9 research outputs found

    Impulsive noise cancellation and channel estimation in power line communication systems

    Get PDF
    Power line communication (PLC) is considered as the most viable enabler of the smart grid. PLC exploits the power line infrastructure for data transmission and provides an economical communication backbone to support the requirements of smart grid applications. Though PLC brings a lot of benefits to the smart grid implementation, impairments such as frequency selective attenuation of the high-frequency communication signal, the presence of impulsive noise (IN) and the narrowband interference (NBI) from closely operating wireless communication systems, make the power line a hostile environament for reliable data transmission. Hence, the main objective of this dissertation is to design signal processing algorithms that are specifically tailored to overcome the inevitable impairments in the power line environment. First, we propose a novel IN mitigation scheme for PLC systems. The proposed scheme actively estimates the locations of IN samples and eliminates the effect of IN only from the contaminated samples of the received signal. By doing so, the typical problem encountered while mitigating the IN is avoided by using passive IN power suppression algorithms, where samples besides the ones containing the IN are also affected creating additional distortion in the received signal. Apart from the IN, the PLC transmission is also impaired by NBI. Exploiting the duality of the problem where the IN is impulsive in the time domain and the NBI is impulsive in the frequency domain, an extended IN mitigation algorithm is proposed in order to accurately estimate and effectively cancel both impairments from the received signal. The numerical validation of the proposed schemes shows improved BER performance of PLC systems in the presence of IN and NBI. Secondly, we pay attention to the problem of channel estimation in the power line environment. The presence of IN makes channel estimation challenging for PLC systems. To accurately estimate the channel, two maximumlikelihood (ML) channel estimators for PLC systems are proposed in this thesis. Both ML estimators exploit the estimated IN samples to determine the channel coefficients. Among the proposed channel estimators, one treats the estimated IN as a deterministic quantity, and the other assumes that the estimated IN is a random quantity. The performance of both estimators is analyzed and numerically evaluated to show the superiority of the proposed estimators in comparison to conventional channel estimation strategies in the presence of IN. Furthermore, between the two proposed estimators, the one that is based on the random approach outperforms the deterministic one in all typical PLC scenarios. However, the deterministic approach based estimator can perform consistent channel estimation regardless of the IN behavior with less computational effort and becomes an efficient channel estimation strategy in situations where high computational complexity cannot be afforded. Finally, we propose two ML algorithms to perform a precise IN support detection. The proposed algorithms perform a greedy search of the samples in the received signal that are contaminated by IN. To design such algorithms, statistics defined for deterministic and random ML channel estimators are exploited and two multiple hypothesis tests are built according to Bonferroni and Benjamini and Hochberg design criteria. Among the proposed estimators, the random ML-based approach outperforms the deterministic ML-based approach while detecting the IN support in typical power line environment. Hence, this thesis studies the power line environment for reliable data transmission to support smart grid. The proposed signal processing schemes are robust and allow PLC systems to effectively overcome the major impairments in an active electrical network.The efficient mitigation of IN and NBI and accurate estimation of channel enhances the applicability of PLC to support critical applications that are envisioned for the future electrical power grid.La comunicación a través de líneas de transmisión eléctricas (PLC) se considera uno de los habilitadores principales de la red eléctrica inteligente (smart grid). PLC explota la infraestructura de la red eléctrica para la transmisión de datos y proporciona una red troncal de comunicación económica para poder cumplir con los requisitos de las aplicaciones para smart grids. Si bien la tecnología PLC aporta muchos beneficios a la implementación de la smart grid, los impedimentos, como la atenuación selectiva en frecuencia de la señal de comunicación, la presencia de ruido impulsivo (IN) y las interferencias de banda estrecha (NBI) de los sistemas de comunicación inalámbrica de operación cercana, hacen que la red eléctrica sea un entorno hostil para la transmisión fiable de datos. En este contexto, el objetivo principal de esta tesis es diseñar algoritmos de procesado de señal que estén específicamente diseñados para superar los impedimentos inevitables en el entorno de la red eléctrica como son IN y NBI. Primeramente, proponemos un nuevo esquema de mitigación de IN en sistemas PLC. El esquema propuesto estima activamente las ubicaciones de las muestras de IN y elimina el efecto de IN solo en las muestras contaminadas de la señal recibida. Al hacerlo, el problema típico que se encuentra al mitigar el IN con técnicas tradicionales (donde también se ven afectadas otras muestras que contienen la IN, creando una distorsión adicional en la señal recibida) se puede evitar con la consiguiente mejora del rendimiento. Aparte de IN, los sistemas PLC también se ven afectados por el NBI. Aprovechando la dualidad del problema (el IN es impulsivo en el dominio del tiempo y el NBI es impulsivo en el dominio de la frecuencia), se propone un algoritmo de mitigación de IN ampliado para estimar con precisión y cancelar efectivamente ambas degradaciones de la señal recibida. La validación numérica de los esquemas propuestos muestra un mejor rendimiento en términos de tasa de error de bit (BER) en sistemas PLC con presencia de IN y NBI. En segundo lugar, prestamos atención al problema de la estimación de canal en entornos PLC. La presencia de IN hace que la estimación de canal sea un desafío para los sistemas PLC futuros. En esta tesis, se proponen dos estimadores de canal para sistemas PLC de máxima verosimilitud (ML) para sistemas PLC. Ambos estimadores ML explotan las muestras IN estimadas para determinar los coeficientes del canal. Entre los estimadores de canal propuestos, uno trata la IN estimada como una cantidad determinista, y la otra asume que la IN estimada es una cantidad aleatoria. El rendimiento de ambos estimadores se analiza y se evalúa numéricamente para mostrar la superioridad de los estimadores propuestos en comparación con las estrategias de estimación de canales convencionales en presencia de IN. Además, entre los dos estimadores propuestos, el que se basa en el enfoque aleatorio supera el determinista en escenarios PLC típicos. Sin embargo, el estimador basado en el enfoque determinista puede llevar a cabo una estimación de canal consistente independientemente del comportamiento de la IN con menos esfuerzo computacional y se convierte en una estrategia de estimación de canal eficiente en situaciones donde no es posible disponer de una alta complejidad computacionalPostprint (published version

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF

    Treatment of early and late reflections in a hybrid computer model for room acoustics

    Get PDF

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia

    Major Total Conversion in English: The Question of Directionality

    No full text
    This research investigates the directionality of major total conversion in English, where major total conversion is defined as the process and at the same time as the result of deriving a new lexical item by altering the part of speech of the base without marking the alteration overtly, as in the presumed pair dry – to dry. The question is whether there is a reliable strategy for deciding which member of a pair is the base and which member is the converted counterpart. Various attempts had been made to resolve the controversial directional issue, but the results have been inconsistent. The investigation aims to discover whether or not there exists a coherent notion about how to decide directionality by considering four factors assumed in the literature to reflect directionality. A large corpus of potential examples of major total conversion was collected to act as test materials. The four factors were compared for each major total conversion pair to see to what extent there was agreement among them. Results showed the factors did not agree to the expected extent. The findings are discussed in detail and it is claimed the inconsistencies can often be explained with recourse to a few general principles. In conclusion, on the whole the four factors considered are consistent with one another. In other words, the notion about how to determine directionality in major total conversion is coherent and can be maintained for English

    Online courses for healthcare professionals: is there a role for social learning?

    Get PDF
    Background: All UK postgraduate medical trainees receive supervision from trained supervisors. Training has traditionally been delivered via face to face courses, but with increasing time pressures and complex shift patterns, access to these is difficult. To meet this challenge, we developed a two-week massive open online course (MOOC) for faculty development of clinical supervisors. Summary of Work: The MOOC was developed by a group of experienced medical educators and delivered via the FutureLearn (FL) platform which promotes social learning through interaction. This facilitates building of communities of practice, learner interaction and collaboration. We explored learner perceptions of the course, in particular the value of social learning in the context of busy healthcare professionals. We analysed responses to pre- and post-course surveys for each run of the MOOC in 2015, FL course statistics, and learner discussion board comments. Summary of Results: Over 2015, 7,225 learners registered for the course, though 6% left the course without starting. Of the 3,055 learners who began the course, 35% (1073/3055) were social learners who interacted with other participants. Around 31% (960/3055) learners participated fully in the course; this is significantly higher than the FL average of 22%. Survey responses suggest that 68% learners worked full-time, with over 75% accessing the course at home or while commuting, using laptops, smart phones and tablet devices. Discussion: Learners found the course very accessible due to the bite-sized videos, animations, etc which were manageable at the end of a busy working day. Inter-professional discussions and social learning made the learning environment more engaging. Discussion were rated as high quality as they facilitated sharing of narratives and personal reflections, as well as relevant resources. Conclusion: Social learning added value to the course by promoting sharing of resources and improved interaction between learners within the online environment. Take Home Messages: 1) MOOCs can provide faculty development efficiently with a few caveats. 2) Social learning added a new dimension to the online environment

    Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року

    Get PDF
    Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). Kryvyi Rih, Ukraine, May 19-21, 2021.Друга міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні питання (ICSF 2021). Кривий Ріг, Україна, 19-21 травня 2021 року
    corecore