453 research outputs found

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    A REAL-TIME TRAFFIC CONDITION ASSESSMENT AND PREDICTION FRAMEWORK USING VEHICLE-INFRASTRUCTURE INTEGRATION (VII) WITH COMPUTATIONAL INTELLIGENCE

    Get PDF
    This research developed a real-time traffic condition assessment and prediction framework using Vehicle-Infrastructure Integration (VII) with computational intelligence to improve the existing traffic surveillance system. Due to the prohibited expenses and complexity involved for the field experiment of such a system, this study adopted state-of-the-art simulation tools as an efficient alternative. This work developed an integrated traffic and communication simulation platform to facilitate the design and evaluation of a wide range of online traffic surveillance and management system in both traffic and communication domain. Using the integrated simulator, the author evaluated the performance of different combination of communication medium and architecture. This evaluation led to the development of a hybrid VII framework exemplified by hierarchical architecture, which is expected to eliminate single point failures, enhance scalability and easy integration of control functions for traffic condition assessment and prediction. In the proposed VII framework, the vehicle on-board equipments and roadside units (RSUs) work collaboratively, based on an intelligent paradigm known as \u27Support Vector Machine (SVM),\u27 to determine the occurrence and characteristics of an incident with the kinetics data generated by vehicles. In addition to incident detection, this research also integrated the computational intelligence paradigm called \u27Support Vector Regression (SVR)\u27 within the hybrid VII framework for improving the travel time prediction capabilities, and supporting on-line leaning functions to improve its performance over time. Two simulation models that fully implemented the functionalities of real-time traffic surveillance were developed on calibrated and validated simulation network for study sites in Greenville and Spartanburg, South Carolina. The simulation models\u27 encouraging performance on traffic condition assessment and prediction justifies further research on field experiment of such a system to address various research issues in the areas covered by this work, such as availability and accuracy of vehicle kinetic and maneuver data, reliability of wireless communication, maintenance of RSUs and wireless repeaters. The impact of this research will provide a reliable alternative to traditional traffic sensors to assess and predict the condition of the transportation system. The integrated simulation methodology and open source software will provide a tool for design and evaluation of any real-time traffic surveillance and management systems. Additionally, the developed VII simulation models will be made available for use by future researchers and designers of other similar VII systems. Future implementation of the research in the private and public sector will result in new VII related equipment in vehicles, greater control of traffic loading, faster incident detection, improved safety, mitigated congestion, and reduced emissions and fuel consumption

    Spatio-temporal forecasting of network data

    Get PDF
    In the digital age, data are collected in unprecedented volumes on a plethora of networks. These data provide opportunities to develop our understanding of network processes by allowing data to drive method, revealing new and often unexpected insights. To date, there has been extensive research into the structure and function of complex networks, but there is scope for improvement in modelling the spatio-temporal evolution of network processes in order to forecast future conditions. This thesis focusses on forecasting using data collected on road networks. Road traffic congestion is a serious and persistent problem in most major cities around the world, and it is the task of researchers and traffic engineers to make use of voluminous traffic data to help alleviate congestion. Recently, spatio-temporal models have been applied to traffic data, showing improvements over time series methods. Although progress has been made, challenges remain. Firstly, most existing methods perform well under typical conditions, but less well under atypical conditions. Secondly, existing spatio-temporal models have been applied to traffic data with high spatial resolution, and there has been little research into how to incorporate spatial information on spatially sparse sensor networks, where the dependency relationships between locations are uncertain. Thirdly, traffic data is characterised by high missing rates, and existing methods are generally poorly equipped to deal with this in a real time setting. In this thesis, a local online kernel ridge regression model is developed that addresses these three issues, with application to forecasting of travel times collected by automatic number plate recognition on London’s road network. The model parameters can vary spatially and temporally, allowing it to better model the time varying characteristics of traffic data, and to deal with abnormal traffic situations. Methods are defined for linking the spatially sparse sensor network to the physical road network, providing an improved representation of the spatial relationship between sensor locations. The incorporation of the spatio-temporal neighbourhood enables the model to forecast effectively under missing data. The proposed model outperforms a range of benchmark models at forecasting under normal conditions, and under various missing data scenarios

    Short-Term Power Demand Forecasting Using Blockchain-Based Neural Networks Models

    Get PDF
    With the rapid development of blockchain technology, blockchain-based neural network short-term power demand forecasting has become a research hotspot in the power industry. This paper aims to combine neural network algorithms with blockchain technology to establish a trustworthy and efficient short-term demand forecasting model. By leveraging the distributed ledger and immutability features of blockchain, we ensure the security and reliability of power demand data. Meanwhile, short-term power demand forecasting research using neural networks has the potential to increase the stability of the power system and offer opportunities for improved operations. In this paper, the root mean-square-error model evaluation indicator was used to compare the back propagation (BP) neural network algorithm and the traditional forecasting algorithm. The evaluation was performed on the randomly selected five household power datasets. The results show that, by comparing the long short-term memory network (LSTM) model with the BP neural network model, it was determined that the average prediction impact increases by about 25.7% under stable power demand. The short-term power prediction model of the BP neural network has the average error values more than two times lower than the traditional prediction model. It was shown that the use of the BP neural network algorithm and blockchain could increase the accuracy of short-term power demand forecasting, allowing the neural network-based algorithm to be implemented and taken into account in the research on short-term power demand forecasting

    Overløpskontroll i avløpsnett med forskjellige modelleringsteknikker og internet of things

    Get PDF
    Increased urbanization and extreme rainfall events are causing more frequent instances of sewer overflow, leading to the pollution of water resources and negative environmental, health, and fiscal impacts. At the same time, the treatment capacity of wastewater treatment plants is seriously affected. The main aim of this Ph.D. thesis is to use the Internet of Things and various modeling techniques to investigate the use of real-time control on existing sewer systems to mitigate overflow. The role of the Internet of Things is to provide continuous monitoring and real-time control of sewer systems. Data collected by the Internet of Things are also useful for model development and calibration. Models are useful for various purposes in real-time control, and they can be distinguished as those suitable for simulation and those suitable for prediction. Models that are suitable for a simulation, which describes the important phenomena of a system in a deterministic way, are useful for developing and analyzing different control strategies. Meanwhile, models suitable for prediction are usually employed to predict future system states. They use measurement information about the system and must have a high computational speed. To demonstrate how real-time control can be used to manage sewer systems, a case study was conducted for this thesis in Drammen, Norway. In this study, a hydraulic model was used as a model suitable for simulation to test the feasibility of different control strategies. Considering the recent advances in artificial intelligence and the large amount of data collected through the Internet of Things, the study also explored the possibility of using artificial intelligence as a model suitable for prediction. A summary of the results of this work is presented through five papers. Paper I demonstrates that one mainstream artificial intelligence technique, long short-term memory, can precisely predict the time series data from the Internet of Things. Indeed, the Internet of Things and long short-term memory can be powerful tools for sewer system managers or engineers, who can take advantage of real-time data and predictions to improve decision-making. In Paper II, a hydraulic model and artificial intelligence are used to investigate an optimal in-line storage control strategy that uses the temporal storage volumes in pipes to reduce overflow. Simulation results indicate that during heavy rainfall events, the response behavior of the sewer system differs with respect to location. Overflows at a wastewater treatment plant under different control scenarios were simulated and compared. The results from the hydraulic model show that overflows were reduced dramatically through the intentional control of pipes with in-line storage capacity. To determine available in-line storage capacity, recurrent neural networks were employed to predict the upcoming flow coming into the pipes that were to be controlled. Paper III and Paper IV describe a novel inter-catchment wastewater transfer solution. The inter-catchment wastewater transfer method aims at redistributing spatially mismatched sewer flows by transferring wastewater from a wastewater treatment plant to its neighboring catchment. In Paper III, the hydraulic behaviors of the sewer system under different control scenarios are assessed using the hydraulic model. Based on the simulations, inter-catchment wastewater transfer could efficiently reduce total overflow from a sewer system and wastewater treatment plant. Artificial intelligence was used to predict inflow to the wastewater treatment plant to improve inter-catchment wastewater transfer functioning. The results from Paper IV indicate that inter-catchment wastewater transfer might result in an extra burden for a pump station. To enhance the operation of the pump station, long short-term memory was employed to provide multi-step-ahead water level predictions. Paper V proposes a DeepCSO model based on large and high-resolution sensors and multi-task learning techniques. Experiments demonstrated that the multi-task approach is generally better than single-task approaches. Furthermore, the gated recurrent unit and long short-term memory-based multi-task learning models are especially suitable for capturing the temporal and spatial evolution of combined sewer overflow events and are superior to other methods. The DeepCSO model could help guide the real-time operation of sewer systems at a citywide level.publishedVersio

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Időjárás 2023

    Get PDF

    Advanced machine learning models for online travel-time prediction on freeways

    Get PDF
    The objective of the research described in this dissertation is to improve the travel-time prediction process using machine learning methods for the Advanced Traffic In-formation Systems (ATIS). Travel-time prediction has gained significance over the years especially in urban areas due to increasing traffic congestion. The increased demand of the traffic flow has motivated the need for development of improved applications and frameworks, which could alleviate the problems arising due to traffic flow, without the need of addition to the roadway infrastructure. In this thesis, the basic building blocks of the travel-time prediction models are discussed, with a review of the significant prior art. The problem of travel-time prediction was addressed by different perspectives in the past. Mainly the data-driven approach and the traffic flow modeling approach are the two main paths adopted viz. a viz. travel-time prediction from the methodology perspective. This dissertation, works towards the im-provement of the data-driven method. The data-driven model, presented in this dissertation, for the travel-time predic-tion on freeways was based on wavelet packet decomposition and support vector regres-sion (WPSVR), which uses the multi-resolution and equivalent frequency distribution ability of the wavelet transform to train the support vector machines. The results are compared against the classical support vector regression (SVR) method. Our results indi-cate that the wavelet reconstructed coefficients when used as an input to the support vec-tor machine for regression (WPSVR) give better performance (with selected wavelets on-ly), when compared against the support vector regression (without wavelet decomposi-tion). The data used in the model is downloaded from California Department of Trans-portation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak hours except most weekends. The data was stored for a period of 214 days accumulated over 5 minute intervals over a distance of 9.13 miles. The results indicate an improvement in accuracy when compared against the classical SVR method. The basic criteria for selection of wavelet basis for preprocessing the inputs of support vector machines are also explored to filter the set of wavelet families for the WDSVR model. Finally, a configuration of travel-time prediction on freeways is present-ed with interchangeable prediction methods along with the details of the Matlab applica-tion used to implement the WPSVR algorithm. The initial results are computed over the set of 42 wavelets. To reduce the compu-tational cost involved in transforming the travel-time data into the set of wavelet packets using all possible mother wavelets available, a methodology of filtering the wavelets is devised, which measures the cross-correlation and redundancy properties of consecutive wavelet transformed values of same frequency band. An alternate configuration of travel-time prediction on freeways using the con-cepts of cloud computation is also presented, which has the ability to interchange the pre-diction modules with an alternate method using the same time-series data. Finally, a graphical user interface is described to connect the Matlab environment with the Caltrans data server for online travel-time prediction using both SVR and WPSVR modules and display the errors and plots of predicted values for both methods. The GUI also has the ability to compute forecast of custom travel-time data in the offline mode.Ph.D
    corecore