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SUMMARY 

 

The objective of the research described in this dissertation is to improve the trav-

el-time prediction process using machine learning methods for the Advanced Traffic In-

formation Systems (ATIS). Travel-time prediction has gained significance over the years 

especially in urban areas due to increasing traffic congestion. The increased demand of 

the traffic flow has motivated the need for development of improved applications and 

frameworks, which could alleviate the problems arising due to traffic flow, without the 

need of addition to the roadway infrastructure. 

In this thesis, the basic building blocks of the travel-time prediction models are 

discussed, with a review of the significant prior art. The problem of travel-time prediction 

was addressed by different perspectives in the past. Mainly the data-driven approach and 

the traffic flow modeling approach are the two main paths adopted viz. a viz. travel-time 

prediction from the methodology perspective. This dissertation, works towards the im-

provement of the data-driven method. 

The data-driven model, presented in this dissertation, for the travel-time predic-

tion on freeways was based on wavelet packet decomposition and support vector regres-

sion (WPSVR), which uses the multi-resolution and equivalent frequency distribution 

ability of the wavelet transform to train the support vector machines. The results are 

compared against the classical support vector regression (SVR) method. Our results indi-

cate that the wavelet reconstructed coefficients when used as an input to the support vec-

tor machine for regression (WPSVR) give better performance (with selected wavelets on-
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ly), when compared against the support vector regression (without wavelet decomposi-

tion).  

The data used in the model is downloaded from California Department of Trans-

portation (Caltrans) of District 12 with a detector density of 2.73, experiencing daily peak 

hours except most weekends. The data was stored for a period of 214 days accumulated 

over 5 minute intervals over a distance of 9.13 miles. The results indicate an improve-

ment in accuracy when compared against the classical SVR method.  

The basic criteria for selection of wavelet basis for preprocessing the inputs of 

support vector machines are also explored to filter the set of wavelet families for the 

WDSVR model. Finally, a configuration of travel-time prediction on freeways is present-

ed with interchangeable prediction methods along with the details of the Matlab applica-

tion used to implement the WPSVR algorithm. 

The initial results are computed over the set of 42 wavelets. To reduce the compu-

tational cost involved in transforming the travel-time data into the set of wavelet packets 

using all possible mother wavelets available, a methodology of filtering the wavelets is 

devised, which measures the cross-correlation and redundancy properties of consecutive 

wavelet transformed values of same frequency band. 

An alternate configuration of travel-time prediction on freeways using the con-

cepts of cloud computation is also presented, which has the ability to interchange the pre-

diction modules with an alternate method using the same time-series data. 

Finally, a graphical user interface is described to connect the Matlab environment 

with the Caltrans data server for online travel-time prediction using both SVR and 

WPSVR modules and display the errors and plots of predicted values for both methods. 
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The GUI also has the ability to compute forecast of custom travel-time data in the offline 

mode.  

 



 

1. INTRODUCTION 

1.1 Motivation 

Accurate travel-time forecast information has become a fundamental component of all 

ATIS (Advanced Traveler Information Systems). ATIS in Intelligent Transportation Sys-

tems framework, focuses towards, providing information to the traveler, pre-trip or en-

route for making informed decision for the journey. This information includes route 

guidance, traffic conditions and other information focused on the traveler needs. ATIS 

use the data gathered from the ITS infrastructure components and converts it into infor-

mation using intelligent algorithms. This information is then dispersed through the Traf-

fic Management Centers (TMC) for the commuters.  

Currently, drivers demand an accurate travel-time calculator, which can provide 

precise information of the future traffic conditions. This forecast becomes even more sig-

nificant in the morning and evening hours, when the traffic flow increases the capacity of 

the roadways resulting in congestion and gridlocks. Presently, to facilitate commuters 

most of the State Department of traffic (DOT) websites provide the current traffic condi-

tions; some sites even calculate a forecast of the travel-time based on the historical data 

and/or current data by employing a suitable algorithm [1, 2].   

The traffic does not follow a specific pattern every day because the rate of flow at 

a certain part of the freeway might change with an accident downstream or a certain 

event at a place upstream of the freeway could cause an increase in the traffic demand. 

The traffic flow is dependent on multiple factors that are related through a complex-

dependent relationship with one another. Such factors include weather conditions, driver 
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behavior, and time of the day etc. This complex-dependence makes the traffic data both 

non-linear and non-stationary. Consequently, accurate prediction of travel-time becomes 

a challenging task.  

 Travel-time prediction method can be classified from different perspectives as 

shown in figure 1. From the algorithmic viewpoint the traffic models and data-driven 

methods are the two significant techniques used for prediction. Traffic flow models work 

towards figuring out the complex-dependent relationship between traffic parameters and 

travel-time and then estimate and predict travel-time based on the current and past traffic 

parameters. On the other hand, data-driven methods compute a relationship between the 

model parameters based on historical data, and through that model compute the predicted 

travel-time. 

 

Travel-time 

Prediction

Prediction 

Methofology

Traffic Flow Model 

based Approach

Data-driven 

Methods

Input Data Type

Direct

Indirect

Prediction Horizon

Short-term 

Prediction

Long-term 

Prediction

Figure 1: Taxonomy of Travel-time Prediction 
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 Two types of data are used for traffic data collection i.e. direct, which mainly in-

cludes GPS sensors and vehicle probes. Direct sensors are present inside the vehicle and 

they record or communicate the vehicle location. Indirect sensors such as Inductive-loop 

detectors, tag matching, infrared sensors and microwave radar are all sensors, which de-

tect the presence of the vehicle. Direct sensors are more accurate as they are capturing the 

vehicle data from within the vehicle and the sensors used like GPS and vehicle probes are 

more sensitive than their indirect sensor counterparts. Their data can also be used effi-

ciently in real-time scenarios as GPS technology, which is now readily available in 

smartphones and almost every vehicle has one installed in it. With the advent of connect-

ed car frameworks, the access to this information would become trivial. However, these 

concepts are currently in the research and prototyping phases and some consumers are al-

so concerned about their privacy issues. Currently, the cost of collecting data through 

them does not make them a feasible choice for such systems. Indirect methods especially 

the Inductive Loop Detectors are widely used for traffic data collection.  

 The prediction horizons set for travel-time prediction range from as few as 3-5 

minutes to multiple hours. The work on travel-time prediction is mostly focused towards 

offline data processing. In the offline mode factors such as the delays involved in moving 

and processing data from the measurement source to the data server and processing time 

of data aggregation from multiple detectors into a data file are not considered. These de-

lays are not negligible in the online mode, especially when considering the short time 

prediction horizons. In broad terms the time horizons of 60 minutes and under are termed 

as short-term prediction while 60 plus minutes prediction horizon fall under the category 

of long-term prediction. In general the total delay involved when using loop detectors as 
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a data source aggregated over 5 minutes is approximately 15 minutes. This does not in-

clude the data delay from the data server to the local machine where the forecast is im-

plemented. While, a brief overview of all types is given in Chapter 2, the focus of this 

thesis is on improving the accuracy of a short-term data-driven prediction method.  

 Table 1 shows a brief overview of the prior art in the area of data-driven travel-

time prediction. The table covers major research in the realm of short-term travel-time 

prediction only. The methods used for travel-time prediction range from black box ap-

proach like neural networks to signal tracking methods like Kalman filters. Since, the 

travel-time data is a time-series data, the typical prediction methods like regression meth-

ods and its variants are all applicable in the domain of travel-time prediction and most of 

them have been implemented in the past. However, only the main data-driven algorithms 

used for travel-time prediction are mentioned in Table 1.  

 The prediction accuracy is not only dependent on the prediction algorithms alone, 

but the length of the roadway, statistics of the freeway data and prediction horizon etc., 

also play a significant role in affecting the overall accuracy of the system. For example if 

the freeway in consideration does not experience congestion or the congestion area is ir-

relevant when compared against the area where the traffic is under freeflow conditions, 

then the variance in travel-times would be minimal. Hence such a case cannot be com-

pared against a roadway where the congestion area is more as compared to non-congested 

length of freeway. Similarly, the errors of forecast horizon of 5 minutes are irrelevant 

when compared against the errors of 60 minutes horizon. The combination of the above-

mentioned factors makes an accurate comparison even more complex. Therefore, it can 

be inferred that the accuracies mentioned in Table 1 are not representative of the preci-
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sion of the method used. Unfortunately, there is no standard dataset to compare the re-

sults and efficiency of travel-time prediction algorithms. However, we implemented the 

methods mentioned in Table 1 along-with other techniques in the literature on our da-

taset. The results varied under different traffic conditions and prediction horizons. There 

was also a significant variance in accuracy of similar methods with different configura-

tions. Therefore, a conclusive decision on the overall accuracy of a particular method un-

der all traffic conditions with varying prediction horizons could not be deducted. A defi-

nite conclusion of the superiority of a particular method under all traffic conditions and 

prediction horizons also could not be made. We therefore decided to select one prediction 

method and focus on its improved configuration, overall accuracy and robustness. 

 Non-linear regression, Kalman filtering, nearest neighbor, neural network and 

support vector regression are the main methods used for short-term travel-time predic-

tion. The prediction horizons in Table 1 range from 5 minutes to 60 minutes. However, 

there is always a network delay of 15 minutes approximately before the data is collected 

compiled and made available on the data server form the individual ILDs for computa-

tion. This inherent delay in the ATIS data collection process reduces the significance of 

prediction models with lower forecast horizons in the real-world scenario.  

 The process diagram of the prediction process is shown in figure 2. The process is 

divided into three major parts: The first part covers the routines and framework related to 

data associated issues. Data acquisition, preprocessing and storage are covered in this 

section.  Data acquisition process using inductive loop detectors is explained in figure 3. 

The speed and traffic count data measured by the inductive loop detectors is processed at 

the regional traffic management centers after being processed through the individual con-
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troller cabinet located beside each loop detector. The traffic management centers then 

transfers this data to the central data server for onward preprocessing and storage. The 

second part covers travel-time estimation, which houses the algorithms for data conver-

sion from the traffic data into travel-time. This estimated travel-time data is ground truth 

against which the predicted travel-times are computed for errors. Lastly the travel-time 

prediction section houses the algorithms used for forecast of the future travel-times and 

compare them with the estimated values for errors.  

  

 

Data Acquisition & Storage 

ILD ILD ILD ILD 

ILD ILD 

Preprocessing 

Model  

Historical Real-time Freeway Info 

Filtered Data 

Travel-time Estimation 

Trajectory Based Traffic Flow based 

Filtered Data 

Travel-time Prediction 

Model  Testing Training 

Predicted Travel-time 

Figure 2: Process diagram of travel-time prediction using machine learning methods 
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 Machine learning methods were extensively used in travel-time prediction [3-6]. 

At longer horizons the relevance of the input data decreased with the actual future travel-

time and methods like the historical data predictor become more accurate than the data-

driven methods. Artificial Neural Networks were mainly used for short-term travel-time 

prediction.  

Another machine learning method, the Support Vector Regression (SVR), has 

shown superior performance when compared with other traditional methods for predic-

tion of non-linear data. It was not applied aggressively in the area of travel-time predic-

tion. 

 

 

Support vector machines since their inception by Vapnik [7, 8] were extensively 

used in classification and prediction problems. SVM uses a simple geometric interpreta-

Loop 

Detector 

Loop 

Detector 

Traffic  

Management  

Center 

Data Server 

Pull Box 

Controller 

Cabinet 

Controller 

Cabinet 

Figure 3: Data Acquisition framework using Inductive loop detectors. 
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tion and gives a sparse solution. The solution of SVM is also global and unique as SVM 

employs the structural-risk-minimization principle. SVR method [9] approaches the line-

ar regression forecast by addressing it as an optimization problem (details in Chapter 4). 

Its performance in financial time series forecast [10], bioinformatics [11] and various 

other areas of research also makes it a viable method in intelligent transportation systems 

(ITS) applications. SVR application as a forecasting tool in ITS was first done by Wu 

[14], who predicted short-term travel-time on the basis of past and current values. Re-

cently, Wang in [16], used wavelet kernel support vector machine for regression to pre-

dict traffic flow in ITS applications.  

 Table 1: Comparison of prior art on data-driven travel-time prediction 

  

In the recent years many researchers decomposed time series into more informa-

tive domains like the wavelets transform [17], S-transform [18] etc., as an input to the 

SVR that showed more accurate results than the non-decomposed method. This improved 

performance of SVR along with the ability of SVR to predict non-linear data, formed the 

motivation of our research to explore the effectiveness of travel-time prediction using 

wavelet transformed travel-time values as an input to SVR. 

Prior Art related to Short-term Travel-time prediction 

Prediction Methods 
Author/Year of Publi-

cation 

Length of Road-

way 

Accuracy / Prediction Hori-

zon 

Neural Networks 
J.W.C. Van Lint (2004) 

[12] 
5.28 Mi (8.5 Km) 

RMSEP: 7.7% MRE: 0.49% 

SRE 6% Horizon: 15 min 

Kaman Filter 
Chen and Steven Chien 

(2001) [13]  
8 Mi (12.88 Km)  

MARE: 0.0173-0.0208 Hori-

zon: 5 min 

Support Vector Re-

gression 

Wu, Ho and Lee (2004) 

[14]  

28 – 217.5 Mi (45 – 

350 Km) 

RME:0.96 – 4.42%, RMSE 

1.33-7.35% Horizon: 3 min 

PCA/Nearest 

Neighbor 

Rice and Zwet (2004) 

[1] 
48 Mi (77.25 Km) 

RMSE: 2.6 – 11 (Approx) 

Horizon: 60 min 

Regression 
Kwon, Coifman and 

Bickel (2000), [15] 

6.2 Mi (10 Km), 20 

Mi (32.19 Km) 

MAPE: (Tree Method)  6.9 – 

28.7%, (Regression) 7.7 – 

23.3% Horizon 10-60 min 
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The accurate wavelet selection for the wavelet decomposed methods reduces the 

significance of the method. However, an analytical method towards the selection of the 

wavelet is not published in literature. This dissertation makes an attempt to figure out 

some of the variables, which affect the efficiency of the support vector machines. 

1.2 Outline 

This dissertation summarizes the research for travel-time prediction on freeways and pro-

vides the model and framework to improve the accuracy for small-term travel-time pre-

diction. The research conducted on the process of filtering out the wavelets, which do not 

provide improved results when compared against the classical support vector regression 

method are described. The method was investigated to reduce the computational cost in-

volved in calculating the wavelet packet decomposed data for each wavelet. Thirdly, an 

alternate configuration for calculating and broadcasting the travel-time information is ex-

plained which exploits the cloud based technology. The motivation to work on the cloud 

framework came from the extensive work done in the automobile industry on the con-

nected car framework. Finally, the graphical user interface for the online travel-time pre-

diction calculation was presented to forecast the travel-time prediction result in real-time. 

 The outline of the rest of the thesis is as follows: the problem statement along 

with some highlights of the past research is given in Chapter 2. Chapter 2 also explains 

each subsection of the travel-time prediction process along with the brief of the signifi-

cant work done in each area. The current approaches used to solve the travel-time predic-

tion problem are explained in Chapter 3. The work done on each area along with the brief 

overview of each method is presented. The basic concept of Wavelets and Support vector 
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regression are explained in Chapter 4 and 5, respectively. In Chapter 6 the transform 

based support vector regression methods are explored. The transform based SVM is 

mainly used for prediction, classification, compression and forecasting problems. The 

methods and different configuration used in each model presented. The Chapter 7 ex-

plained the methodology proposed for optimal wavelet selection, while Chapter 8 pro-

posed the WPSVR model along-with its procedural details and the steps involved for its 

implementation. Then we show the results of our model and compare it with classical 

SVR implementation in Chapter 9 along with the details of the alternate configuration of 

the framework of the travel-time prediction process. The details of the graphical user in-

terface are given in Appendix B. Finally, the thesis is concluded in Chapter 10, with a 

summary of the claims made in this thesis and future work direction. 
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2 PROBLEM BEING SOLVED 

In this chapter, the details of the travel-time prediction problems are explained with a 

brief overview of the classification of the prediction process. The fundamental parts of 

the data-driven travel-time methodology with the analysis of the traffic data are also ex-

plored. 

The predicted travel-time is the projected mean time of vehicles traversing the 

section of the roadway in consideration, in a future time period. It can be mathematically 

expressed as 

���	 = � �(���) +
���

���
� , (1) 

 where ��� is the current travel-time on roadway �. � represents the index of past 

calculated travel-time values and � represents the error of �(���).  

 The travel-time is calculated from the traffic data collected from various sensors. 

Sensors like the Inductive-loop detectors measure the speed of individual vehicles pass-

ing over them. Their accumulated mean speed is called the time mean speed. This speed 

is not representative of the average speed of the roadway section as it is a spot mean 

speed and the vehicles over the whole section are travelling at different speeds during that 

time period. The time mean speed and space mean speed are represented in equations (2) 

and (3) respectively. 

�� = 1� � ��
�

���
, (2) 
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�� =  !� " 1��#
$

���
%

��
, (3) 

 where � and   represent the total number of vehicles passing through the loop 

detector and the roadway section respectively. 

The relationship between the time mean speed and the space mean speed can be 

mathematically represented as: 

�� = �� + &'
()   , (4) 

where �� and �� are the time mean speed and space mean speed respectively and 

*+ is the standard deviation of the spot mean speed. Since the standard deviation cannot 

be a negative value, therefore time mean speed would always be more than the space 

mean speed. The relationship presented in (4) is derived from the algebraic manipulation 

of the fundamental equation of traffic flow, (2) and (3). The complete derivation of (4) is 

detailed in Appendix A. For accurate travel-time estimation the time mean speed is con-

verted into the space mean speed before calculating the travel-time. 

The travel-time prediction problem can be viewed from the perspective of input 

data type, prediction methodology and prediction horizon as shown in figure 1. Irrespec-

tive of the class of travel-time prediction, the fundamental components of the process are 

similar as shown in figure 2. Next we explain each component with a review of the sig-

nificant published work done in each area. 

2.1     Data Acquisition and Storage (ILD) 

Formulation of an accurate predictive inference relies significantly on the quality of traf-

fic data. A typical speed plot constructed using a portion of the dataset we used is shown 
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in figure 3. The red color in the speed plot represents the freeflow traffic while the transi-

tion from yellow to blue represents the transition from freeflow to congestion.  

Inductive Loop Detector (ILD) data based on its abundance and known quality is-

sues has been used as input data in most travel-time prediction research [15, 19-25]. The 

scalability of the model also biased the choice of the researcher towards choosing ILD as 

a data source. Other forms of datasets include probe vehicle data, traffic camera feeds, 

and satellite data, data obtained from microwave radar, license plate matching, and auto-

mated vehicle tag matching. 

To use ILD data, certain known issues required attention in context of the site se-

lection and data pre-processing phases. Spacing between consecutive loop detectors di-

rectly affects the quality of the data captured. The standard spacing requirement between 

consecutive loop detectors is not defined in literature. However, [26] concluded that the 

detector spacing of 1 to 1.5 km is optimum for the use of short-term forecasting of traffic 

parameters. In [27], it was shown that a detector spacing of 0.33 to 1 mile does not desta-
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Figure 4: Speed plot of a portion of the dataset 
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bilize the travel-time estimation errors, while [28] concluded that a detector spacing of 

0.5 miles is sufficient to represent traffic congestion with acceptable accuracy.  

After data acquisition preprocessing steps are performed on this data to ensure its 

validity. ILDs are prone display a number of errors [29]. These data errors are usually de-

tected and removed using imputation methods [29, 30]. [29] gives a linear model based 

on historical data using neighboring detectors to detect faulty values and through linear 

regression imputes the missing or bad values. The method proposed in [29] is adopted by 

Caltrans for data processing of the loop detector data in California roadways. 

Figure 5: Box-plot of travel-time data classified by days of the week 
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To summarize the statistical descriptors of the travel-time data, we divided the da-

taset based on the weekdays and computed the box-and-whisker plot as shown in figure 5 

of the travel-time data. It is evident from the plot that the traffic on each day has its own 

unique properties. Similarly, the spread-out quartile data of each box represents the varia-

tion in the travel-times of each day. This is due to the fact that the data selected is from 

1pm to 8pm daily, which accounts for both congested and freeflow values. The smaller 

box of Saturday and Sunday with a lower median value and bunched quartile values than 

the other weekdays indicate free flowing traffic on the weekends.  

 Figure 6 shows the plot of the mean travel-times of weekdays for the subject da-

taset. The plot shows a daily congestion of traffic in the roadway for all weekdays except 

Saturdays and Sundays, which is representative of a typical urban roadway traffic profile.  

2.2    Travel-time Estimation 

The travel-time estimation from ILD data source requires conversion of speed data col-

lected from the ILDs into space mean speed and then into travel-time. Like any predic-

tion problem, the ground truth (estimated travel-time) is essential to evaluate the results 

(predicted travel-time). The travel-time estimation methods are divided into two broad 

categories: trajectory-based and flow-based.  

2.2.1 Trajectory-based methods:  

The trajectory based methods calculate travel-times between all links of the roadway be-

tween the reference points, and then by adding the travel-times of individual links accu-

mulate the travel-time between the two points on the roadway.  
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The trajectory-based methods convert the time-mean speeds collected from detec-

tors to space-mean speed. Different methods are proposed to calculate link travel-time 

from this speed. The three common methods are the mid-point method, minimum speed 

method and the average speed method.  

2.2.1.1  Mid-point method  Mid-point method or the half distance meth-

od uses the distance between mid-points of adjacent detectors on both sides of the subject 

detector to measure the travel-time. Mathematically, it can be represented as: 

���+ = �
+ (,-.'/- + ,'.0/' ), 

where 1��+ is the distance between the detector 1� and 1+ and 2� is the space mean 

speed detected at 1�. The diagram illustrating this configuration is shown in figure 7. 

  2.2.1.2 Average speed method The average speed method assumes that the 

speed between two detectors is the average of the speed measured at both ends.  

Figure 6: Mean travel-time data for all weekdays 
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���+ = 21��+(2� + 2+) 

  2.2.1.3 Minimum speed method The minimum speed method as the name 

implicates uses the minimum speed between the two consecutive detectors to calculate 

the travel-time between them.  

���+ = 1��+�45(2�, 2+) 

The above-mentioned methods assume a constant speed between links, which in 

reality is never the case especially when traffic is in transition from freeflow to conges-

tion or vice versa. Hence, the algorithms, which propose a constant speed lose their accu-

racy with the increase in congestion [31]. Van Lint proposed an alternate approach, the 

“Piecewise Linear Speed” method [32], which solved the function of the travel-time 

based on time mean speed using an ordinary differential equation to calculate the trajec-

tory of the vehicle in the section based on space mean speed. The PLSB method solves 

both issues of converting the spot speed into space mean speed and the issue of represen-

tation of speed as a function instead of a constant.  
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Flow-based methods:  

An alternate way of estimating travel-time is through flow-based models, which focus on 

capturing the dynamics of traffic using traffic-flow theory concepts, and through traffic 

data simulation, draw the travel-time of the segment. Accurate flow information is also 

required for a precise estimation; however, in most cases it is difficult to collect data from 

all on-ramps and off-ramps using the existing infrastructure, which becomes a bottleneck 

for flow-based estimation methods. The current ILD placements in USA roadways were 

not done based on the constraints imposed by the traffic flow models. These models are, 

however, more popular in traffic flow simulation research where traffic flow data is simu-

lated to conform to the flow model requirements. 

 The fundamental traffic flow diagram is shown in figure 8. The figure explains 

the relationship between flow density and speed on roadways. The traffic flows in every 

model irrespective of its design methodology follow the characteristics defined in figure 

8. 
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Figure 7: Configuration of detector placement on roadways 
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Figure 8: Fundamental diagram of traffic-flow 

2.3     Travel-time Prediction 

The Travel-time prediction approach is mainly classified w.r.t. the prediction horizon, 

modeling approach and type of input data as shown in figure 1. Further classification is 

also possible w.r.t. the road type (freeways, arterials); but, since the scope of this thesis is 

confined to freeways; we would not discuss the arterial travel-time prediction problem. 

Below, the major methods used for data-driven travel-time prediction are discussed. 

The historical data of traffic parameters can represent a traffic profile, which 

could be implemented to predict future values, in similar traffic conditions. This approach 

demands offline processing. The data is classified into different subtypes based on their 
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characteristics. In [33] the data was sub-classified into the “type of day”, for prediction of 

travel-time. This prediction method does not take into account the dynamics of traffic 

during the travel-time which makes this method inherently erroneous. Consequently, it 

produces low accuracy results, when the current traffic is not representative of its histori-

cal profile. Historical predictor is normally used for long-term prediction. 

 A hybrid approach of combining historical data with current data was used in [34] 

where real time data was captured directly from the road side terminals, and using it with 

aggregated historical data showed comparable results. [1] used principal component 

analysis and windowed nearest neighbor, while combining historical and instantaneous 

data. 

Traffic data shares similarities when compared with historical data of the same 

day and time as the current data. Regression methods with coefficients varying with the 

time of day were used by [1], [35] and [36] to predict travel-time. [15] also used linear 

regression with step wise variable selection method. Regression models involve the ex-

amination of historical data, thereby, extracting parameters which represent traffic char-

acteristics, and projecting them into the future to predict travel-time. ARIMA was intro-

duced by [37] and [38] as an alternate to model the stochastic nature of traffic. [39] used 

auto-regression model to predict travel-time. Non-linear time series with multifractal 

analysis was implemented in [40] and [41] for travel-time prediction. 

 Kalman and Extended Kalman Filters used in [2, 42] provide good performance 

in predicting travel-time for one time-step, which is normally not more than 5 minutes, as 

the state model needs real observations to calculate each error term. This makes the filter-

ing approach inefficient to implement in the real world. 
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Artificial Neural Networks (ANN) was extensively used for marking non-linear 

boundaries. To address the problem of a time series forecast, a subtype of ANN called the 

recurrent neural network (RNN) was considered suitable [19, 24, 43]. RNN has an inter-

nal state, which keeps track of the temporal behavior between classes. Different architec-

tures of the Multilayer perceptron have been used to predict travel-time with an accepta-

ble accuracy [3-6, 19, 20, 23, 24, 43-51]. However, they only address the short-term trav-

el-time prediction problem. The Support Vector Regression method was also investigated 

in [14, 52]. 

Traffic flow models work on the concept of correlating the theory of fluid dynam-

ics with vehicular flow. From the perspective of traffic flow models, travel-time predic-

tion is more of a boundary condition prediction problem, because the flow model is de-

signed offline, and it would predict the time based on the values of demand and supply at 

on ramps and off ramps respectively. The model is run using a simulation scheme, which 

is based on assumptions of car-following, gap acceptance, and risk avoidance parameters. 

The simulation model predicts the aggregated parameters of simulated vehicles to display 

the predicted travel-time [53, 54]. This makes traffic flow models very complex and re-

quires a high degree of expertise and long man-hours for design and maintenance. 

Traffic flow models give us a better understanding of the traffic flow dynamics, 

but as far as their accuracy for travel-time prediction is concerned, they demand a precise 

infrastructure of input detectors, whose location would be defined by the flow model. To 

manage the supply and demand parameters, the flow models require additional detectors 

on each off and on ramp. Traffic Flow based models are a good method to evaluate the 

cause and effect of traffic phenomenon, but applying them for travel-time prediction 
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would entail a huge design and maintenance cost for every freeway section. Due to their 

modular design, precision of traffic flow models, for long term travel-time prediction, 

would be as accurate, as the precision of the predicted inputs and boundary conditions. 

In summary the travel-time prediction can either work on traffic flow based mod-

els or on the data-driven models. However, the traffic-flow based models are much more 

complex than their data-driven counterparts. Also the data driven models are more robust 

when compared against traffic-flow model prediction. 
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3. CURRENT APPROACHES 

In this chapter the models, which are published in scholarly articles related to short-term 

travel-time prediction are explained. We have limited ourselves to the work based on da-

ta-driven methods. Table 1 shows the major work done in the realm of short-term travel 

time prediction. The techniques used to predict short-term travel time include historical 

predictor, instantaneous predictor, Principal Component Analysis, Neural networks, 

Nearest Neighbor, Kalman filtering and Regression. As mentioned before there is no 

standard dataset for comparison of the efficiency of each method, and since, there are 

many factors which influence the prediction accuracy other than the prediction method, 

therefore a true comparison of the methods is not possible. However, the details of each 

along with their review are presented below. 

3.1 Historical Predictor 

The travel-time profile of a certain section of roadway follows a similar pattern on work-

days and holidays. This similarity is based on the similarity in the daily O-D (Origin-

destination) tables of the vehicles on the roadway. The origin-destination tables give the 

approximate start and end location of the route followed by the individual vehicles with 

the timestamp. If similar numbers of vehicles are travelling from one point to another on 

every workday at similar time then the travel-time in that section of the roadway would 

also be similar. This similarity was observed in figure 4 on the travel-time plot of our da-

taset on consecutive weekdays, which follows a similar congested pattern in the evening 

hours. Similar patterns are observed in datasets of every weekend also.  
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 Figure 9 below shows the 3d and contour plot of the dataset for one month. It is 

evident form the 3d plot that the daily congestion pattern is followed in the evening, ex-

cept weekends. The variation or duration of congestion varies between days. The contour 

plot signifies the difference between the congestion of similar weekdays also. However, 

the weekends or holidays follow a similar pattern every week.  

 

Figure 9: 3d plot and contour plot of one month of travel-time data 

It is also evident that the Euclidean distance between similar data points of work-

days is neither constant nor linear, which makes the historical predictor less accurate. The 

traffic data is not only dependent on traffic inflow and outflow from a section of the 

roadway but the data variation in the short-term is dependent on factors like the acci-

dents, event occurring upstream of the traffic flow and individual driving patterns etc. 

Since, these factors are interrelated to each other. A change in one would cause a change 
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in the flow. Hence, for short-term predictions, algorithms which have better tracking abil-

ity produce better results than the historical predictor method. 

 The concept of using a hybrid approach also showed improved results. However, 

in most cases the variance of the data would lie within a certain range, which makes this 

algorithm suitable for long-term predictions. 

3.2 Instantaneous Travel-time 

An even simpler prediction method is using the last estimated travel-time value as the fu-

ture value. Before explaining the pros and cons of this method let’s review the constant 

factors, which affect the travel-time value.  

 The main three deterministic factors are the length of the roadway in considera-

tion, the statistics of daily congestion and freeflow hours and the prediction horizon. The 

stochastic factors include the individual driving patterns, accidents, roadway work etc., 

which cannot be determined. Analyzing the effect on the accuracy of Instantaneous pre-

diction method due to deterministic factors, the duration of congestion is inversely pro-

portional to the accuracy of the instantaneous prediction method. The variability of trav-

el-time increases with the increase in congestion, which results in the increase in predic-

tion errors. 

 Another major disadvantage of this method is that the tracking ability reduces se-

verely with the increase in prediction horizon. This reduction in reliability in travel-time 

prediction is equivalent to the difference in current travel-time estimation and the esti-

mated time at the selected time horizon. 
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 However, Instantaneous predictors are very simple to use and require minimal 

computational cost. They are also more reliable to predict travel-times for short horizons 

where congestion is minimal. Their major disadvantage is their capacity to be imple-

mented in real scenario due to the time delays invoved in relaying of traffic data from the 

detectors to the data center and processing delay. The variation in traffic in this period 

especially during the congestion hours makes this method indeasivble to be implemented 

in real-scenario.  

3.2 Principal Component Analysis 

Principal component analysis (PCA) is an orthogonal transformation to decompose a 

multidimensional dataset into multidimensional orthogonal dataset. The resulting uncor-

related variables are called the principal components. The process of computation of PCA 

is based on eigenvalue decomposition of a cross correlated or singular value decomposed 

dataset with zero empirical mean. The process finds its significance in explaining the 

original dataset with reference to a particular feature(s). The following steps are required 

to compute the principal components 6 of correlated dataset.: 

1. Let us assume a correlated 7 × 7 data set 9 = 	 :1 5 102 10 203 15 30>. The zero 

empirical mean of 9 is calculated as 

9?@ = 1 �9�,A$
��� ,						B = 1, …… ,D		 = 	 E2 10 20F 

  Subtract the mean from the original data gives us  
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9 − 9H = :−1 −5 −100 0 01 5 10 > 
2. Calculate the covariance matrix of 9 − 9H  

:−1 −5 −100 0 01 5 10 > × :
−1 0 1−5 0 5−10 0 10> = :

1 5 105 25 5010 50 100>.  
3. We then calculate the eigenvector � of the covariance matrix which in our 

case is 

: 0.1747 0.9806 0.08910.8736 −0.1961 0.4454−0.4543 0 0.8909>. 
These eigenvectors are orthogonal to each other, which gives us additional 

information on the patterns in the data.  

4. To express the data in terms of these eigenvectors we multiply the trans-

pose of the eigenvector matrix with the mean subtracted data. This would 

again be a scaled version of the eigenvectors and each dimension would 

be perpendicular to the other.  

 The principal components can also be computed with singular value decomposi-

tion method and z-score method. To use PCA for prediction the conditional expectation 

of the future value is computed to give the forecast value.  

 Similar method was also used in predicting travel-time. [1] computed the covari-

ance of historical and current data to compute the principal components by the singular 

value decomposition method and by retaining only the significant eigenvectors computed 

the principal components and used the expectation maximization method for future value 
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prediction, thereby exploiting the properties of both historical and instantaneous travel-

times. 

3.3 Neural Network 

The artificial neural network (ANN) is a mathematical model composed of interconnect-

ed layers of nodes, which through weighted inputs solve a classification or prediction 

problem. Normally the three layers as depicted in figure 10 below are the input layers the 

hidden layer and the output layer. The input layer gathers the input data from the system 

and the values to the hidden layer which is composed of neurons. Neurons compute the 

weighted sum of the input values for the each node in the next layer. Usually there is one 

hidden layer for most problems. The number of hidden layers is defined by the user. The 

number of outputs defines the number of neurons in the output layer, which again based 

on the weighted sum of the inputs they receive from the hidden layer neurons compute 

the output for the system.  

Input Layer Hidden Layer Output Layer 

Figure 10: Configuration of a typical Recurrent Neural Network 

Internal Memory 
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 The neural networks could be defined in different configurations. In the context of 

time series prediction a configuration of neural nets called the recurrent neural network 

has proved more effective. The recurrent neural networks have an additional short term 

memory, which helps the network better understand the spatiotemporal properties of the 

signal. Hence, the output of the recurrent neural network in terms of the travel-time pre-

diction is the predicted value in terms of the previous traffic states of the roadway. 

3.4 Nearest Neighbor 

The nearest neighbor and the k-nearest neighbor (KNN) methods is a simple machine 

learning method used for classification. It is a non-parametric method and is based on the 

distance of the features of the training data w.r.t. the testing data. In k-nearest neighbor 

method the features of the input dimension are projected in the feature space and plotted 

along with the features of the test data. Then based on the majority vote of the features, 

where the vote is given based on the minimum distance of the training feature to the test 

data feature, the data is classified.  

In travel-time prediction this method is used to select the travel-time pattern. The 

input data is profiled based on its instantaneous value and historical value. Both these 

values are the features of travel-time. Now the current travel-time value is matched 

against both and the nearest neighbor is used to classify the travel-time based on the cur-

rent travel-time and the historical travel-time. In other words the nearest neighbor method 

when implemented for travel time prediction would find the distance between the current 

travel-time and the historical travel-time at the same value on the time axis and based on 



30 

 

the minimum distance would select the day d. The selected travel-time profile would then 

be used to forecast future values.  

In this method every day in the database serves as the individual profile of the traf-

fic data. It can improve the travel-time prediction errors when compared to the historical 

predictor if the profile of the historical daily dataset is correlated with each other. 

3.5 Kalman Filtering 

Kalman filter is a linear quadratic estimation algorithm for tracking noisy data values. It 

is defined as 

9O� = D�. P� + 
1 − D��. 9O���  
where   9O� = current estimation  

  D� = Kalmna gain 

           and P� = measured value 

 To use Kalman filter the data must fit the basic Kalman model defined below 

�� = Q���� + RS� + T��� 

U� = V�� + �� 

where S� is the control signal and T is the process noise. 

 The Kalman filter iterates between a set of equations classified as Time update 

and Measurement update. The implementation of Kalman filter can be explained with the 

below mentioned steps: 

1. After defining initial estimates for A, B, H, R and Q the prior estimate �W� 

and prior covariance X� is calculated. 

�W� = Q�W��� + RS� 
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X� = QX���Q� + Y 

2. Compute the Kalman gain, update the estimate and error covariance using 

equations below: 

D� = X�V�
VX�V� + Z��� �W� = �W� +D�
U� − V�W�� X� = 
1 − D�V�X� 

This posterior estimate and covariance would now be used to calculate future prior esti-

mates.  

 In general the Kalman filter is used to solved tracking problems where the current 

value has the correlation with its previous value. The process looks simple but modelling 

the noise, which in our case represents the non-linearity and non-stationarity of the data 

set is a challenging task as a simple Gaussian function would predict future values but the 

error would increase significantly as the prediction horizon increases. The bottle neck in 

Kalman filter implementation for travel-time prediction is also the time delays involved 

in relaying and processing the detector data.  

3.6 Regression 

Linear regression is a simple model for computing a single line through a set of data 

points such that the sum of the least square of the minimum distances between the data 

points and the line is minimum. 

 The simple linear regression is more effective for dataset which exhibit linearity. 

In our case the travel-time is both non-linear and non-stationary, which makes the use of 

simple linear regression in feasible. Multiple linear regression with past travel time val-
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ues was used to project the future values. However, the values of α and β are variable and 

their values are based on the current time and prediction horizon.  

 Solving the non-linear problem with linear algorithms would not yield significant 

accuracy. The non-linear regression is therefore a more suitable option. Non-linear meth-

ods for implementation require a kernel method which could implement the algorithm 

with minimal computation. Non-linear methods are inherently more complex and compu-

tational intensive. Therefore neural networks and support vectors were more successful in 

prediction future travel-times. 

 

 

Figure 11: Travel-time of the roadway section from milepost 39.5 to 48.1 on 1
st
 March 

2011 from 1pm to 8pm 
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to the separate support vector machine for regression of future travel-times. The wavelet 

based SVM model presented in our dissertation focuses on the smart processing of data 

based on the wavelet packet transform. The no-linear regression is based on the linear 

kernel of the support vector machine.  

In the next two sections the overview of both wavelets and support vector ma-

chines is presented.  
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4. WAVELETS OVERVIEW 

The purpose of a transform is to transform the data in a different set of axes with the aim 

to add information, simplify or remove noise from the original datsaset. A transform can 

be defined as a mathematical operator (linear or non-linear), which when applied on a da-

ta converts it into a different set of values. The inverse operator of the same transform 

would recover the original values back.  

Researcher have used multiple transforms with different objectives; eg. The fa-

mous Fourier transform is used to convert the time domain data into frequency domain 

and the binomial transform is used to compute the forward difference of a number series 

etc. In time series analysis the transformation of a data is often required in the data pre-

processing phase either to remove noise from the data, or to add or reduce dimensionality 

in the dataset. 

 The realization of the wavelet transform was motivated from the short-coming of 

the fourier transform. In fourier transform we basically compare the time signal with a se-

ries of sinusoidal of different frequencies to gain frequency information of the signal. 

However, for many applications this frequency application is not very effective with the 

location knowledge of the specific frequencies. This issue was initially addressed with 

the short-time transform by dividing the input signal into short signals and then compu-

ting the fourier transform to approximate the location of the desired frequency. It also 

suffered from the disadvantage of poor frequency resolution in case of short time win-

dow. 
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The short term fourier transform could not solve the problem because it was not 

focusing on the frequency and amplitude of the sinusoid signals. Wavelets achieved the 

time-frequency resolution of the signal by decomposing the signal with stretched and 

shifted versions of the wavelet signal. The wavelet in itself is also not a sinusoid but it 

has to obey certain properties, which would be discussed later. 

Wavelets are finite signals of limited duration with zero mean. They are used for 

time-frequency representation of the signal.  Wavelet series is defined as a square-

integrable function with respect to a complete, orthonormal set of basis functions. 

The wavelet function preset a multi-resolution decomposition of a signal using a 

mother function [ and a linear combination of its dilated and/or shifted versions.  

[�,\(]) = 1
√_ [ "] − 5_ # (5) 

where 5 defines the dilation and _ defines the shift. To ensure orthonormalilty of basis 

functions [55] the time scale parameters are sampled on a dyadic grid on the time-scale 

plane. Thus (5) becomes 

[A,\(]) = 1
√2A [ "] − 52A # 

The orthonormal wavelet transform is then given by  

〈�(]), [A,\(�)〉 = 1
√2A b �(])[A,\(2�A

∝

�∝
] − 5)d] 

4.1 Multi-Resolution Analysis 

To make the transform computationally effective the concept of sub band coding [56] is 

used. Mallat presented the framework for multi-resolution analysis to describe the wave-
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let basis. Multi-resolution is a sequence of increasing nested subspaces such that e�\ ⊂
e�\�� ⊂ ⋯ … eh ⊂ e� … . . ⊂ ei. These subspaces lie in the square integrable function 

space called the Hilbert space. Let eA be spanned by the scaling function jA. This means 

that eA�� being a subspace of eA would be a linear combination of the function jA. 

jA��(�) = √2jA(2�). Hence, 

jA = � ℎ(�)	√2jA
2� − ���  

The coefficient of ℎ
�� are the inner product of < √2jA
2� − ��, jA > . Lets assume an 

orthogonal nA of eA such that  n�\ ⊂ n�\�� ⊂ ⋯…nh ⊂ n… . . ⊂ ni. Now, 

[A =�o
��	√2jA
2� − ���  

The relationship between high pass filter and low pass filter is 

o
p − 1 − 5� = 	 
−1�\	ℎ
1 − 5�. 
o
5� and ℎ
5� can be treated as high pass and low pass respectively and p is the length 

of the filter. Consequently they are also orthogonal to each other. Also  ∑ℎ
�� =
	√2,	and ∑o
�� = 0. 

In order to decompose the signal in wavelet domain at 5]ℎ level, the high pass fil-

ter o
�� and low pass filter ℎ
�� will have to be applied recursively to filter the signal 

with a series of high pass and low pass filters to analyze its high frequency and low fre-

quency components respectively. The input signal �
]� can now be represented in dis-

crete domain as 

�
]� =��r,\∅r,\
]� +��dA,\[A,\
]�\tu
∝
A�r\vu  
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The scaling �A,\ and wavelet coefficients dA,\ can now be defined using high pass 

ow and low pass filters ℎw �A,\ = ∑ ℎw�A��,+\��wvu , 

dA,\ =�ow�A��,+\��.wvu  

The wavelet filter for the undecimated wavelet transform are shown in figure 12. 

The high pass decimation and reconstruction filter together form the highpass halfband 

filter. Similarly, the lowpass halfband filter is formed combining the low pass decimation 

and reconstruction filter.  

 

 

To add translation-invariance in DWT, MODWT was introduced which instead of 

down sampling and up sampling the signal introduces high and low pass filters with up 

sampled by a factor of 2A��. The up sampling of filters also introduces redundancy in the 

Figure 12: The block diagram of undecimated wavelet transform 
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output but now the number of samples at output in every level is equal to the number of 

samples in the input signal. This makes multiresolution analysis much more effective es-

pecially from the perspective of using this transform as an input to another system.   

 

dA,\
�� =�oxwy��
w�h �A��,\�+z.-w	i{|$
��

 

�A,\
�� =�ℎ}wy��
w�h �A��,\�+z.-w	i{|$
��

 

 The figure 13 shows the process diagram of the decimated discrete wavelet trans-

form. 

 

 

 

 

 

 

 

  

The filters can now be represented as a circular filter of original time series. 

dA,\
�� = � oxA,w�\�w	i{|	$yz��
w�h  
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Figure 13: The block diagram of decimated wavelet transform 
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�A,\
�� = � ℎ}A,w�\�w	i{|	$yz��
w�h  

4.2 Wavelet Packet Decomposition 

Finally, to generate the wavelet packet tree, both the approximation and detail co-

efficients are decomposed instead of just the approximation coefficients as in the case of 

the DWT. This decomposition of the low pass component into approximation and details 

help us in cases where the energy levels in low pass signal are very high and they need to 

be pre-processed into multiple bands of lower energy levels.  

Figure 14: Plot of mother wavelet of different wavelet types 
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Figure 15 shows how both the high frequency component and low frequency 

components are filtered through the wavelet and scaling filters and then the reconstruc-

tion filters are applied in the reverse order to reconstruct the original signal.  

Hence the wavelet packet distributes the frequency of the original signal evenly 

between all coefficients as opposed to the wavelet transform where 50% of the signal fre-

quency is in the first detail as shown in figure 16 a and b. It is worth mentioning here that 

the significant portion of the energy of the original signal remains in the low pass com-

ponent of the wavelet packet decomposed signal also and the energy is not divided evenly 

in the sub-bands.  
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Figure 15: The wavelet packet decomposition structure at level 2 
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In our model also, we chose the wavelet packet transform to evenly distribute the 

signal frequency in each WDSVR module. 

4.3  Biorthogonal and Reverse Biorthogonal Wavelets 

The biorthogonal filters are designed in a set of four different wavelets viz. Highpass de-

composition and reconstruction filter and Low pass decomposition and reconstruction fil-

ter represented by V,V~, p and p′ respectively. 

A2 D1 D2 

2-0 D2 

Signal 

A1 

2-1 2-3 2-2 

1-0 1-1 

Signal 

Figure 16: a) Frequency distribution of Wavelet transform b) Frequency distribution of 

Wavelet Packet transform 
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 In Biorthogonal filters are generated from two sets of wavelets [
]�	 and [}
]� 
which span two different subspaces n and n�  respectively. Since the bases are orthogo-

nal to each other; the two MRAs are said to be biorthogonal to each other. 

 Reverse Biorthogonal filters are similar to biorthogonal filter except that the V 

and V~ and p and p′ are swapped. Since, ��5�
V,V~� = ��5�
V~, V� and ��5�
p, p~� =
��5�
p~, p�, therefore the halfband highpass and lowpass filters remain unchanged. 

 When we translate the effect of filter swapping as in the case of biorthogonal and 

reverse biorthogonal filters, the values of high pass reconstructed sub-bands have a visi-

ble effect. This difference in reconstructed values gives different results of forecasted 

values. An analytical approach to the selection of biorthogonal and reverse biorthogonal 

for wavelet decomposed support vector regression is not possible. The details of the same 

are discussed in chapter 7. 
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  Figure 17: The filter coefficient values of Biorthogonal 3.5 wavelet 

  

 Hence the biorthogonal and reverse biorthogonal filters have the similar filters but 

based on the information content in the low and high frequency bins of the original data, 

there results would be different.  

In figure 17 and 18 the biorthogonal filters 3/5 and reverse biorthogonal filters 3/5 

are shown. Note that the high pass reconstruction filter and high pass filter of biorthogo-

nal 3/5 are swapped when compared with reverse biorthogonal 3/5. Similarly, the low 

pass filter and low pass reconstruction filter of biorthogonal 3/5 are also swapped in 

comparison with reverse biorthogonal 3/5. 
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Figure 18: The filter points of reverse biorthogonal 3/5 filter 

 In this chapter the basics of wavelet theory were established and the details of 

biorthogonal and reverse biorthogonal filters were explored. Now we would move to-

wards the concepts of support vector machines, which would enable us understand the 

wavelet decomposed support vector regression model. 
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5 SUPPORT VECTOR MACHINE 

Support vector machines (SVM) are kernel machines that implement maximum margin 

methods. The maximum margin is generated by the kernel using a set of weighted vectors 

of training data called support vectors. 

 SVM uses the quadratic approach to define the problem of maximizing separabil-

ity between classes. The margin is subject to constraint of the smoothness of the solution. 

The input data corresponds to a member of the class set, which is generally called the la-

bel vector. The hyperplane is created between the members of the class set to define the 

boundaries of each class. The support vector machine was initially built to solve the bina-

ry classification case. However, it was later extended for multiclass classification and 

prediction problems. To have a better understanding of the SVM we have explained it in 

a step by step case starting with the formulation of the basic concept and then moving to 

the linearly separable case. Eventually the non-separable case and regression problem is 

explained. 

5.1 Formulation of the SVM 

We would start the formulation considering the simple binary classification case. The in-

put data in the form of 9 = {�, �}, where 9 either corresponds to �	 = 	−1	∀	�	 ∈ 	�� or 

�		 = 	+1	∀	�	 ∈ 	�+. The goal is to find a hyperplane T it divides the two classes such 

that the distance from the hyperplane to the nearest data point of each class is equal from 

the hyperplane. 

Mathematically the problem can be represented as 
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�
�� =�T�j�
�� + �$
���  (6) 

where, T�j�
�� + � ≥ 1	∀	���� and T�j�
�� + � ≤ −1	∀	���+. This can be rewwritten 

as  

 

 Now to calculate the distance of all � to the margin we take the discriminant ap-

proach. Thus, 

��
T��� + Th�‖T‖ ≥ �, ∀	4 
Now we add the condition of maximum margin by constraining the solutions to obey 

‖T‖	� = 1. Hence, to maximize the margin we minimize ‖T‖ 

1‖T‖ 
1‖T‖ 

 

Class A 

Class B 

Support Vectors 

Hyperplane 

Figure 19: Main components of a binary Support Vector Machine 
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12 ‖T‖+ + ��
T��� + Th� ≥ 1 

This is now the quadratic optimization problem, whose solution would give a 
2‖T‖ margin 

with 
1‖T‖ on either side of the hyperplane. The concept is explained with the help on an example 

below: 

5.2 Linearly Separable Case 

Let us consider a set of data points X=[{(1,1),-1},{(1,-1),-1}, {(0,0),-1}, {(-1,-1),-1}, 

{(3,0),1}, {(4,-1),1},{(4,1),1},{(5,0),1}] 

Plotting the values in figure 20, the support vectors are shown circled in yellow. 

 

Figure 20: Sample data-points of a linearly separable SVM classification case 

Since, the classes are linearly separable we need a hyperplane to optimally divide the two 

class zones. From the figure it is clear that the yellow marked points are the support vec-

tors. These three support vectors would contribute towards the formulation of the hyper-

plane.  
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The value of the hyperplane line T is calculated by adding an offset of 1 to the 

support vectors. Hence, the margin value is calculated by solving the three equations of 

the support vectors. 

�� < _�, _� > +�+ < _�, _+ > +�� < _�, _� ≥ −1 

�� < _�, _+ > +�+ < _+, _+ > +�� < _+, _� ≥ 1 

�� < _�, _� > +�+ < _+, _� > +�� < _�, _� ≥ 1 

In SVM implementation this margin is solved using Langrangian multipliers, the 

solution of which renders the alphas relating to input values, which do not contribute to 

the support vectors machine to be zero. In other words only the alphas relating to the 

support vectors would have non zero values. Solving the equations we get  

3�� + 1�+ + 4�� = −1 

1�� + 3�+ + 4�� = −1 

4�� + 4�+ + 10�� = 1 

Solving the above equations we get the values of �� = −1.75, �+ = −1.75 and 

�� = 1.5 

Now to determine the hyperplane we take the affect of all 3 support vectors. 

T =���_��  

																																																								= 	−1.75!111% − 1.75!
1−11 % + 1.5 !

301% 

= ! 10−2% 
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Figure 21: The hyperplane of the linearly separable SVM case 

Now the hyperplane can be represented with T = 
1,0� and � = −2. The line 

representing these values is plotted in figure 21, which represents the optimal hyperplane 

between the two classes. 

 The margin using support vectors is implemented in SVM using Langrangian 

multipliers. 

p� = 12‖T‖ +���� −�����
T��� + ���  

The dual problem is to maximize p� subject to the constraint that gradient of the langran-

gian with respect to the hyperplane and the constant both are zero. The values of alphas 

also must be greater than or equal to zero. 

�p��T = 0⇒ T =��������  

�p��Th = 0⇒����� = 0�  

 Substituting the above values into equation we get 
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p� = −12�����A���A���AA +�����  

Using quadratic optimization methods we can solve the above equation. Now we have the 

complexity of the problem is dependent on the sample size and not on the input dimen-

sionality. Since, the support vectors are only those values, which have a positive alpha 

values. Therefore, the computation requirement is further reduced.  

In the above example, the dual Langrangian is maximized subject to �� ≥ 0. How-

ever, the data points which are not on the class margin would have zero alpha values and 

hence would not effect the final value.  

5.3 Non- separable Case 

Now we would consider the case where the boundaries of the binary classes are not dis-

tinct. In other words the case where the data points of both classes are overlapping. In 

such cases, the data points are projected into feature space to attain linear seperability. 

Now in equation we would have to induce the soft error variable � 

��
T��� + Th� ≥ 1 − �� 
 So, in order for the SVM to classify the data point in the soft margin the range of 

the soft error �� must lie between 0 and 1. ∀	�� ≥ 1	 the data point is misclassfifed. The 

total soft error is sum of errors of the individual soft error of each �� Hence, adding this 

penalty term 

p� = 12‖T‖ + ����,�  
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where C is the penalty constant, which represents the tradeoff between the complexity 

and accuracy. With the above mentioned constraint the Langrangian now becomes 

p� = 12‖T‖ + ����,� −���E��
T��� + �� − 1 +� ��F −������  (7) 

Note that other than the addition of the �� there is a new term ��, which is to ensure the 

positivity of ��. Similar to the linear separable case we now maximize the Laplacian wrt 

T, �� and Thto rewrite (7) in terms of ��, �� and ��. The gradient gives us the following 

terms 

T =��������  (8) 

����� = 0�  

� − �� − �� = 0 

Since, we introduced �� ≥ 0, it implies that 0 ≤ �� ≤ �. Now maximizing w.r.t. �� we 

again get  

p� = −12�����A���A���AA +�����  

5.4 SVM Kernel 

The real world classification problems mostly belong to the non-seperable class or the 

soft margin case. The increased number of misclassified data reduces the effectiveness of 

the SVM method. To overcome this issue the support vector machine incorporated idea 

of projecting the data from input space to another non-linear feature space. The idea be-

hind projection of data into another space was to address the data points which were pre-



52 

 

viously lying in the other class range to be projected in the region of their own class 

boundary. Such a projection would require computation of every data point to get an 

equivalent value in the feature space using the basis functions of the feature space. 

 Consider the new dimension U calculated through basis function ∅. Now the dis-

criminant in feature space U is represented as  

�
U� =�TA ∅A
���
A��  (9) 

Comparing (9) with (6) we observe that Th is missing from (8). This is because 

the dimensionality � of feature space U is much larger than the input space  . On the 

other hand the complexity of the problem also increased from   to �.  

Using the same method of Langrangian multipliers we computed the dual, which 

became 

p| =���� − 12����������∅
����∅
����� . 
The computation of ∅
����∅
��� is computational intensive. Kernels were 

brought in to replace this computation. With kernels instead of mapping the function us-

ing the basis function a much simpler kernel function in the original input space com-

putes the value of the projected input in the feature space. Hence the dual now becomes 

p| =���� − 12����������D
��, ����� . 
Comparing equation (8) and (9) the discriminant can be rewritten as  

�
U� =�����∅
����∅
����  
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Since 

D
��, ��� = ∅
����∅
���, 
therefore, 	

�
U� =�����D
�� , ����  

This means that the step of projecting the input into feature space through basis 

function is now done using the kernel. This is the reason for naming this method as vec-

tor machine method. The kernel D
��, ���	is represented as the symmetric Gram matrix. 

5.5 SVM for Regression 

The support vector machine was extended for solving prediction problems using non-

linear regression techniques. The regression method is curve fitting method, which uses 

some goodness of fit criterion. Linear regression is the most common form of regression 

which uses the least squares method as a goodness of fit criterion. Employing linear re-

gression to our problem would yield an error  

����, �
���� = E�� − �
���F+. 
 This quadratic error is sensitive to outliers. To control the effect of outliers using 

the linear regression method the data would have to be filtered for the outlier values. The 

method itself treats noise and real inputs linearly for errors. On the other hand SVR in-

corporates a linear approach for error calculation.  This not only makes the SVR robust 

against outliers but it also uses an ϵ-insenstitve error function which makes the goodness 

of fit function insensitive to small errors in the range of ϵ set by the user, The ϵ-

insensitive loss function is defined as 
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����, �
���� = �0																																									4�	|�� − �
���| < �|�� − �
���| − �																												�]ℎ��T4_��. 

The ϵ-sensitive loss function defined above gives the range of error ℰ in which the 

SVR hyperplane is not effected by the error and the linear error term which comes into 

play outside the ϵ boundary.  

 To account for the errors outside the ϵ boundary two slack variables ��� and ��� to 

measure the error of data points outside the ϵ boundary in both positive and negative di-

rections respectively. The minimization function now becomes 

745 12 ‖T‖+ + ����� + ����  

subject to 

�� − 
T�� + �� ≤ � + ��� 

�� 
��∗ 

�� ��∗ 

� 

� = T.j
�� + � 

Loss 

Error 

� 

Figure 22: The ϵ-sensitive support vector machine for regression 
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T�� + �� − �� ≤ � + ��� 

���, ��� ≥ 0 

Similar to the classification problem now we minimize the Langrangian wrt T, �, ��� and 

��� to simplify the equation in terms of langrangian multipliers. The Langrangian dual 

now becomes 

p� = 12‖T‖+ + ����� + ���� −����E�� − 
T�� + �� − � −� ���F
−����E
T�� + �� − �� − � − ���� F −������� + �������  

Partial derivates wrt T, Th, ��� and ��� are 

�p��T = T −�
���� + ����� �� ⊃⇒T =�
��� − ����� �� 
�p��� =�
��� − ����� �� = 0 

�p����� = � − ��� − ��� = 0 

�p����� = � − ��� − ��� = 0 

The dual is now 

p = 12��
��� − ����
��� − ����� ����� − ��
��� + ����� −���
��� + �����  

subject to 

0 ≤ ��� ≤ � 

0 ≤ ��� ≤ � 
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�
��� − ����� = 0 

Now the support vectors are determined for all values of  ��� and ��� greater than or equal 

to �. The support vectors are the weighted sum of feature space in terms of langrangian 

multipliers 

�
�� =�
��� − �������� �� + �. 
Here ����� can be replaced with the kernel. 

The SVR algorithm works as a regression problem of a data projected in the fea-

ture space. The support vectors are formed for data points outside the ε boundary. The 

cost value determines the amount of deviation caused by the outlier. A higher cost value 

would also cause overfitting of the data, while a lower cost would underfit the outlier 

values. In support vector regression the boundaries formed by the support vectors in the 

classification case are replaced by data values for the outliers.  
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6 TRANSFORM BASED MACHINE LEARNING MODELS 

Researchers have tried multiple transforms for the purpose of preprocessing the input da-

ta for machine learning methods. The objective of processing the data can have multiple 

objectives depending upon the transform applied and type of dataset.  

 Machine learning methods for preprocessing the data using transforms were used 

for the purpose of achieving improved accuracy for compression, classification and fore-

casting. The major transforms which were used to enhance the features of the dataset or 

alternately reduce its dimensionality were the S-transform, Discrete Cosine transform, K-

L transform, Contourlets, Hough transform and Stanlet transform etc.  

 The transform could only be effective if the transformed inputs exploit the proper-

ties of the underlying machine learning method to make them more efficient. This could 

be achieved by decomposing the transform and remove the noisy component from the in-

put data, or by separating the noisy and periodic and trend components. The type of trans-

form to be used depends on the properties of the dataset and the machine learning algo-

rithm. 

For the purpose of this thesis we have only focused on the transforms used in con-

junction with the support vector machines for regression. Similar models have also been 

reported using neural networks as the machine learning method.  

Below we have discussed a few models, which were used and published in schol-

arly journals and conference proceedings related to support vector machines. 



58 

 

6.1 Transform based SVM for Forecasting Problem: 

The forecasting models based on transformed time series and support vector regression 

focus on the division of information from one time series to multiple time series in such a 

way that the combined errors of the transformed SVR model is lower than the individual 

support vector regression machine. This condition is not trivial to achieve, therefore, 

models in different configurations have been applied to achieve this condition. 

6.1.1 Discrete Wavelet Transform and SVR  

 The wavelet transform projects the input data in the time-frequency space. In time 

frequency space the wavelet decomposed data represents the frequency related events, 

while keeping the time information. The purpose of dividing the data into multiple pro-

jections is to distribute the frequency of the incoming signal into frequency bins for better 

resolution. Not every wavelet basis has the ability to achieve the condition mentioned in 

(10). The selection of wavelet basis and the configuration of the different wavelet trans-

form based support vector machine models are described below. 

6.1.1.1  Configurations of Wavelet Transform and SVR Models The 

wavelet transform based SVR models are developed in different configurations as shown 

in figure 23. The two main types are the wavelet kernel based SVR and the wavelet trans-

form based SVR.  

Wavelet Transform based SVR  The wavelet decomposed method decomposes 

the input into wavelet domain before sending the signal to the support vector ma-

chine. Each decomposed signal has a separate support vector machine associated 
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with it. It is not necessary to use all decomposed inputs as input to the SVR. The 

wavelet reconstructed signal, which decomposes the signal with maximum fre-

quency normally does not follow any specific pattern. Researcher have used aver-

aging or similar filters to be used as its substitute [57].  

The wavelet decomposed SVR method has the capacity to use all wavelet 

basis for the decomposition phase. If a wavelet selection criteria is determined, the 

wavelets selection could be made based on that criteria. 

Wavelet Kernel based SVR   SVR with Wavelet kernel is another method 

used to take advantage of the wavelet transform without decomposing the input in-

to wavelet domain. The support vector machine projects the input data into the 

feature space. The function used to project the input space into feature space is the 

support vector machine kernel. These kernels are functions for projecting the input 

space into feature space with some additional limitations discussed in Chapter 5. 

Lately wavelet based kernels have been developed which project the input space 

into wavelet space for classification/prediction purposes. The kernels are inter-

changeable; with different functional projections through different wavelets. However, 

SVM is limited by the choice of wavelets, which could be designed into support vector 

kernels. 

 To overcome this shortcoming wavelet decomposition and wavelet kernel were 

used together as shown in figure 23a below. However, the wavelet transform of wavelet 
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Figure 23: Different configurations of wavelet transform and support vector regression models 

projected data could not improve the accuracy over the wavelet decomposed RBF kernel 

method. 

 

6.2 Transform based SVM for Compression Problem: 

The concept of using support vector machine for data compression is based on the sparse 

representation property of the SVM. Support vector macines model the data with a mini-

mum number of support vectors for a predefined accuracy. The transform is used to fur-

ther simplify the data for the support vector machines.  

6.2.1 Wavelet based SVR for Compression 

The support vectors machines use support vectors and their corresponding weights to 

train the input data. For a predefined level of accuracy the support vector machine has the 

ability to model the data using a minimum number of support vectors. The number of 

support vectors depends on the properties of the input data and the values of cost and ep-

silon set for the support vector machine.  
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 The model for the image compression follows a similar pattern as shown in figure 

23c. The input image is divided into tiles and the 2D wavelet transform using a suitable 

wavelet is computed. The wavelet reconstructed coefficients are then trained using their 

individual support vector machines which model the input wavelet coefficients based on 

the parameters set for the SVM. The trained data for the individual support vectors is rep-

resented in the form of support vectors and their corresponding weights, which is com-

pressed using a quantization encoding method. [58] used Huffman coding to compress 

the support vector values and their corresponding weights.  [59] also uses a similar mod-

els but uses the Daubechies 9/7 instead of the Haar wavelet and instead of using SVMs 

for all high and low frequency coefficients used Diffential Pulse-code Modulation to en-

code the highest frequency data of the wavelet reconstructed coefficients. [60] also used 

the similar model but used multiple kernels to analyze their accuracies in terms of com-

pression ratio and PSNR of the compressed images. 

6.2.2 Curvelet based SVR for Compression 

The Curvelet transform is a multiscale directional transform, which efficiently computes 

sparse representation of geometric objects with singularities. Unlike the wavelet trans-

form, Curvelets have the ability to vary their degree of localization in orientation with 

scale. Therefore, they are more effective to sparsely represent data which is globally ge-

ometric with important singular information at high frequencies.  

 Using this property of sparse representation, curvelets were used to compress im-

ages. The model displayed at figure 23c was used by [61, 62] where the input image was 
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transformed into curvelet reconstructed coefficients before passing to the support vector 

machine for regression to compress the data.  

6.2.3 DCT based SVR for Compression 

The discrete cosine transform was used in [63] to compress image data in similar config-

uration as other transforms. The discrete cosine transform of an image maps the pixel 

values of the image from the spatial domain to the frequency domain. DCT diminishes 

the effect of higher frequencies in the image, hence reducing the image size. However, 

the effect of this removal of high frequencies is not visible to the naked eye. The coeffi-

cients of the discrete cosine transform are compressed using the SVM as it has the ability 

to model large dataset with sparse support vectors. 

6.3 Transform based SVM for Classification Problem: 

Support vector machines were originally designed for binary classification. Their ability 

to classify data by projecting it into a high level feature space using kernel method made 

them popular among researchers. The concept of binary classification was extended to 

multiple classification and regression problems. To further improve the accuracy of sup-

port vectors the input data is transformed into a specific domain to further increase the 

distance between multiple classes. 

6.3.1 Fourier based SVR for Classification 

Fourier transform gives the frequency content of the signal in the frequency domain. 

However, the spatial information of the signal is lost in the transformation process. Short 

time fourier transform was used to preserve the approximate spatial location with the fre-
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quency transformation. [64] used a short time fourier transform to localize the frequency 

information and then using support vector machines classified the input signal as faulty 

or otherwise. The fourier transform has its significance in the frequency domain but when 

spatial information is also required in the classification system, wavelets become more 

useful. 

6.3.2 Wavelet based SVR for Classification 

Preprocessing the data into wavelet domain before classification through SVM is similar 

to the model explained in Section 6.1.1 except the objective of the SVM is not compres-

sion or prediction but classification. [65-69] used wavelet transform on the input data to 

extract features from the data set. These features were then given as an input to the sup-

port vector machine for classification of the signal.  

6.3.3 PCA based SVR for Classification 

Principal component analysis is used to orthogonalize the input data into convert a corre-

lated data set into uncorrelated input. The classification of support vector machine would 

improve with uncorrelated dataset as there would be more distance between the different 

features. 

 [70, 71] transformed the input spectroscopy signals into principal components and 

then used them into the support vector machine for classification. [72] initially used the 

wavelet transform to convert the input data into wavelet coefficient data and then com-

puted the principal components to uncorrelated the data before classifying it into out clas-

ses using SVM. 
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6.3.4 Slantlet Transform based SVR for Classification 

Slantlet transform is an orthogonal DWT with two zero moments and improved time lo-

calization. The Slantlet transform unlike the wavelet transform does not have shifted and 

scaled versions of the mother wavelet, but the Slantlet filters use different filters on each 

scale. Hence, Slantlet filters have more degrees of freedom as compared against the 

wavelet transform. Due to this property of the Slantlet transform the filters at higher 

scales can be implemented using shorter supports, while keeping all the abilities of the 

equivalent wavelet filter.  

 The Slantlet filters are used to compute the features from the input data. [73] used 

this transform to extract features from the intensity histogram of MRI images. These fea-

tures are used for the input to the SVM for classification. 

6.4 Transform based SVM for Denoising: 

The denoising is based on the concept of filtering out the frequency components in a spe-

cific range. Usually noise component belongs to the high frequency range. The trans-

forms are used to divide the image or data into frequency bins. Subsequently the high 

frequency bins are filtered out to produce denoised data.  

6.4.1 Slantlet Transform based SVR for Denoising 

[74] proposed a model using slantlet transform for denoising. However, the noisy com-

ponent was not removed from the dataset. The SVR has the ability to model the stochas-

tic data using support vectors. By setting low values for epsilon and high cost values 

more support vectors can be forced to create, which would over fit the data. However, if 
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the training data gives a complete or near complete range of the input data and the testing 

dataset follows a similar pattern of input data then there a good chance that the SVR 

model would produce improved results for forecasting the stochastic process.  

 A similar model was followed in [74] where the dataset was decomposed using 

the slantlet transform into deterministic and stochastic components. The deterministic 

component was forecasted using the ARMA model and the stochastic component was 

sent to the SVR for forecasting the next value. Both deterministic and forecasted values 

were added to produce the final results. 

6.4.2 Wavelet Transform based SVR for Denoising 

The wavelet transform as a denoising method was used in [75, 76]. The input signal was 

first decomposed into wavelet coefficients and the high frequency components i.e. the de-

tail coefficients were thresholded based on adaptive or fixed thresholding to remove the 

noisy component in the signal. The resultant signal was modeled using the support vector 

machine for regression. The output of the signal was passed through the inverse wavelet 

function to recover the denoised data. 

6.4.3 Empirical Model Decomposition based SVR for denoising 

Empirical model decomposition is used to transform the input data into the energy-

frequency-time domain by using finite and small number of intrinsic model functions. 

[77] used the empirical mode decomposition method to decompose the traffic data into 

frequency bins. The noisy component or the high frequency component was removed and 
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the remaining was data was reconstructed to get the denoised traffic data in the spatial 

domain. The future value was then forecasted by the SVM for regression.  

 This method is significant for noisy data. Traffic data on the other hand represents 

non-linear and non-stationary patterns in all frequency range. The so called noisy compo-

nent is also representing an event on the roadway. To remove it from the SVM input ef-

fectively, reduces the workload of the SVM as we are now giving less information to 

process in the machine learning module. A similar approach was demonstrated in [78] 

where the high frequency component was not removed but each frequency bin was allo-

cated a separate SVM to predict the future value. 
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7 OPTIMAL WAVELET SELECTION 

In this chapter we define the wavelets selection process. The wavelet selection process is 

based on the selection of mother wavelet, the level at which the wavelet filter decompose 

the signal and the type of wavelet decomposition. The factors involved in selecting the 

wavelets are discussed for both stand-alone wavelet models and the wavelet based ma-

chine learning models.  

7.1  Selection of Mother Wavelet 

The wavelet library holds many wavelet families. The choice of wavelet for a given mod-

el holds significant value as the wavelet decomposition using the complete set of wave-

lets is a time consuming and computational intensive task. Generally wavelet selection is 

based on computing the data using a set of popular wavelet like daubechies, haar etc. and 

based on the results the optimal wavelet is selected. However, using this hit and try 

method a generalized rule for wavelet selection cannot be made. Hence for every new da-

taset the procedure would have to be repeated again to select the best performing wavelet. 

Nevertheless, different approaches have been adapted for selecting wavelets for wavelet 

based models. 

To describe the wavelet selection process we would classify the wavelet based 

methods based on the configuration in which they are used. The wavelet based methods 

are either used alone or in conjunction with another machine learning method. For sim-

plicity we have named the standalone wavelet method as the wavelet based method and 
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the one which is used in conjunction with a machine learning module as the wavelet 

based machine learning method. 

7.1.1 Selection of Mother Wavelets in Wavelet based Machine Learning 

Models 

The selection of an exact method for optimal mother wavelet selection is not reported in 

literature for wavelet decomposed support vector regression methods. This is due to the 

black box behavior of machine learning methods on non-linear data. The support vector 

machine however, works on a more intuitive concept of structural risk minimization. The 

user has the capacity to change the kernels to improve the results of the objective func-

tion. Wavelet kernels have already been designed for use in support vector machines. The 

kernel which decomposes the dataset into feature space is based on wavelet transform. 

The dataset is still non-linear and non-stationary and we do not know the statistical prop-

erties of the wavelet decomposed signal. Therefore an initial decomposition of the train-

ing data using all possible wavelets is still required.  

A wavelet selection scheme was proposed in [79], which used the genetic algo-

rithm to select the mother wavelet and parameters of the SVM based on the training data. 

Such approaches loose the prime objective of saving computational cost as in general 

70% of the data is used in training and genetic algorithms by their implementation are it-

erative. [80] also concluded that the absence of any analytical justification for selection of 

suitable wavelet for classification of data using wavelet based SVM classification meth-

od. The choice was made by experimenting with different wavelet families and based on 

the result the optimal wavelet was selected. The wavelet when used has an input to the 
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another machine learning method changes the dynamics of the selection process. The typ-

ical wavelet properties like vanishing moments, filter length, symmetry etc. do not direct-

ly affect the accuracy of the machine learning method which is using the wavelet trans-

formed input. Since the objective is to improve the accuracy of the machine learning 

method therefore the properties of the wavelet decomposed signal with respect to the ma-

chine learning objective should be studied. The mother wavelet selection would therefore 

be dependent on the both properties of the dataset and the objective function of the ma-

chine learning method. 

7.1.2 Selection of Mother Wavelets in Wavelet based Models   

In the case of wavelet based methods, the selection of wavelets was mainly done 

based on the characteristics of the wavelets in relation to the input signal. The main prop-

erties, which were considered include energy and cross-correlation. In general there is no 

analytical justification, which could generalize the wavelet selection process [80] for 

classification or prediction models based on the configurations given in figure 23. Most-

ly, the reason of selection of a specific wavelet is given based on a relative value of the 

objective function for which the wavelet based model was used. The methods used for 

wavelet selection for wavelet based methods are described below: 

7.1.1 Cross-Correlation based methods 

Cross correlation is a function of similarity between the two signals and is measured as a 

sliding dot product or convolution of the two signals. Mathematically, cross correlation is 

represented as: 
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��,	 = ∑
9 − 9H�
6 − 6H��∑
9 − 9H�+
6 − 6H�+ 

where 9H and 6H are the mean values of 9 and 6 respectively. 

  Correlation based method was used by [81] where the cross correlation of the sig-

nal and the wavelet filter was computed and the wavelet filter with the maximum cross 

correlation value was selected for the objective of denoising the ECG signal. The meas-

ure of accuracy of the wavelet filter was based on the preservation of peaks and RMSE. 

Denoising was performed using the threshold method. Here the minimum RMSE of the 

thresholded reconstructed value of the wavelet signal and the original signal represents 

the similarity of the wavelet filter with the original signal. The cross correlation method 

selected also represents the value of similarity between the two signals. A similar method 

was also used in [82]. Similar results would be produced if the selection criterion of en-

tropy was selected. 

However, the above mentioned selection method would not be applicable to 

wavelet based compression, classification and prediction using any of the configurations 

as shown in figure 23.  

7.1.2 Energy based methods 

Energy based selection criterion use retained energy and relative energy as the measure 

of energy captured by the wavelet coefficients from the original signal. Retained energy 

is the measure of similarity of the wavelet decomposed signal with the original signal. 

Mathematically, retained energy can be expressed as: 

Z�] 45�d	¡5��o¢ = ‖�
5�‖+‖�
5� + ¢
5�‖+ × 100 
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where �
5� and ¢
5) are the original and reconstructed noise signal arrays respectively. 

Relative energy is the measure of signal information retained in the wavelet decomposed 

approximation signal w.r.t. the approximation and detailed signals. 

Z�£ ]4��	¡5��o¢ = ∑  A,�+�∑  A,�+� + ∑ ∑ dA,�+�A  

where B represents the level of wavelet decomposition selected for the denoising the 

signal. The hypothesis for using relative energy is based on the assumption that infor-

mation content in the signal lies in the frequency band of the approximate signal of the 

selected wavelet, whereas the noise components lie in the high frequency range of the de-

tail signals. [83, 84] have used the retained energy and relative energy criterion respec-

tively, to select the optimal wavelet filer for denoising. The wavelet, which retains maxi-

mum energy, was selected for denoising. 

7.1.2 Hybrid methods 

A minmax approach proposed in [85] used both cross correlation and energy based func-

tions to devise a function for wavelet selection. The minmax function was defined as: 

�45� �
_� = V
9, 6� × V
6|9� × 1
9||6�¤
9: 6� × �
9, 6�  

where V
9, 6�, V
6|9�	 5d	1
9||6� represent the joint entropy, conditional entropy and 

relative entropy respectively and ¤
9: 6� 5d	�
9, 6� stand for mutual information and 

cross correlation. 

The minimum value using the above equation gave the optimal wavelet from the set 

of wavelets, which would denoise the input data with greater efficiency. 
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7.2     Selection of Wavelet Decomposition Level  

The selection of wavelet decomposition level in wavelet and wavelet based machine 

learning systems is again based on the computation of error indicators of the training data 

relevant to the objective function of the problem. The training data is used to compute the 

wavelet transform at different decomposition levels and then the objective function is 

computed. The accuracy of the objective function is determined based on different pa-

rameters. The best results of the different wavelet decomposition level data determine the 

optimal level of decomposition.  

7.2.1 Selection of Wavelet decomposition level in Wavelet based Models 

The wavelet decomposition level selection model was defined in [86], which used quality 

index of the reference image and the normalized weighted performance metric (NWPM) 

in addition to the two general indicators peak signal to noise ratio (PSNR) and the root 

mean squared error (RMSE) to calculate the optimal level of wavelet decomposition for 

region level fusion of multi-focused images. 

 The quality index of the reference image is defined as: 

Y¤ = 4*¦§ �
 + + �+�
*¦+ + *§+� 
where   and � are the mean of images Z and ¨ respectively and * and *+ depend covari-

ance and variance respectively. The quality index of the image defines the image distor-

tion in terms of loss of correlation, luminance distortion and contrast distortion. This is 

also called the universal image quality index and showed that it performs better than the 

RMSE methods under different images of varying distortions [87].  
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The Normalized Weighted Performance Metric is defined as 

 nX� = ∑∀�.AY�A©ªn�A© + Y�A«ªn�A«∑∀�.An�A© +n�A«  

NWPM is a measure of pixel level image fusion performance defined in [88]. It is 

accepted as a universal measure for objectively assessing the quality of the visual infor-

mation obtained from the fusion image. 

Another method was proposed in [89], which is based on systematically quantifying the 

energy in each sub-band of the wavelet decomposed signal. It decomposes the image into 

it’s Fourier transform and reconstructs the same image after removing the frequencies 

which are less than 1% of the main peak. Now the energy ¡ of the reconstructed image is 

compared against the energy ¡� of the wavelet decomposed sub-band image energy at de-

composition levels 4. The ratio 
¬­¬  is compared against a threshold, which determines the 

optimal level of decomposition of the image for image information mining. 

7.2.2 Selection of Wavelet decomposition level in Wavelet based Ma-

chine Learning Models 

The level of wavelet decomposition depends on the number of points in the input signal. 

The level of decomposition also depends on the frequency content of the input signal. 

Lower decomposition levels through scaling and shifting produce filters which efficiently 

represent events in the higher frequency range of the input signal in the time-frequency 

wavelet space. Therefore, for a signal with more noise content or high frequency content 

a lower level of decomposition would be required as compared to the dataset with less 

high frequency content. 
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The level of decomposition would not improve the results if the level of decomposi-

tion is increased beyond the frequency content of the input signal. The optimal level of 

decomposition is the one which corresponds to the frequency content of the signal. Simi-

lar results were shown in [90].  

7.3       Selection of Wavelet Transform Method 

The wavelet transform can be computed in the discrete domain in one of the 3 main 

forms: Undecimated discrete wavelet transform, discrete wavelet transform and the 

wavelet packet transform. Each type of transform has its own advantages and disad-

vantages described below: 

7.3.1 Undecimated Discrete Wavelet Transform 

The undecimated discrete wavelet transform as shown in figure 12 does not downsample 

and upsample the low pass and high pass filtered sub-bands, but the filters at each de-

composition level are stretched and dilated following the wavelet concept. In our case 

since, we are only using the reconstructed values, therefore the reconstructed filter values 

using the wavelet packet transform and the undecimated wavelet packet transform at de-

composition level 2 would yield the same result. 

7.3.2 Discrete Wavelet Transform 

In discrete wavelet transform the high pass component of the original signal is not further 

decomposed in the sub-bands. The DWT only focuses on the subband coding in the time-

frequency domain of the low pass signal. Implementation of the reconstructed DWT sig-

nal to the support vector regression module would always give lower accuracy than the 
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equivalent wavelet packet transform signal as the low energy and 50% of the high fre-

quency information is embedded in the high pass reconstructed signal at decomposition 

level 1 represented as D1 in figure 16. The energy in D1 is in general more than the ener-

gy in D2, D3 and D4. The energy of D4 of the DWT is not comparable to the energy of 

sub-band 2-2 of the WPT. Therefore, the discrete wavelet transform in general does not 

give improved results as compared to the wavelet packet transform support vector regres-

sion model. 

7.3.3 Discrete Wavelet Packet Transform 

The wavelet packet transform divides the input signal into equal frequency components 

among its sub-bands. The energy of the reconstructed DWT signal in lower decomposi-

tion levels for high frequency is very low and does not contribute towards the overall ac-

curacy of the WDSVR model. It is therefore that [57]  substituted the lowest energy sub-

band with the moving average of the low energy signal. 

 For optimal results using the current wavelet transforms an iterative approach 

would yield optimal results using different combinations of the reconstructed wavelet 

signals. 
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8. WAVELET PACKET SUPPORT VECTOR REGRESSION 

The wavelet packet support vector regression (WPSVR) model is a multiple support vec-

tor regression model, which forecasts the value of wavelet reconstructed input data. The 

structure of wavelet packet support vector regression is schematically outlined in figure 

24. The model works by evenly distributing the original signal’s frequency using the 

wavelet packet transform into the SVR modules.  

 The wavelet packet transform evenly distributes the input signal frequency into its 

Historic	Travel-Time	Database	
Wavelet	Tree	Decomposition	&	Coefficient	Reconstruction	

n+,+ n+,� n+,h n+,� 
SVR2,2	SVR2,1	SVR2,0	 SVR2,3	
nÇ+,+ 	

nÇ+,� 	
nÇ+,h nÇ+,� 

Predicted	Travel-time	
Figure 24: Flow diagram of the Wavelet Decomposed support vector regression model 
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wavelet decomposed signals. The frequency distribution was done based on the hypothe-

sis that the original signal has equal traffic information in all frequency bands.   

The time series signal �
]�, which represents the travel-time of the freeway was 

sampled from the database based on the prediction horizon selected. The time signal was 

then transformed using wavelet packet decomposed signals, such as ∑ nA,\+z��\�h ,	where B 
is the level of the decomposition. The wavelet decomposition was calculated using a slid-

ing window as shown in figure 25. The window size determines the number of input fea-

tures given to the support vector machine. In our case the window size of 8 was selected 

and the decomposition was done at level 2. These wavelet coefficients were stored for the 

support vector regression module. The four frequency components were processed 

through their respective support vector machines leading to one time-step ahead output, 

where the step was equal to the time interval between the consecutive input values. The 

support vector regression output was finally aggregated to calculate the travel-time fore-

cast. Table 2 below gives the step by step implementation of the wavelet decomposed 

support vector regression algorithm. 

8.1 Collection and Storage of Traffic data: 

The traffic data was collected from the Inductive loop detectors, which measure 

speeds and count of individual vehicles passing over them. The speed of the indivisual 

vehicles was aggregated over a specified period. CALTRANS stores these speed aggre-

gated over an interval of 30 seconds and 5 minutes. If, ��© is the speed of vehicle 4 pass-

ing over detector Q, between ]1  and ]2	then the aggregated speed of vehicles passing 

over the detector during the specified period would be  
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Wavelet	Coefficients	 Wavelet	Coefficients	t-7	 t-6	 t-5	 t-4	 t-3	 t-2	 t-1	 t	
 

e�+© = 1 ���©$
���  

where   is the total number of vehicles passing over the detector Q between times 

]1 and ]2. 

The aggregated speeds of the vehicles called the time mean speed of detector Q. 

This time mean speed is stored in the form of flat files along with the metadata of the 

roadway. 

The data from different loop detectors is stored in a centralized database, which is 

updated periodically. A length of 9.13 miles was chosen on I-5N with a detector density 

of 2.73 to ensure proper coverage of the traffic pattern on the freeway stretch. 
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Figure 25: Algorithm for wavelet decomposed support vector regression 
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An ftp (file transfer protocol) connection was made with the data server to trans-

fer the relevant data related to the section of the roadway. The speed data of the loop de-

tectors was transferred in the form of flat files and migrated into the SQL server database. 

SQL scripts were run on the database to filter out the speed data from 1 pm to 8 pm daily. 

This output data variable was used to calculate the travel time. 

8.2 Calculation of travel-time 

The speed data collected from the California Department of Transportation is the time 

mean speed or spot speed of the loop detectors accumulated over a period of 5 minutes. 

This speed data is converted to space mean speed (reasons explained in Section 3 above). 

The information on the distance between consecutive detectors was already known. Con-

sequently, the travel-time was calculated from the space mean speed array and the dis-

tance array. This time array is then updates the travel-time variable. 

8.3 Sampling of Input data 

The travel-time data was sampled for different time horizons for the wavelet packet trans-

formation. The sampling period was proportional to the prediction horizon. For example 

if the travel-times were updated with an average of the aggregated speeds of all vehicles 

passing over a period of 5 minutes and the selected forecast horizon is 10 minutes then 

every second travel-time value in the input array would be sampled. 

Mathematically, 

�Ë
t� = τ
δt� � 
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Table 2: Algorithm for wavelet decomposed support vector regression 

 

where δ is the forecast horizon in minutes and � is the interval in minutes at which the 

data is collected. This sampled input data is then transformed into a S ∗ � matrix with 

S = £ − 7 and � = 8 where £ represents the  th value of the time series. The decomposed 

and reshaped travel-time was represented as  

9 = :�
] − 1� ⋯ �
] − 8�⋮ ⋱ ⋮�
£ − 7� ⋯ �
£� > 
 The index of travel-time of each row and column is incremented by one. 

¢EÐF = �� Ñℎ�Ð5 + 1Ò$
��h  

nA,\ Ó� ¢��Ô
��� E] − �FÕ. 

1. Sample travel-time array into subsets for their respective prediction horizons us-

ing 

where ℎ is the prediction horizon in minutes. 

  

2. Initialize p=0 and decompose the sampled signal using wavelet packet decompo-

sition at level j=2 

 

3. Store nA,\ computed in step 2 for the SVR module and increment  Ö = Ö + 1. 

 

4. Repeat steps 2 and 3 until the end of the input array ¢EÐF. 
 

5. Increment 5 = 5 + 1 and repeat steps 2-4 until 5 = 2A . 
 

6. Divide ×eZ�\\  into training and testing sets and compute one step ahead predic-

tion value using their respective SVR modules. 

 

7. Aggregate the predictions of all 4 SVR modules to calculate the predicted travel-

time. 
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8.4  Wavelet Packet transformation 

The sampled and reshaped travel-time matrix was transformed in the wavelet packet do-

main at level 2. Each row of the matrix 9 was individually decomposed using the wavelet 

packet transform. Since, the wavelet packet transform was applied at level 2 the out 

would give four signals of the wavelet packet reconstructed coefficients. The wavelet re-

constructed coefficients were stored in four different matrices representing 

n+,h,n+,�,n+,+ and n+,�. Each matrix can be represented as. 

nA,\ = ØnA,\,���
�� ⋯ nA,\,��Ù
��⋮ ⋱ ⋮nA,\,w�Ô
�� ⋯ nA,\,w
�� Ú 
where B is the number of decomposition level and the number of wavelet decomposed 

matrices generated by wavelet packet decomposition is 2A. 
 Support vector regression machine is given a training set of generation of support 

vectors to train the machine learning algorithm. The training set is composed of input di-

mensions and their corresponding labels or in the case of SVR the expected values. The 

vector of true values against which the SVR is trained is the label vector. The label vector 

in the the wavelet decomposed support vector regression model is the ] + 1 value of the 

travel time in the input dimension space. The traiing label is represented as 

£ ��£A,\ = ÛÜÜ
Ý nA,\,�nA,\,���⋮nA,\,w��Þßß

à
 

 

The number of label vectors in WDSVR is 2A. As a general rule 70% of the data 

is used for training and 30% of the remaining data for testing. Hence, the four matrices 
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were given as input to their respective support vector machines with 
£ − 7� ∗ 0.7 rows 

for training, while the remaining 30% for evaluation. 

A set of 42 wavelets were used for the wavelet transformation. Each wavelet 

transformed data had a dimension of N-δ rows and 4 columns. 

 The four columns correspond to the frequency division at level 2 through the 

wavelet packets. The data was stored for the computation in the support vector regression 

module after the wavelet selection process. 

8.5  Wavelet Selection 

The purpose of the wavelet selection process module was added to reduce the 

computational cost of the model. In literature no analytical justification is given for the 

selection of the optimal wavelet for best results for the wavelet decomposed machine 

learning models. In this section we made an effort to define two measures, which help us 

in separating a subset of the wavelets, which always produce lower accuracy prediction 

results when compared against the classical support vector regression method. 

The wavelet selection models for standalone wavelet models as explained in 

chapter 7 were based on the wavelet properties w.r.t the objective function for that specif-

ic dataset. In the wavelet decomposed machine learning models the objective function is 

computed after the support vector machine module. The purpose of the wavelet function 

in the model is to pre-process the data for the support vector machine for regression. 

Therefore, the properties of the support vector regression module were studied w.r.t. the 

properties of the support vector machine instead of the objective function.   
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8.5.1 Cross-correlation of trend of the wavelet reconstructed data  

The travel-time follows a similar trend of congestion in the evening hours on 

weekdays for which the data is sampled. Figure 26a shows the cyclic pattern of the trav-

el-time. The travel-time data is reshaped for the wavelet module using the moving win-

dow as shown in the figure 26b. The reshaped travel-time data has a very high cross-

correlation among the successive rows as the time-series data is advanced by a single 

value in every iteration.  

The purpose for pre-processing the data was to decompose the data into different 

time-frequency bins, so that the multiple support vector machines could learn more pat-

terns related to the dataset than one support vector machine. The downside of this process 

are the errors associated with each SVM also aggregate by increasing the number of 

SVMs and to improve the overall result, (10) must be satisfied.  

The first difference of the time series gives the trend of the data. A similar trend 

in the consecutive time series would indicate that the wavelet reconstructed data is pass-

ing trend information to the support vector machine.  

The SVM input is in eight dimensions and since we are using the linear kernel on-

ly the feature space of SVM is eight dimensional. Four support vector machines with an 

input of eight dimensional data would enable the machines to train for 32 dimensions in 

the four wavelet signals. 

The dimensional information cannot be established analytically, therefore, we 

have established the measure that if the wavelet signal is generating one measure repeat-

edly then the SVM would work to optimize that measure alone. A pattern in the data 

would imply redundant information being given to the SVM. The idea behind running 
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multiple SVM was motivated by the fact that the time domain signal has information in 

the data, which can be linearized by transforming the data in another domain. If a certain 

wavelet basis has linearized only one aspect using multiple data points then it is highly 

unlikely that more information is also produced using the same variables. 

Summarizing the discussion we established that an exact linear change in trend, 

which is calculated with computing the first difference of the wavelet data would be an 

indicator of an inefficient SVM. The model, after the wavelet decomposition computed 

the first difference between the successive rows of nA,\.  

Ð��5d
nA,\� =�
nA,\�á,| − 
nA,\�á��,|w�Ù
á��  

where c and d represent the rows and columns of the wavelet reconstructed coef-

ficient matrix nA,\.  

Figures 27 and 28 show the wavelet reconstructed coefficients of  two wavelet ba-

sis biorthogonal 1/3 and reverse biorthogonal 6/8. The reverse biorthogonal wavelet pro-

duced the best results for the prediction horizon of 1 hour. It can be observed that unlike 

the reverse biorthogonal wavelet basis the first difference of the biorthogonal wavelet 1/3 

is repeatedly producing similar values as shown in figure 31 and 32. 

The measure of cross correlation between the successive rows of the matrix nA,\ 

gives us the similarity between the two arrays. A high cross correlation value was ex-

pected as the wavelet reconstructed values in the successive rows of nA,\ slides by one 

value. Sliding here indicates the moving window concept, which was illustrated in figure 

26b. The basic idea was to analyze if the wavelet filter captures the effect of the moving 

window in the time-frequency domain. The filters which capture the effect of the differ-
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ence between 
nA,\�á,|  and 
nA,\�á��,| gave low cross correlation values, whereas the 

signals of wavelet reconstructed arrays were similar for wavelets with high correlation 

values.  

8.5.2 Recurrence Relationship of wavelet decomposed data 

The recurrence relation here defines a similarity in the value at a specific point in 

every iteration. The support vector machine using the linear kernel has the ability to only 

linearly project the data in the feature space. Since, the input data is in the time-frequency 

space, therefore the feature projections would also be a linear combination of the input 

space.  

In figure 27 it is shown that the wavelet reconstructed coefficients at W[2,1] is 

producing zero value at a similar location in the time-frequency domain. However, if we 

look at the signal in figure 28 the reverse biorthogonal filter at 6.8 is also generating zero 

value in the time-frequency domain at W[2,2]. However, the significance of the wavelet 

reconstructed signal is directly proportional to the energy of the wavelet packet transform 

at each level and W[2,2] retaining minimum energy amongst all four wavelet recon-

structed coefficients has minimal contribution to the overall accuracy. 
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Figure 29 indicates the proportion of energy of the original signal which each of 

the component of the wavelet packet reconstructed signal posses. There is an uneven dis-

tribution of the energy of the wavelet signal, the W[2,0] component which is the low pass 

signal at level 2 as shown in figure 16b has approximately 95% of the signals energy and 

W[2,2] has the least amount of energy at 0.37%. Therefore, the filtration based on the re-

sults W[2,0], W[2,1] and W[2,3] are important. 
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Figure 26: a) Travel-time plot of the dataset b) the plot for consecutive rows of the re-

shaped travel-time data for wavelet packet module 
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8.6  Support Vector Regression 

The wavelet time-frequency space is the input space for the support vector regression 

machine. The number of input dimensions indicates the number of factors which are in-

fluencing the output label. Each input dimension value is projected in to the feature space 

using the wavelet kernel. For the WDSVR each row of the matrices nA,\ corresponds to a 

input array for the support vector machine and each row of £ ��£A,\ is the label output. In 

terms of the SVM concept explained in Chapter 5 the SVM for regression can be mod-

eled with the following equation 

�
�� =�T�n�
�� + �Ù
���  
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Figure 27: Wavelet Packet Reconstructed signal using Bior 1/3 wavelet at level 2 
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where ∅�
�� is now replaced by n�
��, which is the row of the Wavelet reconstructed 

input matrix nA,\. Since, we have used the linear kernel, therefore, the function � re-

mained a function of �. 

 In the linear SVM for regression case the next step is to compute the regression 

error, which uses the least squares method to calculate the goodness of fit. But the sup-

port vector machine for regression employs the �-insensitive loss function as the good 

ness of fit criterion.  

��n�
��, �
���� = �0																																									4�	|n�
�� − �
���| < �|n�
�� − �
���| − �																												�]ℎ��T4_�� 
 The �-insensitive loss is linearly sensitive towards outliers, which in our case are 

all values of	|n�
�� − �
���| ≥ �. For each outlier a support vector would be generated, 
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Figure 28: Wavelet Packet Reconstructed signal using Rbio 6/8 wavelet at level 2 
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which would store the weight associated with the outlier w.r.t. the cost value � selected 

by the user. 

 

 The minimization function for regression would now become 

745 12 ‖T‖+ + ����� + ����  

The outliers can be show in either of the two sides of the � boundary. ��� and ��� 

in the above equation are slack variables, which were introduces to compensate for errors 

on either side of the � boundary. The values of ��� and ��� are graphically represented in 

figure 22. 
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Figure 29: Pie chart of average energies at level 2 using multiple wavelet basis 
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The Langrangian is now implemented to solve the dual problem. The minimized 

Langrangian wrt T, �, ��� and ��� in terms of langrangian multipliers is given by 

�
�� =�
��� − �������� �� + �. 
The computation of the above equation is also conditional to the only those cases 

where ���, ��� ≥ 0 or in other words when the value in the feature space goes outside the � 

boundary. This makes the solution of SVM sparse.  
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Figure 30: First difference of values of each input using biorthogonal 1/3 wavelet Figure 31: First difference of values of each input using biorthogonal 3/3 wavelet 
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 Finally the kernel function �
�, �~� replaces �����, which minimizes the cost of 

computation. The function eventually becomes 

�
�� = ∑ 
��� − ����� �
�, �~� 	+ �. 

This function �
�� generated the predicted values which were compared against 

the true values in the label vector.  

 

The process is repeated for all matrices of the wavelet reconstructed signals. The 

forecasted values of each row of the four matrices are aggregated at the output to form an 

array of the predicted travel-time.  

ÐO = nÇ +,h +nÇ +,� +nÇ +,+ +nÇ +,� 
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Figure 32: First difference of values of each input using biorthogonal 1/3 wavelet 
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This predicted travel-time is compared against the PLSB estimates of travel-time 

based on the ILD data to produce the model error. 
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Figure 33: First difference of values of each input using reverse biorthogonal 6/8 wavelet 
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9 EXPERIMENT AND RESULTS 

9.1 Selection of Mother Wavelet for WPSVR Model 

The major computational load of the proposed travel-time prediction model is divided in-

to two parts:  computation of the wavelet packet reconstructed time-series data, and train-

ing of the support vector regression machines using the optimal cost and epsilon values. 

The grid search method was used for searching for epsilon and cost values.  

A definite procedure for selection of mother wavelets is yet to be established for 

wavelet decomposed support vector regression models. However, analyzing the wavelet 

reconstructed signal in context to the characteristics of support vector machines helped us 

in filtering the relevant wavelets basis. 

The accuracy of the proposed model is superior to the classical SVR model, if the 

condition in equation (4) is met. 

�âãä > �âãä
+,h� + �âãä
+,�� + �âãä
+,+� + �âãä
+,�� (10) 

Where, �âãä is the error of the classical support vector method. It is clear from 

equation (10) that WPSVR would not produce more accurate results than SVR for shorter 

time horizons. In our datasets, the WPSVR started giving more accurate results than the 

SVR method for prediction time horizons of 45 minutes or more.   

We conducted two basic tests for the admissibility of a wavelet for the support 

vector machine module.  
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9.1.1 Effect of Cross-correlation of wavelet decomposed data:  

For accurate predictions of a non-linear and non-stationary dataset the reconstructed 

wavelet coefficients of successive windows should not be correlated with one another. To 

test our hypothesis we computed the cross-correlation of each window with the other. 

9.1.2 Effect of Recurrence Relationship:   

The second test was to detect if the reconstructed wavelet coefficients were following a 

certain pattern. The input data of the successive windows is highly non-linear. The exist-

ence of a unique pattern would reduce the chances of the wavelet to produce more accu-

rate results. First difference of each successive window was calculated and it was re-

vealed that two wavelets showed zero value at a certain point in every iteration. 

To identify the above characteristics in the wavelet signal we used a subset of the 

data chosen at random ranging four days. In figure 30 the wavelet reconstructed differ-

ence signal converged to zero at a similar point in every iteration. Based on our tests we 

filtered 10 wavelet basis out of a total of 42, hence reducing the computational load of 

our project by 23.8%. While a detailed study on wavelet selection for WDSVR is needed, 

our results on the use of the support vector machines have shown encouraging results.  

9.2 An alternate configuration for interchangeable  

The WDSVR and SVR have both proven suitable for travel-time prediction depending on 

the selected forecast horizon. In our dataset, we observed that SVR is more accurate for 

prediction horizons of less than 45 minutes. 
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From 45 minutes onwards, WDSVR gives more accurate results. Considering the effec-

tiveness of both these models in different horizons, we have proposed an interchangeable 

configuration in figure 33, where we can chose to compute the travel-times in parallel 

and switch to the configuration for active use depending the selected prediction horizon. 

The cloud component, which houses both the prediction models is flexible and can be ei-

ther scaled horizontally or vertically to accommodate for the computation overhead. 
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Figure 354: A comparison of wavelet recurrence relationship of better and worse per-

forming wavelets 

9.3 Experimental Setup  

The data for our model validation and testing was collected from the Caltrans Per-

formance Measurement System (PeMS) website [2]. The route of 9.13 miles on I-5N was 

selected with a detector density of 2.73. The data was observed for 214 consecutive days 

commencing from March 01, 2011 to September 30, 2011 from 1 pm to 8 pm. The time 

slot was selected after observing the daily pattern of congestion during this period. The 

data revealed daily congestion in the evening hours except holidays and most weekends. 

This loop detector data was collected over an interval 5 minutes. 
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  The speed data was converted to travel-time series using the PLSB travel-time es-

timation method [32]. We decomposed the time series using wavelet packet decomposi-

tion at level 2. The data was then reshaped into a S ∗ � matrix with S = £ − 7 and � = 8 

where £ represents the  th value of the time series. The decomposed and reshaped wave-

let transform of travel-time matrix gave us 2A matrices at level B represented as 

 

nA,\ = ØnA,\,��� ⋯ nA,\,��Ù⋮ ⋱ ⋮nA,\,w�Ô ⋯ nA,\,w Ú 
 

Figure 36: Map of the test site of I-5N freeway 
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The four matrices were given as input to their respective support vector machines 

with 
£ − 7� ∗ 0.7 rows for training, while the remaining 30% for evaluation. The evalua-

tion matrix for each nA,\	above was represented as  

 

£ ��£A,\ = ÛÜÜ
Ý nA,\,�nA,\,���⋮nA,\,w��Þßß

à
 

 

The predicted labels of each support vector machine were aggregated to compute 

the forecast time value. Finally the values generated by SVR were evaluated for errors. 

Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) were 

the two indicators chosen for evaluation of our model and for comparison with the classi-

cal Support Vector Regression model.  

Mean Absolute Percentage Error is mathematically defined as: 

�QX¡ = 1 �å�� − ��æ�� å$
��� 		, (11) 

where �� and ��æ  represents actual travel-time and predicted travel-time respective-

ly. 

Root Mean Squared Error is defined as: 

Z�×¡ = ç1 �
�� − ��æ�+$
��� 		, 

 

(12) 



100 

 

Table 3: Comparison of RMSE between SVR and SVR with Wavelet Decomposed  

Inputs (our approach). 

Prediction Prediction Horizon 
45-min 50-min 55-min 60-min 

Wavelet Packet 

SVR 

coif3 ε=0.1, C=100 bior6.8 ε=0.01, C=100 coif5 ε=0.1,C=100 db6 ε=0.001, C=100 

2.2 2.31 2.41 2.46 

SVR Predictor ε=0.01, C=100 ε=0.1, C=1 ε=0.001, C=100 ε=0.1, C=10 

2.26 2.4 2.48 2.88 

 

Table 4: Comparison of MAPE (%) between SVR and SVR with Wavelet  

Decomposed Inputs. 

Prediction Prediction Horizon 
45-min 50-min 55-min 60-min 

Wavelet Packet 

SVR 

bior2.6 ε=0.1, C=1 rbio2.8 ε=0.1, C=100 rbio2.8 ε=0.001,C=100 rbio6.8 ε=0.01, C=100 

12.35 13.1 13.66 14.74 

SVR Predictor ε=0.01, C=10 ε=0.01, C=100 ε=0.1, C=1 ε=0.1, C=100 

12.57 13.5 13.96 15.06 

 

Table 5: Comparison of RMSE Between SVR And SVR with Wavelet Decomposed Inputs 

Prediction Methods Prediction Horizon 
1-Hour 3-Hour 5-Hour 7-Hour 

Wavelet Packet SVR db6 ε=0.001, C=100 db6 ε=0.001, C=100 bior1.5 ε=0.1, C=10 bior2.2 ε=0.01, C=1 

2.46 4.24 3.63 4.39 

SVR Predictor ε=0.1, C=10 ε=0.1, C=100 ε=0.1, C=10 ε=0.001, C=1 

2.88 4.5 4.18 5.1 
 

Table 6: Comparison of MAPE(%) between SVR and SVR with Wavelet Decomposed Inputs 

Prediction Methods Prediction Horizon 
1-Hour 3-Hour 5-Hour 7-Hour 

Wavelet Packet SVR rbio6.8 ε=0.01, C=100 db6 ε=0.001, C=100 bior1.5 ε=0.1, C=10 bior2.2 ε=0.01, C=1 

14.75 22.18 19.59 18.74 

SVR Predictor ε=0.1, C=10 ε=0.1, C=100 ε=0.1, C=10 ε=0.001, C=1 

15.15 22.66 23.19 25.55 

 

 

 

We tested our model using Debauchies, Coiflets, Symlets, Reverse Biorthogonal 

and Biorthogonal wavelets in 42 different configurations, with different values of cost 

and epsilon. It was also observed that not all wavelets gave better results than the bench-
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mark SVR predicted values. However, some of the worse performing wavelets were fil-

tered out beforehand using our wavelet selection process to save computational cost. The 

best outputs in each time horizon sub-category are shown in tables 3-6. 

Our results indicate that the wavelets decomposed support vector regression mod-

el consistently showed better performance for prediction horizon of 45 minutes and 

above, shown in tables 3-6. Below 45 minutes the classical SVR method is more accurate. 

figure 36 also shows the better tracking ability of the proposed model in comparison with 

SVR model. 
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9.4 Online-Implementation of WDSVR 

The model of wavelet decomposed support vector regression was implemented in an 

online configuration using pre-computed support vectors and an active ftp connection.  

The database was connected with the data server at Caltrans. A time delay of 5 

minutes was induced to transfer the data from the loop detectors to the Data center via the 

traffic management centers (TMC). A further time delay of 5 minutes was caused due to 

the storage and accumulation of the 30 seconds data into 5 minutes interval flat files. The 

data was then copied to the local machine where the predicted travel-times were comput-

ed following the steps given in table 2. 

9.5 GUI for the Online WPSVR Prediction Model 

The graphical user interface was developed using the Matlab GUI tool. The development 

effort was focused towards both offline and online travel-time prediction user interface. 

The offline prediction has the option to load the pre-computed travel-time data file to 

forecast one time step ahead travel-times using both SVR and wavelet packet decom-

posed SVR methods. 

 The offline predictor uses the file transfer protocol to connect to the Caltrans 

server and downloads predefined data from the relevant stations to the local drive. Then 

similar to the offline method computes the values for the future travel-times based on 

both methods. 

 The details of the GUI are described in Appendix B. 
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10 SUMMARY OF RESULTS AND FUTURE WORK 

10.1  Summary of Results 

We have shown that wavelet packet transformed travel-time data when used as an input 

the support vector regression for prediction of travel-times is more accurate for longer 

time horizons when compared against the support vector regression results with similar 

data.  

The factors, which affect the accuracy of the WPSVR module were analyzed for 

the purpose of optimal wavelet selection. It was shown that cross correlation and the ex-

istence of any recurrence relationship amongst the consecutive wavelet transformed val-

ues effect the accuracy of the support vector regression. 

The online and offline implantation of the support vector regression and WPSVR 

models was carried by connecting to the Caltrans traffic data server. The computed re-

sults by both modules were analyzed for errors in a graphical user interface generated in 

Matlab. 

10.2  Future Work 

The wavelet packet decomposed SVR method has shown confidence in data pre-

diction and the non-linearity of traffic data makes it a suitable technique for prediction. 

For accurate state estimation large datasets are needed which are now available online. 

Their training would require computation cost but since training is done offline therefore 

it is not a prime concern. Our model also signifies the effectiveness of support vector ma-
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chines for smoothed datasets. However, there is need of further investigating the wavelet 

properties in conjunction with the effectiveness for support vector machines.  

Further improvements to our model could be made by subdividing the data set 

based on their patterns, some examples are by congested and freeflow parts or by day of 

the week or both. The scalability of the model also makes it a viable option for its appli-

cation to calculate arterial travel-times. 
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APPENDIX A 

Appendix A: Relation between Time Mean Speed and Space Mean 

Speed 

 The mathematical relationship between time means speed and space mean speed is de-

rived below using the fundamental equation of traffic flow. 

è = � × �� (13) 

Let a set of vehicles 4 is passing through the roadway with velocities �� and flow è�. 
è� = �� × �� , (14) 

where � represent the traffic density. Hence, total flow and density can be defined using 

equations below 

è = � è�, (15) 

� = � ��, (16) 

 

The ratio of individual vehicle density and total traffic density is defined by 

�� = ��� , (17) 

From the definition of space mean speed we know that space mean speed is the average 

of the speed of vehicles passing over the space (roadway). Hence, for �� vehicles with �� 
speed, space mean speed can be defined as 

�� = ∑ ����� , (18) 
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Similarly, the time mean speed is the average of speed over time. Therefore, considering 

vehicular flow è is the number of vehicles passing through a certain point, we can repre-

sent time mean speed as 

�� = ∑ è���è , (19) 

Substituting the value of è� from (14) in (19) time mean speed can now be written as 

�� = ∑ ����+è , (20) 

Now, substitute the value of è from (13) in (20) 

�� = ∑ ����+��� , (21) 

Comparing value of �� from (17) in (21) 

�� = ∑ ����+�� , (22) 

Now, add and subtract �� in (22) and through algebraic manipulations time mean speed 

can be represented as 

�� = ∑ ��(�� + (�� − ��)+
��  

= ∑ ��(��)+ + (�� − ��)+ + 2��(�� − ��)��  

�� == ∑ ����+�� + ∑ ��(�� − ��)+
�� + 2�� ∑ ��(�� − ��)�� . (23) 

In equation (23) the third term 
+() ∑ é­((­�())

()  will be zero if ∑(�� − ��) is zero. Since, the 

space mean speed �� is the mean speed of the vehicles passing over the roadway, there-
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fore the total sum of the individual vehicles minus their average speed would always be 

zero.  

We know that standard deviation is the variation from the mean or expected value 

of the data. Note that (�� − ��)+ in the second term of �� represents the variance of the 

speed on the roadway. Therefore, (23) can be represented as 

�� = �� � �� *+
�� + 0 

Also ∑ �� would always be 1. Hence, 

�� = �� + *+
��  

The above relationship shows that time mean speed would always be greater than space 

mean speed. Both speeds can only be equal to each other if the variance of the vehicular 

speeds is zero, i.e. all vehicles travel at same mean speed through the roadway. 
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APPENDIX B 

Appendix B: GUI for Online and Offline Travel-Time Prediction 

The GUI was designed using the Matlab GUI development environment (GUIDE). The 

functionality of the Matlab travel-time calculator GUI was divided into online and offline 

panels. Both offline and online panels of the travel-time predictor compute travel-tie 

forecast using the SVR and WPSVR models. 

 

Figure 387: Screenshot of Matlab Travel-time Predictor GUI 
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The offline prediction panel has the load data button, which is used to load the dataset in 

the form of matlab data file into the Matlab environment. 

 

Figure 398: Screenshot of Load Data dialog box 

The pre-computed travel-times in the offlne mode are divided into training and testing 

sets of 70% and 30% respectively. The Compute SVR TT and the Compute WPSVR TT 

buttons are used to compute the support vectors using the training set and perform predic-

tions on the testing set. 
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Figure 40: Screenshot of Compute SVR TT function of GUI 

The output of the SVR and WPSVR models are computed for errors and the Mean 

Absolute percentage error as defined in (11) is shown in their respective textboxes in the 

GUI as shown in figure 42. 
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Figure 410: Screenshot of Compute WPSVR TT function of GUI 

The online module of the GUI performs two main functions. It has a FTP Connect button 

with is pressed to initiate a file transfer protocol connection between the Caltrans server 

at UC Berkeley and the local machine.  

The Caltrans server houses the data files in the form of flat files. The dataset in 

both 30 second and 5 minutes aggregated forms are archived everyday in separate fold-

ers. However, during the span of 24 hours only the current data i.e. the data of the latest 

timestamp is accessible from the current folder  

The FTP Connect is a batch command file, which after connecting to the Caltrans 

data server retrieves the flat files of the preconfigured District roadway. The flat are or-
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ganized in the data server at the California District level. Therefore, after every 5 minutes 

12 data files representing each of the 12 California Districts is updated on the server. 

 

Figure 41: Screenshot of FTP Connect function of GUI 

 The Compute TTs button on the online prediction panel also performs a batch 

function, It computes the wavelet packet transform of the reshaped dataset and subse-

quently calculates the travel-time using both models. Finally it displays the MAPE of 

each against their respective textbox.  
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Figure 42: Screenshot of Compute TTs function of GUI 
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