189 research outputs found

    High throughput FPGA Implementation of Data Encryption Standard with time variable sub-keys

    Get PDF
    The Data Encryption Standard (DES) was the first modern and the most popular symmetric key algorithm used for encryption and decryption of digital data. Even though it is nowadays not considered secure against a determined attacker, it is still used in legacy applications. This paper presents a secure and high-throughput Field Programming Gate Arrays (FPGA) implementation of the Data Encryption Standard algorithm. This is achieved by combining 16 pipelining concept with time variable sub-keys and compared with previous illustrated encryption algorithms. The sub-keys vary over time by changing the key schedule permutation choice 1. Therefore, every time the plaintexts are encrypted by different sub-keys. The proposed algorithm is implemented on Xilinx Spartan-3e (XC3s500e) FPGA. Our DES design achieved a data encryption rate of 10305.95 Mbit/s and 2625 number of occupied CLB slices. These results showed that the proposed implementation is one of the fastest hardware implementations with much greater security

    Power Side Channels in Security ICs: Hardware Countermeasures

    Full text link
    Power side-channel attacks are a very effective cryptanalysis technique that can infer secret keys of security ICs by monitoring the power consumption. Since the emergence of practical attacks in the late 90s, they have been a major threat to many cryptographic-equipped devices including smart cards, encrypted FPGA designs, and mobile phones. Designers and manufacturers of cryptographic devices have in response developed various countermeasures for protection. Attacking methods have also evolved to counteract resistant implementations. This paper reviews foundational power analysis attack techniques and examines a variety of hardware design mitigations. The aim is to highlight exposed vulnerabilities in hardware-based countermeasures for future more secure implementations

    Algorithms and Architectures for Secure Embedded Multimedia Systems

    Get PDF
    Embedded multimedia systems provide real-time video support for applications in entertainment (mobile phones, internet video websites), defense (video-surveillance and tracking) and public-domain (tele-medicine, remote and distant learning, traffic monitoring and management). With the widespread deployment of such real-time embedded systems, there has been an increasing concern over the security and authentication of concerned multimedia data. While several (software) algorithms and hardware architectures have been proposed in the research literature to support multimedia security, these fail to address embedded applications whose performance specifications have tighter constraints on computational power and available hardware resources. The goals of this dissertation research are two fold: 1. To develop novel algorithms for joint video compression and encryption. The proposed algorithms reduce the computational requirements of multimedia encryption algorithms. We propose an approach that uses the compression parameters instead of compressed bitstream for video encryption. 2. Hardware acceleration of proposed algorithms over reconfigurable computing platforms such as FPGA and over VLSI circuits. We use signal processing knowledge to make the algorithms suitable for hardware optimizations and try to reduce the critical path of circuits using hardware-specific optimizations. The proposed algorithms ensures a considerable level of security for low-power embedded systems such as portable video players and surveillance cameras. These schemes have zero or little compression losses and preserve the desired properties of compressed bitstream in encrypted bitstream to ensure secure and scalable transmission of videos over heterogeneous networks. They also support indexing, search and retrieval in secure multimedia digital libraries. This property is crucial not only for police and armed forces to retrieve information about a suspect from a large video database of surveillance feeds, but extremely helpful for data centers (such as those used by youtube, aol and metacafe) in reducing the computation cost in search and retrieval of desired videos

    Stream ciphers for secure display

    Get PDF
    In any situation where private, proprietary or highly confidential material is being dealt with, the need to consider aspects of data security has grown ever more important. It is usual to secure such data from its source, over networks and on to the intended recipient. However, data security considerations typically stop at the recipient's processor, leaving connections to a display transmitting raw data which is increasingly in a digital format and of value to an adversary. With a progression to wireless display technologies the prominence of this vulnerability is set to rise, making the implementation of 'secure display' increasingly desirable. Secure display takes aspects of data security right to the display panel itself, potentially minimising the cost, component count and thickness of the final product. Recent developments in display technologies should help make this integration possible. However, the processing of large quantities of time-sensitive data presents a significant challenge in such resource constrained environments. Efficient high- throughput decryption is a crucial aspect of the implementation of secure display and one for which the widely used and well understood block cipher may not be best suited. Stream ciphers present a promising alternative and a number of strong candidate algorithms potentially offer the hardware speed and efficiency required. In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. Although these new-generation designs have done much to respond to this concern, the relatively short 80-bit key lengths of some proposed hardware candidates, when combined with ever-advancing computational power, leads to the thesis identifying exhaustive search of key space as a potential attack vector. To determine the value of protection afforded by such short key lengths a unique hardware key search engine for stream ciphers is developed that makes use of an appropriate data element to improve search efficiency. The simulations from this system indicate that the proposed key lengths may be insufficient for applications where data is of long-term or high value. It is suggested that for the concept of secure display to be accepted, a longer key length should be used

    Systematic Characterization of Power Side Channel Attacks for Residual and Added Vulnerabilities

    Get PDF
    Power Side Channel Attacks have continued to be a major threat to cryptographic devices. Hence, it will be useful for designers of cryptographic systems to systematically identify which type of power Side Channel Attacks their designs remain vulnerable to after implementation. It’s also useful to determine which additional vulnerabilities they have exposed their devices to, after the implementation of a countermeasure or a feature. The goal of this research is to develop a characterization of power side channel attacks on different encryption algorithms\u27 implementations to create metrics and methods to evaluate their residual vulnerabilities and added vulnerabilities. This research studies the characteristics that influence the power side leakage, classifies them, and identifies both the residual vulnerabilities and the added vulnerabilities. Residual vulnerabilities are defined as the traits that leave the implementation of the algorithm still vulnerable to power Side Channel Attacks (SCA), sometimes despite the attempt at implementing countermeasures by the designers. Added vulnerabilities to power SCA are defined as vulnerabilities created or enhanced by the algorithm implementations and/or modifications. The three buckets in which we categorize the encryption algorithm implementations are: i. Countermeasures against power side channel attacks, ii. IC power delivery network impact to power leakage (including voltage regulators), iii. Lightweight ciphers and applications for the Internet of Things (IoT ) From the characterization of masking countermeasures, an example outcome developed is that masking schemes, when uniformly distributed random masks are used, are still vulnerable to collision power attacks. Another example outcome derived is that masked AES, when glitches occur, is still vulnerable to Differential Power Analysis (DPA). We have developed a characterization of power side-channel attacks on the hardware implementations of different symmetric encryption algorithms to provide a detailed analysis of the effectiveness of state-of-the-art countermeasures against local and remote power side-channel attacks. The characterization is accomplished by studying the attributes that influence power side-channel leaks, classifying them, and identifying both residual vulnerabilities and added vulnerabilities. The evaluated countermeasures include masking, hiding, and power delivery network scrambling. But, vulnerability to DPA depends largely on the quality of the leaked power, which is impacted by the characteristics of the device power delivery network. Countermeasures and deterrents to power side-channel attacks targeting the alteration or scrambling of the power delivery network have been shown to be effective against local attacks where the malicious agent has physical access to the target system. However, remote attacks that capture the leaked information from within the IC power grid are shown herein to be nonetheless effective at uncovering the secret key in the presence of these countermeasures/deterrents. Theoretical studies and experimental analysis are carried out to define and quantify the impact of integrated voltage regulators, voltage noise injection, and integration of on-package decoupling capacitors for both remote and local attacks. An outcome yielded by the studies is that the use of an integrated voltage regulator as a countermeasure is effective for a local attack. However, remote attacks are still effective and hence break the integrated voltage regulator countermeasure. From experimental analysis, it is observed that within the range of designs\u27 practical values, the adoption of on-package decoupling capacitors provides only a 1.3x increase in the minimum number of traces required to discover the secret key. However, the injection of noise in the IC power delivery network yields a 37x increase in the minimum number of traces to discover. Thus, increasing the number of on-package decoupling capacitors or the impedance between the local probing site and the IC power grid should not be relied on as countermeasures to power side-channel attacks, for remote attack schemes. Noise injection should be considered as it is more effective at scrambling the leaked signal to eliminate sensitive identifying information. However, the analysis and experiments carried out herein are applied to regular symmetric ciphers which are not suitable for protecting Internet of Things (IoT) devices. The protection of communications between IoT devices is of great concern because the information exchanged contains vital sensitive data. Malicious agents seek to exploit those data to extract secret information about the owners or the system. Power side channel attacks are of great concern on these devices because their power consumption unintentionally leaks information correlatable to the device\u27s secret data. Several studies have demonstrated the effectiveness of authenticated encryption with advanced data (AEAD), in protecting communications with these devices. In this research, we have proposed a comprehensive evaluation of the ten algorithm finalists of the National Institute of Standards and Technology (NIST) IoT lightweight cipher competition. The study shows that, nonetheless, some still present some residual vulnerabilities to power side channel attacks (SCA). For five ciphers, we propose an attack methodology as well as the leakage function needed to perform correlation power analysis (CPA). We assert that Ascon, Sparkle, and PHOTON-Beetle security vulnerability can generally be assessed with the security assumptions Chosen ciphertext attack and leakage in encryption only, with nonce-misuse resilience adversary (CCAmL1) and Chosen ciphertext attack and leakage in encryption only with nonce-respecting adversary (CCAL1) , respectively. However, the security vulnerability of GIFT-COFB, Grain, Romulus, and TinyJambu can be evaluated more straightforwardly with publicly available leakage models and solvers. They can also be assessed simply by increasing the number of traces collected to launch the attack

    A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility

    Get PDF
    The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible. This research takes the unique approach drawn from the performance field and dual nature of AES performance. It uses benchmarks to assess the performance potential of computer systems for both general purpose and AES. Since general performance information is readily available, the ratio may be used as a predictor for AES performance and consequently attack potential. The design involved distributing USB drives to facilitators containing a bootable Linux operating system and the benchmark instruments. Upon boot, these devices conducted the benchmarks, gathered system specifications, and submitted them to a server for regression analysis. Although it is likely to be many years in the future, the results of this study may help better predict when attacks against AES key lengths will become feasible

    Cryptographic primitives on reconfigurable platforms.

    Get PDF
    Tsoi Kuen Hung.Thesis (M.Phil.)--Chinese University of Hong Kong, 2002.Includes bibliographical references (leaves 84-92).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Objectives --- p.3Chapter 1.3 --- Contributions --- p.3Chapter 1.4 --- Thesis Organization --- p.4Chapter 2 --- Background and Review --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Cryptographic Algorithms --- p.6Chapter 2.3 --- Cryptographic Applications --- p.10Chapter 2.4 --- Modern Reconfigurable Platforms --- p.11Chapter 2.5 --- Review of Related Work --- p.14Chapter 2.5.1 --- Montgomery Multiplier --- p.14Chapter 2.5.2 --- IDEA Cipher --- p.16Chapter 2.5.3 --- RC4 Key Search --- p.17Chapter 2.5.4 --- Secure Random Number Generator --- p.18Chapter 2.6 --- Summary --- p.19Chapter 3 --- The IDEA Cipher --- p.20Chapter 3.1 --- Introduction --- p.20Chapter 3.2 --- The IDEA Algorithm --- p.21Chapter 3.2.1 --- Cipher Data Path --- p.21Chapter 3.2.2 --- S-Box: Multiplication Modulo 216 + 1 --- p.23Chapter 3.2.3 --- Key Schedule --- p.24Chapter 3.3 --- FPGA-based IDEA Implementation --- p.24Chapter 3.3.1 --- Multiplication Modulo 216 + 1 --- p.24Chapter 3.3.2 --- Deeply Pipelined IDEA Core --- p.26Chapter 3.3.3 --- Area Saving Modification --- p.28Chapter 3.3.4 --- Key Block in Memory --- p.28Chapter 3.3.5 --- Pipelined Key Block --- p.30Chapter 3.3.6 --- Interface --- p.31Chapter 3.3.7 --- Pipelined Design in CBC Mode --- p.31Chapter 3.4 --- Summary --- p.32Chapter 4 --- Variable Radix Montgomery Multiplier --- p.33Chapter 4.1 --- Introduction --- p.33Chapter 4.2 --- RSA Algorithm --- p.34Chapter 4.3 --- Montgomery Algorithm - Ax B mod N --- p.35Chapter 4.4 --- Systolic Array Structure --- p.36Chapter 4.5 --- Radix-2k Core --- p.37Chapter 4.5.1 --- The Original Kornerup Method (Bit-Serial) --- p.37Chapter 4.5.2 --- The Radix-2k Method --- p.38Chapter 4.5.3 --- Time-Space Relationship of Systolic Cells --- p.38Chapter 4.5.4 --- Design Correctness --- p.40Chapter 4.6 --- Implementation Details --- p.40Chapter 4.7 --- Summary --- p.41Chapter 5 --- Parallel RC4 Engine --- p.42Chapter 5.1 --- Introduction --- p.42Chapter 5.2 --- Algorithms --- p.44Chapter 5.2.1 --- RC4 --- p.44Chapter 5.2.2 --- Key Search --- p.46Chapter 5.3 --- System Architecture --- p.47Chapter 5.3.1 --- RC4 Cell Design --- p.47Chapter 5.3.2 --- Key Search --- p.49Chapter 5.3.3 --- Interface --- p.50Chapter 5.4 --- Implementation --- p.50Chapter 5.4.1 --- RC4 cell --- p.51Chapter 5.4.2 --- Floorplan --- p.53Chapter 5.5 --- Summary --- p.53Chapter 6 --- Blum Blum Shub Random Number Generator --- p.55Chapter 6.1 --- Introduction --- p.55Chapter 6.2 --- RRNG Algorithm . . --- p.56Chapter 6.3 --- PRNG Algorithm --- p.58Chapter 6.4 --- Architectural Overview --- p.59Chapter 6.5 --- Implementation --- p.59Chapter 6.5.1 --- Hardware RRNG --- p.60Chapter 6.5.2 --- BBS PRNG --- p.61Chapter 6.5.3 --- Interface --- p.66Chapter 6.6 --- Summary --- p.66Chapter 7 --- Experimental Results --- p.68Chapter 7.1 --- Design Platform --- p.68Chapter 7.2 --- IDEA Cipher --- p.69Chapter 7.2.1 --- Size of IDEA Cipher --- p.70Chapter 7.2.2 --- Performance of IDEA Cipher --- p.70Chapter 7.3 --- Variable Radix Systolic Array --- p.71Chapter 7.4 --- Parallel RC4 Engine --- p.75Chapter 7.5 --- BBS Random Number Generator --- p.76Chapter 7.5.1 --- Size --- p.76Chapter 7.5.2 --- Speed --- p.76Chapter 7.5.3 --- External Clock --- p.77Chapter 7.5.4 --- Random Performance --- p.78Chapter 7.6 --- Summary --- p.78Chapter 8 --- Conclusion --- p.81Chapter 8.1 --- Future Development --- p.83Bibliography --- p.8

    Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Get PDF
    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks
    • …
    corecore