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撮要 

電子商貿和個人私隱注的迅速發展令加密系統的需求不斷增加 .基於硬件的 

加密系統提供了高速度，低耗電量，小體積和高保密等優點 .現場可编程門陣 

列 ( F P G A )技術综合了基於V L S I設計的高速度和基於軟件設計的短開發時間 

及高適應性的特點. 

本研究通過實現一些加密元件，指出 F P G A技術是適合於加密系統的 .此 

研究并評話了影響設計效能的不同架構和系統參數 . 

大部分加密系統中都應用了密朝演算法 .我們開發了一個深度流水線 

式的 I D E A 分組密碼器 .此設計擁有 5 9 2 M b p s 的處理能力 .公朝演算法被廣 

泛地應用在密鋼交換和數碼簽證中 .基於大整數因子分解難度的 U S A 演算 

法 目 前 最 普 及 的 公 鋼 演 算 法 . 本 研 究 也 開 發 了 一 個 可 變 基 底 的 脈 動 陣 列 

式M o n t g o m e r y乘法器 .此乘法器是一個U S A系統中的核心部分 .通過小量的 

參數設定，這一設計提供了 一個有效的途徑去評話大整數乘法器的效能和資 

源消耗 .密碼分析研究達成安全加密系統的重要基礎 .爲了展示F P G A技術在 

此一領域中的效能，我們實現了一個R C 4密翎搜尋器.此搜尋器可以在兩天内 

尋找到一個40位元的鍵碼，比一個Pen t ium4 1 . 5 G H z中央處理器快了5 8倍.最 

後 ,我們實現了一個應用了B l u m Blum S h i i b演算法的面積最優化的亂數產生 

器.這個1 0 2 4位元的亂數產生器可以利用一顆X C V 1 0 0 0 E F P G A上小於3 %的 

資源產生隨機序列. 
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Abstract 

There are increasing demands for cryptographic systems due to the rapid adoption 

of electronic commerce and personal privacy concerns. Hardware based crypto-

graphic systems offer improved speed, lower power consumption, smaller foot-

print and perhaps higher security over purely software based systems. Field Pro-

grammable Gate Array (FPGA) technology offers a good compromise between the 

speed of VLSI based implementations and the short development times and adapt-

ability of software systems. 

This study illustrates that FPGAs are suitable for cryptographic systems by 

implementing several cryptographic primitives. In particular, high performance 

FPGA-based implementations of secret key, public key, key search and random 

number generation systems were developed. The study also evaluates different ar-

chitecture and system parameters which will affect the performance of the designs. 

The secret key algorithm implemented was the IDEA block cipher and a deeply 

pipelined architecture was employed to achieve a throughput of 592Mbps. A vari-

able radix systolic Montgomery multiplier was developed to speed up implemen-

tations of the RSA public key algorithm, offering an efficient way to estimate the 

performance and area tradeoffs of a long integer multiplier by varying the radix. 

In order to demonstrate the ability of FPGAs for cryptanalysis, an RC4 key search 

engine was developed which can search a 40-bit key within 2 days and achieves per-

formance which is 58 times faster than a 1.5GHz Intel Pentium 4 machine. Finally, 

an area optimized random number generator using the Blum Blum Shub algorithm 

was implemented. This 1024-bit BBS RNG can generate a secure random sequence 
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using less than 3% of a XCVIOOOE FPGA chip. 
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Chapter 1 

Introduction 

1.1 Motivation 

Cryptosystems are important. 

The aim of cryptography is to secure information so that only the intended par-

ties can read the data. Cryptosystems had been developed for centuries. The ad-

vance of computer technologies and popularity of personal computers provides a 

large base on which cryptographic applications are installed. The recent popularity 

of the Internet and e-commerce have made strong demands on cryptography. Cryp-

tosystems today are all around our lives including banking systems using 3DES, 

identification systems using PKI (Public Key Infrastructure), entertainment systems 

using encrypted storages and even systems in electronic car locks. Developments in 

cryptography have been growing faster then ever before due to increased research. 

Hardware cryptographic platforms are helpful. 

Many cryptographic algorithms are based on specialized arithmetic computa-

tions such as finite field arithmetic. For clients that only perform cryptographic 

computations occasionally, the central processing unit (CPU) in a PC is sufficient. 

However the work load on a server that will handle thousands of requests per second 

many be unacceptably large. In addition, clients which have very limited comput-

ing resources, such as smartcards, mobile phones and handheld computers may not 
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Chapter 1 Introduction 2 

have sufficient computing power. Special hardware cryptosystems can offer higher 

performance than conventional CPUs. In addition, cryptosystems implemented in 

software may have lower security than tamper proof hardware devices [AndOl]. 

FPGAs are suitable for building hardware cryptosystems. 

The tradition way of building cryptographic hardware is using application spe-

cific integrated circuit (ASIC) technology. This methodology has many disadvan-

tages including high small volume cost, long design to product time, difficulties 

in debugging and not able to adapt new changes after the system is built. A new 

way to solve these problem is to build the design on FPGA platforms. FPGA chips 

provide sufficient logic and storage elements on which complex algorithms can be 

built. The reconfigurable characteristic makes it easier to adapt new cryptographic 

protocols even after the hardware is installed. One aim of this research work is to 

demonstrate that FPGA platforms are suitable for hardware cryptosystems. It is also 

shown that FPGA systems are good for cryptanalysis applications. 

Architecture differences affect performance. 

For the same algorithm, different architectures can be applied to achieve differ-

ent design objectives. One of the most important issues are the cost-performance 

tradeoffs. Cost in hardware design can be interpreted in different ways including 

logic area, memory storage, power consumption, etc. Another commonly encoun-

tered problem is the parallel and serial tradeoff. One can build a deeply pipeline 

system which use many cycles under a fast clock or a massively parallel system 

that can process multiple data in one cycle. Even for the same design, different 

parameters such as the radix used can dramatically change the system performance. 

In this work, different ways to implement cryptographic algorithms using flexi-

ble architectures will be explored. 
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1.2 Objectives 

The main objective of this research work was to develop primitive building blocks 

for FPGA based hardware cryptosystems. The details research aim are: 

• Implement different cryptographic algorithms including public key, block and 

stream ciphers and compare their performance with hardware and software 

based systems. This is used to support the argument that building a cryp-

tosystem completely on an FPGA platform is possible. 

• Explore different system architectures and evaluate the impact on perfor-

mance. 

• Provide experimental results so that a designer can choose system parameters 

(e.g. radix, area, throughput) which are most suitable for the given applica-

tion. 

1.3 Contributions 

In this work, a set of primitive components for building cryptosystems on hardware 

platforms were implemented and evaluated. The primitives include an IDEA block 

cipher; a long integer multiplier core for the efficient implementation of RSA public 

key cryptographic algorithms; an RC4 stream cipher and also a random number 

generator. In the implementations, different architectures were explored and various 

optimization methods were used. 

The main contributions of this dissertation are as follows: 

• A deeply pipelined IDEA block cipher was designed [MvOVOl]. The IDEA 

core offers 592Mbps throughput under 50MHz clock rate. The number of 

rounds instantiated can be varied to meet different area constraints without 

violating the 8.5 rounds minimum requirement in the algorithm. The upper 
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bound of the speed is also examized. This was developed in collaboration 

with Mr. O.Y.H. Cheung and my duty was to design the pipeline states and 

control. This implementation of IDEA was, at the time of publication, the 

fastest reported implementation to date in FPGA technology. 

• A variable radix systolic Montgomery modular multiplier was developed [Mon85]. 

The performance tradeoff for different radixes could thus be easily examined. 

Results for different radixes were measured and provide a fast way for de-

signers to select a design given the required resources and performance. 

• An RC4 key search engine was developed for cryptanalysis purposes [RSAOO]. 

Its architecture was one of the first to exploit the massive memory bandwidth 

in an FPGA for cryptanalysis applications. The RC4 key search engine de-

veloped in this work is the fastest reported implementation in any technology 

and 58 times faster than a 1.5GHz Intel Pentium 4 CPU. 

• A compact and secure random number generator using the BBS (Blum Blum 

Shub) algorithm [LMM86] was developed for cryptographic applications. For 

a 1024-bit modulo, this design consumed less than 3% of an XCVIOOOE 

chip. The results passed various RNG tests including the NIST RNG test 

suite [A. 01] and the Diehard test [Mar02]. 

1.4 Thesis Organization 

In Chapter 2, an introduction to cryptographic algorithms and the FPGA design 

flow are presented. Also, a review of related work on cryptographic hardware is 

given. Chapter 3 presents implementations of the IDEA block cipher which use 

deep pipelining technique and Chapter 4 presents an implementation of a variable 

radix systolic Montgomery multiplier which can be used in RSA cryptosystems. A 

design of a massively parallel RC4 engine is described in Chapter 5. Chapter 6 

shows an implementation of random number generator using a free oscillator and 



Chapter 1 Introduction 5 

the BBS algorithm. The results of the above designs are presented and evaluated in 

Chapter 7. Finally, the conclusion and directions for future research are presented 

in Chapter 8. 

•s 



Chapter 2 

Background and Review 

2.1 Introduction 

To construct primitive building blocks for a hardware cryptosystem, the crypto-

graphic algorithms must be studied. Also, we need to be familiar with the hardware 

platform, i.e. FPGA systems in our research, to achieve the best performance from 

them. To facilitate our studies and evaluate our results, related work on crypto-

graphic algorithms and hardware cryptosystems are reviewed in this chapter. 

This chapter is organized as follows. Section 2.2 presented the architecture of 

common cyrptosystems. The types of cryptographic algorithms are also explained 

in this section. In section 2.3, the applications of cryptography are presented. The 

structure and characteristics of FPGA platforms are explained in section 2.4. The 

last section presented the reviewed related work. 

2.2 Cryptographic Algorithms 

The major concern of cryptography is to secure information from being intelligible 

to whom it is not intended. A general view of a cryptosystem for communications 

is shown in Figure 2.1. Some common terms used in cryptography are: 

Encryption transformation of data into a form that is unreadable without some 

appropriate knowledge. 

6 
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secure region unsecure region ^一 secure region 

Decryption Encryption 
Key Key 

plaintext ' ^^n communication channel Encryption! Plaint:xt 
Receiver < ^ ^̂  < . , < . , „ < Transmitter 

[Process ciphertext ciphertext Process 

Figure 2.1: Encrypting and decryption processes. 

Decryption reverse of encryption; transformation of encrypted data to the original 

data with the assistance of some appropriate knowledge. 

Cipher process, either in form of a software program or hardware circuit to per-

form encryption. 

Plaintext data to be encrypted. 

Ciphertext data after being encrypted. 

Key secret information used during encryption and decryption. 

Various algorithms have been proposed for cryptographic systems and these can 

be divided into two major classes: public key algorithms and secret key algorithms. 

In secret key algorithms, all keys are kept secret and shared by the parties involved. 

In public key algorithms, the are two keys involved. One is the public key which is 

made public. The other is the private key which is known only by the person that 

can decrypt the message. 

Secret Key Algorithms 

Secret key algorithms are also referred to as symmetric key algorithms. In these 

algorithms, the decryption key can be generated directly from, or is exactly the 

encryption key, so both keys should be kept secret. 

Secret key algorithms can be further classified into two subclasses: block ciphers 

and stream ciphers. The block ciphers accept a data block of fixed size as input in 
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each iteration and produce an output block of the same size. It is a bijective function 

(one-to-one mapping) from the input plaintext block to the output ciphertext block. 

Stream ciphers consider the input as a stream of bytes and produce an output byte 

stream by combining the input with the generated key stream. In stream ciphers, the 

output of a fixed input depends on the input value, the key value as well as the time 

the input enters the cipher. That means two identical and adjacent input blocks will 

be encrypted to different output blocks by a stream cipher. 

Common block cipher algorithms include: DES (Data Encryption Standard) 

[MvOVOl], AES (AdvancedEncryption Standard), RC2 (Rivest's Cipher 2) [RSAOO], 

RC5 (Rivest's Cipher 5) [MvOVOl], IDEA (International Data Encryption Algo-

rithm) [MvOVOl], Secure And Fast Encryption Routine (SAFER) [MvOVOl], Blow-

fish [Sch93] and CAST-128 (Carlisle Adams and Stafford Tavares) [AT93]. Ex-

amples of stream ciphers include: RC4 (Rivest's Cipher 4) [RSAOO], Software-

optimized Encryption Algorithm (SEAL) [MvOVOl] and VRA (Venkatesan, Ra-

jagopalan and Aiello) [ARV95]. In fact, there are many other stream ciphers based 

on the Linear Feedback Shift Registers (LFSR) algorithm [MvOVOl]. The process-

ing speed of a stream cipher is usually faster than that of a block cipher. 

There are several modes under which block ciphers can operate. The most com-

monly used modes are the Electronic Codebook (ECB) mode and the Cipher Block 

Chaining (CBC) mode [Sch96]. In ECB mode, the block ciphers are used directly 

and the one-to-one mapping from plaintext block to ciphertext block is maintained. 

In CBC mode, the output ciphertext block is fed back to the input port and XORed 

with the next plaintext block to be encrypted. By doing so, the encryption of a block 

is dependent upon the previous block and the one-to-one mapping characteristic is 

eliminated, improving security. 

A disadvantage of secret key algorithms is that the parties performing encryption 

and decryption must somehow exchange keys. That means a secure channel must 

be available for the key exchange to take place before the secure channel for data 

can be established. 
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secure region 一 unsecure region ^一 secure region 

Receiver's Receiver's 
Private Key Public Key 

• V . 
plaintext [Decryption communication channel Encryption! Plamt:xt 

Receiver „ 斤 -e-T-： . , ^ ~ - ^ < Transmitter 
[Process ciphertext ciphertext Process ^ 

Figure 2.2: Public key cryptography. 

Public Key Algorithms 

Public key algorithm was first introduced by Whitfield Diffie and Martin Hell-

man [DH76] in 1976. Figure 2.2 illustrates the idea behind public key cryptography. 

The difference with Figure 2.1 is that the public key, which is used as the encryption 

key here, is publicly available. The message encrypted using a public key can only 

be decrypted by the corresponding private key. So anyone can send an encrypted 

message but only the person with private key can decrypt it. This property can be 

used to solve the key exchange problem associated with secret key algorithms. The 

security of public key system depends on the difficulty of deriving the private key 

from the public key. 

Examples of public key algorithm include Diffie-Hellman [DH76], RSA [RSA78], 

ElGamal [E1G85], and Merkle-Hellman knapsack [MH78]. 

In public key systems, the public key of a receiver is shared between sender 

and receiver. Since this information is available to everyone, it is not necessary 

to have some trusted means of key distribution before secure data communication 

provided that the public keys are associated with their owners in a trusted manner. 

The disadvantage of public key algorithms is that they require more computation to 

achieve similar security compared with secret key algorithms. 
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2.3 Cryptographic Applications 

Cryptographic algorithms are used in a wild range of applications; including the 

SSL (Secure Sockets Layer) [Net02] developed by Netscape Communications Co., 

SSH (Secure Shell) [TTTM02], IPSec (IP Security Protocol) [Req02c], Kerberos 

[Req02a] and PGP (Pretty Good Privacy) [Req02b]. Besides networking appli-

cations, cryptographic algorithms are also applied to data storage. UNIX system 

provide system tools to encrypt files [0pe02], word processors such as Microsoft 

Word [Mic02] and Adobe Acrobat [Ado02] integrate the encryption/decryption 

functions internally. Also, many data compressing tools such as Zip [BK02] and 

RAR [RAR02] provide encryption. On static storages such as DVDs, cryptographic 

algorithms are used to protect copyright by preventing illegal copying. 

The following example illustrates the typical usage of cryptographic algorithms 

on networking environment. Client C wants to download a file from server S 

through an insecure network. The client should obtain the server's public key in 

advance. Before the file can be accessed, the client sends the server its request and 

public key encrypted using the server's public key. Since only the server has the 

private key to decrypt this request, this will authenticate the server's identity. Then 

the server will send a session key to the client, encrypted by client's public key. 

After the client gets the session key, a secure communication channel is established 

for client authentication and file transferring using either a block or stream cipher. 

Note that public key cryptography, which is computationally expensive, is used 

for the key exchange and involves a small amount of data. A secret key algorithm 

is used for the potentially large amount of data involved in the file transfer. This 

scheme reduces the amount of computation required by the server, thus improving 

its overall efficiency without sacrificing security. 

In this research, 4 cryptographic primitives were developed. By integrating 

these primitives in a single design, the tasks in the above example can be imple-

mented in a single chip hardware cryptosystem. The Montgomery multiplier can be 



Chapter 2 Background and Review 11 

- — n i l I II I |[[| I i -h—-
C L B � 4 C L B「本 

P R M h 三 E ^ i P R M t 三 三 三 C L B , 

C L B 「办 C L B「本 E L U T - - p p -

= ： P R M 三 巨 三 ^ 三 P R M 三 三 三 三 三 

C L B � 4 C L B「本 

Nil I II 1 nil I If— 

Figure 2.3: FPGA structure. 

used to perform the RSA public key authentication while the BBS random number 

generator can be used to generate the session key for the RC4 or IDEA secret key 

ciphers. Actually, the designs can be used in many scenarios ranging from high-end 

server side cryptographic accelerators to low power consumption handheld devices. 

2.4 Modern Reconfigurable Platforms 

The experiments in this research were implemented on Field Programmable Gate 

Arrays (FPGA). FPGA is VLSI chip with some special features. The structure 

of an FPGA is a 2-D array of Configurable Logic Blocks (CLB) surrounded by 
I, 

connection wires. There are some primitives such as lookup tables (LUT) and 

flip-flops (FF) inside the CLB. The functions of these primitives and connections 

between them can be configured for different designs. Programmable routing ma-

trices (PRM), implemented in static RAMs, are used to connect the I/O ports of the 

CLBs. A general structure outline of FPGAs is shown in Figure 2.3. 

The advantages of FPGA designs over traditional VLSI designs are: 
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• Fast design to product time and chips can be reused for different designs. 

• Easy simulation and debugging. Software simulator and debugger provide 

efficient methods of finding bugs and estimating of performance. 

• It is possible to use the same FPGA hardware platform for many different 

cryptographic protocols. This make the design flexible and extensible. 

• Low cost prototyping for early designs which are subjected to be changed. 

• Design can be upgraded after deployment without hardware replacement. 

Today's advanced FPGA chips also offer a lot special components such as large 

memory blocks (BlockRAM) and fast carry chains between adjacent logic blocks 

[Xil02a]. Dedicated multipliers and clock distribution lines can also be found in 

some designs. Due to the overheads associated with providing programmable logic, 

FPGA designs usually have lower clock rate and lower logic density than traditional 

VLSI designs using the same technology. 

The FPGA design flow is shown in Figure 2.4. The design entry can be either 

schematic capture or synthesis via a Hardware Description Language (HDL). The 

schematic flow is more intuitive for small designs while the HDL flow provides an 

efficient way to implement and manage large and complex designs. 

In the synthesis approach, a netlist is generated describing the logic functions 

and their interconnections. The functions are then mapped to the logic primitives of 

the target FPGA platform. The placement of logic primitives and routing of connec-

tions are altered to find an optimized solution which will meet the constraints stated 

by the designer. The implementation process generates a bitstream representing the 

configuration of the FPGA, which can be download to the chip. 

There are many cryptographic protocols that implementing all of them in a sin-

gle FPGA chip is not feasible. Once the applications agree on some protocols, they 

seldom change. The dynamic reconfiguration capability of the FPGAs are suitable 

for such scenarios. An example is secure network communications. Designers can 
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Figure 2.4: FPGA design flow. 
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FPGA Microprocessor 
Unit Price high medium 
Power Consumption low high 
Operation Frequency low high 
Memory Bandwidth high low 
Hardware Parallelism high low 
Customized for Application yes no 
Design Time high low 
Commondity Item no yes 

Table 2.1: Cost/performance tradeoffs between FPGA and microprocessor. 

implement all kinds of cryptographic protocols in different designs targeting the 

same hardware (the FPGA chip). After the software determines which protocol 

will be used, the bit stream of the corresponding design will be downloaded to the 

FPGA. By doing so, a limited hardware resource can serve a wide range of require-

ments. 

Table 2.1 summarizes the cost/performance tradeoffs of FPGA comparing to 

microprocessor designs. It shows that, at the expense of lower clock rate and higher 

price, FPGA designs can achieve higher performance than the microprocessor coun-

terparts through higher degrees of parallelism and customization. 

2.5 Review of Related Work 

2.5.1 Montgomery Multiplier 

The Montgomery method [Mon85] is used in all high performance hardware and 

software modular multipliers. Montgomery multiplier implementations are reviewed. 

In 1993, Peter Komerup [Kor93] proposed an algorithm for computing x^ mod m 

using as high-radix redundant number system. The algorithm required + 工 

cycles per multiplication in radix 2气 This algorithm was adapted in our design. In 

the same year, M. Shand and J. Vuillemin [SV93] form Paris Research Laboratory 
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(PRL) presented a fast FPGA based implementation of RSA system with 1Mbps 

throughput for 521-bit keys. This design was implemented on the PAM (Program-

able Active Memory) system with a matrix of 16 FPGA and the modulus used was 

hardwired in the design. 

A VLSI implementation with lookup table quotient estimation by Che-Han Wu 

et al [WSW+99] showed that higher radix implementations could achieve speed 

improvement at the expense of hardware overhead. + 4)(/c + 1) cycles are 

required for the radix-2^ algorithm where n is the size of modulus and k is the size 

of partitioned multiplier. The highest radix evaluated in that work was radix-16 

which used 10% more logic than radix-2 system based on COMPASS cell library. 

In 1997, Colin D. Walter [Wal97] showed that the product Time x Area should be 

independent of the choice of radix for the best implementations of repeated addition. 

There has been a lot of research on systolic Montgomery multipliers. Colin D. 

Walter [Wal93] proposed a radix-2 system with 2n + 2 cycles latency for an n-bit 

multiplication. This design used a two dimensional array of systolic cells. For a 

500-bit RSA design, this system was estimated to use about 4 x 10® gates. Peter 

Komemp presented another linear systolic Montgomery multiplier [Kor94] which 

had a similar latency. Our implementation of variable radix Montgomery multiplier 

was based on this structure. The estimate throughput of this design is 100kbps 

under a lOOMHz clock. In 2000, Wei-Chang Tsai et al [TSWOO] introduced two 

new systolic architectures for modular multiplication. Simulation using 0.35 iim 

CMOS technology shows that these 3-D systolic arrays had faster computing speed. 

The double-layer system consuming 240k transistors achieved 244kbps for 1024-bit 

RSA and the non-interlaced system consuming 209k transistors achieved 241kbps 

throughput. 

Besides the one presented by Shand, other implementations of Montgomery 

multiplier based on FPGA platforms were reviewed. T. Blum and C. Paar [BP99] 
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implemented a Montgomery exponentiation unit in systolic array architecture. Radix-

4, 8，16 were implemented and Chinese remainder theorem was used for decryp-

tion. An 1024-bit RSA decryption, on a Xilinx XC4000 series, requires 10.18ms, 

12.41ms and 12.52ms respectively for radix-4, 8,16. A. Tiountchik and E. Trichina 

[TTOO] designed a 132-bit radix-2 linear systolic Montgomery multiplier on an Xil-

inx XC6000 FPGA chip. For this design, at least 4 XC6000 FPGAs are required 

for a 512-bit key with estimated bit rate 800Kbps. M. K. Hani et al [HTSHOO] pre-

sented a complete RSA system using Walter's systolic structure on Altera FLEXIOKE 

FPGA system. The core performance of this design was not reported. 

2.5.2 IDEA Cipher 

The block cipher we consider in this work is the IDEA cipher. Although IDEA 

involves only simple 16-bit operations, software implementations of this algorithm 

still cannot offer the encryption rate required for on-line encryption in high-speed 

networks. Ascom's implementation of IDEA (Ascom are the holders of the patent 

on the IDEA algorithm) achieves 0.37 x 10^ encryptions per seconds, or an equiv-

alent encryption rate of 23.53Mbps, on an Intel Pentium II 450MHz machine. Im-

plementation of IDEA using the Intel MMX multimedia instructions was proposed 

by Helger [Lip98] and achieves 0.51 x 10® encryption per seconds or a equivalent 

encryption rate 32.9Mbps, on an Intel Pentium II 233MHz machine. Our optimized 

software implementation running on a Sun Enterprise E4500 machine with twelve 

400MHz Ultra-IIi processor, performs 2.30 x 10® encryptions per second or an 

equivalent encryption rate of 147.13Mbps, still cannot be applied to applications 

such as encryption for 155Mbps Asynchronous Transfer Mode (ATM) networks or 

Gigabit Ethernet. 

Hardware implementations offer significant speed improvements over software 

implementations by exploiting parallelism among operators. In addition, they are 

likely to be cheaper, having lower power consumption and smaller footprint than 
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a high speed software implementation. A design of an IDEA processor which 

achieves 528 Mb/sec on four XC4020XL devices was proposed by Mencer et. al. 

[MMF98]. The first VLSI implementation of IDEA was developed and verified by 

Bonnenberg et. al. in 1992 using a 1.5 fim CMOS technology [BCF+91]. This 

implementation had an encryption rate of 44Mbps. In 1994, VINCI, a 177Mbps 

VLSI implementation of the IDEA algorithm in 1.2 frni CMOS technology, was 

reported by Curiger et. al. [CBZ+93，ZCB+94]. A 355Mbps implementation in 

0.8 fim technology of IDEA was reported in 1995 by Wolter et. al. [WMSL95], 

followed by a 424Mbps single chip implementation of 0.7 /im technology by Sa-

lomao et. al. [SAF98] was reported. In 2000, Leong et. al. proposed a 500Mbps 

bit-serial implementation of IDEA on an Xilinx Virtex XCV300-6 FPGA which is 

scalable on larger devices [LCTLOO]. Later, Goldstein et. al reported an implemen-

tation on the PipeRench FPGA which achieves 1013Mbps [GSB+00]. A commer-

cial implementation of IDEA called the EDEACrypt Kernel developed by Ascom 

achieves 720Mbps [Asc99b] at 0.25 fim technology. The implementation derived 

from the EDEACrypt Kernel, called the IDEACrypt Coprocessor, has a throughput 

of 300Mbps [Asc99a]. 

2.5.3 RC4 Key Search 

There have been two previously reported FPGA based RC4 key search machines. 

In 1996, Goldberg and Wagner proposed an RC4 search engine using an Altera 

RIPPIO board which had 8 FLEX8000 chips and four static RAM chips [GW96]. 

Their design could perform 4 parallel searches and each unit required 1286 cycles 

per key. Kundarewich et al. proposed a key search engine using a single Altera 

EPF10K20 complex programmable logic device (CPLD). In their implementation, 

each search unit required 1304 cycles per key and 5 parallel searches could be made 

at lOMHz [KWH99]. 
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2.5.4 Secure Random Number Generator 

Many VLSI based RNGs (Random Number Generator) have been developed and 

evaluated. The randomness of the generators may be based on electronic noise 

[PCOO], thermal noise [ZHOl], oscillator noise [RRK98] or radioactive decay [hot02]. 

Most of these implementations include an amplified noise source and digital scram-

bling logic. 

Real random number generators based on chaotic systems, provided a very 

compact structure on standard CMOS designs. In 2001, Toni Stojanovski et al 

[sPKOl] implemented a chaos-based RNG in a 0.8 fim standard COMS chip uti-

lizing switched current techniques. The estimate output bit rate of this design is 

1 Mbps. Also on 0.8 fim CMOS process, Andrea Gerosa et al. [GBPOl] imple-

mented a RNG based on a chaotic system. Their design with a pipelined ADC 

(analog-to-digital converter) occupied 2.2mm^ silicon area. 

There are many methods to generate pseudo random sequences. In 1986，Wol-

fram [Wol86] proposed a method to generate random numbers by connected cellular 

automatas (CA). In the method, output of a CA is a function of the current outputs 

of nearby CAs. This method is very suitable for hardware implementation where 

concurrent operations are easy to achieved. RD. Hortensius et al. [HMC89] pro-

posed a VLSI implementation of 1-D cellular automata in parallel structure. The 

30-bit hybrid CA design was about 2.1 times larger than a 30-bit LFSR (linear feed-

back shift register) RNG while offering better randomness and faster clock rate due 

to the nearest neighbor wiring. While selecting a suitable connection scheme and 

automata function is not trivial in higher dimension designs for more randomness. 

As many cryptographic accelerating hardware are FPGA based, it is more desir-

able to have FPGA PRNG (Pseudo Random Number Generator) modules instead. 

Barry Shackleord et al. presented RNGs based on neighborhood-of-four cellular 

automata [STCSOl]. The design made use of the 4-input LUTs in Xilinx FPGA 

to fully utilize the hardware and can generate 64-bit random numbers at frequency 
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as high as 230MHz. Another FPGA implementation of PRNG was introduced by 

Robert K. Watkins et al in 2001 [WIFOl]. Their design used a Genetic Algorithm 

(GA) to generate a set of PRNGs. FIPS-140 was used as fitness function in the 

evolution. This design, implemented on XESS XSV800 Virtex prototyping board, 

relied on the reconfiguration ability at run time. The final product of the evolution 

is a PRNG. 

It is not possible to prove a sequence is random. Some basic tests were in-

troduced by Knuth [Knu81]. A compact and preliminary test suite was defined 

in FIPS-140 by the National Institute of Standards and Technology (NIST). NIST 

proposed a more comprehensive random and pseudo random number generator test 

suite for cryptographic applications in 2001 [A. 01]. Another well known RNG test 

suite is the Diehard test developed by Marsaglia [Mar02]. This is widely considered 

the most stringent RNG test. 

2.6 Summary 

In this chapter, the algorithms and architectures commonly used in cryptosystems 

has been introduced. The applications of cryptography in various fields were pre-

sented. Also, the characteristics and design flow of modem FPGA platforms were 

explained. Related work on Montgomery multipliers, IDEA block ciphers, RC4 key 

searching engines and secure random number generators were reviewed. 



Chapter 3 

The IDEA Cipher 

3.1 Introduction 

The proposed Encryption Standard (PES) is a block cipher introduced by Lai and 

Massay [LM90] in 1990. It was then improved by the Lai, Massay and Murphy 

[LMM91] in 1991. This version, with stronger security against differential anal-

ysis and truncated differentials [HL94, Knu95, Bor97], was called the Improved 

PES (IPES). IPES was renamed to be the International Data Encryption Algorithm 

(IDEA) in 1992. Claims have been made that the algorithm is the most secure block 

encryption algorithm in the public domain [Sch96]. Except for weak key attacks, 

the current best attack is by brute force on the 128-bit key space [Sch96]. 

In this chapter, an IDEA cipher implementation on an FPGA platform is de-

scribed. With a single core, this design can achieve a throughput of 592Mbps en-

cryption rate using a 50MHz operating frequency. The design is heavily pipelined 

to maximize the throughput. A method for pre-computing keys is used in this design 

to save logic resources. It can be used as a hardware accelerator in a cryptosy stem 

such as for Secure Shell (ssh) data transfer and Virtual Private Networks (VPN). 

This chapter is organized as follows. In Section 3.2 the IDEA algorithm as well 

as algorithms for multiplication modulo + 1 are described. The implementation 

of IDEA cipher and interface are presented in Section 3.3. A summary is given 

Section 3.4. 

20 
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3.2 The IDEA Algorithm 

IDEA is a secret-key block cipher. The keys for both encryption and decryption 

must be kept secret from unauthorized persons. Since the two keys are symmetric, 

one can divide the decryption key from the encryption one or vice versa. The size 

of the key is fixed to be 128 bits and the size of the data block which can be handled 

in one encryption/decryption process is fixed to 64 bits. All data operations in the 

IDEA cipher are in 16-bit unsigned integers. When processing data which is not a 

integer multiple of 64-bit block, padding is required. 

The security of IDEA algorithm is based on the mixing of three different kinds 

of algebraic operations: XOR, addition and modular multiplication. This section 

will explain the top structure of the cipher followed by the key scheduling algorithm 

and the S-box {mod + 1) algorithm. 

3.2.1 Cipher Data Path 

The IDEA block cipher shown in Figure 3.1 is based on a Feistel structure [Nyb96]. 

There are 8 identical rounds and an output transformation block in the original 

IDEA data path. The output transformation, as shown in Figure 3.1, is actually 

the upper half of a round with some inputs interchanged. We will reference this as 

half round in the rest of the text. These iterative rounds are used to make differential 

attacks more difficult. 

The 64-bit input plaintext, X, is divided into four 16-bit sub-blocks, Xi to X4. 

After encryption, the four sub-blocks, Yi to I4 are concatenated to the 64-bit ci-

phertext. For every full round, six 16-bit subkeys, Zi to Zq are used. The half round 

block only use 4 subkeys. A key block is used to store the 128-bit input key. The 

subscript in the sub-key is the order which it is extracted from the key block. The 

superscript of the sub-key is the round number in which it is used. For example, Z^ 

is the fifth sub-key used in round 1. The decryption process shares the same data 

path with different subkeys. 
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Figure 3.1: Block diagram of the IDEA algorithm. 
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For the IDEA algorithm in Electronic Codebook mode (ECB) [Sch96], there is 

no loop in the data dependency graph which implies that a deep pipeline technique 

can be applied. 

3.2.2 S-Box: Multiplication Modulo + 1 

The IDEA algorithm uses mod + 1 multiplication as the main mixing operation. 

It maps from the domain Z216 to Z&e+i. In the mapping, 0 G 馬le is mapped to 

2I6 G By doing so, the cardinality of is still 16, making it the same as 

the other two operations. The original algorithm requires a domain transformation 

before and after the Q operation. Since this operation is the most computational 

intensive one in the IDEA algorithm, one of the design considerations was to opti-

mize it. Many methods has been developed to speed up this calculation [CBK91]. 

In this design, we adapted the method proposed by Meier and Zimmerman [MZ91] 

which uses a modulo adders with bit-pair recoding. This algorithm is explained 

in the following pseudo code. 

uintlG mulmod(uintl6 x, uintl6 y) { 

uintl6 xd, yd, th, tl; 

uint32 t; 

xd = (X - 1) Sc OxFFFF; 

yd = (y - 1) & OxFFFF; 

t = (uint32) xd * yd + xd + yd + 1; 

tl = t & OxFFFF; 

th = t » 16; 

return (tl - th) + (tl <= th); 

} 

This algorithm requires a total of five additions and subtractions, one 16-bit 

multiplication and one comparison. However, in IDEA one of the operands of a 
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modular multiplication operation is always a subkey, so the second subtraction can 

be eliminated if the associated subkeys are pre-decremented. 

3.2.3 Key Schedule 

In the key schedule, 52 subkeys are generated from a 128-bit input key. The subkeys 

are formed by rotating the input key. The key scheduling process is: 

• Order the 52 subkeys as … . ， . . z f \ . . z f \ .. .，zf \ 
7(9) 7(9) 
力 1 ，...，力4 . 

• Partition the 128-bit input key into eight 16-bit blocks. Assign them to the 

first 8 subkeys, z}” to 对)，directly. 

• Rotate the input key left by 25 bits to form a new key block. Another 8 

subkeys can then be generated. 

• Repeat the rotation process whenever the subkeys in the current key block is 

used up. 

The decryption subkeys Z ' f ) can be computed from the encryption subkeys 

with reference to Table 3.1. ^ 

3.3 FPGA-based IDEA Implementation 

3.3.1 Multiplication Modulo + 1 

Modular multiplication operations dominate the computation time in IDEA algo-

rithm. A careful and optimized design in this part can improve the complete design 

significantly. Figure 3.2 shows the structure of modulo multiplication operations 

using the algorithm decrypted in Section 3.2.2. 

The adders in level 2 and the subtracters in level 4 are both implemented as 16-

bit adders with carry input. If we subtract 1 from every subkey in the pre-compute 
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r = l 2<r<8 r = 9 

Z f ^ (对。 - r ) ) - l (对。-力-1 (对。 - ’ - l 
^/(r) _^(10-r) _^(10-r) _^(10-r) 

2 2 3 2 
^/(r) _^(10-r) _^(10-r) _^(10-r) 

Z 冬 ） 力 - 1 ( Z f � - 力 - 1 ( 对 1 

Z f ^ 对 - 0 ^(9-r) N/A 

Z t ) 祐 9-『） Z f ^ ^ N/A 

Table 3.1: IDEA decryption subkeys Z '� ;�derived from encryption subkeys Zp). 
- Z i and Z � i denote additive inverse modulo and multiplicative inverse + 1 
of Zi respectively. 
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Figure 3.2: Block diagram of the multiplication modulo + 1. 
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process, the subtracter in the dashed box can be eliminated. This will save some 

logic resources but cannot speed up the design since there is still a subtracter in 

the same level. The operations on the same horizontal level can be carried out in 

parallel. An exception is in the last level where the carry input of the adder depends 

on the result of the comparator. 

As shown in Figure 3.2，the critical path is indicated with a thick line. To get the 

best performance in this module, the 16-bit multiplier is constructed by the Xilinx 

CORE Generator [XilOOb] to maximize the throughput. The generated multiplier, 

with output registers, has a latency of 4 clock cycles. To match the throughput of 

the multiplier, every level is pipelined such that there are 7 cycles latency in the 

modulo 216 + 1 component. 

3.3.2 Deeply Pipelined IDEA Core 

The architecture of the IDEA core has been shown in Figure 3.1. The Q operators 

are replaced by the component described in Section 3.3.1. There are 3 modular 

multiplication in the critical path in a full round. Delays and output registers are 

used to balance the critical path. To save area, delays are implemented with the 

Xilinx Virtex SRL16E shift register primitives [Xil99, GA99]. 

The architecture of the IDEA core after inserting the delays is shown in Figure 

3.3. The numbers in the circles represent the number of delay cycles added to the 

path. There are 22 cycles of latency introduced in a full round and 7 cycles in a 

half round. There for, a complete IDEA cipher has totally 183 cycles delay. Since 

every single logic path has combinational delay shorter than that in the multiplier 

from CoreGen, the throughput of the design is bound by the speed of the generated 

multiplier. Thus, a faster multiplier implementation can improve the design. 

In ECB mode, the design is fully pipelined and a 64-bit plaintext block can be 

processed every cycle since there are no feedback paths. When encrypting a large 

amount of data, the latency is not important. 
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Chapter 3 The IDEA Cipher 28 

3.3.3 Area Saving Modification 

The design can be modified to fit into a chip which is not large enough for the 

complete eight and a half rounds. To use minimum logic resources, only one round 

is used to perform the cipher function. To enable this configuration, a feedback 

control must be added to the data input port in the full round design. As shown in 

Figure 3.3，The there two possible inputs to the core: the plaintext block and the 

output of the previous round. The operation is as follows: 

• Initially, the feedback control logic selects the plaintext block, X, as the input. 

• 22 plaintext blocks are accepted to fill the pipeline. 

• Feedback logic then selects the outputs of the round as input. By doing so, 

the data passes through the round logic again. 

• After 183 cycles, the half-round output is sampled to obtain the ciphertext 

blocks. At the same time, the feedback control accepts plaintext input again. 

Figure 3.4 illustrates the above procedure. The number of rounds instantiated 

can be varied in the design. Trade off between area consumption and performance 

thus can be easily evaluated. For example, if only one round is instantiated, the 

scheme saves up to a factor of 8.5 in area. 

3.3.4 Key Block in Memory 

The key block storing the 128-bit input key needs to be shifted right 25 bits after 

the current subkeys are used up. The number of subkeys generated by the 128-bit 

key block, 8, is not a multiple of the subkeys required in a round. These mean 

the round computation must stall waiting for another set of subkeys after shifting. 

This either makes the control unnecessarily complex or introduces a irregular round 

design. The key block must be restored to the initial state after a data block is 

processed. The 25-bit shift prohibits the restoring procedure to be implemented by 
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regular shifting. Also, the utilization rate of the key scheduling logic is very low. 

Since design has computed all the required 52 subkeys after the first data block, it 

is unwise to repeat the computation for every following blocks. 

To avoid all these problems, the 52 subkeys are pre-computed in software and 

stored in memory (SRL16Es) in the design. The bus width of the key memory is 

6x16 bits which will provide the keys for a complete round. Just before entering the 

next round, the key memory is rotated to prepare the next 6 subkeys. The advantages 

of this design are: 

• No stall stages are required inside a round, thus simplifying control. 

• The round design is regular by assuming the required subkeys are always 

ready. 

• The subkeys are computed only once, in software. 

• The logic for key scheduling is minimized to only several memories. 

• To eliminate the —1 operation of subkey in multiplication mod some 

subkeys should have 1 subtracted from them in the pre-compute stage. The 

scheduling process combines this in software. By doing so, 4 16-bit adders, 

i.e. about 32 SLICEs, are eliminated in each round. 

The above design is suitable for an area optimized IDEA core with less than 

eight and a half rounds. For the design with all required rounds, no rotation in 

memory is required and the subkeys can embedded in the operators for further op-

timization. The drawback of the pre-computed key design is that changing key in a 

design requires runtime configuration. 

3.3.5 Pipelined Key Block 

For the deeply pipelined IDEA core, the values of subkeys are also pipelined. To 

save storage area, shifting is used instead of pipelining. At the start, only the first 4 
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subkeys, Z产 to 对 a r e shifted. After 7 clock cycles, 产 is shifted. After another 

7 clock cycles, is shifted. This scheme ensures that the corresponding subkeys 

are changed at the same time that the data blocks for the current round reach the 

position in the pipeline where the subkeys are used. 

3.3.6 Interface 

The interface to the host system is simple. The host system writes a 64 bits plaintext 

to the FPGA. The hardware sets a flag bit after it receives the data. This flag is 

passed along the same pipeline as the data so that when the flag reaches the end of 

the pipeline, the ciphertext is ready at the output port, and the host system can read 

the encrypted message. This flag also serves as a busy flag for the input. 

3.3.7 Pipelined Design in CBC Mode 

In CBC mode, the input block must be XORed with the ciphertext of the previous 

block and the design can only accept one plaintext block after the previous one 

reaches the end of the pipe. This reduces the throughput by a factor of 183 and so 

the deep pipeline technique does not have any advantages in this mode. 

Since the block cipher is usually used in network communication software, such 

as SSH, on the server side, there may be multiple connections using the same en-

cryption protocol. The server can input plaintext blocks belonging to different con-

nections (and hence different encryptions) in the pipelined design. There is no data 

dependency in these blocks even in CBC mode. By doing so, the utilization rate 

of the hardware is increased and the overall performance is improved. This method 

requires the software to select the correct key scheduling components for different 

connections. Assuming there are large number of concurrent connections such that 

the pipeline can be filled, this scheme can achieve a 22 times speedup in CBC mode. 
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3.4 Summary 

A high-performance implementation of the IDEA block cipher was presented in 

this chapter. The deeply pipelined implementation achieved an encryption rate of 

592Mbps using a 50MHz clock. An area saving design which iterates over a number 

of rounds and can be used in smaller chips was also implemented. 
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Chapter 4 

Variable Radix Montgomery 

Multiplier 

4.1 Introduction 

Modular-multiplication (mul-mod) is an operation commonly used in security re-

lated applications. Such applications include the RSA public key system and secure 

random number generation. This class of computations usually involves vary large 

numbers which range from 512 to 2048 bits in size. This chapter will address some 

methods to improve the computation speed in a hardware implementation. 

Various algorithms have been developed to improve the speed of mul-mod com-

putations. For example, the Montgomery method [Mon85] speeds up the calcula-

tion by converting the inputs to a -residue system. In the Montgomery method, 

simple truncation and bit masks are used instead of trial division, to compute the 

remainder. A systolic array implementation can achieve high performance by di-

viding a complex algorithm into small and regular parts. These small systolic cells 

will work together to produce the final results of relatively higher speed. Combining 

these two techniques can result in significantly improvements in the performance of 

a mul-mod implementation. 

33 
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The configuration parameters of the systolic structure will affect the perfor-

mance of the design. One of the most important parameters is the radix used in-

side the systolic cell. Different radixes will result in different size and speed. In this 

chapter, we explore the relationship between the radix parameter and the size/speed. 

This chapter was organized as following. Section 4.2 introduced the algorithms 

of RSA cryptography. Section 4.3 and 4.4 explained the Montgomery algorithm 

and systolic array structure. The structure radix-2^ Montgomery multiplier core 

was presented in section 4.6. The implementation details was shown in section 4.7. 

Finally, the systolic architecture and brief results are summarized. 

4.2 RSA Algorithm 

RSA [RSA78] is a secure public key cryptography standard used widely in many ap-

plications. It was first invented in 1977 by Ronald Rivest, Adi Shamir, and Leonard 

Adleman. The RSA algorithm can be applied in both encryption and authentication 

systems. 

The basic idea of RSA is quite simple. There are two large prime numbers: p 

and q. These two primes are kept secretly from unauthorized parties. The modulus 

N is the product of the p and q: 

N = p X q. 

By selecting a public exponent, e, such that: 

gcd{e,{p-l){q-l)) = l, 

the receiver can compute the private exponent from these parameters: 

d 二 mod{{p-l){q-l)). 

However, if p and q are not known, N must be factorized to obtain the private 

exponent, and such a factorization is intractable using current technology for larger 

N. 
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To speed up the encryption process, the public exponent, e, is chosen to be small 

in practical applications. The ITU-T (International Telecommunications Union, 

ITU-T) suggests values of e such as + 1 and + 1. 

The encryption/decryption processes can be represented by the following equa-

tions (where C is the ciphertext and M is the message): 

C = Me mod N,M = mod N 

The size of the RSA key is given by the number of bits of the modulus N. For 

reasonable security, common practice is to use RSA keys greater than 1024 bits in 

length. 

4.3 Montgomery Algorithm -AxB mod N 

The security of RSA is based on the difficulty in factoring integers which are the 

product of two large primes. Modular multiplication of large integers also pose 

difficulties using general hardware. One of the most efficient ways to compute the 

modular multiplication, {A x B) mod N, is the Montgomery algorithm [Mon85]. 

The Montgomery algorithm converts the input numbers into a special residual 

system. By doing this, the computation of {mod N) is transformed to be {mod 2”， 

where n is the bit width of N such that < N < The algorithm actually 

computes n — 2 bit data. Let R = TP'. B!, the inverse of R modulo N, is computed 

by R'R 二 1 mod n. Assume the R，and N' are computed in advance such that 

RR' — NN丨=1. 

Transform the inputs in the following way: 

A' = {Ax R) mod N and B' = {B x R) mod N. 

Then the modular multiplication 

P' = {A' xB' X iTi) mod N 
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can be computed by: 

t := A' * B'; 

m := (t * N') mod R; 

u := (t + m * N) /R; 

if u >= n then 

return u - n 

else 

return u; 

The above procedure involves only the division and mod of R, where R is a 

power of 2, greatly simplifying the computation since they become shifts and bit 

masks respectively. The final result can be. obtained by converting u back to a 

normal number system. 

The implementations of Montgomery algorithm can be divided into two dif-

ferent strategies: redundant representation and systolic array. The latter will be 

discussed in detail in later sections. 

4.4 Systolic Array Structure 

Hardware implementations of large integer computations can be done efficiently 

using a systolic array. This design style is characterized by high clock rates and is 

implemented using simple processing elements. 

Each systolic cell has the same structure and is responsible for a small portion 

of the number. The radix of the cell can vary in different designs. Higher radixes 

will consider more bits at a time with reduced number of clock cycles. This is at 

the expense of increased logic count and reduced clock frequency. One extreme is 

the fully parallel design which considers all bits at a time. Another extreme is the 

radix-2 design which considers only 1 bit per cell. 
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It is a challenge to find the optimal radix to fulfill design objectives. Redesigning 

the systolic cell to check the performance for every radix is not efficient. In this 

work, a general radix systolic multiplier cell is proposed. It uses a 2's complement 

number system and the radix can be changed by setting a few parameters. The 

design was developed in VHDL so it can be synthesized on different hardware. 

Developers can optimize the critical part of the model for special target platform. It 

is a fast and reliable way to find out the optimal are/performance tradeoff. 

4.5 Radix-2^ Core 

In this section, the original method of systolic Montgomery design from Peter Ko-

merup [Kor94] is described for completeness. The method to extend the design to 

variable radix is then described. 

4.5.1 The Original Kornerup Method (Bit-Serial) 

for i :=〇 to n 

step_l: q := S mod 2; 

step_2: S := (S + qN) div 2 + aB; 

end for; 

The proof of the correctness of this algorithm is given in [Kor93]. This algo-

rithm is only suitable for computing with an odd modulus N which presents no 

problems in practice. To make the algorithm suitable for a systolic implementation, 

step_2 can be modified as follows: 

• 5 : = l V . 」 + < 0 + « 召 （4.1) 

Since q = S mod 2’ then 5 — g is always even i . e .宇 has no remainder. Since 

N is an odd number, then TV + 1 is always even i.e. ^ ^ has no remainder. The 

first term in (4.1) is generated by right shifting the previous result. The second term 
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is generated by pre-computing The last term is the product of B and the LSB 

from A. A is shifted in every iteration and an a new a is generated then. The actual 

computation in hardware is to sum up 3 numbers (all n bits in width) within a clock 

cycle. Each systolic cell sums parts of the numbers and stores the carries for next 

clock cycle. 

4.5.2 The Radix-2^ Method 

for i := 0 to n/k 

step_l: q := (S*N') mod (2"k); 

step_2: S := (S + qN) div (2"k) + aB; 

end for; 

In this method, the step 2 can be modified as: 

� S N ^ {S mod + q{N mod 2^) 
^ ：二 L ^ J + " L f � + a B + L̂  ^ -J (4.2) 

The last term (referenced as ,f in the rest of this paper) will be within the range 

of [0, — 1]. This suggests that the computation is still a sum of 3 inputs except 

thekLSBs. 

The structure of a n-bit (actually n+2-bit in hardware) radix-2^ Montgomery 

multiplier is shown in Figure 4.1. The extra bits in hardware are to eliminate the 

need for final reduction after Montgomery multiplication. 

The inputs and outputs of the top level entity in Figure 4.1 are shown in table 

4.1. F-cell in the figure computes the last term in Equation 4.2. Let j = logs k. In 

every clock cycle, one systolic cell outputs j bits of S in the corresponding location. 

4.5.3 Time-Space Relationship of Systolic Cells 

The figure 4.2 shows the time-space relationship of the systolic cells. It shows that 

by inserting registers between cells, one can control the computation of iterations 

in which a cell performs according to the cell's location in the array. 
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B � N mod k 
d 

z z z z z z z z 

0 s-cell ~ ^ ^ s - c e l l ^ r-cell ^ _ f-cell 

^ t M , k M 
i\ l\ i\ 八 八 l\ ‘ q 八 

N/k N，mod k 

Figure 4.1: Top level overview of multiplier. All signals in this figure are k-bit in 
width. 

name direction general width 
B,N in .n+2 
A in n (bit-length) 
N'mod2 in log2{radix) 
SoUt out log2{radix) 

Note: A is shifted log2{radix) LSBs to the r-cell every clock cycle. 

Table 4.1: Inputs and Outputs of Top Level Entity. 

space (k ^ cell) 0 

z time � 

— — — — -1 

J V 

Figure 4.2: Space and time relationship of the systolic array. 
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L_/(n-l) 
((n-l)(n-l)) Z Ci ^ 

(n-1)/ k 
W ^ A 2k+l \ 

A d d l ——-\ 

((n-l)(n-l)) ( n - 1 )产 ^̂  \ / 

(n-1) , (n-1), 
h / > Add3 — M Add4 

((n-l)(n-l)) (n-l)V ” \ / 

/ 
((n-l)(n-l)) \ C2 C3 ^ ― 

Figure 4.3: Generalized data path of radix-2^ cell. 

4.5.4 Design Correctness 

The correctness of the design depends on handling carries and matching the bit 

widths of each of the terms. Figure 4.3 shows the bit width of each component of 

an r-cell. The numbers in the parentheses are the maximum values passed though 

the paths and n = It can be seen from in the figure that no overflow will occur 

on any signal. 

4.6 Implementation Details 

A set of VHDL files was developed to describe the behaviors of the components 

in the model. The width of I/O and internal signals were controlled by generic at-

tributes of the entities. So there are no hard coded bit widths in the system. The 

radix and bit width of the design are controlled by two constants in the top level 

entity. These two parameters propagate through out the design in a top down fash-

ion. By changing the value of the two constants in the top level entity, the complete 
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design can be transformed to any radix base as needed. Since the generic attributes 

are resolved during the synthesis stage, this will not introduce any overhead on the 

target hardware. The bottleneck of the design is the multiplier used to compute aB 

and qN. To make the design as flexible as possible, the default VHDL operator, ‘*’， 

was used. Designers are free to replace the multiplier used, provided that the I/O 

and timing requirements are matched. For example, the fast 18-bit unsigned multi-

pliers in the Xilinx VirtexII chip can be used to replace the ordinary ‘*，operator in 

VHDL. 

4.7 Summary 

In this chapter, a method to construct a variable radix systolic Montgomery multi-

plier hardware was presented. The width of the datapath of these designs can be 

changed via generic parameters. By doing so, the radixes in the multiplier can be 

adjusted by designer. This will help to measure the performance of different designs 

efficiently. 



Chapter 5 

Parallel RC4 Engine 

5.1 Introduction 

In this chapter, an implementation of the alleged RC4 cipher which achieves signifi-

cant performance improvement over a microprocessor implementation is presented. 

RC4 is used for encryption in products such as the secure sockets layer (SSL) proto-

col, the secure shell (SSH) protocol, the wired equivalent privacy (WEP) algorithm 

(part of the IEEE 802.11b wireless LAN security standard), Lotus Notes, Oracle 

Secure SQL, Microsoft Office and Adobe Acrobat (Acrobat 4.x or older). Further-

more, the key size is often limited to 40 bits due to US export restrictions. 

A brute force key search can be used to determine the key used to encrypt a 

message by trying every possible key to decrypt the message. Such a key search is 

trivially parallelizable and successful key searches using loosely coupled micropro-

cessors in a distributed computing approach have successfully been applied to the 

56-bit DES algorithm and the 56-bit RC5 algorithm. 

Application specific integrated circuits (ASICs) have also been used by the Elec-

tronic Frontier Foundation (EFF) to implement a DES key search engine, called 

"Deep Crack，，，which could search 88 billion keys per second [Ele98]. The ma-

chine solved the "Blaze Challenge" and the RSA Laboratories DES-DI challenge, 

the latter on January 1999 in 22 hours [RSA99]. One limitation of an ASIC based 

implementation is that they are hardwired for specific problems. 

42 
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There have been two previously reported FPGA based RC4 key search ma-

chines. In 1996，Goldberg and Wagner proposed an RC4 search engine using an 

Altera RIPPIO board which had 8 FLEX8000 chips and four static RAM chips 

[GW96]. Their design could perform 4 parallel searches and each unit required 

1286 cycles per key. Kundarewich et. al proposed a key search engine using a 

single Altera EPF10K20 complex programmable logic device (CPLD). In their im-

plementation, each search unit required 1304 cycles per key and 5 parallel searches 

could be made at lOMHz [KWH99]. 

The RC4 implementation described in the chapter integrates the key search con-

troller and 96 parallel RC4 decryption engines on a single Xilinx Virtex XCVIOOOE 

FPGA (much larger FPGA devices are already available). Although the RC4 imple-

mentation operates at a clock frequency which is an order of magnitude lower than 

that of the latest microprocessors, the FPGA implementation achieves a significant 

speedup due to the following features: 

• Parallelism in the implementation of the RC4 core allows several operations 

to be completed in a single cycle. 

• On-chip resources were used to achieve a very low latency, high bandwidth 

memory interface 

• The memory used was dual-ported, allowing for higher memory transfer effi-

ciency. 

• Floorplanning was used to minimize interconnect delays 

• A large number of the encryption cores were used in parallel. 

In this implementation, each search unit requires approximately 800 cycles per key 

and 96 such units are integrated on a single FPGA. 

The rest of the chapter is organized as follows: in Section 5.2, the RC4 and key 

search algorithms are described. Section 5.3 describes the architecture of the RC4 
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implementation. Implementation details are presented in Section 5.4. Finally, there 

is a summary on this work in Section 5.5. 

5.2 Algorithms 

5.2.1 RC4 

RC4 is a stream cipher designed by Ron Rivest and was originally proprietary to 

RSA Data Security [Sch96]. The algorithm was leaked anonymously to the Cypher-

punks mailing list in 1994. The RC4 algorithm generates a key dependent pseudo-

random number sequence of arbitrary length. 

In the description below, two 256 byte arrays are used, namely the K-block, K 

and the S-block, S. Note that the K-block does not change during the encryption 

process. 

The RC4 algorithm can be divided into 2 phases: a key scheduling phase and the 

pseudorandom number generator (PRNG) phase. Both phases must be performed 

for every new key. 

In the key scheduling phase, a scrambling process is used to produce a key 

dependent permutation of 0 ,1 ,…255 in the S array. In the initialization stage, the 

S array is set to the identity permutation using the formula S[i] — i{i = 0,1... 255) 

and the K array is set to the key, repeating as necessary to fill the array. The S array 

is scrambled by selecting two indices i and j and then swapping S[i] and In 

pseudocode form, the key schedule is computed as follows: 

keyschedule() 
{ 

/* initialization */ 

for i = 0 to 255 

s[i] = i; 
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/* scrambling */ . 

j = 0; 

for i = 0 to 255 
{ 

j = j + K[i] + S[i]; 

swap S[i] and S[j]; 

} 

} 

The PRNG phase is similar to the key schedule. Indices i and j are selected 

and S[i] and S'[j] swapped. The output of the PRNG is the value of the S array 

indexed by S[i] + S[j] (i.e. S[S[i] + S[j]]). Encryption or decryption is achieved by 

performing an exclusive-OR of the pseudorandom number output with the plaintext 

or ciphertext respectively. The pseudocode below shows the process for encryption 

of the plaintext in the pt array, the result being written to the ciphertext array ct: 

prng() 
{ 

i = 0; 

j = 0; 

while not end of stream 
{ 

i = (i + 1) mod 256; 

j 二 （j + S[i]) mod 256; 

swap S[i] and S[j]; 

t = S[i] + S[j]; 

ct[i] = pt[i] xor S[t]; 

} 

} 
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5.2.2 Key Search 

The design described in this chapter performs a known plaintext attack via a key 

search [Sch96]. In a known plaintext attack, it is assumed that the ciphertext as well 

as the corresponding plaintext is available and one wishes to deduce the key used 

for encryption. The same architecture, with additional filtering logic (e.g. to detect 

if the message is 7-bit ascii) could be used for a ciphertext only attack. 

If the plaintext and ciphertext are known and n bytes in length, checking that 

the ciphertext, ct, when decrypted using a key k is the same as the plaintext pt, is 

equivalent to checking if the first n bytes of the PRNG produces the sequence pt xor 

ct. 

If N RC4 key search units are available, i is an index used to identify each RC4 

key search unit, and rc4:{cxp, k) checks to see if the PRNG produced with key k 

gives cxp, the key search procedure can be described in psuedocode form as: 

keysearch() 
{ 

k = 0 ; 

cxp = pt xor ct; 

forever 
{ 

for i = 0 to N-1 (in parallel) 
{ 

found = rc4(cxp, k + i) 

if (found(i)) 

return k + i; 

} 

k 二 k + N; 

} 

} 
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K-Block 

S-Block 

f 1 addrA t 
doutA IHtW )~/»�t_pre 
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RAMB4_S8_S8 
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^ I addrB cxp 

doutB 
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M found ) > found 9~> 
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Figure 5.1: Datapath of the RC4 cell. 

5.3 System Architecture 

5.3.1 RC4 Cell Design 

The datapath of a single RC4 cell is shown in Figure 5.1. The core component of 

the RC4 cell is the S-block for the S array, which is implemented using a 4096-bit 

on-chip Block RAM [XilOOa], configured as an 8-bit wide dual port memory. Since 

the RC4 algorithm requires only 8 x 256 二 2048 bits of memory for the S array, the 

Block RAM is divided into two halves via the most significant bit of the address. 

As the key scrambling phase for a new key is being computed in one half of the 

RAM, initialization for the next key is done in the other half. This scheme saves 

256 cycles and hereafter, this combined initialization and scrambling step will be 

referred to as the key schedule phase. 

Each iteration of the key schedule phase requires 3 clock cycles as shown in 

Figure 5.2. In the first clock cycle, i is passed into port A of the Block RAM as an 
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clock 

addrA ~ ( i X X 

doutA ( S[i] ) ^ l j o l X X 

- I \ I \ ^ 

addrB ^ ( zbuff[i] \ j。 \ 、 ^ ^ 

doutB 〈 Q X 邓 ] X 1 X StJi] 

w e B � \ I \ I 

Figure 5.2: Timing diagram of the block RAM during the key schedule phase. 

address, and the initialization of S for the next key is done at the same time via port 

B. In the second clock cycle, the value of S[i] becomes available and j is computed. 

In the last clock cycle, S[j] is available and the contents of S[i] and S[j] are swapped 

and written back to S. The total clock cycles required for the key schedule pahse are 

768 (= 3 X 256). 

The PRNG phase (see Figure 5.3) also requires 3 clock cycles per iteration, 

hence a total of 768 + 3n cycles are required to test each key (for an n byte long 

ciphertext). Operations in this phase are similar to those of the key schedule phase 

except that S does not require initialization. The t value is ready (as the t-pre signal) 

in the first clock cycle of the next iteration. The output, s[t], is read and compared 

with the cxp value in following cycle. 

A possible memory contention problem exists in the last clock cycle of each 

iteration in the key schedule and PRNG phases, since it is possible that both ports 

attempt to write the same data to the same address, producing unpredictable results 

[XilOOa]. To avoid this conflict, a comparator is added to the RC4 cell (not shown in 

the schematic) so that if i and j are equal, the write enable to the memory is disabled. 

The operation performed in this clock cycle is to swap S[i] and S[j]. If the array 

indexes are the same, there will be no swap and no data losses. 
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clock 

addrA ~ ( i X ^ 丨+丄 丨 ） C 

doutA ( S[i] ^ S — ] SUi] 
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compare key i 

Figure 5.3: Timing Diagram of Block RAM in PRNG Phase 

Finally, a latch called found in the RC4 cell is used to indicate whether the key 

being tested matches the plaintext. This latch is cleared if the byte produced by 

a decryption does not match cxp (as described in Section 5.2.2). Should the latch 

remain high after all bytes of the plaintext have been tested, the key being tested is 

the desired key. 

5.3.2 Key Search 

The top level block diagram of the design is shown in figure 5.4. All RC4 cells are 

identical. Each cell accepts a key input and sets a flag if the input is a valid key. 

There is one global key register which is initialized by the host and routed to all 

RC4 cells. A local key is computed in each cell by summing the global key with a 

cell offset, which is a unique value ranging from 0 to 95. By using this scheme, the 

RC4 cell array can process 96 different keys in parallel, after which, 96 is added to 

the global key. 

All RC4 cells share a common control unit, implemented as a simple finite state 

machine (FSM). This unit controls the state of all the RC4 cells, updates the global 
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Figure 5.4: Block diagram of parallel RC4 key search machine, 

key and also provides the interface to a host computer (discussed in Section 5.3.3). 

5.3.3 Interface 

In the host/key search engine interface protocol, the host must download the ex-

pected PRNG sequence cxp and then the start key value for the key search. After 

the search engine receives the start key, it works independently of the host, testing 

new keys until it detects that the found flag of an RC4 cell has been asserted (in 

which case the FSM halts). The host then can read the global key and offset which 

produces cxp. The host and key search engine communicate via a set of 3 64-bit 

read and 2 64-bit write registers. 

The interface protocol is detailed in Table 5.1. Write registers are used by the 

host to send the start key (wO) and expected PRNG sequence, cxp (wl) to the key 

search engine. After the key has been found, the host can read back the global key 

value (rO), and the offset of the RC4 cell which asserted the found flag (rl, r2). 

5.4 Implementation 

The design is modularized and floorplanning was done to reduce implementation 

time as well as improve the maximum frequency of the design. In this section, 
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“Step Action Register State 一 

1 Host writes expected PRNG sequence (cxp) wl ^ 

2 ^ Host writes start key wO start 
^ 3 H o s t polls flag registers rl，r2 searching 

4 S e a r c h engine writes 96-bit offset r 1, r2 halt 
^ 5 H o s t reads global key rO idle 

6 H o s t reads offset rl,r2 idle 

Table 5.1: Host/key search engine handshaking protocol, 

details of the implementation are presented. 

5.4.1 RC4 cell 

There are 8 major components inside an RC4 cell, the dual port RAMs and the 40-

bit local key registers being excluded from the RC4 cell for reasons described in 

Section 5.4.2. The names of the components and their functions are listed in Table 

5.2. 

The RC4 cell was designed t o fit into a 4 row x 6 column Virtex-E config-

urable logic block (CLB) array. All components are structural HDL descriptions 

containing only primitives provided by the Xilinx library. The physical placement 

of components were fixed using relative location (RLOC) attributes. The complete 

cell i s a RPM (Relationally Placed Macro) which can be instantiated multiple times 

in the top level design. The block diagram in Figure 5.5 shows the layout of com-

ponents within the RC4 cell. I n the figure, the small rectangular boxes represent a 

slice (two logic cells, where each logic cell contains a 4 input lookup table) and two 

adjacent slices form a Virtex-E CLB. This scheme ensures low local routing delays. 

The multiplexer for the K-unit, which is used to select a byte from a 40-bit 
key, is implemented using tristate buffers (TBUFs) and do not use CLB resources. 

This scheme replaces the large multiplexer in Figure 5.1 and reduces both logic and 

routing resources. 
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name function 
D_un i t8 -b i t 2-to-l MUX 

select portB data input 
A_uni t8 -b i t 3-to-l MUX 

select portB address input 
F_unit 8-bit compare and registers 

g e n e r a t e s i g n a l 
W_unit 8-bit compare 

detect Block RAM address conflict 
Lunit combinational logic to 

control MSB of portB address 
J.unit two 8-bit adders with registers outputs 

compute the j value 
T-unit 8-bit adder with registered outputs 

compute the t value 
K-unit 5-to-l 8-bit mux (using tristate buffers) 

select byte from K-block 

Table 5.2: Components inside an RC4 cell. 

r D ] ( A i： F i 1 W ii I i： J i T ： 
口丨|串丨|口 口丨口 

|口||口 •丨丨ol 口 • 口 

|口||口 口丨口！ I •丨丨口 o lo l 
• i in…―口丨口丨Inl ln…….口丨口丨 

Figure 5.5: Block diagram showing component placement within an RC4 cell. 
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5.4.2 Floorplan 

On the XCVIOOOE FPGA, the 96 Block RAMs are grouped into 6 columns. Ad-

jacent Block RAMs are separated by 4 rows of CLBs. The RC4 cell described in 

Section 5.4.1 was designed to have the same pitch as the Block RAM and hence, 

each of the 96 RC4 cells is placed adjacent to a Block RAM which is used for the 

S-block. 

The 40-bit local key is another module used in the design. This module is a 

40-bit adder with registered outputs and is used to latch the sum of the global key 

and the offset of the RC4 cell. To avoid breaking the fast carry chain, this module is 

implemented as a column which is 20 slices (or 5 RC4 cells) high (see Figure 5.6). 

Five local keys are grouped together and placed perpendicular to their correspond-

ing RC4 cells as shown in Figure 5.6. Since the local key modules have no direct 

connections to the Block RAMs, placing them away from the Block RAM column 

does not increase the routing delay. Since the TBUFs and CLBs are independent, 

the RC4 cell overlaps with the local key module in a section where the RC4 cell 

only uses TBUFs and the local key module only uses the CLBs. 

Figure 5.7 shows the floorplan of the completed design. It can be seen that the 

RC4 cells and local key modules are placed close to the Block RAM columns. The 

control unit is located in the center where the distance to all RC4 cells is minimized. 

5.5 Summary 

In this chapter, a highly parallelized RC4 key search engine based on FPGA device 

was presented. Both high level design using VHDL and low level optimizations 

using floorplanning tools are implemented in the design. 
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Chapter 6 

Blum Blum Shub Random Number 

Generator 

6.1 Introduction 

Random number generators (RNG) are important in many security related applica-

tions such as key generation in cryptography [Ram89] and challenge generation in 

authentication protocols [TTTM02]. Most cryptographic systems rely on the unpre-

dictability and irreproducibility of generated random sequences. Other applications 

using random number extensively are circuit testing, computer-based gaming, mod-

eling of genetic systems and simulation. The main purpose of this work is to study 

a highly random hardware RNG based on a bit serial implementation. 

There are two classes of random number generators: real random number gen-

erators (RRNG) and pseudo random number generators (PRNG). Both RRNGs and 

PRNGs can produce a random bit stream for external use. The RRNG makes use 

of a non-deterministic source which may be the electronic noise, thermal noise or 

even radioactive decay [hot02]. PRNGs generate pseudo random numbers based on 

a deterministic algorithm. PRNGs require a starting state value called a seed. A 

common practice is to seed the PRNG using a RRNG and then use the PRNG to 

generate random numbers for the application. 

55 
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There are two major performance criteria for RNGs: randomness and genera-

tion rate. A good RNG for cryptographic applications must be able to generate an 

unpredictable (at least to the external world) random sequence. On the other hand, 

the RNG must generate random numbers fast enough for various applications such 

as SSH servers and PKI based e-commerce systems. 

This chapter introduces an implementation of a cryptographically secure hard-

ware random number generator which can generate random numbers at an average 

rate of 211bps. The design includes one RRNG and one PRNG. The random se-

quence is actually a BBS (Blum Blum Shub) [LMM86] sequence and takes a ran-

dom number generated by the RRNG as a seed. It is desirable to have a small, flex-

ible and modular RNG, since cost, footprint and ease of interfacing are improved. 

The chapter is organized as follows. The real random number generator algo-

rithm was first introduced in Section 6.2. Then the BBS algorithm was described in 

Section 6.3. The top architecture of the RNG and the design details were presented 

in Section 6.4 and Section 6.5. The last section gave a summary of the design. 

6.2 RRNG Algorithm 

The physical random number source used is the phase-noise of a free-running oscil-

lator. We chose this source since it has the least external components for an FPGA 

and the circuit can be powered directly by the FPGA chip. There are two clocks in 

the design: a slow and unstable external clock, Fi and a fast and accurate internal 

clock, Fh. This is achieved by using an edge-triggered D-type flip-flop with Fi as 

clock input and feeding the Fh to the data input. By doing so, the two square waves 

are mixed together to produce a output F” Figure 6.1 shows this structure. 

The output rate of this method depends on the slow clock, Fi, which is delib-

erately designed to have high phase noise. Since this clock is not stable and the 

frequency varies with time, the throughput of the device is not fixed. 
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Figure 6.1: Oscillator sampling using D-type flip-flop. 

There are several factors which affect the quality of the randomness of the algo-

rithm. The first situation is that the duty cycle of clock Fi may not be 50%. In this 

situation, Fr will have unequal probability of being '0' or '1'. A parity filter which 

will even the number of ‘0，and ‘ 1，in a bit stream was applied to Fr. It can be shown 

[RRK98] that the probability of a T generated by the filter is 0.5 — 2几—i (p - 0.5广 

where p is the probability of ‘1’ in raw random stream Fr and n is the number of 

flip-flops in the parity filter. As n increases, the value of the expression tends to 0.5. 

The second factor is the selection of clock frequency. If the variation of the period in 

Fl is not large enough, there will be correlation between bits and so the value of the 

output can be predicted to some extent from the previous values. Previous research 

[RRK98] has shown that the standard deviation of the period of Fi should at least 

be 0.75 times the period of F^. A third factor affecting the quality of the RNG is 

the random source itself. As there are both periodic and aperiodic electro-magnetic 

noise inside a computer system, there may be a patten in the output sequence as 

the result of coupling of periodic noise. The source of periodic noise includes the 

mains AC power supply, the master clocks on various bus systems, nearby wire-

less communication devices, etc. There is no way to eliminate this factor since 

the developing environment and the target environment are different and subject to 

change. The only way to test the quality of the RRNG is to test the results before 

installation and reject if it fails to pass the test suit. 
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6.3 PRNG Algorithm 

The BBS algorithm [LMM86] was used in this design due to its high security. 

Some believe that the BBS algorithm is the most secure PRNG method available 

[VMD98]. The security of BBS is based on its long period and the difficulty in 

predicting the sequence even if all previously generated bits are known. Despite the 

strong security of the algorithm, the BBS sequence generator is simple and easy to 

understand. The following equation generates the BBS sequence Xi where i is a 

positive integer. 

Xi+i 二 Xl mod M 

The M used here is a product of two large prime numbers p and q, which both 

have a remainder of 3 when divided by 4. X � i s a seed which is co-prime with M. 

As proofed in [LMM86], a deterministic algorithm to compute the unique quadratic 

residue X—i mod M such that mod M = X�requires the knowledge of the 

prime factors of M. So M needs not to be kept secret as long as p and q are kept 

secret. 

This algorithm is appropriate for use in cryptographic applications. Since large 

integer arithmetic is involved, it is slow comparing with other PRNGs. However, it 

has a strong security proof [LMM86], which relates the quality of the generator to 

the difficulty of integer factorization. The output of the generator is formed from 

the log式logaM) least significant bits of Xi. The original algorithm only outputs 1 

(least significant) bit per iteration. But Vazirani and Vazirani [VV84] showed that 

we can safely use at least log2{log2M) bits and the prediction of this sequence is as 

hard as factoring M. The typical bit width of Mis 512 or 1024. Using a larger size 

will increase the number of available bits in each iteration, however, this is at the 

expense of larger storage area and computing power requirements. 
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Figure 6.2: Overview of the RNG and PRNG. 

6.4 Architectural Overview 

A complete RNG was designed on a single FPGA chip with few external compo-

nents. Since the target is to be used for cryptographic hardware, the circuit size of 

the generator should be as small as possible, leaving more logic resources for other 

functions. The generated data can be stored in a buffer for other logic on the same 

chip or read by the host system as a direct random source for software applications. 

The design can be separated into two parts: the RRNG part and the PRNG part. 

Fig 6.2 shows the relation between the two parts. The RRNG first fills its buffer with 

random bits. This buffer will then be used as a seed in the PRNG part if constraints 

are met. The output of PRNG is also stored in a buffer which can be read by a host 

computer or other modules on the same chip. These two parts work independently. 

6.5 Implementation 

In this section, the implementation details are presented and the considerations be-

hind the implementation are explained. The implemented design includes a 1024-

bit BBS PRNG. The size of the BBS algorithm can be easily changed by appending 

more registers and increasing counter size. The modulus M in BBS algorithm is 

hardwired in the design. 
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Figure 6.3: RRNG circuit. 

6.5.1 Hardware RRNG 

The RRNG circuit inside FPGA is shown in Figure 6.3. Two clocks are used in 

the design. Fh is a lOOMHz high frequency clock generated by the PC DIMM 

interface. This clock is also the master clock for other parts in the design. Fi is a 

low frequency clock generated by an RC circuit which ranges from 225Hz to IMHz. 

This RC circuit is constructed outside the FPGA chip and is sensitive to electronic 

and thermal noise. A variable resistor was used for testing the circuit using different 

clock rate. The digital mixing of Fh and Fi was implemented as shown in Figure 

6.1. We call the output of this circuit, F” the raw random bit stream. A parity filter 

with 4 stages was applied to the raw random bit stream to accomplish the duty cycle 

bias. This is necessary since experiment results show that the duty cycle of F" was 

approximately 54%. 

The dual port BlockRAM acts as both a buffer storage and interface. The ran-

dom bit stream is written to the memory through one port under Fi, The PRNG 

circuit reads this stream through another port under Fh. The RRNG circuit also 

contains a counter (not shown in Fig 6.3) whose output is used as the address for 

the BlockRAM. 

The RRNG circuit starts generating a real random bit stream after power up. 
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^ " " " ^ — — F i 
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Figure 6.4: Circuit of External Clock. 

When the buffer is full, the write enable is dis-asserted and the contents of the 

buffer remain unchanged. It will then assert a full signal to other parts of the circuit 

indicating that there are new random data in the buffer. When the PRNG requires 

a new stream of random bits, the circuit is reset and the process restarts. This is 

necessary since the stored random data may not pass the BBS seed validation. In 

this case, the BBS PRNG discards the current data and requests new data. 

Fig 6.4 shows the design of the low frequency oscillator. The inverters used 

in the circuit are from a TTL 74LS74 chip. The charge on the capacitor and the 

resistance of the resistor will be affected by the background noise. This is the source 

of randomness in the design. 

6.5.2 BBS PRNG 

Fig 6.5 shows the data path of BBS PRNG. Note that all datapaths are one bit in 

width. 

The computation part of the PRNG is a bit serial ALU. The signal op selects its 

operation modes: 

A-\-'B-\- Cin if op = 0 and sub = 0 

ALU output = < B - A if op = 0 and sub = 1 

B + Cin otherwise 
V 
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Figure 6.5: Circuit of BBS PRNG. 

There are 4 1024-bit shift registers in the design: M, X’ Y and Z. Register M 

stores the value of M which will not be changed. Register X stores the value of X^. 

This value is initialized to a random seed from the RRNG and refreshed after each 

iteration. Register Y and Z can be combined to form a 2048-bit register, register 

YZ, to store the temporary results of ALU operations. All registers are constructed 

by cascading SRL16E components to reduce area consumption. The SRL16E is a 

single LUT configured as a 16-bit shift register with enable. 

There are two internal flag registers: 0_flag and IJiag. When the output of ALU 

is 0, the 0_flag is set. Else if the ALU result is 1，the IJiag is set. These two flags 

are examined by the control FSM (finite state machine). The FSM also requires 

3 counters (not shown in the circuit). Two of them are 10-bit counters which are 

used for arithmetic operations. The other one is used for storing random data to the 

buffer and should be 4 bits (i.e.�Zop2Zo"2l024"|) in size. 

The BBS PRNG performs three functions: seed validation, multiplication and 

modulo operations. 

Seed Validation 

One requirement for the BBS algorithm is that the seed, Xq must be co-prime 
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-Register Value before validation Value after validation 
"M M M 
X M don't care 
Y Xo 0 or 1 
Z Xq XQ 

Table 6.1: Contents of registers in validation process. 

with the modulo M. Euclid's method [Knu81] of finding gcd{Xo,M) was per-

formed. The following pseudo code shows the algorithm used: 

* 

seed—validation() { 

get—seed: 

X = read(RRNG); 

M = modulus; 

gcd_sub: 

M = M - X； 

if (M 二二 1) return(seed 二 x); 

if (M == 0) goto get—seed; 

i f (M < 0) M = M + X ; 

swap X, M; 

goto gcd—sub; 
} 

Table 6.1 shows the content of every registers before and after validation process 

starts. 

The addition and subtraction in the process are performed in a serial manner. 

The LSB of register X and Y are passed to ALU as operand and the registers are 

shifted to right after each clock cycle. A single +/- operation will consume 1024 

clock cycles then. To test if y — x is smaller than zero, the carry bit is checked. 

Since we assume all operands {Xq and M) are positive, the carry bit should be zero 

after subtraction if the result is also positive. 
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Register || Value before Mul Value after Mul 
"M M M 
X Xi Xi 
Y 0 (̂ 2)[511：256] 

^ (对)[255:0] 

Table 6.2: Contents of registers in multiplication process. 

Multiplication 

Table 6.2 shows the values of all registers before and after the multiplication 

process. The following pseudo code shows the procedures of performing a multi-

plication. Note that 1024 cycles are required to perform an add in the line labeled 

LI. 

multiplication() { 

repeat 1024 times { 

LSB(Z) = 1 then 

L I : Y = Y + X; 

else Y 二 Y; 

shift—right—one一 bit(YZ); 

} 

} 

Modulo 

The result in register YZ is now X];. The design then subtracts the contents of 

register Y by that of register M. Y is recovered if a negative result is generated. 

Register YZ is then shifted left by 1 bit and the process repeated. After 1024 it-

erations, the value stored in register Y is the result of X^ mod M. The following 

pseudo code performs the Mod operation. 

mod(M, YZ) { 

repeat 1024 times { 
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Register || Value before Mod Value after Mod 
"M M M 
X Xi Xi 
Y (xf)[511:256] Xf mod M 
z I I (X?)[255:0] |don, tcare 

Table 6.3: Contents of registers in Mod process. 

Y = Y - M; 

if (Y < 0) Y = Y + M; 

LI: YZ = shift—left—Ibit(YZ); 

} 

} 

Table 6.3 shows the values of registers before and after the Mod process. 

The algorithm is simple division using the paper-and-pencil method except that 

the quotient is not stored. There are faster methods for finding the remainder but the 

design described can be implemented in a manner which utilizes very little circuit 

area. 

One implementation detail should be noted. In the pseudo code, register YZ is 

shifted left by one bit. In actual hardware this is not possible since the shift register 

is implemented by SRL16E components which can only shift in one direction. In 

most other operations including the validation, multiplication and backup, the reg-

isters shift in the right direction. The line labeled LI is the only exception in the 

design. Our decision here was to make the hardware simple and uniform. This shift 

left operation is transformed to a shift right of 2047 bits through the ALU. We may 

implement the Y and Z registers in D-type flip-flops with selected inputs and leave 

the X and M registers unchanged. This will simplify the control unit but the size of 

the design will grow. As a SRL16E can replace 16 shift registers, the size of register 

Y and Z will grow by a factor of 16. Considering that we have only 4 registers in 

the complete design, this will make the design about 4.5 times larger. Thus this 
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approach was not used. 

Restoring Register X 

After the Mod operation, the result, Xf mod M, is then stored in register Y. 

We need to restore the registers' value to prepare for the next iteration. This is 

done by copying Y to X and Z. At the same time, zero is shifted in Y. The flag 

registers and carry register should also be cleared. After the restoring, the values in 

the registers are the same as list in the second column in Table 6.2. At the beginning 

of restoring, 10 LSBs in register Y are also shifted to the buffer in PRNG. This is 

the pseudo random bit stream generated in this iteration. 

6.5.3 Interface 

The PRNG buffer is also implemented in a dual port BlockRAM. As the pseudo 

random bit stream is shifting in one port, the host or other circuit in the same FPGA 

can read the random data through another port with 8-bit bus. The PRNG will 

assert difull signal when the BlockRAM is filled up. After detecting the full signal, 

the external design or host can start reading the data. There is also a reset signal 

which is used to clear the full signal. 

Since random numbers are required, overwriting the data in the buffer when the 

buffer is full will not affect the randomness of the result. Thus no other handshaking 

circuit is needed. To read a continuous sequence from the design for evaluation, a 

double buffer method is used. As the host reads one buffer, the PRNG is writing to 

the other. 

6.6 Summary 

In this chapter, two serial RNGs were introduced. The RRNG senses the external 

noise and produces a raw random bit stream. This raw random data is used as a 

seed in the PRNG which uses the BBS algorithm. The output pseudo random bit 
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stream is stored in buffers and can be used by either host or other circuit in the same 

chip. The entire generation process does not involve any CPU operations or use any 

memory storage in the host system. Thus security of the design is enhanced since 

the RNG state can be kept internal to the FPGA device. A serial architecture, which 

reduces circuit size, admittedly at the expense of speed, was used. 



Chapter 7 

Experimental Results 

7.1 Design Platform 

The results presented in this chapter are based on the following environment unless 

otherwise specified: 

Design Entry VHDL 

Target FPGA Platform Xilinx VirtexE family (XCVlOOOE-6) 

Target Prototype Platform Pilchard 

Simulation Tools Synopsys VSS 2000.12 

Synthesis Tools Synopsys FPGA Compiler II 

Implementation Tools Xilinx ISE 4.1i 

Host Platform Linux on Pentium III 800 

Software Drivers Language ANSI C 

The prototypes are based on the Pilchard platform (Figure 7.1) [PMO+01] which 

uses the SDRAM bus instead of the PCI bus used in conventional FPGA boards. We 

used this platform for the following reasons: 

Simple Interface For most designs, the interfacing signals required are minimized. 

Besides clocks, only data I/O and read write signals are used. This simple 

design also provide more logic resources for the algorithm. 

68 



Chapter 7 Experimental Results 69 

Figure 7.1: Photograph of the Pilchard board. 

High Throughput The Pilchard platform interfaces to the host PC through the sys-

tem memory bus. Since this bus is more highly coupled with the CPU than 

the traditionally used PCI bus, latency is reduced and bandwidth is increased. 

Suitable FPGA Chip Onboard The Xilinx Virtex chip onboard provides useful 

components including DLLs (Delay Lock Loop), BlockRAMs, tristate buffers, 

etc. FPGAs of different sizes can be mounted on the board. 

7.2 IDEA Cipher 

In the experiment, two kind of IDEA cores was implemented. One is the flat (un-

pipelined) version without any intermediate registers and the other is the deeply 

pipelined version. The results of these two versions are compared in this section. 
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SLICES Logic Utilization 
flat core ^ ^ 
flat design (8 rounds + 1 half round) 7919 64% 
pipelined core 1269 10% 
pipelined design (1 round area optimized) 1363 11% 

Table 7.1: Size of IDEA design. 

flat design pipelined design 
Number of cores 1 1 
Clock rate (MHz) 14.5 83.7 
Encryption per second (x 10®) 1.6 9.3 
Encryption rate(Mb/sec) 102 592 
Latency (clock cycles) 9 1407 =(175 x 8 + 7) 

Table 7.2: Speed of IDEA Design. 

7.2.1 Size of IDEA Cipher 

The sizes of a single IDEA core in both versions as well as the sizes of the complete 

design are shown in Table 7.1. In the complete design, the interface to the host 

system are included. The flat version core is smaller due to the absence of pipeline 

registers. 

In the both designs, there is a shift-register component for storing the sub keys. 

Since these registers were implemented in SRL16E primitives, it takes only 96 half 

slices (48 slices). 

7.2.2 Performance of IDEA Cipher 

Table 7.2 shows the speed of different IDEA implementations. Both designs use 

only one round of IDEA core and the key is stored in subkey memories. For both 

designs, increasing the number of round cores in a cipher will not affect the la-

tency but allow the design to process more data at the same time. Thus the average 

throughput of the designs is increased. 
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Data from the host are written directly to the core using a burst mode transfer of 

175 64-bit plaintext blocks. This is the latency of the pipelined core. By doing so, 

the pipeline is filled up and the performance is optimized. After the latency period 

of the design, the ciphertext is written to a buffer implemented in BlockRAM. The 

results are read by the host from the IDEA processor by doing a burst mode transfer 

of the contents of the BlockRAM. The decryption process is similar except the 

ciphertext is written to the IDEA core and the plaintext appears in the BlockRAM. 

The key component is also reconfigured for the decryption process. 

Further improvement could be achieved by floorplanning. It is also possible 

to increase the encryption rate by scaling, i.e. to place multiple IDEA ciphers in 

parallel on a single chip. When using a platform with larger (> 64-bit) data bus, 

this scale up method can increase the throughput linearly. 

7.3 Variable Radix Systolic Array 

For an n-bit Montgomery multiplication using a radix 4 system, we must use an 

(n+2)-bit multiplier to ensure that 0 < S < 2N, eliminating the need for reduction 

after each multiplication. Such a multiplier r e q u i r e s � ^ 1 systolic cells. The data 

should be packed with leading Os before passed to the multiplier. After ^ + 1 

clock cycles, the result is computed and stored in the multiplier. Another ^ + 1 

clock cycles are needed to shift out the remaining digits of the result. In total, n+4 

clock cycles are needed for a complete multiplication. One systolic cell (either r4c 

or r4r) has four 2-bit output multipliers, two 4-bit adders, one 3-bit adder and one 

2-bit adder. The critical path is from the 2-bit output multiplier to the 4-bit adder 

and then to the 3-bit adder. 

To test the correctness of the design, a test bench was developed. The test bench 

contains only the 3 main components listed in the top level entity of Chapter 4. The 

interface is implemented such that the input parameters can be changed easily. The 

driver will test the hardware for all the possible cases by checking against the results 
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radix max. freq. size 
(MHz). (SLICES) 

Y\ 143.205 W 
4 77.797 35 
8 61.132 76 

16 49.801 81 
32 41.599 115 
64 41.064 141 

128 35.120 180 
256 37.448 209 
512 34.400 265 

1024 30.487 312 
2048 29.444 364 
4096 29.727 419 
8192 30.723 485 

16384 29.702 542 
32768 29.847 632 
65536 30.234 677 

Table 7.3: Measurement of different radixes (one systolic cell). 

generated by software. The test showed that the implementations was correct. 

The performances of different radixes have been evaluated in this section. Table 

7.3 show the figures reported by implementation tools. 

The performance of the design is evaluated by how fast it can compute a multi-

plication. The time required to finish a modular multiplication is t = 二二二 . The 

number of clock cycles needed for a radix-2^ is 2(「宇]+ l).The relation between 

performance and radix n is represented in Fig. 7.2. The area of systolic cell also 

changes with radix. Fig. 7.3 shows the relation between them. 

The results show that the higher the radix, the better the performance. When 

the radix changes from to the bit width of the multipliers used inside the 

systolic cell changes from k io k 1. This will introduce more logic levels on 

the critical path of the design. And so the maximum frequency decreases with 

increasing radix. At the same time, the number of clock cycles needed to compute 

the product is reduced. The ratio of clock cycles of radix-k and radix-[k+1] is about 
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Figure 7.2: Performance and radix relation. 

xio" 
2.21 —1 1 — I 1 1 1 1 

/ 
/ 

2 - : -
Z 

Z 
Z 

1 . 8 - -
Z 

y 

1.6- -
y 

z 

一 1.4- / -
<Si 一 一 山 , 
O > z 
] ^ c： 
w 1.2 - ；^ -

2 / \ / z 

/ z - , -
/ 一.-.-一Z 

0.8- / Z • 一 . _ 
/ 一 • ‘ 

0.6- / / � . _ 
‘ / .、.， - - 1026-bit 

• • - • 514-bit 
0-4 - , — Xilinx XCV1000 capacity _ 

/ 

02' 1 1 1 ‘ 1 1 1 
0 2 4 6 8 10 12 14 16 log2(radix) 

Figure 7.3: Area and radix relation. 



Chapter 7 Experimental Results 74 

radix cells for a 1024-bit cells which can fit on an 
multiplication XCV3Q0 XCV6Q0 XCVlOOO" 

2 Wl 1228 
4 257 87 197 351 
8 171 40 90 161 

16 128 37 85 151 
32 103 26 60 106 
64 85 21 49 87 

128 74 17 38 68 
256 64 14 33 58 
512 57 11 26 46 

1024 52 9 22 39 
2048 47 8 18 33 
4096 43 7 16 29 
8192 40 6 14 25 

16384 37 5 12 22 
32768 35 4 10 19 
65636 I ^ 4 I 10 I ^ 

Note: The second column is the number of cells required for a 1024-bit multiplica-
tion. 

Table 7.4: Number of systolic cells for different Virtex FPGA chips. 

When k is not too large, this ratio is more significant than the increase in logic 

levels. When k becomes vary large, e.g. > 128, the logic levels are more significant 

than clock count. The performance will be decreasing in this range. The second 

range was not observed since the area requirements were already unrealistically 

large before it was reached. 

The area is an important limiting factor. If the design cannot fit in a single chip, 

the timing performance is greatly reduced by the inter chip communication. In a 

n-bit radix-2^ system, there are「響systolic cells. For example, the XCVIOOOE 

chip can only support up to 351 radix-4 systolic cells and 58 radix-256 systolic 

cells. Table 7.4 shows the possible number of cells which can be placed on different 

Virtex FPGA chips. The number may be different if special hardware, e.g. the fast 

multipliers in VirtexII [Xil02b], are used. 
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DLLs 1 out of 4 25% 
BLOCKRAMs 96 out of 96 100% 
SLICES 5178 out of 12288 42% 
TBUFs 4608 out of 12544 36% 

Table 7.5: Device utilization summary. 

7.4 Parallel RC4 Engine 

An implementation of the RC4 key search engine was synthesized and implemented. 

The design was successfully tested on the Pilchard platform by performing key 

searches on randomly generated 40-bit keys. The performance was compared with 

an optimized software implementation on various general purpose microprocessors. 

The RC4 engine containing 96 RC4 cells was designed for 50MHz operation as 

reported by the Xilinx timing analyzer. The system RAM bus interface operates at 

lOOMHz. Resource utilization as reported by the implementation tools are listed in 

Table 7.5. Since each RC4 core requires 768 + 3n cycles to test a key and n = 8 was 

used, a single RC4 key is tested in 792 cycles (15/iS'). Hence the average encryption 

time when all 96 cells operate in parallel is 165ns. 

An optimized software implementation of the RC4 algorithm was used to com-

pare the speed of the RC4 key search engine with that of a contemporary micropro-

cessor. The key is generated and stored in memory and the size of expected pseudo 

random bit stream was 8 bytes. The speed measurements (for 1000 encryptions) 

only consider the computation time and involve no I/O operations. The GNU GCC 

compiler v2.9 was used to compile the program source using the ‘-03，optimization 

flag. The speed of the microprocessor based implementation is compared with that 

of the FPGA implementation in Table 7.6. The 50MHz FPGA implementation is 

approximately 60 times faster than the 1.5GHz Pentium 4 implementation. 

Table 7.7 shows the time required to search a complete 40-bit and 56-bit RC4 

key space. Since FPGA chips with more logic resources and faster clock rate are 
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Platform Frequency Time Normalized 
MHz us Time 

Sun Ultra Hi 400 49456 ^ 
SGI R12000A 400 11318 68.6 
Intel P4 1500 9618 58.3 
This work 50 165 ^ 

Table 7.6: RC4 Encryption Speed on Different Platforms. 

Platform 40-bit key 56-bit key 
hours years 

Sun Ultra Ili 15084 113007 
SGI R12000A 3451 25861 
Intel Pentium 4 1361 10269 
This work 50 377 

Table 7.7: Time required for an RC4 key search. 

already available, the performance of the FPGA RC4 key search engine can be 

further improved. A Xilinx XCV3200E has double the number of block RAMs, 

and the XC2V8000 can contain 672 RC4 engines. 

7.5 BBS Random Number Generator 

7.5.1 Size 

The size of the design is quite small that it uses less than 3% of the logic resources 

in the FPGA chip. Table 7.8 is the report on hardware sources used by the complete 

1024-bit design including interface to host. 

7.5.2 Speed 

The TRACE tool reports minimum clock period to be 9.648ns. To simplify the de-

sign, lOOMHz clock is used for this implementation. The frequency of the external 
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Name of resource count Utilization 
External GCLKIOBs 2 50% 
BLOCKRAMs 2 2% 
SLICES 347 3% 

Table 7.8: Device utilization summary. 

clock is variable and independent of the design throughput. 

For a n-bit design, v? clock cycles are used for a single multiplication. The 

product will be 2n bits. Subtracting from the MSB to compute X] mod M requires 

n iterations. Assuming half of the iterations require only subtraction and shifting 

while the other half of them require an extra addition (recover process), a mod 

operation requires 3.5n^ clock cycles. After the mod operation, the registers must 

be reinitialized so another n clock cycles are needed. 

To generate a value in the random sequence, 4.5n^ + n clock cycles are required, 

where n is the size of the modules in term of bit. For a 256-bit design, 4719616 

clock cycles are required. That means a 1024-bit random value is generated every 

47.2ms. Since only the last 10 bits are used as random data, the throughput of the 

design is 211bps. 

7.5.3 External Clock 

The randomness of the RNG depends on the frequency fluctuation of the external 

clock [RRK98]. The mean frequency of the external clock does not affect the ran-

domness when there is a large gap between frequencies of the two clocks (2 to 3 

degree of orders in this design). The peak-to-peak voltage of the external clock is 

3.45 士 0.05V. The duty cycle of the clock various from 51% to 54% for high and 

low frequencies respectly. There is no trival frequency drift in time domain. The 

most important characteristic of the external clock is the frequency variation. The 

frequency variation ranges in ±15Hz. 



Chapter 7 Experimental Results 78 

7.5.4 Random Performance 

The experimental results are tested using the NIST test suite (version 1.4) [A. 01] 

and the Diehard Random Test [Mar02]. The hardware RRNG and the BBS PRNG 

were tested independently. 

For the NIST test suit, the test sequences were IM bits in size. This size is larger 

than the usual 20000 bits since some of the tests (e.g. Random Excursions, etc.) 

require more then 10® bits data for a single pass. The sample size, i.e. the number 

of bit sequences to pass the tests is 50. The hardware RNG performance under 

different external clock frequencies are presented in Table 7.9. Table 7.10 shows 

the tests applied to the RNG outputs and the input parameters used. The significant 

level a was chosen to be 0.01. If the calculated P-value is larger than 0.01，the test 

is passed. All these parameters were set according to the recommendation in the 

NIST documents [A. 01]. 

This result indicates that the random sequences from both the RRNG and PRNG 

can pass all the tests applied. In both cases, there are failed results for some patterns 

in Aperiodic-Template test. But this will only affect the pass rate of the test. 

In the Diehard test suit, all random sequences generated by the BBS PRNG 

can pass all the tests. For the hardware RRNG, only the sequences generated for 

external clock frequencies lower than 3kHz can pass the test. Using an external 

clock with frequency higher than this value will result in failure in all tests. The 

reason is that the noise variation in frequency decreases with increasing frequency 

and hence the randomness is affected. 

7.6 Summary 

This chapter presented the results for the implemented designs and compared them 

with other software and hardware implementations. The results of these implemen-

tations were summarized in Table 7.11. In each case the FPGA implementation was 
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Ext elk (Hz) pass all tests 
RNG PRNG 
Y ^ Y E S 

500 YES YES 
750 YES YES 
Ik YES YES 
2k YES YES 
25k YES YES 
50k YES YES 
75k YES YES 
100k YES YES 
250k YES YES 
500k YES YES 
750k YES YES 
IM YES YES 

Table 7.9: RNG test results (NIST). 

Name of Test Parameters 
Frequency N/A 
Block Frequency blk=10500 
Cumulative Sums N/A 
Runs N/A 
Longest Run of Ones N/A 
Rank N/A 
Discrete Fourier Transform N/A 
Nonperiodic Template Matchings blk=9 
Overlapping Template Matchings blk=9 
Universal Statistical blk=7 

ini.=1280 
Approximate Entropy blk=5 
Random Excursions N/A 
Random Excursions Variant N/A 
Serial blk=5 
Lempel-Ziv Complexity N/A 
Linear Complexity blk=500 

Table 7.10: Input parameters for NIST test. 
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Design Measurement Our Performance Software 
IDEA cipher through put 592Mbps~ 5.9Mbps 
Montgomery through put 256Mbps 11.4Mbps 
Multiplier (1024-bit design) (radix-2^^) 
RC4 key searchTime to s e a r c h 5 0 hours 377 hours 

40-bit key space 
RRNG through put 25Qkpbs ^ 
PRNG through put 211bps -

(1024-bit design) 

Table 7.11: Performance summary. The software implementations are all based on 
an Intel P4 1.5GHz PC and compiled by GCC (v2.95.3) with ‘-03, enabled. The 
RSA and IDEA speeds are reported by OpenSSL (v0.9.6c). 

significantly faster than a software implementation on an Intel Pentium 4 1.5GHz 

PC. Apart from the speed advantages, FPGAs also offer benefits in terms of foot-

print and power consumption over microprocessors which are important in embed-

ded applications. The parameters affecting the performance were also presented. 

The performance of the designs are measured with throughput and area consump-

tion. The results of the test suits applied to the RNG were listed. 



Chapter 8 

Conclusion 

Through design examples, this thesis illustrated that the FPGA platform is suitable 

for building high performance hardware cryptographic systems. The FPGA designs 

can adapt various algorithms in various architectures. Several problems have been 

addressed: 

Parallel and Serial Trade Off 

The parallel implementation of the IDEA block cipher and the serial implemen-

tation of the BBS PRNG are two extreme examples of parallel and serial architec-

tures. The parallel structure was improved by deep pipelining and increasing the 

utilization of hardware. The throughput of the improved design was 592Mbps. The 

serial implementation of BBS was extremely small, using less than 3% of an FPGA 

chip. 

Tradeoffs between parallel and serial extremes are important. Within the given 

resources, developers always want to achieve the highest performance. The variable 

radix Montgomery multiplier implementation offers the flexibility of evaluating the 

tradeoff. By synthesizing designs using different radixes, a developer can choose an 

optimal radix for his/her design based on the area and timing constraints. Without 

these measurements, designers can only estimate the performance of the systolic 

design based on experience, or they may implement different designs to compare 

the results. This work provides an efficient yet accurate way for designers to predict 

the performance of a systolic Montgomery multiplier on an FPGA platform. The 
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results show that the larger the radix, the faster the design. However, area also 

increases with radix and the area requirements exceed the resources available on an 

XCVIOOO device for radixes larger than 

High Performance Parallel Structure 

This research also evaluated a parallel computing structure on the system level. 

The RC4 implementation presented in this thesis had a massively parallel structure 

in which 96 RC4 cores are placed on a single FPGA chip. Actually more cores can 

be used since the current design uses less than 50% of the logic area. This structure 

is about 58 times faster than a software implementation on a Pentium 4 1.5GHz 

CPU. The parallel architecture proposed in this thesis shows that an FPGA design 

can have much higher performance than a general purpose processors. 

Modem microprocessor have a higher clock frequency than FPGAs, however, 

there are two large limitations in microprocessor implementations: low memory 

bandwidth and less processing units. The memory units in FPGA chips are divided 

in to small pieces and scatted all around the chip. Each of these units has their 

own I/O channel and can work independently, while most microprocessor systems 

have only one memory channel which in controlled centrally. Speed improvement 

in microprocessor system depends on the caching and pre-fetching. If data cannot 

fit in the cache and the process of the data is so simple that the processing time are 

shorter than the data accessing time, the microprocessor will waste a lot of time in 

idle waiting. On the other hand, FPGA design can fully utilize the on chip memories 

through dedicate data processing units. The superscaler and pipelined architecture 

in a microprocessor which can achieve parallelism to some degree. However, this is 

limited by data dependencies and the number of ALUs. The number of processing 

units in the RC4 FPGA design is much higher than that of a microprocessor. Since 

all the cores have their own data and logic, data dependencies do not affect the 

parallelism. 
Improved Security and Efficiency 

The increasing needs of high quality and efficient random number generator 
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raised from various fields including business, academic, consumer products. Since 

many cryptography systems use FPGA chips as hardware accelerator, a build in 

random number generator is definitely a requirement. In the design presented, the 

random seed is generated by sampling the frequency of an external clock. For a suf-

ficiently slow external clock, which has large amounts of jitter, the resulting random 

numbers can pass the stringent DIEHARD test. The BBS PRNG is one of the most 

secure pseudo random number generators and is suitable for cryptography related 

applications. The proposed serial design has a particularly small area utilization. 

FPGA designs can offer sufficient computing power for today's cryptographic 

applications. The design architecture can be varied to adapt new algorithm or differ-

ent design constraints. From high performance cryptanalysis systems to small size 

serial RNG, the adaptability and usability of FPGAs in cryptographic applications 

have been shown. 

8.1 Future Development 

The examples presented in this thesis can be integrated together to form a complete 

hardware cryptographic solution. By modifying open source security applications 

such as OpenSSL or integrating to the system level security protocols such as PAM 

(Pluggable Authentication Modules), this cryptography system on a chip can offer 

improvements both in speed and security. Finally, the reconfigurability of FPGA 

chips makes it possible to prepare all possible cryptography protocols, but only 

those currently used by the system need be downloaded to the hardware, saving 

logic resources and hence cost. 
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