIC and GIC+ (λ = 0.25s−1 and P = 80%)

memory cache space varies. With the increase in size of the memory cache, both of the

caching algorithms have better performances in the byte hit ratio, as a larger cache space

can accommodate more intervals.

Figure 4.15 shows the performance of GIC+ and GIC, when the arrival rate varies. When

86



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Arrival Rate

B
yt

e 
H

it 
R

at
io

GIC+
GIC 

Figure 4.15: Performance comparison between GIC and GIC+ (B = 500MB and P = 80%)

the arrival rate increases, there are two factors that influence the performance.

• On the one hand, more small-size intervals can be formed, so the performance might

be improved due to the fact that following requests can be satisfied with the already

formed intervals.

• On the other hand, when arrival rate increases, the number of the requests in a unit

time increases, however, due to a limited cache space more data cannot be cached,

and hence, the performance might become worse.

With the combined influence of the above two factors, Figure 4.15 shows the arrival rates

have little effects on the performance.

Figure 4.16 shows the performance of GIC+ and GIC, when the fraction of requests for

large documents varies. When the request for the large documents increases, there are also

two factors that influence the performance.

87



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Percentage of Large Objects

B
yt

e 
H

it 
R

at
io

GIC+
GIC 

Figure 4.16: Performance comparison between GIC and GIC+ (B = 500MB and λ =

0.25s−1)

• On the one hand, more larger documents means that the total amount of data to

access increases, while the amount of data that can be read from the cache has less

changed. Hence, the performance might become worse.

• On the other hand, large-size documents make it easy to generate an interval to cache

more data, thus, allowing more future accesses that request the same document to

access cached data. Hence, the performance might be improved.

Figures 4.14 to 4.16, show the performance when the retrieval bandwidth is held constant

and is equal to the playback rate. In this case, there are no switching operations in GIC+.

In comparison, in GIC, the number of the switching operations is shown in Table 4.2.

Figure 4.14 - Figure 4.16 show GIC exhibits a better performance than GIC+ with respect

to the byte hit ratio. However, note that here, the performance of only the cache is shown.

88



Table 4.2: Number of the switching operation in GIC (1500 requests)

B(MB) 100 200 300 400 500 600 700 800 900 1000

67 79 91 97 88 91 91 88 97 93

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

73 85 89 104 94 98 131 130 174 158

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

38 68 82 72 89 92 92 90 88 88 88

The performance improvement of GIC is achieved at the cost of a poor utilization of the

bandwidth resource in the origin. If the performance of an entire system (including the

origin and the cache) is considered, then GIC+ should exhibit a better performance than

GIC, since the non-switch constraint eliminates all the unnecessary switching operations

and the bandwidth resource available with the origin is saved to a significant extent (refer

to the analysis in Section 4.2).

Table 4.2 shows the number of the switching operations increases as the memory cache size,

the arrival rate, or the percentage of requests for large documents increases. However, it is

difficult to estimate the number of the switching operations.

On the one hand, if we reserve the bandwidth of the origin for every stream that is reading

data from the cache, then the total amount of bytes read from the origin is obviously

reduced. In this case, the amount of bytes read from the cache is equivalent to a resource

wastage in the origin. Assume that A1 is the amount of bytes read from the origin and A2

is the amount of data read from cache. Thus, the total amount of data to read is A1 + A2.

The amount of resource wasted in the origin, by reserving a bandwidth, is equivalent to

A2. The ratio A2/(A1 + A2) gives the percentage of reserved resources that are not used

89



Table 4.3: Effect of the non-switch constraint (1500 requests)

B(MB) 100 200 300 400 500 600 700 800 900 1000

A4/A2 0.06 0.03 0.05 0.04 0.04 0.04 0.03 0.50 0.34 0.26

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A4/A2 0.01 0.03 0.03 0.04 0.07 0.24 0.25 0.26 0.26 0.27

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A4/A2 0.01 0.02 0.03 0.05 0.02 0.02 0.02 0.02 0.04 0.04 0.04

at the origin. On the other hand, when we adopt the non-switch constraint to eliminate

the switching operation, the byte hit ratio decreases (See Figure 4.14 - 4.16). We denote

A4 as the difference in the number of bytes that are read from the cache between GIC and

GIC+. Thus, we compare these two cases by observing the ratio A4/A2 which is shown in

Table 4.3. From the table we observe that, in most cases, the quantity A2 is much more

than A4, and their difference shows the effect of the non-switch constraint.

4.5.3 Performance comparison between RBC and VBRC

In the case of memory caching, it should be clear at this stage that VBRC is GIC+ (i.e.,

GIC with the non-switch constraint). Hence we do not need to compare the performance of

VBRC and GIC. Thus, in this section, we compare the performance of RBC and VBRC in

the case of constant retrieval bandwidth (since RBC cannot be used in the case of variable

retrieval bandwidth).

Figure 4.17 shows the performance of RBC and VBRC when the disk cache space varies.

When B ≥ 5000MB, the performance of RBC and VBRC have no noticeable improvement,

since the disk space is already abundant. In this case, the cache bandwidth becomes a

90



0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Disk Cache Size (MB)

B
yt

e 
H

it 
R

at
io

RBC 
VBRC

Figure 4.17: Performance comparison between RBC and VBRC (BW = 20MB/s, λ =

0.25s−1, and P = 80%)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Disk I/O Bandwidth Capacity(MB/s)

B
yt

e 
H

it 
R

at
io

RBC 
VBRC

Figure 4.18: Performance comparison between RBC and VBRC (B = 5000MB, λ =

0.25s−1, and P = 80%)

91



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Arrival Rate

B
yt

e 
H

it 
R

at
io

RBC 
VBRC

Figure 4.19: Performance comparison between RBC and VBRC (B = 5000MB, BW =

20MB/s, and P = 80%)

bottleneck.

Figure 4.18 shows the performance of RBC and VBRC when the bandwidth of the disk cache

varies. Certainly, more bandwidths can aid to read more cached data. Hence, a larger-size

bandwidth means a better performance for both of RBC and VBRC. In particular, the

byte hit ratio of RBC stops increasing (saturation) after the bandwidth reaches 50MB/s,

while the byte hit ratio of VBRC can increase till 100MB/s. This is due to the fact that

in the case of RBC, when BW is more than 50MB/s, the disk space becomes a bottleneck

in terms of utilization, and hence bears no influence on the increase in the disk bandwidth.

This phenomena is also observed in [157].

Figure 4.19 shows the performance of RBC and VBRC when the arrival rate varies.

When the arrival rate increases, with a limited storage space, more data cannot be cached,

92



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Large Objects

B
yt

e 
H

it 
R

at
io

RBC 
VBRC

Figure 4.20: Performance comparison between RBC and VBRC (B = 5000MB, BW =

20MB/s, and λ = 0.25s−1)

however, the number of the requests in a unit time increases, and hence, the byte hit ratio

decreases, resulting in worse performances.

Figure 4.20 shows the performance of RBC and VBRC when the percentage of requests for

large documents varies. More requests for large documents means that the total amount

of data to access increases, while the amount of data that can be read from the cache is

less changed. Hence, the performance might become worse.

In comparison with RBC, our VBRC algorithm adopts the “just-in-time” allocation method

of the bandwidth, and the allocation of spaces is among intervals (not runs!). Therefore,

from Figure 4.17 - Figure 4.20, we observe that VBRC has a much better performance

than RBC. Besides, there are no switching operations in VBRC (as we use the non-switch

constraint), while the switching operation in RBC is shown in Table 4.4.

93



Table 4.4: Number of the switching operation in RBC (1500 requests)

B(GB) 1 5 10 20 30 40 50 60 70 80

0 59 64 56 56 56 56 56 56 56

BW (MB/s) 10 20 30 40 50 60 70 80 90 100

44 59 74 24 0 0 0 0 0 0

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

11 50 84 116 107 115 54 109 88 40

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 68 75 109 54 59 78 112 59 50 100

4.5.4 Performance of VBRC in the case of variable retrieval bandwidth

Figure 4.21- Figure 4.24 compares the performance of VBRC when V = 0, 10%, 20% and

when the disk cache space, the retrieval bandwidth of the disk cache, the arrival rate, or

the percentage of requests for large documents varies, respectively. Tables 4.5 and 4.6 show

the number of switching operations.

In the case of variable retrieval bandwidth (V 6= 0), the caching performance becomes a

little worse in comparison with the case when V = 0. In general, the bandwidth is the

bottleneck in the case of disk caching.

The switching operations are completely eliminated in the case of constant retrieval band-

width in VBRC. However, in the case of variable retrieval bandwidth, the switching to

server cannot be avoided, although VBRC employing the non-switch constraint thrives to

minimize the number of switching operations.

It may be noted that GIC and RBC cannot be directly employed to handle a variable

94



0 1 2 3 4 5 6 7 8

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

Disk Cache Size (MB)

B
yt

e 
H

it 
R

at
io

constant retrieval bandwidth
variable scope=10%          
variable scope=20%          

Figure 4.21: Performance of VBRC with the variable retrieval bandwidth (BW =

20MB/s, λ = 0.25s−1, and P = 80%)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Disk I/O Bandwidth Capacity(MB/s)

B
yt

e 
H

it 
R

at
io

constant retrieval bandwidth
variable scope=10%          
variable scope=20%          

Figure 4.22: Performance of VBRC with the variable retrieval bandwidth (B = 20GB, λ =

0.25s−1, and P = 80%)

95



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Arrival Rate

B
yt

e 
H

it 
R

at
io

constant retrieval bandwidth
variable scope=10%          
variable scope=20%          

Figure 4.23: Performance of VBRC with the variable retrieval bandwidth (B =

20GB, BW = 20MB/s, and P = 80%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Large Objects

B
yt

e 
H

it 
R

at
io

constant retrieval bandwidth
variable scope=10%          
variable scope=20%          

Figure 4.24: Performance of VBRC with the variable retrieval bandwidth (B =

20GB, BW = 20MB/s, and λ = 0.25s−1)

96



Table 4.5: Number of the switching operation in VBRC (V = 10% and 1500 requests)

B(GB) 1 5 10 20 30 40 50 60 70 80

143 156 209 164 164 164 164 164 164 164

BW (MB/s) 10 20 30 40 50 60 70 80 90 100

101 164 186 197 177 141 142 112 76 30

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

134 164 213 161 189 193 218 204 152 153

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 198 214 195 217 154 202 232 164 136 148

retrieval bandwidth situation. Thus, what we have conclusively shown from our simulation

experiments is the adaptable nature of VBRC to the variable bandwidth scenario.

Finally, the overhead of VBRC can be observed in Table 4.7 (in a 733MHz PC). Although

there are a number of operations in every service cycle (due to Phases 1, 2, and 3 in Figures

4.10 and 4.11), the total time overhead is insignificant, e.g., the average time overhead for

processing every request is only about 10−2s. Also, Table 4.7 shows that the overhead has

no obvious relationship with the size of the cache space or the cache bandwidth. These

observations imply that VBRC is cost-effective in the performance and applicable to the

real-life situation.

4.6 Concluding Remarks

In this chapter, we have proposed a novel algorithm VBRC, which is used in caching CM

data in the disk and the main-memory storage device. The design of VBRC stems from two

reasons. The first reason is due to the fact that current interval-level caching algorithms

97



Table 4.6: Number of the switching operation in VBRC (V = 20% and 1500 requests)

B(GB) 1 5 10 20 30 40 50 60 70 80

191 176 230 230 230 230 230 230 230 230

BW (MB/s) 10 20 30 40 50 60 70 80 90 100

189 230 186 193 207 164 180 140 96 68

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

153 215 247 249 208 232 230 223 246 205

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 220 252 221 223 228 204 215 230 229 180

Table 4.7: Time overhead of VBRC (V = 20% and 1500 requests)

B(GB) 1 5 10 20 30 40 50 60 70 80

(min.) 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

BW (MB/s) 10 20 30 40 50 60 70 80 90 100

(min.) 0.18 0.27 0.23 0.25 0.27 0.27 0.23 0.25 0.22 0.23

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(min.) 0.17 0.17 0.15 0.15 0.13 0.13 0.12 0.13 0.10 0.12

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(min.) 0.02 0.1 0.17 0.17 0.15 0.17 0.15 0.17 0.15 0.15 0.15

98



cannot handle the case of the variable retrieval bandwidth (or variable bit rate). Note

that we do not refer to VBR of CM data themselves, in which the change of bit rates

is much smaller. We can easily use buffering or other resource reservation methods [73]

to handle it. By contrast, we are considering the variable bit rate that is caused by the

outside (e.g., networks, servers, or clients). While there are no previous researches devoted

to similar topics, the variable retrieval bandwidth demand is commonly encountered in

network-based multimedia services. Our VBRC algorithm checks the space and bandwidth

requirements in every service cycle, and handles the exceeding streams in the case of variable

retrieval bandwidth. The second reason is that there exist switching operations in all so far

proposed caching algorithms in the literature, and these switching operations easily result

in a disruption of the continuous playback. In fact, as mentioned in Section 4.2, a large

amount of overheads due to the switching operation is one of the primary reasons why

BASIC may not be suitable to handle streams in a practical caching system.

The design of VBRC essentially focuses on the management of resources (the cache space

and bandwidth). In VBRC, the bandwidth resource is allocated in a just-in-time manner

instead of carrying out any reservation. The allocation of the cache space is among intervals

not runs, so that the utilization of the space can be more efficient. The allocation of

the cache space and bandwidth considers the case of the variable retrieval bandwidth

and the strategy of reducing the switching operation. In the simulation experiments, we

studied the performances of VBRC in terms of the byte hit ratio under several influencing

parameters such as, cache space, cache bandwidth, request arrival rate, and percentage of

large documents. Our rigorous simulation experiments provide a corroborative evidence

for the performance of VBRC and confirm our analysis. VBRC is conclusively testified to

perform better than the popular disk caching algorithm RBC [157]. Also, the overhead and

99



the number of switching operations in VBRC are shown satisfactory.

In our research, all of examples belong to the single-channel retrieval. However the idea of

proposed strategies can be easily used in the multiple-channel/multiple-server retrieval.

100



Chapter 5

Experiments on the CM Data

Retrieval

It may be noted that the caching problem can be trivially implemented within a single

host together a mature cache product (e.g, Squid [150]), as far as the experimental verifi-

cation is concerned, and does not pose any challenge in an experimental venture. On the

other hand, realizing the retrieval strategies poses a considerable challenge as a number

of factors influence the performance on a network-based system. Consequently, it be-

comes more meaningful to implement our retrieval strategies. In this chapter, we precisely

attempt on implementing our retrieval algorithms by testing on real-life network condi-

tions. Specifically, we consider implementing the single-channel/single-server and multiple-

channel/multiple-server retrieval strategies, and compare their performances.

5.1 Hardware and Software

Figure 5.1 shows the network designed for our retrieval experiments, where there are two

video servers (a local one and a remote one) and a client host. On the one hand, the

101



National University of
Singapore Network

Local Video Server
(Windows 2000 Server)

Client Host
(Windows 2000 Professional)

Microsoft Corporation
Network

Internet

Remote Video Server

Figure 5.1: Network diagram for retrieval experiments

retrieval from a remote server usually has inferior QoS (mainly in terms of the continuous

playback) because of congested network conditions. Thus, in this case, our multiple-channel

retrieval strategies can clearly show their advantage in improving QoS. On the other hand,

we can easily control the workload on the local server so that we can easily compare dif-

ferent retrieval strategies with the same workload conditions.

In the local video server, the operating system is Windows 2000 server, in which the Win-

dows media services are running inherently. Windows media services can send the pre-

record or live audio and video data to the client computer via unicasting or multicasting

[109]. The remote server has also been installed with similar software products. When

the local server and/or the remote server receives a request from the client for retrieving a

CM document, the server starts to cast data of the requested CM document to the client.

Next, the client can playback the content of the document while data of the document are

arriving at the client. The server can control the quality of every sent stream by setting

the retrieval bandwidth, typically such as, 56k, 100k, and 300k. However the change of the

102



retrieval bandwidth is discrete and not continuous. Furthermore, we cannot program to

control the retrieval bandwidth of the streams, as the source code of the Windows media

server is not open.

At the client end, we adopt a CM data retrieval software - ASFRecorder and ASFR+ [12].

As they are open sources, we can customize these software to meet our requirements. The

function of ASFRecorder is to retrieve and playback CM documents (with the extensions of

ASF, WMA, and WMV) or CM redirector documents (with the extensions of ASX, WMX,

and WVX). The function of ASFR+ is to retrieve a CM document in a multi-threaded

fashion from a single server. We combine ASFRecorder and ASFR+ so that the CM data

can be retrieved and played back from multiple channels and multiple servers. Moreover,

we include our retrieval algorithm within the client software.

5.2 Implementation Detail

����

�������	


������
����

�
	��	��

��������	���


� � � � � � � � � � ��� 	 ��
 � 
 � � � ��
 � ��� � � 
 ��� 	 ��� � � � � � 
 � ��� � 
 �
� 	 � ��� � 
 � 
 � ��� 	 ��
 � 
 � 
 � � ��� � � � 
 � ��� ��� � ��� ��� � 
 �  � � � �
� � � �!
 ��� 	 ��
 � � � 
 � � 
 � ��� ��� � � � � � 
 ��
 � ��� ��� � � 
 � � 
 � �
� � � 
 � ��� 	 ��� � � � 
 � � � �"� ��� ��� � � 
 � ��� �!� � 
 �  � � � #

�������

���	
�����	��

Figure 5.2: Use case diagram of the system on the client computer

The entire client system consists of a retrieval sub-system and a playback sub-system

103



as shown in Figure 5.2. The retrieval sub-system retrieves ASF files from media servers

using TCP or HTTP protocol. The playback sub-system plays the received ASF file.

5.2.1 Playback sub-system

The playback sub-system applies the DirectShow, which is a part of Microsoft DirectX.

DirectShow provides APIs in the high-quality capture and playback of multimedia streams.

Also, it supports a variety of formats, including Advanced Streaming Format (ASF), Motion

Picture Experts Group (MPEG), Audio-Video Interleaved (AVI), MPEG Audio Layer-3

(MP3), and WAV files. The main process of playing a video document using DirectShow

is in two steps.

1. A filter graph, which is IGraphBuilder type, is created using CoCreateInstance func-

tion.

2. The filter graph responds to user events and controls the playback process until the

playback is completed.

The beginning time of a playback is determined by the retrieval scheduling.

5.2.2 Format of ASF file

In Figure 5.3, we present the format of the ASF (version 1.0) file. ASF 1.0 is one of the

most popular streaming video formats. An ASF file consists of a header chunk and multiple

fixed-size chunks.

All actual data of ASF file, such as compressed audio or video, is delivered from the server

to the client, in the format of “packets”. All packets are of fixed sizes. Figure 5.4 is the

structure of every packet.

104



Header chunk A

Data CBChunk 1

Header chunk contains the following information: the total byte size, the time
duration of this ASF file, the byte size of every chunk, etc.
A block is reserved, and its size is 50 bytes.
B block is the time code of this chunk, i.e., the time location of data in an entire file.
C block is unused bytes and is used so that every chunk has the same length.
Data block contains the available video data.

Data CBChunk m

Figure 5.3: Format of ASF 1.0

             Header chunk or chunk i (i=1,…,m)Chunk headerPacket

Chunk header contains the following information: chunk type (which identifies
header chunks or ordinary chunks), chunk size, sequence number of the chunk.
Chunk in the packet does not contain unused bytes. It is the difference between
a chunk in an ASF file and a chunk in a packet.

Figure 5.4: Format of a packet in streaming ASF Files

5.2.3 Retrieval bandwidth

In a Windows media server, no configurations are needed for delivering on-demand ASF

files. After a server receives a request, the server automatically sends the requested ASF

file to the client using a fixed bandwidth, i.e., the playback rate. However, because of the

network congestion, the client often receives the data in the data rate which is smaller

than the playback rate of the requested file. Therefore, the actual retrieval bandwidth, or

receiving rate in the client, is usually less than the playback rate. As the actual retrieval

bandwidth is one of input parameters of the retrieval scheduling, we shall estimate the

actual bandwidth retrieval according to the actual network traffic before the scheduling.

The multiple-channel retrieval will be implemented using the multi-threaded retrieval. In

105



detail, every thread retrieves data in a Round-Robin fashion. The actual retrieval band-

width of every thread is indeed the channel bandwidth.

In our experiment, we observed that two threads, which are involved in the data retrieval

from the same server, cannot be started simultaneously within a very small interval of time.

If this is attempted, the server treats them as a single thread and sends them with the same

data. In our experience, we note that the minimum time interval required to initiate two

threads is 1.5 seconds.

5.2.4 Number of installments

As a rule of thumb, in order to achieve a smaller access time, we tend to keep the number

of installments large. Here, we calculate mmax, the maximum value of m.

When the number of installments increases, a1,1 decreases, consequently t0 will decrease as

well. Note that a chunk is the minimum amount of retrieved data in every response from

the server. It means that the minimum value of a1,1 is the chunk size sc. Therefore, the

mmax is the maximum value of m that satisfies the following condition: when m = mmax,

a1,1 ≤ sc; when m = mmax−1, a1,1 > sc. If we assume n = 2 and bw = cr (r is the playback

rate and c is a constant), then we can obtain the following equations from (3.7)-(3.10).





a1,2 = a1,1

(1−c)

ai,1 = a1,2c2(i−2)+1

(1−c)2(i−2)+1 , i = 2, .., m

ai,2 = a1,2c2(i−2)+2

(1−c)2(i−2)+2 , i = 2, .., m

i=m,j=2∑

i=1,j=1

ai,j = L

(5.1)

From (5.1), we can calculate mmax and a1,1.

Now we consider a special case. Let B = c
1−c . If B < 1 or c < 0.5, then we obtain the

106



following result from (5.1).

L(1− c)
a1,1

= (1− c) + 1 + B + B2 + ...B2(m−1) < (1− c) +
1

(1−B)

So,

a1,1 >
L(1− 2c)
2(1− c)

.

It means that when c < 0.5, with the increase of the installments, a1,1 gradually decreases

until it reaches a lower limit given by, L(1−2c)
2(1−c) . It is reasonable as we use two channels now.

When the total size of channels is less than the playback rate, the access time has a lower

limit. The simulation in Chapter 3 also demonstrates this fact.

In addition, a switch from an installment to another installment also causes overhead. This

kind of overhead is noticeable and about 1 − 3 seconds according to our observation in

experiments.

5.2.5 Retrieval sub-system

In the retrieval process, the client uses the socket to communicate with the video server.

The main process of retrieving a video document is shown in Figure 5.5.

5.3 Experimental Results and Analysis

In this section, based on the above discussions, we carried out the following experiments.

1. Retrieval of a CM document from the remote server using single-channel and multiple-

channel strategies

2. Retrieval of a CM document from the local server using single-channel and multiple-

channel strategies

107



Step 1. The client sends the first HTTP or TCP request to the server to retrieve

the meta information of the requested document. Consequently, the response from

the server will provide two kinds of information.

• The response header. From this header, we can know whether the required

document exists or not, and whether the request document is a live stream or

a pre-recorded content.

• The chunk header (refer to Figure 5.4) and the header chunk (refer to Figure

5.3). From them, we can know the chunk length and the document length (the

byte size and the time duration).

Step 2. If the required ASF file exists and the file is a pre-recorded file, then we

can continue the following procedures.

• Firstly, the actual retrieval bandwidth is estimated according to the retrieval

in Step 1.

• Secondly, we determine the number of channels, n, and the number of install-

ments, m, according to Section 3.4 and section 5.2.4, respectively.

• Thirdly, the client software carries out our scheduling strategy to determine the

size of every portion retrieved from every channel. As the data are transmitted

in chunks, the size of every portion is approximated to a constant multiple of

the chunk size.

Step 3. The client sends n requests to retrieve the CM data in n threads.

• When a thread j (j = 1, .., n) finishes retrieving a portion a1,j , the thread j

begins to retrieve a2,j ,..., until am,j . Note that the thread j needs to send

different requests for different portions.

• If a thread j finishes the task of retrieving am,j , then this thread will aid

another thread that may probably miss the deadline (refer to the strategy in

Section 3.5.1).

• If a thread j finishes the task of retrieving am,j and none of the threads will

miss their deadlines according to the current retrieval bandwidth, then thread

j will help to shorten the retrieval duration (refer to the strategy in Section

3.5.3).

Figure 5.5: Retrieval process of an ASF file108



Table 5.1: Input parameters of the retrieval scheduling

File byte length (L) File time length (H) Chunk byte length

3959258 bytes 102.4 seconds 3861 bytes

Ave. playback rate (r) Channel bandwidth (bw) Maximum Number of installment

< 0.5r ∞

38664.6 bytes/s 0.7r 5

0.9r, 0.8r 3

3. Retrieval of a CM document from the local server and the remote server using

multiple-channel and multiple-servers strategies

Figure 5.1 shows the input parameters, which are the meta information of the requested

document, used for the retrieval scheduling. We also calculate the maximum number of

installments for the case of the 2-channel retrieval according to our analysis in Section 5.2.4.

Figure 5.2 shows the results of the retrieval scheduling, where m is the number of install-

ment and n is the number of channels. At the beginning of experiment, we carry out the

single-channel retrieval (in which no scheduling is needed) from the local server and the re-

mote server, respectively, so that we can know the actual retrieval bandwidth (i.e., channel

bandwidth) of the local server and the remote server at that time. They are approximately

r and 0.3r, respectively. The schedule in Figure 3.2 is used in the multiple-channel retrieval

from a local server, since the channel bandwidth is r. The schedule in Figure 3.1(b) is used

in the multiple-channel retrieval from a remote server, since the channel bandwidth is less

than r. The schedule in Figure 3.2 is used in the multiple-channel retrieval from both the

local server and the remote server, since the first channel, which is from the local server, is

r.

109



Table 5.2: Results of the retrieval scheduling

Server m n Portion size

Local 1 2 a1,1 = 0.5L, a1,2 = 0.5L

Local 1 3 a1,1 = 0.33L, a1,2 = 0.33L, a1,3 = 0.33L

Local 1 4 a1,1 = 0.25L, a1,2 = 0.25L, a1,3 = 0.25L, a1,4 = 0.25L

Remote 1 2 a1,1 = 0.41L, a1,2 = 0.59L

Remote 1 3 a1,1 = 0.22L, a1,2 = 0.32L, a1,3 = 0.46L

Remote 1 4 a1,1 = 0.14L, a1,2 = 0.19L, a1,3 = 0.28L, a1,4 = 0.39L

Remote 2 2 a1,1 = 0.30L, a1,2 = 0.43L, a2,1 = 0.19L, a2,1 = 0.08L

Remote 3 2 a1,1 = 0.29L, a1,2 = 0.41L, a2,1 = 0.18L

a2,2 = 0.08L, a3,1 = 0.03L, a3,2 = 0.01

Remote 4 2 a1,1 = 0.286L, a1,2 = 0.409L, a2,1 = 0.175L, a2,2 = 0.075L

a3,1 = 0.032L, a3,2 = 0.014L, a4,1 = 0.006L, a4,2 = 0.003L

local+remote 1 1+1 a1,1 = 0.77L, a1,2 = 0.23L

local+remote 1 2+2 a1,1 = 0.38L, a1,2 = 0.12L, a2,1 = 0.38L, a2,2 = 0.12L

Table 5.3 shows the results of retrieval experiments. In this table, the access time (or

start-up delay) is the interval between the instant when initial data arrive at the client and

the instant the playback begins at the client. The retrieval duration is the interval between

the instant when initial data arrive at the client and the instant when an entire requested

document has been retrieved. We calculate the access time and the retrieval duration for

accessing the remote server using the channel size of 0.3r. The computed value of the

retrieval time of accessing the remote server has two values. The greater value is obtained

according to the multiple-channel retrieval scheduling. When a variable-size channel re-

trieval strategy (refer to Section 3.5) is adopted, the retrieval duration will be reduced,

110



Table 5.3: Results of the retrieval experiment

Server m n Access time Retrieval duration Retrieval duration

(calculation)(s) (calculation)(s) (experiment)(s)

Local 1 1 0 N/A 104

Remote 1 1 238 N/A 378

Local 1 2 0 51 54

Local 1 3 0 34 37

Local 1 4 0 26 29

Remote 1 2 98 [170,200] 179

Remote 1 3 53 [113,155] 137

Remote 1 4 32 [85,134] 99

Remote 2 2 72 [170,174] 191

Remote 3 2 68 [113,171] 186

Remote 4 2 68 [85,170] 201

local+remote 1 1+1 0 78 113

local+remote 1 2+2 0 39 67

which is shown as the smaller value. The calculation of this value is demonstrated by the

following example. A 2-channel retrieval from the remote server has a total bandwidth

2× 0.3r, thus, the duration is H × r/(2× 0.3r) = 170(secs).

5.3.1 Result analysis

The above experiment shows that the multiple-channel and multiple-server retrieval strate-

gies can be very well realized in a real environment. We summarize the experiment as

follows.

111



• With the single-channel retrieval from the remote server, a media player (e.g., Win-

dows media player) buffers some data before the playback begins. However, the player

does not try to guarantee a continuous playback during the entire playback process.

Hence, the user frequently needs to re-buffer after the playback starts. To take care

of this situation, more data should be buffered or a multiple-channel retrieval must

be adopted. Our experiment has obviously shown that the multiple-channel retrieval

has shorter access times (the time used to buffer data) and retrieval durations than

the single-channel retrieval. Furthermore, by carefully using scheduling strategies,

the multiple-channel retrieval strategy minimizes the possibilities of data starvation

during the playback.

• On our campus intranet, even the single-channel retrieval has a short access time as

the retrieval bandwidth is usually close to the playback rate. In this case, the advan-

tage of the multiple-channel retrieval is shown by reducing the retrieval duration. A

short retrieval duration reduces the possibilities of network-disconnections. Besides,

the client usually cannot command the server to send the CM data using the user-

defined retrieval bandwidth in the single-channel retrieval. In comparison, using the

multiple-channel retrieval, the retrieval bandwidth is well controlled by determining

the number of concurrent channels.

• In general, the calculation value of the retrieval duration is close to the corresponding

experiment value. However, more installments cause more overheads as starting a new

installment means multiple operations: stop an old thread, generate a new thread, and

send the request for data. Therefore, the experiment value of the multiple-installment

retrieval from the remote server departs from the calculation value.

• In the experiment, the actual bandwidth of every channel from the remote server is

112



greatly affected by the variable network traffic. The strategies introduced in Section

3.5 prevent certain slow threads from missing their deadlines.

• Finally, from our experiments, we observe that the performance of using multiple

servers will be effective only when participating servers have more-or-less identical

retrieval bandwidths. If this is not the case, much of the time is wasted in actual

retrieval of the data by remote servers, thus clearly defeating the purpose of employing

multiple-server strategy.

5.4 Concluding Remarks

Our experiments demonstrate the following facts.

1. We test the multiple-channel and variable-size channel retrieval strategies (exclud-

ing the variable-channel control by the servers). Proposed retrieval strategies and

algorithms presented in Chapter 3 are applicable in real-life environments.

2. The actual retrieval bandwidth of a channel is an important input of static scheduling.

However, the actual retrieval bandwidth is greatly affected by real network traffics,

and we cannot determine its exact value beforehand. Our solution is that we estimate

the retrieval bandwidth before the static scheduling, and then we adopt variable-size

channel retrieval strategies to adjust the retrieval in every channel.

Our experiments do not include the following issues, as they have been simulated in Chap-

ter 3. We do not consider implementing a general access pattern, i.e., a group of client

accesses a group of servers in a duration. Also, we do not consider a variable-size channel

retrieval controlled by servers, i.e., the server adjusts the retrieval bandwidth according

to its workload. In order to achieve this, a special server software/component should be

113



developed, e.g., Darwin Streaming Server [40], which is an open source streaming server

for QuickTime by Apple. The work is beyond this thesis.

114



Chapter 6

Conclusions and Extensions to the

Current Work

In this thesis, we have addressed two major important issues in a network-based multi-

media servicing system. They are the problems of the CM data retrieval and caching.

We have presented the multiple-server retrieval strategies, which are used when a service

provider attempts to employ multiple servers in a coordinated fashion to retrieve the data

and to service the user requests. Similarly, when several requests arrive at a server repeat-

edly for a CM document, we have considered designing caching strategies that efficiently

handle variable bit rate situations. Our strategies are very important for the performance

of network-based multimedia services. Moreover, our strategies are applicable for various

kinds of distributed multimedia systems. The impact of these strategies have been clearly

demonstrated via several real-life simulation experiments, as presented in respective chap-

ters.

One of the significant contributions in this thesis is in presenting a generalized approach

for handling multiple client requests using the multiple-server retrieval. We have ana-

115



lyzed and designed multiple-server retrieval strategies for the streaming (i.e., play-while-

receive) mode. In the case of the play-after-download mode, the multiple-channel re-

trieval/download has been widely used, and it can greatly reduce the downloading time

in comparison with the single-channel retrieval. However, play-while-receive is significantly

different with play-after-download in constraints and performance metrics. In this thesis,

we have presented a complete theoretical and experimental study for the multiple-server

retrieval using the play-while-receive mode. We realized this strategy using the Multiple-

Channel Retrieval (MCR) algorithm, whose main contents can be summarized as follows.

• The channel partition strategy is proposed to allocate the channels for the retrieval.

In partitioning channels, we try to achieve both the minimum access time and load

balancing among servers.

• The static scheduling is adopted before the playback begins. In the static scheduling,

we use the constant retrieval bandwidth as the channel bandwidth. We presented

the multiple-channel, multiple-installment, and synchronous/asynchronous-channel

scheduling strategies.

• The dynamic scheduling is adopted during the playback. In the dynamic scheduling,

we use the variable-size channel retrieval to prevent the slow channel from missing

its deadline and improve the system capacity.

By using all the above strategies, the multiple-server retrieval and the multiple-channel

retrieval have been shown better performances than the single-server retrieval and the

single-channel retrieval in satisfying the continuous playback, the access time, the block

ratio, and the retrieval duration.

Furthermore, we have shown that the experiment clearly testified the applicability of our

retrieval algorithm to a practical situation. With our experimental results, our strategies

116



indeed provide more performance improvements for the play-while-receive mode. It will

make the play-while-receive mode be widely applied to view CM documents on a network-

based system as opposed to the conventional play-after-download mode.

We now present several issues that have not been explored in our studies of the multiple-

server retrieval. Theoretically, CM data can be retrieved from FTP, HTTP, MMS, or RTSP

servers using UDP, TCP, or HTTP protocol [154]. In our experiments, we only consider

retrieving data from MMS server using HTTP and TCP protocols. Thus, as a first step it

would be interesting to consider using our strategies on more protocols and servers and to

see the actual performance. Also, the server software supporting the variable-size channel

retrieval should be developed so that the multiple-server/multiple-channel retrieval can be

controlled by servers. Besides, the client software should be configured to intelligently se-

lect the transport protocol among UDP, TCP, and HTTP. HTTP has the largest and worst

overhead but can be used through a firewall. UDP has no error correction mechanism and

therefore the (picture) quality usually has glitches, but it does have the fastest data rate.

UDP does not work through a firewall, because network administrators tend to disable

UDP for security reasons. TCP is the medium, with error correction facilities, giving less

errors but a slightly slower data throughput than UDP.

As far as caching CM data are concerned in the view of providing a faster service, our

strategies in all our simulation experiments exhibited a superior performance with respect

to a variety of influencing parameters. In the conventional caching, cached documents are

usually smaller-size documents, e.g., memory page and web page. Thus, caching an entire

document costs little overheads. However CM documents are usually larger in sizes, and

hence, caching a part of a document (so-called “interval”) is preferred. In past caching al-

gorithms for CM documents, GIC and RBC strategies are adopted in the memory caching

117



and the disk caching, respectively. Our design of strategies were fundamentally based on

GIC and RBC. We now summarize our contributions as follows. Firstly, as an interval is

usually formed by two streams, the latter stream reads the cache data that are written

by the former stream. If the former stream stops writing data into the cache, then the

latter stream will meet the switching operation (refer to Chapter 4). Switching opera-

tions probably cause an abrupt stop of a continuous playback, and hence we propose some

strategies to avoid/minimize the switching operation. Secondly, the interval size is often a

variable because of variable network traffics or the control operation from the server and the

client. A variable-size interval means variable resource requirements in the storage space

and bandwidth. Therefore, we proposed to fine-tune the resource allocation in every service

cycle. Those operations in every service cycle has been detailed in Chapter 4. Finally, the

resource allocation in RBC is basically a reservation scheme. We adopted a just-in-time

scheme to allocate the resource only when the resource is actually required. This strategy

clearly has been conclusively shown to improve the performance of disk caching algorithms.

In comparison with GIC and RBC, our algorithm VBRC is more appropriate in a prac-

tical application because we consider variable-size intervals and strategies by which we

avoid/minimize switching operations. Furthermore, our simulation testified our analysis

and showed the proposed caching algorithm VBRC has a much better performance than

RBC.

Although we use the single-channel retrieval, which is the most common case, in the research

of caching strategies, our caching strategies can be easily adapted to the multiple-channel

retrieval and other kinds of retrieval, e.g., batching, patching, and multicasting. While

so many cases of the retrieval cannot be analyzed without omitting, the idea of proposed

caching strategies are broadly applicable. It is an essential significance of our caching

118



strategies.

We can envision some direct extensions that can be considered readily, to the caching prob-

lem addressed in this thesis. We may note that VBRC does not completely eliminate the

possibility of switching operations while handling streams that demand variable retrieval

bandwidths. Hence, as a first step, it will be beneficial if we fine-tune the VBRC algorithm

to further reduce the possibilities of the switching operation for the case of the variable

retrieval bandwidth. In the context of distributed systems, the distributed version of the

caching algorithm must determine certain vantage sites to cache the data, depending on

the arrival rates and on the activities at the sites. A recent work by Tang et al.[155] has

demonstrated caching web objects in a hierarchical architecture, while we already consid-

ered caching web objects in a distributed architecture [42]. It will be an interesting topic

to study how to combine them.

119



Bibliography

[1] M. Afonso, A. Santos, and V. Freitas, “QoS in Web Caching,” Computer Networks and

ISDN Systems, Vol. 30(22-23), pp. 2093-2103, 1998.

[2] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On Optimal Piggyback Merging Policies

for Video-on-Demand Systems,” Proc. SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, May 1996.

[3] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the World Wide Web,” IEEE Trans.

Knowledge and Data Engineering, Vol. 11(1), pp. 94-107, 1999.

[4] T. Ahmed, A. Mehaoua, and R. Boutaba, “Interworking between SIP and MPEG-4

DMIF for Heterogeneous IP Video Conferencing,” In Proc. IEEE International Confer-

ence on Communications (ICC), 2002.

[5] K. C. Almeroth and M. H. Ammar, “On the Performance of a Multicast Delivery Video-

On-Demand Service with Discontinuous VCR Actions,” In Proc. IEEE International

Conference on Communications (ICC), 1995.

[6] K. C. Almeroth and M. H. Ammar, “On the Use of Multicast Delivery to Provide a

Scalable and Interactive Video-on-Demand Service,” IEEE Journal on Selected Areas in

Communication, Vol. 14(6), 1996.

120



[7] P. M. Anselone and J. W. Lee, “Multivariable Calculus with Engineering and Science

Applications,” Upper Saddle River, NJ : Prentice Hall, 1995.

[8] M. F. Arlitt and C. L. Williamson, “Internet Web Servers: Workload Characterization

and Performance Implications,” IEEE/ACM Trans. Networking, Vol. 5, pp. 631-645,

1997.

[9] M. F. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating Content

Management Techinques for Web Proxy Caches,” In Proc. 2nd Workshop on Internet

Server Performance, May 1999.

[10] M. F. Arlitt, R. Friedrich, and T. Jin, “Performance Evaluation of Web Proxy Cache

Replacement Policies,” Performance Evaluation, Vol. 39, pp. 149-164, 2000.

[11] T. Asaka, H. Miwa, and Y. Tanaka, “Distributed Web Caching Using Hash-based

Query Caching Method,” In Proc. IEEE International Conference on Control Applica-

tions, Vol. 2, 1999.

[12] ASFR+ ASFFix Homepage, http://yaan2.linux.net.cn/.

[13] Yun-Cheol Baek and Kern Koh, “Real-time Scheduling of Non-preemptive Periodic

Tasks for Continuous Media Retrieval,” In Proc. IEEE Region 10 Technical Conference

(TENCON), 1994.

[14] Hyokyung Bahn, K. Koh, S. H. Noh, and Sang Lyul Min, “Efficient Replacement of

Nonuniform Objects in Web Caches,” IEEE Computer, Vol. 35(6), Jun 2002.

[15] S. A. Barnett and G. J. Anido, “Performability of Disk-array-based Video Servers,”

ACM/Springer-Verlag Multimedia Systems, Vol. 6(1), pp. 60-74, 1998.

121



[16] P. Basu, R. Krishnan, and T. D. C. Little, “Optimal Stream Clustering Problems in

Video-on-Demand,” In Proc. Parallel and Distributed Computing and Systems, Oct.1998.

[17] P. Basu, A. Narayanan, R. Krishnan, and T. D. C. Little, “An Implementation of

Dynamic Service Aggregation for Interactive Video Delivery,” In Proc. SPIE Multimedia

Computing and Networking, Jan.1998.

[18] A. Bestavros, “WWW Traffic Reduction and Load Balancing through Server-Based

Caching,” IEEE Concurrency, Vol. 5(1), pp. 56-67, 1997.

[19] S. Bhattacharjee, K. Calvert, and E. W. Zegura, “Self-Organizing Wide-Area Network

Caches,” In Proc. INFOCOM, 1998.

[20] J.-C. Bolot, S. M. Lamblot, and A. Simonian, “Design of Efficient Caching Schemes

for the World Wide Web,” In Proc. 15th International Teletraffic Congress, 1997.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “On the Implications of Zipf’s

Law for Web Caching,” In Proc. INFOCOM, 1999.

[22] P. Brucker, “Scheduling Algorithms,” Edition 3rd, New York : Springer, 2001.

[23] J. F. K. Bufford (ed), “Multimedia Systems,” New York : ACM Press, 1994.

[24] Y. Cai, K. A. Hua, and K. Vu, “Optimizing Patching Performance,” In Proc. SPIE

Conference on Multimedia Computing and Networking (MMCN), 1999.

[25] W. Cai, P. Xavier, S. J. Turner, and Bu-Sung Lee, “A Scalable Architecture for Sup-

porting Interactive Games on the Internet,” In Proc. 16th Workshop on Parallel and

Distributed Simulation, 2002.

[26] Cache Digest Specification - version 5, http://www.squid-

cache.org/CacheDigest/cache-digest-v5.txt.

122



[27] P. Cao and S. Irani, “Cost-aware WWW Proxy Caching Algorithms,” In Proc. 1st

USENIX Symposium on Internet Technologies and Systems, pp. 193-206, 1997.

[28] Cache Array Routing Protocol (CARP) and Microsoft Proxy Server 2.0,

http://msdn.microsoft.com/library/en-us/dnproxy/html/carp.asp.

[29] A. Carzaniga and A. L. Wolf, “Content-Based Networking: A New Communication

Infrastructure,” In Proc. NSF Workshop on an Infrastructure for Mobile and Wireless

Systems, 2002.

[30] S.-H. Chan and S.-H. Yeung, “Client Buffering Techniques for Scalable Video Broad-

casting over Broadband Networks with Low User Delay,” IEEE Trans. Broadcasting, Vol.

48(1), 2002.

[31] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell, “A

Hierarchical Internet Object Cache,” In Proc. 1996 USENIX Technical Conference, Jan.

1996.

[32] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley, “Performance Evaluation of

Two New Disk Scheduling Algorithms for Real-Time Systems,” Journal of Real-Time

Systems, Vol. 3(3), 1991.

[33] Tien-Fu Chen and Jean-Loup Baer, “Effective Hardware-Based Data Prefetching for

High-Performance Processors,” IEEE Trans. Computers, Vol. 44(5), May 1995.

[34] A. Cohen and W. A. Burkhard, “Segmented Information Dispersal (SID) for Efficient

Reconstruction in Fault-Tolerant Video Servers,” In Proc. ACM Multimedia, 1997.

[35] R. Cucchiara, M. Piccardi, and A. Prati, “Temporal Analysis of Cache Prefetching

Strategies for Multimedia Application,” In Proc. 20th IEEE International Performance,

Computing, and Communications Conference, Apr. 2001.

123



[36] A. Dan and D. Sitaram, “Buffer Management Policy for an On-demand Video Server,”

Technical Report RC 19347, IBM Research Report, 1994.

[37] A. Dan, P. Shahabuddin, D, Sitaram, and D. Towsley, “Channel Allocation under

Batching and VCR Control in Video-On-Demand Systems,” Journal of Parallel and

Distributed Computing (Special Issue on Multimedia Processing and Technology), Vol.

30(2), 1995.

[38] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic Batching Policies for an On-

demand Video Server,” ACM/Springer-Verlag Multimedia Systems, Vol. 4, pp. 112-121,

1996.

[39] A. Dan and D. Sitaram, “Multimedia Caching Strategies for Heterogeneous Appli-

cation and Server Environments”, Multimedia Tools and Applications, Vol. 4(3), May

1997.

[40] Darwin Open Source Project, http://developer.apple.com/darwin/.

[41] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Providing VCR Capa-

bilities in Large-Scale Video Servers,” In Proc. ACM Multimedia, 1994.

[42] Li-gang Dong and B. Veeravalli, “Design of Object Replacement Strategies for Co-

operative Web Proxy Caching,” Revision version, To appear in Multimedia tools and

applications, Kluwer Academic, Jun. 2002.

[43] S. G. Dykes, C. L. Jeffery, and S. Das, “Taxonomy and Design Analysis for Distributed

Web Caching,” In Proc. 32th Hawaii International Conference on System Sciences, Jan.

1999.

[44] S. Erfani and M. Malek,“Issues in Networked Multimedia Services,” In Proc. IEEE

39th Midwest Symposium on Circuits and Systems, Vol. 3, 1996.

124



[45] H. Fahmi, S. Baqai, A. Bashandy, and A. Ghafoor, “Dynamic Resource Allocation for

Multimedia Document Retrieval over High Speed LANs,” Multimedia Tools and Appli-

cations, Vol. 8(1), pp. 91-114, 1999.

[46] L. Fan, P. Cao, and Q. Jacobson, “Web Prefetching Between Low-Bandwidth Clients

and Proxies: Potential and Performance,” In Proc. Joint International Conference on

Measurement and Modeling of Computer Systems, May 1999.

[47] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scalable Wide-

Area Web Cache Sharing Protocol,” IEEE/ACM Trans. Networking, Vol. 8(3), 2000.

[48] Z. Fei, I. Kamel, S. Mukherjee, and M. H. Ammar, “Providing Interactive Functions for

Staggered Multicast Near Video-on-Demand Systems,” In Proc. International Conference

on Multimedia Computing and Systems (ICMCS), 1999.

[49] A. P. Foong, Yu-Hen Hu, and D. M. Heisey, “Logistic Regression in an Adaptive Web

Cache,”IEEE Internet Computing, Vol. 3(5), pp. 27 -36, 1999.

[50] P. Frossard and O. Verscheure, “Batched Patch Caching for Streaming Media,” IEEE

Communications Letters, Vol. 6(4), 2002.

[51] B. Furht, D. Kalra, F. L. Kitson, A. A. Rodriguez, and W. E. Wall, “Design Issues for

Interactive Television Systems,” IEEE Computer, Vol. 28, May 1995.

[52] B. Furht, S. W. Smoliar, and HongJiang Zhang, “Video and Image Processing in

Multimedia Systems,” Boston: Kluwer Academic Publishers, 1995.

[53] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse, Recycle: An Approach to

Building Large Internet Caches ,” In Proc. 6th Workshop on Hot Topics in Operating

Systems (HotOS-VI), 1997.

125



[54] S. Gadde, J. Chase, and M. Rabinovich, “Directory Structures for Scalable Internet

Caches,” Technical Report CS-1997-18, Duke university, Nov.1997.

[55] J. Gemmell and S. Christodoulakis, “Principles of Delay-sensitive Multimedia Data

Storage and Retrieval,” ACM Trans. Information Systems, Vol. 10(1), pp. 51-90, 1992.

[56] D. Ghose and H-J. Kim, “Scheduling Video Streams in Video-on-Demand Systems: A

Survey”, Multimedia Tools and Applications, Vol. 11, pp. 167-195, 2000.

[57] G. A. Gibson, J. S. Vitter, and J. Wilkes, “Strategic Directions in Storage I/O Issues

in Large-scale Computing,” ACM Computing Surveys, Vol. 28(4), pp. 779-793, 1996.

[58] L. Golubchik, J. C. S. Lui, and R, R, Muntz, “Adaptive Piggybacking: A Novel Tech-

nique for Data Sharing in Video-On-Demand Storage Servers,” ACM/Springer-Verlag

Multimedia Systems, Vol. 4(3), 1995.

[59] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for Multimedia

Operating Systems,” In Proc. USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 1996.

[60] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: a New Broadcasting Scheme for

Metropolitan Video-on-demand Systems,” In Proc. ACM SIGCOMM’97 conference on

Applications, Technologies, Architectures, and Protocols for Computer Communication,

Sep.1997.

[61] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A Multicast Technique for True Video-

on-Demand Services,” In Proc. ACM Multimedia, 1998.

[62] D. M. Jacobson and J. Wilkes, “Disk Scheduling Algorithms Based on Rotational

Position,” Technical Report of Hewlett Packard Labs, February 1991.

126



[63] D. Jadav, A. N. Choudhary, and P. B. Berra, “Techniques for Increasing the Stream

Capacity of a High-Performance Multimedia Server,” IEEE Trans. Knowledge and Data

Engineering, Vol. 11(2), 1999.

[64] Shudong Jin and A. Bestavros, “Popularity-aware Greedy Dual-size Web Proxy

Caching Algorithms,” In Proc. 20th International Conference on Distributed Comput-

ing Systems, pp. 254-261, 2000.

[65] Shudong Jin and A. Bestavros, “Greedy dual* Web Caching Algorithm: Exploiting the

Two Sources of Temporal Locality in Web Request Streams,” In Proc. 5th International

Workshop on Web Caching and Content Delivery, 2000.

[66] Li-Shen Juhn and Li-Ming Tseng, “Harmonic Broadcasting for Video-on-Demand Ser-

vice,” IEEE Trans. Broadcasting, Vol. 43(3), 1997.

[67] Li-Shen Juhn and Li-Ming Tseng, “Fast Data Broadcasting and Receiving Scheme for

Popular Video Service,” IEEE Trans. Broadcasting, Vol. (44)(1), 1998.

[68] J. Jung, D. Lee, and K. Chon, “Proactive Web Caching with Cumulative Prefetching

for Large Multimedia Data,” Computer Networks, Vol. 33(1-6), pp. 645-655, 2000.

[69] M. Kamath, D. Towsley, and K. Ramamritham. “Buffer Management for Continuous

Media Sharing in Multimedia Database Systems,” Technical Report 94-11, University of

Massachusetts, Feb. 1994.

[70] M. Kamath, K. Ramamritham, and D. Towsley, “Continuous Media Sharing in Mul-

timedia Database Systems,” in Proc. 4th International Conference on Database Systems

for Advanced Applications, Apr. 1995.

[71] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross, “Distributing Layered

Encoded Video through Caches,” IEEE Trans. Computers, Vol. 51(6), 2002.

127



[72] M. F. Khan, A. Ghafoor, and M. N. Ayyaz, “Design and Evaluation of Disk Scheduling

Policies for High-Demand Multimedia Servers,” In Proc. International Conference on

Data Engineering (ICDE), pp. 592-599, 1999.

[73] Sooncheol Kim, Cheolmin Kim, and Yookun Cho,“An Effective Resource Management

for Variable Bit Rate Video-On-Demand Server,” In Proc. 23rd Euromicro Conference,

1997.

[74] H. J. Kim and Y. Zhu, “Channel Allocation Problem in VoD System Using Both

Batching and Adaptive Piggybacking,” IEEE Trans. Consumer Electronics, Vol. 44(3),

pp. 969-976, 1998.

[75] S. E. Kim, A. Sivasubramaniam, and C. R. Das, “Analyzing Cache Performance for

Video Servers,” In Proc. International Conference on Parallel Processing Workshops, pp.

38-47, 1998.

[76] S. Kim and Y. Choi, “An Efficient Cache Replacement Algorithm for Digital Televi-

sion Environment,” In Proc. IEEE Region 10 Technical Conference (TENCON), Cheju,

Korea, Sep.1999.

[77] B. Krishnamurthy and C. E. Wills, “Proxy Cache Coherency and Replacement - To-

wards a More Complete Picture,” In Proc. 19th IEEE International Conference on Dis-

tributed Computing Systems, pp. 332-339, 1999.

[78] R. Krishnan, D. Venkatesh, and T. D. C. Little, “A Failure and Overload Tolerance

Mechanism for Continuous Media Servers,” In Proc. ACM Multimedia, 1997.

[79] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem,” IEEE/ACM

Trans. Networking, Vol. 8(5), 2000.

128



[80] J. Korst,“Random Duplicated Assignment: An Alternative to Striping in Video

Servers,” In Proc. ACM Multimedia, 1997.

[81] J. B. Kwon and H. Y. Yeom, “Providing VCR Functionality in Staggered Video Broad-

casting,” IEEE Trans. Consumer Electronics, Vo.48(1), 2002.

[82] S. Lau and J. C. S. Lui, “Scheduling and Data Layout Policies for a Near-line Mul-

timedia Storage Architecture,” ACM/Springer-Verlag Multimedia System, Vol. 5, pp.

310-323, 1997.

[83] S. Lau, J. C. S. Lui, and L. Golubchik, “Merging Video Streams in a Multimedia

Storage Server: Complexity and Heuristics,” ACM/Springer-Verlag Multimedia System,

Vol. 6, pp. 29-42, 1998.

[84] Donghee Lee, Jongmoo Choi, Honggi Choe, S. H. Noh, S. L. Min, and Yookun Cho,

“Implementation and Performance Evaluation of the LRFU Replacement Policy,” In

Proc. 23th Euromicro Conference, pp. 106-111, 1997.

[85] K. Lee, J. B. Kwon, and H. Y. Yeom, “Exploiting Caching for Realtime Multimedia

Systems,” In Proc. Sixth IEEE International Conference on Multimedia Computing and

Systems, 1999.

[86] Chien-I Lee, Ye-In Chang, and Wei-Pang Yang, “An Efficient Strategy to Support

Continuous Retrieval with Dynamic Bandwidths,” In Proc. Seventh International Con-

ference on Parallel and Distributed Systems, 2000.

[87] J. Y. B. Lee, “Parallel Video Servers - A Tutorial,” IEEE Multimedia, Vol. 5(2), 1998.

[88] J. Y. B. Lee,“Concurrent Push-A Scheduling Algorithm for Push-Based Parallel Video

Servers,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 9(3), 1999.

129



[89] J. Y. B. Lee and P. C. Wong, “Performance Analysis of a Pull-Based Parallel Video

Server,” IEEE Trans. Parallel and Distributed Systems, Vol. 11(12), 2000.

[90] J. Y. B. Lee, “Supporting Server-Level Fault Tolerance in Concurrent-Push-Based

Parallel Video Servers,” IEEE Trans. Circuits and Systems for Video Technology, Vol.

11(1), 2001.

[91] J. Y. B. Lee, “Buffer Management and Dimensioning for a Pull-Based Parallel Video

Server,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 11(4), 2001.

[92] J. Y. B. Lee, “On a Unified Architecture for Video-on-Demand Services,” IEEE Trans.

Multimedia, Vol. 4, Mar.2002.

[93] J. Y. B. Lee and J. C. S. Lui, “Automatic Recovery from Disk Failure in Continuous-

Media Servers,” IEEE Trans. Parallel and Distributed Systems, Vol. 13(5), 2002.

[94] A. Leff, J. Wolf, and P. S. Yu, “Efficient LRU-based Buffering in a LAN Remote

Caching Architecture,” IEEE Trans. Parallel and Distributed Systems, Vol. 7(2), pp.

191-206, Feb.1996.

[95] M. Y. Y. Leung, J. C. S. Lui, and L. Golubchik, “Use of Analytical Performance Models

for System Sizing and Resource Allocation in Interactive Video-on-Demand Systems

Employing Data Sharing Techniques,” IEEE Trans. Knowledge and Data Engineering,

Vol. 14(3), 2002.

[96] V. O. K. Li and W. Liao,“Distributed Multimedia Systems,” In Proc. IEEE, Vol. 85,

Jul. 1997.

[97] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby, “On the Optimal Place-

ment of Web Proxies in the Internet” In Proc. INFOCOM, Vol. 3, pp. 1282-1290, 1999.

130



[98] W. Liao and V. O. K. Li, “The Split and Merge Protocol for Interactive Video-on-

Demand,” IEEE Multimedia, Vol. 4(4), 1997.

[99] F. Y. -S. Lin, “Optimal Real-time Admission Control Algorithms for the Video-On-

Demand (VOD) Service,” IEEE Trans. Broadcasting, Vol. 44(4), Dec.1998.

[100] H. Lim and D. H. C. Du, “Protocol Considerations for Video Prefix-caching Proxy

in Wide Area Networks,” Electronics letters, Vol. 37(6), Mar.2001.

[101] C. Lindemann and O. Waldhorst, “Evaluating Hardware and Software Web Proxy

Caching Solutions,” Report for Milestone 1 of the Project “Analysis of the Effectiveness

of Web Caching in the Gigabit Research Network G-WiN”, supported by the DFN-Verein

with funds of the BMBF, Nov.2000.

[102] A. Luotonen, “ Web Proxy Servers,” Prentice Hall PTR, Upper Saddle River, NJ

07458, 1997.

[103] T. D. C. Little and D. Venkatesh, “Prospects for Interactive Video-on-Demand,”

IEEE Multimedia, Vol. 1, 1994.

[104] M. Makpangou, G. Pierre, C. Khoury, and N. Dorta, “Replicated Directory Ser-

vice for Weakly Consistent Distributed Caches,” In Proc. International Conference on

Distributed Computing Systems (ICDCS), May 1999.

[105] M. Mahran, M. Hashem, A. Mohamed, and A. Taha, “Design and Implementation

of a Distance Educational System,” In Proc. Meditarranean Electrotechnical Conference

(MELECON), 2002.

[106] E. P. Markatos and C. E. Chronaki, “A TOP-10 Approach to Prefetch on Web,” In

Proc. International Networking conference (INET), 1998.

131



[107] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson, “Adaptive

Web Caching: Towards a New Global Caching Architecture,”Computer Networks and

ISDN Systems, Vol. 30(22-23), pp. 2169-2177, Nov. 1998.

[108] Micron Crucial PC2100 128MB DDR-SDRAM Memory Review, http://www.a1-

electronics.co.uk/Memory/DDR CrucialPC2100.shtml.

[109] Microsoft Corporation Homepage, http://www.microsoft.com.

[110] P. V. Mundur, “An Intergrated Approach to End-to-End Analysis of Distributed

Video-on-Demand Systems,” Ph.D thesis of George Mason Univerity of Virginia, 2000.

[111] E. J. O’Neil, P. E. O’Neil, and G. Weikum.“The LRU-K Page Replacement Algorithm

for Database Disk Buffering,” In Proc. ACM SIGMOD International Conference on

Management of Data, 1993.

[112] B. Ozden, R. Rastogi, and A. Silberschatz, “A Framework for the Storage and Re-

trieval of Continuous media Data,” In Proc. International Conference on Multimedia

Computing and Systems, 1995.

[113] B. Ozden, R. Rastogi, and A. Silberschatz, “Buffer Replacement Algorithms for Mul-

timedia Databases,” Multimedia Information Storage and Management, ed by S.Chung,

pp. 163-180, Kluwer Academic Publishers, Boston, MA, 1996.

[114] H. H. Pang, B. Jose, and M. S. Krishnan, “Resource Scheduling in a High-performance

Multimedia Server,” IEEE Trans. Knowledge and Data Engineering, Vol. 11(2), 1999.

[115] S. C. Park, Y. W. Park, and Y. E. Son, “A Proxy Server Management Scheme for

Continuous Media Objects Based on Object Partitioning,” In Proc. Eighth International

Conference on Parallel and Distributed Systems, pp. 26-29, Jun. 2001.

132



[116] Sang-Hyun Park, Jae-Won Kim and Sung-Jea Ko, “MPEG I-Frame Arrangement and

Admission Control for Video-on-Demand Systems,” IEEE Trans. Consumer Electronics,

Vol. 48(1), 2002.

[117] J. -F. Paris, “A Fixed-Delay Broadcasting Protocol for Video-on-Demand,” In Proc.

ICCCN, 2001.

[118] G. Pierre, M. V. Steen, and A. S. Tanenbaum, “Dynamically Selecting Optimal

Distribution Strategies for Web Documents,” IEEE Trans. Computers, Vol. 51(6), 2002.

[119] M. Pinedo, “Scheduling : Theory, Algorithms, and Systems,” Englewood Cliffs, N.J.

: Prentice Hall, 1995.

[120] B. Ping, B. Prabhakaran, and A. Srinivasan, “Retrieval Scheduling for Collaborative

Multimedia Presentations”, ACM/Springer-Verlag Multimedia Systems, Vol. 8(2), pp.

146-155, 2000.

[121] W. -F. Poon, K. -T. Lo, and J. Feng, “A Hybrid Delivery Strategy for a Video-on-

Demand System With Customer Reneging Behavior,” IEEE Trans. Broadcasting, Vol.

48(2), 2002.

[122] D. Povey and J. Harrison, “A Distributed Internet Cache,” In Proc. 20th Australasian

Computer Science Conference, Feb.1997.

[123] M. Rabinovich, J. Chase, and S. Gadde, “Not All Hits Are Created Equal: Coopera-

tive Proxy Caching Over a Wide-area Network,” Computer Networks and ISDN system,

Vol. 30(22-23), pp. 2253-2259, 1998.

[124] P. V. Rangan, H. M. Vin, and S. Ramanathan, “Designing an On-Demand Multime-

dia Service,” IEEE Communications Magazine, pp. 56-64, 1992.

133



[125] P. V. Rangan and H. M. Vin, “Efficient Storage Techniques for Digital Continuous

Media,” IEEE Trans. Knowledge and Data Engineering, Vol. 5(4), Aug. 1993.

[126] A. L. N. Reddy and J. Wyllie, “I/O Issues in a Multimedia System,” IEEE computer,

Vol. 27(3), pp. 67-74, 1994.

[127] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia Proxy Caching Mechanism

for Quality Adaptive Streaming Applications in the Internet,” In Proc. INFOCOM, 2000.

[128] “Relais: Cooperative Caches for the World-Wide Web,” http://www-

sor.inria.fr/projects/relais/index.html.en.

[129] L. Rizzo and L. Vicisano, “Replacement Policies for a Proxy Cache,” IEEE/ACM

Trans. Networking, Vol. 8(2), Apr.2000.

[130] L. Roberts, “Internet Growth Trends,” IEEE Computer, Jan.2000.

[131] P. Rodriguez, C. Spanner, and E. W. Biersack, “Web Caching Architectures: Hier-

archical and Distributed Caching,” In Proc. International Workshop on Web Content

Caching and Distribution (WCW), 1999.

[132] Y. Rompogiannakis, G. Nerjes, P. Muth, M. Paterakis, and P. Triantafillou, “Disk

Scheduling for Mixed-Media Workloads in a Multimedia Server,” In Proc. ACM Multi-

media, 1998.

[133] D. Rotem and J. L. Zhao, “Buffer Management for Video Database Systems,” In

Proc. Eleventh International Conference on Data Engineering, 1995.

[134] Y. Saito, “Optimistic Replication Algorithms,” In Proc. International Symposium on

Distributed Computing, 2000.

134



[135] J. R. Santos and R. Muntz, “Performance Analysis of the RIO Multimedia Storage

System with Heterogeneous Disk Configurations,” In Proc. ACM Multimedia, pp. 300-

308, 1998.

[136] P. Scheuermann, J. Shim, and R. Vingralek, “A Case for Delay-conscious Caching of

Web Documents,” Computer Networks and ISDN Systems, Vol. 29(8-13), pp. 997-1005,

1997.

[137] SCSI Hard Disk Drives & SCSI Controller Cards, http://www.a1-

electronics.co.uk/PcHardware/HardDrives/SCSI diskdrives.shtml.

[138] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for Multimedia Streams,”

In Proc. INFOCOM, Vol. 3, pp. 1310-1319, 1999.

[139] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri,“On Scheduling Atomic and

Composite Continuous Media Objects,” IEEE Trans. Knowledge and Data Engineer-

ing, Vol. 14(2), 2002.

[140] P. Shenoy and H. M. Vin, “Cello: A Disk Scheduling Framework for Next Genera-

tion Operating Systems,” In Proc. ACM SIGMETRICS, the Internation Conferenc on

Measurement and Modeling of Computer System, pp. 44-55, 1998.

[141] S. Sheu and K. A. Hua, “Virtual Batching: A New Scheduling Technique for Video-

on-Demand Servers,” In Proc. Fifth International Conference on Database Systems for

Advanced Applications, Apr.1997.

[142] S. S. Y. Shim and Yen-Jen Lee, “Interactive TV: VoD Meets the Internet,” IEEE

Computer, Vol. 35(7), 2002.

135



[143] A. Sikeler, “Var-page-LRU: A Buffer Replacement Algorithm Supporting Different

Page Sizes,” In Lecture Notes in Computer Science 303 ed by G. Goos and J. Hartmanis,

pp. 336-351, Springer Verlag, 1988.

[144] W. D. Sincoskie, “Video on Demand: Is it Feasible?” In Proc. GLOBECOM, Vol. 1,

pp. 201-205, 1990.

[145] M. Sinnwell and G. Weikum, “A Cost-Model-Based Online Method for Distributed

Caching,” In Proc. 13th International Conference on Data Engineering, 1997.

[146] D. Sitaram and A. Dan , “Multimedia servers : Design, Environments, and Applica-

tions ”,San Francisco, Calif. : Morgan Kaufman Pub, 1999.

[147] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and Effective Adaptive

Page Replacement,” Measurement and Modeling of Computer Systems, 1999.

[148] B. Sonah and M. R. Ito, “Cache Transparency in VoD system: Taking Advantage of

Viewers’ Flexibility,” In Proc. Third International Conference on Computational Intelli-

gence and Multimedia Applications, Sep.1999.

[149] B. Sonah and M. R. Ito, “Merging Interval Caching with Adaptive Viewers’ Bias

Based on Caching Strategy,” In Proc. Twenty-Third Annual International Computer

Software and Applications Conference, Oct.1999.

[150] Squid: Freely Available, Open Source Caching Software, http://www.squid-

cache.org/.

[151] R. Steinmetz and K. Nahrstedt, “Multimedia: Computing, Communications, and

Applications,” Upper Saddle River, NJ : Prentice Hall, 1995.

[152] G. Stix, “The Triumph of the Light”, Scientific American, Jan. 2001.

136



[153] “STREAM: Sustainable Memory Bandwidth in High Performance Computers,”

http://www.cs.virginia.edu/stream/.

[154] “Streaming MultiMedia Data,” http://www.teamsolutions.co.uk/streaming.html.

[155] Xueyan Tang and S. T. Chanson,“Coordinated En-route Web Caching,” IEEE Trans.

Computers, Vol. 51(6), Jun 2002.

[156] R. Tewari, R. P. King, D. Kandlur, and D. M. Dias, “Placement of Multimedia

Blocks on Zoned Disks,” In Proc. IS&T/SPIE Multimedia Computing and Networking,

Jan.1996.

[157] R. Tewari, H. Vin, A. Dan, and D. Sitaram, “Resource-based Caching for Web

Servers,” In Proc. Proc. ACM/SPIE Multimedia Computing and Networking, 1998.

[158] R. Tewari, M. Dahlin, H. M. Vin, and J. Kay, “Beyond Hierarchies: Design Consider-

ations for Distributed Caching on the Internet,” Technical Report CS98-04, Department

of Computer Sciences, UT Austin, Texas, USA, May 1998.

[159] Tsun-Ping J. To and B. Hamidzadeh, “Dynamic Real-time Scheduling Strategies for

Interactive Continuous Media Servers, ” ACM/Springer-Verlag Multimedia Systems, Vol.

7(2), 1999.

[160] J. Tse and A. J. Smith, “CPU Cache Prefetching: Timing Evaluation of Hardware

Implementations,” IEEE Trans. Computers, Vol. 47(5), May 1998.

[161] S. Uehara, O. Mizuno, and T. Kikuno, “An Implementation of Electronic Shopping

Cart on the Web System Using Component-object Technology,” In Proc. Sixth Interna-

tional Workshop on Object-Oriented Real-Time Dependable Systems, 2001.

137



[162] V. Valloppillil and K. W. Ross, “Cache Array Routing Protocol v1.0,”

http://icp.ircache.net/carp.txt.

[163] B. Veeravalli and G. D. Barlas, “Access Time Minimization for Distributed Multi-

media Applications,” Multimedia Tools and Applications, Kluwer Academic Publishers,

Vol. 12(2/3), pp. 235-256, Nov.2000.

[164] H. M. Vin, P. Goyal, and A. Goyal, “A Statistical Admission Control Algorithm for

Multimedia Servers,” In Proc. ACM Multimedia, 1994.

[165] H. M. Vin, A. Goyal, and P. Goyal, “Algorithms for Designing Large-Scale Multime-

dia Servers,” Computer Communications, Vol. 18(3), 1995.

[166] S. Viswanathan and T. Imielinski, “Metropolitan Area video-on-demand Service Us-

ing Pyramid Broadcasting,” ACM/Springer-Verlag Multimedia Systems, Vol. 4, pp. 197-

208, 1996.

[167] O. Verscheure, C. Venkatramani, P. Frossard, and L. Amini, “Joint Server Scheduling

and Proxy Caching for Video Delivery,” Computer Communication, Vol. 25, 2002.

[168] Y. Wang, J. C. L. Liu, D. H. C. Du, and J. Hsieh, “Efficient Video File Allocation

Schemes for Video-on-Demand Services,” ACM/Springer-Verlag Multimedia System, Vol.

5(5), 1997.

[169] Y. Wang, Z. L. Zhang, D. H. C. Du, and D. Su, “A Network Conscious Approach

to End-to-End Video Delivery over Wide Area Networks Using Proxy Servers,” In Proc.

IEEE INFOCOM, Apr. 1998.

[170] D. Wessels and K. Claffy, “ICPv2 Protocol Specification,” IETF RFC 2186, Sep.1997.

138



[171] D. Wessels and K. Claffy, “ICPv2 Application Specification,” IETF RFC 2187,

Sep.1997.

[172] P. White and J. Crowcroft, “Optimized Batch Patching with Classes of Service,”

ACM Communications Review, Oct.2000.

[173] S. Williams, M. Abrams, C.R.Standridge, G.Abdulla, and E.A.Fox, “Removal Policies

in Network Caches for World-Wide Web Documents,”, In Proc. Conference on Applica-

tions, Technologies, Architectures, and Protocols for Computer Communications, Aug.

1996.

[174] R. Wijayaratne and A. L. N. Reddy, “Integrated QoS management for Disk I/O,”

In Proc. IEEE International Conference on Multimedia Computing and Systems, Vol. 1,

pp. 487-492, 1999.

[175] J. L. Wolf, P. S. Yu, and H. Shachnai, “Disk Load Balancing for Video-on-Demand

Systems,” ACM/Springer-Verlag Multimedia System, Vol. 5(6), 1997.

[176] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy,

“On the Scale and Performance of Cooperative Web Proxy Caching,” In Proc. 17th

ACM Symposium on Operating Systems Principles, Dec. 1999.

[177] R. P. Wooster and M. Abrams, “Proxy Caching that Estimates Page Load Delays,”

Computer Networks and ISDN Systems, Vol. 29(8-13), pp. 977-986, Sep. 1997.

[178] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling Algorithms for Modern

Disk Drives,” In Proc. ACM SIGMETRICS, 1994.

[179] Min-You Wu and W. Shu, “Efficient Support for Interactive Browsing Operations in

Clustered CBR Video Servers,” IEEE Trans. Multimedia, Vol. 4(1), 2002.

139



[180] Zhe Xiang, Zhun Zhong, and Yuzhuo Zhong, “A Cache Cooperation Management

for Wireless Multimedia Streaming,” In Proc. International Conference on Information

Technology and Information Networks (ICII), 2001.

[181] N. Young, “On-line Caching as Cache Size Varies,” In Proc. Second Annual ACM-

SIAM Symposium on Discrete Algorithms, pp. 241-250, Jan. 1991.

[182] P. S. Yu, M. S. Chen, and D. D. Kandlur, “Grouped Sweeping Scheduling for

DASD-based Multimedia Storage Management,” ACM/Springer-Verlag Multimedie Sys-

tem, Vol. 1(3), pp. 99-109, 1993.

[183] Q. Zhang and J. -F. Paris, “A Channel-Based Heuristic Distribution Protocol for

Video-on-Demand,” In Proc. IEEE International Conference on Multimedia and Expo

(ICME), 2002.

[184] A. N. Zincir-Heywood, M. I. Heywood, and C. R. Chatwin, “Object-Orientated De-

sign of Digital Library Platforms for Multiagent Environments,” IEEE Trans. Knowledge

and Data Engineering, Vol. 14(2), 2002.

140



Appendix A: Author’s Publication

[1] Li-gang Dong, B. Veeravalli and C.C. Ko, ”Design and Analysis of Efficient Remote

Caching Strategies for LAN based Architectures,” In Proc. IEEE International Conference

on Networks, Singapore, 2000.

[2] Li-gang Dong, V. Bharadwaj, and C. C. Ko, ”Multiple Servers Retrieval Strategy for

Movie On Demand Multimedia Services on Distributed Networks”, In Proc. Internet and

Multimedia Systems and Applications (IMSA), Las Vegas, Florida, Nov. 2000.

[3] Li-gang Dong, B. Veeravalli and C.C. Ko, “Efficient Movie Retrieval Strategies for

Movie-On-Demand Multimedia Services on Distributed Networks,” Accepted by Multime-

dia Tools and Applications, Kluwer Academic, Aug.2001.

[4] Li-gang Dong and B. Veeravalli, “Design of Object Replacement Strategies for Co-

operative Web Proxy Caching,” Accepted by Multimedia Tools and Applications, Kluwer

Academic, Jun. 2002.

[5] Li-gang Dong and B. Veeravalli, “Design and Analysis of a Variable Bit Rate Caching

Algorithm for Continuous Media Data,” submitted to IEEE Trans. Circuits and System

for Video Technology, Jan. 2002.

[6] Li-gang Dong, B. Veeravalli, and Viktor K. Prasanna, “Design and Analysis of Interval-

level Caching Strategies for Continuous Media Data,” submitted to ACM/Springer-Verlag

Multimedia Systems, Feb. 2002.

141


