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Abstract 

The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use 

today. Given its prevalence, the security provided by AES is of utmost importance. Technology 

is advancing at an incredible rate, in both capability and popularity, much faster than its rate of 

advancement in the late 1990s when AES was selected as the replacement standard for DES. 

Although the literature surrounding AES is robust, most studies fall into either theoretical or 

practical yet infeasible. This research takes the unique approach drawn from the performance 

field and dual nature of AES performance. It uses benchmarks to assess the performance 

potential of computer systems for both general purpose and AES. Since general performance 

information is readily available, the ratio may be used as a predictor for AES performance and 

consequently attack potential. The design involved distributing USB drives to facilitators 

containing a bootable Linux operating system and the benchmark instruments. Upon boot, these 

devices conducted the benchmarks, gathered system specifications, and submitted them to a 

server for regression analysis. Although it is likely to be many years in the future, the results of 

this study may help better predict when attacks against AES key lengths will become feasible. 

 

 

 

 

 

The views expressed in this dissertation are those of the author and do not reflect the official 
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CHAPTER ONE 

Since the National Institute of Standards and Technology (NIST) announced the 

advanced encryption standard (AES) in 2001, it has become the standard symmetric-key, block-

cipher for use in both commercial and government sectors (NIST, 2001). Today, AES is in 

widespread, global use and one of the most popular cryptographic algorithms of the twenty-first 

century (Bogdanov, Khovratovich, & Rechberger, 2011; Soleimany, Sharifi, & Aref, 2010). 

Because of its popularity, ensuring the security of AES is vital (Jayasinghe, Ragel, Ambrose, 

Ignjatovic, & Parameswaran, 2014). Consequently, the cryptographic community placed the 

evaluation of the security provided AES as one of its top priorities (Alghazzawi, Hasan, & 

Trigui, 2010). The scholarly cryptographic community ensures the security of algorithms by 

evaluating the key lengths, available processing power, and ensuring no shortcuts exist by 

emulating adversaries attempting to subvert or break the algorithms (Güneysu, Kasper, Novotný, 

& Paar, 2008). Since the key lengths intuitively have an adequate margin of security, the 

literature focuses on emulating attacking adversaries (Burr, 2003). 

Topic Overview/Background 

Throughout history, the art of communicating secrets, cryptography, was a prominent 

tool for rulers, militaries, and uprisings. Since the dawn of transformative writing in ancient 

Egypt, components of cryptography have independently evolved and assembled leading to the 

state of cryptography today (Kahn, 1996). Modern cryptography, including AES, is secret only 

in the key; the details of the algorithm are public. This principle dates back to the late 1800s as 

Kerckhoffs realized the need for reformed cryptography during the rise of the telegraph, and 

published Cryptographie Militaire (Singh, 1999). This era of cryptography began in the 1970s as 

the National Bureau of Standards (NBS), the predecessor organization to NIST, began the 
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process of defining and eventually selecting the first public encryption standard: the data 

encryption standard (DES) (NBS, 1972). 

DES remained secure until the late 1990s when its short key length rapidly caused the 

algorithm to become irrelevant. Shortly thereafter, NIST selected AES as the next block cipher 

standard. It quickly became the focal point of the cryptographic community (Biryukov & 

Großschädl, 2012; Bogdanov, Khovratovich, & Rechberger, 2011). As the second decade of the 

twenty-first century was coming to a close, the interest in the longevity and continued use of 

AES has grown. DES lasted around 20 years (Curtin & Dolske, 1998; NBS, 1977). AES was 

designed to last at least 20 years (Baudron et at., 1999; Burr, 2003). NIST monitors AES and 

ensures it is secure for continued use every five years for the next five years, but both the state of 

computing and the importance of technology today are very different from the late 1990s when 

NIST began the process of selecting AES (Barker & Roginsky, 2015). 

The connected world is much larger today than it was when DES was the leading 

cryptographic solution. Up from less than one percent in 1995, the increase in the last two 

decades is massive. Based on data from the International Telecommunication Union, the World 

Bank, and the United Nations, nearly half of the world’s population uses the Internet (Internet 

Live Stats, 2018). While users are one component of the connected devices, many more devices 

are online than distinct users. These devices range from the personal devices used to access the 

Internet – such as smartphones, tablets, and personal computers – to the commercial and 

corporate devices that host the Internet and its many services – such as routers, switches, and 

servers. Given the massive increase in users and the reliance on technology and connectivity, 

ensuring the security of those communications is even more critical. 
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The state of computing is also significantly advanced from its state in the late 1990s. One 

example of this change is the availability of processing power. In 1997, the top supercomputer in 

the world, Intel’s ASCI Red, was capable of 1,453.0 giga-floating point operations per second 

(GFLOPS) (Top500, 2017). Today, a single consumer device, the Nvidia GeForce GTX 1080 TI, 

is capable of 11,340 GFLOPS (Tech Power Up, 2018). In just 20 years, many consumer homes 

contain the equivalent processing power of the world’s foremost supercomputers. Other 

innovations, including tri-gate transistors, multi-core architectures, improvements to lithography, 

and expanded instruction sets, including AES hardware instructions, have had a profound 

influence on the availability of processing power and the level of global computational potential. 

These changes, combined with the massive increase in the number of interconnected devices, 

causes concern about the events that brought an end to DES occurring with AES. 

Problem Opportunity Statement 

AES is among the most popular cryptographic algorithms in use today (Bogdanov, 

Khovratovich, & Rechberger, 2011; Soleimany, Sharifi, & Aref, 2010). It is the premier 

symmetric-key, block-cipher in both the government and commercial sectors. Given its 

importance, the literature concerning its security is robust. The literature also includes 

implementations, components of the algorithm, and various cryptographic attacks. Despite the 

importance of its security, the study of attack feasibility has a limited stake in the literature. A 

component of the limited share in the literature for attack feasibility may be the perceived 

security of the key lengths, as even the smallest key length was predicted to remain secure for 

close to six decades (Burr, 2003). 

Another component of the limited attack feasibility coverage in the literate may relate to 

the current state of practical attacks. Practical attacks seek to subvert the algorithm rather than 

directly defeat it. All known, feasible attacks fall into this category. The lack of the 
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cryptographic complexity component of an attack does not encourage the community to consider 

sheer feasibility. Instead, rough estimations rely on approximations, such as Moore’s Law, to 

project when the availability of computing may intersect with the strength of each key length. 

Examining the relationships between traditional benchmark results and AES performance 

benchmarks for different, general-purpose hardware configurations may identify correlated or 

causal relationships in addition to potential grouping around hardware types. Those relationships 

could provide a foundational component for practical modeling of cryptographic attack potential 

by establishing a ratio for general-purpose systems. The practical modeling may enhance the 

accuracy of attack feasibility assessments and help the security community by better projecting 

key-length vulnerabilities allowing industry more time to transition to stronger AES keys. 

Purpose Statement 

The purpose of this research was to contribute to the security community at large through 

this addition to the AES body of knowledge. This dissertation accomplished the contribution in 

the categories of attack feasibility and performance. Additionally, the study may serve as a 

foundation for future attack feasibility research by expanding the scope of the experiment to 

additional categories of hardware platforms. Finally, the literature review provides a recent 

summary of the breadth of the literature surrounding AES from the background of the previous 

standard to the most recent developments. 

As with the attack feasibility literature on the preceding algorithm, DES, AES attack 

feasibility literature could be grouped into three categories. The categories of strictly theoretical, 

special hardware, and general hardware encompass the spectrum of attack feasibility literature 

and considerations. With DES, the literature, shifted from theoretical, through special purpose, to 

general purpose as processing power approached the point of feasible attacks against the key 

length. This study focused on the general hardware subset of attack feasibility. Although the 
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results regarding attack feasibility were expected to be far from actually feasible, the study used 

the practical approach of benchmarks. 

The goal of the attack feasibility component of this research was not to discover that 

attacks are feasible. Rather this study sought to assess the pure feasibility of an attack, by testing 

the ratio between traditional benchmarks and AES benchmarks on a variety of hardware 

platforms. If the results indicated that general performance correlates or is a valid predictor for 

AES performance, the ratios could then predict the attack potential of future systems. 

Additionally, the ratios were expected to differ from system to system. Groups around hardware 

components, including the amount of memory, the type of processor, or the presence of AES 

special instructions, may provide additional utility or applicability to future hardware platforms. 

Research Question(s) 

The purpose of the study was to address two concise research questions. These questions 

were founded in the problem statement and provided the basis for the hypotheses. 

R1: How correlated are the results of traditional benchmarks and AES benchmarks 

conducted on systems in the sample population? 

R2: How do the hardware configurations of systems in the sample population affect the 

level of correlation between traditional benchmarks and AES benchmarks? 

Hypotheses 

This study tested four hypotheses regarding the relationship between traditional and AES 

benchmarks to address the research questions. Collecting both benchmarks and hardware 

configuration information, including the processor, memory, and presence of AES hardware 

instructions, comprised the testing of the hypotheses. The first alternate hypothesis, H0A, states 

that statistically significant correlations will exist between the results of traditional benchmarks 

in floating-point operations per second (FLOPS) and AES benchmarks. The rest of the 
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hypotheses relate to the specifics of the hardware. The first hardware component considers the 

presence or absence of AES instructions, which H1 addresses. However, this hypothesis is a 

unique case since most modern processors have AES instructions and may not make it possible 

to determine its effect. The processor type and memory may also have an impact on the results, 

which H2 and H3 address to determine if any groups in the results exist. If groups do exist, they 

may allow a component, or components, to be used as a predictor. The null and alternate 

expressions of each hypothesis are expressed as follows: 

H00: No statistically significant correlations exist between traditional benchmarks and 

AES benchmarks conducted on systems in the sample population. 

H0A: Statistically significant correlations exist between traditional benchmarks and AES 

benchmarks conducted on systems in the sample population. 

H10: The AES hardware instructions component of the hardware configurations of 

systems in the sample population has no statistically significant effects on the level of correlation 

between traditional benchmarks and AES benchmarks. 

H1A: The AES hardware instructions component of the hardware configurations of 

systems in the sample population has statistically significant effects on the level of correlation 

between traditional benchmarks and AES benchmarks. 

H20: The processor type component of the hardware configurations of systems in the 

sample population has no statistically significant effects on the level of correlation between 

traditional benchmarks and AES benchmarks. 

H2A: The processor type component of the hardware configurations of systems in the 

sample population has statistically significant effects on the level of correlation between 

traditional benchmarks and AES benchmarks. 
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H30: The memory component of the hardware configurations of systems in the sample 

population has no statistically significant effects on the level of correlation between traditional 

benchmarks and AES benchmarks. 

H3A: The memory component of the hardware configurations of systems in the sample 

population has statistically significant effects on the level of correlation between traditional 

benchmarks and AES benchmarks. 

Theoretical Perspectives/Conceptual Framework 

Cryptographic attacks against AES provide components such as memory, data, and 

compute as requirements for their execution (Nechvatal et al., 2000). Memory and data are 

generally either feasible or infeasible without concern for the rapidly changing state of 

computers today. Conversely, compute is based on the margin between the necessary compute to 

break a key size and the available compute. Focusing on compute, the literature contains both 

theoretical and practical approaches to attack feasibility. Attack feasibility was considered as 

early as the AES conferences to determine which algorithm would be selected and continues to 

be considered by NIST today. 

Early cryptographic attack feasibility research for AES focused on the raw key length and 

on partial implementations (Ferguson et al., 2000). The key length was a much-needed 

improvement on 56-bit key length of DES, which became so feasible that it could be broken in a 

day (McNett, 1999). It was suggested that the 128-, 192-, and 256-bit keys would endure for an 

estimated six decades to several millennia (Burr, 2003). These estimations were beyond adequate 

at the time but as compute continued to improve, the nature of feasibility estimations evolved. 

The simple approximations addressed how processing power progressed to complex performance 

considerations for modern, AES accelerated, and special-purpose systems. 
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Throughout the body of knowledge, performance benchmarks typically focus on practical 

usability (Schneier & Whiting, 2000; Yuan, He, Gong & Qiu, 2014). Some consider the 

component of attack feasibility with performance (Biryukov & Großschädl, 2012; Manavski, 

2007). To attack an algorithm, including brute-force key search, an adversary must conduct 

components of the algorithm repeatedly. The components usually include the key expansion and 

a trial decryption. This similarity causes both the usability-focused and cryptography-focused 

AES performance research to have relevance to this study. 

 

Figure 1. Related Topics by Daniel S. Hawthorne. Copyright 2018 

This research draws its theoretical framework from several sources in the body of 

knowledge. Figure 1 illustrates those sources as they relate to each other with the foundation of 

the previous standard through the gap in the literature that this research sought to address. It 

includes the background of DES for context and the breadth of the cryptographic literature on 

AES. It follows the feasibility assessment component of the approach used by Biryukov and 

Großschädl (2012), which considered a best-case attack on a large-scale theoretical, special-
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purpose system. This current study considered the hypothetical, best-case scenarios while 

placing emphasis on the more practical approach of benchmarks. It draws the benchmark and 

performance ratio components from the system performance planning and AES performance 

sections of the literature. 

Assumptions/Biases 

The several personal biases, which lead to assumptions about the topic area, were 

identified as being acquired during the literature review process; they are consequently based on 

the body of knowledge. They are described here to ensure they do not manifest in the literature 

review without proper references. Although these assumptions and biases are based on the body 

of knowledge and on the facts, they are not proven in the scope of this study or they cannot be 

proven at this time. It is because of the lack of proof that these conjectures fall into this category. 

The first assumption is that AES in all key lengths is adequately secure today. The second 

is that AES will fall into the feasible attack range sooner than initially projected. The third is that 

implementation weaknesses, side-channel-attacks, and other means of reducing the complexity 

of cryptographic attacks will continue to present the greatest threats to the security of the 

algorithm. The fourth is that the impact of a single AES key-length falling into the feasible range 

without significant time for the technical industry to move away from that key length would be 

significantly more damaging today than DES was in the late 1990s. These presuppositions led to 

the topic decision for this dissertation. 

The first assumption, that all AES key lengths are adequately secure today, is based on 

assessments throughout the body of knowledge ranging from early assessments of the selection 

process in 2003 to the latest NIST assessment in 2015. In the summary document, which depicts 

the selection criteria process and attack estimations, Burr (2003) describes the state of attack 

feasibility estimation referencing Moore’s Law as the “best estimator we have” (p.45). This early 
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estimation predicted the 128-bit key length would be as secure in the year 2066 as an 80-bit 

algorithm was in 2003. At the time, an 80-bit key was well beyond the margin security for even 

the most sensitive usage. 

NIST reviews approved security functions, including encryption algorithms, hash 

functions, key exchange, and secure random number generators, every five years. The review 

process involves providing a projected timeframe for each algorithm and key length in which the 

key length for the algorithm is expected to provide adequate security. NIST does not provide a 

projected timeframe for continued use if the algorithm has no near-term security concerns. In 

November 2015, NIST again reaffirmed all key lengths of AES as being adequately secure 

without providing a projected timeframe (Barker & Roginsky, 2015). The NIST affirmation is an 

authoritative assessment of the near-term security provided by AES, but its focus remains on the 

five-year usability. 

The second assumption, that AES will fall into the feasible attack range sooner than 

initially projected, relates to the designed longevity of AES during the selection process, which 

was at least 20 years (Baudron et al., 1999). The initial feasibility assessments, however, 

expected the key lengths to endure for around six decades (Burr, 2003). Many revolutionary 

technology changes have influenced the departure from the rate of computing change that was 

present in the 1990s. These technologies include multi-core CPUs, hardware AES acceleration, 

and eventually the prevalence of quantum computing. The NIST assessment for continued use is 

robust and detailed, however the initial longevity assessments were lacking (Barker & Roginsky, 

2015; Burr, 2003). 

The third assumption, that other means of subverting encryption or reducing 

cryptographic attack complexity will present the greater threat, has held true from the AES 
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selection process until now. The only attack that has lower compute than brute force requires an 

infeasible amount of cipher text in exchange for a minor reduction to compute (Bogdanov, 

Khovratovich, & Rechberger, 2011). Although this attack is by definition a break, attacks which 

require special, impractical circumstances such as partial implementations, related-keys, side-

channels, or access to plaintext will pose the more computationally feasible cryptographic 

threats. The greatest threats are not purely cryptographic or necessarily technical. These threats 

comprise external factors such as the ever-present human element, operating system 

vulnerabilities, and other software on the system. 

The fourth assumption relates to the impact of cryptographic attacks against AES 

becoming feasible. The example case is DES. Attacks became feasible against DES prior to a 

replacement (McNett, 1999). Additionally, DES lacked a structured transition, leaving a gap as it 

was still in use seven years later (Kelley, 2006). The gap was partially filled by the triple data 

encryption algorithm (TDEA), which simply increased the size of the key by conducting DES 

two to three times (NIST, 1999b). However, due to DES becoming vulnerable prior to 

projections, NIST enacted TDEA the same year that DES became vulnerable, leaving a gap in 

security while industry adapted to the new standard. Given the increase in the size and reliance 

on the Internet, a gap in the security provided by AES would cause substantially greater impact 

than the gap in security of DES. 

The combination of these intuitive factors led to further investigation into the possibility 

that AES may fall into the feasible attack range sooner than intended. Although AES is secure 

today and will remain secure for the immediate future, barring a revolutionary jump in the rate of 

technological progress, the ability to further out and more accurately project key length 

vulnerabilities may allow industry a larger transition time to avoid the issues that arose when 
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DES transitioned. This endeavor is even more critical since a transition without a major gap in 

the security provided by AES is increasingly important relative to the usage and dependence on 

connectivity and security. 

Significance of the Study 

The research topic described in this dissertation sought to add to the body of knowledge 

and the security community in two ways. The first relates to the thorough nature of the literature 

review. The study comprises an exhaustive attempt to include every piece of available, relevant 

research relating to AES, including attacks, attack feasibility, performance, and security, in 

addition to related background information including DES and the changes to state of computing. 

The inclusive combination of these elements is not found elsewhere in the body of knowledge. 

The comparison of related publications and the logical progression of the literature review makes 

it especially applicable to this study and future attack feasibility research. 

The second, potentially significant contribution relates to the possible findings of the 

study. If the relationship between traditional benchmarks and AES performance shows that AES 

performance is strongly correlated to traditional benchmarks or that traditional benchmarks may 

be used as a predictor for AES performance, the results may be able to help project future attack 

feasibility. Where traditional performance-based attack feasibility estimations rely on gross 

approximations, such as Moore’s law, the correlation of AES performance and FLOPS may 

provide a more accurate means of estimating attack feasibility potential based on readily 

available information (Burr, 2003). The culmination of the predictive potential has at least three 

use cases: better projecting the need for key length migrations, determining the attack potential 

of new technologies, and determining the attack feasibility of new attacks. 

The gap in security provided by DES, as brute-force attacks became feasible long before 

industry adopted an alternate standard, demonstrates the need for longer timeframes for industry 
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to adapt to new standards before the previous standards become vulnerable (Curtin & Dolske, 

1998; IETF, 2006). The multiple key lengths of AES are a mitigating factor by design, however, 

the results of this research could allow additional warning beyond the five years of expected 

usability that NIST provides (Barker & Dang, 2015). This predictive model could be applied to 

many different subsets, from global compute to individual systems, to determine attack potential 

against different key lengths. 

The second use case involves the attack potential of new technologies. A breakthrough or 

revolutionary new technology may result in uncharacteristically significant improvements in 

processing power. The recently announced Nvidia Titan V (2017) is approaching the scale of the 

most powerful supercomputer in 2005 (Top500.org). Twelve years is not a huge gap between 

cutting-edge, global computing power and computing power available to consumers. A 

revolutionary new technology might further reduce that gap. If the gap were abruptly shortened, 

the processing power available could quickly make otherwise infeasible attacks feasible. This 

research is especially applicable to improvements in large scale computing because it uses the 

same benchmark instrument that Top500 uses to measure supercomputers: high performance 

Linpack (HPL). 

Determining the attack feasibility of new attacks is another potential application of this 

research. Although most attacks seek to subvert encryption, as they are generally more feasible, 

even some subversions require AES operations. Furthermore, a new break of AES with 

significant reduction in processing power required to conduct the attack may require a given 

number, likely still a massive number, of AES operations. Many attacks include a paragraph or 

even less about feasibility. This study could be used as a foundation for more accurate 
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assessments of processing power requirements with little or no more effort required than the 

rough estimation usually included in cryptographic attack publications. 

Delimitations 

The delimitations are in place on the experiment to constrain the scope and variables to a 

manageable number. The delimitation reduces the ability to extend the results to a larger set of 

processing platforms, but it is necessary to keep the experiment uniform. The delimitation is the 

inclusion of only the x86_64 architecture sometimes referred to as x64. Although several other 

system architectures exist, including ARM and GPUs, the x86_64 is the widespread architecture 

found in the majority of personal computer and server CPUs. ARM and GPUs do represent 

significant portions of the global compute, but the design of a collection instrument to measure 

performance on the vastly different platforms would essentially require three entirely different 

collection mechanisms, which would not align well with a single study. 

Limitations 

Limitations relate to the human element. Since the only component of this research 

involving humans is in facilitation, the currently identified limitation related to potential 

mistakes during the facilitation process. The limitation is based on temperature. Overheated 

systems throttle performance to reduce heat. The mitigation is two-fold. The instructions that 

accompany the collection instrument include a wait period for systems to cool down if they were 

in heavy use before booting to the collection instrument. Additionally, the instructions request 

users to not run the tests on systems when the ambient temperature is outside their normal 

operating temperature range. The second component of the mitigation is found in the design of 

the collection instrument and the nature of computer systems. Unlike humans, computers 

complete tasks with near identical performance each time. Identical configurations and repeated 

tests throughout the sample will help identify systems that have throttled due to overheating. 
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Definition of Terms 

This section contains the definition of the terms used throughout the study to provide 

clarity, context, and as a central location for reference. The definitions align with those most 

frequently found throughout the body of knowledge, providing clarity where variations exist. 

Some additional terms are defined specifically for the context of this study, such as benchmark 

and system, which may have a variety of definitions in different contexts. 

Advanced Encryption Standard (AES) is the symmetric-key, block-cipher standardized by 

the National Institute of Standards and Technology (NIST) in 2001 (NIST, 2001). Today, AES is 

in widespread, global use and one of the most popular cryptographic algorithms of the twenty-

first century (Bogdanov, Khovratovich, & Rechberger, 2011; Soleimany, Sharifi, & Aref, 2010). 

Internally, AES is a subset of the cipher, Rijndael, which was the winning algorithm of the AES 

candidate competition. NIST specified the block size, rounds, and key lengths for AES based on 

the available configurations for Rijndael (NIST, 2001). The specifications included 128-bit 

block, 128-, 192-, and 256-bit keys and 10-, 12-, and 14-rounds per key size respectively. The 

algorithm begins with key expansion to create a unique key for each round. The cipher itself 

involves byte substitution, shifting rows, mixing columns, and the addition of the round key for 

each round (Daemen & Rijmen, 1999). 

Benchmark refers to the process of measuring system performance. Traditional 

benchmarks measure general purpose compute or operations that easily approximate general-

purpose performance, such as FLOPS. Many benchmark solutions exist in the literature and 

industry, but this study employs only a couple. Linpack is a standard FLOPS benchmark utility 

used by leading performance evaluation organizations, including Top500. It is used by this study 

to measure FLOPS. Cryptsetup, an encryption utility included in many Linux distributions, 



 

25 

contains an encryption and decryption benchmark, which includes AES. It is used to measure 

AES throughput, which is translated to AESOPS for this study. 

Cryptanalysis is the processes of defeating of cryptosystems (SANS Institute, 2001). It 

involves gaining access to the plaintext or recovering the key by means other than the intended 

use of the cryptosystem. Kerckhoffs introduced the necessity of cryptanalysis as means of 

determining the security provided by a cryptosystem in the late 1800s (Kahn, 1996). Since then, 

the role of cryptanalysis has grown from simply trying to break an adversary’s cryptosystem to 

gain a military or strategic advantage to trying to break every trusted and used cryptosystem to 

determine its security (Singh, 2000). 

Cryptography is the art of communicating secrets through techniques including the 

transformation of writing, substitution of characters, and diffusion of the plaintext throughout the 

ciphertext. 

Cryptology refers to the combined study of cryptanalysis and cryptography (SANS 

Institute, 2001). 

Data Encryption Standard (DES) preceded AES. It was announced by National Bureau 

of Standards (NBS), the predecessor of NIST, in 1977 as the first open encryption standard 

(NBS, 1977). International Business Machines (IBM) designed the internal algorithm in 1974, 

although it was slightly revised before standardization in 1977. Attacks against DES became 

both feasible and practice between 1997 and 1999 (Curtin & Dolske, 1998; McNett, 1999). Even 

though DES was replaced by the triple data encryption algorithm (TDEA) in 1999 and AES in 

2001, it was still in use in 2006 (Kelly, 2006; NIST, 1999b; NIST, 2001). As the preceding 

standard to AES, the process of selecting DES, the lifespan of the algorithm, and the issues with 

transition away from DES provide insight into those components of the current standard. 
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National Institute of Standards and Technology (NIST) is a robust United States 

government organization with a variety of roles. This study considers only the computer security 

division of NIST, specifically the role involving the selection and maintenance of cryptographic 

standards. NIST and its predecessor organization, the National Bureau of Standards (NBS) led 

the selection process for standards examined in this study including DES and AES in addition to 

many others. NIST also monitors the margin of security provided by each cryptographic standard 

and provides recommendations for continued use (Barker & Dang, 2015). 

Processing Power refers to the measurable performance of a system. In this study, 

processing power is synonymous with compute. The measurable performance is usually in terms 

of an operation type per second. Floating point operations per second (FLOPS) is a well-known 

performance standard that is published and measured by various organizations in addition to 

vendors. The performance in terms of AES operations per second (AESOPS) is a less common 

unit, but it is used throughout this study as key component of AES performance estimation. 

System refers to any device with a microprocessor. These devices range from the largest 

supercomputers to the smallest Internet of Things (IoT) devices. They include devices that access 

services such as personal computers, smart phones, and wearables. They also include devices 

that provide services like routers, servers, and other network devices. Multiple systems may 

comprise a system internally or in a distributed fashion. Systems have two overarching 

categories: general-purpose and application-specific. Although application specific may solely 

comprise of application specific integrated circuits (ASICs), they are still considered systems for 

the purpose of this study. 

General Overview of the Research Design 

The current study examined the relationships between traditional benchmarks using 

FLOPS and specific benchmarks using AESOPS to answer the research questions and fulfil the 
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purpose statement. The collection phase used a Linux-based, bootable USB collection device. 

The collection devices were distributed to facilitators who volunteered their systems for the 

study. Volunteers facilitated the research by booting systems to the USB collection devices. Each 

device ran benchmark scripts for AES and the traditional performance value of FLOPS in 

addition to collecting system information including the CPU and memory. The scripts reported 

the results to an EC2 server that validated input and stored the results. The collection phase was 

repeated until an adequate sample size and variety was reached. 

The sampling will be purposive, specifically aimed for a variety of hardware 

configurations. Repeat configurations served as additional validation of the consistency of the 

benchmark results. Once adequate sample and variety were reached, the results were transferred 

to a spreadsheet using a Python script. Before continuing, further validation of the data and 

handling of errors and outliers were considered. Once the data was validated, statistical analysis 

commenced to measure the relationships between the benchmark results and impacts of the 

system components. The results of those tests were used to either reject the null or fail to reject 

the null hypothesis. 

Summary of Chapter One 

This chapter introduced the proposed research topic. It included the identification and 

articulation of the problem which this research sought to address. It demonstrated the opportunity 

to contribute by conducting the proposed research. The chapter also introduced the overarching 

purpose of the research and the larger problem that purpose falls into. It mentioned the specific 

research questions and the hypotheses that were addressed. It also included the biases, 

assumptions, limitations, delimitations, and the overview of the research design, detailed in 

Chapter 3. 
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Organization of Dissertation 

Chapter 2 of the dissertation is the literature review. It contains a topological review of 

the body of knowledge, which is organized chronologically within each topic. The body of 

knowledge includes AES, cryptography, attack feasibility, the changing computing environment, 

and performance planning. Those fields form the background for the study. The gap exists within 

the union of those fields, where attack feasibility and performance planning meet. 

Chapter 3 of the proposal begins with the background and traditions behind security, 

encryption, and cryptographic research. It continues to present the details of the problem 

addressed by the research and the opportunity to contribute to the community. The research 

questions, hypothesis, and design precede the details of the design, collection procedures, and 

quantitative methods, which will be used to analyze the data in Chapter 4. Interpretations of the 

findings and future recommendations are presented in Chapter 5. 
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CHAPTER TWO 

This chapter contains a topological, chronological review of the literature surrounding the 

topic. It begins with the context of the events leading to the advanced encryption standard (AES). 

This context includes the previous standard, the data encryption standard (DES), the lessons 

learned which influenced the AES criteria, and the advances in cryptography which DES brought 

about that apply to AES. The chapter continues with the announcement and criteria for the new 

standard, AES, the selection process, and the reasons why NIST selected the algorithm, Rijndael. 

The state of computing throughout the lifespans of both DES and AES is also relevant. 

Computing from the time that DES was selected to the time that it became vulnerable parallels 

the potential for the changing compute environment to effect AES. Attack feasibility throughout 

both DES and AES are also included and closely relate to one another and to the changing state 

of computing. 

 

Figure 2. Related Topics by Daniel S. Hawthorne. Copyright 2018 
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Once NIST announced AES, the cryptographic community shifted focus to the new 

standard. Early attack feasibility estimations, which initially validated algorithmic endurance and 

ensured the minimal secure variant was adequately secure, relied on very simple approximations 

and often referred to Moore’s Law to anticipate the rate of change. These early estimations relied 

on the simplest form of performance planning, but they did establish the relationship between 

those fields. Performance planning includes considerations for different system components and 

various methods of predicting system performance. Attack feasibility combines the performance 

considerations and cryptographic attacks to determine the security provided by AES. Figure 2 

depicts the relation of the topics covered in this chapter which lead to the gap addressed by this 

study. 

Foundation of the Modern Cryptographic Era 

Cryptography, the communication of secret messages, originates from ancient Egypt 

(Kahn, 1996). The first practice considered a cryptographic technique was the transformation of 

hieroglyphics to dignify writing. Cryptography evolved from that simple beginning through 

history as it found use in military, political, insurgent, and religious contexts. Classic 

cryptography had various forms at it progressed ranging from phonetic and alphabetic 

substitutions to simple transpositions. The fundamental cryptographic concepts of substitution, 

replacing a symbol or letter with another, and transposition, the shifting of characters, endure 

today as components of modern cryptography. Cryptography evolved independently in different 

regions for different reasons, but these foundational concepts were found in many different 

independent branches. 

Although substitution and transposition remain as foundational to cryptography today, 

the first historic event that had a profound impact on modern cryptography did not occur until the 

emergence of the telegraph. The invention of the telegraph in the nineteenth century marked a 
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major change in technology and resultantly in cryptography. The telegraph would replace hand-

carried messages as the transmission medium of secret messages. As this transition began, 

Kerckhoffs, a leading cryptographer at that time, published Cryptographie Militaire (Kahn, 

1996). His work, published in 1893, included a comprehensive history of cryptography 

encompassing every known method. He additionally presented two overarching principles and 

six specific requirements for cryptography. His first principles involved the difference in cipher 

requirements for short term exchanges of written messages and the requirements for military use 

for an extended period of time. 

The second overarching concept was that cryptanalysis, the process of defeating a cipher 

without knowledge of the key, was the only way to measure the cipher’s strength. This principle 

endures today; it is the same approach used for assessing the security of DES, all of the AES 

candidates, and every other form of cryptography today. Of the six specific requirements, the 

second became a foundational concept of open cryptographic standards; the presence of all six 

would be indicative of the ideal cipher. World War I had a significant impact on cryptography 

with William Frederick Friedman coining the term cryptanalysis and beginning the governmental 

inclusion of cryptanalysts. Cryptography also had a role in World War II with the Enigma 

machine. These events were important precursors to the modern cryptographic era, but they were 

arguably not in themselves as crucial as the work done by Kerckhoffs in the late 1800s (Singh, 

2000). 

In 1972, the National Bureau of Standards (NBS), the predecessor organization to NIST, 

began the process of defining and eventually selecting the first public encryption standard (NBS, 

1972). This event began the cultural departure from disparate, secretive, and closed-source 

cryptographic methods to standardized, open-source solutions. This cultural shift marked a large 
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step toward the cipher that Kerckhoffs described nearly 80 years earlier. Open standards 

intrinsically met the second specific requirement, that compromise of the system not 

inconvenience the correspondents, which is often restated as a cryptosystem should be secret 

only in the key. Six years later, the data encryption standard (DES) emerged as the product of this 

transition. DES endured for about 20 years before attacks entered the feasible range (Electronic 

Frontier Foundation, 1998a). 

Leading to the Advanced Encryption Standard 

The events leading to the call for a new encryption standard are an important contextual 

component of the background of AES. The components of the previous standard, the data 

encryption standard (DES), and the events leading to its abrogation, influenced initial 

requirements for AES. The attacks against DES entered the realm of financial and practical 

feasibility. Although an interim solution was in place, it had its own set of problems. The risk 

associated with continued use of DES were too great. In response to these concerns, the National 

Institute of Standards and Technology (NIST) announced the call for AES candidates in 1997 

(NIST, 1997). 

In 1972, the National Bureau of Standards (NBS), the predecessor of NIST, initiated the 

effort to develop computer security standards (NBS, 1978). At the time, practical encryption was 

just emerging as a security concept. The call for candidates had the requirements that the 

algorithm would be publicly available, implementable on various platforms, and unambiguous, 

having a single, symmetric key. In 1973, the first call went unfulfilled. The only notable 

suggestion was a digital implementation of a one-time-pad (Davis, 1978). The failure of the first 

solicitation to find a suitable candidate produced positive interest in the community. By the 

second solicitation, several submissions were ready. One of those submissions became DES. 
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Developed in 1974 by IBM, the algorithm officially became DES in 1977. The initial 

projection for a feasible attack was 17 years to build a 70 million USD system that would be able 

to recover one key per day on the megawatt power scale (NBS, 1977). This margin of security 

was acceptable at the time. Over the lifespan of DES, the algorithm endured various forms of 

cryptographic evaluations including feasibility assessments and criticism of the short key length 

of 56-bits. New cryptographic techniques and improvements to known techniques emerged as 

the security community continuously evaluated the first encryption standard. 

In 1993, 16 years into the lifespan of the algorithm, the cryptanalysis of DES was 

approaching maturity; three breakthroughs occurred which predicated the downfall of DES. The 

first breakthrough was a cryptographic technique. Biham and Shamir (1993) discovered and 

published the new technique, which become known as differential cryptanalysis. Differential 

cryptanalysis was effective at reducing the attack complexity of substitution permutation 

cryptosystems. A month before publication, Coppersmith, one of the members of the design team 

announced that they were aware of differential cryptanalysis in 1974 and took design precautions 

to partially mitigate the method but kept it a secret for the sake of national security (Biham & 

Shamir, 1993). 

The second breakthrough was an improvement on linear cryptanalysis. It was highly 

capable against DES implementations that used half, 8-rounds, of the specified rounds, even 

without the normally required known-plaintexts. The improved technique only required 229 

cipher texts for English ASCII or 237 cipher texts for other data given the 8-round DES 

implementation (Matsui, 1993). Although a cipher-text only attack against partial 

implementations, the attack required significant known-plaintexts for the full 16-round 
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implementation of DES. The margin of security provided by even the full implementation of 

DES was closing on multiple fronts. 

In 1994, Coppersmith responded to Biham and Shamir by publishing a feasibility 

assessment of their attack and a reaffirmation that differential cryptanalysis was a design 

consideration from the beginning. Coppersmith concluded that the attack presented by Biham 

and Shamir demonstrated the success of the algorithm because it required an infeasible number 

of chosen plaintexts for success, on the order of 1015 bytes. Although the open publication of 

differential cryptanalysis was a huge breakthrough, it did not directly lead to the downfall of 

DES. It did influence the AES design requirements as any new algorithm required resistance to 

this cryptographic technique. 

The final breakthrough in 1993 related to the key length of 56-bits. The short key length 

did eventually lead to the downfall of DES. Wiener (1993) designed a particularly effective, 

scalable DES key search chip. Given one million USD of the search chips, the resulting machine 

would be capable of an exhaustive search of the key space every 3.5 hours. Although this 

machine is not the first theoretical assessment of its type, it was by far the most capable and 

economical. This brute-force method was quickly approaching the feasible point. 

As computers continued to increase in availability and capability, the 56-bit key length of 

DES became the focus of the cryptographic community. In January 1997, RSA Laboratories 

began a series of secret-key challenges, which would continue for over a decade. The challenges 

offered cash rewards for DES and RC5 key-recovery (RSA Laboratories, n.d.). RSA 

Laboratories designed these challenges to assess the relative security provided by DES and RC5. 

The first set of DES challenges, released on 28 January 1997, included what later became known 
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as DES I (Curtin & Dolske, 1998). Two additional DES challenges followed as organizations 

completed the challenges with increasing efficiency. 

In June of 1997, a distributed computing project, named “DESCHALL” for DES 

challenge, was awarded $10,000 for completing the first DES challenge. The coordination of 

approximately 10,000 mid-1990s clients completed the exhaustion of the key space in under 

three months (Curtin & Dolske, 1998). The leaders of the project published their method and 

some observations from the orchestration of this historic success. The project marked the first 

known use of distributed computing for a cryptographic purpose but also proved that distributed 

computing could overcome the inefficiencies of software implementations. 

The second DES challenge, DES II, consisted of two objectives. The first was to improve 

on the rate that a distributed group could discover the key; the second was to solve the key by 

another means besides exhaustion through a distributed approach (Electronic Frontier 

Foundation, 1998a). Using a larger distributed pool and just 39 days in 1998, the first objective 

revealed “The secret message is: Many hands make light work” (McNett, 1998, p. 1). The 

Electronic Frontier Foundation (EEF) solved the second in 56 hours using a 200,000 USD 

application specific machine, “Deep Crack”, which utilized application specific integrated 

circuits (ASICs). This effort concretely demonstrated that financial investment quickly leads to 

broken keys as they recovered, “The secret message is: It’s time for those 128-, 192-, and 256-bit 

keys” (EFF, 1998a, p. 3). 

The final DES challenge, DES III, presented by RSA Laboratories, required a further 

improvement upon the speed (RSA Laboratories, 1999). The third challenge was solved by a 

combination of the two parts of DES II. Together, Distributed.net and the EEF “Deep Crack” 

machine recovered a key in less than a day that revealed the message “See you in Rome (second 
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AES Conference, March 22-23, 1999)”. Distributed computing technologies together with EEF 

published an immediate press release of their results (McNett, 1999). 

DES was indisputably insecure. Through a series of DES challenges, from January 1997 

to January of 1999, the cryptographic community proved that brute-force search of the 56-bit 

DES key space was not only feasible, it was possible in less than a day (McNett, 1999). In 

response to the growing threat of key-length vulnerability, NIST approved the triple data 

encryption algorithm (TDEA), also known as triple DES (3DES), as an interim solution. TDEA 

increased the key size to 112- or 168- bits while conducting three rounds of the DES algorithm 

(NIST, 1999b). Although NIST provided TDEA as an interim solution as DES became 

increasingly vulnerable, and despite the ease of transition compared to employing a new 

standard, the lack of implementation time for the industry to adapt left a gap in security. 

Despite DES entering the realm of attack feasibility in 1997 and becoming increasingly 

practical as time continued, DES was still in use almost 10 years later (Kelly, 2006). Figure 3 

depicts the transition timeline. 

 
Figure 3. DES timeline by Daniel S. Hawthorne. Copyright 2018 
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and the cryptographic attacks targeting the algorithm were approaching maturity. By 1997, a 

small group of systems could break the encryption in days. Although DES was formally 

superseded by TDEA in 1999, when it was vulnerable with just hours of dedication and a 

moderate investment, it was still in use in 2006. In 2005, NIST published an official DES 

transition plan to warn of the dangers of continued use and a final chance to transition to TDEA 

or AES (NIST, 2005). 

Despite the numerous demonstrated feasible attacks, many organizations continued to use 

DES. The Internet Engineering Task Force (IETF) is the well-known source organization of 

standards documents, known as Request for Comments (RFCs), which define the specifications 

for every component of connectivity today. As an additional confirmation, the IETF published 

RFC 4772 in 2006 as an informational RFC which conducted an in-depth review of the security 

implications of using DES. The RFC served as a means of formal warning to entities still using 

DES of the high-level of risk associated with continued use. Citing Moore’s law, RFC 4772 

listed the expected cost of hardware and time to complete an attack at $15,625 and 0.5625 days 

respectively (Kelly, 2006). 

After the announcement of AES and the subsequent deprecation of DES, AES 

cryptographic research efforts largely superseded DES efforts. Additionally, given the feasible 

range had unequivocally arrived, research that did include DES focused on less specific block 

ciphers with application to both AES and DES. In 2008, a unique attack platform emerged called 

COPACOBANA. This platform used field programmable gate arrays (FPGAs) to improve 

efficiency and parallelism close to that of ASICs, with the added ability to reprogram the FPGAs 

to conduct attacks against various algorithms. The designers found that COPACOBANA DES 
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key recovery took only 6 days at the affordable price of 10,000 Euros for complete reusability 

(Güneysu, Kasper, Novotný, & Paar, 2008). 

The last specifically DES-focused contribution explored a graphics processing unit 

(GPU) -based attack in 2010. The attack utilized a processing improvement specific to DES, 

known as “bit splicing”, which was made possible by the many-core architecture of GPUs. The 

authors found that a small cluster of general-purpose systems with Nvidia compute unified 

device architecture (CUDA) GPUs was a formidable attack platform. Their clusters had between 

7,168 and 10,560 CUDA cores, each GPU boasting between 128 and 240 cores; placing their 

price mark near that of COPACOBANA. The research found that these attacks would take 18 to 

25 days to complete (Agosta, Barenghi, Santis, & Pelosi, 2010). 

The comparison of the top and bottom, 55nm-based GPUs used by Agosta et al. in 2010 

with the high- and low-end, 16nm-based GPUs available in 2016, serves as an anecdotal example 

of the impact of increasing availability of processing power on cryptography. Table 1 groups the 

aforementioned GPUs with comparable models today to demonstrate the significant reduction in 

price per core. 

Table 1 

GPU comparison price per core 

Group GPU Year CUDA cores Launch price Price per core 

Low-end 

GPUs 

GTS 250 2009 128 $199 $1.55 

GTX 1050 2016 640 $109 $0.17 

High-end 

GPUs 

GTX 295 2009 480 $500 $1.04 

GTX 1080 2016 2,560 $599 $0.23 

Note. Table derived from data in the Tech Power Up GPU database (2018).  

Additionally, GPU clock and memory bandwidth have improved dramatically (Tech 

Power Up, 2018) furthering the improvement as an attack platform. Since Nvidia GPUs continue 
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to use the same CUDA language and architecture, a pair of modern systems, each boasting a pair 

of Nvidia GTX 1080s, would have the same number of CUDA cores that Agosta et al. had with 

11 to 28 systems. It is reasonable to assume this pair of systems would complete the attack at 

least as fast as Agosta et al. in 2010, if not faster thanks to the other GPU architecture 

improvements. 

From an estimated starting point of 70 million USD in 1977 and many years to 

manufacture, attacks against DES became more feasible and attack platforms became more 

economical and much faster than initially anticipated (NBS, 1977). By 1997, 250 thousand USD 

completed an exhaustive attack in a matter of hours. A new standard was needed and called for 

in 1997; however, DES use and research continued. By 2006, around 15 thousand USD invested 

in ASICs and a few hours could produce a key (Kelly, 2006). In 2008, COPACOBANA took just 

6 days (Güneysu et al., 2008). By 2010, general purpose hardware was as fast as 18 days (Agosta 

et al., 2010). Today, just a pair of high-end, personal computers could easily outpace the 

previous general-purpose estimation. 

Selecting the Advanced Encryption Standard 

In 1997, NIST requested candidate nominations for the new encryption standard. NIST 

aptly incorporated lessons learned from DES throughout the process. The initial document 

provided guidance for candidate algorithm submissions including non-technical requirements, 

technical requirements, and evaluation criteria. It provided nine months of lead time for 

submissions, potentially a lesson learned from the lack of viable solutions to the first call for 

DES candidates. Similar to DES, the AES candidates had to be open source and royalty free; any 

patented candidates had to agree up front to release their algorithm to the public if it was selected 

as AES (NIST, 1997). The aforementioned non-technical requirements, together with the 
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technical requirements, formed the prerequisites for consideration. The evaluation criteria would 

determine the winner. 

The technical requirements for the algorithm included three components. The first was 

the type of cipher. Like DES, AES required candidates to be a symmetric key cipher, meaning 

encryption and decryption use the same key. Second, the algorithm had to support at least three 

key lengths: 128-, 192-, and 256-bit. NIST required the lengthened key lengths to mitigate the 

computing factor that overcame DES, “The secret message is: It’s time for those 128-, 192-, and 

256-bit keys” (EFF, 1998a). The multiple key lengths were a logical step from the single key 

length of DES. As exhaustive attacks against the first key length become feasible, another two 

key lengths would remain within the acceptable margin of security. The final technical 

requirement pertained to the cipher type. Like DES, AES was required to be a block cipher; 

unlike DES, it used a 128-bit rather than the 64-bit block used by DES. 

The initially stated evaluation criteria included three components, however, many 

subcomponents became sizable influencing factors as the process of selecting AES continued. 

The first was security, as in, how much security did each candidate algorithm provide. The 

second was cost. Cost in this case was in terms of performance and efficiency, although the 

prerequisite of royalty free was mentioned again, it would have already been met for candidates 

reaching the evaluation stage. The third was implementation characteristics. Implementation 

characteristics focused on flexibility including additional block sizes, key sizes, implementations 

on a variety of platforms, and algorithm modes (NIST, 1997). 

The announcement for candidates also included the plan for the first AES conference and 

two rounds of evaluations covering the above criteria. The author(s) of every viable candidate 

algorithm were invited to present at the first AES conference. The first round of evaluations had 
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the unique component of correctness, which ensures that the algorithms performed correctly 

when compiled, which NIST conducted prior to acceptance (NIST, 1997). Both rounds of testing 

would reconfirm the key sizes and block size, but would place the majority of the focus on 

efficiency testing. The testing platforms were disclosed as ANSI C and Java. 

The first round of evaluations began prior to the first AES candidate conference (AES1) 

as NIST reviewed the 21 submitted candidate algorithms. Of the 21 candidate algorithms 

received by NIST, 15 met the minimum requirements for acceptance and were included in AES1 

(Roback & Dworkin, 1999). The first AES candidate conference, AES1, took place in August of 

1998. The conference was primarily informational to prepare the community to respond to the 

candidates and conduct independent evaluations. The author(s) of each algorithm presented their 

candidate and answered initial questions. A discrepancy on the stated goal for longevity of the 

algorithm exists in the literature. The AES candidate report states “first twenty years of the 

twenty first century” (Baudron et at., 1999, p. 1). The conference report states “at least thirty 

years” (Roback & Dworkin, 1999, p. 98). Regardless, the design was intended to exceed the 

lifespan of DES. 

After the first conference, the community evaluated the candidate algorithms and 

evaluation platforms in preparation for the second conference. Although the initial choice of 

platforms, ANSI C and JAVA, required some algorithms to be optimized for different 

endianness, NIST, along with several independent groups, began the performance comparisons 

while allowing authors to submit optimized implementations. Other considerations between 

conferences included initial cryptanalysis, security provided, key schedule, simplicity, 

trustworthiness, and hardware implementations (Baudron et at., 1999). 
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The second AES conference (AES2) took place in March 1999. It focused on the public 

comments pertaining to the candidate algorithms and the initial NIST evaluations. By the end of 

AES2, the five algorithms that would become the finalists, Rijndael, RC6, Twofish, MARS, and 

Serpent, stood above the rest of the competition to the attendees (NIST, 1999a). A month after 

AES2, the first round of evaluations ended and the second round began. NIST announced the 

finalists in the summer of 1999 allowing the community to focus their efforts onto the remaining 

five candidate algorithms for the final AES conference the following year. 

The third and final AES conference (AES3) took place in April 2000. It included FPGA, 

platform-specific, and ASIC implementations in addition to more performance comparisons, 

preliminary cryptanalysis, and an initial consideration of the future resiliency of AES. Schneier 

and Whiting (2000) contributed a series of extensive benchmarks on a variety of platforms for 

each AES candidate for each key length and each component – key setup, encrypt, and decrypt. 

They concluded that the performance on different platforms varied greatly by algorithm and that 

there was no clear best performing algorithm on all platforms tested, so NIST would have to 

prioritize the platforms to create an order for the performance category. In 2000, Johnson 

evaluated the future resiliency of AES for extended long-term use. Johnson concluded that 

selecting a single algorithm for AES could present issues transitioning if it became vulnerable. A 

month after AES3, the round two evaluation comment window closed giving NIST about four 

months to review the research and select the winning candidate algorithm. 

Announcing the Advanced Encryption Standard 

In October of 2000, NIST announced the selection of the Rijndael algorithm as AES for 

its simplicity, performance, and efficiency. By November 2001, the federal government 

completed validation and adopted AES as the federal information processing standard (FIPS) 

publication 197 (NIST, 2001). FIPS 197 included the detailed specifications, implementation 
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instructions, examples, and pseudo code to allow the industry and government entities to begin 

use of the new standard. The Rijndael algorithm, and consequently AES, consists of three 

intrinsic components: key expansion, encryption, and decryption. Key expansion increases the 

size of the key so that each round of the algorithm uses a different subkey. The key lengths 128-, 

192-, and 256-bit use 10-, 12-, and 14-rounds of internal operations respectively (NIST, 2001). 

AES uses two-dimensional arrays of bytes, known as “states” for the internal operations of the 

algorithm. 

Each round consists of a non-linear transformation, two linear transformations, and key-

based transformation. The round begins by using a substitution box or s-box to conduct a non-

linear transformation of the state. The substitution is followed by two linear transformations 

involving shifting of rows and mixing of columns. The round completes with a bitwise 

exclusive-OR of the round key and the state. The algorithm repeats the round as necessary based 

on the key length. Decryption is intuitively the inverse of encryption. Key expansion involves a 

rotation, a substitution, and a series of exclusive-ORs. Each of the components add strength 

against cryptographic attacks to the algorithm. 

With the new standard published, several organizations provided reviews of the selection 

process. Richards (2001), with the SANS institute, noted the dramatic shift from the secretive 

and government influenced process of selecting DES to the process of selecting AES. Unlike the 

like DES process, NIST held an open, international competition to select AES. The origins of 

winning Rijndael algorithm demonstrated the paradigm shift. Rijndael was developed by two 

well-respected cryptographers, Joan Daemen and Vincent Rijmen, of Belgium. The departure 

from a standard of government origin or government involvement helped improve industry 
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confidence and willingness to adopt the standard in addition to reducing the concerns of a 

trapdoor or preexisting cryptographic shortcuts. 

Another summary of the development included robust reduced-round attack information 

for all of the finalists. The evaluation of attacks against reduced-round implementations provided 

a fair comparison to assess the margin of security provided by each candidate. The margin of 

security, or safety margin, is the distance between the number of rounds of operations that could 

be feasibly broken and the number of rounds proposed for AES. While some candidates favored 

performance, others favored security at the expense of performance. This imbalance in the 

candidates made the reduced-round attack feasibility an especially important measure of the 

margin of security provided by each candidate. The summary concluded that Rijndael had an 

adequate margin of security with the best overall performance and flexibility (Nechvatal et al., 

2001). 

Burr (2003) authored the Institute of Electrical and Electronics Engineers (IEEE) review 

of the AES selection process. He provided the first look at attack feasibility in addition to a 

comprehensive review of the process and algorithm, including the modes of operation. Citing 

Moore’s law (Moore, 1965), Burr estimated that the 128-bit AES would be as secure as an 80-bit 

key was in 2003, extending until 2066 (Burr, 2003). The modes of AES, which are common to 

block ciphers, including DES, were electronic code book (ECB), cipher block chain (CBC), 

cipher feedback (CFB), and output feedback (OFB). NIST added the counter mode (CTR) for 

AES which improves upon the security of parallelizable modes. The modes define how the 

algorithm is used and have their own body of knowledge. The modes are important as applied to 

all block ciphers, but are a separate topic outside of the primary field of AES cryptography. 
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The transition from DES to AES was a complex process. Attacks against DES were far 

into the realm of feasibility before AES was announced and use of DES continued for several 

years. The continued use of the previous standard serves as evidence of the transition time. The 

NIST issued DES transition plan in 2005 set a final transition period of two years for all federal 

agencies to transition to TDEA or AES as the standard allowing DES to be formally withdrawn. 

Additionally, the IETF security warning in 2006 focused on continued use of DES by the 

commercial sector (Kelley, 2006). Common reasons for continued use included backward 

compatibility, performance, and ignorance. The public warning sought to address the ignorance 

component, while additionally making a strong argument against continued use for the other two 

reasons. Although, this gap in security during the transition from DES to AES was concerning, 

NIST addressed the concern better for AES. 

NIST continues to maintain awareness and responsibility for AES. Approximately every 

five years, NIST releases a special publication that contains recommendations and requirements 

for algorithm and key-length use. NIST conducted its most recent review in 2015. The review 

found all key lengths of AES acceptable for use until the next assessment (Barker & Roginsky, 

2015). Based on the verbiage for phasing out other algorithms, when attacks against a key length 

are approaching feasibility, NIST will include a recommendation to phase out during the next 

five-year period. When key lengths or algorithms no longer provide security, NIST marks them 

as legacy use, indicating nothing new can be encrypted using the key length or algorithm; the 

proposed retirement candidate may only be used to decrypt legacy data. 

Cryptanalysis of the Advanced Encryption Standard 

AES has been a central topic of the cryptographic community since its announcement. 

Cryptanalysis assesses the strength of the algorithm, confirming the margin of security, through 

“attacking”. These cryptographic attacks emulate an adversary with the goal of learning the 
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secret key or otherwise gaining access to the plaintext contained in the ciphertext. Attacking the 

cipher is generally the most complicated means of access. Attacking the cipher could be 

described as gaining access to a locker by guessing the right combination rather than unscrewing 

a vulnerable external hinge. Vectors outside of the cipher usually present significantly easier 

means of access. Despite the easier modes of access, researching cryptographic attacks ensures 

that the component, which is most often assumed secure, remains true to the assumption. 

Cryptographic attacks have a few universal components. Requirements for data, compute, 

and memory are common. Data refers to the size of the ciphertext in either bits or in blocks. 

Attacks range from requiring a block worth of data to nearly the size of the brute force key 

space. Data may include specific data or pairs. Some attacks require known- or chosen-plaintext 

pairs. These pairs involve a block of the ciphertext that corresponds to a known or chosen 

plaintext. Every attack, including brute force, requires some way to verify the output is as 

expected as any number of candidate keys may appear to produce an expected result. This effect 

is more prominent for the smaller the ciphertext. 

Compute, also known as workload, is the number of operations required to complete the 

attack. For cryptographic attacks against AES, the internal rounds vary be key length: 10 rounds 

for 128-bit, 12 for 192-bit, and 14 for 256-bit keys. These rounds are a component of complexity. 

Additionally, key setup operations vary by key length. Reduced round implementations are also 

analyzed as a means to measure the margin of security. Because the rounds may not match the 

specified key length for these assessments, the key length and the number of rounds are 

independent factors of the compute component of attacks against AES. Compute is usually 

measured in the number of full AES operations based on the key size and rounds. 
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Memory refers to the amount of storage, not necessarily random-access memory (RAM), 

which an attack requires. Some attacks require very little memory to conduct, just enough to 

store candidate keys while they are tested. Others use precompute to produce large structures that 

require significant memory to reduce the final compute requirements. Aside from the common 

components, data, compute, and memory, AES has the additional components of key length and 

rounds. However, some categories of attacks against AES have additional, special requirements. 

Cryptographic attacks fall into several categories. At the highest level, these attacks either 

rely on special conditions about the situation or they do not. Attacks that do not rely on special 

conditions are general purpose and apply to the cipher operating in any condition. Attacks in this 

category that improve upon the compute of brute force are considered breaks. Attacks that do 

rely on special conditions are not breaks of the algorithm because they rely on conditions outside 

of the algorithm. The conditions include some form of physical access, access to the input and 

output of the cipher, related keys, or implementation nuances. Most attacks require some 

understanding of the plain text. Without the ability to verify the plaintext, determining the 

validity of a candidate key is not possible. For example, if a fully random block was encrypted, 

decrypting with the incorrect keys and the correct key would produce similarly random outputs. 

However, if the plaintext is known to contain ASCII text, the key validation may simply consist 

of checking for outputs that contain ASCII characters. These checks are usually parallelizable 

and are not always included in the compute component. 

General Attacks 

All traditional, non-quantum encryption is subject to the simpliest of attacks: brute force. 

While simple conceptually, it is generally the worst case in terms of compute as it forms a 

starting point for future cryptographic efforts to improve upon. Although far from feasible, 

Rijndael was subject to brute force from its inception. As seen with DES, the key length is the 
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mitigating factor for this attack. The key lengths of 128-, 192-, and 256-bit for AES were 

determined before any algorithms were submitted. Almost 20 years later, even the 128-bit 

keylength successfully places brute force out of the range of feasibility. Brute force is data 

agnostic. It does not require large samples or pairs of ciphertext and plaintext; as long as enough 

is known about the plaintext to test if a decryption attempt was successful with a given key, 

nothing else is needed besides an immense amount of compute, time, or both. 

Table 2 

General attacks 

    Complexity   

Attack Key(s) Rounds Data Compute Memory Year 

Brute 

Force 

128 

192 

256 

10 

12 

14 

Trivial 

2128 

2192 

2256 

Trivial 1998 

Biclique 

128 

192 

256 

10 

12 

14 

288 

280 

240 

2126.1 

2189.7 

2254.4 

28 2011 

Note. Derived from Bogdanov, Khovratovich, & Rechberger (2011) and Burr (2003). 

 

Aside from brute force, the only known general attack against AES is biclique 

cryptanalysis. Even in its worst-case performance it improves on brute force by a factor of three 

to five times depending on key length (Bogdanov, Khovratovich, & Rechberger, 2011). An 

algorithm is considered broken if any attack, which does not require prerequisite assumptions, is 

faster in terms of compute than brute force (Burr, 2003). The biclique cryptanalysis attack is the 

only known break of AES (Bogdanov et al., 2011). While it is a ground breaking attack, it has 

generally infeasible data requirements and is not a large enough improvement on compute to be 

feasible. Future improvements upon the data and compute components of this attack method may 
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represent a formidable threat to the continued use of AES; however, no improvements have been 

published to date. Table 2 depicts the general attacks against AES, their key lengths, rounds, 

complexity, and the year they were introduced to the body of knowledge. 

Partial-Implementation Attacks 

Attacks against partial implementations help validate the margin of security provided by 

the algorithm. Internally, AES repeats the substitution, transformations, and mixing steps for a 

given number of rounds based on the key length. For AES, the rounds are 10, 12, and 14 for the 

given keys lengths of 128-, 192-, and 256-bit respectively. The security margin is the gap 

between the highest-round, feasible attack and the rounds required by the algorithm. If the gap is 

too narrow, a single innovative shortcut could result in a feasible attack, which would render the 

algorithm obselete. In practice, partial implementations are rare because they lack security and 

consequently lack approval for use in most situations, but dispite the drawbacks, are sometimes 

used to implement the internals of stream ciphers (Bouillaguet et al., 2012). 

Even before NIST selected the Rijndael algorithm as a finalist for AES, its authors, Joan 

Daemen and Vincent Rijmen, considered known cryptographic methods and Rijndael’s strength 

against those techniques. The authors asserted that the full implementations for each key length 

were secure from known cryptographic methods, but partial implementations were expectedly 

vulnerable. They found feasible attacks for all key lengths when only four or five rounds were 

used and a generally infeasible attack, requiring 272 operations, with six rounds (Daemen & 

Rijmen, 1999). The required round lengths were purposefully selected for their balance of 

performance and acceptable margins of security. 

Partial implementation attacks often rely on other assumptions including related keys or 

the ability to manipulate or knowedge of the plaintext. Table 3 contains notable partial 

implementation attacks regardless of their other dependencies. The following sections omit these 
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attacks to prevent overlap. Although the attack relies on related keys, which makes it inpractical, 

the related-key boomerang attack presented by Biryukov and Khovratovich in 2010 is not only in 

the feasible range but is also only one round short of a full implementation. A single 

improvement in the attack technique could pose a feasible, albeit still costly threat to AES use in 

related key environments. 

Table 3 

Partial-implementation attacks 

    Complexity   

Attack Key(s) Rounds Data Compute Memory Year 

Truncated 

Differential 
All 

4 

5 

6 

6 

7 

29 

211 

232 

232 

2128 – 2119 

29 

240 

272 

244 

2120 

Trivial 

Trivial 

232 

232 

1999 

1999 

1999 

2000 

2000 

Partial Sums 

(Chosen-

Plaintext) 

128 

192 

256 

256 

7 

8 

8 

9 

2128 – 2119 

2128 – 2119 

2128 – 2119 

285 

2120 

2188 

2204 

2226 

264 

264 

264 

232 

2000 

2000 

2000 

2000 

Related-Key 

Chosen-

Plaintext 

256 9 285 2224 232 2000 

Impossible 

Differential 

128 

192 

256 

7 

7 

7 

2115.5 

292 

292.5 

2119 

2186 

2250.5 

2109 

2157 

2157 

2008 

2004 

2004 

Related-Key 

Differential 
256 

10 

11 

244 

270 

245 

270 

233 

233 

2010 

2010 

Related-Key 

Boomerang 

256 

256 

256 

9 

9 

13 

259 

267 

276 

2119 

2135.3 

276 

242.5 

242.5 

276 

2010 

2010 

2010 

Note. Derived from Nechvatal, et al. (2000), Phan (2004), Ferguson, et al. (2000), 

Biryukov & Khovratovich (2010), and Soleimany, Sharifi & Aref (2010). 

Key Attacks 

Key attacks generally rely relationships between keys but may also refer to attacks that 

exploit the key schedule. Frequently it is the properties of the key schedule that enable the 

observation of related keys to result in key recovery. For every criticism of AES, a solution is 
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presented. Several different modifications have been proposed to strengthen the key schedule, as 

one of the most criticized components of AES and the foundation for many related key attacks. 

Early proposals did not always uphold the requirement for hardware implementations, for 

example, by increasing the key expansion by adding rounds of AES, they made the key schedule 

stronger and importantly irreversible, but not hardware implementation compatible (Choy, 

Zhang, Khoo, Henricksen, & Poschmann, 2011). Later proposals improved security at little cost 

to efficiency, while remaining hardware implementation compatible. 

Although many of the partial implementation attacks in Table 3 rely on related keys, 

these attacks also extend to full implementations found in Table 4. Related-key attacks rely on a 

number of related keys, an attack requiring the observation of a few keys, like the boomerang 

attack in Table 4, is much less practical than the attack requiring 235 related keys (RKs). The 

tradeoff in terms of practicality and the other components of complexity are common throughout 

the attack types, but especially important here where an attack with the complexity of the related-

key differential would be devastating without the requirement for the impractical number of 

related keys. 

Table 4 

Key attacks 

Attack Key(s) Rounds Complexity Year 

   RKs Data Compute Memory  

Related-Key Boomerang 256 14 4 2119 2119 277 2009 

Related-Key Differential 256 14 235 296 296 265 2009 

Note. Derived from Biryukov & Khovratovich (2009); Biryukov, Khovratovich & Nikolić 

(2009) 
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Plaintext Attacks 

Plaintext attacks rely on access to known or chosen plaintext in addition to the cipher 

text. Many other attacks, including brute force, require at least some limited information about 

the plaintext, encoding for example, to allow trial decryptions to be evaluated. With known 

plaintext attacks, key recovery relies on many known pairs of plaintext and ciphertext. Chosen 

plaintext attacks extend this approach by requiring the attacker to be able to encrypt arbitrary 

plaintext and observe the resulting ciphertext. Although several of the partial implementation 

attacks in Table 3 require chosen plaintexts, most AES modes are, by design, resistant to this 

type of attack. Since these attacks were known even prior to attacks becoming feasible against 

DES, they were appropriately considered during the AES selection process (Baudron et al., 1999; 

Biham & Shamir, 1993). 

Side-Channel Attacks 

Side-channel attacks employ unique approachs to defeat cryptosystems. They utilize 

various forms of leaked information or implementation weaknesses instead of directly attacking 

the cryptographic algorith (Alghazzawi, Hasan, & Trigui, 2014). The exploited components 

include physical properties such as timing, power consumption, noise, or radiation. Generally, 

these attacks are simultaneously the most feasible and the least practical (Zhou & Feng, 2005). 

The feasibility stems from the avoidance of the cryptosystem and focus on the other available 

channels. The impracticality is based on the high degree of access to the system that measuring 

the precise timing, power draw, or electromagnetic radiation would require (Khan & Mahanta, 

2014). Although these attacks avoid the cryptosystem, the usage mode of the cryptosystem has 

an impact on the feasibility of power analysis (Jayasinghe, Ragel, Ambrose, Ignjatovic, & 

Parameswaran 2014). Table 5 contains several notable side-channel attacks. Unlike the previous 

attack categories, every type of side-channel attack requires the exposure of drastically different 
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components of the algorithm. In 2011, Floissac and L'Hyver adapted a differential fault analysis 

attack to all key sizes which required generating faults in the key expansion process. Although 

the internal states of the key expansion process would be very difficult to access, this attack only 

requires a few bytes worth of faults to recover the key. Another approach, collision timing, 

requires access to the input, output, and clock of AES ASICs to recover the key. Improvements 

on this method made it capable of defeating fault and power analysis protected hardware 

implementations (Moradi, Mischke, & Paar, 2013). 

Table 5 

Side-channel attacks 

Attack Key(s) Rounds Access  Complexity  Year 

    Data Compute Memory  

Differential 

Power 

Analysis 

128 10 

Micro-

Second 

Power 

Draw 

Trivial Trivial Trivial 2008 

Differential 

Fault 

Analysis 

All All 

Key 

Expansion 

Internal 

States 

Trivial Trivial Trivial 2011 

Collision 

Timing 
All All 

ASIC I/O, 

Clock 
224 Trivial Trivial 2013 

Trace 

Driven 

Cache 

All All Cache Trivial Trivial Trivial 2013 

Note. Derived from Yu, Xue-cheng, Zheng-lin, & Yi-cheng (2008); Floissac & L'Hyver 

(2011); Moradi, Mischke & Paar (2013); Zhao, et al. (2013). 

 

Performance 

Regardless of attack type, AES performance forms some component of the feasibility of 

the attack. The simplest attack, brute force, is entirely performance-based. The faster AES 

operations can be conducted, the faster the attack can be completed. Other attacks require various 

AES operations, but performance is not only a consideration that relates to attacks. It was a 
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priority during selection to ensure that AES was usable by the computers of that time. This 

section includes the performance considerations during the selection process, AES performance 

since selection, and general performance since selection. AES performance since selection 

involves the changes to implementations, both hardware and software, that improve upon the 

initial performance characteristics of the algorithm. Lastly, general performance pertains to the 

state of computing, including innovations in lithography, parallel computing, and architectures. 

Another component of performance is the study and application of performance 

predictions. This practice involves the identification of system and software factors effecting 

performance through the use of benchmark and modeling. Even in its early forms, the design of 

representative workloads involved modeling and tuning, which made external validity difficult 

(Berry, 1992). The rise of standard benchmark solutions like Linpack and HPL helped address 

those difficulties. From those standard platforms, results became consistent enough to use the 

benchmark ratios as performance predictors (Gustafson & Todi, 1998). 

Predicting performance relies on the modeling of the process. Queuing networks are a 

method for modeling steps in a process to predict performance and better design representative 

workloads. They use nodes to represent components of a process, which makes them especially 

applicable to the understanding of AES performance (Balsamo, Di Marco, Inverardi, & Simeoni, 

2004; Menascé, Almeida, & Dowdy, 2004). Using queuing networks, a brute force attack on 

AES could be portrayed as a linear network where each node is parallelizable: key expansion, 

trial decryption, and result verification. Other attacks require more complex models; however, 

nearly all the attacks have some component of AES operations. 

AES Performance Considerations during Selection 

The performance of the candidate algorithms was a crucial component of the selection 

process. Even the announcement requesting candidates mentioned efficiency as a component of 
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the evaluation criteria (NIST, 1997). At that time, DES was waning and the rising TDEA 

alternative, which simply increased the key by conducting DES multiple times, was very 

inefficient (EFF, 1998a; NIST, 1999b). The concern that the next standard be more efficient than 

DES was evident during the process by the various performance publications which addressed 

this component of the requirements. Furthermore, as technology continued to become more 

mobile and miniaturized, NIST appropriately included a variety of microprocessors and other 

miniature devices (Burr, 2003). 

After the first candidate conference, the performance of the leading 15 candidate 

algorithms was measured on a variety of platforms. The study measured not only encryption but 

also key setup performance. It provided detailed summaries and comments for each algorithm. 

Rijndael, the candidate that eventually became AES, had only positive comments boasting great 

performance across all platforms without any incompatibilities or negatively affected platforms 

(Schneier et al., 1999). Although performance was not the only design consideration, the 

algorithms that became the finalists all performed very well in this initial assessment. 

When the five finalists emerged, Schneier and Whiting (2000) conducted an additional 

study focused specifically on the performance characteristics of the remaining candidate 

algorithms. The study included additional fields, such as comparisons of the minimal secure and 

maximally insecure variants of each algorithm, to help delineate the differences in performance 

for each algorithm’s round count. The study also included concern that the primary purpose of an 

encryption standard, security, might not be as high of a priority as performance. Despite the 

concern, all of the finalists had excellent margins of security and the emphasis on performance 

would allow industry to better adapt to and implement the new standard. In the end, Rijndael not 



 

56 

only had very low memory requirements but was also twice as fast as the other finalists 

(Nechvatal, et al., 2000). 

AES Performance since Selection 

AES performance since its selection refers to performance improvements specifically 

targeting AES. These performance improvements and optimizations have equal impact on AES 

for normal cryptographic use as they do cryptanalysis. Despite having impacts relating to both 

normal use and cryptographic attacks, in the literature, these improvements usually focus on just 

one component of the performance improvement. This current research draws upon both 

categories since improvements in one mean improvements in the other. The drivers for the 

improvements primarily focus on hardware, since the algorithm specifications have not changed. 

GPUs are mentioned throughout the literature as powerful platforms for cryptography. In 

2007, Manavski found that GPU architecture very capable as an accelerator for AES. Both 

encryption and decryption saw improvements, which peaked at nearly 20 times faster than the 

CPU. This study focused on the CUDA architecture found in Nvidia GPUs. Another more recent 

CUDA study saw an increase in performance over CPU by 87 times (Khan et al., 2014). Further 

research on GPU-based efficiency and price to performance comparisons followed. Not every 

study found the same degree of performance improvements, but helped to validate the capability 

of the platform for AES operations (Shao, Chang, & Zhang, 2010). A notable study in 2014 

found that the platform agnostic GPU library OpenCL was also capable of significant 

improvements (Yuan, He, Gong, & Qiu, 2014). Although all types of GPUs have formidable 

AES potential, the implementations are still in software, albeit highly parallelized software. 

Perhaps the largest performance improvement was the advent of AES hardware 

instruction sets on the CPU. In 2010, the Intel® AES new instructions (AES-NI) brought 

hardware implementation to an unprecedented level, increasing performance by more than an 
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order of magnitude (Gueron, 2010). AMD, and eventually ARM, have since adopted similar 

AES hardware instructions. Because every system has a CPU, this performance improvement 

effected a much larger population of platforms. Although this improvement alone made routine 

use of AES seamless, it does not pose a direct threat independently. However, this improvement 

combined with a large group of systems or a supercomputer might pose a significant as 

technology continues to improve. A combination of the massive parallelism of GPUs in the form 

of application specific integrated circuits (ASICs) and hardware instructions would produce a 

dangerously powerful platform. In the offensive sense, Biryukov and Großschadl theorized that a 

GPU-like ASIC would have the throughput of 77.6 Gbit/s (2012). 

General Performance since Selection 

The general state of computing performance since NIST selected Rijndael as AES in 

2001 involves both improvements in the prevalence of technology and improvements in the 

capability of technology. As mentioned in the introduction, the sheer size of the connected world 

is the first major factor. Based on stats from the International Telecommunication Union, the 

World Bank, and the United Nations, nearly of half of the world’s population uses the Internet 

(Internet Live Stats, 2018). Up from less than one percent in 1995, the increase in the last two 

decades is enormous. While the introduction and assumptions and biases sections focused on the 

increased need for protecting what has become a critical component of society, the increase also 

has a performance implication: the amount of available processing power has risen at the same 

alarming rate as the world has adopted connected technology. This increase is compounded by 

the actual evolutionary and revolutionary improvements in technology that follow. 

The improvements in the capability of technology have two components, evolutionary 

and revolutionary changes. When AES was selected, Moore’s Law was the best approach for 

estimating the future performance of computing systems. It related the cost per component and 
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the number of components per integrated circuit with time (Moore, 1965). For decades, 

performance has closely aligned with this law. However, revolutionary changes in technology 

have separated performance from sheer number of components, or in most cases, transistors. 

Production scale, lithography, is an example of evolutionary changes. From 350-nanometer 

manufacturing scale in the mid-1990s to the 14-nanometers that is mainstream today, this change 

accounts for significant computing performance capability (Intel, 2018). 

Evolutionary improvements in CPU and GPU design scale, lithography, have allowed for 

higher clock rates and respectively greater compute potential. However, these changes faced a 

variety of limiting factors, which led to the first revolutionary change, multicore CPUs. 

Multicore CPUs allowed a departure from the clock rate and instructions being the sole 

determining factor of a CPU’s performance. Other changes in the manufacturing field, including 

tri-gate transistors, allowed more cores on each socket, reduced heat, and enabled higher clock 

speeds. All these innovations, which improved upon general performance, also improved AES 

performance and resultantly enhanced attack feasibility. 

Attack Feasibility 

Although feasibility is a component of every published attack, the purely attack 

feasibility literature is limited. The earliest estimation of AES attack feasibility cites Moore’s 

Law and states that the first key length, 128-bit, should endure for around six decades as secure 

as an 80-bit key was in 2003 (Burr, 2003). In 2003, an 80-bit key was undeniably secure. Asides 

from the periodic review for usability, transitioning from DES and general AES research seemed 

to take precedence over AES attack feasibility. Given the lifespan of DES and the significantly 

improved key lengths of AES, the focus on transition, rather than immediate consideration of 

AES key lengths was appropriate. 
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Biryukov and Großschädl (2012) theorized an attack platform capable of completing 

attacks of the 2100 compute complexity in feasible time using GPU-like, special-purpose 

hardware. Although their work was published in 2012, it referenced 2010 technology. The attack 

referenced was the partial implementation attack using related keys with 299.5 compute 

complexity (Biryukov & Khovratovich, 2010). Although this attack has assumptions and is based 

on a partial implementation, an improved method or simply time, may make their trillion US 

dollar theoretical system much more realistic in the near future. 

Another attack feasibility study focused on the massive increase in the number of 

systems, in particular, mobile devices. It followed a similar framework as Distributed.net used to 

attack DES: just 10,000 commodity devices defeated DES only 20 years after its selection 

(Curtin & Dolske, 1998). Marculescu (2014) concluded that a trillion mobile devices could 

search 275 keys per year. This assessment, places even the shortest AES key length of 128-bit far 

out of reach. These assessments are expected to continue to indicate that attacks are infeasible for 

years, but are still important for staying ahead of the necessary transition time. Furthermore, as 

these assessments indicate a closing margin of security, similar to the early 1990s assessments of 

DES, moving to the higher key variants of AES will be appropriate. 

Future technologies such as quantum computing pose a great threat to encryption 

technologies, just as the aforementioned innovative technologies that increased the rate of 

compute beyond the rate that was initially projected. The massive revolutionary change that 

widespread or large-scale quantum computing will bring to the world will also have a great 

impact on cryptography. Algorithms that rely on factoring will be greatly reduced in attack 

complexity by Shor’s algorithm (Bernstein et al., 2009). The reduction is so great that these 

methods will be rendered immediately and completely obsolete. Algorithms like AES do not rely 
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on factoring. However, Gover’s algorithm still provides reduction in complexity, but not enough 

to immediately defeat the algorithm. 

Conceptual Framework 

The foundation for this research is the modern cryptographic principle of cryptanalysis. 

Combined with the lessons learned by the rise and fall of the previous standard, DES, the 

cryptographic community, led by NIST, selected the Rijndael algorithm as the new encryption 

standard. Lessons including key length, differential cryptanalysis, and transition time led this 

research to the gap addressed by this study. Despite attack feasibility literature emerging the in 

early 1990s, the feasibility of conducting a brute force attack against DES was not adequately 

tracked, calculated, or projected when it became evident that DES was no longer secure. 

Although NIST assesses AES periodically for five-year continued use, a practical, potentially 

real-time approach to determining the attack potential, is absent from the body of knowledge. 

As the next generation standard, AES is cryptographically sound. Even before final 

selection, the candidates underwent extensive cryptographic and performance testing. AES is 

approaching its initial design time of 20 years, although initial projections of the shortest key 

length enduring for six decades, the world computing power has undergone massive change 

since AES took the stage. Changes, including multicore, multithreading, and AES hardware 

instructions, directly impact the CPU portion of processing power addressed in this study. To 

prevent these changes from compounding into a similar insecure situation that happened with 

DES, this research sought to determine the ratio between a widely available performance 

standard, FLOPS, and the AES operations, to potentially allow projections about the endurance 

of the standard and attack feasibility to accurately determine when key lengths need to be 

abandoned or a new standard is required. 



 

61 

Summary of Literature Review 

This chapter detailed the literature surrounding the topic of AES attack feasibility. It 

included the foundation of the modern cryptographic era as the reason for open cryptographic 

standards and the paramount concept of cryptanalysis as the means of validating the security 

provided by cryptosystems. It advanced through the previous standard, DES, as the context for 

the selection of the current standard, AES, and demonstrated the study’s concern regarding the 

potential for attacks to become feasible sooner than initially projected. It outlined the selection 

process and criteria for selection that eventually led to AES becoming the new standard. 

The chapter review delved into the various forms of cryptanalysis conducted throughout 

the literature to validate the security provided by AES. It preceded to detailed explanations of the 

various attack types and tables depicting each attack with its associated performance data. It 

related the fields of attack feasibility and performance, demonstrating the intertwined nature of 

these fields, and identifying the gap which this research sought to fill. It concluded with the 

conceptual framework, which connected all of these categories of literature in the body of 

knowledge to form a foundation for the research questions. Chapter 3 will build upon this 

foundation to detail the method for the study. The method stems from the conceptual framework 

to answer the research questions. 
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CHAPTER THREE 

This chapter presents the methods used to conduct the study. It begins by reviewing the 

research traditions from the body of knowledge that align with the conceptual framework. It 

continues to provide a review of the research questions and their associated hypotheses. The 

research design follows, which outlines the nature of the study and the approach used for 

collection, measurement, and analysis of the data. The research design includes the population 

and sampling information, in addition to the reasons why the sample was selected. This chapter 

also contains the detailed reasoning for the development of the collection mechanism and the 

selection of the survey instruments contained within the collection design. It concludes with 

specific information about the implementation of the collection design, with full code available 

in the appendices. The inclusion of fully detailed information and code allows the study to be 

repeated in the future. 

Research Tradition(s) 

This study contained research traditions from several fields. Benchmarks and the use of 

representative workloads are well established in the performance engineering field. The use of 

these procedures in the cryptography field for attack feasibility estimations is less common. In 

the case of DES, more detailed studies about attack feasibility and complexity were published as 

attacks reached the feasible point. Although every cryptographic attack publication briefly 

mentions feasibility, complexity, or performance, the more accurate techniques and dedicated 

research are less common. When studies do approach attack feasibility, they generally do so in 

one of two ways: they use a single or very limited set of hardware configurations, or they use 

theoretical, application-specific systems. 

Considering attack feasibility as a form of validating the security provided by a 

cryptographic algorithm is a foundational concept of the modern cryptographic era. This concept 
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stems from Kerchkhoffs’ Cryptographie Militaire, which was published in 1893 (Kahn, 1996). 

Kerckhoffs recognized the increased emergence of cryptosystems for military use and that the 

transformation of communication brought on by the telegraph would require new considerations 

for cryptography. One of these considerations was the need to verify the security provided by a 

cryptosystem. Kerckhoffs was justly critical of trends in cryptography at the time as the 

cryptographic techniques not only lacked validation but had not kept up with the pace of 

technology. Due to these concerns, Kerckhoffs introduced cryptanalysis in his literary work as a 

necessity to understand the security of a cryptosystem (Singh, 2000). 

Cryptanalysis was among the considerations for DES, the predecessor to AES, when it 

emerged in the 1970s. The expected feasibility of attacks was assessed and found acceptable at 

that time. By 1993, however, the concern of the key length and the potential attack complexity 

reduction of differential cryptanalysis entered the literature (Biham & Shamir, 1993). In 1997, 

RSA Laboratories launched a cryptographic challenge to assess the security of currently in use 

encryption algorithms; DES was among them. The first success against DES was a distributed 

group using brute force that peaked around 14,000 personal computers (Curtin & Dolske, 1998). 

After 20 years as the workhorse of the cryptography, DES was now insecure; its 56-bit key was 

its downfall. Although the AES key lengths solved much of the problem with DES, at 128-, 192-, 

and 256-bit, assessments of key length endurance were part of the initial literature after selection. 

Cryptanalysis and attack feasibility were even more present during the selection process 

for AES from 1997 to 2001. The cryptanalysis included the application of all known methods 

against each of the candidates, in addition to considerations for partial round implementations 

and their margin of security from feasible attacks (Ferguson et al., 2000). Attack feasibility 

considerations occurred throughout the process as well. The multiple, long key lengths were 
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designed to prevent the failures of DES. The early estimate for the shortest key length of AES, 

approximately 60 years, was made shortly after the selection (Burr, 2003). 

Biryukov and Großschädl considered attack feasibility in 2012 using a theoretical, 

special-purpose approach based on the lithography and available technology in 2010. They 

concluded that a one trillion US dollar system built with GPU-like special purpose processors 

could complete an attack against AES in a year. The results of this current research may allow 

similar estimation about the number or cost of modern, general-purpose CPUs completing the 

same attack. Consequently, using this study as a template for a study of GPUs or GPU-like 

ASICs would expectedly yield closer to feasible results. 

The study of performance and the identification of factors effecting performance, 

including the appropriate tuning, are integral to the performance component of this research. 

Even early benchmark studies had difficulty with external validity and tuning (Berry, 1992). 

Using one benchmark to predict the performance of another is a component of this study, which 

Gustafson and Todi used to rank a variety of benchmarks in 1998. Benchmarks and 

representative workloads stem from system planning, but have an important role in AES 

performance prediction and the design of the collection mechanism. 

This study aimed to build upon these traditions. The consideration of attack feasibility 

and the inclusion of known attacks fulfils the component of cryptanalysis by testing the security 

provided by the AES algorithm. The practicality of the DES challenges approach is present in the 

benchmarking and use of general-purpose hardware. Despite the infeasibility of attacks, the 

theoretical component is present in the potential applications of the results. Since distributed and 

general-purpose hardware-based attacks are expectedly far from feasible, the contribution may 
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help realign the initial key-length durability estimations with the actual progression of 

technology in the last 20 years. 

Research Questions and Hypotheses 

R1: How correlated are the results of traditional benchmarks and AES benchmarks 

conducted on systems in the sample population? 

H00: No statistically significant correlations exist between traditional benchmarks and 

AES benchmarks conducted on systems in the sample population. 

H0A: Statistically significant correlations exist between traditional benchmarks and AES 

benchmarks conducted on systems in the sample population. 

R2: How do the hardware configurations of systems in the sample population effect the 

level of correlation between traditional benchmarks and AES benchmarks? 

H10: The AES hardware instructions component of the hardware configurations of 

systems in the sample population has no statistically significant effects on the level of correlation 

between traditional benchmarks and AES benchmarks. 

H1A: The AES hardware instructions component of the hardware configurations of 

systems in the sample population has statistically significant effects on the level of correlation 

between traditional benchmarks and AES benchmarks. 

H20: The processor type component of the hardware configurations of systems in the 

sample population has no statistically significant effects on the level of correlation between 

traditional benchmarks and AES benchmarks. 

H2A: The processor type component of the hardware configurations of systems in the 

sample population has statistically significant effects on the level of correlation between 

traditional benchmarks and AES benchmarks. 
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H30: The memory component of the hardware configurations of systems in the sample 

population has no statistically significant effects on the level of correlation between traditional 

benchmarks and AES benchmarks. 

H3A: The memory component of the hardware configurations of systems in the sample 

population has statistically significant effects on the level of correlation between traditional 

benchmarks and AES benchmarks. 

Research Design 

This study was quantitative in nature. It involved gathering of hardware information and 

benchmarks from a variety of systems using two established instruments from the literature. 

These instruments were included in a robust, highly-automated collection design to allow for the 

sampling to include the necessary diversity of configurations to purposefully represent the 

variety of systems in the population. Since the population was modern systems, human 

involvement was limited to the role of facilitators. Figure 4 depicts a simplification of the 

research design, instrumentation, and collection procedure. 

 

Figure 4. Simple Design by Daniel S. Hawthorne. Copyright 2018 
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Population and Sample 

The population for this research involved the majority of modern computers, which are 

referred to as systems in this study that are able to conduct both floating point operations and 

AES operations. These systems are found almost everywhere and include the vast majority of 

laptops, desktops, and servers in use today. The systems are general-purpose and contain central 

processing units (CPUs) based on the x86_64 instruction set. Both AMD and Intel have used the 

x86_64 instruction set for central processing units (CPUs) since 2004 (AMD, 2018; Intel, 2018). 

Although CPUs are found almost everywhere, they are only one component of the global 

computing power. However, CPUs were the only component of global compute included in this 

research because the differences in architectures and instruction sets require specially tailored 

benchmarks and would be best suited for follow-on studies. 

The population, and resultantly the sample, deliberately excluded four categories of 

computing platforms. The first two are ARM-based processor and GPUs. These robust platforms 

are able to conduct many types of operations, including floating point and AES, but the 

differences in benchmark techniques would have required separate scripts and introduced a layer 

of complexity and uncertainty to this study. The last two are field programmable gate arrays 

(FPGAs) and application specific integrated circuits (ASICs). FPGAs perform one specific task 

but may be reprogrammed to do another. ASICs possess remarkable performance for single tasks 

as each is designed for only one type of operation. The latter two cannot conduct both floating 

point operations and AES operations and were therefore excluded. Although they could not 

conduct both of the necessary operations for this study, these systems excel at performing AES 

and could pose the greatest threat to its continued use, as they did with DES and as Biryukov and 

Großschädl in 2012 more recently hypothesized (EFF, 1998b). 
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The sample was a subset of the population with four criteria for inclusion. The x86_64 

instruction set was given as a condition of the population. The ability to boot to a USB device 

and a wired network connection to the Internet were requirements for inclusion based on the 

research design. Booting to the same operating system on a USB device reduced the variance of 

the results by eliminating the components of differences between operating systems, background 

services, and running programs. The network connection was necessary for the automatic 

submission of the results. To simplify the task of the facilitators, the collection required a wired 

network connection, as the task of establishing wireless connectivity without a desktop 

environment was a daunting for many users. 

Sampling Procedure 

The sampling procedure used by this study was unique. Unlike many other forms of 

research, the subjects of this study were computer systems. The components of interest in the 

study were the configuration of the hardware and performance of those systems. The hardware 

configurations of the same make and model generally have very little variability in performance. 

Aside from a few exceptions, which the study accounted for in the reliability section, computer 

systems in general have negligible differences in performance over time. The research questions 

and non-experimental approach also lent to the uniqueness of the sampling procedure. The study 

sought to characterize the performance of systems across a variety of hardware configurations. 

The study did not attempt to make inferences about the distribution of hardware configurations 

for systems in the entire population. These initial conditions ruled out random sampling or the 

need to try to collect representative numbers of hardware configurations. Instead, purposive 

sampling was used to collect a variety of hardware configurations. 

This study utilized purposive sampling. Purposive sampling is a nonprobability sampling 

method where subjects are selected because they are typical or diverse (Vogt, 2007). For this 
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study, the exact sample size for each research question was determined during the data collection 

process. The sampling requirements for R1 and R2 were notably different. R1 is straight 

forward; it required a number of results from discrete systems. It did not require a set variety of 

systems, as long as the collected data was from discrete systems, in other words, not from the 

same computer. Separate systems of the same make, model, and configuration were still a valid 

inclusion as the results reinforced the reliability of the collection instruments and helped identify 

anomalies. The sampling requirements for R2 were more complex. 

The sampling for R2 required a variety of hardware configurations. The variations were 

the descriptive independent variables indicated by H1, H2, and H3: AES instructions, processor, 

and memory respectively. It was possible that a determination on H1 might not be possible, 

given the prevalence of AES hardware instructions, which Intel introduced in 2010, but are now 

found on most CPUs (Gueron, 2010). However, if a determination was possible, it was expected 

that the presence or absence of AES instructions would have a statistically significant impact on 

the results. The target for completion of the collection phase was reaching an adequate variety of 

system configurations to make determinations on H2 and H3. The instrumentation and collection 

design enabled simple expansion of the facilitator audience as necessary to reach the target 

sample variety. 

Instrumentation 

The instrumentation and collection design expand the details of the simple design, 

included in Figure 4. This section describes in detail each of the elements depicted in Figure 5. 

At the core, the instruments were the CryptSetup and high performance Linpack (HPL) 

benchmark utilities, which were installed on the ArchISO Linux and executed by the collection 

script. However, the instrumentation and collection design were a more detailed process, which 

included the distribution, delivery, execution, and results collection of those benchmark 
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instruments. This section was organized in order of execution through a single repetition of the 

instrumentation and collection design, although, the development order was the opposite. The 

instrumentation and collection design process consisted of three scripts, two configuration files, 

and several other tasks. All of these elements are included in Figure 5, explained in this section, 

and the full code included in the appendices.

 

Figure 5. Instrumentation and Collection Design 

The process began with the solicitation of interest from potential facilitators. Those that 

chose to participate received a prepared USB drive to use as a boot device for their system or 

systems. The drive contained a specifically remastered ArchISO Linux and the collection script. 
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Once booted, the script ran the aforementioned benchmarks, gathered system information, and 

submited the results to the collection server. The collection server contained the second script, 

which wrote those results to a file. Finally, a third script was combined with secure copy (SCP) 

to retrieve the results and organize the data. 

Interest Email, Facilitator Site, and Facilitators 

Upon completion of the Intuitional Review Board and receipt of approval to begin 

collection, the process began with the distribution of the facilitator interest email to professional 

colleagues and personal acquaintances who expressed interest in the research. The possibility for 

expansion of the audience remained until the completion of the preliminary data analysis. If 

necessary, the expansion would have begun by including computer industry contacts and posting 

the contents of the research interest email on various security and research forums. The email 

included a brief synopsis of the research and a link to the facilitator site where interested 

recipients could find more information and sign up to help facilitate. 

The facilitator site (Appendix E) was a Google survey site that provided additional 

information about the research and collected some basic information from the facilitators. The 

upfront information included the goal of projecting attack feasibility, the benchmark pairs to be 

collected, and the limit of the collection – not accessing any other storage devices or gathering 

personal information. Following the initial information, the site included a link to the source 

code of the collection script to allow every facilitator to review, understand, and audit the design 

to their liking. The specific requirements of an x86_64 processor, the ability to boot to USB, and 

a wired Internet collection were included and explained to help ensure facilitators had systems 

that met the criteria for testing. 

Following the above information, the facilitator site collected the name, email, and 

method to receive the USB drive from interested facilitators. Further fields including an option to 
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be recognized in the publication, phone number, and comments were included but completely 

optional. Additionally, if the facilitator elected to receive the USB drive by mail, the facilitator 

had to include a physical mailing address. If the facilitator chose the more advanced option to 

download the ISO, the final section contained additional instructions for writing the ISO file to a 

USB drive and an optional device ID field for facilitators that wanted to receive recognition. As 

Google surveys were submitted, the collection media was prepared and shipped or delivered 

based on the chosen method. 

Live Linux, Collection Script, and USB Drives 

Booting facilitator systems to a common operating system eliminated the variability of 

the operating system, background processes, and services. Arch Linux, a stable and lightweight 

distribution with a robust user repository containing the tools needed for this research was an 

appropriate foundation. As one of the lightest distributions, it had nothing extra to slow down the 

benchmarks while simultaneously leveling the operating system tasks for every sample system in 

the study. The initial configuration of Arch Linux was a persistent USB installation of the 

operating system. However, several compatibility issues arose when testing on platforms with 

differences, such as CPU type, from the platform upon which the persistent USB installation was 

built. The ArchISO live USB variant of Arch Linux was free of the aforementioned compatibility 

issues and served as a consistent platform across a variety of hardware types. Although 

remastering ArchISO to include the packages for this study was much more involved than simply 

installing them on a persistent install, the read only file system of the resulting remastered ISO 

helped reduce the chance of facilitator introduced errors. 

Manjaro Linux, a user-friendly Arch-based distribution, was used as a development 

platform and for the initial testing environment for the benchmark script. As an Arch-based 

Linux distribution, Manjaro's environmental similarities with ArchISO and robust toolset made it 
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a sound choice for not only development but the remastering process of ArchISO. Remastering 

ArchISO, which typically contains the Arch installer and other simple packages for use as a live 

Linux implementation, allowed for the inclusion of the collection script, benchmark instruments, 

and all the required dependencies in the read only ArchISO. In addition to the development 

platform, three other systems were used as testing platforms to reduce the possibility of 

compatibility issues. Table 6 depicts the five test platforms in total, including a virtual machine, 

which were used for developing the benchmark script to ensure that the scripts functioned as 

expected in a variety of environments. 

Table 6 

Testing platforms 

  CPU    

Type Make/Model Cores Threads Memory AES NI 

Laptop Intel i5-4200M 2 4 4 GB True 

Virtual Machine Intel i5-4200M* 1* 1* 1 GB True 

Desktop AMD A8-9600 4 4 4 GB True 

Desktop Intel G4400 2 2 4 GB True 

Desktop Intel 6700K 4 8 16 GB True 

Note. Derived from AMD product resrouce center and Intel product specifications (Intel 

Corporation, 2018; Advanced Micro Devices, Inc., 2018). * Difference from published values 

due to virtualization. 

 

Appendix C contains every detail of the final configuration and remastering process for 

the ArchISO. The process began with obtaining and mounting the Arch Linux ISO, which is 

typically burned to a disc or written to USB as bootable media. Once mounted, the contents of 

the ISO were copied and unpacked with unsquashfs so they were mutable for remastering. The 

script was copied from the host to the ArchISO file system followed by entering that file system 

as root using arch-chroot. The first task in the chroot environment was to change the script 
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permissions to include executable. The next series of steps comprised the installation of the 

dependencies for the script, most importantly dmidecode and hpl. The dmidecode utility is the 

non-benchmark component of the script, which allows for the collection of system information. 

After the completion of the other chroot steps, which are detailed in Appendix C, the 

final tasks involved repackaging the file system and preparing it to be written to USB media. 

First, the new squashfs file system was created using mksquashfs followed by calculating the 

sha512sum of the file system, which is required for the generation of a bootable ISO. The 

volume identifier must also be an exact match, so the isoinfo was used to extract it from the 

original ArchISO file. With those preparatory steps complete, the xorriso tool was used to 

generate the USB-ready, bootable ISO. The ISOs were first tested on the virtual environment in 

Table 6, prior to being written to USB using dd. The order of development for the platform and 

script were reverse, since moving the script to the platform was the first platform step. 

The data collection script served as a wrapper for the benchmark collection instruments 

high performance Linpack (HPL) and Cryptsetup. As both benchmarks run in memory, the 

system component of storage had no impact on the performance results. HPL measures 

performance in terms of floating-point operations per second (FLOPS). It is capable of running 

on systems ranging from single core, single thread to the largest supercomputers. Its prevalence 

in the performance literature made it an ideal choice. The benchmark results expectedly differed 

from the Intel optimized Linpack, as HPL is both double precision and CPU manufacturer 

agnostic. Cryptsetup is a standard Linux utility used for file system encryption. It included a 

benchmark very similar to the TrueCrypt benchmarks which was more popular in the literature 

until it was abruptly discontinued. The collection script also contained the system information 

collection commands and a web connection component, which automatically submitted the 
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results upon completion. As previously stated, the script gathered no personal data. Table 7 

describes each field, including the system details and both benchmarks along with their terms or 

units. 
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Table 7 

Data fields. 

Field Description Units/Format 

Date_time The date and time of the collection Y/m/d H:i:s 

Uuid Universally Unique ID N/A 

System_hash PSK hashed with the Uuid N/A 

Device_ID The serial number of the USB drive N/A 

CPU_model The CPU model name given by lscpu N/A 

CPU_Sig Stepping, model, family N/A 

CPU_arch Architecture, sockets, cores per socket, 

threads per core 

N/A 

Memory Total, used, free MB 

AES_Instructions AES NI present and enabled Boolean; present/not 

AES_Bench The AES benchmark result MB/s 

FLOPS_Bench The FLOPS benchmark result Giga-FLOPS 

 

Appendix D contains the code, with detailed comments for replication or improvements 

upon this study. The script executes automatically upon boot and begins by messaging to the user 

and the construction and assignment of a few variables. It continues to test the Internet 

connection and connection to the collection server; wired DHCP connection is required and 

mentioned in the limitations and in the instructions to potential facilitators. To reduce the chance 

of incorrect results, the script conducted these tests without using ping, in case the network 

connection does not allow ICMP packets. If connectivity fails, the script stops as an automated 
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collection, since is not possible without connectivity. In the case of failure, the facilitators would 

be prompted to check the connection and try again. 

Following the progression of the execution of the collection script, the collection of 

system information occurs first. The USB device identification is collected first using lsblk and 

the known volume identification from the remastering process. No other storage devices are 

accessed or identified. The system’s universally unique identification (UUID) is gathered next. 

The UUID is used to delineate between duplicate configurations and the exact same system. It 

also serves as a key part for validation of the results, to ensure the results actually arrive from the 

collection script and not from another source. 

The collection of the CPU model name, signature components, and architecture 

information follow the UUID. The CPU model name is the descriptive independent variable for 

H2. The stepping, model, and family comprise the signature components; the architecture, 

sockets, cores per socket, and threads per core comprise the architecture information. These 

fields are used to confirm the results are conducted on physical, non-virtual systems. A virtual 

platform would produce inconsistent results for the CPU model name. In the next fields, the 

script collects memory and AES instructions, whichare the descriptive independent variables for 

H3 and H1 respectively. 

With the system information fields complete, the script continues to run the benchmarks 

starting with AES. The CryptSetup AES benchmark is conducted 10 times to produce 10 sample 

results, of which the average is reported. The repetition ensures systems produce similar results 

when retested. Too low a number, such as one, can have inconsistent results since, even on the 

very light weight distro, other system-level processes and events may affect the results. 
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The FLOPS benchmark using HPL is not as straight forward. HPL has numerous possible 

parameters and methods to optimize operation speed (Chen, 2011). For this study, the majority 

of the parameters were static to keep results as consistent as possible within the sample 

population. The problem size, however, varied from system to system as HPL documentation 

provides an equation based on free memory for problem size. Since the script already determined 

the free memory as part of the system information fields, it uses that value here. Additionally, 

HPL requires grid information, which is most applicable to many CPU systems and 

supercomputers; however, the script uses the CPU sockets, cores, and threads per core to form a 

simple grid size. The script uses mpirun to thread and execute the HPL benchmark. Once 

complete, the script parses the output file to obtain the results. 

The last block of the script reports the results to the collection server. It concatenates each 

of the results together into a single string and formats the string for curl. The script then uses curl 

to submit the results to the collection server. As the script finalizes, it reports to the user the 

success or failure of the submission and offers to shut down the system. 

Server Configuration, Collection Script, and Data Organization 

From the submission of the results to the preparation of the data, the collection server is 

the center component of the research design. The detailed configuration is included in Appendix 

A for replication purposes. The collection server is an Amazon web services (AWS) elastic 

compute cloud (EC2) running Linux Amazon machine image (AMI). It is a “micro”-type 

instance with one virtual CPU, one GB memory, and eight GB storage. Although these 

specifications may seem limited, they are more than sufficient for the collection server; the free 

space could fit close to one million results. The configuration of the collection server is straight 

forward. It begins with installing and enabling the httpd and php services. The configuration 

continues with adding a user and giving permissions to the user to allow the results to be written 
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to a data folder. It concludes with the creating of the folder and the transfer of ownership to the 

web service user. 

The collection script on the web server presents a very simple web form, to which the last 

section of the benchmark script uses curl to submit the results. The PHP script and associated 

HTML are included in Appendix B. The HTML is a simple form with a post method on submit 

that invokes the PHP portion. The PHP checks the system hash, which is the hash of the simple 

pre-shared key and the system’s UUID. If the submitted system hash matches the server 

calculated system hash, the contents of the form fields, which are the benchmark script results 

and system specifications, are written to a text file in the data folder. Duplicate reports from the 

same system are appended to the previous results file for that system. The PHP posts a success 

message, which the benchmark script processes to make its announcement to the facilitator. 

The data compilation script parses the files on the collection server and compiles the data 

into a useable spreadsheet format. Appendix F contains the Python code used for this script. The 

process begins by localizing a copy of the server data using secure copy (SCP). Once local, the 

script compiles each result into a row on a spreadsheet. 

Validity 

The validity of the research had three components: the validity of the instruments, the 

method used to validate the instruments, and validations to be applied to the data post collection. 

This section includes the validity considerations for the instruments and a description of the 

validations, which followed data collection. The instruments were both benchmark utilities, high 

performance Linpack (HPL) FLOPS benchmark and the Cryptsetup AES benchmark. The rest of 

the collection methodology, including the web survey, the collection script, and the collection 

web server, did not constitute instruments; rather they were a cohesive means of distributing the 
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instruments, running the benchmarks, and collecting the results. Although, they are not 

instruments, their validity was also ensured. 

The validity of the non-instrument components of the research design was straight 

forward. During the development process, additional outputs from the collection script provided 

a verbose step by step log of the process. The results obtained from the server were verified as 

the same as those displayed by the collection script. Additionally, each of the commands were 

manually tested and compared with the results from the collection server to ensure the entirety of 

the benchmark script, collection server, and retrieval process was functioning as intended and 

valid. 

The nature of benchmark instruments, which by design measure system performance, 

provides a foundation of validity. In contrast to research involving humans, system performance 

is mechanical. As many other FLOPS benchmarks exist, with a wide range of results on a single 

system, the external validity of HPL is largely limited to other HPL-based FLOPS results. 

Although other FLOPS benchmark projects, including SETI@home, have very large sample 

populations, approaching 150,000 in 2018 (University of California, 2018), the HPL-based 

results from this research had little in common with those results. The project results included the 

CPU makes, models, and FLOPS; however, the results were based on the Whetstone benchmark, 

which differs significantly from HPL. Furthermore, manufacturers also use different, highly-

optimizes FLOPS benchmarks to measure their products performance in addition to publishing 

theoretical maximum performance numbers. The choice of HPL related to the attack feasibility 

component of this study. Although criticized as not being the most representative of modern 

workloads, HPL is the most commonly used benchmark for high performance systems like large 
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clusters and super computers, where the greatest capability to complete cryptographic attacks is 

present (Heroux & Dongarra, 2013). 

The post-collection validations sought to identify the cause of outlier results and 

eliminate experimental errors. Although single-socket HPL results were not widely available, the 

prevalence and availability of FLOPS as a measurement of performance provided some external 

validity. If needed, external results could have been leveraged to help identify and eliminate 

inconsistent or erroneous results. Expected causes included temperature throttling and collection 

from within virtual environments; however, unexpected causes would also need to be 

investigated during this process. 

Causes, such as temperature throttling, were a limitation that is partially mitigated by 

external validation. Temperature throttling was also partially mitigated by the instructions to 

facilitators as an identified limitation, as noted in Chapter 1. While the external performance data 

provided by the manufacturers might expectedly be best-case or over optimized, data from 

sources like SETI@home may be considered in conjunction with manufacturer data. Variance 

was expected between the results of the benchmark used by the collection instrument for this 

research, the manufacturer data, and other external sources, but the variance across similar 

systems in the sample was expected to be limited. All outliers were fully investigated, when 

comparing the level of variance between those data points. 

Reliability 

The reliability of the collection instruments, HPL and CryptSetup AES benchmark, was 

already largely determined through their prominence in research; however, the implementation 

of the benchmark script further ensured that repeated results were the same. HPL is recognized 

worldwide as a standard benchmark, which by definition produces repeatedly reliable results. 

Arguments against the reliability of HPL are sometimes made based on the highly tunable nature 
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of the parameters for the benchmark. To eliminate the variables of configuration over-

optimization, standard, single-socket parameters were selected. The fields that do require 

customization, problem size and grid, were gathered from each system as the HPL 

documentation requires those parameters to be based on system memory and threads. The results 

from CryptSetup vary more than HPL. To limit the variance, the benchmark script took 10 

samples and reported the average. The instrumentation section contains the details of this 

process. 

The research design included the collection of extra system fields, which are not 

descriptive variables, but instead were used to determine atypical configurations, which were 

likely to produce invalid results. For example, a modern CPU with the AES instruction set 

disabled, hyperthreading/hyper transport disabled, or running the script in a virtual environment 

would expectedly produce results that differ from other CPUs of the same make and model. 

Situations exist where these configurations might be warranted, but they are by no means 

standard and would produce results outside of the norm and outside of the scope of this study. 

Table 7 contains in the instrumentation sections each of the fields and their descriptions. 

The results themselves may demonstrate reliability in two ways. The first is repeat 

collection from the same system. During the testing and development of the benchmark and 

collection scripts, many duplicate results were amassed. Results from the same iteration of the 

design process were nearly identical. Duplicate results could also be present during the data 

collection portion of this research. Additionally, systems with identical hardware configurations 

could further the reliability or help to identify anomalous results. For example, if one of three 

different systems with the same model CPU, amount of memory, and presence of AES 

instructions has significantly different performance; the unexpected difference would prompt 



 

83 

further investigation as a potential experimental error. Conversely, if all three of those systems 

had similar results, albeit some degree of difference was expected, the similarities would 

reinforce the results. Since many system configurations are commonplace, the latter, reinforcing 

example was expected to occur. 

Data Collection 

Once approved to begin data collection, a few final preparatory steps were conducted 

before beginning the instrumentation and collection process. The preparation involved the 

facilitator site, collection server, and final verifications of the construct. Both the facilitator site 

and collection server were brought online during development and testing phase; however, if 

they were not, they would been brought online at this time. The collection server contained a 

variety of test data results, artifacts of development process. Those testing and development 

results were archived to ensure they remained separate from the results to be included in the 

study. As a form of final verification, the entire data collection process was conducted following 

the exact steps that the facilitators would use on locally available systems, including the testing 

platforms from Table 6, but excluding the virtual machine. 

The process depicted in Figure 5 began with the distribution of the interest email 

containing the link to the facilitator site. The initial audience included professional colleagues 

and personal acquaintances who expressed interest in the research; however, the design of the 

study would have allowed for expansion as necessary during the data analysis. Once the interest 

email was sent, the duplication and verification of USB drives with the modified ArchISO and 

the collection script began to meet the anticipated facilitator audience. As the requests were 

received for in person and by mail receipt of the USB drives, the requests were promptly 

fulfilled. The download method was immediate and did not require any action or intervention for 
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the distribution of the collection device. In all cases of USB drive receipt, assistance was made 

available for facilitators to overcome any problems they encountered. 

The facilitators received the USB drives with instructions describing booting to a Linux 

USB device. As the benchmarks, system data collection, and upload to the collection server were 

all automated in the instrumentation and collection design, the researcher remained in the support 

role, being available to answer questions. The researcher addressed any issues with the 

instrumentation and collection design but only modified the design if it precluded an entire 

category of systems. At regular intervals, the researcher connected to the collection server to 

check for results, retrieved the results using SCP, and organized the results into a spreadsheet 

using the Python script prior to including those results in the data analysis. 

Data Analysis 

The data analysis process began with the data collection. As the collection server 

received results, the results were periodically retrieved and validated followed by initial tests 

aligned with H0, H2, and H3. As sample size was not set at a specific number of systems, the 

results of the periodic tests helped to determine length of the data collection. H0 was tested using 

linear regression with the HPL FLOPS result as the independent variable and the CryptSetup 

AES benchmark result as the dependent variable. The study looked for significant two-tailed p-

values of less than 0.001 for the presence of a relationship and a correlation of determination 

above 0.9 for that relationship to be considered strong. If a strong relationship was present, 

further tests included a predicted correlation of determination test to determine the viability of 

using FLOPS as a predictor of AES performance. 

The initial tests for H1, H2, and H3 were conducted using multiple regression to 

determine the developing effects of the AES instructions, CPU, and memory. The same 

confidence levels were used as H0 with the aforementioned components as descriptive, 
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independent variables. H1 was expected to be accepted since the 2010 introduction of AES 

instructions greatly improved AES performance (Gueron, 2010). However, it was possible that 

the null would not be rejected due to all CPUs in the sample having AES instructions present. 

The initial tests ended with the collection and were repeated with the final set of results after the 

validation process. 

Ethical Considerations 

The study and the associated data collection did not involve participants in the traditional 

sense. The very limited human participation did not involve humans as the subjects of the 

research. Rather, the human involvement in the study was in the role of facilitation. Although the 

concerns addressed in the Belmont Report are primarily applicable for research with human 

subjects, the components of informed consent still have application to this study. Participating 

individuals and organizations received detailed information about every component of the 

facilitation process. This information contained many of the same core components from the 

Belmont Report, including information, comprehension, and voluntariness (U.S. Department of 

Health & Human Services, 1979). 

Additional considerations for privacy and security were made. No personal information 

was gathered and local storage was never accessed by the benchmark collection script. The 

participating individuals and organizations had access to the source code of the benchmark script 

and configuration information of the Arch ISO Linux. The only means of tracking the number of 

systems surveys completed by an individual or organization was through the automatic 

submission of the USB drive serial number as part of the results submission. 

The USB drive serial numbers were recorded with the associated individual or 

organization as an additional means of verification but also to allow for recognition. If the 

individual or organization desired recognition for their contribution to the study, they were able 
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to receive recognition since their system surveys contained the serial number of the USB drive 

that was sent to them. Individuals and organizations participating in the collection process also 

received information pertaining to the USB boot process. The information included instructions 

on how to boot to the USB media, a disclaimer about changing BIOS settings, and contact 

information in case of emergency. While one-time boot menus and booting to USB media does 

not pose a direct risk, user unfamiliarity with the BIOS or boot process could have introduced 

risk which was reduced through clarity of the documentation and availability of assistance during 

the data collection process, in addition to requesting that the test not be run on any operational or 

critical systems. 

Summary of Chapter Three 

This chapter covered method and supporting information. It tied in the research traditions 

found in the literature with the conceptual framework. It restated the research questions and 

hypotheses to ensure stand-alone value. This chapter used the research design as a blueprint for 

the sample selection criteria, process, and size. It selected the statistic test that was used to 

answer the research questions. It also detailed the collection mechanism, covered data analysis, 

and addressed the unique ethical considerations of the study. This chapter included enough 

details throughout for the study to be replicated in its entirety. 
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CHAPTER FOUR 

This chapter covers the execution of the collection process from the receipt of 

Institutional Review Board approval through the analysis of the resulting data. It begins with 

discrete descriptive statistics pertaining to the facilitators. The limitations and validating controls 

precede the descriptive statistics and observations on each of the data points detailed in Chapter 

3. It continues with the presentation of the results and the details of the statistics aligned with 

each of the research questions and hypotheses. This chapter concludes with a presentation of the 

findings and a discussion of the implications for the field. 

Descriptive Statistics 

The facilitator solicitation process began as soon as the Institutional Review Board 

approved the research. During the one-month collection period, 20 facilitators completed the 

Google Form in Appendix E acknowledging their role as facilitators and agreeing to participate. 

Of the 20, 6 had their collection devices shipped, 3 downloaded the ISO preparing their own 

USB devices, and 11 picked up the package locally. Two facilitators encountered issues with 

systems that had secure boot enabled or complicated BIOS menus and did not provide results. In 

total, 14 of the facilitators provided at least one result. 

The one-month collection period yielded 44 results. Two of the results appeared to fall 

into the previously identified temperature limitation. The temperature limitation impacts the 

results when throttling occurs due to overheating. Result number 28 and result number 38 

appeared to have been affected by temperature throttling. The internal control for the limitation, 

similar or identical systems, as computers, maintaining similar performance on identical tasks, 

helped eliminate one of these results. Result number 28 had identical specifics as two other 

samples. The similarity in the other results and lack of similarity with the overheating results 
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lead to the discarding of result 28. Table 8 depicts these similarities and differences given 

systems with the specifications: Intel Core i7-4940MX, 16GB RAM, and AES instructions. 

Table 8 

Temperature throttled result 

Number Status AES GFLOP Ratio 

24 Normal 2485.12 12.24 203.0327 

28 Throttled 848.54 4.976 170.5265 

29 Normal 2487.65 12.1 205.5909 

 

Despite temperature throttling, the ratio was not as affected as it might have been. The 

throttling appeared to have a similar effect on both the benchmarks. The second temperature 

throttled result lead to the discovery of an unanticipated limitation, which was introduced by the 

sequential nature of the benchmarks in the collection script. The script runs the AES benchmark 

followed by the FLOP benchmark. Despite the very limited duration of the collection script, 

requiring less than five minutes from power on to shut down on the test platforms, throttling 

occurred during or more heavily during the second of the two benchmarks. The partial throttling 

appears to have skewed result 38. Unfortunately, this result did not have identically configured 

systems in the sample to compare it to. Since the results of AES appear normal for that 

generation of processor, yet the FLOP benchmark is on par with the CPUs five years older, this 

result was also not included. Both the throttled results were on mobile scale processors, which 

are known to throttle more frequently and aggressively than desktops. 

Several examples in the data helped to reinforce the nature of computer systems, 

maintaining the same performance, as a valid assumption. One example was the identical 

desktop configurations, which produced results 14 and 15. The configurations were identical – 
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Intel i5-6500, 8GB RAM, and AES instructions – but the desktops were discrete, different 

systems. The results in Table 9 demonstrate the minimal, 0.16% difference between these 

identically configured systems. 

Table 9 

Identical system configuration results 

Number AES GFLOP Ratio 

14 2720.82 11.63 233.9484 

15 2722.88 11.62 234.327 

 

The largest variations in identically configured systems were found on the Intel Core i7-

6820HQ, 16GB RAM, and AES instructions: True. Table 10 depicts the differences. 

Table 10 

Identical system configuration largest variations 

Number AES GFLOP Ratio 

5 2699.43 11.18 241.4517 

42 2624 11.4 230.1754 

43 2703.61 10.32 261.9777 

 

The benchmarks were also run twice on single systems – results 9 and 30. The system 

was tested by separate facilitators working on the same group of systems. The configuration was 

Intel Core i7-6820HK, 32GB RAM, and AES instructions: True. Table 11 depicts the again 

minimal 0.14% difference. 

Table 11 

Same system results 

Number AES GFLOP Ratio 
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9 2705.37 12.13 223.0313 

30 2703.86 12.14 222.7232 

 

The categories, which relate to R2, have rich descriptive statistics. The first category 

aligns with H1, which considered the effects of AES instructions on the level of correlation. 

Prior to collection, it was unknown whether any systems without AES instructions would be 

present in the results. Since 2011, AES instructions have been included in most x86_64 CPUs 

(Gueron, 2010). Despite the prevalence of AES instructions on CPUs, systems without AES 

instructions were represented in the sample as depicted in Table 12. Interestingly, one of the 

systems without AES instructions, result 6, had a CPU, the Intel Core i5-3210M, which per 

specification had AES instructions available. This difference may have indicated that the 

instructions were either turned off in the BIOS or was due to a variant of the CPU without 

instructions. 

Table 12 

AES instructions 

Systems without AES instructions Systems with AES instructions 

5 38 

 

H2 related to the processor. Variations between manufacturer and scale, such as AMD 

versus Intel and mobile versus desktop, were expected and present in the sample. Although 

AMD was underrepresented, the results were not noticeably different than Intel, but this claim 

was further investigated as part of the statistic test aligned with R2. Table 13 depicts the 

distribution between CPU manufacturers in the sample. 
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Table 13 

CPU manufacturer 

AMD Intel 

4 39 

 

In terms of scale, both general populations, mobile and desktop, were represented in the 

sample data as depicted in Table 14. 

Table 14 

CPU scale 

Desktop Mobile 

19 24 

 

H3 relateds to the amount of memory present in the system. A variety of amounts were 

present. The 6 GB amount was underrepresented, but is also uncommon as memory is 

manufactured in powers of two. Table 15 depicts the memory amounts. 

Table 15 

Memory amounts 

4 GB 6 GB 8 GB 16 GB 32 GB 

5 2 12 19 5 

    

Presentation of the Data 

As the results arrived, they were compiled using the data compilation script described in 

Chapter 3 and found in Appendix G. Appendix H contains the resulting, raw data. The date time 

field was only included to assist with validations and was not included after this step. Fields 

including the system hash, UUID, device ID and CPU signature were used to validate the data, 
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find results from the same systems, and confirm that no results originated from virtual machines. 

The previous section covered the observations and validation related to those fields. Since none 

of the results originated from virtual machines and all of the device IDs were valid, these fields 

were not included in subsequent tables as they lack statistical relevance. Appendix I contains the 

remaining data, including the numeric AES and GFLOP data, in addition to the data used to form 

categories for R2. Figure 6 depicts the distribution of the numeric portion in the results. 

 

Figure 6. Results 

The fields AES instructions, CPU, and memory are not included in the numeric portion 

but are required to answer R2. Appendix J contains the encoded results, where the CPU make 

and model are replaced with encoded values for manufacturer and scale. The AES instruction 

encoding is 0 for false and 1 for true. CPU is encoded 0 for AMD and 1 for Intel. The scale is 0 
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for mobile and 1 for desktop. Finally, memory is in order of the amount of memory present 

where 0 represents 4 GB, 1: 6GB, 2: 8GB, 3: 16 GB, and 4: 32 GB. 

Presentation and Discussion of Findings 

The first test, linear regression, examined the relationship between the traditional 

floating-point benchmarks and the AES benchmarks for the entire sample. Figure 7 depicts the 

results with a fit line. The data forms a recognizable pattern. The two-tailed p-value of 

significantly less than 0.001 (1.194e-8) indicates a statistically significant relationship between 

the AES and FLOP benchmarks. However, the correlation coefficient of 0.7486 and the resulting 

coefficient of determination of 0.5604 indicate that the relationship is weak. Given the inclusion 

of all categories of systems, especially those with and without AES instructions, the relationship 

is expectedly weak. The resulting equation in Figure 7 is valid for the sample but lacks precision. 
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Figure 7. Results with fit line 

Notably, five of the six lowest outliers, those less than 500 MB/s AES, did not have AES 

instructions. 

The strong p-value leads to the rejection of the null hypothesis for H00, where no 

statistically significant relationship is present, and the acceptance of the alternate H0A, where a 

statistically significant relationship is present. The first research question, how correlated are the 

results is answered in the relationship and coefficient of determination depicted in following 

equation. 

𝑦 = 151.3𝑥 + 720.35 

𝑟2 = 0.5604 
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The statistic tests for the second research question, how the hardware configurations 

effect the correlation between the benchmarks, were more involved. The multiple regression 

included the presence or absence of AES instructions, the CPU scale of mobile versus desktop, 

the CPU manufacturer, and amount of memory. The significance-F for the multiple regression is 

much stronger than that of the linear regression at 1.38E-15. Furthermore, the correlation 

coefficient of 0.9382 and resulting coefficient of determination of 0.8801 are much stronger than 

the results of the linear regression test used for R1. The effect of AES instructions is the 

strongest with a P-value of 7.46E-09. This impact was already observed in the Figure 7, as five 

of the six lowest points lacked AES instructions, but now confirmed by the multiple regression. 

CPU manufacturer is next with a P-value of 0.006924. Memory and scale are insignificant with 

0.056246 and 0.643819 for P-values respectively. 

These results led to conclusions for the hypotheses for research question two. For 

hypothesis one, the effect of AES instructions on the correlations was the strongest, which led to 

the rejection of the null hypothesis H10 and the acceptance of the alternate H1A. Neither 

component of CPU, type nor scale, had significant effect on the relationship so the null 

hypothesis H20 could not be rejected. Similarly, the amount of memory did not have a significant 

impact so H30 could not be rejected either. 

Summary of Chapter 

This chapter presented the results from the collection process and the analysis of those 

results in the context of the research questions and hypotheses. The chapter began with a review 

of the collection process, which was followed by an outline of the facilitators and detailed 

descriptive statistics for the sample population. The descriptive statistics encompassed controls 

for validity. CPUs without AES instruction sets were expectedly limited and CPUs manufactured 
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by AMD were underrepresented, but the results data set was varied and proved useful otherwise. 

The chapter continued with the presentation of the results from the complete sample population, 

which formed a recognizable pattern, and was followed by the results as they pertained to each 

research question. The first research question utilized linear regression and found a weak 

relationship between AES and floating-point performance. The second research question utilized 

multiple regression and found a much stronger relationship where the presence or absence of 

AES instructions had the greatest impact. This chapter concluded with a presentation of the 

subset of the results with the greatest application as a predictive model. 
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CHAPTER FIVE 

This dissertation examined cryptographic attack feasibility against the advanced 

encryption standard (AES) using a performance-based approach. The study was quantitative in 

nature utilizing both linear and multiple regression. The design involved the facilitated execution 

of benchmark pairs consisting of floating-point operations per second (FLOPS) and AES 

throughput. The results showed statistically significant correlations between floating point and 

AES performance. The correlations found through linear regression were significant but 

expectedly weak for the entire sample population given the inclusion of central processing units 

(CPUs) both with and without AES instructions. 

The multiple regression showed that the presence or absence of AES instructions had the 

greatest impact on the strength of the relationship. The rest of the components tested by multiple 

regression had impacts, but none of them qualified as significant. The manufacturer of the CPU 

had the largest of these impacts. Since the tests ran in memory, the amount of memory was 

considered, but did not have a significant impact. Scale, mobile versus desktop, had a 

surprisingly small impact as well. The impact of AES instructions was expected and, since most 

modern CPUs have these hardware instructions, the subset of the results that excluded the older 

CPUs without AES instructions were the most applicable for projecting the capability of future 

systems. 

Findings and Conclusions 

The experiment involved the facilitated collection of system specifications and 

benchmark pairs. It took place over the span of a month where 14 facilitators provided 

benchmark pairs and system specifications from 44 systems. The process involved booting their 

systems to provided USB drives, containing the collection script, which collected system 

specifications and ran both AES and FLOPS benchmarks. The specifications involved the details 



 

98 

of the CPU, including AES instructions, amount of memory, and a unique identifier for each 

system in the sample. Before completion, the collection script reported the results to the web 

server used for this research. 

Upon completion of the collection period, compilation and validation were followed by 

statistical analysis. Linear regression indicated a present albeit weak relationship for the entire 

sample population. As the Intel white paper on AES new instructions indicated, it was 

immediately evident in the results that the presence of AES instructions greatly influenced the 

ratio between FLOPS and AES performance (Gueron, 2010). Multiple regression confirmed that 

the largest factor in FLOPS as a predictor for AES performance is the presence or absence of 

AES instructions. The CPU manufacturer, CPU scale, and amount of memory did not have 

statistically significant impact on the results. 

The relationships present in the results indicate a range of expected performance ratios on 

other platforms and including near future systems. Since the design of the AES brute force is 

mode agnostic and incredibly parallelizable, predicting AES performance at scale has universal 

implications for attack feasibility. Despite the results being a moderate range, they are applicable 

to form a lower and upper bound as a starting point for such approximations. 

Limitations of the Study 

The expected limitations were present in the study. Additionally, a few limitations were 

discovered in the process. The anticipated limitations relating to the element human of the 

facilitation process and temperature throttling were observed during the collection process. The 

mitigation technique eliminated two of the results that were erroneous from throttling due to 

overheating. Difficulty with the BIOS settings component of the facilitation process also caused 

several of the facilitators to be unable to provide system benchmark results. The mitigation for 

this limitation was availability for assistance, however, the mitigation was only partly successful; 
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a few facilitators were still unable to boot to the USB device. A related but unforeseen limitation 

was present in the collection mechanism; the sequential order of the benchmarks appeared to 

impact at least one result and should be further mitigated in follow-on research. 

The delimitations, which constrained the scope of the study to a manageable level, also 

limited the external validity of the results. Only x86_64 CPUs were included, leaving the 

potential of ARM and GPU compute unassessed by this study. Unlike manufacturer optimized 

variants of Linpack, which expectedly have significant performance benefits for their respective 

CPUs, the use of high-performance Linpack (HPL) on single systems provides a stable 

benchmark across CPU manufacturers. HPL is not as common on individual systems, so relating 

the results to those already readily available for individual CPUs is not possible. HPL is the 

standard for the high-performance computing field and supercomputers where the concentrated 

performance potential will allow attacks to approach the feasible point first. 

Implications for Practice 

Since the presence of AES instructions had significant effect on the relationship between 

FLOPS and AES performance in addition to AES instructions being present in most modern 

CPUs, the subset of the results with AES instructions are most useful for projecting attack 

performance potential. The following equation depicts the results of the linear regression fit line. 

𝑦 = 90.425𝑥 + 1543.9 

𝑟2 = 0.5643 

The analysis of the average ratio of AES throughput in MB/s to Giga-FLOPS of 

268.6048 for systems with AES instructions is another useful result for the study. The above 

equation or average could be quickly applied to published performance measurements of the top 

supercomputers to provide rough estimates of their attack potential. Similarly, they could be 

applied to a botnet of known size or computational capability in addition to a variety of 
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theoretical systems or configurations. Lastly as a predictive measure, this study or the results of 

other follow-on studies might allow for projection of intersection power between increasing 

global compute availability and AES attack requirements. 

Recommendations for Future Research 

This dissertation may serve as a foundation for future research on performance-based 

attack feasibility. The lessons learned and limitations encountered in the process of planning and 

conducting this study may allow a future study with a revised collection construct to improve 

upon the accuracy of the results. Additional computational platforms such as graphics processing 

units (GPU) and ARM may also be the most fitting future topics, but the potential of application 

specific integrated circuits (ASICs) may warrant additional research as well. Future research may 

also benefit from employing custom AES benchmarks to emulate the different components of a 

brute force attack rather than the single component emulated in this study. In the predictive 

sense, the results of this study may serve as a starting point for estimating the attack potential of 

high-performance systems, including supercomputers and distributed systems. 

GPUs lack AES hardware instructions. However, GPUs excel at highly parallel tasks and 

the designs of many AES attacks align well with this pattern. Furthermore, GPUs make up a 

significant portion of global compute. These platform advantages of GPUs may warrant follow-

on research to assess their attack potential. Research on the attack capability of GPUs may also 

align with the work done by Biryukov and Großschädl (2012) on application-specific, GPU-like 

hardware. Although their work is an excellent addition to the field, the changes in computing 

performance since 2012 may warrant an updated assessment of the attack potential of an 

updated, theoretical AES supercomputer. Methods in the literature on performance measurement 

and prediction would support a similar study for projecting the expected capability of GPUs 

(Madougou, Varbanescu, Laat, & Nieuwpoort, 2016; Phillips & Fatica, 2014). In addition to 



 

101 

GPUs, the ARM architecture may deserve a separate but similar study. ARM is continuing to 

gain popularity and now includes AES instructions on many models. Unlike GPUs, the 

prevalence of ARM is in the sheer number of devices rather than the greater potential for each 

device. 

The attack feasibility element of this research may augment current methods or serve as 

another technique for key length recommendations. As the computing environment continues to 

evolve, the scaling of this research and use of the results as a predictive mechanism when 

combined with the rate of change of available compute may be significant. This potential 

application and future study align with the National Institute of Standards and Technology 

(NIST) recommendations for key lengths and transitions (Barker & Dang, 2015; Barker & 

Roginsky, 2011; Barker & Roginsky, 2015). 

Conclusion 

This dissertation focused on AES performance, its relationship to general purpose 

performance, and what that relationship could mean in terms of attack feasibility. The topic was 

chosen to augment the field of cryptographic attack feasibility by providing an additional method 

and results. The results demonstrated a significant relationship between general performance and 

AES performance. Although the relationship was not overly strong, the results do provide a 

range of expected performance, which may help improve upon the community’s capability to 

predict attack feasibility for AES key lengths. Finally, the study may serve as a foundation for 

future attack feasibility research and additional methods. 
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APPENDIX A 

Web Server Configuration 

The configuration is in bash script format to enhance its clarity, but the it is not intended 

to be executed script as it lacks error checking.  Instead, the commands should be entered 

individually to confirm the success of each command. 

 

  

#Distro: Amazon Linux AMI 2016.09.0 (HVM), SSD Volume, 64-bit 

#Type: t2.micro variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon, 1 GiB RAM 

 

#Setup Commands: 

  #install apache and php, run apache with system start, confirm config 

  sudo yum update -y # -y to skip additional prompts 

  sudo yum install -y httpd24 php56 

  sudo service httpd start 

  sudo chkconfig httpd on 

  chkconfig --list httpd # should show 2, 3, 4, 5 

 

  #make group, add user, confirm config 

  sudo groupadd www 

  sudo usermod -a -G www ec2-user 

  logout 

  groups 

 

  #set owner, set permissions, recurse permissions, confirm config 

  sudo chown -R root:www /var/www 

  sudo chmod 2775 /var/www 

  find /var/www -type d -exec sudo chmod 2775 {} \; 

  find /var/www -type f -exec sudo chmod 0664 {} \; 

  ls -al /var/www 

   

  #make the data directory, set permissions, confirm config 

  sudo mkdir /srv/data 

  sudo chown apache:apache /srv/data 

  sudo chmod 777 /srv/data 

  ls -al /srv/data 



 

110 

APPENDIX B 

Web Server Data Collection Script 

  

<?php 

  //simple pre-shared key, used for validity check 

  $psk = md5('What a journey'); 

  //date time for timestamps 

  date_default_timezone_set("America/New_York"); 

  //if sumbit is posted 

  if ($_SERVER["REQUEST_METHOD"] == "POST") { 

    //check if the system_hash is valid 

    if (md5($psk.$_POST["uuid"]) == $_POST["system_hash"]) { 

      //open the file for the system_hash, create if not found 

      $results = fopen("/srv/data/".$_POST["system_hash"].".txt", "a"); 

      //write the results 

      fwrite($results, "date_time ".date("Y/m/d H:i:s")."\n");  

      fwrite($results, "system_hash ".$_POST["system_hash"]."\n"); 

      fwrite($results, "uuid ".$_POST["uuid"]."\n"); 

      fwrite($results, "device_id ".$_POST["device_id"]."\n"); 

      fwrite($results, "cpu_model ".$_POST["cpu_model"]."\n"); 

      fwrite($results, "cpu_sig ".$_POST["cpu_sig"]."\n"); 

      fwrite($results, "cpu_arch ".$_POST["cpu_arch"]."\n"); 

      fwrite($results, "memory ".$_POST["memory"]."\n"); 

      fwrite($results, "aes_inst ".$_POST["aes_inst"]."\n"); 

      fwrite($results, "aes_bench ".$_POST["aes_bench"]."\n"); 

      fwrite($results, "flops_bench ".$_POST["flops_bench"]."\n"); 

      //separate successive results from the same system 

      fwrite($results, $result . "\n\n"); 

      //close the file, announce success 

      fclose($results); 

      echo "Submit successful!"; 

    } else { 

      echo "Submit failed, invalid system_hash."; 

    } 

  } 

?> 

<!DOCTYPE html> 

<html> 

  <body> 

    <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>"> 

      system_hash <input type="text" name="system_hash"><br> 

      uuid <input type="text" name="uuid"><br> 

      device_id <input type="text" name="device_id"><br> 

      cpu_model <input type="text" name="cpu_model"><br> 

      cpu_sig <input type="text" name="cpu_sig"><br> 

      cpu_arch <input type="text" name="cpu_arch"><br> 

      memory <input type="text" name="memory"><br> 

      aes_inst <input type="text" name="aes_inst"><br> 

      aes_bench <input type="text" name="aes_bench"><br> 

      flops_bench <input type="text" name="flops_bench"><br> 

      <input type="submit"> 

    </form> 

  </body> 

</html> 
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APPENDIX C 

USB Linux Configuration 

 

#Author: Daniel Hawthorne 

 

#Distro: Arch Linux | Release: 2018.05.01 | Kernel: 4.16.5 

#Media: SanDisk Cruzer Blade CZ50 8 GB USB 2.0 

#Config: ArchISO x86_64 

 

#Description: This document contains the steps used to modify the live 

  #ArchISO to include the packages and scripts necessary for use in this 

  #research. 

 

#References: 

  #https://wiki.archlinux.org/index.php/Archiso 

  #https://wiki.archlinux.org/index.php/Remastering_the_Install_ISO 

 

#Note: These instructions are from an Arch Linux-based Distro.  They are 

  #written as a bash script, but are not tested in that form.  Rather they 

  #are designed to be executed sequentially. 

 

#Step 1: Confirm required packages synced 

  sudo pacman -S --needed cdrtools squashfs-tools arch-install-scripts \ 

    libisoburn syslinux 

 

#Step 2: Get the ISO 

  #Download and verify the ISO from you choice of mirrors at: 

  #https://archlinux.org/download/ 

  #will move to below when a new version is released: 

  #https://archive.archlinux.org/iso/ 

 

#Step 3: Mount the ISO, copy ISO contents, unmount the ISO, clean up mnt 

 

  sudo mkdir /mnt/archiso 

  sudo mount -t iso9660 -o loop \ 

    ~/Downloads/archlinux-2018.05.01-x86_64.iso /mnt/archiso 

  #make sure ~/customiso does not already exist: 

    sudo rm -r ~/customiso 

  sudo cp -a /mnt/archiso ~/customiso 

  sudo umount /mnt/archiso 

  sudo rm -r /mnt/archiso 
 

#Step 4: Unpack the file system 

  cd ~/customiso/arch/x86_64 

  sudo unsquashfs airootfs.sfs 

 

#Step 5: Move the benchmark script to the target filesystem 

  sudo cp ~/Downloads/bench.sh \ 

    ~/customiso/arch/x86_64/squashfs-root/etc/profile.d 

 

#Step 6: Modify the custom ISO as root 

  #enter ISO filesystem as root 

  sudo arch-chroot squashfs-root /bin/bash 

 

  #update the permissions of the benchmark script 

  chmod +x /etc/profile.d/bench.sh 
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  #add a root password so pkgbuild will work 

  passwd root #root 

 

  #prepare the package manager 

  pacman-key --init 

  pacman-key --populate archlinux 

 

  #add repo for yaourt 

  echo -e "\n[archlinuxfr]\nSigLevel = Never\n" >> /etc/pacman.conf 

  echo -e "Server = http://repo.archlinux.fr/\$arch" >> /etc/pacman.conf 

 

  #sync package database 

  pacman -Sy 

 

  #may need to remove checkspace if error when getting packages 

  nano /etc/pacman.conf 

  #comment out CheckSpace 

 

  #get packages 

  pacman -S dmidecode binutils yaourt fakeroot make patch 

  sudo -u nobody yaourt -S hpl #follow prompts to build/install 

 

  #update the package list 

  LANG=C pacman -Sl | \ 

    awk '/\[installed\]$/ {print $1 "/" $2 "-" $3}' > /pkglist.txt 

 

  #clean package database 

  pacman -Scc 

 

  #clean bash history and exit chroot 

  cat /dev/null > ~/.bash_history && history -c && exit 

 

#Step 7: Create New filesystem 

  #move package list 

  sudo mv squashfs-root/pkglist.txt ~/customiso/arch/pkglist.x86_64.txt 

 

  #remove old, make new, clean up 

  sudo rm airootfs.sfs 

  sudo mksquashfs squashfs-root/ airootfs.sfs 

  sudo rm -r squashfs-root/ 

  sudo sha512sum airootfs.sfs | sudo tee airootfs.sha512 
 

#Step 8: Make the new ISO 

  cd ~ 

  #get iso label 

  iso_label=$(isoinfo -i ~/Downloads/archlinux-2018.05.01-x86_64.iso -d \ 

    | grep 'Volume id:' | cut -d' ' -f3) 
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  #make the image (USB ready) 

  sudo xorriso -as mkisofs \ 

    -iso-level 3 \ 

    -full-iso9660-filenames \ 

    -volid "${iso_label}" \ 

    -eltorito-boot /isolinux/isolinux.bin \ 

    -eltorito-catalog /isolinux/boot.cat \ 

    -no-emul-boot -boot-load-size 4 -boot-info-table \ 

    -isohybrid-mbr ~/customiso/isolinux/isohdpfx.bin \ 

    -output ~/arch-custom.iso \ 

    ~/customiso 

 

  #test with virtual machine, if desired 

 

#Step 9: Write the custom ISO (repeat as necessary): 

  sudo fdisk -l #determine usb disk label 

  sudo dd bs=4M if=~/arch-custom.iso of=/dev/sdb status=progress 
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APPENDIX D 

Benchmark Script 

 

#!/bin/bash 

 

#Author: Daniel Hawthorne 

 

echo -e "\nBenchmark script starting in 10 seconds." 

echo -e "Press Ctrl+C to exit to Terminal.\n" 

 

sleep 10 

echo "Script started!" 

echo -n "Setting up environment. "; sleep 1 

 

test_url="http://www.google.com" 

#collection server url, may change if taken offline 

collection_server="http://ec2-107-21-89-87.compute-1.amazonaws.com" 

#psk for validity check 

psk=$(echo -n 'What a journey' | md5sum | awk '{print $1}') 

#usb device_id 

device_id=$(lsblk -d -o name,label,serial | \ 

  grep ARCH_201805 -m 1 | awk '{print $3}') 

 

#check the connection 

echo -ne "Done!\nChecking connection. "; sleep 1 

conn=$(curl -s -I --retry 5 --retry-connrefused --url $test_url) 

 

if [[ $conn = *"OK"* ]]; then 

 

  echo -ne "Success!\nChecking results server. "; sleep 1 

  rsc=$(curl -s -I --retry 5 --retry-connrefused --url $collection_server) 

 

  if [[ $rsc = *"OK"* ]]; then 

    echo -ne "Success!\nGathering system info. "; sleep 1 

    #uuid 

    uuid=$(sudo dmidecode | grep -i 'uuid' | awk '{print $2}' |\ 

      tr '[:upper:]' '[:lower:]') 

    #system_hash 

    system_hash=$(echo -n $psk$uuid | md5sum | awk '{print $1}') 

    #cpu_model (model name) 

    cpu_model=$(lscpu | grep -i 'model name' |\ 

      awk '{print substr($0, index($0,$3))}' | sed -e 's/ /_/g') 

    #cpu_sig (stepping, model, family) 

    cpu_sig=$(echo -n $(lscpu | grep -i 'stepping' | awk '{print $2}')"_"\ 

      $(lscpu | grep -i 'model' | grep -v 'name' | awk '{print $2}')"_"\ 

      $(lscpu | grep -i 'family' | awk '{print $3}')) 

    #cpu_arch (architecture, sockets, cores per socket, threads per core) 

    arch=$(lscpu | grep -i 'architecture' | awk '{print $2}') 

    sockets=$(lscpu | grep -i 'socket(s)' | awk '{print $2}') 

    cores=$(lscpu | grep -i 'core(s) per socket' | awk '{print $4}') 

    threads=$(lscpu | grep -i 'thread(s) per core' | awk '{print $4}') 

    cpu_arch=$(echo $arch"_"$sockets"_"$cores"_"$threads) 
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    #memory (used, free, total in megabytes) 

    unalias free 2> /dev/null 

    memory=$(free -m | grep -i 'mem'  | awk '{print $3 "_" $4 "_" $2}') 

    #aes_inst 

    if [ $(lscpu | grep -ci aes) -ge 1 ];\ 

      then aes_inst=true; else aes_inst=false; fi 

    #aes_bench (in MiB/s [source review confirmed]) 

    aes_bench=0 

    aes_bench_count=10 

    echo -ne "Done!\nRunning AES benchmarks. " 

    for ((loop=1;loop<=$aes_bench_count;loop++)); do 

      aes_bench_next=$(cryptsetup benchmark --cipher aes |\ 

        grep aes | awk -F' ' '{print $5}') 

      aes_bench=$(bc <<< "scale=2; $aes_bench+$aes_bench_next") 

    done; sleep 2 

    #divide by number of tests 

    aes_bench=$(bc <<< "scale=2; $aes_bench/$aes_bench_count") 

 

    #flops_bench setup 

    echo -ne "Done!\nRunning FLOPS benchmark. " 

 

    #size_dimensions=sqrt((free memory in bytes * 0.05) / 8) 

    free_mem=$(free -b | grep -i 'mem' | awk '{print $4}') 

    use_mem=$(bc <<< "scale=2; $free_mem*0.05") 

    prob_size=$(bc <<< "scale=0; sqrt($use_mem/8)") 

 

    #prepare the config file 

    #reference: www.netlib.org/benchmark/hpl/tuning.html 

    #           www.netlib.org/benchmark/hpl/faqs.html 

    line1_2="config\nfile\n" #unused 

    line3_4="HPL.out\n6\n" #output file, type 

    line5_6="1\n$prob_size\n" #num prob sizes, prob size(s) 

    line7_8="1\n16\n" #num block sizes, block size(s) 

    line9="0\n" #process mapping (0 row-major, 1 column-major) 

    line10_12="1\n$(($sockets*$threads))\n$cores\n" #num grids, P, Q 

    line13="16.0\n" #residual threshold 

    line14_21="1\n2\n1\n4\n1\n2\n1\n1\n" 

    line22_23="1\n1\n" #num broadcast, broadcast type [0..5] 

    line24_25="1\n0\n" #num look ahead, look ahead depth [0..2] 

    line26_27="2\n64\n" #swap type [0..2], swap threshold 

    line28_31="0\n0\n1\n8\n" 

 

    #combine the config lines 

    config="$line1_2$line3_4$line5_6$line7_8$line9$line10_12$line13" 

    config="$config$line14_21$line22_23$line24_25$line26_27$line28_31" 

 

    #write the config file 

    echo -e $config | sudo tee /etc/hpl/HPL.dat >/dev/null 

 

    #run the benchmark 

    sudo -u nobody mpirun --oversubscribe \ 

      -n $(($sockets*$cores*$threads)) \ 

      /usr/bin/xhpl-ompi > ~/HPL.out 
 



 

116 

  

    #get the flops value 

    flops_bench=$(cat ~/HPL.out | grep -m 2  Gflops -A2 | \ 

      awk END{print} | awk '{print $7}') 

 

    #results_string 

    echo -ne "Done!\nSubmitting results. " 

    results_string=$(echo -n "system_hash="$system_hash"&"\ 

      "uuid="$uuid"&device_id="$device_id"&cpu_model="$cpu_model"&"\ 

      "cpu_sig="$cpu_sig"&cpu_arch="$cpu_arch"&memory="$memory"&"\ 

      "aes_inst="$aes_inst"&aes_bench="$aes_bench"&"\ 

      "flops_bench="$flops_bench"&submit=Submit" | tr -d '[:space:]') 

    #submit results 

    if [ $(curl -s -d $results_string \ 

      $collection_server"/index.php" |\ 

      head -n1 | grep -ci 'success') -ge 1 ];\ 

      then echo "Success!"; else echo "Failed." 

    fi 

  else 

    echo "Failed. Proxy or filter blocking *.amazonaws.com? Server down?" 

  fi 

else 

  echo "Failed. Wired connection? DHCP available? Cable attached?" 

fi 

 

#goodbye 

echo "Script complete!" 

echo "Press Enter to Shutdown or Ctrl+C to exit to terminal." 

read -s 

sudo shutdown now 
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APPENDIX E 

Facilitator Google Form 

Link to the facilitator Google Form: 

https://www.tinyurl.com/dshawth-dcs 

  

Dissertation Research Facilitation 

Thank you for your interest in assisting with the facilitation of my dissertation research! 

The goal of the research is to better understand, and possibly project, the cryptographic attack 

potential of general purpose hardware against the Advanced Encryption Standard (AES). The results 

of this research will be published in my dissertation and hopefully help the security community to 

better project key length vulnerabilities. 

Please review the research design, requirements, and disclaimer below before checking the 

acknowledgement and continuing to the sign-up page. Thank you in advance for considering the study 

or assisting with its facilitation! 

Respectfully, 

Daniel Hawthorne 

Research Design 
The research involves the collection of performance pairs from a variety of computer hardware 

configurations. The pairs consist of a general purpose benchmark in terms of floating point 

operations per second (FLOPS) and an AES benchmark. 

The benchmarks are conducted by booting computers to an Arch Linux based USB flash drive. 

The collection script automatically runs on boot, conducts the benchmarks, and submits the 

results to an EC2 instance. 

The collection is limited to hardware and performance information. The collection script does not 

access any other storage devices or collect any personal information. 

The source code is available for review at the link below: 

https://github.com/dshawth/DCS 

https://goo.gl/forms/PN5TMOqXfzoaa2ZZ2
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Requirements 
A computer or computers (the more samples, the better) with the following: 

1) An x86_64 processor (AMD and Intel, desktop and laptop processors since 2004) 

2) The ability to boot to Linux on a USB device (May require enabling Legacy Boot Option ROM) 

3) A wired internet connection 

You will receive a USB drive that is ready to go or you can choose to download the binary and 

create one on your own. Power down, plug in, and boot to the drive. The script takes about 5 

minutes to run and shuts down when complete. Detailed instructions will be provided with the 

USB drive. 

Data Fields Collected 
The collection script gathers the follow system information fields: 

1) Universally Unique Identification (UUID)  

2) Device ID (of the USB drive) 

3) CPU: model name, signature (stepping, model, family), and architecture (sockets, cores per 

socket, threads per core) 

4) Memory: Total, free, used 

5) AES Instructions: Present/Not 

The benchmark fields are: 

1) Advanced Encryption Standard (AES) Benchmark 

2) Floating point operations per second (FLOPS) Benchmark 

Disclaimer 
Booting to a live USB can be challenging. It may require you to make changes in your BIOS to 

change your boot order. 

Changes in your BIOS should be done with caution, as the researcher cannot be held 

responsible for damages due to BIOS configuration mistakes. 

If you have any questions or need help with the process, please reach me at 

daniel.s.hawthorne@gmail.com. 

If you meet the requirements and agree to these terms, please continue and thank you in 

advance for your support! 

Acknowledgement 

I meet the requirements, understand fields to be collected, acknowledge 
the risks of booting to USB, and consent to assist with the facilitation of this 
research. 

mailto:daniel.s.hawthorne@gmail.com
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Dissertation Research Facilitation 
 
* Required 
 

Facilitation Sign Up 
 

Name (as you want it to appear in the publication where applicable) * 

 
Include name and number of result(s) in the final publication * 

 

Email * 

 

Phone number 

 

Comments 

 

How do you want to receive the USB drive? * 

 
 

Complete Mailing Address (For mail option only) 
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Download Instructions (For download option only) 
Follow the link below to get the ISO: 

https://github.com/dshawth/DCS/releases 

LINUX: 

Get the serial number of your USB drive for the device ID field below using terminal: 

fdisk -l #to determine the sdX of your target device 

lsblk -d -o name,label,serial #to get the serial 

Write the USB using: 

dd bs=4M if=~/Downloads/arch-custom.iso of=/dev/sdX status=progress 

WINDOWS: 

Get the serial number of your USB drive for the device ID field below using PowerShell: 

gwmi Win32_USBControllerDevice |%{[wmi]($_.Dependent)} | Where-Object {($_.Description -

like '*mass*')} | Sort Description,DeviceID | ft Description,DeviceID –auto 

The serial number is right of the last \ in DeviceID. 

Write the USB using Rufus with default options; when prompted choose the DD method. 

Device ID (For download option only) 
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APPENDIX F 

USB Instructions 

Dear Facilitator, 

 

Thank you again for your willingness to help with my research pertaining to the feasibility of 

cryptographic attacks against the advanced encryption standard (AES)!  The included USB drive 

is already imaged and ready for use.  Please help me keep this research on a manageable 

timeframe by conducting the tests at your earliest convenience. 

 

Shutdown each computer and attach the USB drive.  Power on the system and enter the boot 

menu by tapping the key designated by the manufacturer (commonly F12) as soon as the 

computer begins to power on. 

 

If you miss the boot menu, you may have to shut down and try again.  If the USB drive does not 

appear on the list of bootable devices, you may have to enable legacy option ROMs in your 

BIOS.  To enter the BIOS, tap the key designated by the manufacturer (commonly DEL or F2) as 

soon as the computer begins to power on. 

 

Once you have successfully selected the USB drive, an Arch Linux boot menu will display; 

choose the first option and the boot process will continue.  Once started, the script will collect 

the specs from your system, conduct the benchmarks, submit the results, and wait for you to 

confirm shutdown.  Once powered off, remove the USB drive and repeat the process on other 

systems where possible. 

 

The data fields and source are available on the survey form at https://tinyurl.com/dshawth-dcs. 

 

Feel free to reach me with any questions at daniel.s.hawthorne@gmail.com. 

 

Once complete with your system(s), the more the better, the USB drive is yours to keep! 

 

Respectfully, 

Daniel Hawthorne  

https://tinyurl.com/dshawth-dcs
mailto:daniel.s.hawthorne@gmail.com
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APPENDIX G 

Data Compilation Script 

 

  

#Program: compile-data.py 

#Author: Daniel Hawthorne 

#Python: 3.6.2 

 

import os #for files in folder 

 

rawFolder = r"X:\Google Drive\School\Dissertation\Results\Raw" 

fields = ["date_time", "system_hash", "uuid", "device_id", "cpu_model", \ 

"cpu_sig", "cpu_arch", "memory", "aes_inst", "aes_bench", "flops_bench"] 

 

outFile = open("results.csv", 'w') 

 

#write fields as headers 

outFile.write(','.join(fields) + '\n') 

 

for fileName in os.listdir(rawFolder): 

 

    if fileName.endswith('.txt'): 

        print(fileName) 

        #open, read, close the file 

        recordFile = open(os.path.join(rawFolder,fileName), 'r') 

        fileLines = list(filter(None, recordFile.read().splitlines())) 

        recordFile.close() 

        lines = [] 

        for line in fileLines: 

            #remove any commas from cpu strings 

            line = line.replace(',', '_') 

            #fields 

            if len(line.split()) > 1: 

                lines.append('_'.join(line.split()[1:])) 

            else: 

                lines.append('') 

            #last line 

            if line.startswith('flops_bench'): 

                lines.append('\n') 

                outFile.write(','.join(lines)) 

                lines = [] 

outFile.close() 
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APPENDIX H 

Raw Results 

date_time system_hash uuid device_id cpu_model cpu_sig cpu_arch flops_bench memory aes_inst aes_bench gflops

2018/05/17_10:35:36 4dfbd6a7b7e30c20c243d17c3dafa5cb 4c4c4544-0053-4d10-8031-b5c04f503232 4C530001150804105195 Intel(R)_Core(TM)_i5-4200M_CPU_@_2.50GHz 3_60_6 x86_64_1_2_2 5.305e_00 114_3414_3853 TRUE 1922.36 5.305

2018/05/17_10:53:48 d7f3ea5d9770ce0b826a1c5312b37b09 c1b8e060-d7e2-11dd-8eb0-704d7b2d05b4 4C530001150804105195 Intel(R)_Core(TM)_i7-6700K_CPU_@_4.00GHz 3_94_6 x86_64_1_4_2 1.603e_01 156_31637_32110 TRUE 3186 16.03

2018/05/17_11:12:04 5bcc9a1780b3cd4b98bba1ea07972ad6 03d502e0-045e-0528-9f06-860700080009 4C530001150804105195 AMD_A8-9600_RADEON_R7__10_COMPUTE_CORES_4C_6G 1_101_21 x86_64_1_2_2 6.008e_00 152_3395_3882 TRUE 1403.69 6.008

2018/05/17_11:26:48 45b0f1d91d17f9b18d89a92e9bb061ee 1e5c2c40-d7da-11dd-a6e8-2c4d54d85f4a 4C530001150804105195 Intel(R)_Core(TM)_i7-7700K_CPU_@_4.20GHz 9_158_6 x86_64_1_4_2 1.707e_01 185_31585_32102 TRUE 3400.2 17.07

2018/05/17_20:09:26 de20148de31143079a7eb0782a93e0b8 4c4c4544-0032-5a10-8038-b7c04f574432 4C530001150804105195 Intel(R)_Core(TM)_i7-6820HQ_CPU_@_2.70GHz 3_94_6 x86_64_1_4_2 1.118e_01 147_15234_15719 TRUE 2699.43 11.18

2018/05/24_10:14:31 f8c9542df4177659b8fcb0bf9b46bc65 4c4c4544-0020-2010-8020-a0c04f202020 4C530001150804105195 Intel(R)_Core(TM)_i5-3210M_CPU_@_2.50GHz 9_58_6 x86_64_1_2_2 5.008e_00 103_5392_5823 FALSE 154.1 5.008

2018/05/24_14:06:04 c5f1f2c3746e88e6684d1c3e9d4e7db9 4c4c4544-0051-3910-804c-c7c04f4e4e32 4C530001150804105195 Intel(R)_Core(TM)_i5-7200U_CPU_@_2.50GHz 9_142_6 x86_64_1_2_2 5.856e_00 122_7168_7626 TRUE 2330.57 5.856

2018/05/24_14:25:09 5631c6a162718e2cd28e71e340042b8c 4c4c4544-0052-3510-8047-b5c04f523732 4C530001150804105195 Intel(R)_Core(TM)_m5-6Y57_CPU_@_1.10GHz 3_78_6 x86_64_1_2_2 3.681e_00 125_7277_7744 TRUE 2101.33 3.681

2018/05/28_21:18:00 9e5e5c36904f1fd245dc331a4e9ed078 4c4c4544-004d-5810-8038-b8c04f514332 4C530001200804105193 Intel(R)_Core(TM)_i7-6820HK_CPU_@_2.70GHz 3_94_6 x86_64_1_4_2 1.213e_01 189_31510_32036 TRUE 2705.37 12.13

2018/05/28_21:34:44 978ad4f56200102e09d184313dc483bf 4c4c4544-005a-5210-8050-b5c04f5a3332 4C530001200804105193 Intel(R)_Core(TM)_i5-7300HQ_CPU_@_2.50GHz 9_158_6 x86_64_1_4_1 1.114e_01 108_7179_7619 TRUE 2622.02 11.14

2018/05/29_22:05:35 173af41a127bd505e429e27932d3e598 21a98280-d7da-11dd-87d1-08626637239b 4C531001620804101070 Intel(R)_Core(TM)_i5-4570T_CPU_@_2.90GHz 3_60_6 x86_64_1_2_2 6.046e_00 125_15545_15985 TRUE 2240.96 6.046

2018/05/29_22:22:45 d275336c15f3fc5153d44a7b1a1b577e 4c4c4544-0035-5610-804c-c3c04f334c32 4C531001620804101070 Intel(R)_Core(TM)_i7-7500U_CPU_@_2.70GHz 9_142_6 x86_64_1_2_2 6.017e_00 160_7122_7621 TRUE 2637.85 6.017

2018/05/29_23:23:08 c1d6d95fedb8ffd62949427565381b79 d21772a0-72ba-11e3-88a2-305a3a8222dc 4C530001150804105195 Intel(R)_Core(TM)_i7-6700T_CPU_@_2.80GHz 3_94_6 x86_64_1_4_2 1.203e_01 133_15468_15921 TRUE 2701.22 12.03

2018/05/30_19:39:26 5da0933b47218205fa61c81086fdcc0a 88c11c80-d7da-11dd-aff7-305a3a00771a 4C530001150804105195 Intel(R)_Core(TM)_i5-6500_CPU_@_3.20GHz 3_94_6 x86_64_1_4_1 1.163e_01 270_7251_7847 TRUE 2720.82 11.63

2018/05/30_19:57:03 c418fe3fd031f3ebf142ebcba35c1d1b 295b6b60-d7da-11dd-9913-704d7b2e5e38 4C530001150804105195 Intel(R)_Core(TM)_i5-6500_CPU_@_3.20GHz 3_94_6 x86_64_1_4_1 1.162e_01 249_7273_7847 TRUE 2722.88 11.62

2018/06/01_18:16:09 03363a2ac12693b214182a411d1c1a89 031b021c-040d-05e6-1806-650700080009 4C530001150804105195 Intel(R)_Pentium(R)_CPU_G4400_@_3.30GHz 3_94_6 x86_64_1_2_1 5.807e_00 146_3325_3836 TRUE 2505.69 5.807

2018/06/02_17:07:36 ddfe6bf874d72ed2ba92bd207aceab5a a0908ac6-3324-eb45-a32f-7b530e11728d 4C530001110804105303 Intel(R)_Core(TM)_i7-4710HQ_CPU_@_2.50GHz 3_60_6 x86_64_1_4_2 1.110e_01 141_15517_15992 TRUE 2173.13 11.1

2018/06/02_17:42:52 0ea8fd37c987e0a84c9e45247bc59cab 35304535-3439-3541-3946-3942ffffffff 4C530001110804105303 AMD_A8-3870_APU_with_Radeon(tm)_HD_Graphics 0_1_18 x86_64_1_4_1 3.858e_00 121_15103_15537 FALSE 134.62 3.858

2018/06/02_17:48:08 73d2c70811efeb397b6aa4719407c570 644d0e80-b900-11dc-ae7a-e03f499f8964 4C530001110804105303 AMD_FX(tm)-8320_Eight-Core_Processor 0_2_21 x86_64_1_4_2 1.146e_01 135_15493_15943 TRUE 1612.13 11.46

2018/06/02_19:00:04 b3e5393a4c152b24e274967b4681daf0 038d0240-045c-051a-4b06-3f0700080009 4C530001150804105195 Intel(R)_Core(TM)_i5-6400_CPU_@_2.70GHz 3_94_6 x86_64_1_4_1 1.156e_01 133_15534_15996 TRUE 2474.42 11.56

2018/06/05_23:13:22 4ba558288eb42c39107dc0dda426070e 4c4c4544-0037-4210-8035-c8c04f425131 4C531001620804101070 Intel(R)_Core(TM)_i5-2400S_CPU_@_2.50GHz 7_42_6 x86_64_1_4_1 8.052e_00 103_5436_5869 TRUE 1432.64 8.052

2018/06/06_15:16:22 beb8e8373ac6f858bd9d0bdd6e1cc67c 44454c4c-3500-1043-8036-b3c04f584431 4C531001530804101071 Intel(R)_Core(TM)2_Duo_CPU_____T7500__@_2.20GHz 10_15_6 x86_64_1_2_1 2.181e_00 78_3546_3946 FALSE 104.71 2.181

2018/06/07_06:30:36 355904f000fd84d5884d1af3365f55dd d96d3c2a-7df6-11db-82cc-0011113186f6 4C530001260804101000 Intel(R)_Core(TM)2_CPU_________X6800__@_2.93GHz 6_15_6 x86_64_1_2_1 2.761e_00 97_7504_7914 FALSE 127.94 2.761

2018/06/07_14:55:30 a02fd28b03a1c3c5ead1d0cbc140afe1 4c4c4544-0032-4210-804b-cac04f573532 070A7AED87BD3954 Intel(R)_Core(TM)_i7-4940MX_CPU_@_3.10GHz 3_60_6 x86_64_1_4_2 1.224e_01 154_15462_15948 TRUE 2485.12 12.24

2018/06/07_15:05:32 66db2b7ef947acd4e481c10210efb619 4c4c4544-004c-5310-8051-c6c04f534732 070A7AED87BD3954 Intel(R)_Core(TM)_i5-6300U_CPU_@_2.40GHz 3_78_6 x86_64_1_2_2 5.540e_00 125_7143_7603 TRUE 2220.39 5.54

2018/06/07_21:08:59 07f741d29304d8d1f22afbd0bd6a337a 3fbaf381-538a-11cb-834f-a1949e4827f5 4C530001260804101000 Intel(R)_Core(TM)_i7-4600U_CPU_@_2.10GHz 1_69_6 x86_64_1_2_2 3.996e_00 120_7221_7671 TRUE 2049.84 3.996

2018/06/07_22:01:00 ae37c2ee0d328312d11c7d81fb83db78 4a0d6f4c-2924-11b2-a85c-a3c4091f1442 4C530001260804101000 Intel(R)_Core(TM)_i7-6600U_CPU_@_2.60GHz 3_78_6 x86_64_1_2_2 5.549e_00 132_14994_15461 TRUE 2562.98 5.549

2018/06/08_10:33:57 9712eecf5b6e68e0e3a7fe8b19238271 4c4c4544-0032-3910-8054-cac04f573532 4C530001270804101000 Intel(R)_Core(TM)_i7-4940MX_CPU_@_3.10GHz 3_60_6 x86_64_1_4_2 4.976e_00 147_15468_15948 TRUE 848.54 4.976

2018/06/08_10:53:47 af55e9e5f6bae00d243082d724ad05a5 4c4c4544-0032-3910-8050-cac04f573532 4C530001270804101000 Intel(R)_Core(TM)_i7-4940MX_CPU_@_3.10GHz 3_60_6 x86_64_1_4_2 1.210e_01 153_15463_15948 TRUE 2487.65 12.1

2018/06/08_11:28:30 9e5e5c36904f1fd245dc331a4e9ed078 4c4c4544-004d-5810-8038-b8c04f514332 4C530001270804101000 Intel(R)_Core(TM)_i7-6820HK_CPU_@_2.70GHz 3_94_6 x86_64_1_4_2 1.214e_01 190_31509_32036 TRUE 2703.86 12.14

2018/06/08_11:38:30 d03f87ce7c9567e5194a16bbbf7c8fa3 6891600c-4877-440a-bc49-b049ad7f12c7 4C530001270804101000 Intel(R)_Core(TM)_i7-6770HQ_CPU_@_2.60GHz 3_94_6 x86_64_1_4_2 1.223e_01 185_31542_32060 TRUE 2627.38 12.23

2018/06/08_12:00:40 b6ecc3b44f352783e57c0ecf6af48038 5113027f-7037-11e4-bb8f-38a21a2efcff 4C530001270804101000 Intel(R)_Core(TM)_i7-4600M_CPU_@_2.90GHz 3_60_6 x86_64_1_2_2 6.408e_00 180_14949_15468 TRUE 2242.54 6.408

2018/06/08_16:23:22 159fb278dcb9c616fb693ab155afc30a 03000200-0400-0500-0006-000700080009 4C530001150804105090 AMD_Phenom(tm)_II_X6_1045T_Processor 0_10_16 x86_64_1_6_1 7.667e_00 113_7529_7954 FALSE 143.96 7.667

2018/06/09_19:16:13 ed7422ef35fbdcb6a72bc9b918cd1518 00000000-0000-0000-0000-448a5bce8647 4C530001260804105083 Intel(R)_Core(TM)_i7-4790K_CPU_@_4.00GHz 3_60_6 x86_64_1_4_2 1.601e_01 139_15538_15992 TRUE 2743.04 16.01

2018/06/13_18:07:23 7a39abda3e04d9a4276f73e33254ba80 27b02c60-d7da-11dd-956c-38d547aac192 4C530001160804105194 Intel(R)_Core(TM)_i7-6700_CPU_@_3.40GHz 3_94_6 x86_64_1_4_2 1.417e_01 138_15453_15910 TRUE 3016.95 14.17

2018/06/14_16:08:04 68cb09e52bfa08e63b16d844279a9355 038d0240-045c-05b8-7e06-a00700080009 4C530001210524108581 Intel(R)_Core(TM)_i7-6700K_CPU_@_4.00GHz 3_94_6 x86_64_1_4_2 1.503e_01 161_15511_15992 TRUE 3148.33 15.03

2018/06/15_17:06:15 f8f0cf9fd0a9909539b298ae85ab9917 41f1e380-4c54-c742-b8ef-df1a395882db 4C530001210524108581 Intel(R)_Celeron(R)_CPU__N3050__@_1.60GHz 3_76_6 x86_64_1_2_1 1.555e_00 88_3432_3849 TRUE 311.17 1.555

2018/06/15_17:35:12 f50734cd14ba669b7979390cda8ab3e0 4c4c4544-0031-5910-8032-b5c04f483132 4C530001210524108581 Intel(R)_Core(TM)_i5-4300U_CPU_@_1.90GHz 1_69_6 x86_64_1_2_2 1.280e_00 134_15482_15949 TRUE 1236.97 1.28

2018/06/21_12:23:16 4ad2a47ac5250017884014ab561f01e7 aaffcdc0-a9b5-d359-951d-137db2ca81e8 4C530001150804105195 Intel(R)_Core(TM)_i5-2415M_CPU_@_2.30GHz 7_42_6 x86_64_1_2_2 4.465e_00 111_7451_7890 TRUE 1262.82 4.465

2018/06/28_09:50:37 def6e03aa246cd9837ac29066c966e5c 44ec9c00-d7da-11dd-a5d8-086266c5cece 4C530001290804105300 Intel(R)_Core(TM)_i5-4690K_CPU_@_3.50GHz 3_60_6 x86_64_1_4_1 1.494e_01 122_15545_15982 TRUE 2690.83 14.94

2018/06/28_11:27:28 39f653d247031aa1de8c1207c07aaa55 b1b3e073-3709-11e8-8a95-8c16455f56b3 4C530001290804105300 Intel(R)_Core(TM)_i5-8250U_CPU_@_1.60GHz 10_142_6 x86_64_1_4_2 1.135e_01 152_7277_7763 TRUE 2555.72 11.35

2018/07/12_11:37:48 0682cbbe5e36773756166ba6138d33cf 4c4c4544-0033-5a10-8038-b6c04f574432 4C530001130804105302 Intel(R)_Core(TM)_i7-6820HQ_CPU_@_2.70GHz 3_94_6 x86_64_1_4_2 1.140e_01 149_15226_15712 TRUE 2624 11.4

2018/07/13_15:48:50 720dba50bf57ccd413158cd281e8f248 4c4c4544-004c-5a10-8038-c3c04f574432 4C530001130804105302 Intel(R)_Core(TM)_i7-6820HQ_CPU_@_2.70GHz 3_94_6 x86_64_1_4_2 1.032e_01 148_15236_15723 TRUE 2703.61 10.32

2018/07/16_20:17:34 355455e3a77d07680d86e5ced0b34e89 73582780-d7da-11dd-b4b0-1831bfb4e152 4C530001150804105195 Intel(R)_Core(TM)_i7-8086K_CPU_@_4.00GHz 10_158_6 x86_64_1_6_2 2.320e_01 147_15431_15897 TRUE 3754.83 23.2  
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APPENDIX I 

Results 

result cpu mem aes_inst aes_bench gflops

1 Intel Core i5-4200M 4 GB TRUE 1922.36 5.305

2 Intel Core i7-6700K 32 GB TRUE 3186 16.03

3 AMD A8-9600 4 GB TRUE 1403.69 6.008

4 Intel Core i7-7700K 32 GB TRUE 3400.2 17.07

5 Intel Core i7-6820HQ 16 GB TRUE 2699.43 11.18

6 Intel Core i5-3210M 6 GB FALSE 154.1 5.008

7 Intel Core i5-7200U 8 GB TRUE 2330.57 5.856

8 Intel Core m5-6Y57 8 GB TRUE 2101.33 3.681

9 Intel Core i7-6820HK 32 GB TRUE 2705.37 12.13

10 Intel Core i5-7300HQ 8 GB TRUE 2622.02 11.14

11 Intel Core i5-4570T 16 GB TRUE 2240.96 6.046

12 Intel Core i7-7500U 8 GB TRUE 2637.85 6.017

13 Intel Core i7-6700T 16 GB TRUE 2701.22 12.03

14 Intel Core i5-6500 8 GB TRUE 2720.82 11.63

15 Intel Core i5-6500 8 GB TRUE 2722.88 11.62

16 Intel Pentium G4400 4 GB TRUE 2505.69 5.807

17 Intel Core i7-4710HQ 16 GB TRUE 2173.13 11.1

18 AMD A8-3870 16 GB FALSE 134.62 3.858

19 AMD FX-8320 16 GB TRUE 1612.13 11.46

20 Intel Core i5-6400 16 GB TRUE 2474.42 11.56

21 Intel Core i5-2400S 6 GB TRUE 1432.64 8.052

22 Intel Core 2 Duo T7500 4 GB FALSE 104.71 2.181

23 Intel Core 2 Ext X6800 8 GB FALSE 127.94 2.761

24 Intel Core i7-4940MX 16 GB TRUE 2485.12 12.24

25 Intel Core i5-6300U 8 GB TRUE 2220.39 5.54

26 Intel Core i7-4600U 8 GB TRUE 2049.84 3.996

27 Intel Core i7-6600U 16 GB TRUE 2562.98 5.549

28 Intel Core i7-4940MX 16 GB TRUE 848.54 4.976

29 Intel Core i7-4940MX 16 GB TRUE 2487.65 12.1

30 Intel Core i7-6820HK 32 GB TRUE 2703.86 12.14

31 Intel Core i7-6770HQ 32 GB TRUE 2627.38 12.23

32 Intel Core i7-4600M 16 GB TRUE 2242.54 6.408

33 AMD Phenom II X6 1045T 8 GB FALSE 143.96 7.667

34 Intel Core i7-4790K 16 GB TRUE 2743.04 16.01

35 Intel Core i7-6700 16 GB TRUE 3016.95 14.17

36 Intel Core i7-6700K 16 GB TRUE 3148.33 15.03

37 Intel Celeron N3050 4 GB TRUE 311.17 1.555

38 Intel Core i5-4300U 16 GB TRUE 1236.97 1.28

39 Intel Core i5-2415M 8 GB TRUE 1262.82 4.465

40 Intel Core i5-4690K 16 GB TRUE 2690.83 14.94

41 Intel Core i5-8250U 8 GB TRUE 2555.72 11.35

42 Intel Core i7-6820HQ 16 GB TRUE 2624 11.4

43 Intel Core i7-6820HQ 16 GB TRUE 2703.61 10.32

44 Intel Core i7-8086K 16 GB TRUE 3754.83 23.2  
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APPENDIX J 

Encoded Results 

result aes_bench gflops aes_inst cpu scale mem

1 1922.36 5.305 1 1 0 0

2 3186 16.03 1 1 1 4

3 1403.69 6.008 1 0 1 0

4 3400.2 17.07 1 1 1 4

5 2699.43 11.18 1 1 0 3

6 154.1 5.008 0 1 0 1

7 2330.57 5.856 1 1 0 2

8 2101.33 3.681 1 1 0 2

9 2705.37 12.13 1 1 0 4

10 2622.02 11.14 1 1 0 2

11 2240.96 6.046 1 1 1 3

12 2637.85 6.017 1 1 0 2

13 2701.22 12.03 1 1 1 3

14 2720.82 11.63 1 1 1 2

15 2722.88 11.62 1 1 1 2

16 2505.69 5.807 1 1 1 0

17 2173.13 11.1 1 1 0 3

18 134.62 3.858 0 0 1 3

19 1612.13 11.46 1 0 1 3

20 2474.42 11.56 1 1 1 3

21 1432.64 8.052 1 1 1 1

22 104.71 2.181 0 1 0 0

23 127.94 2.761 0 1 1 2

24 2485.12 12.24 1 1 0 3

25 2220.39 5.54 1 1 0 2

26 2049.84 3.996 1 1 0 2

27 2562.98 5.549 1 1 0 3

29 2487.65 12.1 1 1 0 3

30 2703.86 12.14 1 1 0 4

31 2627.38 12.23 1 1 0 4

32 2242.54 6.408 1 1 0 3

33 143.96 7.667 0 0 1 2

34 2743.04 16.01 1 1 1 3

35 3016.95 14.17 1 1 1 3

36 3148.33 15.03 1 1 1 3

37 311.17 1.555 1 1 0 0

39 1262.82 4.465 1 1 0 2

40 2690.83 14.94 1 1 1 3

41 2555.72 11.35 1 1 0 2

42 2624 11.4 1 1 0 3

43 2703.61 10.32 1 1 0 3

44 3754.83 23.2 1 1 1 3  
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