UNIVERSITY OF OSLO

Department of Informatics

Using TCP/IP traffic
shaping to achieve 1SCSI
service predictability

Master thesis

Jarle Bjorgeengen
Oslo University College
Oslo University /USIT

May 26, 2010

https://core.ac.uk/display/30826688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis reproduces the properties of load interference common in many
storage devices using resource sharing for flexibility and maximum hardware
utilization. The nature of resource sharing and load is studied and compared
to assumptions and models used in previous work. The results are used to de-
sign a method for throttling iSCSI initiators, attached to an iSCSI target server,
using a packet delay module in Linux Traffic Control. The packet delay throttle
enables close-to-linear rate reduction for both read and write operations. Ipt-
ables and Ipset are used to add dynamic packet matching needed for rapidly
changing throttling values. All throttling is achieved without triggering TCP
retransmit timeout and subsequent slow start caused by packet loss. A control
mechanism for dynamically adapting throttling values to rapidly changing
workloads is implemented using a modified proportional integral derivative
(PID) controller. Using experiments, control engineering filtering techniques
and results from previous research, a suitable per resource saturation indicator
was found. The indicator is an exponential moving average of the wait time of
active resource consumers. It is used as input value to the PID controller man-
aging the packet rates of resource consumers, creating a closed control loop
managed by the PID controller. Finally a prototype of an autonomic resource
prioritization framework is designed. The framework identifies and maintains
information about resources, their consumers, their average wait time for ac-
tive consumers and their set of throttleable consumers. The information is
kept in shared memory and a PID controller is spawned for each resource,
thus safeguarding read response times by throttling writers on a per-resource
basis. The framework is exposed to extreme workload changes and demon-
strates high ability to keep read response time below a predefined threshold.
Using moderate tuning efforts the framework exhibits low overhead and re-
source consumption, promising suitability for large scale operation in produc-
tion environments.

Acknowledgements
I would like to express my gratitude to the following people:

* Management at the University of Oslo’s Central IT Department (USIT)
for having the guts and ability to make long term investment in increased
competency, and for being a great place to work.

* Kjetil Kirkebe for advocating the arrangement with my employer, and
for flexible work arrangements during studies.

* Mark Burgess for initiating this master program, and for support and
encouragement through a tedious and bureaucratic application process.

e Walter Martin Tveter, Bard Jakobsen, and Petter Reinholdtsen for sup-
port and advice during the before mentioned application process.

¢ The master program committee for their positive attitude and support
during the application process.

* The appeal committee at the Faculty of Mathematics and Natural Sci-
ences at the University of Oslo, for reversing the decision to reject my
application for the master program.

* Harek Haugerud for good advice during thesis writing and for his calm
and empathic way of conveying knowledge to students.

* AEleen Frisch for thorough feedback on language and structure in the
thesis.

¢ Kyrre Begnum for very useful thesis seminars, support through the progress
and his profession oriented, enthusiastic and excellent teaching.

¢ Hugo Hammer for advice about statistical methods.

* The other teachers at Oslo university College for friendly and attentive
attitude when asked for help.

* My colleagues at the University of Oslo / USIT for general advice and
being a massive source of professional knowledge.

* My classmates for fruitful discussions during the course of the master
program.

* My lovely wife and my family for their patience through the studies.

Contents

1 Introduction

1.1
1.2

Motivation e
Problem statement

2 Background material and previous work

21
2.2

2.3

24

2.5

2.6
2.7

2.8

About resource sharing L L
SAN history
221 Theearlydays.
222 SANtechnologies
Aspects of storage consolidation
Traffic shaping (TS) and Quality of Service (QoS)
241 QoScoremodels,
Linuxand QoS
251 Thenetworklayer.
252 Theblocklayer
SCSL . . . e
iSCSL . .
271 PerformanceofiSCSI
272 QoSandiSCSI
2.7.3 iSCSI stability and enterprise readiness
QoSInSAN/NAS
281 Stonehenge. L.
282 Cello
283 Facade oLl
284 Triage Lo
285 Argon. e
286 Chameleon.
287 SARC/AVATAR
288 AQUA
289 FourtagSFQ
2.8.10 Modeling iSCSI delay bounds
2.8.11 AdaptiveSFQ L
2.8.12 ModelingRAIDs

CONTENTS

29 Summary

Methodology

31 Systemmodel

3.2 Toolsand equipment
321 Generatingworkload 0oL
3.22 Measuring system behavior
3.2.3 Hardware specifications
3.24 Monitoring the network connection
325 Getting persistent devicenames.
3.2.6 Setting up bandwidth limitation
3.2.7 Delay limitation
3.2.8 Using Iptables and Ipset to classify traffic
329 Argususage e

33 Challenges o
33.1 Networkinstability
332 LVMinstability

System design

4.1 Choosing a throttlingmethod

42 Discussion of the delay method
421 Risks
422 Advantages

43 Bottlenecklocation

44 Throttlingdecision
441 Inputsignal
442 Outputsignal
443 Tuning of the PID controller

45 Automated operation L
4.5.1 Automatic population of throttlingsets
4.5.2 Automatic determination of saturation monitors
453 Perresource PIDcontrol

Results

51 Without throttling
5.2 Throttling by bandwidth limitation
5.3 Throttling by packetdelay
5.4 Introduced delay vs throughput
5.5 Interference between loads demonstrated
5.6 Effect of throttling on waittime
5.7 PID control of responsetime
5.8 Measuringoverhead
59 Automated PID control approach

3

6 Discussion and conclusion 89

6.1 Approachreview, 89
6.2 Toolsused 90
6.3 Identification of resource utilization 91
6.4 Effectof interference 91
6.5 Effects of throttling 92
6.6 Throttling decision 93
6.7 An automated framework 94
6.8 Throttlingoverhead0 . 95
6.9 Future work and suggested improvements 96
6.10 Conclusion 98
A T1/O Throttlers 109
B Interface queueing setup 123
C Other scripts 127
D Collection of fio job definitions 149
E Collection of commands 151

List of Figures

1.1

3.1
3.2

3.3

34

3.5

3.6

4.1

General example of resource saturation vs. response time 9
Concept sketch of thelabsetup 38
Experiment automated workflow. The workflow and collected

data is the same for all experiments, except those in chapter 5.4. 39
Graph depicting the egress queues used for bandwidth outgo-

ing limitations o o oo 47
Graph depicting the egress queues used for packet delay in both
directions 49
Comparison between initiator, network and target-logical-volume
rateswhenreading 51
Comparison between initiator, network and target-logical-volume
rateswhenwriting, . 52
Principle of throttling by delaying packets 58

4

LIST OF FIGURES

4.2 Comparison of average wait time of the iSCSI block device and
the logical volume servicing it on the target server, when run-
ning 6 interfering write threads from 3 other machines 61

4.3 Finding a reasonable moving average. Blue is actual samples
from small job. The green plot shows the moving median with

wsize=6. The red plot shows the EWMA witha = 0.15. 63
4.4 Block diagram of a PID controller. Created by [101]. Licensed

under the terms of Creative Commons Attribution 2.5 Generic. . 66
45 Automated controller framework overview 68

5.1 Equal sequential read load from four identically equipped blade
servers without throttling 72

5.2 Throttling of initiator’s sequential read activity using Hierarchi-
cal Token Bucket bandwidth (HTB) limitation in tc(1). Two in-
dependent runs are stacked on top of each other for verification

of result repeatability. 74
5.3 Throttling of initiator’s sequential read activity using delayed

ACK packets in tc(1) (See Figure 3.2.7). 76
5.4 Throttling of initiator’s sequential write activity using delayed

ACK packets in tc(1) (See Figure 3.2.7). 76

5.5 Repeated measurements of the time used to read 200 MB with
stepwise increase in artificial delay of outgoing packets from tar-
getserver.. 78

5.6 Repeated measurements of the time used to write 200 MB with
stepwise increase in artificial delay of outgoing packets (ACK
packets) from targetserver.. L 78

5.7 The effect on average wait time for smalljob on b2 with interfer-
ing write activity from 1 and 3 other machines respectively. .. 80

5.8 The effect on small job’s wait time when throttling interfering
loads with delays of 4.6 ms and 9.6 ms respectively. 81

5.9 The average wait time of a rate limited (256kB/s) random read
job interfered by 12 write threads started simultaneously and re-
peated with 5 seconds pause in between. The black plot shows
the effect with free resource competition. The colored plots show
how the PID regulator keeps different response time thresholds
by regulating interfering workloads. 82

5.10 The aggregated throughput caused by throttling to keep laten-
cies at the set thresholds in Figure59. 83

5

511

5.12

5.13

6.1

The average wait time of a rate limited (256kB/s) random read
job interfered by 12 write threads started simultaneously and re-
peated with 5 seconds pause in between. The black plot shows
the effect with free resource competition. The colored plots show
how the PID regulator keeps different response time thresholds
by regulating interfering workloads. In this plot, the resource
saturation indicator and the set of throttleable host are main-
tained automatically.
The aggregated throughput caused by throttling to keep laten-
cies at the set thresholds in Figure5.11
The resource average wait time, the throttling delay and the ag-
gregated write rate with a set resource-wait-time-threshold of
15ms

Illustration of how the framework could be utilized as an inde-
pendent black box with limited array knowledge.

List of Tables

3.1
3.2
3.3

IBM blade server specifications
Dell iSCSI server specifications
IBM Bladecenter switch specifications

Chapter 1

Introduction

1.1 Motivation

Consolidation of server and storage resources is an ongoing trend in the IT
business, driven by economy-of-scale benefits [1, 2]. Consolidation of disk
resources into SANs has been going on for 10 - 15 years, and centralized pools
of storage resources are now the rule rather than the exception.

The University of Oslo is no exception to the trend, and has a growing number
of centralized storage pools based on Storage Area Network (SAN) technolo-
gies from different vendors. On several occasions the lack of predictability of
these devices’ service availability has been suprising. The total performance
benefit of spreading a workload across large physical resource pools is accom-
panied by a major cost with respect to load interference. Several times it was
experienced that a few storage consumers’ activity adversely affected a large
amount of other consumers’ ability to meet their performance requirements.

In order to utilize centralized storage pools, mechanisms for dividing a pool’s
resources into suitable chunks is needed. These mechanisms usually involve
some kind of virtualization technology. Virtualization provides the elasticity
and adaptability required to make consolidation feasible.

Early SAN technology exclusively utilized dedicated fibrechannel (FC) net-
works. Such networks use special purpose HBAs (Host Bus Adapters), switches
and storage arrays. The cost of acquiring and operating such solutions was ini-
tially very expensive, but has become less expensive with increased adoption.
FC SANSs represented the only technology that could provide sufficient perfor-
mance and capacity for the enterprise data storage purpose.

7

CHAPTER 1. INTRODUCTION

This is about to change. As the performance of standard Ethernet equipment
is increasing, with its cost remaining low due to production volume and com-
petition, new methods for accessing SAN storage have evolved. A recent and
growing trend is to utilize standard Ethernet network equipment for transport
of SCSI (Small Computer System Interface) commands. The most widely, and
increasingly, used protocol for this purpose is the iSCSI (internetSCSI) proto-
col. Predictions from several storage analysts [3, 4] forecast that the market for
iSCSI based storage solutions has definitely entered the mainstream adoption
phase.

To achieve performance, optimal hardware resource utilization and flexible re-
source allocation, all SAN solutions imply some kind of resource sharing. This
resource sharing is vital for the benefits mentioned, but there is a flip side to
this “resource sharing model”: storage consumers’ behavior will impact avail-
able capacity for other consumers unless there is a prioritization mechanism in
place and when utilization of a resource approaches 100% of its capacity, new
consumer requests’ response time increases dramatically.

The University of Oslo utilizes HP Storageworks EVA8000 SAN disk-arrays for
storing large amounts of important application data. Despite many years of re-
search within QoS for Storage, these storage devices illustrate how the ability
to prioritize storage performance for consumers’ disparate needs is still not
an available option (See chap 2.8), even for expensive disk systems like the HP
Storageworks EVA. At the University of Oslo there are several examples where
single applications on single computers are able to monopolize all storage re-
sources. This is particularly true for consumers sharing EVA disk-groups. The
lack of ability to prioritize loads increases response time uncertainty for nu-
merous important applications, a situation that potentially leads to downtime
for a large number of users (See illustration in figure 1.1). At the time of writ-
ing, the previously mentioned disk systems does not come with efficient tools
to discover which storage consumer is the culprit in such situations without
expert knowledge.

Resource sharing is good for enabling large scale consolidation with the economy-
of-scale benefits, but it also adds a cost: reduced predictability of service avail-
ability for any storage consumer sharing resources with others. Service Level
Agreements (SLAs) presupposes predictability in service delivery (see also
section 2.3). Lower predictability is caused by the lack of prioritization func-
tionality in storage devices. This condition makes it hard, or impossible, to
make keepable promises in the form of Service Level Agreements, and ulti-
mately increases the risk for SLA violations.

1.2. PROBLEM STATEMENT

System availability SLA broken => unavailable

Respoinse time

" hpedes oy

| System response time SLA broken => slow

Resource consumption

Figure 1.1: General example of resource saturation vs. response time

1.2 Problem statement

Motivated by chapter 1.1, this project explores novel methods of utilizing well
known and trusted tools as a means to mend the reduced predictability intro-
duced by resource sharing in iSCSI storage devices.

Even though most FC SAN storage appliances do not have mechanisms for
prioritization, and implementing such mechanisms in FC SANs is hard, the
emergence of IP-based SANs, with iSCSI as the most widely used variant, in-
creases the solution space for implementing such mechanisms. Qualified spec-
ulations may suggest that the overhead introduced by allowing I/O requests
to traverse an extra layer of abstraction, namely the TCP network layer, makes
iSCSI unsuitable in high performance SAN environments. These speculations
is analyzed and partly refuted in chapter 2. But what is just as interesting, is
the opportunity to utilize well known QoS tools from the networking world to
create a unified QoS picture including both storage and network resources.

Difficulties in trusting prioritization mechanisms to do the right thing, in a
mission critical environment, can be an inhibitor for adopting them [5]. Many
of the current approaches to storage QoS involve intrusive techniques (see

9

CHAPTER 1. INTRODUCTION

chap 2), imposing a new mechanism in between the client and the server. In-
trusive approaches like this, and those which depend on client side schedul-
ing/throttling, face a higher need for reasoning to convince users to trust the
mechanisms. Also, the obvious disadvantage of needing to modify clients is
the uncertainty about whether some clients have not been modified, since fail-
ure to do so let these clients bypass the QoS framework. The advantage of
using TCP traffic shaping is that the same effect can be achieved by throttling
the TCP traffic so that the client rates is adapted without the need to install
extra software or drivers on clients.

The following problem statement guides the direction and experimental de-
cisions in the thesis. The sole purpose of thesis is to answer these research
questions with high confidence.

Formulate a non-intrusive approach for doing load prioritization in iSCSI SAN ap-
pliances utilizing multiple metrics and Linux traffic control for 1/O throttling using a
limited scope prototype.

1. Identify a suitable approach to use Linux Traffic Control as the throttling
mechanism for iSCSI initiators.

2. Identify metrics for various resources of a Linux based iSCSI appliance
in order to obtain continuous knowledge of their utilization.

3. Verify the anticipated effects of workload interference.
4. Verity the anticipated effects of workload throttling.

5. Design mechanisms for using this data to make prioritization decisions,
including dynamic prioritization, when contention occurs.

6. Formulate an approach for making automatic policy decisions based on
workload behavior.

7. Investigate any overhead of the TCP traffic shaping mechanism.

10

Chapter 2

Background material and previous
work

This chapter introduces the reader to the concept of resource sharing, Quality
of Services (QoS) relevant history of storage evolution and attempts of QoS in
storage devices.

2.1 About resource sharing

In its most fundamental form, a resource can be thought of as collection of
assets of some particular type. What characterizes any resource is its utility
and limited availability. The limitation of it might be the total amount or the
rate at which it is available (amount/time unit). We usually call this limit the
capacity or capability of the resource.

Resources is closely tied to its consumers. If resource don’t have any con-
sumers it could hardly be called a resource, since it is lacking the core charac-
teristic of utility. Consumers utilize resources and more often than not there are
several consumers of any resource. Very often the consumers themselves offer
some kind of utility to other consumers, which in turn is utilized as a higher
level resource. For example, the power-supply of a computer utilizes the alter-
nating current (AC) resource available from the power distribution network
in order to supply the internal components (CPU/disks/memory, etc.) of the
computer with direct current (DC) at suitable voltage levels. The CPU utilizes
its DC power resources to provide computation resources to the operating sys-
tem. The operating system provides available system calls to applications, and
the applications usually provide some kind of utility to their users.

11

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

These levels can be thought of as abstraction levels because they each ab-
stract their underlying resource from their own consumers. A chain reaction
of change in resource consumption at all levels of abstraction happens when
the top level changes its resource consumption due to utility-producing activ-
ity. Any such consumers/resource chain has a weakest link: a place where
saturation first occurs. This place is called the bottleneck for obvious reasons.
If we mend a bottleneck by increasing its available resources (by upgrading or
adding components for instance), another bottleneck might appear in another
place. The location of the bottleneck also varies with different workload types
and usage patterns of the consumer at the top level.

Now, what is the relation between resources and performance? In computer
science the terms capacity and performance are often used interchangeably,
in particular when benchmarking and comparing different alternatives. Often
the concept of efficiency is forgotten in this picture. Efficiency is the quantity
of resources consumed in the process of creating the next level of utility. If the
capacity of resources were infinite, it would be just a question of adding more
resources in any necessary level to keep application performance high. Unfor-
tunately, resources are finite. This means that any resource can be fully utilized
in the sense that there is no more capacity left. This situation is called satura-
tion. Finite capacity is a core characteristic of a resource. Therefore efficiency
matters for performance, at least in the long term. The focus of this thesis,
however, is not the efficiency of resource consumers, but the management (or
lack thereof) of available resources. Thus, it is just acknowledged that the sum
of resource consumption from a consumer is influenced by its efficiency before
the the objectives of this project is pursued.

As previously stated, resources normally have several consumers. Also, the
consumers of a resource may have differing ability (power) and need to con-
sume the available capacity. A powerful consumer might be able to fully sat-
urate a resource if it wants to. Processes like backups, report generation and
data-movement or copying are typical examples of consumers that will take all
available resources for a period of time. If the consumers are powerful enough,
they will typically saturate available resources at the expense of all consumers.
However, the nature of such jobs makes themselves suffer less from saturation
than the other consumers they affect since the only thing they care about is
getting the job done as fast as possible and not the response time of single
requests. Other consumers might require access, with certain response time
requirements to the same resource. In this case, the response time-sensitive
application will not meet its requirements due to the resource saturation. If it
was possible to say that a job should not be able to saturate more than a certain
percentage of all resources, the response time sensitive application would not
suffer, and the other job would merely take a bit longer time.

12

2.2. SAN HISTORY

2.2 SAN history

2.2.1 The early days

Historically, data storage has been directly attached to the computers utilizing
it. As the demand for storage capacity, performance and availability increased,
new solutions emerged. A major and commonly utilized technique is the ab-
straction of resources from their providing hardware. The idea of abstracting
storage resources from the actual hardware that provides it is a desirable fea-
ture that all consumers of storage want, and all suppliers of storage solutions
strive to offer. This abstraction is the basis for achieving scalability, flexibility
and availability in computer data storage. It is often implemented by some
kind of virtualization technology. The term virtualization here means a gen-
eral principle in a broader sense than just mechanisms for abstracting server
resources.

Abstraction can be done on many different levels. For example it is possi-
ble to abstract filesystems and their actual block level layout using a volume
manager like LVM (Logical Volume Manager) [6]. This way, even DAS (Direct
Attached Storage) can be abstracted using software methods inside the host
operating system. Another method involves virtualization inside a RAID (Re-
dundant Array of Independent Disks) controller, where the attached physical
disks are grouped into different redundancy groups and the device presents
logical drives of suitable sizes to the operating system. The operating system
sees the logical drives as single physical drives, while in reality even a small
logical drive could be spread and mirrored over a number of physical disks.

It is increasingly common to place virtualization of physical storage media in-
side a dedicated storage array that can be accessed simultaneously by several
hosts and is able to present tiered virtual disks from a larger pool of disk re-
sources, allowing the actual storage to be closely adapted to the application
capacity and availability needs. Thus, the application obtains the needed stor-
age properties at the lowest possible cost. Also, when needs change (typically
increases), abstraction makes migration of data between tiers possible. Access
to such virtualized storage arrays is done through some kind of networking in-
frastructure. A collect term for such networks of storage arrays, the hosts uti-
lizing them and the interconnecting infrastructure is Storage Area Networks,
or just SANSs.

Network Attached Storage (NAS) is a related term that is used for network-
based storage technologies. NAS is also about accessing storage across the
network. Although the two technologies have moved closer to one another

13

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

with the introduction of IP based SANSs, there is a difference between them in
the level at which the storage devices present the storage chunks. SAN devices
present storage at the block device level while NAS devices present storage at
the network filesystem level.

2.2.2 SAN technologies

At first, SAN technologies were almost exclusively used by large corporations
for consolidating computing resources into large data centers. Such SANs
were characterized by high price, reliability and performance. They were im-
plemented as part of high availability clustering environments for core busi-
ness applications with many simultaneous users. SANs made large scale host
clustering possible with performance equal or exceeding the fastest direct at-
tached storage (DAS) solutions at the time.

Over time, the prices of SAN equipment have decreased. Over the same time,
the demand for storage capacity, availability requirements and performance
has dramatically increased as most organizations run the majority of their
business on some kind of computer based equipment today.

The most widely-used protocol for accessing storage is the SCSI protocol [7, 8].
The broad adoption of parallel SCSI as a standard for connecting DAS in a
reliable way encouraged evolution of the well known SCSI command set to
support other underlying interconnects [9], such as is the FC [10, 7] networking
technology and common TCP/IP networks.

During the last few decades, an increasing amount of businesses” operational
infrastructure has been migrated from manual, paper-based systems to IT in-
frastructure based on databases and applications. This move has increased the
demand for application availability since unavailable operational applications
can directly affect business revenue [1, 11].

As the demand for application availability increased, solutions offering failover
clustering became popular for obtaining server hardware redundancy. A re-
quirement of all such clusters is the ability to access the applications data from
all nodes participating in the cluster. SANs fulfill this requirement, and is a
major reason why SANs became so popular.

Today, most organizations utilize SANs in some form. The ongoing trend of
data center consolidation is tightly woven in with the evolving SAN and server
virtualization technologies; they reinforce and depend on each other. The flex-
ibility of server virtualization seen today, would not be possible without the
underlying SAN technologies which enabled simultaneous storage access. The

14

2.3. ASPECTS OF STORAGE CONSOLIDATION

drive for consolidation enabled by virtualization further increases the need for
higher performing, flexible and reliable shared storage solutions.

Back in the late 1990s, when SANs became a reality for production environ-
ments, FC networks were the only viable alternative to achieve the required
performance and availability. However, the recent development of higher per-
forming common Ethernet equipment makes it possible for low cost commonly-
available equipment to compete with FC solutions also with respect to perfor-
mance [12, 13].

One of the most widely used technologies enabling storage attachment using
common ethernet equipment is iSCSI [4, 3, 14]. It utilizes TCP/IP protocol for
bundling SCSI commands. The advantages utilizing iSCSI are: the equipment
carries a low cost because of the volume and competition between vendors, it
it easy to recruit staff with knowledge of standard TCP/IP networking tech-
nologies, contrary to specialized FC technology. The only reason for not utiliz-
ing iSCSI has been performance requirements, but this is now changing. With
TCP/IP being a long distance routable protocol, it is also possible to access
storage across the Internet. Of course, such transport is different from the con-
cept of local high performing SANs and brings major challenges with respect
to security and performance, however, it adds some interesting opportunities
to utilize a single common technology for a vast amount of different purposes.
One example is the ability to do backup and recovery operations over large
geographic distances [13].

2.3 Aspects of storage consolidation

Large scale consolidation makes promises about lower total cost and the ability
to closely tie the cost of resource consumption to the income of the business.
This concept is exploited by businesses offering outsourcing services. Their
business model is to run their customers’ IT infrastructure as IT professionals,
utilizing virtualization and flexible provisioning mechanisms to offer highly
adaptable services to end customers, and let customers focus on their core
business. The SAN solutions” contribution to this adaptability makes them
a core component of any outsourcing company.

What makes the flexibility and adaptability properties of consolidation pos-
sible is the ability to share resources between their consumers. However, re-
source sharing benefits come with additional challenges with respect to re-
duced predictability of available capacity. The main problem with capacity
starvation is the increased service times for all consumers utilizing a given re-
source. In a resource sharing environment with no control of who consumes

15

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

what, the result is highly unpredictable performance for any given consumer
of that resource.

Surprisingly few SAN Storage arrays includes mechanisms for prioritizing
consumers, or capping resource consumption, to prevent resource starvation
as illustrated in Figure 1.1. Resource starvation increases the response time
of all consumers dramatically. In [5] Wilkes is looking back in retrospect on
10 years of storage QoS research, reasoning that lack of real implementations
could be caused by failure to build the needed trust that QoS will behave as
expected.

To outsourcing companies and their customers, standardized agreements of
service delivery are crucial. The most widely used standard for such service
delivery is the ISO 20000 [15] standard. It formulates best practices for IT ser-
vice delivery and support, and is used by most outsourcing companies and
large organizations. A common method to specify deliverables between ser-
vice providers and their customer, in ISO20000 and other standards, are service
level agreements (SLAs): a set of agreements that define what services will be
delivered, their quality and the consequences of non-compliances. To fulfill
SLAs, the service provider needs predictable performance in the underlying
infrastructure. They need to specify service level objectives (SLOs) for perfor-
mance parameters like response time and throughput. To reduce the cost of
providing services, the service provider also wants to maximize the utiliza-
tion of their infrastructure (i.e. minimize over provisioning), hence increasing
competition between workloads. Increased competition means increased risk
that workloads interfere with each other, and the need for QoS mechanisms
increase [16]. The requirements of utilization to keep cost down, and QoS
guarantees to fulfill SLOs are contradictory in terms. Previous research shows
that both requirements are seldom completely fulfilled [17].

The scope of SLAs varies greatly, and outsourcing companies tend to offer eas-
ily achievable and measurable deliverables in their contract templates. The
inherent risk of consumers affecting each others” available resources of I/O ca-
pacity is seldom part of any agreement, making the customer the bearer of the
risk introduced with the incentive of cost savings by the outsourcing provider.
This again leads to unexpected and unacceptable situations for outsourcing
customers, and ultimately lost business for outsourcing providers in the long
run.

16

2.4. TRAFFIC SHAPING (TS) AND QUALITY OF SERVICE (QOS)

2.4 Traffic shaping (TS) and Quality of Service (QoS)

The QoS and traffic shaping terms is mainly known from the networking field,
and they are closely related to each other. We can think of traffic shaping as
the method used to achieve QoS. In its fundamental form, QoS means the abil-
ity to apply different priorities to to different entities like applications, users
or data flows [18]. Traffic shaping is the tool that is used to to ensure that all
entities gets the promised resource allocations. The promised resource alloca-
tions can be applied using traffic shaping policies by either limiting (capping)
lower prioritized entities or raising the priority of other entities so they get
processed first. By limiting lower prioritized entities, we indirectly make sure
the prioritized entities have enough resources.

Before shaping can take place, decisions about prioritization must be made.
It can be human value decision directly imposing differentiation, or it can be
some kind of scheduling mechanism that automatically raises the priority of
low consuming entities. An example of this is the flow based weighted fair
queueing (WFQ) scheduler in Cisco IOS. WFQ and similar methods provide
an easy way of ensuring consistent response times for heavy and light network
traffic.

Traditionally, packet switched networks, such as the Internet in the early days,
used a best effort service where no guarantees were made about packet deliv-
ery at all, and the communication parties had to be able to cope with packet
loss and out of order delivery. Applications like e-mail and web browsing
work well with the best effort model. They just wait until a complete message
is transferred, and it can be further processed as a complete piece. Real time
communication like telephony and video conferencing are examples where the
best effort service delivery comes short. The increased utilization of the Inter-
net to transport audio, video and other real-time-critical data introduced the
need for more predictable delivery of IP packets, leading to QoS and traffic
technologies [19].

Since QoS was introduced as a method of enabling transportation of such
services, much research has gone into finding a best way of implementing it
[20, 21, 19, 22, 23]. The research, and the amount of proposals, is so vast that
the need for for a survey for getting a global overview became apparent. Gui-
tart and coworkers offer a global perspective on previous research in this field
[24].

17

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

2.4.1 QoS core models

The two major major core models for QoS found in the networking layer in-
clude differentiated services (DiffServ) [25] and integrated services (IS) [26].
DiffServ is a coarse grained mechanism for traffic management where individ-
ual packets are placed into different traffic classes. Routers along the travel
path of the packets differentiate packet handling based on traffic class mem-
bership. Classification of packets normally happens on the ingress to a Diff-
Serv domain: a collection of routers that implement commonly defined Diff-
Serv policies. The classification is carried out by encoding the DSCP (Differ-
entiated Services Code Point) into the lower six bits of the eight bit DS (Dif-
ferentiated Services) field of the IP header, also known as the TOS byte. [27].
The disadvantage of DiffServ is that individual flows cannot be differentiated
and that the classification processing adds delay to the packet travel time [28],
the advantage is its simplicity and ability to work without other means than
packet inspection along the network path.

Integrated services (IS) [26] is a more fine grained and predictable method than
Diffserv when implemented along the whole packet path. The purpose of IS
is that applications can make guaranteed resource reservations in the setup
phase of a conversation. IS has a dedicated protocol, the Resource ReSerVa-
tion Protocol (RSVP), for signaling flow specifications across the network [29].
However, the amount of resources needed for keeping track of reservations
in the routers along the path makes it scale poorly for large backbone routers
handling many connections. This makes it less likely to find a complete IS sup-
ported path when traversing the Internet than relying on the less predictable,
but easier to implement DiffServ [28].

There are other models as well. All of these models has led to tools for con-
trolling almost any aspect of IP traffic based on any almost any properties of
IP packets. This previous work will be useful in the following investigation on
how to ensure SLA compliance in iSCSI based SANs.

2.5 Linux and QoS

2,51 The network layer

There exist many networking products offering QoS functionality in some way
or the other. Often these are special purpose built components with a high
price tag. A compelling alternative to such products is a computer running

18

2.5. LINUX AND QOS

GNU/Linux. The Linux kernel has advanced features for implementing QoS
at different levels.

Iproute2 [30] is the part of the kernel dealing with many aspects for control of
the network stack. Setting up QoS policies is one of the many things iproute2
is capable of. The user space utility for doing so is called tc, short for traf-
fic control. tc has a range of different queueing disciplines (qdiscs) available.
Some of them support classes, and can be used to build advanced decision
trees about how to handle all kinds of traffic. The flexibility surpasses most
of the available proprietary hardware based network products, with a surpris-
ingly low overhead cost [31, 32].

Linux traffic control can be used to prioritize and control traffic based on a
vast number of selection criteria. It is possible to limit bandwidth, introduce
delay and make high priority traffic pass before others in the queue. The possi-
bility of marking and/or classifying packets with Iptables prior to Iproute2
processing comprises a powerful combination and extends the capabilities of
Linux as a QoS machine further [31, 32].

tc can control NIC traffic in both directions, but controlling outgoing traffic is
most easily done. Since the kernel is in control of what happens prior to the
enqueuing of outbound packets on a NIC, it can control most aspects of how
it is done and at which rate.

Controlling incoming traffic is more involved, and sometimes not possible at
all. When we talk about single packets, it is not possible to shape incoming
traffic. A packet arrived is a packet arrived; one cannot un-arrive it. However,
it is possible to utilize the TCP protocol’s flow control and its ability to adjust
the senders’ speed by the senders” observation of the receivers’ capabilities. In
the TCP protocol the receiver controls the sender by announcing its capabilities
to the sender [33]. Thus it is possible to make the sender throttle down to a
desired rate by dropping packets when the rate is above some limit set on the
client. This can be accomplished using tc, and is called ingress policing [31].
(See also section 4.2 which discusses the approach more in-depth)

Another option for controlling inbound traffic is to use a virtual device to
which incoming traffic is redirected enabling the whole toolbox of outbound
qdiscs and classes to be utilized on the outbound side of the virtual device. The
intermediate queueing device (IMQ) [31, 34] is often used for this purpose, as
is its successor the intermediate functional block device (IFB) [35].

One objection against such methods of shaping incoming traffic is that they do
not prevent inappropriate behavior by misbehaving and malevolent senders.
Another problematic case occurs when there are large amounts of data already
in flight and queued for delivery at an Internet Service Provider (ISP), and

19

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

the senders’ sensing of the receivers capabilities might be delayed causing un-
wanted behavior.

These techniques of shaping can nevertheless be interesting in the context of
an iSCSI SAN. An iSCSI SAN is a much more controlled and shielded environ-
ment than the Internet. To have any chance of being competitive against FC
SANSs, a dedicated iSCSI network is required. In this situation, the sender is
close to the receiver and is able to immediately respond and adapt to changed
situations. In contrast, for traffic traveling long distances over the Internet, the
buffering and queueing along the packet path delays signaling between sender
and receiver, introducing more uncertainty in the amount of packet loss and
smoothness of throttling.

The best option is of course no packet loss. Methods for doing this is investi-
gated as a part of this project.

2.5.2 The block layer

There is ongoing discussion about implementing improved QoS in the block
layer of the Linux kernel [36] and the best approach for doing fair scheduling
there.

The most important considerations are:

Kernel invasiveness: the amount of kernel code touched by the change.

Scope of control: should only user space processes be affected or kernel
threads as well ?

Consistency with I/O scheduler prioritization: can QoS mechanism de-
feat scheduler priority.

Ability to influence the submitting process by letting it sleep for a while.

There are different patch-sets available for different approaches of QoS in the
block layer. These include dm-ioband, io-throttle and io-controller.

Dm-ioband is located in the virtual block driver layer; hence one must use
device-mapper to utilize it. It needs the blkio-cgroup patch to form control
groups (groups of processes to operate on) and implements a best effort way
of ensuring that each group get a certain percentage of the bandwidth.

20

2.6. SCSI

Io-throttle is able to enforce absolute bandwidth limitations onto control
groups. The advantage of io-throttle is that it is located on the top of block-
layer where requests are issued and is able to signal processes that it wants to
throttle down to sleep rather than letting it fill up the queues in memory.

Unfortunately, neither dm-ioband nor io-throttle are integrated with the lower
level I/O scheduler, a design that makes it possible to defeat the scheduler’s
policies.

The only current alternative that is consistent with scheduler policies and is ca-
pable of applying bandwidth limitations at the same time is the io-controller
patch-set. A consensus was reached that the right place to implement such
functionality is in the I/O scheduler level [37]. Version one of io-controller
was implemented for the completely fair queueing (CFQ) scheduler and in-
cluded in kernel version 2.6.33 released on February 24, 2010.

2.6 SCSI

SCSI, which originated from Selector Channel in IBM-360 computers, became
an ANSI standard in 1986. Originally it was both a hardware specification for
parallel interfaces and a command set [38].

The main purpose of SCSI was to make devices connected to computers speak
the same language and thereby achieve interoperability between different ven-
dor products . The common language and interface specifications enabled
modularity and reusability of the common communication layer, thereby re-
ducing the development effort for writing new device drivers by not having
to design and implement a full stack every time [38].

There are two kinds of devices in SCSI: targets and initiators. Initiators start
an I/O process and targets responds to them in much the same way as clients
and servers. In this sense, the initiator is analogous to the client and the target
is analogous to the server. Targets and initiators are called endpoints, and the
communication taking place between them is called a SCSI transport [38, 39].

All communication starts by the initiator sending the target a command de-
scriptor block (CDB). The target then processes it and sends back the appro-
priate response. Each target can further be subdivided into logical unit num-
bers (LUNSs) [38, 39]. The mechanism of logical block addressing (LBA) makes
it possible to have a uniform way of dividing devices into logical chunks of
data storage, without knowing the cylinder/sector/heads layout of the de-

21

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

vices . The target takes care of finding the correct location by translating LBA
addresses into cylinder/head /sector addresses internally [38].

2.7 iSCSI

iSCSI is a protocol for SCSI targets and initiators to utilize standard TCP net-
work connections for transportation of SCSI CDBs. iSCSI packages CDBs into
protocol data units (PDUs), before handing them to the TCP layer [14]. A PDU
adds the necessary wrapping for a SCSI CDB to be handed over to TCP.

2.7.1 Performance of iSCSI

The main weakness of iSCSI based SAN solutions have been their weaker per-
formance in comparison with the more established fibre channel (FC) tech-
nology. However, past research demonstrates that these differences can be
reduced, and in some cases iSCSI can even outperform FC SANs [12].

Intuitively, the most likely source of the performance degradation from uti-
lizing TCP/IP is the added latency due to computation of checksums and re-
assembly of packages. This is supported by experiments done by Aiken and
coworkers [12]. Their comparison of iSCSI and FC shows decreasing through-
put differences as block size of operations increases. The performance differs
most, in favor of FC, on workloads where there are many small I/O operations.

Just like ordinary SCSI, iSCSI also utilizes targets and initiators as endpoints
forming a SCSI transport over TCP. iSCSI initiator implementation varies a lot
but can divided into two main categories: software based and hardware based.
The hardware based iSCSI initiator presents itself to the operating system di-
rectly as a SCSI adapter, and its function is implemented in the adapter hard-
ware. The software-based iSCSI initiator is implemented as a kernel driver
between the block layer and the network layer, and presents itself as a vir-
tual SCSI adapter. When it comes to performance many would argue that
functionality implemented in hardware is always performing better. Aiken
and coworkers [12] demonstrates that for larger block sizes the software based
iSCSI initiator significantly outperforms the hardware based iSCSI initiator,
refuting the conventional wisdom that hardware always performs better than
software based implementations in the case of iSCSI initiators, a somewhat
unexpected result.

22

2.7. ISCSI

Implementing iSCSI in software also has the benefit of being maintainable and
flexible in conjunction with the operating system. It scales better with CPU
clock speeds and increased number of processing units, and it has no need for
specialized hardware. When using a TCP offloading engine (TOE) and/or the
full iSCSI stack implemented in hardware, throughput can be excellent but at
the expense of smaller requests of smaller size [13].

The motivation for using TOE is to speed up Cyclic Redundancy Check (CRC)
which improves performance. Performance can also be improved by looking
at where processing cost occurs and alleviating this in software. CRC genera-
tion and data copying have been identified by Joglekar and coworkers [13] as a
primary bottleneck in iSCSI processing. They suggests replacing the industry
standard CRC [40] with a new slicing-by-8 algorithm. The new algorithm is 3
times faster than the industry standard CRC algorithm, and yields significant
performance improvement [13].

Caches play an important role in enhancing performance of storage systems.
Performance of iSCSI attached storage no exception to this rule. Both the local
buffer cache in the operating system and the storage device controller cache
will help by enabling delayed merged writes and read ahead for sequential
read access, but there exists additional approaches to caching. An interesting
approach to caching in an iSCSI environment is proposed by He and cowork-
ers [41]. A SCSI-to-IP cache for storage area networks (STICS) is an intermedi-
ate cache that caches data traveling in both directions. The cache device speaks
SCSI on the host side and can be implemented in software or as separate plug-
in card. On the other side, it speaks to another STICS instance over the IP
network, effectively converting SCSI protocol to be transported across the net-
work, thereby bridging the protocol and speed disparities between SCSI and
IP. Techniques found in log file structured file systems are used for caching
data in both directions. The main benefit of using STICS over using ordinary
iSCSI lies in the caching mechanism that is smoothing out the traffic in simi-
lar manner to what CPU cache does for CPU memory accesses. Comparisons
using I/O benchmark tools like PostMark, IOzone and vxBench [42, 43, 44]
shows a performance increase by a factor of 2 to 4 using STICS compared to
pure iSCSI [41]. Most of the write performance gain can be explained by the
write requests being acknowledged as soon as they reach the local log NVRAM
storage instead of having to travel across the net. Read requests that are not
satisfied locally must be fetched from remote storage in any case, and any dif-
ferences are likely to be caused by differing pre-fetch techniques for predicting
what data is to be read next. If prediction fails, there is little to be gained from
read caching.

23

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

2.7.2 QoS and iSCSI

In section 2.4, QoS is seen from from a global Internet perspective, where it is
tightly bound to the routers” handling of packets. In the context of SANs, how-
ever, routing is normally not involved at all. Most high performance IP based
SANSs are dedicated, relatively small networks with no IP routing between ini-
tiators and targets for minimum overhead and maximum throughput. This
thesis the focuses on QoS within limited unrouted iSCSI SANs. Previous work
related to QoS and storage, including iSCS], is discussed in section 2.8 below.

2.7.3 iSCSI stability and enterprise readiness

At the core, iSCSI is an application level Internet protocol. Just like other popu-
lar application level protocols, like SMTP and HTTP, the widespread adoption
of it, and many implementations, are what make it increasingly interesting.
The maturation and adoption of new technologies often involves rapid de-
velopment efforts in free software projects, the Linux kernel project being the
most prominent example. Together with interest from IT industry, companies
which implements their own products, and /or sponsor free software projects
with commercially exploitable aspect, exercises strong influence on the direc-
tion of technology emergence. The amount of companies involved in free soft-
ware iSCSI projects is increasing. This is a signaling the relevance of iSCSI to
the industry.

Customers are attracted by utilizing commodity network equipment for func-
tionality that was previously only possible with expensive equipment requir-
ing special knowledge, following the same reasoning for moving away from
expensive mainframe and proprietary Unix solutions during the last decade.
By building resilient software solutions that account for failures and limita-
tions in the underlying infrastructure, cheaper commodity hardware can be
substituted for more costly special purpose hardware, driving costs down.

There are several competing free iSCSI software stacks available for free oper-
ating systems like GNU/Linux [45, 46] and ones based on Berkeley Software
Distribution [47]. Among the examples are the iSCSI Enterprise Target (IET)
[48], the Generic SCSI Target Subsystem (SCST) [49] and the Linux SCSI target
framework [50]. The latter two also implement SCSI targets for other underly-
ing transports like FC, infiniband (IB) and FibreChannel over Ethernet (FCoE),
and are mostly implemented in user space. At the moment, it is SCST which
is included in the official Linux kernel.

The Linux-iSCSI project is slightly different from these [51]. It is a free project

24

2.8. QOS IN SAN/NAS

but is entirely developed by the company Rising Tide Systems [52]. The com-
pany’s vision is to outperform FC SANs completely by combining the highly
scalable and stable iSCSI target stack utilizing specialized 10GB ethernet adapters
from Neterion [53] with QoS features particularly directed towards virtual-
ized/cloud computing environments.

When it comes to client side, the initiator, there are many options that range
from purpose made iSCSI cards with the whole initiator stack implemented in
the hardware to free, pure software implementations that layer on top of any
NIC. There used to be two competing free iSCSI initiator implementations,
open-iSCSI [54] and Linux iSCSI [55], until they joined forces and became the
new Open-iSCSI project [56]. At the time of this writing it seems that Open-
iSCSI is not a part of the official kernel, but several popular distributions in-
clude its modules and user space tools, RedHat Enterprise Linux is an example
of such.

All these loosely knit iSCSI free software projects plays a role in further de-
velopment of new features and stable operation for enterprise usage. Many
ideas and elements from these projects make their way to commercial or semi-
commercial products, and experiences from utilizing them are fed back into
further improvements of the software and products. Several commercially
successful companies has emerged offering enterprise level iSCSI solutions
with competitive price and performance. It is interesting to see that large FC
SAN vendors like HP and Dell are buying companies producing low cost en-
terprise iSCSI storage arrays, further acknowledging and promoting their en-
terprise readiness. Hewlett Packard Company announced their acquisition of
LeftHand Networks [57] , a company producing mid range scalable iSCSI stor-
age appliances, nine months after Dell announced the acquisition of a similar
company, EqualLogic [58]. Such moves by large storage vendors increases ex-
pectation that iSCSI based storage is on the rise, thus making it an interesting
and relevant research subject.

2.8 QoS in SAN/NAS

Research about QoS in SAN and NAS (Network attached Storage) devices is
an ongoing effort, and there has been numerous approaches to design of such
systems [59, 60, 61, 2, 62, 63, 64, 65, 66, 67, 68, 69, 70]. They all start out by ac-
knowledging, in more or less detail, the same challenges about resource shar-
ing, and the need for mechanisms for mending them, as mentioned in sections
2.3 and 2.1, namely the interference between storage consumers and conse-
quently the lack of predictability that comes with it. Popescu and Ghanbari

25

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

has made a thorough comparison of performance isolation approaches in [17].
This section will summarize the most relevant of these.

2.8.1 Stonehenge

Stonehenge is the name of a comprehensive project running over several years
[59, 60, 62]. It comprises a high performance storage cluster able to make
promises about QoS for the presented storage chunks. It is motivated by op-
portunities presented by previous research, such as Chuang and Sirbu [71]
whose work serves as a starting point for community discussion about storage
QoS, and Raniwala with coworkers [72, 73] who designed and implemented
a prototype for a fault tolerant cluster whose main QoS feature is maintaining
the same level of QoS during failure as it is when no failure is present. Stone-
henge takes one step further by introducing a mapping scheme that takes both
capacity and QoS requirements as input. It further utilizes measurement based
virtual disk admission control and includes a real time disk scheduling algo-
rithm.

Three classes of service is supported: guaranteed service, predictive service
and best effort service. For guaranteed service, all requests have to be serviced
within their deadline which is specified during virtual disk setup. The predic-
tive service class takes an additional parameter that specify the percentage of
requests that must be within the deadline over time, and the best effort service
utilizes remaining capacity to service the least important consumers.

Stonehenge utilizes storage objects as intermediate means to allocate needed
disk blocks with the needed QoS requirements for virtual disks. Given that
QoS for the virtual disk is done at create/registration time, the achievement of
Service Agreement Objectives is obtained through allocation of the servicing
storage objects onto physical disk groups with sufficient amount of striping
and redundancy level. The QoS guarantee then is fulfilled by the virtual disk
as result of its allocation. There can be several users with different priorities
sharing the same virtual disk, and each user can have several applications each
with different QoS requirements within the bounds of the virtual disk. Appli-
cation level granularity of QoS objectives requires application integration with
the Stonehenge API.

Given that all virtual disks have static service level objectives that need to be
met simultaneously (if necessary), it is reasonable to think that this is achieved
by dedicating static pieces of underlying hardware resources in the cluster to
the virtual disks. The storage manager maintains global overview of available
capacity and accepts or rejects virtual disk creation requests based on their

26

2.8. QOS IN SAN/NAS

wanted constraints and available resources in the cluster. The scheduling dy-
namic lies in making sure that QoS objectives are met by tagging requests with
deadline time stamps and making sure there is always enough capacity for
storage servers to fulfill requests within the deadline.

The central scheduler, in the management server, is responsible for tagging
I/0 requests with deadline time stamps before forwarding them to appropri-
ate storage servers. The real time storage servers are responsible for servicing
I/0O requests within the deadline time stamps, answering requests directly to
storage clients.

The suggested implementation of [60] implies a front end target driver (FETD)
that presents an iSCSI port at the client side. The main objection against such
approach is the need for client side modifications. Also, FETD lies in the data
path of disk request scheduling, managing all aspects of disk communication.
The handling of I/O requests in FETD necessarily adds overhead compared to
regular iSCSI connections.

It is proposed by [60] to more aggressively share spare disk bandwidth by ad-
mitting more virtual disks utilizing more of the underlying capacity. It is likely
that this will have an effect of decreasing the likelihood of 100% compliance of
all QoS objectives by this overcommitting.

Hang and Peng [59] present a Stonehenge prototyp and their evaluation of of
it, as well as some design improvements. The main design improvement is
the introduction of a dual queue real time disk scheduler for maximizing uti-
lization at the same time as complying with QoS guarantees for virtual disks.
The difficulty of quantifying available disk bandwidth is pointed out, together
with the effect this has on service level objectives regarding latency of I/O re-
quests. To address this, the Stonehenge implementation implies extensive run
time measurements as a basis for disk service time predictions. Also, the dual
queue real time scheduler is a means to fulfill request deadlines even if one
queue is filled with requests, hence increasing likelihood of latency objectives
also being met. Tests shows that for three types of load traces replayed, QoS
latency objectives are met 97% of the time for the improved Stonehenge im-
plementation, but only 75% with the initial Stonehenge design. The improved
design adapts better to burstiness of workloads, fulfilling the latency objec-
tives better than the initial design.

Further enhancements to Stonehenge has been made by Peng in [62], adding
improved fairness in QoS guarantees to storage users. An improved algorithm
that better caters for differences in I/O patterns is proposed to prevent inten-
sive head-moving workloads jeopardizing workloads with high data locality.

27

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

2.8.2 Cello

Shenoy and coworkers present Cello, an operating system disk scheduling
framework, in [74]. Cello comprises a two level disk scheduling architecture:
a class independent scheduler for coarse grained bandwidth allocation to ap-
plication classes and an interleaving, class specific scheduler for fine grained
request control to align application requirements to the service provided. The
core concept is proportional sharing of bandwidth combined with weighting
of applications. Idle bandwidth is reassigned to the best effort class when
not needed by higher priority classes, thus, improving utilization of resources
(work conservation).

The prototype used for measuring the scheduler overhead was integrated into
a filesystem driver on in SUN Solaris. Experiments demonstrates an overhead
<2ms by interposing Cello.

Comparison between Cello and other algorithms were done using simulations.

The main outcome of the work, is a proposal for an algorithm utilized in
application-QoS aware disk schedulers of subsequent operating system ver-
sions. Simulations shows that Cello gives better response time for interactive
requests, when interfered with large sequential access, than algorithms that
don’t take differing application requirements into consideration.

2.8.3 Facade

Facade [75] is a throttling mechanisms sitting between a storage device and
its consumers. A primary goals is performance isolation between consumers:
the performance perceived from one consumer must not suffer from activ-
ity caused by other consumers. Performance isolation between workloads is
achieved by throttling down consumers in order to shorten queue lengths of
the physical drives servicing requests with tight latency service level objec-
tives (SLOs). The implementation of SLOs is done through a combination of
real-time scheduling and feedback-based control of the storage device queue.
Control is based on simple assumptions of the storage device: reducing the
length of the device queue reduces the latency at the device and increasing
the device queue increases the throughput. Fagade does not have admission
control to make sure the total workloads presented actually can be serviced.
Additional capacity planning tools is needed for this purpose.

The Facade prototype is implemented as a software layer between the work-
load generator and the storage devices. It could also be implemented as a

28

2.8. QOS IN SAN/NAS

shim box, a thin controller that sits between the consumers and the storage de-
vice. Experimental evaluation demonstrates negligible overhead by introduc-
ing Facade. Also, it exhibits high probability of meeting SLOs, thus demon-
strating its usefulness for performance isolation between consumers, sharing
the same underlying resources, by the use of throttling.

2.8.4 Triage

Triage [2] is a solution that ensures predictable performance for storage access.
It uses a control-theoretic approach, utilizing a feedback loop, and sees the
storage devices as a black box with no prior knowledge about it. At the core
lies the general assumption that increased throughput results in increased la-
tency, similar to assumptions described in Fagade [75]. The throttling of loads
is the means to achieve performance goals also in Triage. It utilizes an adaptive
controller approach which infers the model used for decisions solely based on
storage device behavior as seen from the outside.

The workload throttling is done on the client side. For the experiments, a
Lustre clustered filesystem is used. Each client node is running a modified
IOZone [42] with built in throttling capabilities, taking signals about throttling
from the controller that makes throttling decisions.

Experiments show that adaption speed of Triage is close to models specifi-
cally designed for certain operation points, i.e. they contain knowledge about
the device and workloads. Triage adapts, with the same speed, without this
knowledge.

2.8.5 Argon

Argon [64] is a QoS aware storage server, part of the Ursa Minor [76] based
storage distributed cluster system. It focuses on efficiency by avoiding cache
interference between applications, by aggressive prefetching and cache par-
titioning, to obtain amortization. This is mainly done to avoid unnecessary
head movement in competing workloads where one of them is sequential and
will benefit from not moving the head away. Fair sharing is obtained such that
no user get less than % (where T=total resources and n=number of users) but
allows users to borrow capacity when there is no contention.

29

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

2.8.6 Chameleon

Chameleon [63] utilizes a combination of performance models, incremental
feedback and constrained optimization. It mends broken SLAs by throttling
down competing clients (with lower or no SLA) to free up enough resources
to rectify the broken ones. Chameleon reacts to workload changes and mini-
mizes the number of QoS violations. A balance between maximum utilization
and no QoS violation is achieved by continuos monitoring and throttling /
un-throttling of loads. Dynamic internal performance models are built using
performance samples. A reasoning engine computes throttling values with
statistical confidence based on internally generated black box models. Prede-
fined policies serve as a fallback applying coarse grained arbitration when the
generated models falls short. That is when confidence of statistical calculations
are below a certain threshold.

2.8.7 SARC/AVATAR

Zhang and coworkers use an interposed scheduler that services all incoming
requests, in a similar manner as [61, 2, 75]. It takes a black box approach to the
storage device and uses monitoring to obtain knowledge about device state.
The higher level of the architecture implements a rate controller called SARC.
SARC controls workloads to meet rate requirements and isolation of work-
loads. AVATAR is the lower level of the architecture, and controls the flow
of requests between two queues. It carries out work conservation by utilizing
spare bandwidth to aggressively serve throughput requests. AVATAR moni-
tors “spareness” and balances high priority latency bound requests with ser-
vicing the higher level SARC for maximizing bandwidth consumption. Simu-
lation based verification of operation, that assumes Poisson distributed request
arrivals, is used for verification, an approach that idealizes the actual situation
artificially [17].

2.8.8 AQUA

Aqua is the QoS component of the CEPH petabyte-scale high performance
storage cluster [68, 69]. The workers of the CEPH cluster are the object based
storage devices (OSDs). AQuA makes OSDs QoS-aware and able to make
bandwidth reservations based on client requests. Requests are grouped into
QoS classes of different priorities by tagging them on the client side. The OSDs
prioritize their scheduling based on the requests” QoS-tags, similar to DiffServ
in networks [25].

30

2.8. QOS IN SAN/NAS

The QoS requirements of CEPH are different from other storage clusters in the
way that relatively small amounts of data can be spread across many OSDs.
Hence, its QoS knowledge needs to be global and equally enforced on all
OSDs.

This work points out the inherent challenges of proportional sharing mech-
anisms for bandwidth allocation: disk bandwidth is not constant. Rather, it
varies with its load and access pattern because access times vary not only with
data location on disk but also the current location of the disk head, a compo-
nent of access time that is workload dependent and highly unpredictable.

Because of the highly unpredictable data locations for incoming requests, AQuA
has chosen to implement a distributed adaptive throttling approach for solv-
ing the QoS task at hand. The fundamental augmentation AQuA provides to
CEPH is the throttling ability of OSDs. Each OSDs simply makes individual
throttling decisions to support the higher level QoS goals.

A Hierarchical Token Bucket filter (HTB) is used to slice up the disks’ total
bandwidth, thus creating bandwidth classes that are able to borrow band-
width from each other while still enforcing capping in case of contention. The
calculation of total bandwidth is based on profiling disks according to a certain
workload type. The workload type from which total disk bandwidth should be
profiled is centrally configurable. This semi-dynamic adaption of total band-
width makes the underlying assumptions of the HTB creation more accurate
by directly influencing the total token rate of each HTB.

Small scale experiments illustrates intended behavior of the new throttling-
augmented OSD disk scheduler. Performance isolation is achieved between
competing workloads on a single-OSD level. The experiments only consider
QoS of throughput.

VMware research on storage QoS

Gulati and Ahmad [65] propose using I/O request latency on the consumer
side as a measure of disk array contention. Their idea is inspired by the loss
probability calculation of packets in TCP. The latency measure is used to de-
cide the throttling of local outgoing I/O requests, thereby influencing the sat-
uration level at the storage array. If all consumers abide to the same throttling
scheme, this approach ultimately would prevent array saturation. However,
there is nothing that prevents a machine that doesn’t participate from monop-
olizing all resources. In fact, it would make it easier for a non-abiding host to
monopolize resources because any abusive behavior would drive up the array
latency. While the abuser doesn’t care, the throttlers will detect high latency

31

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

caused by the abuser and throttle themselves down, thereby freeing even more
resources for consumption by the abuser.

The method is targeted towards host computers running VMware virtual ma-
chines, and fairness is calculated by aggregating virtual machine weights for
each host computer. The outgoing queue length is determined by a moving av-
erage of request latencies, calculated using the Exponentially Weighted Mov-
ing Average (EWMA), an upper limit and a threshold triggering change. The
threshold is the limit describing the intersection between normal array opera-
tion and array overload.

Initial investigations carried out in the research show it is possible to distin-
guish between the latency due to an array’s normal workload and the higher
latencies caused by array overload.

In [67], Gulati and coworkers present a QoS framework for VMware ESX server:
proportional allocation of resources for distributed storage access (PARDA).
PARDA is a software system that implements the basic ideas from [65] with
some enhancements. Testing the findings more thoroughly, [65] found that
virtual disks sharing the same underlying disk-group exhibited differing per-
formance running the same load. The differing locally measured latencies lead
to throttling that made the environment diverge, creating a persistent perfor-
mance gap between otherwise equal hosts. Thus, a measure of average latency
from all hosts was used as input signal. This was done by aggregating values
through interconnects between the hosts utilizing the same storage system.
Experiments show that the system is able to keep close to the set latency value,
describing the saturation point, hence avoiding array saturation altogether.
PARDA seems to make significant overall QoS improvement for a dedicated
VMware environment sharing a storage array.

Furthermore Gulati and coworkers present a storage resource scheduler [66]
for deciding what virtual disks are a suitable storage location for different
loads. It does this by profiling workloads and available virtual disks to find
suitable storage performance for workloads. Locations of workloads are moved
by the means of VMware’s VMotion storage product. Workloads are char-
acterized at the hypervisor level by having lightweight probes reporting on
individual request properties, such as seek distance, I/O sizes, read-write ra-
tio and average number of outstanding I/O operations. A rather simplistic
approach was taken for modeling virtual disks performance: a performance
factor based on the constant linear relation between rate and latency. In spe-
cial cases where a single disk-group has only one virtual disk utilizing it, this
is likely an adequate representation of the performance. However, once shar-
ing of the underlying resource with other virtual disks begins, this assumption
can’t be made. Basing storage relocation on such a model could lead to wrong

32

2.8. QOS IN SAN/NAS

decisions.

2.8.9 Four-tag SFQ

Jin and coworkers [61] propose an interposed request scheduler in the network
path between clients and server. It uses a modified start time first Queueing
(SFQ), called Four-tag Start-time Fair Queuing or FSFQ, and its main focus is
on improving the scheduling algorithm by using FSFQ over SFQ and other
previous algorithms.

The experimental evaluation utilizes a modified NFS proxy that maintains per
client queues that implements SFQ and FSFQ for comparing their fairness. The
test is synthetic, utilizing on/off constant rate and Poisson arrival rates.

The weakness of the study seems to be that it assumes constant rate-capacity of
the storage server as the base measure for dividing resources between clients
(constant cost prediction). Other studies demonstrate that this assumption is
incorrect [17, 69, 70]. Remaining capacity, and hence distance from saturation,
is just as much influenced by the nature of the workload (read /write mix and
randomness, for example) as the rate. Basing scheduling decisions merely on
rate could result in wrong decisions.

2.8.10 Modeling iSCSI delay bounds

Ramaswamy [39] proposes an analytical model to estimate maximum delay
bounds for iSCSI requests. While the ideas underlying the model are excellent,
unfortunately the assumptions made in the model design are insufficient for
real life usage, including the following;:

* Schedulers have negligible servicing time.

® Schedulers can be characterized as systems in a steady state where the
number of departed requests equals the number of the requests arriving
into the system: requests are rearranged and merged unless the NOOP
scheduler is used.

* Steady state operation of the network.

* Resources are able to accommodate aggregate traffic classes.

The model presented is not verified by experiments, and, with the insufficient
assumptions made, the model is likely to misrepresent real situations.

33

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

2.8.11 Adaptive SFQ

Jin and Buyya [70] recently presented a modified SFQ algorithm that adapts
the fairness calculations to the performance of the underlying resources by
utilizing a performance monitor. The objective of the performance monitor is
to detect unfairness between flows. This is done by comparing each flow’s rate
with its SLO, which is a reasonable foundation for deciding throttling. Also, it
attempts to relate storage object location to performance level, given that data
locations have different I/O capacity. For example, blocks located on the outer
edge of the disk plates have faster access than inner locations, due to differ-
ent rotational speeds. An assumption that previous measurements of block
location performance can predict future performance of the same block loca-
tion could be flawed however. The case or a virtual disk sharing underlying
resources that constantly has its data blocks redistributed to optimize overall
performance would be an example where such an assumption is too simple.
Hence, it remains to be seen whether the unfairness calculations based on de-
vice profiling will work as expected in such environments.

2.8.12 Modeling RAIDs

As pointed out by previous work [17, 63], the complexity of RAID systems
makes it difficult to model their behavior when loaded with different kinds of
workload patterns that interact with the underlying resources and influence
each other. The most successful approaches seem to be the ones that take a
black box approach and don’t try to make detailed assumptions about behav-
ior.

However, Lebrecht and coworkers present a response time distribution model
for zoned RAID [77]. The model implies modeling of single disk drive’s prop-
erties and combines these into queueing networks that represents their RAID
setup. High accuracy is demonstrated in experimental verifications carried out
as part of the work.

This work is a first step in the process of creating a model that takes into con-
sideration caching mechanisms at different levels and workload arrival pat-
terns other than the Markovian arrivals used in their experiments. It remains
to be seen, though, whether it will be possible to extend the model to predict
individual virtual disk behavior when a number of consumers are sharing the
underlying RAID resource.

34

2.9. SUMMARY

2.9 Summary

Previous research includes a vast amount of approaches to the problem of stor-
age QoS, and the amount of work is descriptive of this problem. Previous work
varies from full blown storage clusters with QoS as a part of the storage provi-
sioning [60] to simple feedback based control loop approaches. All approaches
involve some kind of interposed throttling or scheduling functions. Some in-
volve feedback from storage devices as a means to make scheduling/throttling
decisions, and some try to use a predefined model of behavior instead. Many
of the experiments done, using close to real world workloads, indicate that
relying on a predefined model behavior is not sufficient. Chameleon uses an
interesting approach that utilizes dynamically generated models of behavior
from measurement observations if able, and uses ordinary feedback with sta-
tistical confidence as a fallback for making throttling decisions. Gulati and
Ahmad [65] present an interesting and simple approach to resource saturation
detection by measuring request response-times.

Other important aspects of the research are work conservation vs. isolation
of workloads. These are contradictory in terms, and previous research shows
that it is hard to combine the two. In their comparison of different perfor-
mance isolation approaches [17], Popescu and Ghanbari conclude that non-
work-conserving approaches are better choices for isolation of workloads shar-
ing the same physical storage.

All of these approaches utilizes some kind of workload generation. The prob-
lem is that they use different workloads and different tools for generating it.
Many also lack a detailed specification of how the workload is generated and
reasoning about why the particular workload is chosen. This impression is
supported by Traeger and coworkers [78], a thorough survey of papers uti-
lizing I/O benchmarks, commenting on their approaches and suggesting im-
provements.

The ability to specify service level objectives (response time and bandwidth),
among other data management features, has been the subject of a decade long
research at HP Labs Storage Systems department. Looking back in retrospect,
Wilkes [5] points out the challenges of incorporating the research results into
real production implementations. The challenge is to persuade users to trust
the systems to do the right thing. This is a human challenge, one perhaps
rooted in general healthy skepticism to new technology and bad experiences
from earlier implementations that turned out to not fully take all real life pa-
rameters into account. Wilkes points out the need to remember that systems
are built to serve people, and the success of technical accomplishments is dic-
tated by how comfortable people ultimately are with them [5].

35

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

Despite all the research done in the field, specifications regarding QoS func-
tionality are seldom found in the specification sheets of storage devices.

iSCSI based storage devices are the major competitor to FC based storage de-
vices at the moment. With its lower cost, easier configuration and maintenance
and increasingly competitive performance, iSCSI seems to be the enabler of
large scale adoption of IP based SAN devices. The introduction of IP as a
transportation layer introduces an additional, well known and well trusted
toolbox for enforcing policy and fairness amongst storage consumers. Tools
for traffic shaping in the TCP/IP layer have been around for many years. The
combination of well known and trustworthy throttling mechanisms and an ex-
tended knowledge about storage system internals makes an appealing prag-
matic and non-intrusive approach to the problem of QoS in storage systems.
Instead of introducing the need to build trust towards interposed scheduling
algorithms, bound to add uncertainty and overhead, this project suggests uti-
lization of previously known and trusted tools to obtain workload prioritiza-
tion in case of resource saturation. Lumb and coworkers point out the lack of a
traffic shaper in storage systems [75] (presumably FC based storage systems).
However, when utilizing TCP/IP as transport mechanisms, traffic shapers are
available.

36

Chapter 3

Methodology

This chapter will introduce the reader to the methods, tools and equipment
used in this project.

3.1 System model

Figure 3.1 shows the conceptual overview of the lab setup. Five machines are
involved in the execution of the experiment: four IBM blade servers acting
as iSCSI initiators and one Dell 6650 acting as iSCSI target. The iSCSI target
server has 10 external SCSI disks connected via a parallel SCSI connection.
Physically all five servers are connected via their eth1 interface to the blade
center switch described in Table 3.3. The Iperf [79] utility was used to verify
simultaneous gigabit link speeds in all directions with TCP traffic between
all servers before experiment’s start. The logical volumes serve as back end
storage for iSCSI target devices. The iSCSI target software makes the mapping
between LUNSs presented on TCP port 3260 and the logical volumes that stores
the data. To simulate resource sharing, the logical volumes are striped across
the ten physical disks with a stripe size of 64 KB. Hence I/O traffic (of sufficient
size) to any of the logical volumes will effectively be spread across all ten
disks, equally sharing the collective back end I/O capacity of physical disks.

37

CHAPTER 3. METHODOLOGY

Striped logical
volurrles. §4KB Argus
Connections
HP SC10 iSCSI target
10 x 36GB 10k (iet)

/dev/iscsi_0

bm

Block Layer , TCP/IP Layer | Block Layer
t u

Figure 3.1: Concept sketch of the lab setup

3.2 Tools and equipment

3.2.1 Generating workload

Flexible I1/0 tool (fio) [80] is a versatile tool for generating a wide variety
of workload mixes. The tool is written by Jens Axboe [81], who is the current
maintainer of the Linux block layer, as a facility to aid the development work of
it. Fio was the tool used to produce the workload that broke through the 1 Mil-
lon IOPS barrier in an experiment done by HP and Fusion 1O [82, 83, 84]. Sim-
ple configuration files are used for setting up any number of worker threads
for generating simultaneous workload of a wide variety. A generated work-
load is reproducible using the same configuration files. While the main task of
fio is to produce workloads, it can also produce latency and bandwidth traces
for every single I/O request it issues. This is useful to the get an overview of
I/0O subsystem behavior without having to add any external monitoring. In
a real system, I/O requests would be caused by applications running on the
iSCSI initiator machines. In the experiment I/O requests will be synthetically
generated using fio.

38

3.2. TOOLS AND EQUIPMENT

Enter at(1)-
job at time T

Yes

----- b2 weeeee Y p— [y p— wever b5 ereere) (.. bm =ee | [+ DT ==
blktrace & blktrace & blktrace & blktrace & collect] & | |argus
collectl & collectl & collectl & collectl collectd\
fio $job fio $job fio $job fio $job restart
kill blktrace kill blktrace kill blktrace kill blktrace
blkparse blkparse blkparse blkparse
btt -1 btt -1 btt -1 btt -1
btt -q btt -q btt -q btt -q
rm traces rm traces rm traces rm traces

| [[T

_ Ves All jobs No
done

I A
----- bm --e-en emee D1 oeeeen
kill dstat kill argus
tc-graph.pl
collectd_extr
send mail

l - Personal laptop--

o | rsync all data
" | extract relevant vectors
create plots and reports

Figure 3.2: Experiment automated workflow. The workflow and collected data
is the same for all experiments, except those in chapter 5.4.

39

CHAPTER 3. METHODOLOGY

3.2.2 Measuring system behavior

To characterize system behavior during experiments, a number of different
tools are utilized. The most important task is monitoring metrics about the
I/O requests traveling through the system. Some important measuring points
include:

* The iSCSI block device on the initiator machines.
* The I/O subsystem on the iSCSI target machine.

¢ The network subsystem on the iSCSI target, including the different QoS
mechanisms.

Different performance tools collect various aspects of system behavior during
experiment execution. The data collection is started, stopped, post-processed
and collected using shell and perl scripts. The concept of this orchestration is
depicted in Figure 3.2.

The following data is collected on the iSCSI initiator nodes:

Total elapsed runtime of the load, using the /usr/bin/time command.

lostat-like time stamped data, using btt -I option.

Trace of the queue-to-completions (q2c) latencies, using btt -q option.

Btreplay files, created using btrecord.

* A one second interval data file, containing various performance data,
produced by collectl.

The following data is collected on the iSCSI target node:

A copy of the script collection during the run.

A graph representing the tc setup during the run.

An extract of queueing discipline and class statistics, produced by col-
lectd.

* A one second interval data file, containing various performance data,
produced by collectl.

40

3.2. TOOLS AND EQUIPMENT

The intention of the data collection is to automate a large amount of sensors
producing as much data as possible without affecting the produced results in
any noticeable way. Earlier experience with lab experiments has shown that
unexpected results can call for additional data to explain them. If the extra
data is already collected in advance there is no need to redo the experiment.

Preliminary tests were used to get an impression of resource consumption and
effect of different measurement approaches. An example of measurements
that noticeably affected results was the attempt to run blktrace on all ten
SCSI disks serving the striped logical volumes. These measurements made
throughput drop by more than 10% . The tools and techniques described here
were found to be as much data as could be gathered on general basis without
affecting the system’s performance.

To exactly measure how I/O requests are being serviced, as seen from the iSCSI
initiator side, blktrace [85] is used to record all there is to know about requests
passed to the iSCSI initiator device. The blktrace framework consists of three
major parts: the kernel event logging interfaces, the blktrace user space utility
to access and store the in-kernel events and utilities for parsing and viewing
recorded data. The framework also includes utilities to create playback files
that can be used to re-play an exact sequence of the traced I/0O requests at a
later point in time: btrecord and btreplay

Blktrace produces per CPU trace files, so the first part of post processing is to
run blkparse on the separate traces gathering them into one file. This file can
be used for extracting various pieces of information using the btt tool. In the
experiments, the resource consumption impact by monitoring is minimized by
extracting data after the workload has finished running.

Although I/0O requests can be examined in great detail from blktrace files,
two types of information are most relevant to this experiment: rates and laten-
cies of I/O requests (read and write). Btt produces output similar to iostat
using the -I option. All measurements of iSCSI initiator devices on the blade
servers are extracted from this file.

In the experiments all workloads are started simultaneously on all blade servers
using at (1). Ntpd is running as a client on all machines to ensure correct time.

The scripts that start the workloads first start blktrace on the iSCSI device,

tracing the behavior of all I/O requests passed to it during workload appli-

cation. When the workload has finished, the tracing process is killed, and

automatic post processing of the trace files is carried out before the traces are

deleted for space conservation.

Collectl [86] is a very useful tool with its capability to log performance data
into compressed text files. The compressed files can be replayed later to ex-

41

CHAPTER 3. METHODOLOGY

tract different metrics as needed. Most of the disk and network data from
the target server comes from files collected by collectl. Collectl supports the
measurement strategy of this project very well: low overhead collection with
vast amount of information available for extraction at later points in time. This
strategy was beneficial when double-checking packet loss, using collectl’s TCP
statistics, since Argus turned lost some capture data (See section 3.2.9). Col-
lectl was run in record mode on all machines during experiments from the
experiment in section 5.4) and onwards.

The tool collectd [87] is used for gathering statistics about data flowing through
the tc queueing disciplines (qdiscs). Collectd is a lightweight plug-in based
data collection tool. The netlink plugin of collectd was the only pre-made
collection facility found for collecting qdisc statistics (except from tc -s). All
plugins other than the netlink plugin were disabled, the sample interval was
decreased to 1 second, and only the CSV output plugin was enabled. To cap-
ture only the relevant data for the experiment period, all collectd files were
deleted at the start of each experiment run, and collectd was restarted so that
output CSV files reflect the actual qdisc and class setup active in that particu-
lar experiment. As a part of the experiment post processing on the iSCSI target
server, a script collects these files and places them in the results folder. This
script is found in appendix C.8.

The job_template.sh script starts monitoring, runs the I/O load and does
post processing on all blade servers. The script is designed to be reused with
different I/O loads just by creating symbolic links named jobname.sh which
point to the script. The job name matches the fio job definition file in the
jobdefs subdirectory. The last part of the fio job definition (after the un-
derscore) defines which host the job definition will be run on. This way the
job_template.sh script can be reused with different I/O loads just by creating
symbolic links and creating a set of fio jobs that match the script name and the
host it is supposed to run on, ensuring that all monitoring and post processing
is done consistently.

The job scripts are run by at (1), and scheduled by the scheduler.pl script.
Together with b1-mon. sh,bm-mon postproc. sh, these scripts comprise the work-
flow of all experiments which is conceptually depicted in Figure 3.2. The
scripts are found in listings C.15, C.6, C.14, C.13 and C.12 respectively.

The Plot [88] tool is used for creating all plots except for Figure 4.3 which is
created using Mathematica, and Figures 5.5 and 5.6 which are created using R.

42

3.2. TOOLS AND EQUIPMENT

| Ttem | Specifcation
hostnames b2,b3,b4 and b5
Machine IBM HS20 Blade server , Type: 8843, Model E8G
model
CPU amount | 2 X Intel(R) Xeon(TM) CPU 2.80GHz Cache:2MB, Fam-
and type ily:15, Model:4, Stepping:3, 32bit
Memory 2 X 512MB
Operating CentOS release 5.4 with package-sets @core @base
system @development-tools

Network in-
terface Card

Broadcom NetXtreme BCM5704S GBit, driver:tg3 (kernel-
provided), driver version:

3.96-1, tcp-segment-offlod-
(tso)=off, flow-control=(rx=off,tx=off)

Kernel ver- | 2.6.18-164.11.1.el5

sion

iSCSl initator | CentOS provided package iscsi-initiator-utils-6.2.0.871-
0.10.el5 (iscsid version 2.0-871)

iSCSI login | iscsiadm -mode node —targetname

command ign.iscsilab:vgname_‘hostname’ bm:3260 —login

Table 3.1: IBM blade server specifications

3.2.3 Hardware specifications

Tables 3.1, 3.2 and 3.3 list the specifications of the Blade servers, the iSCSI
target server and the interconnecting switch, respectively.

3.2.4 Monitoring the network connection

Access to all the network traffic is essential in order to detect the effect of traffic
shaping on the network link. The BNT blade center switch, used to intercon-
nect the experiment servers, has an option to mirror port traffic. Port INT1 was
chosen as the port for monitoring because the server connected to it (host b1)
is running any workload in the experiments leaving host b1 to concentrate on
the capturing process. It was decided to mirror ingress traffic of ports INT2-
INTS5 (hosts b1-b5) and EXT1 (host bm) onto port INT1 (host b1). The setup of
port mirroring was done according to the Alteon OS application guide [89].

Next, a tool for capturing network statistics on the mirror port was needed.
The first tool considered was tcpdump [90], and tcptrace [91] for plotting vari-
ous aspects of the TCP communication. However, it turned out that tcpdump
is unable to keep up with the traffic rate between the five machines during

43

CHAPTER 3. METHODOLOGY

| Ttem | Specifcation
hostname bm
Machine Dell 6650
model
CPU amount | 4 X Intel(R) Xeon(TM) MP CPU 2.50GHz Cache:1MB, Fam-
and type ily:15, Model:2, Stepping:5, 32bit
Memory 8 X 1024MB physical, 4GB Utilized
Network in- | Broadcom NetXtreme BCMb5700 Gigabit, driver:tg3,

terface card

driver-version:3.92.1, flow-

control:(rx=off,tx=off)

tcp-segment-offlod-(tso):off,

Operating Debian Lenny minimal install

system

SCSI HBA | Dell PERC 4/DC Ultra 320 SCSI external port (Used up to

external section 5.4)

disks

SCSI HBA | Adaptec AHA-2940U/UW/D / AIC-7881U (Used in sec-

external tion 5.4) and onwards

disks

External HP SC10 Shelf with 10x36GB 10k rpm disks

diskshelf

OS version Debian Lenny with kernel 2.26.2 (Used up to section 5.4)

OS version Cent OS 5.4 with kernel 2.6.18-164.15.1.el5 (Used in section
5.4 and onwards)

iSCSI target | Debian provided package iscsi-target (ietd version 0.4.16)
(Used up to section 5.4)

iSCSI target | IET version iscsitarget-1.4.19 from [48] (Used in section 5.4

and onwards)

ipset version

ipset v4.2, protocol version 4, kernel module protocol ver-
sion 4

iptables ver-
sion

1.4.6

Table 3.2: Dell iSCSI server specifications

44

3.2. TOOLS AND EQUIPMENT

| Ttem | Specifcation |
Switch BNT Layer 2/3 Copper Gigabit Ethernet Switch Module for
model IBM BladeCenter
Firmware Boot kernel: v1.5.9, software image version:1.5.9
versions

Flow control | Turned off on all ports
Port mirror- | Ports INT2,3,4,5 and EXT1 mirrored to Port INT1
ing

Table 3.3: IBM Bladecenter switch specifications

iSCSI workload. Tcpdump kept losing packets, hence, it did not capture a full
picture of what was going on. Tcptrace is very useful for generating detailed
plots and statistics from reading tcpdump files. Plot files are generated in a
format called xpl and can be plotted with the special purpose xplot program.
However, the plot files generated from tcptrace were rather large, and when
trying use gnuplot to plot files generated with xpl2gpl [92] (which took about
5 minutes), all 4GBs of memory were consumed on the laptop and no plots
were produced.

Obviously, a more lightweight solution was needed. Argus [93] seemed to fit
the purpose. Argus is connection oriented and is geared towards security au-
dit trails but it also captures various performance related metrics which are
adequate for the purpose of this project. Argus is run as part of the exper-
iment orchestration shown in Figure 3.2, on host bl. Host b1 does not take
part in the experiment, it only monitors the mirrored port of the switch during
experiment execution.

During experiments, it was discovered that Argus too was loosing packets
hence not representing a full picture of the network traffic. See section 3.2.9 for
further discussion about this.

3.2.5 Getting persistent device names

Most Linux distributions now use udev [94] to dynamically populate the /dev
directory with the correct contents. Unfortunately the default device naming
scheme of SCSI disks still is the old sda, sdb, sdc and so on, which contain no
persistent binding to target and LUN numbers.

Since blade server b3 has an additional internal disk, compared with the oth-
ers, the device naming of iSCSI disks was not consistent across all four blade

45

CHAPTER 3. METHODOLOGY

servers. To alleviate this, a small udev trick was enabled. The following cus-
tom udev rule creates iSCSI device files that is persistent with LUN numbers
(/dev/iscsi_#).

BUS=="scsi", SYSFS{vendor}=="IET", SYSFS{model }=="
VIRTUAL-DISK", KERNEL=="sdx*", PROGRAM="/lib/udev/
getlun.sh $id", NAME="iscsi_%c%n"

The program /lib/udev/getlun.sh returns the LUN number, and its output is
substituted for %c in the name of the device.

The getlun.sh script:

#!/bin/bash
echo $1 | awk -F":" ’{print $NF}’

Since all LUNs have LUN number 0, and no partitions is used, the device to
run I/O-load towards is named /dev/iscs_0 on all blade servers.

3.2.6 Setting up bandwidth limitation

Linux Traffic Control has many built-in modules for traffic shaping. The Hier-
archical Token Bucket (HTB) queueing discipline (qdisc) can be used to set up
a complex hierarchy of bandwidth classes. This project utilizes the HTB qdisc
as a means to create the bandwidth classes for iSCSI read throttling seen in
tigure 5.2. Figure 3.3 shows a graph depicting the class hierarchy of which the
iSCSI interface is divided into. In order to keep a small size of the figure, only
the two first classes is shown. The next class indicates the pattern of further
classes.

In order to enforce any bandwidth limitations, packets need to be placed in the
desired bandwidth class. Packet classifications is done with filters. In tc the
fw filter module is used to match packets with marks (a hexdecimal number)
placed by Iptables. Thus, the class hierarchy can be set up once, and Iptables
used to dynamically select bandwidth by its powerful matching capabilities.

Filters are attached to the root qdisc, in order to inspect all outgoing traffic. The
blue lines in figure 3.3 depicts the filter with their associated fw mark-match
along the lines.

The script for setting up the bandwidth hierarchy, depicted in figure 3.3, is
located in listing A .4.

46

3.2. TOOLS AND EQUIPMENT

1:
htb
root
r2q 10
default 1
direct_packets_stat 4665509
ver 3.17

1:1
htb
rate 1000Mbit
ceil 1000Mbit
burst 130875b/8
mpu Ob
overhead Ob
cburst 130875b/8
mpu Ob
overhead Ob
level 7

(n71)

1:2

13 1:in

htb htb htb
prio 0 prio 0 prio 0
quantum 200000 quantum 200000 quantum 62500
rate 950000Kbit rate 900000KDbit rate -=50Mbit
ceil 950000Kbit ceil 900000Kbit ceil -=50Mbit
burst 478325b/8 burst 453262b/8 burst xxx
mpu Ob mpu Ob mpu Ob
overhead Ob overhead Ob overhead Ob
cburst 478325b/8 cburst 453262b/8 cburst xxx
mpu Ob mpu Ob mpu Ob
overhead Ob overhead Ob overhead Ob
level 0 level 0 level 0

Figure 3.3: Graph depicting the egress queues used for bandwidth outgoing
limitations

47

CHAPTER 3. METHODOLOGY

3.2.7 Delay limitation

The concept of the delay class hierarchy is similar to the bandwidth class hier-
archy; a set of classes that covers the needed throttling scope in a sufficiently
granular manner. The netem module of tc is used to enforce artificial packet
delay. The HTB qdisc is used to create the hierarchy, but rather than HTB
bandwidth limiters as leaf qdiscs, netem qdiscs with predefined delay is used
instead. Figure 3.2.7 shows what this class hierarchy looks like. Filters are
attached to the root qdisc in order to inspect all traffic. Upon mark match,
packets are sent to the corresponding delay class.

The script that sets up the packet delay hierarchy depicted by figure 3.2.7 is
located in listing A.5.

3.2.8 Using Iptables and Ipset to classify traffic

Iptables has more powerful and dynamic matching capabilities than tc. This
project utilizes a set of static tc delay classes with filters only checking packets
for marks placed by Iptables (see section 3.2.7). This way, the packet classifi-
cation task is carried out by Iptables by utilizing tc classes for applying the
delay. The scripts wanting to utilize packet throttling need to know the valid
range of marks with corresponding tc delay filters. The scripts then have a
means to throttle iSCSI initiators within the pre-configured delay classes in tc
by altering Iptables rules. The script used to demonstrate throttling effect
on throughput uses this altering of Iptables rules to throttle individual iSCSI
initiator IP addresses (Figures 5.2,5.3, 5.4 and Listing A.1).

While throttling of individual consumers is sufficient for demonstrating the
effect, more matching capabilities are needed for the next step: a dynamically
maintained list of consumers that are deemed throttleable. Ideally Iptables
should be able to match against this list directly, and apply marks if a con-
sumer is found in the list. Iptables does not have built-in capabilities for
matching against lists, however, the Ipset patch-set enables this feature [95].
The PID controller program (Listing A.2) utilizes Ipset in order to have only
one Iptables rule to change when packet marks needs altering. The Iptables
rule always match against the set of throttleable consumers while this set also
can be dynamically updated.

48

3.2. TOOLS AND EQUIPMENT

1:
htb
root
r2q 10
default 1
direct_packets_stat 1747544
ver 3.17

1:2 1:3 1:n

htb htb htb
prio 0 prio O prio 0
quantum 200000 quantum 200000 quantum 200000
rate 8000Mbit rate 8000Mbit rate 8000Mbit
ceil 8000Mbit ceil 8000Mbit ceil 8000Mbit
burst 0b/8 burst 0b/8 burst 0b/8
mpu Ob mpu Ob mpu Ob
overhead Ob overhead Ob overhead Ob
cburst 0b/8 cburst 0b/8 cburst 0b/8
mpu Ob mpu Ob mpu Ob
overhead Ob overhead Ob overhead Ob
level 0 level 0 level 0

12: 13: 1n:
netem netem netem
parent 1:2 parent 1:3 parent 1:n
limit 1000 limit 1000 limit 1000

delay 99us delay 598us delay +=0.5ms

Figure 3.4: Graph depicting the egress queues used for packet delay in both
directions

49

CHAPTER 3. METHODOLOGY

3.2.9 Argus usage

Argus captures a lot of useful information that can be queried afterwards, thus,
it also support the collection strategy of the project. However, it turned out
Argus suffered from packet loss. This was discovered when comparison of
sender and receiver rates did not match the rate of the network in between.
In Figures 3.5 and 3.6 the blktrace plots of the initiator devices on the blade
servers (in figure 5.3 and 5.4) is split and overlaid with network traffic logged
by Argus and the respective traffic from logical volumes on the iSCSI target
server.

There is the expected close correlation between the read rates on the iSCSI
initiator device (blktrace) and the logical volume it is tied to on the iSCSI target.
What is not expected, is that Argus-logged traffic is correlating only partly. The
likely cause of this is that Argus, or the mirror port in the switch, has failed to
capture some packets. If the traffic did not travel safely across the network
there would be differences between sender and receiver rates; however, this is
not be the case.

The consequence of this packet loss is less confidence in the correctness of
the test for packet loss in listing E.8. Therefore, additional steps were taken
to verify the absence of packet loss during experiments. Collectl was run
during experiments and both target and receiver TCP data from collectl was
queried for packet loss. No packet loss was seen using this approach either
(See listing E.3).

The Argus plots for Figure 3.5 is generated by the commands in listing E.4, and
the logical volumes is created by the commands in listing E.5. The plots for
writes were generated in the same way, but then the plot.pl script is picking
out the argus sload rather than dload column, and write kB/s to the logical
volume rather than read kB/s.

50

3.2. TOOLS AND EQUIPMENT

20000 = b2 blktrace
b2 network
Idevivg_perc/lv_b2

15000

10000

Read (kB/s)

5000

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300
Time (s)
(a) Blade server b2
20000 = b4 blktrace
b4 network
Idevivg_perc/v_bé
15000 -
=
[1]
= 10000
5
3
]
<

5000

o 50 100 150 200 250
Time (s)

(c) Blade server b4

300

20000 [~

5000

b3 biktrace
b3 network
Idevivg_perc/lv_b3

50 100 150 200 250 300
Time (s)

(b) Blade server b3

20000 |~

5000

b5 blktrace
bS5 network
Idevivg_perc/lv_bs

50 100 150 200 250 300
Time (s)

(d) Blade server b5

Figure 3.5: Comparison between initiator, network and target-logical-volume

rates when reading

51

CHAPTER 3. METHODOLOGY

18000 18000
b2 blktrace b3 blktrace
16000 | b2 network 16000 | b3 network
/devivg_perc/iv_b2 Idevivg_perc/lv_b3
14000 | 14000 |
12000 | 12000
@ @
& 10000 & 10000
=3 =3
2 8000 |- 2 8000
2 =
6000 [6000
4000 | 4000
2000 |- ™ _L 2000
of 0
! ! ! ! ! ! !
o 50 100 150 200 250 300 o 50 100 150 200 250 300
Time (s) Time (s)
18000 18000
b4 blktrace b5 blktrace
18000 |- b4 network 16000 | b5 network
/devivg_perc/iv_b4 Idevivg_perc/lv_bS
14000 | 14000 |
12000 12000 |-
@ @
& 10000 3 10000
< =
2 8000 2 8000 |-
= =
6000 6000 [
4000 4000 |
2000 2000 |
0 of
! ! ! ! 1 f f
o 50 100 150 200 250 300 [50 100 150 200 250 300
Time (s) Time (s)

(c) Blade server b4 (d) Blade server b5

Figure 3.6: Comparison between initiator, network and target-logical-volume
rates when writing

52

3.3. CHALLENGES

3.3 Challenges

3.3.1 Network instability

In the beginning, some instability in the network connections was experienced
during heavy I/O loading over the iSCSI protocol. The Ethernet link between
iSCSl initiator servers and the Dell iSCSI target server would freeze completely
on random occasions. Bringing the iSCSI NIC of the iSCSI target machine
down and up again would temporarily solve the problem. After upgrading
switch firmware, turning off TCP segmentation offload and flow control on
the switch ports and all host NICs, the problem was not seen again.

3.3.2 LVM instability

Some instability was experienced in the LVM layer. When I/O continued for
a time, suddenly the LVM layer introduced delays causing the throughput to
logical volumes to drop dramatically, from 30-40 MB/s aggregated throughput
towards logical volumes to a rate of 512kB/s . The problem was confirmed to
be in the LVM layer by testing throughput with I/O directly to logical vol-
umes locally on the iSCSI target server when the problem exhibited itself and
comparing it with direct I/O to the same underlying disks serving the logical
volumes. Access to the underlying disks showed expected throughput. Access
to the same disks through LVM was stuck until next reboot.

Attempts to debug the problem was done using SystemTap [96] and blktrace
[85]. However none of the prerequisite kernel hooks were present in the 2.6.26
kernel of Debian Lenny. Attempts were made using slabtop to look at anoma-
lies in the kernel buffer structures when problem occurred. However, the focus
of the project is not debugging the block/LVM layer of the Linux kernel, but
utilizing a working LVM to illustrate some points about resource sharing. For
this reason it was decided to find a workaround rather than proceeding with
time consuming troubleshooting. Installing CentOS 5.4 as operating system on
the iSCSI target server, seemed to be the solution for a while, but the problem
appeared again after some time. Since CentOS 5.4 was better equipped with
tracing tools, an attempt to log data and get help from linux-lvm mailing list
was made, but no responses were received.

The Dell server has a built in aic7xxx-based SCSI adapter in addition to the
(supposedly) more powerful PERC RAID controller. To leave no option untested,
the disks were hooked up to this controller, and this time there was no anoma-
lies. Using this setup the performance anomaly was not seen again. The initial

53

CHAPTER 3. METHODOLOGY

experiments seen in figures 5.1, 5.3 5.2 and 5.4 was already done using De-
bian Lenny and had short enough duration to not exhibit this problem. All
other experiments are done using CentOS 5 with the same disks attached to
the aic7xx controller.

A common performance problem with such set-ups is related to block/re-
quest alignment. LVM metadata consuming space at the starting blocks of
the physical drives could be causing such misalignment. However, one would
expect such problem to be persistent. This one was just intermittent and un-
predictable. This behavior remains unexplained, but somehow the problem
must lie in the instability of the combination: PERC RAID controller accessed
by LVM with striped logical volumes.

54

Chapter 4

System design

This chapter describes the design considerations aiming for the final goal, a
working prioritization framework containing throttling, measurements and
decision making. The chapter has emerged during the experimentation phase
and it is influenced by the results exhibited. Thus, this chapter is tightly con-
nected with the progress of chapter 5.

4.1 Choosing a throttling method

The main idea of this project is the utilization of common tools in novel ways
in order to obtain more predictable service availability of storage devices. The
objective is to demonstrate ability to mend adverse effects of interference be-
tween loads using a throttling mechanism for reducing resource contention,
thereby improving service availability for important consumers. iSCSI utilizes
TCP for transportation and Linux Traffic Control (tc) has advanced features
for network traffic shaping, hence, the decision to use tc for the purpose of
throttling was easy.

The amount of consumers that need to be throttled could become large. Also,
workloads may rapidly change. Thus, a method to rapidly adapt throttling
schemes is a necessary requirement. Traditionally, TCP traffic shaping with
Linux Traffic Control is used with static rules targeted only at the network it-
self. This project should utilize feedback from resources outside of the network
layer in order to adapt rules in the networking layer.

In order to have sufficient control of the consumers’ resource utilization, both
read and write requests must be throttled. As stated in 2.5.1, controlling in-

55

CHAPTER 4. SYSTEM DESIGN

bound traffic is a challenge. Inbound traffic translates to iSCSI write activ-
ity. Different approaches for dealing with the shaping of inbound traffic are
known. The easiest method to achieve this is ingress policing. The concept
of ingress policing is to drop packets from the sender when a certain band-
width threshold is crossed. The congestion control mechanisms of TCP will
then adjust the sender rate to a level that can be maintained without packet
drops (Further described in 4.2). There are clearly disadvantages to this ap-
proach. The most obvious one is packet loss, which leads to inefficient net-
work link utilization due to packet retransmits. Another problem is the time it
takes for the sender to adapt when the receiver decides to change the allowed
bandwidth. During the adaptation process packet loss will occur due to the
nature of the policing. This might be sufficient for a small number of senders
and seldom changes in the receivers’ accepted bandwidth. However, the abil-
ity to change bandwidth limitations is needed for rapid adaption to work-
load changes. When the number of consumers and bandwidth limits changes
rapidly, this method does not scale, but adapts slowly and inefficiently. An-
other problem with ingress policing in Linux is the order of packet process-
ing in the kernel; ingress policing happens before packets enter any Iptables
chains. Hence, it is impossible to select packets to be policed using Iptables,
and failure to do so makes it impossible to utilize the dynamic packet matching
capabilities of Iptables described later on.

A feature called Intermediate Queueing Device (IMQ) can be added to the
Linux kernel by applying a patch. The IMQ patch enables a virtual network
interface which incoming traffic can be redirected to. Since IMQ is Iptables-
aware, packets entering the IMQ device can be marked for later matching by
tc’s filters before packets are passed back to the incoming interface. An al-
ternative to the IMQ device is present in the official kernel: the Intermediate
Functional Block (IFB). However, IFB is not Iptables-aware because it is located
before Iptables chains for incoming traffic. Hence, incoming packets marked
with Iptables have already passed the IFB device, and filters attached to it are
obviously unable to detect them. This behavior disables usage of tc’s fw filter.

Both IFB and IMQ suffers from the following: the input buffer of the incoming
interface is finite, and iSCSI traffic is typically heavy data traffic that quickly fill
up even large buffers, thus, tail dropping of requests will occur. This comprises
a similar situation as with ingress policing.

This project suggests a novel method of throttling designed to address the lim-
itations just described. The method implies introducing a variable additional
delay to packets sent back to initiators. Write requests are throttled by delay-
ing outbound ACK packets, and read requests are throttled by delaying all
outbound packets except ACK packets (data packets). The principle of delay-
ing ACK packets is illustrated in Figure 4.1. The actual delay is obtained using

56

4.1. CHOOSING A THROTTLING METHOD

the netem module of Linux Traffic Control, and packets get different delays
based on Iptables marks.

As previously argued, the need for a dynamic selection method for throttling
packets is needed. Iptables provides this dynamic behavior with its many
available criteria for matching packets. Combined with the mark target, which
can be detected by the use of tc’s fw filters, it is possible to set up a predefined
set of delays that covers the needed throttling range with sufficient granularity.

The entities that consume resources in this context are the iSCSI initiators. The
entity that provides the resources of interest to the initiators is the iSCSI tar-
get. Both initiators and targets have IP addresses. IP addresses can be used for
throttling selections. The IP address of the iSCSI initiator will be chosen as the
entity to which throttling will apply. Differing priorities for consumers will
translate into different throttling schemes of those consumers” IP addresses.
The underlying idea is to apply throttling to less important requests in order
for important requests to have enough resources available to meet their re-
quirements.

Packet delay throttling makes it possible to influence rates in both directions
on a per initiator basis. In production environments the amount of initiators
to keep track of quickly become overwhelming if throttling is based on indi-
vidual consumer basis. Moreover, it is likely that the same throttling decisions
should be applied to large groups of initiator IP addresses. Applying the same
rules, over and over again, on lists of IP addresses is inefficient. To avoid this
inefficiency the Ipset tool is needed [95]. It is a patch to the Linux kernel
that enables creation of sets, and a companion patch to Iptables that makes
Iptables able to match against those sets. This is a fast and efficient method
of matching large groups of IP addresses in a single Iptables rule: the set of
throttleable initiator IP addresses.

57

CHAPTER 4. SYSTEM DESIGN

Timeline Timeline
without delay with delay
Initiator Target Initiator Target
— SYN ———— F— SYN ———— Throttling delay
SYN+ACK | o SYNsACK - | .
I ACK — | T ACK — |
\ Write \ Write s
<« ACK — b
l«— ACK S
Write B
Time |<— ACK Write
. -
Write <« ACK
<— ACK r ;
Write S
Write ' :
< ACK I <« ACK ————————— L
Write
v 4
«— ACK

Figure 4.1: Principle of throttling by delaying packets

4.2 Discussion of the delay method

421 Risks

TCP implementations contain intelligent algorithms to avoid congestion and
to be efficient in transportation of packets. One of these mechanisms is the
dynamically applied retransmission timeout (RTO) which is calculated from
a smoothed roundtrip time (SRTT) and its variation (RTTVAR) bounded by
some fixed limits.

The RFCs defining how TCP should be implemented specify how RTO must
be calculated and implemented [97]. They also specify how congestion con-
trol should be implemented [98]. Artificially manipulating TCP packets at one
point in the network can affect network traffic in unexpected ways. It is reason-
able to speculate that there is a limit to what extent traffic can be manipulated
before congestion control and retransmit algorithms activate, causing unex-
pected and unwanted behavior. This is something that needs to be qualified in
order to find reasonable boundaries for traffic manipulation.

It is clearly stated in [97] that RTO should not be less than one second. How-
ever, the RFC takes into consideration that future developments of network
equipment might justify a lower value. Existing implementations of TCP, in-
cluding the Linux Kernel, have a lower RTO minimum value than the RFC

58

4.2. DISCUSSION OF THE DELAY METHOD

recommendation. The default value of TCP_RTO_MIN (in ms) in the 2.6 Linux
kernel is related to clock granularity and is defined as 200ms as shown in list-
ing E.9. It is also possible to extract the active value from Linux using the
method shown in listing E.6.

The results shown in Figure 5.4 have a maximum introduced delay of 10 ms,
which is << 200ms. Hence with typical transmission rates in an IP SAN envi-
ronment (or faster), introducing delays of a few milliseconds has an immediate
rate reducing effect without being close to affecting the TCP_RTO_MIN values.

When the sender decides how much data it can send before receiving an ACK
packet from the receiver, there are two pieces of information to consider: the
receive window which equals available buffer space at the receiving end, and
the congestion window, which is influenced by events along the network path.
The receive buffer is always announced by the receiver in the ACK packets sent
back to the sender. The congestion window is initially low, then increased and
balanced to a point where the network can cope with the traffic. The sender
must always use the lowest of the two values for determining how much data
to be sent before receiving an ACK packet and more data can be sent.

Congestion control is about sizing of the congestion window (cwnd). It is com-
prised by three phases: slow start, congestion avoidance and congestion de-
tection. During connection establishment, the maximum segment size (MSS)
is negotiated. In the slow start phase, the sender starts with a congestion win-
dow beginning at one MSS and it is increased by one MSS until the slow-start
threshold (sstresh) is reached. Then the congestion avoidance phase starts. It
continues increasing the rate, but with an additive rate-increase, rather than
an exponential increase like the slow start phase. The increase in cwnd con-
tinues, and if the rwnd is big enough, the data rate will continue to increase
until a point where there are signs of congestion in the path. Signs of conges-
tion are detected by the sender when the need to retransmit occurs as a result
of RTO expiry, or if the receiver sends three duplicate ACK packets signaling
retransmit of minor chunks of data [33].

The retransmit caused by RTO expiry causes a stronger reaction than a retrans-
mit resulting from three duplicate ACK packets. When retransmits due to RTO
expiry occur, the sstresh is set to one half of the active value when the retrans-
mit occurs, cwnd is set to the size of one segment, and the slow-start phase is
initiated again.

If ingress policing was used as a means to throttle iSCSI write activity, this is
the mechanism that makes the rate adapt to the bandwidth limit. The drop-
ping of packets when bandwidth limitations are enforced causes RTO expiries
on the sender side, which causes the cwnd to shrink over time in order to find

59

CHAPTER 4. SYSTEM DESIGN

a balance where no packet drops occur. This process is harsh and introduces
inefficiency by knowingly having to retransmit some packets to enforce band-
width limitations.

As stated in chapter 3.2.4, all traffic between initiators and the target is mir-
rored to the port of host bi. On b1, Argus[93] captures key information about
network activity during the execution of each experiment. From the captured
data, the amount of packet loss and retransmits during experiments can be
inspected. The command racluster is used to read captured binary data and
aggregate metrics. Listing E.7 and E.8 shows that there is no lost or retransmit-
ted packets during artificial delays of up to 10ms. Since Argus was not able to
capture a complete data set for the experiment (see section 3.2.9), packet loss
were inspected by extracting TCP data collected by collectl (see listing E.3).
This method also reported no packet loss during experiments.

4.2.2 Advantages

In addition to the obvious advantage of being able to throttle iSCSI write ac-
tivity without introducing packet loss, there is another aspect: this type of
throttling does not need to find out what the existing throughput is in order to
have an effect. The writing process in figure 5.6 has a slower rate than the read-
ing process (figure 5.5) when no throttling is in effect. If the underlying shared
resource is the bottleneck, it means that resources is saturated, and that all con-
sumers of that resource suffer high response times. This is one example that
capacity differs depending of workload type. When throttling is started with
only 0.1 ms additional delay, the effect is immediate on the data flow causing
saturation. It is instantly reduced. Hence, relieving the underlying resource of
pressure regardless of what the rates were before throttling started. If band-
width shaping was used, there would be an extra step to identify what rate
the consumer should be throttled to in order to achieve the same result: first a
measurement of the existing rate, then a calculation of a suitable bandwidth to
make the rate decrease sufficiently.

4.3 Bottleneck location

In this lab setup, the disks clearly are the main bottleneck. This is best indi-
cated by identification of where I/O requests spend most of the time during
their flight. A comparison was made between the wait-time of the local iSCSI
block device and the wait time of the logical volume servicing it (on the tar-
get server). Figure 4.2 shows these wait times of the random read job while

60

4.4. THROTTLING DECISION

40

AVWAIT /dev/iscsi_0 on b2
AVWAIT for the servicing device on target.

30 [~

L Al 1
N))u"ll"l \M | ”““'M" “HJ l !,P W‘W ¢l ||4|'W “‘ '\‘ \ M[‘ M \M"l“ l\.,

| ‘\

0 100 200 300 400 500

Figure 4.2: Comparison of average wait time of the iSCSI block device and
the logical volume servicing it on the target server, when running 6 interfering
write threads from 3 other machines

writing with six interfering threads against the shared volume-group. The dif-
ference between them is negligible, confirming the assumption that most of
the total iSCSI wait time is spent waiting for disk service at the target server.
In other cases the bottleneck might be in the network link or other places. It is
reasonable to hypothesize that packet delay throttling will have a similar slow-
ing effect even if the bottleneck is elsewhere, but in order to detect contention
the response time probe must be moved outside of the bottleneck.

4.4 Throttling decision

4.4.1 Inputsignal

As pointed out by previous research, remaining capacity is not constant, it is
dependent on both rate, direction and pattern of the workloads. Hence, an
exact measure of remaining capacity is hard to maintain. However, it is pos-
sible to indirectly relate how close the resource is to saturation by measuring
individual consumer response times without any knowledge about the cause.

61

CHAPTER 4. SYSTEM DESIGN

Experiments in chapter 5 seek to verify the validity of this assumption, and
determine to what extent this metric can be used for throttling decisions.

Previous research has successfully utilized virtual disk response time as satu-
ration level measure [65, 67, 66]. This project will use a similar approach. In or-
der to use the disk response time for throttling decisions, it must be smoothed
to represent the general trend for the variable. Different algorithms exist for
this purpose. Gulati and coworkers obtained good results using EWMA for
smoothing [65]; thus, EWMA shall be a considered method. The other method
considered is the moving median algorithm. Both EWMA and moving me-
dian require little computational power to maintain, and the description of
their characteristics makes promises about spike resistance and close-to-trend
representation. The standard moving averages will not be considered because
of their susceptibility for spikes in the data, short term spikes known to exist
in the average wait time. It is not desirable to trigger large throttling impacts
caused by transient spikes in the average wait time. Throttling should only
occur as a result of persistent problems.

In order to compare the two algorithms, plots of them were stacked on top
of the actual measured wait time that they average. The actual wait time, of
which the smoothing algorithms were tested, was taken from the experiment
where twelve other threads were interfering with a small random read job, and
timed packet-delay-throttling (using 4.6 and 9.6 ms delay) was carried out (see
Figure 5.8). Mathematica was used to plot the time series of the logged wait
time, an EWMA and a moving median of that data. Using dynamic variables
for the « parameter of EWMA and the window-size parameter of moving me-
dian a visual best fit was found for both (see listing C.16 for the Mathematica
code). For EWMA, an « = 0.15 gave the best fit, and for the moving median, a
window-size of 6 gave the best fit. Figure 4.3 shows the three plots with these
values set.

It was decided to use the EWMA as input signal for throttling decision because
it seems to follow the trend more closely and looks smoother than the moving
median. Also, EWMA is widely adopted as a successful method in the process
control field for smoothing sensor input signals. In the process control field,
this filter is commonly named a time constant low pass filter. The formula
used for applying the filter is shown in the following equation, where L ;) is
the smoothed/filtered value in time ¢ and [is the measured value in time ¢.

L(t) = l(t) X o+ L(t—l) X (1 — (X)

The smoothing parameter effects the level of smoothing, or the bandwidth, of
the low pass filter. It is defined by & € [0,1]. A small « gives more smooth-

62

4.4. THROTTLING DECISION

Wait (ms)

100 -

| N
I A ni \M

| ;M ﬁf ”“
i M,\(| jvwwvy)‘
e \k

‘ |
2 i S AR H
‘ ey C‘y’@”g“(ﬁy},h\w
X

8
é

L L L L
100 200 300 400 500

Figure 4.3: Finding a reasonable moving average. Blue is actual samples from
small job. The green plot shows the moving median with wsize=6. The red
plot shows the EWMA with « = 0.15.

ing (lower filter bandwidth), and a large a gives less smoothing (higher filter
bandwidth). A low value of a gives smooth output, but it also gives a high
phase shift (delayed response) compared to the input trend. The best value
of « is when there is an optimal balance between smoothness and phase shift.
The visual inspection done in Mathematica suggests that « = 0.15 represents
such fair balance for the data used in the test (see Figure 4.3).

4.4.2 Output signal

During examination of the project’s experimental results, the nature of re-
source saturation, load interference and throttling effects became clearer, an
understanding that led the attention to cybernetics and control engineering. A
commonly used concept in this field is the PID controller [99, 100]. The prob-
lem investigated in this project is similar to a process control problem solved
by PID controllers. Experiments documented in section 5.6 demonstrate the
instant rate reducing throttling effect freeing capacity, which again influences
read response time. Section 5.4 describes a stepwise close-to-linear relation-
ship similar to what a PID controller needs in order to work. Figure 4.4 shows
the concept of a PID controller. PID controllers can be implemented in soft-
ware using a numerical approximation method. This project uses a numerical
implementation of the PID controller with virtual disk wait-time as input sig-
nal and packet delay as output signal.

63

CHAPTER 4. SYSTEM DESIGN

The purpose of the PID regulator is to control throttling such that the output
value stays as close as possible to a set value when the set value changes and
the environment tries to change the output value. Changing the environment
would be analogous to changing load interference in the case of storage QoS.
The set value of maximum response time for storage resources is likely to be
constant. However there is nothing that prevents implementation of dynami-
cally adjustable thresholds. The main purpose of the controller in this project
is to keep response time of important requests from violating this set thresh-
old in spite of rapidly changing amounts of interference from less important
requests.

The packet delay throttle is implemented as a range of integers representing
a stepwise proportional throttling mechanism. Let this proportional throttle
be named pThrottle from now on. Each integer step represents an increased
packet delay, thus, a decreased rate. Figures 5.5 and 5.6 suggest that steps
of 0.5ms is a suitable granularity. At 0.5ms granularity, the amount of steps
is determined from maximum allowed artificial packet delay: i.e. zero rate
reduction plus 21 increasing steps of rate reduction with a maximum delay of
20ms giving pThrottle € [0,21]

t
u(t) = T’”/ o)t + K Tae (1) 4.1)
0

Proporhonal . _ Der1vat1ve

Integral

Equation 4.1 represents the continuous function for outputting throttling amount
as a function of set-point error: the difference between the set value (threshold)
and real value. Hence, the PID controller is called an error driven controller.
The proportional part (P part) is the first part of the function and is parame-
terized by the proportional gain K. The second part is the integral part. It
is proportional to both the error and the duration of it and is parameterized
by the integral time T;. The purpose of the integrating part is to eliminate the
residual steady state error that occurs with a proportional-only controller. The
third part of the equation is the differential part. It is parameterized by the
derivative gain tuning parameter T;. The purpose of the derivative part is to
slow down the rate of change of the controller output, thereby reducing the
magnitude of overshoot created by the integral part.

When computer based controllers replaced older analogue PID controllers, the
PID function was discretized using Euler’s backward method and became the
basic discrete function shown in equation 4.2. The function is used as the basis
for most discrete PID controllers in the industry [99, 100]. This paper imple-
ments a variation of equation 4.2 that takes the distance above preset response

64

4.4. THROTTLING DECISION

time threshold as input error signal and computes an output throttling value.
The modified algorithm is named a single sided PID controller because it only
throttles when the error is positive: when the real value is higher than the set
threshold.

The average wait time during the interval is captured by reading the accumu-
lated wait time divided by the number of requests during the interval from
the /proc/diskstats file, the same method as the iostat command uses for
calculating the AVWAIT value:

Accumulated — number — of — ms — spent — doing — 1/0

AVWAIT =
Number — of — reads + Number — of — writes

Filtering of the AVWAIT value is applied using the EWMA algorithm with
a = 0.25. In order to achieve rapid response of the PID controller, the value
of a had to be increased compared to the smoother signal demonstrated using
Mathematica and « = 0.15 (Figure 4.3). See also the discussion about PID
tuning in section 4.4.3.

The PID control algorithm is a direct implementation of equation 4.2 below
with two exceptions: the negative throttling value is capped to the maximum
throttling step corresponding to the integer value of the packet delay class
with the highest delay, and the positive throttling value capped to zero. This
is done to prevent integral windup: the integral part accumulating too high
values that takes a long time to wind down again, and to disable throttling
completely when the error is negative: real value is below the threshold. The
output value of the PID controller is rounded up to the next integer value, and
that integer becomes the Iptables mark to apply to all outgoing ACK packets
matching destination addresses of the iSCSI initiator IP addresses in the set of
throttleable consumers. The program is what causes results the exhibited in
Figures 5.9 and 5.10 and is listed in listing A.2.

T K,T,
up = up_1 + Kp(1 + T) + Kpeg—1 + pT (ex —2ep1+er2) (42)

i

4.4.3 Tuning of the PID controller

The PID controller must be tuned for optimal control of the process. In con-
trol engineering, the best operation of the controller is when the actual value
always is stable and equal to the set point no matter how fast the set point
changes or environmental forces influence the actual value. This ideal behav-
ior is never achievable in real world applications of the PID controller: there

65

CHAPTER 4. SYSTEM DESIGN

A 4

P K e(t)

+ t
—Setpoint—@ Error» | Kl.j e(r)dr Process —Output—»
0

A

A 4

D K, de(t)
dt

Figure 4.4: Block diagram of a PID controller. Created by [101]. Licensed under
the terms of Creative Commons Attribution 2.5 Generic.

are always physical limitations that makes the ideal case a theoretical utopia.
The tuning process’” concern is finding the parameters to the controller that
makes it behave as close to the theoretical ideal as possible. There are several
known methods to tune PID controllers. The Ziegler-Nichols method, the im-
proved Astrem-Hégglund method and the Skogestad method are some widely
used methods in control engineering [99]. These methods have not been con-
sidered during this project since a few iterative experiments and according pa-
rameter adjustments yielded stable and good controller performance in short
time. Thus, the process in this project is easy to tune compared to many indus-
trial processes. However, thorough tuning efforts is likely to produce similar
controller efficiency with less less resource usage of the controller loop.

In addition to the PID parameters, the sample interval influences loop stability
and tuning. Generally, the discrete PID controller approaches the behavior of a
continuous PID controller when the sample interval goes to zero. The reason to
keep sample interval short is increased stability and the reason for increasing
the sample interval is minimizing resources utilized by the controller. The
sample interval used in this project was found by experimenting with values
and observing CPU usage. A sample interval of 100ms yielded very stable
controller behavior and CPU utilization of approximately 1%.

However, lowering the sample frequency more may be possible without sacri-
ticing stability. Another benefit of lowering the sampling frequency is calmer
operation of the throttle. It may not be necessary to move the throttled IP ad-
dresses around as agilely as in the experiments, but it must be agile enough to
capture rapid workload interference changes. The interval of 100ms seems to

66

4.5. AUTOMATED OPERATION

be a fair balance between controller resource consumption and agility.

4.5 Automated operation

Most I/0O schedulers, and those parts of an entity responsible for servicing
application I/O requests, generally have a preference for satisfaction of read
requests over write requests. This is because waiting for read requests is block-
ing applications from continuing their work. Usually, write requests are writ-
ten to cache, at several levels in the I/O path, for later de-staging to permanent
storage without blocking the application from further operation. Hence, throt-
tling write requests can be done to a certain limit without affecting application
performance. Nevertheless, it has been demonstrated through earlier experi-
mental results that write requests are able to adversely influence the more im-
portant read requests. The design goal of the final prototype is the utilization
of earlier results to automatically prevent write requests from adversely im-
pacting read requests, thus contributing to improved application service pre-
dictability without the need for user input.

The previous prototype version needed to be informed about a set of prede-
tined important consumers to monitor average wait time for, and a predefined
set of consumers to throttle in order to influence the wait time of the important
consumers (see section 4.4 and 5.7). Section 2.1 points out the relation between
the finite capacity of a resource and the effect of saturation on its consumers:
load interference. Based on these assumptions, this section will describe the
design of a prototype that completely automates the detection of saturation
level and the identification of throttleable consumers, on a per resource basis.
Instead of previous prototype’s reliance on user determined list of important
consumers, this prototype uses the read-over-write prioritization to automat-
ically find out what to monitor and which consumers are eligible for write
throttling.

In most storage devices, the disk group from which virtual disks are allocated,
is bound to become the resource first saturated. This is the reason that LVM
was chosen to reproduce a similar environment in the lab setup. In the lab
setup, volume groups represent the shared resource that logical volumes are
striped across. The objective of the prototype is to control the saturation level
caused by write activity on a per-resource basis, thereby indirectly controlling
the read response time of the resource. This translates to per volume group
in the lab setup. In order to achieve this in the lab prototype, the following
requirements will be met:

67

CHAPTER 4. SYSTEM DESIGN

/proc/netfiet/sessions
/proc/net/iet/volumes

Read
e

Read output

Create

set_maintaner.pl

Create & maintain members

L4 A

ISCSIMAP
Read

pid_reg.pl

Spawn($resource,$thresh)

Throttles

Iproc/diskstats
Read Read
and maintain AVEWMAS
values

N/

Create

ewma_maintainer.pl

e e X

Gend: [Files] [Shared memory] ’ lDependencD

Figure 4.5: Automated controller framework overview

* An entity that maintains sets of IP addresses that are known to be doing
write activity at a certain level: eligible throttlers.

— Each set should have name of the resource of which its members are

consumers.

— Each set should be immediately throttleable by using its name.

* An entity that maintains a value representing the saturation level on a

per-resource basis.

* An entity that spawns a PID controller for each resource and:

— Uses the resource’ saturation level as input .

— Throttles the set of throttleable consumers for that particular re-
source so that the saturation level is kept below a set threshold.

The requirements are fulfilled by three perl programs working together with
Iptables, IpsetandTraffic Control, utilizing shared memory for informa-
tion exchange and perl threads for spawning parallel PID controllers. Figure
4.5 illustrates the concept of the framework implemented by the three scripts.

68

4.5. AUTOMATED OPERATION

4.5.1 Automatic population of throttling sets

The set_maintainer.pl reads information about active iSCSI connections from
/proc/net/iet/* (see listing C.2), where information about each iSCSI tar-
get id is found: the connected consumer IP and servicing device. For all ac-
tive iSCSI sessions, the device-mapper (dm) name and consumer IP address is
recorded. The 1vs command is used to to record the logical volume name and
volume group membership of each device-mapper device detected to partici-
pate in an active iSCSI session. The information found for each of the device-
mapper device is recorded in a data structure and mapped into a shared mem-
ory segment with the key ISCSIMAP. For each of the volume groups involved
in active iSCSI sessions, an empty IP-set is created with the same name as the
volume group. When iSCSI device maps are exported to shared memory and
the necessary IP-sets are created, the program enters maintenance mode. This
is a loop that continuously monitors exponentially weighted averages (EW-
MAs) of the write sector rates of all dm devices involved in active iSCSI ses-
sions. For each of the previously created IP-sets, it then determines the set of
consumers that have a write sector rate exceeding a preset configurable thresh-
old. The generated set is used as target for converging the previously created
in-kernel IP-set used as match target by Iptables to match the list members.
The IP-sets are converged once every second, yielding continuously updated
per resource IP-sets known to contain consumers exhibiting write activity at
certain level. These sets are immediately throttleable by Iptables matching
against them.

4.5.2 Automatic determination of saturation monitors

The ewma_maintainer.pl program reads the shared memory information ex-
ported by the set_maintainer.pl program (see listing C.3), and creates resource-
to-consumer mappings from it. For each resource, it continuously calculates
an exponentially moving average of the read response time using information
obtained from /proc/diskstats. Only consumers having read activity are in-
cluded in the calculation. The data structure containing the resources’ read
response time EWMAs is tied to a shared memory segment with key AVEW-
MAS and updated every 100ms. The read response time EWMAs serve as per
resource saturation indicators which will be used as input values to the subse-
quently described PID controller threads.

69

CHAPTER 4. SYSTEM DESIGN

4.5.3 Per resource PID control

The pid_control.pl program attaches to the shared memory segment with
the key AVEWMAS (see listing A.3), and reads the saturation indicators main-
tained by the ewma_maintainer.pl program. For each of the resources found
in the AVEWMAS shared memory segment, a PID controller thread is cre-
ated with the resource name and its accepted read response time threshold
as parameters. Each PID control thread monitors the saturation level of its
designated resource and directly controls the delay throttle of the set contain-
ing current consumers exhibiting write activity towards that resource. The
pid_control.pl then detaches from the worker threads and enters an infinite
sleep loop, letting the workers control resource saturation levels in parallel
until a SIGINT signal is received.

70

Chapter 5

Results

This chapter describes the experiments and their results. To make a clear sepa-
ration between results and the incremental experiment design, the design con-
siderations were put in the separate system design chapter: chapter 4. Results
are chronologically ordered, and they influence the progress of subsequent
experiments, the system design chapter and ultimately the direction of the
project.

The expected basic effect of throttling down one or more initiators is to free
resources for the remaining initiators in order to improve their resource avail-
ability. It is expected that the improved resource availability will improve the
remaining initiators’” response time and/or throughput depending on the na-
ture of the load running on them. Furthermore it is expected that request wait-
times of individual virtual disks (logical volumes) can be used as indirect sat-
uration level metric of the underlying shared resource. Last, it is expected to
be possible to create a closed-loop regulator which is able to keep request re-
sponse times and data rates of important consumers within certain boundaries
by the use of the described throttling methods.

5.1 Without throttling

When there is no throttling mechanism in place, there is free competition for
available resources. Figure 5.1 shows how four equal read loads, run on each
of the equally powerful blade servers, share the total bandwidth of the disk re-
sources, serving each of the logical volumes to which the blade servers” iSCSI
block devices are attached. The plotted read rates show what each of the con-
suming blade servers achieve individually.

71

CHAPTER 5. RESULTS

b2
b3
b4
b5

20000

15000

10000

Read (kB/s)

5000 [~

0 50 100 150 200 250
Time (s)

Figure 5.1: Equal sequential read load from four identically equipped blade
servers without throttling

5.2 Throttling by bandwidth limitation

Linux Traffic Control is be used to make bandwidth prioritization between
the I/O-consuming blade servers seen in Figure 5.1. The job that generates
workload in this experiment is identical to the one used in Figure 5.1. iSCSI
read requests on blade servers translate to outgoing TCP packets on the target
server. These can be shaped using the Hierarchical Token Bucket (HTB) filter
in Linux Traffic Control. The setup of HTB in Linux Traffic Control for this
experiment is described in section 3.2.6. Figure 5.2 shows the effect by using
HTB to enforce outbound rate prioritization. Traffic is throttled by moving
the blade servers between predefined HTB bandwidth classes using packet
marking in Iptables.

In this experiment, a shaping script on the target server is throttling down
blade servers b2, b3 and b4 at predefined time offsets from the start time of the
experiment and releasing them at later points in time. When blade server b2
gets throttled down, the remaining blade servers increase their throughput as
a result of the bandwidth freed. When b3 and b4 are throttled down the pro-
cedure repeats and available resources to remaining consumers increase. As
more resource become available to the remaining servers, they automatically

72

5.2. THROTTLING BY BANDWIDTH LIMITATION

utilize these resources to increase their own throughput. When b2 is freed from
its bandwidth limitations, b5 once again must share resources with b2, and
both consumers stabilize at a rate of approximately 13 MB/s. Then b3 is freed
from its bandwidth limitations, and b2, b3 and b5 must share the remaining
bandwidth. They stabilize at approximately 10 MB/s each, 30 MB/s in total.
b4 is freed and all 4 blade servers equally share bandwidth for a short period
until b5 finishes its job. When b5 is finished, there are only three consumers
left to share the total resources and they all get a bit more throughput. When
b4 finishes the job, there are two servers left to share, and when b3 finishes b2,

will receive all available resources and achieve a throughput of approximately
19 MB/s towards the end.

There is a drop in bandwidth of all consumers, including the unthrottled blade
server b2, at the start time of the throttling phase of each blade server. The
reason for this could be processing overhead introduced by Iptables during
rapid modifications of its chains. Another possible explanation is that paral-
lel read jobs experience some synergy benefits from each other when running
equally fast and started at the same time, thus accessing areas on the disk with
closer locations, and that this benefit is reduced when some jobs get throttled
down.

To suggest that the plots are not pure coincidence, the job was run twice, and
the results from the second run were stacked on top of the plots from the first
run.

Section 3.2.6 describes the division of the interface into different bandwidth
classes in detail. Section 3.2.8 describes how Iptables is used to dynamically
move blades between bandwidth classes.

The idea of using traffic policing as bandwidth control for iSCSI writes was
abandoned due to inefficient operation and lack of Iptables support. Detailed
arguments for this decision are found in section 4.1.

73

CHAPTER 5. RESULTS

20000

15000

)

=

10000

Read (kB/s

5000

0 50 100 150 200 250
Time (s)

Figure 5.2: Throttling of initiator’s sequential read activity using Hierarchical
Token Bucket bandwidth (HTB) limitation in tc(1). Two independent runs are
stacked on top of each other for verification of result repeatability.

74

5.3. THROTTLING BY PACKET DELAY

5.3 Throttling by packet delay

Both iSCSI read requests and write requests can be throttled using artificial
packet delay. This experiment shows that it is possible to achieve similar re-
sults as with bandwidth throttling by introducing minor additional packet de-
lays to individual consumers. The concept of packet delay is illustrated in
Figure 4.1 and explained in section 4.1. The experiment shows that it is pos-
sible to throttle write and read activity using the same set of delay queueing
disciplines (qdiscs) in Linux Traffic Control (tc). For writes, the ACK packets
to the consumers are delayed, and for reads all packets except ACK packets
are delayed.

Figure 5.3 shows the effect of packet delay based throttling on the same work-
load as in figures 3.3 and 5.1, and figure 5.4 shows the effect when writing the
same load that was previously read.

The shaping is done in a similar manner as in section 5.2, using Iptables’
packet marking abilities to place packets from individual consumers in dif-
ferent predefined delay qdiscs at different points in time. Throttling of blade
server b2 frees up resources to the remaining consumers. Next, throttling of
b3 and b4 gives increased resources to the remaining consumers. When b2 is
freed, b5 is already done with its job, and most resources are available to b2
which increases its throughput dramatically. When b3 is freed, b2 and b3 share
the resources again and stabilize at approximately 14 MB/s each. Finally b4
is freed, and b2, b3 and b4 share the resources, each having a throughput of
ca. 10 MB/s. When b4 finishes its job, there are two machines left to share the
resources, and when b3 finishes, only b2 is left to consume all resources.

The drop in throughput for un-throttled consumers, when throttling starts, is
present also with the delay shaping method, but the effect seems to be some-
what smaller. Additional research is necessary to identify if there are signifi-
cant differences and to identify the cause of the drop.

75

CHAPTER 5. RESULTS

20000

15000

(
-
o
o
=]
S

I

5000 [~

o

150 200 250 300
Time (s)

o
(o))
o
—_
o
o

Figure 5.3: Throttling of initiator’s sequential read activity using delayed ACK
packets in tc(1) (See Figure 3.2.7).

20000
— b2
—— b3
—— b4
— b5
15000 [~
Q
o}
X
= 10000 [~
2
=
5000 [~
0 | IR | 1 1 L 1 1 1
0 50 100 150 200 250 300
Time (s)

Figure 5.4: Throttling of initiator’s sequential write activity using delayed
ACK packets in tc(1) (See Figure 3.2.7).

76

5.4. INTRODUCED DELAY VS THROUGHPUT

5.4 Introduced delay vs throughput

Previous results suggest that the method of introducing artificial delay to out-
going packets could be an efficient way of throttling iSCSI initiators in order
to decrease the pressure on shared resources like disk groups. To find out the
predictability of throttling as an effect of artificial delay, 200 MB of data was re-
peatedly read and written from the iSCSI initiator device of one blade server,
measuring the time it took to complete each job. Each job were repeated 20
times for each value of artificial delay. Figures 5.6 and 5.5 show the results
with error indicators, representing the standard error, on top of the bars. The
precision of the means is so high that it is hard to see the error indicators at all.

The plots show that variation of artificial delay between 0 and 9.6 ms is consis-
tently able to throttle reads between 22 MB/s and 5 MB/s and writes between
15 MB/s and 2.5 MB/s. There is no absolute relationship between artificial de-
lay and throughput. Rather, the introduced delay has an immediate rate reduc-
ing effect regardless of what the throughput was when throttling started. Fig-
ures 5.6 and 5.5 suggests that there is a close-to-linear functional relationship
between introduced delay, the start rate and the resulting rate after throttling.
It is also reasonable to suggest that NIC buffer size and usage of jumbo frames
in the network are variables in the equation. This is because they control the
packet frequency hence indirectly how often the artificial delay is applied dur-
ing a particular amount of transferred data. However, further research would
be necessary to establish a model for such a relationship, and as demonstrated
later, such a model is not necessary in order to utilize the method in a closed
loop controller.

See listings E.1, C.1 in appendix D for details about data and plot generation.

77

CHAPTER 5. RESULTS

40
|

30
1

Time to read 200MB of data (s)

i

0 06 16 26 36 46 656 66 76 86 96

Introduced delay (ms)

Figure 5.5: Repeated measurements of the time used to read 200 MB with step-
wise increase in artificial delay of outgoing packets from target server.

Time to write 200MB of data (s)

20

il

0 06 16 26 36 46 656 66 76 86 96

Introduced delay (ms)

Figure 5.6: Repeated measurements of the time used to write 200 MB with

stepwise increase in artificial delay of outgoing packets (ACK packets) from
target server.

78

5.5. INTERFERENCE BETWEEN LOADS DEMONSTRATED

5.5 Interference between loads demonstrated

This experiment was set up to demonstrate how loads sharing the same un-
derlying resource affect each other. A job named smalljob was run on b2, per-
forming random read of 8kB request size with one thread and a total data size
of 128 MB. The purpose of smalljob was to mimic an interactive workload that
has demand for low response times and requests I/O in a relaxed manner.
Thus, it was rate limited to 256kB/s. Figure 5.7 shows how the average wait
time of smalljob gets influenced by an increasing amount of interference from
other hosts writing to their own virtual disks. The plots are from four different
runs, each having a different amount of interference started 60 seconds after
smalljob is started. The black line depicts smalljob’s average wait time when no
other activity occurs. The green line shows the next run stacked on top, and
depicts how smalljob’s response time is more than doubled at 60 seconds, when
an interfering single threaded write job executes unlimited sequential writes
toward its own virtual disk. At approximately 125 seconds, the interfering
thread stops and the response time of smalljob drops to the same value it was
before interference started. The blue and red plots are subsequent runs of the
same jobs, but with three and twelve threads interfering write threads respec-
tively. Clearly the average wait time of smalljob increases with an increasing
amount of interfering threads that operate on their own virtual disks. With
twelve interfering threads, spread across three hosts, the average wait time
of smalljob varies between 30ms and 120ms. The cause of smalljob’s increased
response time lies not in the activity of smalljob, but in the activity of other con-
sumers saturating the capacity of the underlying resource. If the smalljob was
an application highly dependent on response time it would have been five to
six times slower when write interference occurs. In reality, a single machine
with multiple CPU’s, and an application capable of parallelizing a lot of I/0O,
can easily saturate the request queues of a storage device, thus adversely af-
fecting response time of all consumers sharing that resource.

Jobs with increasing amounts of threads take longer due to the increased to-
tal amount of data to write (the same amount of data for each thread). The
job definition of smalljob is shown in listing D.2 and the job definition of each
interfering thread in listing D.3.

79

CHAPTER 5. RESULTS

120
No interference

i 1 thregd (1 machines)
100 | ———— 3 thredds (3 machines)
L —— 12 thregds (3 machines)
80 -
60 -
40 -
ripirdsorsinh ‘-'WQ—M.L._
P T IS S SR R

Wait time (ms)

20 [WWM
:W"‘WWMN"W T W}

r D -]
0 100 200 300 400 500
Time (s)

Figure 5.7: The effect on average wait time for smalljob on b2 with interfering
write activity from 1 and 3 other machines respectively.

5.6 Effect of throttling on wait time

In the previous experiment, the effect on consumer response time, caused by
other consumers’ activity was examined. In this experiment, the effect on con-
sumer response time by throttling the interfering consumers’ activity is ex-
amined. Expected behavior is that the throttling of demanding consumers
will free up capacity for the unthrottled important consumers, thus improving
their perceived performance. Figure 5.7 shows that writing activity of other
machines increases the average wait time of a smalljob doing random reads.
The objective is to ameliorate this situation by throttling the activity of the in-
terfering loads.

Figure 5.8 shows the effect on the smalljob’s average wait time when throt-
tling the 12 interfering sequential writers. Packet delay throttling is done in
the periods 100ms — 190s and 280s — 370s, using 4.6ms and 9.6ms packet de-
lay respectively. Clearly the throttling of interference contributes to wait time
improvement. The magnitude of improvement is higher if the wait time is
high before throttling (i.e. level of saturation is high). It means that the throt-
tling cost for improving response time from terrible to acceptable can be very
very low, but the cost of throttling increases as the response time improves

80

5.7. PID CONTROL OF RESPONSE TIME

S
80 Small job average wait time (Left) 1 Ooo
Interference aggregated throughput (Right). : ©
Throttling period with 4.6 ms delay]
Throttling period with 9.6 ms delay 1%
@)
)

(o)
=1
I

i

0000%

Wait time (ms)
8
T

0@07)

20 -

Aggregated interference (kB/s)

0000\

N A
0 100 200 300 400 500
Time (s)

Figure 5.8: The effect on small job’s wait time when throttling interfering loads
with delays of 4.6 ms and 9.6 ms respectively.

(decreases).

5.7 PID control of response time

Previous experiments demonstrated that the packet-delay throttling method
works well for instantly slowing the rate of less important consumers, and do-
ing so improves important consumers’ response time. The rate-reduction is
achieved by adding a variable packet delay, typically 0.5 — 20ms, that instanta-
neously reduces the current rate of the consumer it is applied to. The next step
is to automate the throttling decision: the decision about which delay should
be put on which packets. The ideas and design of this automation involves
the usage of a proportional integrating derivate (PID) controller. Detailed ar-
guments for this design decision is found in section 4.4.

Experimental results from testing the controller’s adaptability to rapidly chang-
ing workloads is shown in Figures 5.9 and 5.10. The black plot in Figure 5.10
shows the aggregated throughput of 12 sequential write threads spread across
3 blade servers, and Figure 5.9 shows the effect they cause on a rate-limited
random read job running on a different machine when no regulation occurs.

81

CHAPTER 5. RESULTS

No regulation
20 ms treshold
15 ms threshold
10 ms threshold

80 [~

Average wait time (ms)

*“N“M J“ “w M ! \ka‘ W\FWWU\

IR
A Mo A pone S
. | BN
300 400 500

Figure 5.9: The average wait time of a rate limited (256kB/s) random read
job interfered by 12 write threads started simultaneously and repeated with 5
seconds pause in between. The black plot shows the effect with free resource
competition. The colored plots show how the PID regulator keeps different
response time thresholds by regulating interfering workloads.

All write threads are turned on synchronously and repeated with five second
sleep in between, thus creating relatively large and rapid impacts on the ran-
dom read job’s response time. The colored plots show the effect of the same
interfering workloads with the PID regulator enabled having thresholds set
to 20, 15 and 10 ms respectively. Figure 5.10 shows the throttling effect on
the corresponding interfering workloads (aggregated throughput). Notable is
the relatively higher response time improvement for the random read job by
throttling aggregate write throughput from its maximum of 39MB/s down to
33MB/s, yielding an improvement of 25 ms lower response time. Taking the
response time down another five milliseconds costs another 7MB/s of throt-
tling to achieve. Clearly the throttling cost for each step of improved response
time increases as response time improves. Looking at it another way, if the
set threshold is close to the saturation point, the cost of avoiding saturation is
minimal.

82

5.8. MEASURING OVERHEAD

50000

No regulation

20 ms threshold (smoothed)
15 ms threshold (smoothed)
10 ms threshold (smoothed)

40000

S B0 R o
L Mwwm &
ST

IR

100 200 300 400 500
Time (s)

o

Figure 5.10: The aggregated throughput caused by throttling to keep latencies
at the set thresholds in Figure 5.9.

5.8 Measuring overhead

By adding the throttling feature there is a risk of adding extra overhead com-
pared to the same setup with no throttling. Experiments done so far indicate
little or no overhead, but this shall be further examined in the following exper-
iment.

Overhead when no throttling occurs is unwanted. Since no Iptables rules are
active when no throttling occurs, there is no overhead introduced by Iptables.
The only possible source of overhead in this situation is the static tc queueing
disciplines (qdiscs) and/or the static filters attached to the root qdisc. All out-
going packets are checked for marks by the static filters and there is a risk that
this checking introduce overhead. To investigate if the existence of static de-
lay queues and their filters add overhead, the difference in throughput was
measured with static qdiscs present and absent. Also, to maximize any impact
caused by tc packet checking, the logical volume servicing the iSCSI initia-
tor was interchanged with a RAM-disk. The fast speed of the RAM-disk en-
sures that any overhead introduced by packet checking in the network layer
becomes visible. The test was carried out by reading/writing 512MB from/to
the RAM-disk based iSCSI target from one of the blade servers (b2), first with-

83

CHAPTER 5. RESULTS

out any tc qdiscs and filters enabled and then with 20 delay classes with fil-
ters attached. Each job were repeated 20 times, yielding four vectors of twenty
numbers. The two pairs of vectors, with and without qdiscs/filters, were com-
pared using student’s t-tests in R.

The following command were used, on host b2, for capturing the times (sec-
onds) of each read and write operation:

/usr/bin/time -f %e /usr/local/bin/fio --minimal \
--output /dev/null $fio-jobdef

The $fio-jobdef file defined a 64Kb request size, a total data amount 512MB
and direct I/O using the synchronous I/O engine. The target for the job was
the /dev/iscsi_0 device bound to the RAM-disk on the target server, and the
rw parameter were varied to create read and write direction of the job respec-
tively.

The 99% confidence interval of the t-test difference between the two read jobs
is Cl,5q = 0.011s < t < 0.035s, and mean difference is 0.023s. The 99% con-
fidence interval of the t.test difference between the two write jobs is CI it =
0.069s < t < 0.155s, and mean difference is 0.112s. Hence, the worst case
overhead, with 99% confidence is 0.035s/0.155s for reads/writes respectively.

The average read rate with no qdiscs is 5%%%? = 71.2MB/s, and the average

write rate with no qdiscs is 5%?7];413 = 58.6MB/s. The read rate with worst
case overhead is % = 70.9MB/s, yielding a read rate difference of 0.3
MB/s, a worst case overhead of 0.42% relative to the rate without qdiscs. The
average write rate with worst case overhead is ﬁ% = 57.6MB/s, yield-
ing a write rate difference of IMB/s, a worst case overhead of 1.7% relative to
the rate without qdiscs.

5.9 Automated PID control approach

The design of a fully automated per-resource read-response-time-controller is
described in section 4.5. This section describes experimental results when the
automated framework is exposed to the same loads as in section 5.7. In this
experiment, information about resources and per resource throttleable con-
sumers are automatically inferred by the framework.

Figure 5.11 shows that the results with per resource saturation level auto-
detection, and dynamically maintained throttleable consumer sets, is close to
the results in section 5.7 when defining throttleable consumers and response

84

5.9. AUTOMATED PID CONTROL APPROACH

—_
o
o

No regulation

Automatic regulation, thresh=20ms
Automatic regulation, thresh=15ms;
Automatic regulation, thresh=10ms

®
=]
I

o
=1
I

N
<)
I

N
o
I

1

v.»,uw" Q‘LW"M‘

".‘ W'WWN A e tm MN W«

T T gl
L P T S ST T N S S SR S I SR S SR S R
100 200 300 400 500

Time (s)

Resource vg_aic average read wait time (ms)

(=]
I

o

Figure 5.11: The average wait time of a rate limited (256kB/s) random read
job interfered by 12 write threads started simultaneously and repeated with 5
seconds pause in between. The black plot shows the effect with free resource
competition. The colored plots show how the PID regulator keeps different
response time thresholds by regulating interfering workloads. In this plot, the
resource saturation indicator and the set of throttleable host are maintained
automatically.

time monitors manually. Figure 5.12 shows the resulting aggregated write
rates as a consequence of the automated throttling carried out to keep read
response time below the set thresholds in 5.11. Again, the black plot depicts
response-time/write-rate without regulation, and the colored ones depicts the
same but with regulation at different threshold values.

The results shows that the automated per resource PID control framework is
able to closely reproduce the results in section 5.7 where throttleable consumer
sets and resource saturation indicators were manually given as parameters to
the PID regulators.

There is a slight delay in the throttle response compared to section 5.7, giving a
slightly larger magnitude and duration of the overshoot created by the simul-
taneous starting of 12 interfering threads. It is reasonable to speculate that this
is caused by the additional time required to populate the sets of throttleable
consumers.

85

CHAPTER 5. RESULTS

50000

No regulation

Automatic regulation, thresh=20ms
Automatic regulation, thresh=15ms
Automatic regulation, thresh=10ms

S R e
JIE T

K

40000

=
=

MM

Resourec vg_aic aggr. write throughput (kB/s)

o
I
i ——

100 200 300 400 500
Time (s)

o

Figure 5.12: The aggregated throughput caused by throttling to keep latencies
at the set thresholds in Figure 5.11

During experiment execution, the OUTPUT chain of the Netfilter mangle table
was monitored with the command watch iptables -L OUTPUT -t mangle. As
expected, the rule that marks the outbound ACK packets of all consumers
in the set of throttleable consumers appeared as soon as the response time
threshold was violated. Further observation revealed rapid increase of the
mark value as the write interference increased in magnitude, thus directly in-
hibiting write activity to a level that does not cause threshold violation. The
command watch ipset -L was used to observe that an empty set with the
same name as the active resources (the vg_aic volumgroup) were created upon
startup of the set_maintainer.pl program. Furthermore, the set was popu-
lated with the correct IP addresses as the write activity of consumers violated
the set threshold, and the IP addresses were removed from the set when con-
sumers ceased /reduced write activity.

Before creating the workload used in this experiment, various smaller work-
loads were tested while plotting average wait time in realtime during experi-
ments. By applying various increasing and decreasing write interference, the
PID controller’s behavior was observed in real time. The controller exhibited
remarkable stability when gradually increasing interference. Hence, it was de-
cided to produce the most extreme workload variation possible for the plotted
results by turning on and off 12 writer threads (powered by three machines)

86

5.9. AUTOMATED PID CONTROL APPROACH

50

vg_aic read wait time with automatic regulation, thresh=15ms

Packet delay introduced to writers -5
.)

Aggregated write rate 1 000

40

30 -

(ms)
(kB/s)

20 -

10 -

e

il N Pt
100 150 200
Time (s)

Figure 5.13: The resource average wait time, the throttling delay and the ag-
gregated write rate with a set resource-wait-time-threshold of 15ms

simultaneously.

It is interesting to examine how the throttle-produced packet delay changes
as the the PID controller decides throttle values. Thus, the experiment used
in 5.9 and 5.7 were run again, capturing the packet delay applied to the set
of throttleable hosts along the duration of the experiment. Figure 5.13 shows
the monitored resource’s (vg-aic) actual wait time, the throttle value (packet
delay) produced by the PID controller and the actual resource’s aggregated
write rate. The 12 writer threads want as much I/O bandwidth as they can get
(37 MB/s without regulation), however, they get throttled by introducing the
packet delay seen in the red plot. The decreased write rate caused by packet
delay prevents resource saturation, which again prevents read response time
of the resource from exceeding the set threshold of 15 ms.

87

CHAPTER 5. RESULTS

88

Chapter 6

Discussion and conclusion

This chapter discusses the methods and design used, the choices made during
the process and the results exhibited together with their implications.

6.1 Approach review

Approaches of previous work vary from pure model design to thorough ex-
periments based on simple assumptions. The difficulty of modeling the dy-
namic and complex behavior of disc arrays” performance, in the cases where
resource-sharing is used extensively, has been pointed out by a large part of
the previous research. Those works which relied on extensive model design
were either tested using simulations only, or failed to capture the complexity
when tested in realistic experiments. Approaches using simple assumptions
and close-to-real-world experiments seemed to get the most applicable results.
Thus, a similar approach was used in this project. Given the results exhibited,
that seems to be have been a fruitful decision.

The approach of this project is highly influenced by real-world problems expe-
rienced by the author, introduced by the resource sharing mechanisms seen in
many networked storage devices. These challenges would have been reduced,
or completely avoided, by having a simple two level prioritization mechanism:
important and less-important. Hence, a major motivation of this project has
been to address this incompleteness within the available scope of the chosen
technology, namely iSCSI based disk arrays. This approach requires a man-
ual value decision about what virtual disks are important and response time
sensitive and what virtual disks can tolerate being rate-reduced in order to

89

CHAPTER 6. DISCUSSION AND CONCLUSION

avoid resource saturation. An initial prototype was created with this specific
problem in mind.

The subsequent prototype tries to make more general assumptions about what
operations are important, and automatically makes prioritization decisions
based on them. This prototype exchanges fine grained manual control with
automatic decisions based the general assumption that read requests are more
important than write requests (see section 4.5 for assumption discussion). The
prototypes demonstrate how the basic elements studied in this project can be
utilized for various kinds of prioritization systems with differing properties.

Of course, none of the prototypes offer a magic method to increase the amount
of total resources. If a virtual disk consumer deemed important by policy (au-
tomated or not) decides to saturate all resources, it will be allowed to do so.
This is the intended behavior though, since the objective of the project is to
design methods preventing less-important activity from adversely affecting
important activity. As seen in the two prototypes, what is considered impor-
tant is not a universal truth. If activity deemed important by policy saturates
all resources, either the policy is flawed or the total capacity of the resources is
insufficient.

This project is characterized by a broad approach, a thorough evaluation of
existing research, and cross-disciplinary and practically oriented thinking in
the application of solutions. By combining ideas from the networking and
control engineering fields it was possible to create two working prototypes by
utilizing the ideas in novel ways.

6.2 Tools used

Choice of tools is important in order to build confidence in the results exhib-
ited. Tools are used to measure behavior and create workload. It is essential
that measuring tools are well known and accurate, and that the tool used for
workload generation is producing exactly what it is instructed to in a repro-
ducible way.

This project utilizes scripts extensively, together with ntp, at and ssh, to syn-
chronize events between several hosts. The scripts make sure that the tim-
ing, order of execution, data collection and post processing are identical for
job setups that compare similar aspects. The scripts call well known tools
like blktrace, collectl, argus, collectd, dstat, gnu-time and fio that
monitor the execution of the experiments and generate the desired workloads

90

6.3. IDENTIFICATION OF RESOURCE UTILIZATION

at predetermined points in time. Using the same tools and scripts for executing
them, the results in this project can easily be reproduced.

6.3 Identification of resource utilization

The assumptions stated in section 2.1, section 1.1 and previous work [65] sug-
gested a reliable relation between average consumer response times and sat-
uration level of their underlying resource. The resource saturation level, or
conversely the remaining capacity, is determined by the aggregate workload
utilizing the resource. Magnitude, direction, randomness, and request sizes of
the aggregate workload are only some of the variables determining remaining
capacity. The other part of this equation is comprised by RAID level, stripe
sizes, stripe lengths, disk access times, bus speeds, head position of disks, con-
troller CPU capacity, speed and amount of cache in various levels of the data
path, internal algorithms for cache management, dynamic redistribution of
data and the like. Attempts to modeling the remaining capacity as a function
of all these parameters remains a difficult outstanding problem. Therefore,
this project chose to use the best means now available as an indirect measure
of remaining resources capacity: the response time of currently active resource
consumers. Measuring this value is simple and the measurement consumes a
negligible amount of resources. The usability of average consumer response
time as a saturation level measure is underlined by all response time related
experiments carried out in this project, and further confirmed by the success-
ful operation of the two PID controller prototypes described in sections 4.4 and
4.5.

6.4 Effect of interference

Interference between loads sharing a common resource causes consumers to
experience varying performance which is not caused by their own activity. It
is caused by the previously mentioned remaining capacity, which varies in a
highly unpredictable manner, and is a consequence of the resource’s aggre-
gate workload and its hardware setup. The ultimate goal of this project is to
increase individual consumers’ predictability with respect to the performance
they perceive. The latter is directly related to the previously mentioned con-
sumer average response time. In order to make this performance more pre-
dictable, it was necessary to study the effects of load interference. Section 5.5
demonstrates clearly how varying amounts of write activity influence the read

91

CHAPTER 6. DISCUSSION AND CONCLUSION

response time of a consumer that produces little workload by itself. While this
is not the only aspect of load interference, it is an important one. Generally
read request response times are most critical for application operation. For
these particular experiments the effect of writing activity on other consumers
read response time were chosen to illustrate the problem of load interference,
but clearly any kind of consumer workload is able influence all consumers’
available capacity by executing any kind of workload towards its own virtual
disks. It is just a matter of how much power is driving the resource hogging
workloads.

6.5 Effects of throttling

Throttling of workloads has been utilized as a means to influence remaining
capacity by many previous works, and it is normally carried out by some kind
of rate limitation applied to the workloads. Ultilization of the iSCSI proto-
col comes with the additional benefit of utilizing TCP traffic shaping tools to
enforce rate limitation. In order to examine the effects on consumers by throt-
tling taking place in the TCP layer, a number of experiments were executed.
The first throttling approach involved bandwidth limitations by using hierar-
chical token bucket filters (HTB). The expected effect of throttling individual
consumers was achieved, but the pure bandwidth throttler had a few prac-
tical limitations: the need for constantly calculating the bandwidth to be ap-
plied and, more important, the inefficient way of controlling write requests.
Controlling write rates was not possible without packet loss, resulting in slow
and inefficient convergence towards bandwidth target. This is thoroughly dis-
cussed in section 4.1.

The shortcomings of the bandwidth shaping method inspired the idea of us-
ing packet delay for throttling. The netem module of Linux Traffic control was
used to add delay to packets in a dynamic way using Iptables packet marks.
The concept is to add a small wait time to outgoing ACK packets, thus slowing
down the packet rate of the sender: the iSCSI writer. This concept, with its pros
and cons, is thoroughly discussed in sections 4.2 and 4.1. The main outcome
of the design and subsequent experiments is an efficient way of throttling in-
dividual iSCSI consumers’ traffic in both directions, with close-to-linear rate
reduction and without packet loss (see section 5.4). To our knowledge, this
approach has not been used to apply throttling in this way before.

The packet delay throttle is a tool by itself with its capabilities to throttle traf-
tic in both directions. This tool is ready to be used as a means to execute the
throttling part in any kind of iSCSI/TCP based automated framework for pri-

92

6.6. THROTTLING DECISION

oritization. In the experiments, writing activity was chosen as interference
because it yielded the most violent interference. Therefore it served the pur-
pose of demonstrating the concept of load interference in the best possible way
for this setup. Other situations may call for the need to throttle read interfer-
ence too, and there is nothing preventing the packet delay throttle to be used
in this scenario. It is has been demonstrated to work equally well as for write
interference (see section 5.4).

The usefulness of the packet delay throttle is also demonstrated by its efficient
means to execute PID controller throttling decisions in the two prototypes sub-
sequently developed.

6.6 Throttling decision

Design and experiments up to this point yielded an efficient method of man-
ually specifying a rate-limiting throttle value on a per consumer and per di-
rection (read /write) basis: the packet delay throttle. However, having to man-
ually control groups of individual consumers is clearly not sufficient in order
to make keepable promises about individual consumers” performance. Stati-
cally set rate limitations quickly become invalid as the aggregated workload
of the resource is changing. The blackbox approach taken in this project neces-
sarily implies no prediction of workload changes, but relies on measuring the
effect of them. Having just a manual knob to control throttling is clearly not
sufficient when interfering workloads rapidly change. Previous experiments
shows that the response time of a resource is a sufficient measure of remaining
capacity regardless of workload pattern. The decision to use this response time
as input to the throttling decision engine should therefore not be particularly
controversial.

The purpose of the decision engine is to throttle loads deemed less impor-
tant in order to keep more important loads to be adversely affected. What is
deemed important will vary between different situations. It can be read over
write prioritization, fair sharing with weights, manually defined sets of impor-
tant consumers or any combination of these. The first approach of this project
is manually defined sets of important and less important consumers. Due to
the choice of workloads this approach implies read over write prioritization,
however, if the workloads changed the set of prioritized consumers would
still be the same and whatever workload they would run would be throttled
accordingly.

The idea of using a PID controller as decision engine emerged from the obser-
vations of the relation between interfering workloads, the interference by other

93

CHAPTER 6. DISCUSSION AND CONCLUSION

consumers and the efficient operation of the packet delay throttle. This behav-
ior is similar to the control organs used to control industrial processes operated
by PID controllers in the field of control engineering. Preliminary experiments
using the PID controller algorithm exhibited promising behavior with respect
to the problem: keeping consumer response time below a certain threshold in
spite of massive interference. Thus, more extensive and synchronized experi-
ments were designed to further confirm the PID controller’s suitability for the
purpose.

The experiments in section 5.7 shows the results when the PID controller op-
erates on predefined sets of important and less important consumers. They
clearly verify the suitability of the PID controller for this purpose. The PID
controller exhibits remarkable ability to keep response time at the predefined
thresholds, in spite of violently changing workload interference. If the re-
sponse time threshold is reasonably set, the rate reduction needed for inter-
fering workloads is small. For lower thresholds the controller loop also keeps
a stable value, but at a much cost in the form of further rate reduction of inter-
fering workloads.

6.7 An automated framework

In order to take one step further with respect to autonomous operation, an
approach using read over write prioritization was designed 4.5. While this ap-
proach does not cover all possible needs for various prioritization schemes, it
further emphasizes the suitability of the packet delay throttle and the PID con-
troller as basic building blocks of an example scheme. Furthermore, additional
techniques are demonstrated to automate resource/consumer mappings, per
resource saturation monitors and autonomic maintenance of throttleable con-
sumers. Using these basic building blocks, it should be easy to build any kind
of prioritization scheme or combinations of such.

The approach for automatically deciding what to include in the calculation
of resource saturation level, and the means to influence it, has demonstrated
equally good results compared with experiments where this information ex-
plicitly was given. Hence, the automated per resource PID regulation is a step
forward with respect to generalization of the framework into per resource in-
dividually maintained controller loops.

The results of the autonomous framework shows a slight increase in magni-
tude and duration of the read response time threshold-overshoot compared
to the controller loop utilizing predefined consumers sets. It is reasonable to

94

6.8. THROTTLING OVERHEAD

speculate that this is caused by the additional time to populate the set of throt-
tleable consumers before throttling influences the rate. Increasing the current
one second convergence rate of the throttleable sets will probably make this
overshoot less. This is a value decision considering how much CPU resources
is spent checking for potential set members, compared to the acceptable over-
shoot. However, the magnitude and duration of the overshoot is considered
to be within acceptable limits, given the nature of the interference workload.

The workloads are designed to create maximum variation in interference by
simultaneously switching on and off 12 threads spread across three machines.
The impact of this interference, when there is no control loop active, is clearly
shown by the black plots in Figures 5.11 and 5.9. Wait time of the impacted
random read workload peaks at > 80 ms when there is no control loop. Ap-
plying the control loop stabilizes the wait time of the random read job at the
set threshold with remarkable stability. This is managed by the framework in
an autonomous way on a per resource basis, comprising a solution to problem
stated in section 1.2.

The modular design of the programs comprising the two prototypes makes it
trivial to reimplement the framework in similar environments. Moreover, they
are easily used as building blocks to achieve different prioritization schemes
than those demonstrated in this project or they can be used as components in
a bridged packet throttle.

6.8 Throttling overhead

When examining alternatives, the overhead term is commonly related to the
difference in overhead between alternatives. This project introduces new fea-
tures to prioritize workloads sharing a common resource. It is timely to ask if
this new feature comes with an added overhead. Experiments in section 5.8
indicates a worst case overhead of 1.7% for writes and 0.3% for reads when
accessing an iSCSI target device serviced by a RAM disk. Clearly, having the
static filters ready to be used for delay throttling adds some overhead. While
the the overall overhead is small, it is still much larger for writes than reads.
The reason for this is not clear, but some of the difference can be explained
by the worst case calculation being impacted by a larger confidence interval
(more variation) for the writes. If the difference in means were used for the
calculation, the write jobs would have a difference of 0.7MB/s or 1.2%. For
reads, it would have been 0.2MB/s or 0.28%. One hypothesis suggested was
that writes generated more outbound packets than reads. Hence, the number
of packets to check per data amount would be higher for writes. However, this

95

CHAPTER 6. DISCUSSION AND CONCLUSION

hypothesis was refuted by looking at the actual outgoing packet rates from the
target server during the experiment. Reads generated higher outbound packet
rates than writes. This was also expected behavior, since the most of the out-
bound packets was the ACK packets back to the initiator. Hence, this behavior
remains unexplained.

Experiments in section 5.8 suggest that the introduced overhead is related to
the amount of static tc filters attached to the root qdisc of the iSCSI interface.
This is reasonable since all packets must be checked for a particular mark by
each filter. This could be greatly improved by having one filter checking if
packets are marked or not, and then send packets that are marked for further
checking by subsequent filters. Packets that are not marked would not need
turther checking. It is expected that implementation of this method will nearly
remove the no-throttling-overhead, while the additional delay introduced by
subsequent packet inspection for packets with marks is negligible compared
to the added delay they will end up with.

The concept of throttling implies inducing overhead to a set of consumers on
purpose. Thus, this kind of overhead is not considered harmful or unwanted.
However, if throttling of some consumers induces overhead to other unthrot-
tled consumers it is unwanted behavior. This behavior observed in Figures
5.2, 5.4 and 5.3, when the rate of the unthrottled consumer is affected by the
throttling of other consumers. However, the effect is not necessarily caused
by throttling overhead. When all consumers read or write sequentially from
striped logical volumes, it is possible that there is some synergy effect be-
tween jobs due to read-ahead or consolidated operations in the block layer.
When some consumers get throttled down, this synergy effect is reduced, and
it could explain the temporary throughput reduction seen by the unthrottled
consumers.

6.9 Future work and suggested improvements

This project opens several interesting paths for further research and applica-
tions. By using the fundamental ideas explored, it should be possible to cre-
ate QoS modules to be used as external bridges in front of iSCSI appliances
or integrated into Linux based iSCSI appliances similar to the lab prototype.
By utilizing the ideas from this project, system administrators and vendors
can offer QoS for iSCSI storage. Hence, they can offer differentiated SLAs to
storage consumers with a confidence previously very difficult to achieve and
contribute their share to overall application SLAs.

96

6.9. FUTURE WORK AND SUGGESTED IMPROVEMENTS

iSCSI disk array

SNMPGET Array specific plugin

[

Resource/consumer maps
Virtual disk latencies

QoS bridge Ethernet sw.

Figure 6.1: Illustration of how the framework could be utilized as an indepen-
dent black box with limited array knowledge.

Figure 6.1 illustrates an approach for moving the controller to an external
bridge. Information about consumer/resource mapping and virtual disk read
latencies would be necessary in order to directly utilize the techniques demon-
strated here. In the figure, usage of SNMP GET requests towards the array is
suggested as an easy method for this purpose. However, the ultimate black
box approach would be to infer this information from packet inspection. If
achievable, this approach could serve as a self contained, non-intrusive, iSCSI
QoS machine applicable to all iSCSI solutions regardless of their make and
the feedback loop to the storage device would not be necessary. But it is un-
likely that the actual consumer/resource mapping can be detected by packet
inspection since this is internal storage device knowledge. However, it could
be indirectly inferred by using a predefined initiator naming convention that
contain resource membership.

Even with high sampling rate, and convergence rate of throttleable consumer
sets, the PID controller framework consumes little resources. Small resource
consumption and overhead are important attributes to enable high scalabil-
ity. The small resource consumption and overhead seen in the lab prototype,
makes it reasonable to project high scalability in a production environment
with large amounts of resources and consumers per resource. Combined with
the suggested PID controller tuning and rearrangement of tc filters an even
smaller footprint can be achieved.

Like mentioned in section 4.3, the measuring point where virtual disk response
time is measured must be moved in order to detect bottlenecks that occur be-
fore the local disks of the target server. An approach using agents on iSCSI
initiators would be the best way of considering all bottlenecks along the data
path by providing the initiator-experienced wait time to the throttling bridge.
The advantage of this approach is its simplicity, and how efficiently it will cap-
ture all bottlenecks along the iSCSI data path. The disadvantage is its reliance
on initiator host modifications. A viable approach could be to use the attribute

97

CHAPTER 6. DISCUSSION AND CONCLUSION

has_agent _installed to infer relative higher importance to the set of initiator that
has agents, and automatically use the set of consumers not having agents as a
tirst attempt of throttling before resorting to prioritization between initiators
with agents installed. Using this approach, the action of installing an agent
serves both the purpose of making performance metrics available to the con-
troller and telling about the membership in the set of important hosts.

Previously developed algorithms other than the PID algorithm can be com-
bined with the throttling techniques from this project to create even more
efficient and/or general purpose QoS mechanisms for iSCSI or even other
IP /Ethernet based storage technologies. Furthermore, the PID control algo-
rithm could be evaluated as a means to create stability and predictability in
other infrastructure components than just iSCSI devices. It is likely that the
problem of controlling iSCSI consumers is not the only one where a PID con-
troller can contribute.

There is always a persistent and large interest in workload classification/mod-
eling techniques in various research areas, not only in the storage field. To-
gether with the ever-evolving efforts to model storage devices, this research
can be combined with the ideas and results in this thesis in order to add im-
proved and even more generalized frameworks. Response time measurements
can still serve as a fallback when model generation fails or is too inaccurate,
while improved operation is achieved in the cases where workload prediction
works.

6.10 Conclusion

Resource sharing is widely used in storage devices for the purpose of flexibility
and maximum utilization of the underlying hardware. Sharing resources like
this introduces a considerable risk of violating application service level agree-
ments caused by the unpredictable amount of I/O capacity available to indi-
vidual storage consumers. The difficulties experienced by system administra-
tors in making keepable promise about storage performance and the amount
of previous research in the storage QoS field clearly emphasizes the need for
practical and real-world-usable QoS mechanisms for storage systems.

iSCSI based storage solutions are capturing increased market share from FC
based storage solutions due to increased performance and low cost. Thus,
iSCSI is an interesting target technology for devolpment of QoS mechanisms
for wide industry and system administrator adoption. The fact that iSCSI uti-
lizes TCP for transportation makes it possible, and very interesting, to adapt

98

6.10. CONCLUSION

well known network traffic shaping tools for the purpose of QoS in iSCSI en-
vironments.

This project reproduces and demonstrates the nature of resource sharing, the
effect of resource saturation on throughput and consumer response time, and
the resulting interference caused by load interaction. Using a Linux based
iSCSI storage appliance, experiments reproduce the varying performance of
individual consumers caused by other consumers’ activity. The lab environ-
ment, verified to exhibit similar properties to problematic real-world storage
solutions, is then used to design methods to solve some relevant aspects of
load interference. The methods involve using a network packet delay method,
available in the netem module of Linux Traffic Control, in novel ways and a
modified proportional integral derivative (PID) controller. By combining the
features of the netem module with Iptables” ability to dynamically mark pack-
ets, an efficient bidirectional mechanism for throttling individual iSCSI initia-
tors consumers is created. The created packet delay throttle is utilized by a
modified PID controller implemented in software. The PID controller utilizes
the packet delay throttle as a means to influence its input value: the average
wait time of the resource being controlled. The resource being controlled in
the lab setup is LVM volume groups, but the methods are generally adaptable
to any kind of resource exhibiting similar attributes.

The effect of packet delay throttling and the PID controllers’ suitability as deci-
sion engine is thoroughly examined through experimental results. Finally, all
previously designed and tested elements used in single aspect experiments are
tied together in a prototype for a autonomous resource control framework that
is able to keep resource read response time below a configurable threshold by
throttling write activity to the resource automatically. In spite of rapidly vary-
ing write workloads, the framework is able to keep a resource read response
time below the set threshold. The set of throttleable write consumers is auto-
matically maintained and ready to be used by the PID controller monitoring
read response time. The framework spawns a PID controller per resource, us-
ing per resource sets of throttleable consumers and per resource response time
measurements.

Throttling only occurs when response time of a resource violates the preset
threshold. When no throttling occurs, there is a negligible worst case overhead
of 0.4% for reads and 1.7% for writes caused by the static traffic control filters
which are always present and ready to detect packet marks.

This project opens several interesting paths for further research and applica-
tions. By using the fundamental ideas explored, it is possible to create QoS
modules to be used as an external bridge in front of iSCSI appliances or in-
tegrated into Linux based iSCSI appliances similar to the lab environment.

99

CHAPTER 6. DISCUSSION AND CONCLUSION

Previously developed algorithms can be combined with the throttling tech-
niques from this paper to create even more efficient and/or general purpose
QoS mechanisms for iSCSI or even other IP/Ethernet based storage technolo-
gies. Furthermore, the PID control algorithm could be evaluated as a means to
create stability and predictability in other infrastructure components than just
iSCSI devices.

By using the basic building blocks of this project it is possible to create a vast
amount of prioritization schemes. The few examples demonstrated serves as
a demonstration of the inherent opportunities. With the modular design of
the different programs it should be trivial to reimplement the framework in
similar set ups with minor adjustments only.

With the small resource consumption footprint of the prototype, and room for
further improvement of it, this concept should scale to enterprise level produc-
tion environments with large amounts of resources and storage consumers.

By utilizing the ideas from this project, system administrators and vendors can
offer QoS for iSCSI storage, thereby making it possible to offer differentiated
SLAs to storage consumers supporting application SLAs with a confidence
previously very difficult to achieve.

100

Bibliography

[1] G.A. Gibson and R. Van Meter. Network attached storage architecture.
Communications of the ACM, 43(11):45, 2000.

[2] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance differen-
tiation for storage systems using adaptive control. ACM Transactions on
Storage (TOS), 1(4):480, 2005.

[3] Dave Raffo. iscsi san finally proves worthy alternative to fibre channel
san for the mainstream. URL http://searchstorage.techtarget.com/
generic/0,295582,sid5_gci1380504,00.html.

4] Mark Peters. iscsi adoption continues its upward
p p
path. URL http://www.markmywordsblog.com/2010/01/18/
iscsi-adoption-continues-its-upward-path/.

[5] W.]John. Traveling To Rome: A Retrospective On The Journey. Operating
systems review, 43(1):10-15, 20009.

[6] Home page of lvm. URL http://sourceware.org/lvm2/.
[7] International committee for information technology standards.

[8] Incits techincal comitee for scsi3. URL http://www.t10.org/scsi-3.
htm.

[9] Y. Lu and D.H.C. Du. Performance study of iSCSI-based storage subsys-
tems. IEEE communications magazine, 41(8):76-82, 2003.

[10] Incits techincal comitee for fc. URL http://www.t11.org/index.html.

[11] A. Veitch, E. Riedel, S. Towers, J. Wilkes, et al. Towards global storage
management and data placement. In Eighth IEEE Workshop on Hot Topics
in Operating Systems (HotOS-VIII), pages 184-184. Citeseer.

[12] S. Aiken, D. Grunwald, A. Pleszkun, and]J. Willeke. A performance
analysis of the iSCSI protocol. In Proc. 11th NASA Goddard, 20th IEEE
Conf. Mass Storage Systems and Technologies (MSST 2003). Citeseer, 2003.

101

BIBLIOGRAPHY

[13] A. Joglekar, M.E. Kounavis, and FL. Berry. A scalable and high perfor-
mance software iSCSI implementation.

[14] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner.
RFC3720: Internet small computer systems interface (iSCSI). RFC Edi-
tor United States, 2004.

[15] Homepage of the is020000 standard. URL http://www.
standardsdirect.org/bs15000.htm.

[16] L. Qiao, B.R. Iyer, D. Agrawal, and A. El Abbadi. Automated storage
management with qos guarantees. In Proceedings of the 22nd International
Conference on Data Engineering, page 150. IEEE Computer Society, 2006.

[17] A. Popescu and S. Ghanbari. A Study on Performance Isolation Ap-

P y P

proaches for Consolidated Storage. Technical report, Technical Report,
University of Toronto, 2008.

[18] Cisco. Internetworking technologies handbook, fourth edition. Cisco Press,
2004.

[19] X. Xiao and L.M. Ni. Internet QoS: A big picture. IEEE network, 13(2):
8-18, 1999.

[20] M.A. El-Gendy, A. Bose, and K.G. Shin. Evolution of the Internet QoS
and support for soft real-time applications. Proceedings of the IEEE, 91(7):
1086-1104, 2003.

[21] P. Iovanna, R. Sabella, M. Settembre, et al. A traffic engineering system
for multilayer networks based on the GMPLS paradigm. IEEE network,
17(2):28-37, 2003.

[22] X.P. Xiao, T. Telkamp, V. Fineberg, C. Chen, and LM Ni. A practical ap-
proach for providing QoS in the Internet backbone. IEEE communications
Magazine, 40(12):56-62, 2002.

[23] A. Ziviani, B.E. Wolfinger,].FE. De Rezende, O.C.M.B. Duarte, and
S. Fdida. Joint adoption of QoS schemes for MPEG streams. Multimedia
Tools and Applications, 26(1):59-80, 2005.

[24] J. Guitart,]. Torres, and E. Ayguadé. A survey on performance manage-
ment for internet applications. Concurrency and Computation: Practice and
Experience, 2009.

[25] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
RFC2475: An Architecture for Differentiated Service. RFC Editor United
States, 1998.

102

BIBLIOGRAPHY

[26] R.Braden, D. Clark, and S. Shenker. RFC1633: Integrated Services in the
Internet Architecture: an Overview. RFC Editor United States, 1994.

[27] K. Nichols, S. Blake, F. Baker, and D. Black. RFC2474: Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC Editor United States, 1998.

[28] E.B. Fgee,]D Kenney, W] Phillips, W. Robertson, and S. Sivakumar.
Comparison of qos performance between ipv6 qos management model
and intserv and diffserv qos models. In Communication Networks and Ser-
vices Research Conference, 2005. Proceedings of the 3rd Annual, pages 287—
292, 2005.

[29] L. Zhang, S. Berson, S. Herzog, S. Jamin, and R. Braden. RFC2205: Re-
source ReSerVation Protocol (RSVP)-Version 1 Functional Specification.
RFEC Editor United States, 1997.

[30] Homepage of the iproute2 project. URL http://linux-net.osdl.org/
index.php/Iproute?2.

[31] The linux advanced routing and traffic control home page. URL http:
//lartc.org.

[32] L. Gheorghe. Designing and Implementing Linux Firewalls with QoS
using netfilter, iproute2, NAT and 17-filter, 2006.

[33] B.A. Forouzan and S.C. Fegan. Data communications and networking.
McGraw-Hill Science Engineering, 2007 edition, 2003.

[34] Homepage of the linux intermediate queueing device., . URL http://
www.linuximq.net/.

[35] Homepage of the linux intermediate functional block device.,
URL http://www.linuxfoundation.org/collaborate/workgroups/
networking/ifb.

[36] Jonathan Corbet. Which i/o controller is the fairest of them all? URL
http://lwn.net/Articles/332294/.

[37] Vivek Goyal. Block io controller vl. URL http://lwn.net/Articles/
360304/.

[38] A.A. Palekar and R.D. Russell. Design and implementation of a SCSI
target for storage area networks. In Proceedings of the 5th annual Linux
Showcase & Conference, 2001.

103

BIBLIOGRAPHY

[39] P. Ramaswamy. Provisioning task based symmetric QoS in iSCSI SAN.
2008.

[40] DV Sarwate. Computation of cyclic redundancy checks via table look-
up. 1988.

[41] X. He, M. Zhang, and Q. Yang. STICS: SCSI-to-IP cache for storage area
networks. Journal of Parallel and Distributed Computing, 64(9):1069-1085,
2004.

[42] Home page of the iozone tool. URL http://www.iozone.org.

[43] Home page of the postmark tool. URL http://www.netapp.com.

[44] Home page of the vxbench tool. URL http://www.veritas.com.

[45] Richard Stallmann. Gnu’s not unix. URL http://www.gnu.org/.

[46] Linus Torvalds. The home of the linux kernel. URL http://kernel.org.
[47] Berkeley software distribution variants. URL http://www.bsd.org/.

[48] iscsi enterprise target project homepage. URL http://iscsitarget.
sourceforge.net/.

[49] Generic scsi target subsystem, . URL http://scst.sourceforge.net/.
[50] Linux scsi target framework, . URL http://stgt.sourceforge.net/.

[51] Risingtide Systems. Lio linux iscsi target stack. @ URL http://
linux-iscsi.org/.

[52] Risingtide systems company website. URL http://www.
risingtidesystems.com.

[53] Neterion company homepage. URL http://www.neterion.com/.
[54] Open iscsi project, . URL http://www.open-iscsi.org/.

[55] The linux-iSCSI initiator project. Homepage. URL http://

linux-iscsi.sourceforge.net/.

[56] Announcement of merger between open-iscsi and linux-iscsi projects, .
URL http://kerneltrap.org/node/4992.

[57] Announcemnet of lefthand networks acquistion by hp. URL http://
www.hp.com/hpinfo/newsroom/press/2008/081001a.html.

104

BIBLIOGRAPHY

[58] Annoucement of equallogic acqusition by dell. URL http:
//www.dell.com/content/topics/global.aspx/corp/pressoffice/
en/2008/2008_-01_28_rr_0007c=us&l=en.

[59] L. Huang, G. Peng, and T. Chiueh. Multi-dimensional storage virtual-
ization. ACM SIGMETRICS Performance Evaluation Review, 32(1):14-24,
2004.

[60] Lan Huang. Stonehenge: A high performance virtualized storage cluster
with qos guarantees. Technical report, 2003.

[61] W. Jin,].S. Chase, and J. Kaur. Interposed proportional sharing for a
storage service utility. In Proceedings of the joint international conference on
Measurement and modeling of computer systems, pages 37-48. ACM New
York, NY, USA, 2004.

[62] G.Peng. Availability, fairness, and performance optimization in storage virtu-
alization systems. PhD thesis, Stony Brook University, 2006.

[63] S. Uttamchandani, L. Yin, G.A. Alvarez,]J. Palmer, and G. Agha.
CHAMELEON: a self-evolving, fully-adaptive resource arbitrator for
storage systems. URL https://wwuw.usenix.org/events/usenix05/
tech/general/full papers/uttamchandani/uttamchandani html/
paper.html.

[64] M. Wachs, M. Abd-El-Malek, E. Thereska, and G.R. Ganger. Argon: per-
formance insulation for shared storage servers. In Proceedings of the 5th
USENIX conference on File and Storage Technologies, pages 5-5. USENIX
Association, 2007.

[65] A. Gulati and I. Ahmad. Towards distributed storage resource manage-
ment using flow control. ACM SIGOPS Operating Systems Review, 42(6):
10-16, 2008.

[66] Ajay Gulati, Chethan Kumar, and Irfan Ahmad. Modeling workloads
and devices for io load balancing in virtualized environments. SIG-
METRICS Perform. Eval. Rev., 37(3):61-66, 2009. ISSN 0163-5999. doi:
http://doi.acm.org/10.1145/1710115.1710127.

[67] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. Parda: propor-
tional allocation of resources for distributed storage access. In FAST "09:
Proccedings of the 7th conference on File and storage technologies, pages 85—
98, Berkeley, CA, USA, 2009. USENIX Association.

105

BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

J.C. Wu and S.A. Brandt. The design and implementation of AQuA: an
adaptive quality of service aware object-based storage device. In Pro-
ceedings of the 23rd IEEE/14th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 209-218. Citeseer.

S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation (OSDI),
2006.

Chao Jin and R. Buyya. An adaptive mechanism for fair sharing of stor-
age resources. In Computer Architecture and High Performance Computing,
2009. SBAC-PAD 09. 21st International Symposium on, pages 75 —82, oct.
2009. doi: 10.1109/SBAC-PAD.2009.19.

J.C.I. Chuang and M.A. Sirbu. Distributed network storage service with
quality-of-service guarantees. Journal of Network and Computer Applica-
tions, 23(3):163-185, 2000.

A. Neogi, A. Raniwala, and T. Chiueh. Phoenix: a low-power fault-
tolerant real-time network-attached storage device. In Proceedings of the
seventh ACM international conference on Multimedia (Part 1), pages 447-
456. ACM New York, NY, USA, 1999.

A. Raniwala, S. Sharma, A. Neogi, and C. Tzi-cker. Implementation of
a Fault-Tolerant Real-Time Network-Attached Storage Device. In NASA
CONFERENCE PUBLICATION, pages 89-104. Citeseer, 2000. URL http:

//www.ecsl.cs.sunysb.edu/phoenix/phoenix_impl/phoenix.html.

P. Shenoy and H.M. Vin. Cello: A Disk Scheduling Framework for Next
Generation Operating Systems*. Real-Time Systems, 22(1):9-48, 2002.

C.R. Lumb, A. Merchant, and G.A. Alvarez. Facade: Virtual storage
devices with performance guarantees. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, page 144. USENIX Association,
2003.

M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R. Ganger, J. Hen-
dricks, A.]J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R.R. Samba-
sivan, et al. Ursa Minor: versatile cluster-based storage. In Conference on
File and Storage Technologies, pages 59-72, 2005.

A. Lebrecht, N. Dingle, and W. Knottenbelt. A response time distribution
model for zoned RAID. Analytical and Stochastic Modeling Techniques and
Applications, pages 144-157.

106

BIBLIOGRAPHY

[78] A. Traeger, E. Zadok, N. Joukov, and C.P. Wright. A nine year study
of file system and storage benchmarking. ACM Transactions on Storage

(TOS), 4(2):5, 2008.

[79] Home page of the iperf utility, =~ URL http://sourceforge.net/
projects/iperf/.

[80] Home page of flexible i/o tool, . URL http://freshmeat.net/
projects/fio/.

[81] Kerneltrap: Interview with jens axboe. URL http://kerneltrap.org/
node/7637.

[82] Experiment breaking the 1 million iops barrier, . URL

http://www.businesswire.com/news/google/20090406005417/en/
CORRECTING-REPLACING-Fusion-io-Breaks-Storage-Performance-Barriers.

[83] Homepage of hewlett packard. URL http://www.hp. com.
[84] Homepage of the fusion io company. URL http://www.fusionio.com/.

[85] Jens Axboe. Homepage of the blktrace utility. URL http://git.kernel.
org/?p=linux/kernel/git/axboe/blktrace.git;a=blob;f=README.

[86] Homepage of the collectl] utility, .
[87] Home page of the collectd tool, . URL http://collectd.org/.
[88] Homepage of the plot program. URL http://plot.micw.eu/.

[89] Alteon os application guide. URL http://www.bladenetwork.net/
userfiles/file/PDFs/IBM_GbE_L2-3_Applicat_Guide.pdf.

[90] Home page of tcpdump tool, . URL http://www.tcpdump.org/.
[91] Home page of tcptrace tool, . URL http://www.tcptrace.org/.

[92] Home page of xpl2gpl tool. URL http://masaka.cs.ohiou.edu/
software/tcptrace/xpl2gpl/.

[93] Home page of argus tool. URL http://www.qosient.com/argus/.

[94] Home page of the udev utility. URL http://www.kernel.org/pub/
linux/utils/kernel/hotplug/udev.html.

[95] Home page of ipset. URL http://ipset.netfilter.org/.

[96] Home page of systemtap tool. URL http://sourceware.org/
systemtap/.

107

BIBLIOGRAPHY

[97] V. Paxson and M. Allman. RFC2988: Computing TCP’s Retransmission
Timer. RFC Editor United States, 2000.

[98] M. Allman, V. Paxson, and W. Stevens. RFC2581: TCP congestion con-
trol. Internet RFCs, 1999.

[99] E. Haugen. PID control. Tapir Academic Press, 2004.
[100] E. Haugen. Anvendt requleringsteknikk. Tapir, 1992.

[101] Wikipedia user:silverstar. URL http://en.wikipedia.org/wiki/User:
SilverStar.

108

Appendix A

I/O Throttlers

Listing A.1: Script for throttling individual IP address

#!/usr/bin/perl -w
name: throttle_iscsi_initiator.pl

This script classify packets for further treatment

by traffic control. Classification is done using the
mark

target of iptables.

if (! exists($ARGVI[1])) {
&usage;

()

$lasthandle = 20; # Needs to be adapted to number of
tc classes.

$step;

(exists $ARGVI[2]) { $step = $ARGV[2] } else {
$step = 1 };

$initiator_ip = $ARGV[0];

$action = $ARGV[1];

$myip = ’10.0.0.2537;

$rv = 0;

$rulenum = -1;

$mark = 0 ;

$iptables = "/sbin/iptables ";

$starthandle = 1 ;

$tc = "/sbin/tc";

E

3

EEEEEEEEE

109

APPENDIX A. I/O THROTTLERS

my $iscsi_dev = "ethl";

if ($initiator_ip =" /" ([\dl+)\.(C[\dl+)\.(C[\d]l+)\.([\d
1+)8/7) A
if ($action eq ’slower’) {
($rulenum, $mark) = &get_rule("up");

if ($rulenum == -1) {
if ($step > $lasthandle) { $step = $lasthandle
¥
$rv = ‘$iptables -A OUTPUT -o $iscsi_dev -s $myip
-d $initiator_ip -j MARK --set-mark $step‘;
} else {
$rv = ‘$iptables -A OQUTPUT -o $iscsi_dev -s $myip
-d $initiator_ip -j MARK --set-mark $mark ‘;
$rv = ‘$iptables -D OUTPUT $rulenum ‘;
}

} elsif ($action eq ’faster’) {
($rulenum, $mark) = &get_rule("down");
if ($rulenum !'= -1) {

if (($mark + 1) == $starthandle) {

$rv = ‘$iptables -D OUTPUT $rulenum ‘;
} else {
$rv = ‘$iptables -A OUTPUT -o $iscsi_dev -s
$myip -d $initiator_ip -j MARK --set-mark
$mark ¢ ;
$rv = ‘$iptables -D OUTPUT $rulenum ‘;

}
}
} elsif ($action eq ’free’) {
($rulenum, $mark) = &get_rule("up");

$rv = ‘$iptables -D OUTPUT $rulenum ‘;
} else {
&usage

}
} else {

kusage
}
——————- Functions --——-————----

sub usage {
print "Usage: $0 initator_ipaddr faster|slower|free [
step] \n";

110

exit 1;

3

sub get_rule {
Check if $initator_ip is classified and get its
existing handle.
Increment or decremnent returned new mark based on
given argument
my $direction = shift;
ny $newmark = 0 ;
if ($direction eq "down") {
$step = $step * -1 ;
}
my Qret=[];
foreach (‘$iptables --line-numbers -n -L OUTPUT ‘) {
chomp ;
if ¢ /°\d+.+/) {
my @rule = split(" ",$_);
if ($rule[4] eq $myip && $rule[5] eq
$initiator_ip) {
$rulenum = $rule[0] ;
$rule[8] =" /70x(.+)\/.+/;
$mark = sprintf (’%d’,hex($1));
if ($mark + $step < 0) {

$newmark = 0;
} elsif ($mark + $step > $lasthandle) {
$newmark = $lasthandle ;
} else {
$newmark = $mark + $step;
}
}
}
}
@ret = ($rulenum, $newmark) ;

return Qret;

3

Listing A.2: The PID controller script used in 5.9 and 5.10

#!/usr/bin/perl -w
name: reg.pl

use POSIX;;

111

APPENDIX A. I/O THROTTLERS

use Time::HiRes qw(usleep);

$SIG{INT} = "cleanup";

my $ipt_mark = 0;

my $lastmark = 0;

my $ds = "/proc/diskstats";
my $countermem;

ny $lastewma = O0;

my $ewma_alpha = 0.25;

my $setpoint = 10;

my $max_throttle = -40;

my @prev_devs = (0,0,0);
my @prev_uks = (0,0,0);

my $Kp = 0.3;

my $Ti = 500;

my $Td = 1;

my $T = 16;

my $iptables = "/usr/local/sbin/iptables -t mangle";
$1=1;

my $mondev = "dm-0";

STDOUT ->autoflush;
create_sets () ;

while (1) A
open (DISKSTATS ,"<",$ds) or
while (<DISKSTATS>) {

die "open $ds, $!";

chomp;
s/\s+/ /g;
my ($major, $minor, $dev, @fields) = split(’ ’,$_)
if ($dev eq $mondev) {
ny $weitime = counter("dm-0","weitime",$fields
[10]1);
my $req = counter ("dm-0","r",$fields [0]) +
counter ("dm-0","w",$fields [4]) ;
my $wait;

[
Hh

my

($req > 0) { $wait
$wait = 0 } ;

= $weitime / $req } else {

$cur_ewma = $lastewma + $ewma_alphax($wait -

$lastewma) ;

unshift (O@prev_devs, $setpoint - $cur_ewma) ;

112

pid_reg();
$lastewma = $cur_ewma;
}
}
close (DISKSTATS) ;
usleep 100000;
}

functions

sub pid_reg {

mny $uk = $prev_uks[0] + $Kp*x(1-($T/$Ti)) + $Kpx*
$prev_devs [0] + (($Kpx*$Td)/$T)*($prev_devs [0] - 2%
$prev_devs [1] + $prev_devs[2]);

if ($uk > 0) {
$uk = 0;

} elsif ($uk < $max_throttle) {
$uk = $max_throttle;

}
if ($uk < 0) {
$ipt_mark = -1*xceil ($uk);
}
if ($ipt_mark != $lastmark) {
throttle("throttlers",$ipt_mark);
if ($ipt_mark > $lastmark) A
for (my $bar=1;$bar <= $ipt_mark - $lastmark; $bar
++) {
print "#";
}
} elsif ($ipt_mark < $lastmark) {
for (my $bar=1;$bar <= $lastmark - $ipt_mark;
$bar++) {
print "\x08";
}
}
}

unshift (@prev_uks, $uk) ; pop (@prev_uks) ;
pop (@prev_devs) ;
$lastmark = $ipt_mark;

sub counter {
my $obj = shift;

113

APPENDIX A. I/O THROTTLERS

my $field = shift;

my $current_value = shift;

ny $cm;

my $ret = 0 ;

if (exists($countermem->{$objr->{$field})) A

$cm = $countermem->{$objt->{$field};
if ($cm > $current_value) {
$ret (4294967296 - $cm) + $current_value;
} else
$ret
}

(e |

$current_value - $cm;

}
$countermem->{$objr->{$field} = $current_value;
return $ret;

sub create_sets {

}

‘ipset -N throttlers ipmap --network 10.0.0.0/24°;
‘ipset -A throttlers 10.0.0.243°;
‘ipset -A throttlers 10.0.0.244°;
‘ipset -A throttlers 10.0.0.245°¢;

sub cleanup {

3

4

‘iptables -F -t mangle °;
‘ipset -X throttlers ‘;
die "Ouch !\n";

sub throttle {

my $set_name = shift;
my $tv = shift;

my $myip = ’10.0.0.2537;
ny $mark = 0 ;

my $iscsi_dev = "ethl";
my Qipsets;

foreach (‘ipset -L) {

chomp ;
if (/" Name.x/) {

my @1 = split;

push (@ipsets, $1[1]);
}

114

if (grep /" set_name/,Q@ipsets) {

unless ($tv == 0) {

‘$iptables -A OUTPUT -o $iscsi_dev -s $myip -m set
--match-set $set_name dst -j MARK --set-mark
$tv ¢ ;

}

delete_other ($set_name , $tv,$myip) ;

}

sub delete_other {
mny $set_name = shift;
my $tv = shift;
my $myip = shift;
foreach (‘$iptables --line-numbers -n -L OUTPUT ‘) {
print if $debug;

chomp;

if C /~\d+.+/) {
my O@rule = split(" ",$_);
print join(",",@rule)."\n" if $debug;
$rule[11] =~ /~0x(.+)/;

$mark = sprintf(’%d’,hex($1));

if ($rule[4] eq $myip && $rule[7] eq $set_name
&& $mark != $tv) {
‘$iptables -D OQUTPUT $rule[0] ¢ ;

}

Listing A.3: The PID controller script used in FIXME

#!/usr/bin/perl -w

use Config;

$Config{useithreads} or die(’Recompile Perl with
threads to run this program.’);

IPC::Shareable;

Data::Dumper;

POSIX; ;

Time::HiRes qw(usleep);

o
0
(0]

fort
n
(0]

[
n
()

[
4]
0]

115

APPENDIX A. I/O THROTTLERS

use threads;

$SIG{INT} = "cleanup";
my @prev_devs = (0,0,0);
my @prev_uks = (0,0,0);

my $ewmas;
tie $ewmas, ’IPC::Shareable’, ’AVEWMAS’, {create => 0,
destroy => 0};

$Kp 0.3;

$Ti 500;

$Td = 1;

$T = 16;

$max_throttle = -40;

$lat_thresh = 10;

$iptables = "/usr/local/sbin/iptables -t mangle";
$controller_mem;

$threads;

EEEEEEEEE

foreach my $resource (keys %{$ewmas}) {
print "Creating PID controller for $resource \n";

$controller_mem->{$resource}r->{’prev_uk’} = 0;

$controller_mem->{$resource}->{’lastmark’} = 0;

@{$controller_mem->{$resource}r->{’prev_devs’}} =
(0,0,0);

$threads ->{$resource} = threads->create(\&pid_reg,
$resource,$lat_thresh) ;
$threads ->{$resource}r->detach () ;

while (1) {

sleep 10;
}

Functions

sub pid_reg {
my $resource = shift;
my $thresh = shift;
my $ipt_mark = O;
while (1) {
unshift (@{$controller_mem->{$resource}t->{’prev_devs

116

’}},$thresh - $ewmas->{$resourcel) ;

mny $prev_uk = $controller_mem->{$resourcel}->{"’
prev_uk’};
my @prev_devs = @{$controller_mem->{$resourcelt->{’
prev_devs’1}};
#print "$prev_uk" .join("-", Q@prev_devs)."\n";
#print Dumper ($controller_mem) ;
#print "$prev_uk -- $Kp -- $T -- $Ti -- $prev_devs [0]
-- $Td -- $prev_devs[1l] -- $prev_devs[2] \n";

my $uk = $prev_uk + $Kp*(1-($T/$Ti)) + $Kpx
$prev_devs [0] + (($Kp*$Td)/$T)*($prev_devs [0] -
2x$prev_devs [1] + $prev_devs[2]);

#print "$uk -- $prev_uk -- $Kp -- $T -- $Ti --
$prev_devs [0] -- $Td -- $prev_devs[1] --
$prev_devs [2] \n";

if ($uk > 0) {
$uk = 0;

} elsif ($uk < $max_throttle) {
$uk = $max_throttle;

}
if ($uk < 0) {
$ipt_mark = -1xceil ($uk);
}
if ($ipt_mark != $controller_mem->{$resourcelt->{’

lastmark’}) {
throttle ($resource,$ipt_mark) ;
}
$controller_mem->{$resource}->{’ prev_uk’} = $uk;
pop(@{$controller_mem->{$resource}t->{’prev_devs’}})
$controller_mem->{$resource}r->{’lastmark’} =
$ipt_mark;
usleep 200000;

throttle A
$set_name = shift;
$tv = shift;
$myip = 210.0.0.253";
$mark = 0 ;
$iscsi_dev = "ethl";
Q@ipsets;

o

su

ST

117

APPENDIX A. I/O THROTTLERS

foreach (‘ipset -L ‘) {
chomp;
if (/" Name.x*x/) {
my @1 = split;
push (@ipsets,$1[1]);
}
}

if (grep /" set_name/,Q@ipsets) {
unless ($tv ==) {

‘$iptables -A OUTPUT -o $iscsi_dev -p tcp --tcp-
flags ACK ACK -s $myip -m set --match-set
$set_name dst -j MARK --set-mark $tv‘;

}

delete_other ($set_name , $tv,$myip) ;
}
}

sub delete_other {
my $set_name = shift;
my $tv = shift;
my $myip = shift;
foreach (‘$iptables --line-numbers -n -L OUTPUT ‘) {
print if $debug;

chomp;

if (/°\d+.+/) {
my @rule = split(" ",$_);
print join(",",@rule)."\n" if $debug;
$rule[13] =~ /"0x(.+)/;

$mark = sprintf(’’%d’,hex($1));

if ($rule[4] eq $myip && $rule[9] eq $set_name
&& $mark != $tv) {

my $ret = ‘$iptables -D OUTPUT $rule[O]

}

b

¥

sub cleanup {
‘iptables -F -t mangle ¢;
die "Ouch !\n";

118

Listing A.4: Shaping script for bandwidth Used in figure

#!/bin/bash

name bw-shaping.sh

stm=‘date +%s°‘

iscsi_dev="ethl"
firsthandle=10
lasthandle=19
sleep_period="10"
b2=10.0.0.242

b3=10.0.0.243
b4=10.0.0.244
b5=10.0.0.245

for i in $b2 $b3 $b4
0

Q.

done

for i in ‘seq 11 23°

sleep 3
done

for i in ‘seq 11 23°¢
do

sleep 3
done

for i in ‘seq 11 23°

scriptdir="/root/scripts"
resultdir="/root/results"

script for doing timed throttling of
individual iscsi initiators.

Go to a starting point where throttling

${scriptdir}/throttle_iscsi_initiator.pl

${scriptdir}/throttle_iscsi_initiator.pl

${scriptdir}/throttle_iscsi_initiator.pl

119

has an effect

$i slower 10

$b2 slower

$b3 slower

APPENDIX A. I/O THROTTLERS

do
${scriptdir}/throttle_iscsi
sleep 3

done

sleep 12
${scriptdir}/throttle_iscsi_
sleep 15
${scriptdir}/throttle_iscsi_
sleep 15
${scriptdir}/throttle_iscsi_

_initiator.pl $b4 slower

initiator.pl $b2 free
initiator.pl $b3 free

initiator.pl $b4 free

Listing A.5: Shaping script for packet delay (Used in figures 5.3 and 5.4)

#!/bin/bash

stm=‘date +s°
scriptdir="/root/scripts"
resultdir="/root/results"
iscsi_dev="ethl"
firsthandle=10
lasthandle=19
sleep_period="10"

> ${resultdir}/runlog

b2=10.0.0.242

b3=10.0.0.243

b4=10.0.0.244

b5=10.0.0.245

sleep 10

for i in ‘seq 1 30°

do
${scriptdir}/throttle_iscsi
sleep 2

done

sleep b

for i in ‘seq 1 30°¢

do
${scriptdir}/throttle_iscsi
sleep 2

done

sleep 5

_initiator.pl $b2 slower

_initiator.pl $b3 slower

120

for i in ‘seq 1 30°

do
${scriptdir}/throttle_iscsi_initiator.pl $b4 slower
sleep 2

done

sleep 12
${scriptdir}/throttle_iscsi_initiator.pl $b2 free
sleep 15
${scriptdir}/throttle_iscsi_initiator.pl $b3 free
sleep 15
${scriptdir}/throttle_iscsi_initiator.pl $b4 free

121

APPENDIX A. I/O THROTTLERS

122

Appendix B

Interface queueing setup

Listing B.1: Scripts which creates egress bandwidth queues (Creates figure 3.3)

#!/bin/bash
name: class_chop_nic_bw.sh

This script attach a number of bandwidth queues to
the iscsi

interface. Traffic is classified by marks assigned by

iptables mark target

tc="/sbin/tc"
iscsi_nic="ethl"

case $1 in

"start")

typeset -i class=2

${tc} gdisc add dev ${iscsi_nic} root handle 1: htb
default 1

${tc} class add dev ${iscsi_nic} parent 1:0 classid
1:1 htb rate 1gbit burst 1mbit ceil 1gbit cburst 1
mbit

for limit in ‘seq 50 50 950|sort -n -r°

|Q
o

${tc} class add dev ${iscsi_nic} parent 1:1 classid 1:
${class} htb rate ${limit}mbit
class=${class}t+1
done

123

APPENDIX B. INTERFACE QUEUEING SETUP

for limit in ‘seq 5 10 45|sort -n -r

o
${tc} class add dev ${iscsi_nic} parent 1:1 classid 1:
${class} htb rate ${limit}mbit
class=${class}t+1
done

for filter in ‘seq 1 $((${class}-2))°

|Q
o

${tc} filter add dev ${iscsi_nicl} protocol ip parent
1: prio 1 handle ${filter} fw classid 1:$((${filter
F+1))

done

"StOp”)
${tc} qdisc del dev ${iscsi_nic} root

)

"show")

echo "----- Show qdisc of ${iscsi_nic} ----- L
${tc} qdisc show dev ${iscsi_nic}

echo "----- Show classes of ${iscsi_nic} ----- .
${tc} class show dev ${iscsi_nic}

echo "----- Show filters of ${iscsi_nic} ----- "

${tc} filter show dev ${iscsi_nic}
*)
echo "Usage $0 start|stop|show"

esac

-

Listing B.2: Scripts which creates egress packet delay queues (Creates figure
3.27

#!/bin/bash

name: class_chop_nic_delay.sh

This script attach a number of delay queues to the
iscsi

interface. Traffic is classified by marks assigned by

iptables mark target

124

tc="/sbin/tc"
iscsi_nic="ethl"

case $1 in
Ugizare ™)

typeset -i class=1

${tc} qdisc add dev ${iscsi_nic} root handle 1:

default 1
class=${class}+1

Hh
(@]
L}

htb

delay in ‘seq 0.1 0.5 10°

|Q
ct+ |O

c class add dev ${iscsi_nic}
class} htb rate 1Gbps

parent 1:0 classid 1:${

tc gdisc add dev ethl parent 1:${class} handle 18${

class}:
class=${class}+1
done

for filter in

|Q
o

${tc} filter

1: prio 1
}+1))
done
"StOp”)

${tc} qdisc

)

"show")

echo "----- Show qdisc of
${tc} qdisc show dev

el "===== Show

${tc} class show dev

echo "----- Show

${tc} filter show dev
*x)
echo

esac

classes of

filters of

netem delay ${delaylms

‘seq 1 $((${class}-2))°

add dev ${iscsi_nic} protocol ip parent
handle ${filter} fw classid 1:$((${filter

del dev ${iscsi_nic} root

${iscsi_nic} ----- "
${iscsi_nic}
${iscsi_nic}
${iscsi_nic}
${iscsi_nic}
${iscsi_nic}

"Usage $0 start|stop|show"

125

APPENDIX B. INTERFACE QUEUEING SETUP

126

Appendix C

Other scripts

Listing C.1: Script for finding stable relation between delay and throughput (It
produces data for figures 5.5 and 5.5)

#!/bin/bash

jobdefs="/root/scripts/jobdefs/"
job=‘basename $0 .sh°
delay=0

function loop {
for i in ‘seq 1 20°

do
echo "‘date +/4H:%M:%S‘ ${delay} ‘/usr/bin/time -f
he /usr/local/bin/fio --minimal --output /dev
/null ${jobdefs}${job}_$(hostname) 2>&1° "
done
}
loop
sleep 2
for delay in ‘seq 0.1 0.5 10°¢
do

ssh -p 5432 bm ’/root/scripts/throttle_iscsi_initiator.
pl 10.0.0.242 slower’

loop

sleep 2

done

127

APPENDIX C. OTHER SCRIPTS

Listing C.2: Script used for dynamically maintaining sets of throttle-able 1P
addresses

#!/usr/bin/perl -w

use Set::Scalar;

use Time::HiRes gw(time sleep);
use Data::Dumper;

use IPC::Shareable;
$SIG{’INT’} = ’inthandler’;
$SIG{’TERM’} = ’inthandler’;
my $countermem;

ny $ewmas;

my Q@ipsets = ();

my $write_thresh = 1000;

ny %fm = (r => 0,

rrqm => 1,

wsec => 6,
wtime => 7,
inflight => 8,
time => 9,
weitime => 10,

)
my $iscsi_sessions;
tie $iscsi_sessions, ’IPC::Shareable’, ’ISCSIMAP’, {
create => 1, mode => 664, destroy => 1};
$iscsi_sessions = get_iscsi_session_map();

while (1) {
update_metrics () ;
foreach my $s (@ipsets) {
my $target_population = populate_target_set($s);
converge_ipset ($s,$target_population)

by

sleep 1;
}

128

Functions

sub populate_target_set {
$setname = shift;
my Q@ips = ();
foreach my $dm (keys %{$ewmas}) {
if ($iscsi_sessions->{$dm}->{’vg’} eq $setname) {
if ($ewmas->{$dm}->{’wsec’} > $write_thresh) {
push (@ips, $iscsi_sessions->{$dm}->{’ip’}); # Add
the ip of this abuser

+
}
ny $ret;
if ($#ips >= 0) {

$ret = new Set::Scalar(@ips);
} else {
$ret = new Set::Scalar->null;
}
return $ret;
+
sub converge_ipset {
my $setname = shift;
mny $target = shift;
my Q@ips = ();
foreach (‘ipset -L $setname ‘) {
chomp ;

if ¢ /7(\d{1,3}\.\d{1,3}}\.\d{1,3}\.\d{1,31)8/) {;
push (@ips,$1);
}
}
ny $ipset;
if ($#ips >= 0) {
$ipset = new Set::Scalar(@ips);

} else {

$ipset = new Set::Scalar->null;
}
my $remove = $ipset - $target ;

mny $add = $target - $ipset ;
unless ($remove->is_null) {
for my $i ($remove->members) {
‘ipset -D $setname $i‘;

129

APPENDIX C. OTHER SCRIPTS

+

}

unless ($add->is_null) {
for my $i ($add->members) {

‘ipset -A $setname $i°‘;

+

}

}

sub get_iscsi_session_map {

$1lvs;

$raw;

$active_dms;

%iet_sessions;

$stats;

$vgs;

$1lvs_cmd = ’/sbin/lvs -v’;

(-f "/etc/redhat-release") { $lvs_cmd = "/usr/
sbin/lvs -v";}

EEEEEEE

[
Hh

foreach (‘$1lvs_cmd 2> /dev/null ‘) {
next if /.+UUID.+/ ;
s/\s+/ /g;
chomp;
my @1 = split;
Map dm vg-1lv to dm-nn
$1vs—>{$1[1]1}->{$1[0]}->{’dm’} = ’dm-’.$1[8];

}
Map tids to volumes
$raw = ‘cat /proc/net/iet/volume ‘;
my %iet_volumes = $raw =~ /tid:(\d{1,3})\sname:.+?\n

.+?path:(.+7)\n/smg;
Map tids to sessions
Only populate tids with an initator attached
my Otids;
foreach my $1 (‘cat /proc/net/iet/session ‘) {

if ($1 =~ /~tid:(\d{1,3})\sname.+/) {
push (@tids, $1);
} elsif ($1 =~ /“\s+cid:.+ip:(.+)\sstate.+/) {

Only populate if it seems like an lv-name
$iet_sessions{$tids [$#tids]l} = $1;
shift (Qtids);

b

130

Know various info about dm- devices that is involved

in
active 1iscsi sessions
foreach my $tid (keys %iet_sessions) {
if ($iet_volumes{$tid} && $iet_volumes{$tid}
/N\/ . +?2\/.+?2\/.+$/) {

$stat = $lvs->{Svglt->{$1v}i->{’stat’};
$ip = $iet_sessions{$tid};
$active_dms ->{$dm}->{’vg’} = $vg;
$active_dms ->{$dm}->{’1v’} = $1lv;
$active_dms ->{$dm}->{’statfile’} = $stat;
$active_dms ->{$dm}->{’ip’} = $ip;
push (@{$vgs->{$vg}t}, $dm);
}

my Q@a = split(’/’,$iet_volumes{$tid});
my $vg = $al2];

my $1v = $al[3];

ny $dm = $lvs->{$vgt->{$1lv}i->{’dm’};
my

my

}
foreach my $vg (keys %{$vgs}) {
‘ipset -N $vg ipmap --network 10.0.0.0/24°;
push (@ipsets, $vg) ;
+

return $active_dms;

}

sub counter {
$obj = shift;
$field = shift;
$current_value = shift;
$cm;
$ret = "nan" ;
(exists($countermem->{$objr->{$field})) {
$cm = $countermem->{$objt->{$field};
if ($cm > $current_value) {

RERE

[
Hh

$ret = (4294967296 - $cm) + $current_value;
} else {
$ret = $current_value - $cm;

}

131

APPENDIX C. OTHER SCRIPTS

$countermem->{$objr->{$field} = $current_value;
return $ret;

3

sub update_metrics A
my $active_dms = shift;
my $interval = shift;
my $alpha = 0.25;
ny $ds = "/proc/diskstats";

Snapshot disstats with a minimum of time usage
open (DISKSTATS ,"<",$ds) or die "open $ds, $!"
my $time = time;
while (<DISKSTATS>) {

chomp;

s/\s+/ /g;

my ($major, $minor, $dev, @fields) = split(’ ’,$_)
if ($dev =" /dm-\d+/) {

my $cur_rate = counter($dev,’wsec’,$fields [$fm{"’
wsec’}]); #Sector->Kb
if ($cur_rate eq "nan") {
$ewmas ->{$dev}->{’wsec’} = 0;

} else {
$ewmas ->{$dev}->{’wsec’} = $ewmas->{$dev}i->{’
wsec’} + $alphax*x($cur_rate - $ewmas->{$dev
}->{’wsec’});
}
#print "$dev -> $cur_rate $ewmas->{$dev}->{’wsec
’} \n";
}
}
close (DISKSTATS) ;
#print "---------- \m " e

sub inthandler {
(tied $iscsi_sessions)->remove;
‘ipset -X°;
exit;

3

Listing C.3: Script used for dynamically maintaining a resource saturation in-

132

dicator in shared memory. The information is used as input to A.3

#!/usr/bin/perl -w

o
n

e IPC::Shareable;

e Time::HiRes qw(time usleep);
e Data::Dumper;

#use Statistics::Descriptive;
$SIG{’INT’} = ’inthandler’;
$SIG{’TERM’} = ’inthandler’;

o
0

e
&3]

my $alpha = 0.25;

my $iscsi_sessions;

tie $iscsi_sessions, ’IPC::Shareable’, ’ISCSIMAP’, {
create => 0, destroy => 0};

my $avwait_ewmas ;

tie $avwait_ewmas, ’IPC::Shareable’, ’AVEWMAS’, {create
=> 1, mode => 664, destroy => 1};

my $resource_map = map_resource_consumers () ;

while (1) {
my $cur_wait = grab_current_avwait () ;
foreach my $resource (keys %{$resource_map}) {
my $touched = O;
foreach my $dm (@{$resource_map->{$resourcelt}) {
if ($cur_wait->{$dm} ne "nan") {
ny $w = $cur_wait->{$dm} ;
my $e = $avwait_ewmas->{$resourcel;
my $n = $e + $alphax*x($w - $e);
$avwait_ewmas ->{$resource} = $n;
$touched = 1
}
}
if ($touched == 0) {
my $e = $avwait_ewmas->{$resource}l};
$avwait_ewmas ->{$resource} = $e - $alpha * $e;
Drop ewma when no activity

}
usleep 100000;
b

133

APPENDIX C. OTHER SCRIPTS

Functions

sub map_resource_consumers {
my $map;
foreach my $dm (keys %{$iscsi_sessions}) {
push (@{$map->{$iscsi_sessions->{$dm}->{’vg’}}}, $dm)
}
return $map;

}

sub grab_current_avwait {
my $ds = "/proc/diskstats";
open (DISKSTATS ,"<",$ds) or die "open $ds, $!";
while (<DISKSTATS>) {

chomp ;

s/\s+/ /g;

mny ($major, $minor, $dev, @fields) = split(’ ’,$_)
if ($dev =" /“dm-.+/) {

ny $weitime = counter ($dev,"weitime",$fields [10])

my $req = counter($dev,"r",$fields [0]) ;#+
counter ($dev ,"w" ,$fields [4]) ;

ny $wait;
if ($req > 0) { $wait = $weitime / $req } else {
$wait = "nan" } ;
$cur_wait->{$dev} = $wait;
}

}
close (DISKSTATS) ;
return $cur_wait;

}

sub inthandler {
(tied $avwait_ewmas)->remove;
exit;

3

sub counter {
my $obj = shift;

134

my $field = shift;

my $current_value = shift;

ny $cm;

ny $ret = "nan" ;

if (exists($countermem->{$objr->{$field})) {

$cm = $countermem->{$objt->{$field};
if ($cm > $current_value) {

$ret = (4294967296 - $cm) + $current_value;
} else {
$ret = $current_value - $cm;
}
}
$countermem->{$objr->{$field} = $current_value;
return $ret;

Listing C.4: Script for collecting test results

#!/usr/bin/perl -w
name: get_results.pl

M @hosts = (llblll,llbmll,||b2||,||b3||’l|b4ll,llb5ll);
my $rresultdir = "/root/results";

if (! exists ($ARGV[0])) {
print "Usage: $0 job-script\n";
exit 1;

}

my $job = $ARGV[0];

my $jobdir = "/Users/jarleb/Documents/masterprog/thesis
/results/$job";

if (-d $jobdir) A
‘rm -rf $jobdir ¢ ;
}

‘mkdir -p $jobdir ¢;

foreach my $host (Q@hosts) {
print "--- Fetching from $host ---- \n";
‘mkdir "$jobdir/$host";
‘scp -r "$host:$rresultdir/$job/*x" "$jobdir/$host/" ‘;
}

135

APPENDIX C. OTHER SCRIPTS

Listing C.5: Script for distributing scripts and job definitions

#!/usr/bin/perl -w
name: dist.pl

ml @dist_hosts = (||b1l|’||b2||,||b3|l’||b4|l,||b5ll,||bmll);
my $scriptdir = "/root/scripts";

foreach my $host (@dist_hosts) {

print "--- Dist to $host ---- \n";

‘ssh $host mkdir -p $scriptdir ¢;

‘rsync --delete -avz -e ssh * "$host:$scriptdir"‘;
‘ssh $host chmod +x $scriptdir/*°;

3

Listing C.6: Script for scheduling jobs

#!/usr/bin/perl -w
name: schedule.pl

“./dist.pl‘;

M @hOStS = (”b2",”b3","b4","b5")’
my $scriptdir = "/root/scripts/";

if (! exists($ARGVI[1])) {
print "Usage: $0 time[hh:mm] script\n";
exit 1;

by

my $tm = $ARGV[0];
my $script = $ARGVI[1];
$script="/"(C.+)\.sh/;

my $job=$1;
mny $resultdir = "/root/results/$job";
mny $runlog = "$resultdir/runlog";

print "Scheduling monitoring on bl tcpdump\n";
‘echo "$scriptdir/bl-mon.sh $job >/dev/null 2>&1" |ssh

bl ’cat |at $tm ’ ¢;

foreach my $host (Q@hosts) {
print "--- Scheduling on $host ---- \n";
‘echo "$scriptdir/$script "|ssh $host ’cat |at $tm’ ‘;

136

print "Scheduling monitoring on bm \n";
‘echo "$scriptdir/bm-mon.sh $job " |ssh bm ’cat |at $tm

) .
)

print "scheduling shaping on bm\n" ;
‘echo "$scriptdir/shaping.sh > /var/tmp/shaping_log
2>%1" |ssh bm ’cat |at $tm’ ¢;

Listing C.7: Script for binding iSCSI initiators

#!/usr/bin/perl -w
name iscsi_bind.pl

if (! exists ($ARGV[0])) {
print "Usage: $0 start|stop\n";

exit 1;
}
my Q@initiator_hosts = ("b2","b3","b4","b5");
my $cmd = $ARGV[0];
my $bind_script = "/root/scripts/blade_iscsi_bind.sh";
mny $target_script = "/root/scripts/iscsi-target.sh";

if ($cmd eq ’start’) A{
#⌖
#sleep 5;
initators;
exit O;

}

if ($cmd eq ’stop’) {
initators;
#⌖
exit O;

}

sub initators {
foreach my $host (@initiator_hosts) {

print "--- Running $cmd on $host ---- \n";
‘ssh $host ’iscsiadm --mode discovery --type

sendtargets --portal bm’‘;

137

APPENDIX C. OTHER SCRIPTS

‘ssh $host $bind_script $cmd ‘;
}
}

sub target {
‘ssh bm $target_script $cmd ‘;
}

Listing C.8: Script for picking out the relevant data from collectd files

#!/usr/bin/perl -w
tc_extract.pl

o
n
(0]

File::Find;
POSIX;

fort
n
(0]

efiles = () ;

%items ;

$start ;

$end;

@searchdirs = ("/var/lib/collectd/csv/blademon.vlab
.iu.hio.no/netlink-ethl/");

$date=‘date +%Y-%m-%d°‘;

chomp ($date) ;

EEEEE

E

if ($ARGV[0] eq "showfiles") {
find (\&wanted, @searchdirs);
foreach (keys %items) {print "$_\t-> $items{$_}\n";}
exit O;

3

if (' $ARGVI[2]) {
usage () ;
exit 1;
} elsif ($ARGV[0] eq "showfiles") {
find (\&wanted, @searchdirs);
foreach (keys %items) {print "$_\t-> $items{$_}\n";}
exit O;

}

if ($ARGV[0] =" m/\d{1,2}:\d{1,2}:\d{1,2}/ && $ARGV
[1] =" m/\d+/) {
my $job = $ARGV[2];

138

my $runlength = $ARGV[1];

my $outdir = "/root/results/$job/tc-vectors";
‘mkdir -p $outdir ¢;

‘rm $outdir/* ‘;

$start = ‘date +%s --date $ARGV[0] ‘; chomp($start);
#%end = ‘date +%s --date $ARGV[0] ¢; chomp($end);
$end = $start + $runlength;

find (\&wanted, @searchdirs);
print localtime($start)." -> ".localtime($end)." \n";
foreach my $item (keys %items) {
print "Generating $item \n";
open F, "$items{$item}" or die "Cannot open $items{
$item} for read: $!";
open 0, ">$outdir/$item" or die "Cannot open $outdir
/$item for write :$!";
my $lastval = O;
ny $cval = O0;
while (<F>) {

chomp;
next if (! /~\d/);
my Q@1 = split(",",$_);

if ($1[0] >= $start && $1[0] <= $end) {
$cval = $1[1];
$val = $cval - $lastval;
if ($val !'= $cval || $cval == 0) {
my $plot_time = $1[0] - 978307200;
print 0 "$plot_time, $vall\n";
}
$lastval = $cval;
}
+
close 0;
close F;
}
} else { usage(); }

sub usage {

print "Usage: $0 showfiles| HH:MM:SS runlength(s)
jobname\n";

sub wanted {

139

APPENDIX C. OTHER SCRIPTS

if ($File::Find::name =~ /.x\/(ipt_.+-.+:.+)-%date/) {
$items{$1} = $File::Find::name;

}

}

Listing C.9: Script for picking out iostat columns based on header names

#!/usr/bin/perl
name: fix_iostat.pl

my $f = $ARGV[0];

open F, "$f" or die "Cannot open $f for read: $!";
my $header = readline (*F);

my @metrics = split(" ",$header);
shift (@metrics) ;
my $c = 0;

my Yjmetrics;
my Opmetrics;

foreach (@metrics) {
$metrics{$_} = $c;
$c++;

¥

if (! exists($ARGVI[1])) {
print "Usage: $0 blktrace_iostat_file metric.\n";
print "Available metrics:\n";
foreach my $metric (keys Y%metrics) {
print "$metric \n";
#print "$metric ($metrics{$metric})\n";
}
close F;
exit 1;

¥

$pmetrics [0] = ’Stamp’;
push (@pmetrics , $ARGV [1]) ;

while (<F>) {
if C /°\(C.*x/ && ' /.*TOTAL.x/) {
chomp ;

s/\NC.+\) //;

140

my @line = split(" ",$_);
foreach my $pm (@pmetrics) {
print "$line[$metrics{$pm}] ";
}
print "\n";
}
}

close F;

Listing C.10: Script for binding iSCSI locally on blade server

#!/bin/bash
name: blade_iscsi_bind.sh

case $1 in

"start")
iscsiadm --mode node --targetname iqn.iscsilab:perc_
‘hostname ‘ bm:3260 --login
iscsiadm --mode node --targetname iqn.iscsilab:aic_

hostname ¢ bm:3260 --login

)

"stop")
iscsiadm --mode node --targetname iqn.iscsilab:perc_
‘hostname ‘ bm:3260 --logout
iscsiadm --mode node --targetname iqn.iscsilab:aic_

hostname ¢ bm:3260 --logout
*)
echo "Usage $0 start|stop"

esac

Listing C.11: Script for generating separate files for Plot

#!/bin/bash
name: generate_plotdata.sh

metrics=(wkB/s rkB/s r/s w/s await svctm %util avgrq-
sz wrqm/s rrqm/s wsec/s avgqu-sz rsec/s)

resultdir="/Users/jarleb/Documents/masterprog/thesis/
results/";

iostatfile="blkt_iostat";

plotdatadir="/Users/jarleb/Documents/masterprog/thesis/
plotdata";

141

APPENDIX C. OTHER SCRIPTS

mkdir -p ${plotdatadir}

for jobdir in ‘ls ${resultdir}‘

do

if [[-d ${plotdatadir}/${jobdir} 1]
then

rm -rf ${plotdatadir}/${jobdir}
fi

mkdir -p ${plotdatadirl}/${jobdir}
for bladedir in ‘1ls "${resultdir}/${jobdir}""
do

if [[-f ${resultdir}/${jobdir}/${bladedir}/${
iostatfilel} 11

then
if [[-d ${plotdatadir}/${jobdir}/${bladedir} 1]
then
rm -rf ${plotdatadir}/${jobdir}/${bladedir}
fi

mkdir -p ${plotdatadir}/${jobdir}/${bladedir}
for metric in ${metrics[*]}
do
outmetric=‘echo $metriclsed ’s|/|_pr_Ilg’"*
‘pwd ‘/fix_iostat.pl ${resultdir}/${jobdir}/${
bladedir}/${iostatfile} ${metric} > ${

plotdatadir}/${jobdir}/${bladedir}/${outmetric}’
done

fi
done
done

echo "remember dstat and tc data in results dir"

Listing C.12: Post processing script for target server

#!/bin/bash
name: postproc.sh

if [[-z $1 1]

then
echo "Usage: $0 jobname"
exit 1

fi

142

exec &> /root/results/$1/pp-log
echo "----- ‘date ‘----- :

echo "Killing dstat and collectl"
pkill -f "dstat --noheaders"
pkill collectl

echo "Copying script versions for this run"
cp -r /root/scripts /root/results/$1

/root/scripts/tc-graph.pl > /root/results/$1/tc-graph.
dot

jobstart=$(grep ’Monitoring started’ /root/results/job2
/runlog |awk ’{print $61}°)

jobstart_epoch=‘date -d ${jobstart} +V%s°

period=$((‘date +%s‘-${jobstart_epoch}))

/root/scripts/tc_extract.pl ${jobstart} ${period} $1

sync

sleep 3

cat /root/results/$1/runlog /root/results/$1/pp-logl/
root/scripts/sendmail.pl §1

Listing C.13: Monitor script for target server

#!/bin/bash
bm-mon.sh

if [[-z $1 1]

then

echo "Usage: $0 jobname"

exit 1

fi

rm /var/lib/collectd/csv/blademon.vlab.iu.hio.no/
netlink-ethl/*

/etc/init.d/collectd restart

dir="/root/results/$1"
if [[-4 $dir]]

then

rm -rf $dir

fi

mkdir -p ${dir}

143

APPENDIX C. OTHER SCRIPTS

exec &> ${dir}/runlog

echo "Monitoring started ‘date ‘------ "

echo "starting collectl "

collectl -s nNdDtTcCmyjJ -f$dir &

echo "Starting dstat with output to $dir/dstat.csv"

dstat --noheaders -tdnmc -D total ,dm-0,dm-1,dm-2,dm-3,
sdb,sdc,sdd,sde,sdf ,sdg,sdh,sdj,sdi,sdk -N ethl --
sys -s -T --output ${dir}/dstat.csv > /dev/null 2>&1
&

Listing C.14: Monitor script to bl (argus)

#!/bin/bash
name: bl-mon.sh

results="/root/results/"
job=%1
tcpdump_file="${results}/${job}/argus.bin"

if [[-d ${results}/${job} 1]
then
rm -rf ${results}/${job}
fi
mkdir -p "${results}/${job}"
exec &> /root/results/${job}/runlog
argus -S 1 -i ethl -w ${tcpdump_filel}

Listing C.15: Job template script

#!/bin/bash

starttime=‘date ¢

#date=‘/bin/date +%Y%m%d-%H%M-%S‘;
jobdefs="/root/scripts/jobdefs/"
job=‘basename $0 .sh°
results="/root/results/"
blktrace_prefix="iscsi_0.trace"
blkparse_binfile="iscsi_0.bin"
blktrace_devices="/dev/iscsi_0"
blktrace_iostat_file="blkt_iostat"
blktrace_q2c_lat_prefix="blkt_q2c"

144

blktrace_qd_prefix="blkt_qdepth"
runlog="runlog"

if [[-d ${results}/${job} 1]
then
rm -rf ${results}/${job}
fi
mkdir -p "${results}/${job}"
exec &> "${results}/${job}/${runloglt"
cd ${results}/${job}
echo "Started jobl on ${starttimel}"
if [[-f ${jobdefs}${job}_$(hostname)]]
then
echo "Running blktrace on ${blktrace_devices}"
blktrace -o ${blktrace_prefix} ${blktrace_devices} &
blkpid=$!

echo "Copying fio config file"

cp ${jobdefs}/${job}_‘hostname ¢ ${results}/${job}/
fio_jobdef

echo "Starting collectl"

collectl -s nNdDtTcCmyjJ -f${results}/${job}/ &

echo "Running /usr/bin/time -f %e /usr/local/bin/fio --
minimal --output ${results}/${job}/fio.out ${jobdefs
}${job}_‘hostname ‘"

echo "Elapsed: ‘/usr/bin/time -f %e /usr/local/bin/fio
--minimal --output ${results}/${job}/fio.out ${
jobdefs}${job}_$ (hostname) 2>&1° "
kill $blkpid
if [[$7 -eq 0 1]
then
echo "Successfully killed blktrace pid: ${blkpidl}"
else
echo "Failed to kill blktrace pid: ${blkpid}"
fi

echo "Running /usr/bin/blkparse -i ${results}t/${jobl}/${
blktrace_prefix} -d ${blkparse_binfile} --no-text"

/usr/bin/blkparse -i ${results}/${job}/${
blktrace_prefix} -d ${blkparse_binfile} --no-text

echo "Running btt -i ${blkparse_binfile} -S 1 -I ${
blktrace_iostat_filel}"

145

APPENDIX C. OTHER SCRIPTS

btt -i ${blkparse_binfile} -S 1 -I ${
blktrace_iostat_file} > /dev/null

echo "Running btt -i ${blkparse_binfile} -q ${
blktrace_q2c_lat_prefix}"

btt -i ${blkparse_binfile} -q ${blktrace_q2c_lat_prefix
} > /dev/null

echo "Running btt -i ${blkparse_binfile} -Q ${
blktrace_qd_prefixl}"

btt -i ${blkparse_binfile} -Q ${blktrace_qd_prefix} > /
dev/null

echo "Creating btrecord files"

mkdir btrecord

btrecord -D btrecord ${blktrace_prefix}

echo "Deleting blktrace and blkparse files for space
conservation"

rm ${blkparse_binfile}

rm ${blktrace_prefix}x

pkill collectl

echo "Ended jobl on ‘date ‘"

else

echo "No jobfile, not running any fio job"
fi

if [[‘hostname‘ == "b2" 1]
then
while true
do
F=nn
for b in b3 b4 b5
do
f=${f}‘ssh $b pgrep $job"
done
echo "-- ‘date‘ contents of f=§f"
if [[-z ${£f} 1]
then
break
fi
sleep 5
done
echo "-- ‘date‘ running postproc on bm"
ssh -p 5432 bm "/root/scripts/postproc.sh ${job} "
ssh bl "pkill argus;gzip /root/results/${jobl}t/argus.
bin"

146

|£i

Listing C.16: Mathematica code for finding the best moving average algorithm
in Figure 4.3

(¥ Import the vector representing the real AVWAIT
logged during experiment*)

(* This is the raw data that will be tested for the
best sliding average algoritmh. x*)

v = Flatten[Import["/Users/jarleb/Documents/masterprog/
thesis/results/jb-AVWAIT-comp/bm/v_wait", "Table"]];

(¥ Generate a plot of the raw data and store it in a
variablex*)

a = ListPlot[v, PlotJoined -> Truel;

(¥ Function for prepending the vector with the same
amount of elements as the moving median reduces it
with when window size increases.x*)

(¥ This is done to avoid time shifting of the moving
median graph when stacked on top of the real data
and the EWMAx*)

tr [{elem_, num_3}] := Table[elem, {num}]

(* A slider for moving median window size (integers) x*)
Slider [Dynamic[r], {2, 20, 1}]

(¥ Slider for ewma alpha parameter*)

Slider [Dynamic [alpha], {0.0001, 1}]

(* Dynamic plot with the three grahs stacked on top of
each other x*)

Dynamic [Show[a,ListPlot [ExponentialMovingAverage [v,
alphal], PlotJoined -> True,PlotStyle -> {RGBColor/[1,
0, 0], Thickl}],ListPlot[MovingMedian[Join[tr [{0, av
}1, v]l, av], PlotJoined -> True,PlotStyle -> {
RGBColor [0, 2, 0], Thick}]]]

147

APPENDIX C. OTHER SCRIPTS

148

Appendix D

Collection of fio job definitions

Listing D.1: Fio job definition run from script 5.4

[global]
rw=read
#rw=write
size=200m

blocksize=64k
direct=1
ioengine=sync
write_lat_log
write_bw_log

[jobl-1]
filename=/dev/iscsi_1

I

Listing D.2: Fio job definition for the small job described in 5.5

[global]
rw=randread
size=128m

blocksize=8k
ioengine=sync
rate=256k
write_lat_log
direct=1

[jobl-1]
filename=/dev/iscsi_0

149

APPENDIX D. COLLECTION OF FIO JOB DEFINITIONS

& J

Listing D.3: Fio job definition for the interference job described in 5.5

[global]
size=2048m
rw=write

blocksize=64k
ioengine=sync
direct=1

[job1]
filename=/dev/iscsi_0

I

Listing D.4: fio job definition for load generated in figures 5.1 and 5.2

[global]
rw=read
size=2048nm

blocksize=32k
direct=1
ioengine=sync
write_lat_log
write_bw_log

[jobl-1]
filename=/dev/iscsi_0

b

Listing D.5: fio job definition for load generated in figures 5.4 and 5.3

[globall
size=2048nm
rw=write

blocksize=64k
ioengine=sync
direct=1
write_lat_log
write_bw_log

[jobl-1]
filename=/dev/iscsi_0

I

150

Appendix E

Collection of commands

Listing E.1: R commands used to create figures 5.5 and 5.6

library(sciplot)

t=read.table(r)

bargraph.CI(V1,V2,data=t,xlab="Introduced delay (ms)",
ylab="Time to read 200MB of data (s)",err.width
=0.05)

Listing E.2: R commands used to identify overhead introduced by tc packet
checking

> no_tc_r=read.table("no_tc_read.out")

> w_tc_r=read.table("with_tc_read.out")
> w_tc_w=read.table("with_tc_write.out")
> no_tc_w=read.table("no_tc_write.out")

A\

read=t.test(w_tc_r ,no_tc_r,conf.level=0.99)
write=t.test(w_tc_w,no_tc_w,conf.level=0.99)
> round(c(read$conf.int[1] ,read$estimate [1] -
read$estimate [2] ,read$conf.int [2] , read$estimate [1],
read$estimate [2]) ,3)
mean of x mean of x mean of y
0.011 0.023 0.035 7.210 7.188
> round(c(write$conf .int[1] ,write$estimate[1] -
write$estimate [2] ,write$conf.int[2] ,write$estimate
[1] ,write$estimate [2]) ,3)
mean of x mean of x mean of y
0.069 0.112 0.155 8.843 8.731

A\

151

APPENDIX E. COLLECTION OF COMMANDS

2 J

Listing E.3: Commands used to check for packet loss logged on the host side
in experiment 5.5 and 5.6

jarleb@rubeus b2 $ pwd

/Users/jarleb/Documents/masterprog/thesis/results/dfunc
-write/b2

jarleb@rubeus b2 $ cat lossfish.pl

#!/usr/bin/perl -w

while (<>) {
next if /" #/;

chomp;

s/\s+/ /g;

my @1 = split;

print "$1[0] $1[1] $1[4] \n" if $1[4] !'= 0;
+

jarleb@rubeus b2 $

jarleb@rubeus b2 $§ collectl -p collectl-b2
-20100413-211521.raw -s t -oT --thru 20100414:03:00
--plot|./lossfish.pl

jarleb@rubeus bm $ cd ../bm

jarleb@rubeus bm $ collectl -p collectl-blademon
-20100413-211329 . raw.gz -s t -oT --thru
20100414:03:00 --plot|../b2/lossfish.pl

jarleb@rubeus b2 $§ cd ../../dfunc-read/b2

jarleb@rubeus b2 $§ collectl -p collectl-b2
-20100412-162129 . raw.gz -s t -oT --thru
20100412:19:40:00 --plot|../../dfunc-write/b2/
lossfish.pl

jarleb@rubeus b2 $

jarleb@rubeus bm $ collectl -p collectl-blademon
-20100412-162357 . raw.gz -s t -oT --thru
20100412:19:40:00 --plot |../../dfunc-write/b2/
lossfish.pl

jarleb@rubeus bm $

Listing E.4: Commands used to generate argus plots in figure 3.5

jarleb@rubeus bl $ra -r argus.bin.gz -u -n -s stime,
ltime , saddr , sport ,daddr ,dport ,spkts,dpkts,sload,
dload - dst port 3260 and src 10.0.0.242 and src
port 36966/|./plot.pl > plots/b2

152

jarleb@rubeus bl $ra -r argus.bin.gz -u -n -s stime,
ltime , saddr ,sport,daddr ,dport ,spkts,dpkts,sload,
dload - dst port 3260 and src 10.0.0.243 and src
port 52209|./plot.pl > plots/b3

jarleb@rubeus bl $ra -r argus.bin.gz -u -n -s stime,
ltime , saddr , sport ,daddr ,dport ,spkts,dpkts,sload,
dload - dst port 3260 and src 10.0.0.244 and src
port 46645|./plot.pl > plots/b4d

jarleb@rubeus bl $ra -r argus.bin.gz -u -n -s stime,
ltime , saddr , sport ,daddr ,dport ,spkts,dpkts,sload,
dload - dst port 3260 and src 10.0.0.245 and src
port 51901|./plot.pl > plots/b5

jarleb@rubeus bl §

jarleb@rubeus bl $ pwd

/Users/jarleb/Documents/masterprog/thesis/results/
seqread-delay-shape/bl

jarleb@rubeus bl $

jarleb@rubeus bl $§ cat plot.pl

#!/usr/bin/perl -w

my $divisor = (10248);
my $column = 7 ;

my $starttime;

while (<>) {

chomp ;

s/\s+/ /g;

my @1 = split ;

if ($. == 1) { $starttime = $1[0]; }

my $reltime = $1[0] - $starttime;
my $v = $1[$column] / $divisor ;
print "$reltime $vi\n";

}

jarleb@rubeus bl §

Listing E.5: Commands used to generate logical volume plots in figure 3.5

jarleb@rubeus bm $ collectl -p blademon
-20100324-194803.raw.gz -s D -oT -oD |grep dm-0 |./
plot.pl > plots/b2

jarleb@rubeus bm $ collectl -p blademon
-20100324-194803.raw.gz -s D -oT -oD |grep dm-1 |./
plot.pl > plots/b3

153

APPENDIX E. COLLECTION OF COMMANDS

jarleb@rubeus bm $ collectl -p blademon
-20100324-194803.raw.gz -s D -oT -oD |grep dm-2 |./
plot.pl > plots/b4d

jarleb@rubeus bm $ collectl -p blademon
-20100324-194803.raw.gz -s D -oT -oD |grep dm-3 |./
plot.pl > plots/bb

jarleb@rubeus bm $

jarleb@rubeus bm $ pwd

/Users/jarleb/Documents/masterprog/thesis/results/
seqread-delay-shape/bm

jarleb@rubeus bm $

jarleb@rubeus bm $ cat plot.pl

#!/usr/bin/perl

use Date::Parse;
my $starttime;

while (<>) {

chomp;
s/\s+/ /g;
@1 = split;
my $timestr = "$1[0] $1[1]1";
ny $time = str2time($timestr);
if ($. == 1) { $starttime = $time ; }
my $reltime = $time - $starttime;
print $reltime." $1[3]\n";
}

jarleb@rubeus bm $

Listing E.6: RTO min value from /proc/net/snmp

[root@blademon scripts]# cat /proc/net/snmp|grep “Tcp |
awk ’{print $3}’

RtoMin

200

[root@blademon scripts]#

Listing E.7: Aggregated amount of lost or retransmitted packets during traffic
shaping using artificial delay of ACK packets as shown in figure 5.4

jarleb@rubeus bl $ pwd
/Users/jarleb/Documents/masterprog/thesis/results/
seqwrite -delay-shape/bl

154

jarleb@rubeus bl $ racluster -m saddr -r argus.bin.gz -
s saddr 1loss

10.0.0.242 0
10.0.0.243 0
10.0.0.244 0
10.0.0.245 0
10.0.0.253 0
10.0.0.254 0
10.0.0.200 0
10.0.0.242 0
10.0.0.253 0

jarleb@rubeus bl §

Listing E.8: Aggregated amount of lost or retransmitted packets during traffic
shaping using artificial delay of ACK data packets as shown in figure 5.3

jarleb@rubeus bl $ pwd

/Users/jarleb/Documents/masterprog/thesis/results/
seqread-delay-shape/bl

jarleb@rubeus bl $ racluster -m saddr -r argus.bin.gz -
s saddr loss

10.0.0.242 0
10.0.0.243 0
10.0.0.244 0
10.0.0.245 0
10.0.0.253 0
10.0.0.200 0
10.0.0.242 0
10.0.0.253 0

jarleb@rubeus bl §

155

APPENDIX E. COLLECTION OF COMMANDS

Listing E.9: Implementation of RTO_MIN in Linux 2.6

<snip of linux/include/net/tcp.h>
#define TCP_RTO_MIN ((unsigned) (HZ/5))
</snip>

<snip of linux/include/asm-x86/param.h>
define HZ CONFIG_HZ
</snip>

And since CONFIG_HZ is 1000 by default in 2.6,
TCP_RTO_MIN is 200 ms

156

