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Traffic Prediction-Assisted Federated Deep
Reinforcement Learning for Service Migration in

Digital Twins-Enabled MEC Networks
Xiangyi Chen, Guangjie Han, Fellow, IEEE, Yuanguo Bi, Member, IEEE, Zimeng Yuan,

Mahesh K. Marina, Member, IEEE, Yufei Liu, and Hai Zhao

Abstract—In Mobile Edge Computing (MEC) networks, dy-
namic service migration can support service continuity and
reduce user-perceived delay. However, service migration in MEC
networks faces significant challenges due to the uncertainty in
future traffic demands, the distributed architecture of MEC
networks, high operating costs and the dynamism of network
resources. Digital Twins (DT), which achieve the mapping of
physical entities to virtual digital models in cyberspace, provide
new perspectives for intelligent and efficient service provisioning
in MEC networks. In this paper, we propose a traffic prediction-
assisted federated deep reinforcement learning scheme to effi-
ciently migrate services and improve the cost efficiency of DT-
enabled MEC networks. Specifically, to address the coupled
spatio-temporal dependencies of mobile traffic and the imbal-
ance in traffic data, a Multi-order Spatio-temporal information
integration-based distributed Traffic Prediction (MSTP) scheme
is proposed, which achieves high-accuracy mobile traffic predic-
tion at a low cost. Then, we propose a Federated Cooperative cost-
efficient Service Migration (FCSM) algorithm that adaptively
adjusts service migration strategies in a distributed manner to
respond to future traffic demands. Moreover, a theoretical model
is developed to analyze the convergence of FCSM and derive the
upper bound of the time-average squared gradient norm. Finally,
extensive simulations demonstrate that the proposed schemes
achieve excellent traffic prediction performance, enhance users’
Quality of Service (QoS), and significantly reduce the system cost
of MEC networks.

Index Terms—Mobile edge computing, digital twins, service
migration, mobile traffic prediction, deep reinforcement learning.
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I. INTRODUCTION

IN recent years, the development of 5G/B5G/6G communi-
cation technologies and the increasing number of mobile

devices have led to the explosive growth of network traffic [1].
Cisco predicts that by 2023, there will be 5.3 billion internet
users with an annual compound growth rate of 6% [2]. On
the other hand, advanced mobile services spawned by new
communication technologies are constantly emerging, which
generally have computation-intensive and latency-sensitive re-
quirements, such as intelligent manufacturing, autonomous
driving, augmented reality etc. To cope with the substantial
volume of mobile traffic and meet diverse service demands,
Mobile Edge Computing (MEC) has emerged as a promising
technology. MEC provides rapid response to user requests
and low-latency access to computing resources, so as to
guarantee users’ Quality of Service (QoS) and enhance service
experience [1], [3].

In MEC networks, unpredictable user mobility and time-
varying wireless channels often lead to frequent handovers
in edge access networks. These factors can increase user-
perceived delay, potentially causing service interruptions and
significantly degrading the QoS for delay-sensitive services
[4]. Therefore, as a user moves across Base Stations (BSs),
services can dynamically migrate among edge servers to
accommodate user mobility and meet dynamically changing
service requests. However, frequent service migration intro-
duces additional resource overhead, e.g., Wide Area Network
(WAN) bandwidth, and increases network operating cost, e.g.,
network energy consumption [5]. This further undermines the
utility of the MEC network, which already has high operating
cost and significant waste of network resources due to the
dense deployment of base stations [6]. Therefore, service
migration considering cost-efficiency in MEC networks is a
critical issue.

Since the cost-efficiency of service migration strategies is
influenced by future traffic demands, an intuitive idea is to
assist service migration by predicting future traffic demands.
For instance, popular services could be migrated to areas with
high traffic demands to accommodate an increased number of
user requests. This can support service continuity, and also
allows idle infrastructure to be put into sleep mode post-
migration, thereby reducing network operation cost. With the
development of Artificial Intelligence (AI) and distributed
learning technologies, a promising approach is to leverage
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Edge-AI and Federated Learning (FL) to establish a distributed
learning architecture for intelligent service migration in MEC
networks [7]–[10].

Service migration based on Edge-AI necessitates a sub-
stantial volume of data for the construction of an effective
model. Recently, the emerging Digital Twins (DT) technology
has been instrumental in this aspect. DT can capture the
status information of physical entities using sensor data, create
corresponding virtual objects, and accumulate a vast amount
of real data in the digital space [11], [12]. This data can be
exploited for model training, state analysis, and risk assess-
ment in AI-enabled networks. Therefore, distributed DT have
been integrated into MEC networks, sinking real-time data
processing to the edge plane [13]. It enables edge servers to
leverage large volumes of data for Deep Learning (DL)-based
model training, thereby supporting traffic prediction-assisted
cost-efficient service migration in Digital Twin-enabled MEC
(DT-MEC) networks.

However, traffic prediction-assisted cost-efficient service
migration in DT-MEC faces many challenges. 1) To predict
future traffic demands, it is necessary to deal with complex
and coupled spatio-temporal dependencies in mobile traffic,
rooted in variegated user mobility, load fluctuations caused
by social activities, and geographically heterogeneous mobile
communications [14], [15]. Moreover, large-scale MEC net-
works need to address the challenges of data scarcity and
imbalance in certain regions, which significantly undermine
the performance of DL-based traffic prediction methods. 2)
Given the distributed architecture of MEC networks and the
difficulty in obtaining global information, it is necessary to
design distributed and efficient collaborative learning schemes
to enhance service migration efficiency. 3) Considering the
increased network operating costs associated with service
migration, as well as the heterogeneity, limited availability, and
time-varying nature of edge resources, it is crucial to consider
both resource allocation and network cost optimization during
service migration. Therefore, in a large-scale MEC network
lacking global information, how to design a cost-efficient
service migration scheme that takes into account future traffic
demands and reasonably migrates services, to ensure service
continuity and reduce long-term network cost is a challenging
problem.

To address the aforementioned issues, in this paper, we pro-
pose a traffic prediction-assisted cost-efficient service migra-
tion scheme based on federated Deep Reinforcement Learning
(DRL). This scheme dynamically migrates services, switches
BSs state, and allocates resources in response to future
traffic demand, thereby aiming to reduce long-term network
costs. Specifically, a Multi-order Spatio-temporal informa-
tion integration-based distributed Traffic Prediction (MSTP)
method is proposed to cope with the coupled spatio-temporal
dependencies of mobile traffic. Moreover, and a Region
Clustering-based edge Model Transfer (RCMT) method is
proposed to tackle the imbalance of traffic data. Then, based
on the predicted traffic demand, a Federated Cooperative cost-
efficient Service Migration (FCSM) algorithm is proposed,
which adaptively adjusts service migration strategies in re-
sponse to the dynamic changes of the edge environment. To the

best of our knowledge, this is the first paper that studies cost-
efficient service migration considering future traffic demand in
DT-MEC networks. Our contributions are four-fold as follows.

• Based on the analysis of real-world mobile traffic dataset,
we propose a distributed traffic prediction approach that
achieves efficient and low-cost mobile traffic prediction
by integrating multi-order spatio-temporal information
and edge model transfer.

• To achieve cost-efficient service migration, FCSM is
proposed to enable online service migration in large-scale
MEC networks, which facilitates multi-agent coopera-
tive learning through intra-cluster parameter sharing and
global asynchronous parameter aggregation.

• An analytical model is developed to demonstrate that the
features extracted by MSTP contain multi-order spatio-
temporal dependencies. Furthermore, the convergence of
FCSM is theoretically analyzed and an upper bound of
the time-averaged squared gradient norm is proved.

• Extensive simulations demonstrate that the proposed
schemes achieve excellent prediction performance and
reduce training cost. FCSM enables cost-efficient service
migration, enhances users QoS, and significantly reduces
long-term system cost in DT-MEC networks.

The rest of the paper is organized as follows. In Section
II, we briefly discuss the related work. The system model and
problem formulation are described in Section III. Then we
describe the data analysis, and introduce the proposed MSTP
and RCMT in Section IV. FCSM is described in detail in
Section V, then we theoretically analyze MSTP and FCSM
in Section VI. In Section VII, we evaluate the performance of
MSTP and FCSM through extensive simulations and conclude
our work in Section VIII.

II. RELATED WORK

A. Traffic Prediction

Mobile traffic prediction is typically modeled as a time
series prediction problem. Till date, several traffic prediction
methods have been proposed, primarily including statistical
analysis-based methods [16]–[19], traditional machine learn-
ing [20], and deep learning-based methods [10], [21]–[29].
For example, statistical analysis based methods include the
classic Autoregressive Integrated Moving Average (ARIMA)
[16], [17], entropy theory [18], and Holt-Winter’s Exponential
Smoothing [19]. Some researchers have focused their attention
on traffic prediction methods based on traditional machine
learning. In [20], Xu et al. proposed a scalable Gaussian
process framework, as a class of Bayesian non-parametric
machine learning models, which achieves large-scale wireless
traffic prediction via a customized kernel function. These
methods mainly focus on obtaining the temporal relationship
of mobile traffic, and do not fully consider the complex spatial
dependencies.

With the rapid increase of network traffic and the devel-
opment of AI technology, traffic prediction methods based
on DL with powerful representation ability have attracted
more and more attention, such as Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), transfer learning,



3

Convolutional Neural Network (CNN), etc. [10], [21]–[29].
These methods have brought strong vitality to mobile traffic
prediction. As a Deep Neural Network (DNN) method, CNN
is utilized to capture the spatial correlation of network traffic
in some previous works [22], [25], [27]. On the other hand,
some existing studies have considered spatial and temporal
relationships for mobile traffic prediction [10], [24], [26].
For example, in [10], Wu et al. proposed Geographical and
Semantic Spatial-Temporal Network to capture spatial rela-
tionship via CNN and then capture temporal relationship via
LSTM. Crucially, the aforementioned studies mainly focused
on centralized traffic prediction schemes, which introduce
complex neural network parameters, high training costs, slow
convergence, and also incur higher delay and communication
overhead for data aggregation. Recently, distributed traffic
prediction begins to attract attention. FL-based wireless traffic
prediction scheme (FedDA) [29] is a representative work that
focused on the aggregation of prediction models.

Although the above discussed works have preliminarily
considered the importance of spatio-temporal dependencies for
mobile traffic prediction, they mainly focus on adjacent spatial
relationships and do not fully consider the coupled spatio-
temporal dependencies among multi-order neighbors. More-
over, most existing traffic prediction methods require global
information, and cannot cope with insufficient and imbalanced
data in some regions of MEC networks. In contrast, we fully
consider the spatio-temporal dependencies of mobile traffic by
using the integrated multi-order spatio-temporal representation
and leverage regional similarity to achieve high-efficiency and
low-cost distributed traffic prediction.

B. Service Migration

Service migration has also attracted more and more attention
of researchers [4], [5], [30]–[37]. The main goal of service
migration is to reduce the service response delay by following
the user mobility. Existing research mainly includes migration
cost optimization [30], [33], migration time optimization [5],
[31], [32], [34]–[36] and migration success rate optimization
[4], [37]. Some studies focus on the optimization of migration
cost, including network bandwidth resource consumption, ser-
vice and virtual machine installation cost, energy consumption,
etc. For example, In [30], Taleb et al. constructed a Markov
Decision Process (MDP)-based service migration algorithm
to optimize service migration cost, and then proposed two
alternative schemes including software defined networking
technologies or the locator/identifier separation protocol to
ensure service continuity and non-disruptive operation. In
[33], Liang et al. considered the problem of minimizing
migration cost and developed an effective solution based on
relaxation and rounding. Some research focuses on optimizing
service migration time to reduce user-perceived latency. In
[5], Ouyang et al. considered the computing delay and com-
munication delay of service requests, decomposed the long-
term optimization problem of service delay into a series of
real-time optimization problems, and designed centralized and
distributed approximation schemes. In [35], Mukhopadhyay et
al. proposed a priority-induced service migration minimization
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Sleep the base station
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Data flow

User mobility

Different clusters of regions

Scarce data

Rich data

Virtual twins

User device

Edge server
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CloudCloudCloud

Fig. 1. An illustration of service migration and BS switching in a distributed
DT-MEC network.

algorithm to optimize service migration time. In [36], Li et
al. proposed a learning-based intelligent service migration
algorithm to minimize the long-term average service delay for
all users. Some work leverages DRL and federated learning
to optimize latency and network resources in MEC [31].
Last but not least, the optimization of migration success rate
aims to maximize the number of satisfied service requests
of mobile users. In [4], Chen et al. considered the actual
characteristics of multi-cell MEC networks, including the
constraints of edge server storage and computing capacities,
and developed a dynamic service migration method based
on random rounding technology to maximize the number of
requests accepted by edge servers. In [37], Tang et al. took
into account user mobility and designed a group migration
algorithm to maximize the number of tasks with deadlines.

Although some schemes have been proposed for service
migration, existing studies have not taken into account the
impact of future traffic demands on service migration deci-
sions, potentially leading to low cost-efficiency during the
migration process. Moreover, existing learning-based service
migration studies have not sufficiently addressed the challenge
posed by the lack of global information in distributed MEC
networks, nor have they improved service migration efficiency
through effective collaborative learning schemes. In this paper,
we propose a federated cooperative multi-agent reinforcement
learning framework to achieve cost-efficient service migration
based on predicted traffic, which reduces the long-term system
cost of distributed DT-MEC networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

The architecture of the proposed distributed DT-MEC net-
work is shown in Fig. 1. Each mobile user is denoted by i,
with i ∈ U = {1, 2, · · · , |U |}, where U is the set of users.
The BS and the MEC server are co-located and referred to as
an edge node, denoted by j, where j ∈ V = {1, 2, · · · , |V |},
and V is the set of BSs. We discretize time into multiple
time slots, denoted by t ∈ Γ = {1, 2, · · · , T}, where Γ is
the set of time slots. In time slot t, the service request of
user i is defined as: qi(t) = {ιi(t), si(t), ωi(t), σi

ι(t)}, which
represents the service type, the service request size (in bits),
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the required computing intensity (in CPU cycles/bit), and the
service storage size (in bits), respectively. The service type
is represented as ι ∈ ι = {1, 2, · · · , |ι|}, and the location
of user i is denoted as pi(t). In our proposed architecture,
the distributed DT-MEC network enables the mapping of
real network to digital models on edge servers, and provides
extensive data and functional descriptions for physical entities
to support intelligent service migration.

B. Energy Consumption Model

The energy consumption of a BS mainly includes fixed
energy consumption in the active state and load-dependent
energy consumption. The fixed energy consumption mainly re-
lates to the rectifier, air conditioner, and microwave link, while
the load-dependent energy consumption is mainly associated
with digital signal processing, the transceiver, and the power
amplifier [38]. Therefore, the energy consumption model of
BS j is expressed as

ej(t) = ecj + (emax
j − ecj)uj(t), (1)

where ecj is the fixed energy consumption when the BS is
active, and emax

j is the maximum energy consumption of the
BS. The utilization rate of the BS is uj(t) = fj(t)/Fj , that is,
the ratio of the traffic load to the total capacity of BS j in time
slot t. The binary variable xj(t) ∈ {0, 1} denotes the state of
BS j, that is, if j is in active state in time slot t, then xj(t) = 1,
otherwise, xj(t) = 0. V (t) denotes the set of BSs activated
in time slot t. Therefore, the total energy consumption of the
system in time slot t is expressed as e(t) =

∑
j∈V (t) ej(t).

C. Service Migration Model

Due to the unpredictable mobility of users and dynamically
changing service requests, services need to be constantly
migrated across edge servers to support service continuity
and reduce user-perceived latency. Specifically, we define the
binary variable for service deployment decision as yij(t) ∈
{0, 1}. If the service of user i is deployed at edge server j in
time slot t, then yij(t) = 1, otherwise yij(t) = 0. Therefore, the
total cost of service migration cm(t) in time slot t is calculated
as

cm(t) =
∑

i∈U(t)

∑
j′∈V (t−1)

∑
j∈V (t)

yij′(t− 1)yij(t)c
i
j′j(t), (2)

where cij′j(t) = κσi
ι(t)ηj′j and represents the cost of migrat-

ing the service from edge server j′ to j. The cost of service
migration is related to service size σi

ι(t) and the number of
routing hops ηj′j . κ is the migration cost factor, and U(t)
denotes the set of users that have service requests in time slot
t.

D. QoS Model

The QoS of the service can reflect the impact of sleeping
some BSs and migrating service on service performance. In
our system model, we mainly consider user-perceived delay,
including transmission delay and computing delay. Regarding

the transmission delay, the spectral efficiency between user i
and BS j is

eij(t) = log2(1 +
Pgij(t)

χ2
), (3)

where gij(t) represents the channel gain, which is related to
the distance between user i and BS j in time slot t. χ2 is the
noise power, and P is the user transmit power. Therefore, the
uplink transmission rate is

rij(t) =Wjb
i
j(t)e

i
j(t), (4)

where Wj denotes the bandwidth resource capacity of BS j,
and bij(t) ∈ [0, 1] denotes the spectrum fraction allocated to
user i by the BS j in time slot t, that is, the proportion of
allocated communication resources. Therefore, the transmis-
sion delay can be calculated by dij(t) = si(t)

rij(t)
. Qj denotes

the computing capacity of BS j, and zij(t) ∈ [0, 1] is the
computing resource allocation fraction, then the computing
delay can be calculated by

ρij(t) =
si(t)wi(t)

Qjzij(t)
. (5)

Therefore, the overall QoS degradation cost of the system in
time slot t is expressed as

cq(t) =
∑

i∈U(t)

∑
j∈V (t)

(dij(t) + ρij(t)). (6)

E. Problem Formulation

To avoid network instability and machine hardware damage
caused by frequent BS switching, the total BS switching cost
of the system is calculated as

cs(t) =
∑

j∈V (t)

cj(t)I(xj(t) > xj(t− 1)), (7)

where cj(t) is the factor of base station switching cost, and
I(∗) is the indicator function and satisfies

I(xj(t) > xj(t− 1)) =

{
1, if xj(t) > xj(t− 1),

0, otherwise.
(8)

The total cost of the system in time slot t consists of energy
consumption, BS switching cost, service migration cost, and
QoS degradation cost, which can be calculated as

c(t) = ϕee(t) + ϕscs(t) + ϕmcm(t) + ϕqcq(t), (9)
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Fig. 2. (a) Time series of mobile traffic for three events. (b) Snapshots of spatial distribution of mobile traffic for 10,000 regions at two timestamps. (c)
Spatial correlations of 100 regions at two timestamps. (d) Spatial correlations of grid 45 (id 8155) with surrounding regions at two timestamps.

where ϕe, ϕs, ϕm, ϕq ∈ [0, 1] are the weight factors, and ϕe +
ϕs + ϕm + ϕq = 1. Therefore, the cost optimization problem
of the MEC network can be expressed as

min
x(t),y(t),z(t),b(t)

c(t), (10a)

s.t. xj(t), y
i
j(t) ∈ {0, 1},∀i ∈ U, j ∈ V, (10b)

zij(t), b
i
j(t) ∈ [0, 1],∀i ∈ U, j ∈ V, (10c)

yij(t) ≤ xj(t), (10d)

zij(t) ≤ yij(t), (10e)

bij(t) ≤ yij(t), (10f)∑
j∈V (t)

yij(t) = 1, (10g)

∑
i∈U(t)

yij(t)σ
i
ι(t) ⩽ Sj , (10h)

∑
i∈U(t)

yij(t)z
i
j(t) = 1, (10i)

∑
i∈U(t)

yij(t)b
i
j(t) = 1, (10j)

where BS switching and service deployment are integer deci-
sion variables, while communication and computing resource
allocation are fractional variables. (10d) represents that the
node providing the service must be active, (10e) and (10f)
represent the allocation of computing and communication
resources by the node providing services. Constraint (10g)
indicates that the service request must be responded by one
edge server. Constraints (10h)-(10j) represent storage, com-
puting and communication resource capacity constraints. Note
that to improve the user’s QoS, computing and communication
resources can be allocated to their maximum extent.

The above optimization problem faces the following chal-
lenges: 1) Accurate traffic prediction requires capturing com-
plex and coupled spatio-temporal dependencies, and designing
efficient distributed traffic prediction schemes in MEC net-
works is necessary. Moreover, overcoming the scarcity of traf-
fic data in certain areas and reducing the cost of model training
are also key issues. 2) The cost-efficient service migration
problem is a mixed integer non-linear programming problem,
which has been proven to be NP-hard [39]. Learning-based
service migration schemes need to address the challenges
brought by the lack of global information in distributed MEC
networks. 3) In the distributed learning architecture, it is also

a challenge to improve learning efficiency through effective
collaborative learning schemes. Therefore, we propose a traffic
prediction-assisted federated DRL framework for cost-efficient
service migration in distributed DT-MEC networks.

IV. DISTRIBUTED TRAFFIC PREDICTION FOR DT-MEC
NETWORKS

In this section, we first analyze real-world mobile traffic
datasets and present our research motivation for distributed
traffic prediction. Our distributed traffic prediction method is
shown in Fig. 3, which consists of two parts. Firstly, since the
arrival of mobile traffic is strongly correlated with the coupled
relationship between the temporal sequence and spatial distri-
bution, we propose the MSTP method. Furthermore, to reduce
model training cost and address the issue of data scarcity in
certain regions, we design the RCMT method for distributed
traffic prediction.

A. Data Analysis

We analyze two of the most representative and widely used
datasets in the field of traffic prediction, the Telecom Italia
Big Data Challenge datasets [40]. These are real cellular
traffic datasets of the city of Milan and the Province of
Trentino. These two real-world datasets contain traffic data
from November 1st, 2013 to January 1st, 2014, and one traffic
data record is generated every ten minutes. As multi-source
datasets, they contain various types of communication data,
including SMS-in activity, SMS-out activity, incoming call
activity, outgoing call activity, and Internet traffic. The Milan
dataset comprises 10,000 regions, while the Trentino dataset
comprises 6,575 regions.

We sample and analyze the datasets, where Fig. 2(a) shows
the traffic patterns of call-in events, SMS-in events, and
Internet events for one week, and the three different traffic
events show a certain periodicity and regularity on the time
scale. Fig. 2(b) exhibits the spatial distribution of real traffic
for 10,000 regions at two timestamps. It can be seen that
the spatial distribution of network traffic is imbalanced and
shows significant differences at different times. Furthermore,
we use the Dynamic Time Warping (DTW) technique [41] to
analyze the similarity of mobile traffic within different regions,
and the spatial correlations of 100 regions at two timestamps
are shown in Fig. 2(c). We can observe that the spatial
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correlation of mobile traffic varies at different timestamps,
which illustrates the tightly coupled relationships between
the temporal and spatial correlations of various regions. The
coupled spatio-temporal relationships can affect the accuracy
of mobile traffic prediction, but are often ignored in previous
works.

We randomly select a region (45th grid) and analyze its spa-
tial correlation with its surrounding regions at two timestamps,
as shown in Fig. 2(d). We can observe that mobile traffic in
different regions may exhibit a high degree of similarity. For
example, the correlations of the 45th grid and the 28th grid at
two timestamps are 0.69 and 0.94, respectively, which implies
that there is a high consensus on traffic patterns in some
regions. The analysis in [14] shows that urban mobile traffic
can be characterized by some basic time-domain patterns,
which correspond to different functional areas, i.e., residential
urban, office urban, transportation urban, touristic and leisure
urban. Besides, we can also observe that there is a data
scarcity issue in some areas in Fig. 2(b). This issue could
seriously affect the performance of DL-based traffic prediction
methods, especially those distributed prediction methods that
lack global information. An intuitive motivation is that regions
can be clustered according to the spatio-temporal similarities
in mobile traffic, and then the edge prediction models of the
data-rich regions could be transferred to other regions. This
approach can address the data scarcity problem and reduce
the training cost of the prediction model in certain regions.

B. Multi-order Spatio-temporal Information Integration-based
Distributed Traffic Prediction

To clearly represent the network traffic data, the coverage
area of the DT-MEC network is divided into |V | grid regions,
with the region indexed by n. In each grid region, the corre-
sponding BS is deployed. The traffic volume of region n in
time slot t is expressed as fn(t) =

∑
i∈U(t)∩pi(t)∈Un(t)

si(t),
where Un(t) is the set of users within region n in time slot
t. Therefore, the traffic matrix F (t) ∈ R|V |×1 for time slot
t is expressed as F (t) = [f1(t), ..., fn(t), ..., f|V |(t)]

⊤. The
traffic data spanning T time slots is denoted as F 1∼T =
[F (1),F (2), . . . ,F (T )] ∈ R|V |×T . MSTP benefits from vir-
tual twins deployed on edge servers, which provide a large
amount of real traffic data for the training of prediction models.

Traffic prediction in the DT-MEC network is performed in a
distributed manner, where the perceptible range of each region
contains |N̄ | regions, N̄ ⊂ V . Denote the traffic matrix of
|N̄ | regions in time slot t as F̄ (t), which is a submatrix of
the global traffic matrix. Given the truncated historical traffic
data of the previous T time slots F̄ (t−T +1), . . . , F̄ (t), the
sliding window model is used to predict future traffic in region
n, which is expressed as

F̃ (t+ 1) = argmin
F̃ (t+1)

Lp

(
F̄ (t+ 1), F̃ (t+ 1), θp|

F̄ (t− T + 1), . . . , F̄ (t)
)
, (11)

where F̃ (t+1) is the predicted traffic for time slot t+1. Note
that the notation n is omitted for simplicity. This paper pro-
poses a custom-tailored DL method based on spatio-temporal

information integration, and our goal is to minimize the loss
Lp between the predicted traffic value F̃ (t + 1) and the real
value F̄ (t+ 1) by learning the parameter θp.

The spatial correlation of mobile traffic is not only related
to geographical location, but also closely associated with user
mobility, traffic patterns, service types, etc. Therefore, tradi-
tional distance-based spatial correlation calculation methods
cannot capture the true spatial relationship of mobile traffic
among regions. As mobile traffic is a time series data, we
use DTW to measure the similarity of traffic sequences across
different regions. For |N̄ | regions in the DT-MEC network,
indexed by n ∈ N̄ , the similarity between any two regions
n and n′ is calculated by snn′ = e−DTW(fn,fn′ ), where
fn = [fn(1), fn(2), . . . , fn(T )]. The similarity of region pairs
can be constructed as a similarity matrix SDTW ∈ R|N̄ |×|N̄ |,
where snn′ is the element in the nth row and n′th column of
SDTW.

On the other hand, the number of neighbor nodes may
vary due to different geographic distributions. We use Graph
Convolutional Network (GCN) units to capture the spatial
correlation of mobile traffic, which is not limited to a fixed
number of neighbors or adjacent regions. Then, we propose
a novel traffic prediction method MSTP that integrates multi-
order spatio-temporal dependencies of neighbors, as illustrated
in Fig. 3. Our motivation is that the information learned
by each layer of the GCN unit is different, and MSTP
preserves spatial correlations and aims to capture as much
spatio-temporal dependencies as possible for effective traffic
prediction. MSTP comprises a spatial network and a temporal
network.

Spatial network: For n ∈ N̄ , select the first λ similarity
region n′ from SDTW to establish the neighbor relationship
with n, which is expressed as

ann′ =

{
1, if n and n′ are neighbors,
0, otherwise.

(12)

Furthermore, considering the symmetry of the neighbor
relationship in an undirected graph, if ann′ = 1, we set
an′n = 1. Then an adjacency matrix A ∈ {0, 1}|N̄ |×|N̄ |

can be constructed for the set of |N̄ | regions. To integrate
neighbor information and regional self-information during the
process of graph convolution operations, the adjacency matrix
A is added to the identity matrix to obtain a self-looped
adjacency matrix Ã ≜ A+ I . Furthermore, the degree matrix
D̃ corresponding to Ã is constructed, which is a diagonal
matrix and its diagonal element value dn ≜

∑|N̄ |
n′=1 ann′ is

the degree of the region n.
Consider that the data of t time slots is independently

processed by multi-layer GCN unit to extract the spatial
information of each time slot. Therefore, for the data of time
slot t, the graph convolution operation through the ℓth layer
GCN unit is expressed as

G(ℓ)(t) = σ
(
D̃

− 1
2 ÃD̃

− 1
2G(ℓ−1)(t)W (ℓ−1)

g

)
, (13)

where σ(∗) is the activation function, and G(ℓ−1)(t), G(ℓ)(t),
W (ℓ−1)

g are the input representation, output representation,
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Fig. 3. An illustration of distributed traffic prediction in the DT-MEC network.

and parameter matrix, respectively. GCN can learn the repre-
sentation of neighbor regions through the standard adjacency
matrix Â ≜ D̃

− 1
2 ÃD̃

− 1
2 . Note that for the first layer of GCN,

i.e. when ℓ = 1, the original input data is G(0)(t) = F̄ (t).
Temporal network: Traffic prediction model requires

strong capabilities to extract long-range dependencies and
handle nonlinear data [9]. In our proposed MSTP, the LSTM
unit in the temporal network is used to capture dependencies
at different time scales. As a special variant of RNN, LSTM
mitigates the vanishing or exploding gradient problem of
traditional RNN through improved internal unit. Specifically,
LSTM includes an input gate, a forget gate and an output gate,
which control the processes of information input, transmission
and updating. The LSTM operation of the ℓth layer at time step
t is expressed as

L(ℓ)(t) = Φ
(
L(ℓ)(t− 1), L̃

(ℓ−1)
(t);W (ℓ−1)

r

)
, (14)

where Φ(∗) is the update function, L(ℓ)(t− 1) and L̃
(ℓ−1)

(t)
are input representations, L(ℓ)(t) is the output representation,
and W (ℓ−1)

r is the parameter matrix, respectively.
Then, we design a multi-order feature integration method to

preserve more spatial correlations and capture spatio-temporal
dependencies. The spatial information captured by each layer
of the GCN unit is passed to the corresponding LSTM unit,
aiming to aggregate the spatial and temporal information and
obtain a more comprehensive representation of mobile traffic,

L̃
(ℓ−1)

(t) = ϖL(ℓ−1)(t) + (1−ϖ)G(ℓ−1)(t), (15)

where ϖ ∈ (0, 1] is the feature integration weight factor, which
is used to control the proportion of temporal and spatial in-
formation. The improved prediction model can simultaneously
learn temporal and spatial information at each layer. Note that
for the first layer of LSTM unit, i.e. when ℓ = 1, the original
input data is L(0)(t) = F̄ (t). Therefore, MSTP aggregates
spatio-temporal information from L layers to obtain a more
comprehensive and powerful representation of mobile traffic,
thereby facilitating distributed traffic prediction.

C. Structural Deep Region Clustering-based Edge Model
Transfer

In distributed DT-MEC networks, due to geographic distri-
bution, user mobility, the effectiveness of data collection, etc.,
there are insufficient and imbalanced data problems in some
regions, and these regions cannot train effective prediction
models. Therefore, we propose the RCMT method, which
differs from existing region clustering methods that are based
on Euclidean distance or independent spatio/temporal rela-
tionships. RCMT integrates structured information of mobile
traffic into regional deep clustering, which fully considers the
spatio-temporal dependencies of mobile traffic.

For deep region clustering and efficient edge model transfer,
it is crucial to learn effective data representation. In RCMT,
we propose a dual-supervised LSTM autoencoder and GCN
model to introduce structural information of mobile traffic. The
framework of RCMT is shown in Fig. 3. First, since mobile
traffic is time-series data, we use the LSTM autoencoder unit
to learn temporal features. The encoder network is a multi-
layer LSTM model, and the operation of the ℓth layer encoder
at the t time step is expressed as

E(ℓ)(t) = Ψ
(
E(ℓ)(t− 1),E(ℓ−1)(t);W (ℓ−1)

e

)
, (16)

where Ψ(∗) is encoding operation. The encoder contains L
layer network, and the output of the last layer is a tensor
E

(L)
1∼T =

[
E(L)(1), . . . ,E(L)(t), . . . ,E(L)(T )

]
, which is the

input of the decoder. Note that when ℓ = 1, its input is the
raw traffic data E(0)(t) = F (t).

The decoder network also contains L layers of LSTM to
reconstruct the traffic data. The operation of the ℓth layer of
the decoder at the t time step can be expressed as

Ê
(ℓ)

(t) = Ψ̂
(
Ê

(ℓ)
(t− 1), Ê

(ℓ−1)
(t);W

(ℓ−1)
d

)
. (17)

When ℓ = 1, the input of the decoder is the output
of the last layer of the encoder. When ℓ = L, the last
layer of the decoder can get a tensor Y 1∼T ≜ Ê

(L)

1∼T =[
Ê

(L)
(1), . . . , Ê

(L)
(t), . . . , Ê

(L)
(T )

]
, which has the same

size as the input of the encoder. The optimization objective
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of the LSTM autoencoder is to minimize the loss between
the input representation F 1∼T and the reconstructed output
representation Y 1∼T , and the loss function is La(W e,W d) =
∥Y 1∼T − F 1∼T ∥, where ∥ ∗ ∥ is the Frobenius norm in this
paper.

The LSTM autoencoder can capture the feature represen-
tation of the traffic data itself, but ignores the relationships
among data samples. Therefore, in our proposed RCMT, the
GCN unit is used to obtain the structural features of network
traffic, that is, the spatial relationship of network traffic. Note
that in region clustering, for each region, select the first ξ
similar regions to construct the neighbor relationships, and
then we can get the adjacency relationship graph. Denote the
constructed self-looped adjacency matrix and degree matrix as
H̃, Q̃ ∈ R|V |×|V |.

For the GCN unit, based on the constructed adjacency
matrix H̃ and its corresponding degree matrix Q̃, the GCN
operation is expressed as

C(ℓ)(t) = σ
(
Q̃

− 1
2 H̃Q̃

− 1
2 C̃

(ℓ−1)
(t)W (ℓ−1)

c

)
, (18)

where W (ℓ−1)
c is the parameter matrix of the ℓth layer of the

GCN. To preserve more diverse representation information, the
traffic features learned by each layer of the autoencoder are
propagated to the GCN, and a more comprehensive represen-
tation is obtained by integrating the spatio-temporal features
of mobile traffic

C̃
(ℓ−1)

(t) = ϵC(ℓ−1)(t) + (1− ϵ)E(ℓ−1)(t), (19)

where C(ℓ−1)(t) is the output representation of the (ℓ− 1)th
layer of GCN, E(ℓ−1)(t) is the output representation of the
(ℓ − 1)th layer of the LSTM encoder, and C̃

(ℓ−1)
(t) is the

integrated representation learned by GCN and LSTM encoder.
ϵ ∈ (0, 1] is the integration factor to control the weight of
spatio-temporal information in RCMT.

The output C(L)(t) obtained through the Lth layer of
GCN is then passed through a softmax multi-classifier
to obtain the probability distribution matrix C =

softmax
(∑T

t=1 ωtσ(Q̃
− 1

2 H̃Q̃
− 1

2 C̃
(L)

(t)W (L)
c )

)
, where ωt

is the weight coefficient, which can be set based on the
importance of data in different time slots. This further obtains
the spatial and temporal similarities of regions and achieves
region clustering. cnk is the element located in the nth row
and kth column of the probability distribution matrix C, which
represents the probability that region n belongs to cluster k,
1 ≤ k ≤ K. Therefore, the cluster label assigned to region n
is ψn = argmaxk cnk.

Since there is no supervision information for the RCMT
model, we employ a dual-supervised method to train both
the LSTM autoencoder and GCN. A supervised target is
constructed from the output of the LSTM encoder, and the
loss function of the model is designed based on the su-
pervised target. Then, the parameters are learned in a self-
supervised manner. Inspired by the work of unsupervised deep
embedding [42], we initialize K cluster centers {η1, . . . ,ηK}
based on the K-means algorithm according to the extracted
representation E(L)(T ) of the LSTM autoencoder. Using

the t-distribution [42] as the kernel function, the similarity
between the region representation fn and the cluster center
representation ηk is

(
1 + ∥fn − ηk∥

2
/ϱ

)− ϱ+1
2 , where ϱ is

the degrees of freedom of the t-distribution. Define enk as
the probability of region n being clustered into class k,

which can be calculated by enk =
(1+∥fn−ηk∥

2/ϱ)
− ϱ+1

2∑
k′(1+∥fn−ηk′∥2/ϱ)

− ϱ+1
2

,

where n, n′ ∈ {1, 2, · · · , |V |}, and k, k′ ∈ {1, 2, · · · ,K}.
Then we can have the soft assignment probability matrix
E ∈ (0, 1)|V |×K . Furthermore, to improve the supervised
training of enk, an optimized target soft assignment probability
onk is introduced

onk =
e2nk/

∑
n′ en′k∑

k′(e2nk′/
∑

n′ en′k′)
. (20)

Then the target soft assignment matrix O ∈ (0, 1)|V |×K can
be obtained. Since KL-divergence can be used to measure
the difference between two probability distributions, the KL-
divergence loss function of E for O is defined as Lc(W e) =

KL(O∥E) =
∑|V |

n=1

∑K
k=1 onk log

onk

enk
. After performing

softmax() on the output of GCN, we get the probability
distribution C. The target distribution O constructed in the
LSTM encoder is used as the target distribution for GCN.
Therefore, the KL-divergence loss function of C for O is
Lg(W e,W c) = KL(O∥C) =

∑|V |
n=1

∑K
k=1 onk log

onk

cnk
.

Therefore, the total loss function for structural deep region
clustering is L = La + φcLc + φgLg, which includes the
LSTM autoencoder loss La, the clustering loss Lc and the
GCN loss Lg. Here, φc and φg are weight factors. Next,
we give two important gradient calculations for parameter
updates. According to Stochastic Gradient Descent (SGD) and
backpropagation [43], the gradient of the parameter update for
the cluster center ηk is

∂L
∂ηk

= φc

(
ϱ+ 1

ϱ

) |V |∑
n

[
(onk − enk)(fn − ηk)(

1 +
∥fn − ηk∥2

ϱ

)−1 ]
. (21)

The gradient of parameters W e for the LSTM encoder net-
work can be calculated by

∂L
∂W e

=
∂La

∂W e
+ φc

(
ϱ+ 1

ϱ

) K∑
k

[
(enk − onk) (fn − ηk)(

1 +
∥fn − ηk∥

2

ϱ

)−1]
∂fn

∂W e
− φg

onk
cnk

∂cnk
∂W e

. (22)

Furthermore, based on the results of region clustering, we
can transfer the well-trained edge models in the data-rich
regions to similar regions. On the one hand, it provides a
refined initial state for the prediction model in target regions,
rather than parameters that are randomly initialized, thereby
alleviating the problem of insufficient data in certain regions.
On the other hand, it can also reduce the training cost of the
prediction model. Since graph regularization in RCMT can
introduce structural information into the model, the represen-
tation learned through this process incorporates the multi-order
spatio-temporal feature of mobile traffic.
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V. FEDERATED DRL BASED COST-EFFICIENT SERVICE
MIGRATION

The predicted traffic can guide service migration consider-
ing cost efficiency and resource optimization in the DT-MEC
network. In this section, we first perform a problem transfor-
mation of the joint optimization model, then we describe the
model training process based on federated multi-agent DRL.

A. Problem Transformation

Learning-based algorithms can dynamically adapt to the
network environment with the complex state space, but cen-
tralized DRL methods cannot deal with the exponentially
increasing system complexity as the number of base stations
and users increases. Therefore, we first remodel the proposed
joint optimization problem as a multi-agent extension of
MDP, denoted as (J , S, {Aj}, {Oj}, P , C, O), where J
and S represent agents and system state, respectively. Aj

represents the possible actions of j ∈ V , and Oj represents the
observation of S by j. P is the joint state transition probability
function, C is the joint cost function, O is the joint observation
function. Note that P , C and O need to be modeled by the
interaction between agents and the environment.

Since agents cannot observe actual traffic at the beginning of
time slot t, we use the predicted traffic as state observation.
Then, base station switching can be executed based on the
predicted traffic. Subsequently, service migration, bandwidth
resource allocation, and computing resource allocation are
performed after observing the real user requests.

State space: The state space is defined as < sc(t), sm(t) >,
where the joint state of BS switching at time slot t is defined
as sc(t) = (f̃(t), x(t−1)), which includes the predicted traffic
at the beginning of t and the active/sleep state of BSs at t−1.
The joint state of service migration is defined as

sm(t) = (x̃(t), q(t), p(t))

=
(
x̃1(t), x̃2(t), ..., x̃|V |(t), ι

1(t), ι2(t), ..., ι|U |(t),

s1(t), s2(t), ..., s|U |(t), w1(t), w2(t), ..., w|U |(t),

σ1(t), σ2(t), ..., σ|U |(t), p1(t), p2(t), ..., p|U |(t)
)
,

(23)

which includes all BS active/sleep pre-operations according to
the predicted traffic, all service requests and locations of users.

Observation space: The observation space is defined as
< ocj(t), o

m
j (t) >. Since the proposed architecture does not

require the coordination of a central controller and frequent
information exchange, each agent only needs to observe local
information. The observation of BS switching can be described
as ocj(t) = (f̃j(t), xj(t−1)), which includes the predicted local
traffic and the active/sleep state at t − 1. The observation of
service migration can be described as

omj (t) =
(
x̃j(t), ι

1
j (t), ι

2
j (t), ..., ι

|U |
j (t),

s1j (t), s
2
j (t), ..., s

|U |
j (t), w1

j (t), w
2
j (t), ..., w

|U |
j (t),

σ1
j (t), σ

1
j (t), ..., σ

|U |
j (t), p1j (t), p

2
j (t), ..., p

|U |
j (t) ) , (24)

which includes local BS active/sleep pre-operations performed
according to the predicted traffic, local service requests and
locations of users.

Action space: The action space is defined as <
acj(t), a

m
j (t) >. Each agent selects an action from the action

space to execute based on local observation and policy πj , that
is, acj(t) and amj (t), where acj(t) is the local BS active/sleep
operation xj(t), and amj (t) can be expressed as

amj (t) =
(
y1j (t), y

2
j (t), ..., y

|U |
j (t), z1j (t), z

2
j (t), ..., z

|U |
j (t),

b1j (t), b
2
j (t), ..., b

|U |
j (t)

)
. (25)

Reward function: To evaluate the reward of action ex-
ploration more accurately and mitigate the cost fluctuation
caused by traffic changes, the reward function is defined as
R(t) = − c(t)

|U(t)| .

B. Federated Multi-Agent DRL Based Model Training

To handle continuous decision variables, we utilize feder-
ated Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) architecture to solve the multi-agent Markov decision
problem in this paper. First, the agent observes the state of
the environment, then randomly selects transitions from the
experience buffer to learn the optimal policy π∗

j , and each
agent contains Actor and Critic components.

Experience replay can improve the learning efficiency and
stability of MADDPG, where a transition can be expressed
as a tuple {s(t), a(t), r(t), s′(t)}. In each round of iteration,
each agent j randomly samples transitions of Bj size from
the experience buffer, and updates the parameters θµ

j and θQ
j

of the evaluation network through training. Specifically, the
parameters of the Actor evaluation network are updated by
maximizing the policy objective function

J
(
θµ
j

)
= E [Qj (sj , aj) | aj = µj (oj)] , (26)

where Qj(sj , aj) = E[
∑∞

τ=0 γ
τrj(t+ τ)|πj , sj =

sj(t), aj = aj(t)], and γ is the penalty factor. µj(∗) is
the evaluation network function of the actor, which represents
the deterministic policy. The Critic updates the parameters of
the evaluation network by minimizing the loss

L
(
θQ
j

)
= E

[(
Qj (sj , aj)−

(
rj + γQ′

j

(
s′j , a

′
j

)))2]
. (27)

where Q′
j(∗) is the state-action function for the target net-

work, which has the same structure as the original evaluation
network. The target network is constructed to evaluate future
action and reward, which can improve the stability and con-
vergence of the training process. As the evaluation network
parameters θµ

j and θQ
j are updated, the parameters of the target

network θµ′

j and θQ′

j can be softly updated in a weighted
manner

θµ′

j = κajθ
µ
j +

(
1− κaj

)
θµ′

j , (28)

θQ′

j = κcjθ
Q
j +

(
1− κcj

)
θQ′

j , (29)

where κaj and κcj are parameter update weights. For the
DT-MEC network, we propose FL-based model training to
update parameters, which can improve learning efficiency and
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reduce bandwidth resource cost caused by information ex-
change while protecting data privacy. It mainly includes intra-
cluster parameter sharing and global asynchronous parameter
aggregation.

Intra-cluster parameter sharing: Based on the model
parameter θτ delivered by the central server, intra-cluster
parameter sharing is performed after completing H rounds
of local iterations within the cluster. Θτ,g

k = [θτ,g
k,1, . . . ,θ

τ,g
k,Nk

]
denotes the parameter vector of the agents in cluster k after
g rounds of intra-cluster parameter sharing based on θτ .
Θτ,g,h

k = [θτ,g,h
k,1 , . . . ,θτ,g,h

k,Nk
] denotes the parameter vector of

the agents in cluster k after h rounds of local iterations based
on Θτ,g

k . For the hth iteration of the local SGD, the parameter
update of agent j in cluster k can be expressed as

θτ,g,h
k,j = θτ,g,h−1

k,j − ηk∇J
(
θτ,g,h−1
k,j

)
, (30)

where ηk is the weight of the local parameter update. Then
the gth intra-cluster parameter sharing can be expressed as
Θτ,g

k = Θτ,g−1
k W [44], where W is defined as

W =


w 1−w

Nk−1 · · · 1−w
Nk−1

1−w
Nk−1 w · · · 1−w

Nk−1
...

...
. . .

...
1−w
Nk−1

1−w
Nk−1 · · · w

 , (31)

where w ∈ [0, 1] is the weight of agent j updating its own
parameters in intra-cluster parameter sharing. Note that intra-
cluster parameter sharing is based on the clustering results
in IV-C, which collaboratively updates the model parameters
within the cluster to improve the efficiency of parameter
learning.

Global asynchronous parameter aggregation: After G
rounds of intra-cluster parameter sharing in cluster k, the
cluster parameters are transmitted to the central server for the
global asynchronous parameter aggregation in the τ th epoch,

θτ = (1− ατ
τ ′)θτ−1 + ατ

τ ′θτ ′

k , (32)

where ατ
τ ′ ∈ (0, 1) is the weight parameter for global ag-

gregation, and τ ′ is the last epoch of cluster k participating
in global aggregation, thus τ − τ ′ represents the staleness
in the global epochs for the parameters of cluster k. When
a cluster participates in global aggregation, the average of
all agent parameters in that cluster is used as the cluster
parameter θτ ′

k = 1
Nk

∑Nk

j=1 θ
τ ′,G
k,j , and then the global asyn-

chronous parameter aggregation is performed. The pseudocode
of FCSM is shown in Algorithm 1. Each agent independently
explores strategies based on local observations, samples from
the experience buffer and updates its own Actor network and
Critic network parameters through learning. To minimize the
long-term cost of the DT-MEC system, the total reward is
shared among cooperative agents. On the other hand, FCSM
updates network parameters through intra-cluster parameter
sharing among agents, as shown in (31). FCSM does not
require agents to share input state information, but rather
only needs to transmit lightweight Actor network parame-
ters, thereby improving system communication efficiency and
model convergence speed. Furthermore, considering the high

Algorithm 1 Federated Cooperative cost-efficient Service
Migration

1: Initialize the network parameters of each agent;
2: for each iteration do
3: Agent obtains observation < ocj(t), o

m
j (t) > and selects

an action < acj(t), a
m
j (t) > according to the policy

network, and obtain the input state < sc(t), sm(t) >;
4: Execute action < acj(t), a

m
j (t) > to get reward R(t)

and new state < sc
′
(t), sm

′
(t) >;

5: for each agent do
6: Store or update Experience Buffer;
7: Sample Bj from Experience Buffer;
8: Update parameters of actor evaluation network θµ

j

and critic evaluation network θQ
j through (26) and

(27);
9: Update parameters of actor target network θµ′

j and
critic target network θQ′

j through (28) and (29);
10: end for
11: Updating the true cost of the network;
12: if Round of local iteration Citeration = H then
13: Execute intra-cluster parameter sharing according to

(31);
14: end if
15: if Round of intra-cluster parameter sharing Ccluster =

G then
16: Execute global asynchronous parameter aggregation

according to (32);
17: end if
18: end for

latency and poor scalability issues caused by the staleness
problem in FL-based synchronous update methods, FCSM uti-
lizes (32) to update network parameters through asynchronous
parameter aggregation among agents. This further improves
learning efficiency and accelerates model convergence. We
utilize asymptotic computational time complexity notation
O(∗) to analyze the complexity of the different execution
steps and sub-steps in Algorithm 1. The computational time
complexity of Algorithm 1 is O

(
(Ca + C⊤

a + C⊤
c + |θµ| +

|θQ|)|J |iter + (|θµ| + |θQ|)k|J |2iter
H

)
, where iter is the

total number of iterations, C⊤
a and C⊤

c are the simplified
representation of the computational loads of parameter update
for the Actor and Critic networks, respectively, and Ca is the
simplified representation of the computational load of forward
propagation for the Actor networks.

VI. THEORETICAL ANALYSIS

A. Multi-order Spatio-temporal Feature Representation of
MSTP

We prove that MSTP can extract multi-order spatio-
temporal information in Theorem 1. Moreover, the distributed
traffic prediction scheme proposed in this paper only aggre-
gates the traffic of |N̄ | regions, which greatly reduces the
resource consumption and transmission delay of data collec-
tion. To illustrate the crucial role of our multi-order feature
integration method, we first give the following definitions.
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Definition 1: o-order standard adjacency matrix A(o). It is
defined as the multiplication of o standard adjacency matrices
Â

o
, that is, A(o) = Â

o
. This is a symmetric matrix where the

n′th element value a(o)n,n′ in the nth row vector a
(o)
n of A(o)

is proportional to the number of o-hop paths between region
n and region n′.

Definition 2: o-order similarity s(o)n,n′ . The o-order similarity
of regions n and n′ is defined as the cosine similarity of
vectors a(o)

n and a
(o)
n′ in the o-order standard adjacency matrix

A(o), denoted as s
(o)
n,n′ =

〈
a(o)

n ,a
(o)

n′

〉
∥a(o)

n ∥·∥a(o)

n′ ∥
. According to the

properties of the Cauchy-Schwartz inequality, the o-order
similarity between regions n and n′ is proportional to the
number of their common o-hop neighbors.

Definition 3: o-order graph regularization. The goal of the
o-order graph regularization is to minimize the following term∑

n,n′
1
2 ∥fn − fn′∥2 s(o)n,n′ , where the row vector fn is the

representation of region n and ∥fn − fn′∥ denotes the Eu-
clidean distance between region representation fn and fn′ . If
the o-order similarity s(o)n,n′ is high, and the goal of the o-order
graph regularization is to minimize ∥fn − fn′∥. Therefore,
o-order graph regularization can make the representations of
regions with high similarity more proximate. Consequently,
we have the following lemma 1.

Lemma 1: The operation of multiplying the o-order standard
adjacency matrix A(o) on the left of the region representation
fn is equivalent to performing o-order graph regularization,
and its effect is to introduce multi-order structural information.
The detailed proof of Lemma 1 is given in Appendix A, and
based on Lemma 1, Theorem 1 can be obtained.

Theorem 1: The features extracted by MSTP contain the
multi-order graph regularization term, which means that the
learned representation L(L) contains the multi-order spatio-
temporal feature representation of mobile traffic. Specifically,
L(L) integrates the information representation of LSTM and
GCN, can be expressed as

L(L) = ML̃
(L−1)

+NB

= M
(
ϖL(L−1) + (1−ϖ)G(L−1)

)
+NB

= ϖLMLF̄ 1∼T +

L−1∑
ℓ=0

ϖL−1−ℓ(1−ϖ)ML−ℓÂ
ℓ
F̄ 1∼T

+

L−1∑
ℓ=0

ϖℓM ℓNB, (33)

where M ∈ NT×T denotes the lower triangular matrix where
all lower triangular elements are 1, N ∈ NT×T denotes diago-
nal matrix diag(1, . . . , T ), and B = [b, . . . , b]⊤, respectively.
In the second term, Â

ℓ
F̄ 1∼T is equivalent to ℓ-order graph

regularization and integrates the data of T time slots, which
can obtain ℓ-order spatio-temporal information of F̄ 1∼T . In
this paper, multi-order spatio-temporal information is consid-
ered for distributed traffic prediction in MEC networks to
improve traffic prediction efficiency. The detailed proof of
Theorem 1 is given in Appendix B.

TABLE I
PREDICTION PERFORMANCE COMPARISONS THROUGH TWO EVALUATION

METRICS OF THREE DIFFERENT TRAFFIC EVENTS.

Method
Internet Call SMS

RMSE MAE RMSE MAE RMSE MAE
ARIMA 4.983 3.453 0.831 0.587 8.630 6.280
SVR 2.193 1.516 0.416 0.275 4.844 3.509
LSTM 3.120 2.217 0.532 0.351 5.119 3.978
CNN-LSTM 2.052 1.386 0.513 0.272 4.302 2.996
FedDA 2.268 1.633 0.349 0.276 4.485 3.317
MSTP 1.941 1.289 0.252 0.169 3.283 2.319

B. Convergence of FCSM
Based on general assumptions, we prove the convergence

of the Actor network in FCSM. These assumptions are as
follows: 1) the Actor network has β-smoothness, that is,
J (θj) − J

(
θ′
j

)
≤

〈
∇J

(
θ′
j

)
,θj − θ′

j

〉
+ β

2

∥∥θj − θ′
j

∥∥2. 2)
SGD has unbiased boundedness, that is, E[∥h̃j − hj∥2] ≤
C ∥hj∥2 +

σ2
j

B . 3) The loss function of the Actor network is
convex. 4) The squared loss of the Actor network has an upper
bound, that is, E

[
∥∇J (θ) ∥2

]
≤ δ2. 5) The iteration step size

ηk and smooth coefficient β satisfy the relationship ηk <
1
β .

Next, we prove the convergence of the Actor network in FCSM
under assumptions 1)-5) in Theorem 2.

Theorem 2: The Actor network in FCSM has convergence
with an upper bound of the time-averaged squared gradient
norm, that is,

1

TGNk

T∑
τ=1

G∑
g=1

Nk∑
j=1

E
[∥∥∥∇J (

θτ,g
k,j

)∥∥∥2]

≤
2E

[
J
(
θ0

)
− J

(
θT

)]
αηminTG

+
σ2
maxH

B

1 + ζ2

1− ζ2

+ 2αδ2ΥH
√
Nmax ∥W∥

+ α2βδ2Υ2GH2Nmaxηmax ∥W∥2, (34)

where σj ≤ σmax, and the number of BSs in k cluster satisfies
Nk ≤ Nmax. The step size of local SGD satisfies ηmin ≤
ηk ≤ ηmax. ζ = Nkw−1

Nk−1 is the second largest eigenvalue of
the matrix W, and Υ is the upper bound of the number of
rounds that any cluster participates in two consecutive global
aggregations. The detailed proof of Theorem 2 is given in
Appendix C.

VII. PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the perfor-
mance of MSTP and FCSM. Firstly, we evaluate MSTP on
real-world traffic datasets and compare its performance with
that of both classical and state-of-the-art traffic prediction
schemes. This evaluation is based on multiple metrics, includ-
ing Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and training cost. Then, we evaluate the performance
of FCSM in the DT-MEC network through multiple perfor-
mance metrics, including system total cost, service migration
cost, service utility, and resource utilization.

A. Simulation Setting
The datasets used in this paper have been illustrated in detail

in Section IV-A. In the simulations, we use the traffic of three
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events (Internet, call and SMS) from these two datasets [40] to
evaluate the performance of MSTP and baseline methods, sam-
pling 1008 time-slot traffic records. For MSTP, a three-layer
neural network structure is used, and the prediction sliding
window is 4. The model training is performed by using Adam
[45] as the optimizer with a learning rate of 1e-3. For the
MEC network, the gym module [46] in Python is used to build
multi-agents. The network consists of 8 fixedly deployed BSs
and connected edge servers, and 100 mobile users move and
randomly generate service requests. The bandwidth capacity
of the BS is 10 MHz, the storage capacity is 35 GB, and the
computing capacity is [5, 10] GHz, where each MEC server is
equipped with multiple CPU cores [47]. The service request
size is uniformly distributed within [0.5, 1] Mb. Each part of
the system cost is normalized, and then the weight factors of
system costs are set as ϕe = ϕs = ϕm = ϕq = 0.25. Both the
Actor and Critic neural networks consist of 4 layers with the
learning rate of 1e-4. The number of iterations is 20,000, and
the batch-size is 256.

We compare MSTP with some classical and state-of-the-
art mobile traffic prediction methods, which are as follows.
ARIMA [16], [17]: ARIMA is a classic time series prediction
method that combines the autoregressive model and moving
average model, and introduces a variance factor to detrend the
data. It is a representative method of traffic prediction based on
statistical analysis. Support Vector Regression (SVR) [48]:
SVR is a classic machine learning-based prediction method,
and its prediction model has excellent generalization ability.
LSTM [24]: LSTM is a DL-based method that is widely
used for various prediction problems. It can deal with long-
term dependencies by improving the internal units of RNN.
CNN-LSTM [25]: CNN-LSTM is a combined prediction
model framework, where CNN is used to capture the spatial
dependencies and LSTM is used to capture the temporal
dependencies, respectively. It achieves the state-of-the-art per-
formance in mobile traffic prediction. FedDA [29]: FedDA is
the state-of-the-art distributed traffic prediction method based
on FL, and achieves excellent traffic prediction performance.

Furthermore, we compare FCSM with the following meth-
ods. SADDPG: SADDPG uses a single agent to perform
policy exploration and evaluation, updating the network pa-
rameters in a centralized manner [10], [49]. MADDPG:
MADDPG is a popular multi-agent reinforcement learning
method, which uses the idea of distributed action exploration
and centralized reward [50]. Cluster Parameter Sharing
(CPS): CPS uses intra-cluster parameter sharing to update
Actor network parameters [44].

B. Prediction Performance

Table I shows the performance of various prediction meth-
ods, from which we can observe that our proposed MSTP
achieves the best traffic prediction performance compared
with baseline methods. Specifically, for RMSE of Internet
traffic, our scheme achieves 5.41% gains over CNN-LSTM and
11.49% gains over SVR. Furthermore, compared to baseline
methods, MSTP achieves more than 27.79% gains for RMSE
of call traffic and more than 22.60% gains for MAE of SMS
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Fig. 4. Prediction results of SMS, call, and Internet traffic in Milan dataset.
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Fig. 5. Prediction results of SMS, call, and Internet traffic in Trentino dataset.
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Fig. 6. Traffic prediction results under the MEC network.

traffic. Fig. 4 and Fig. 5 show the comparison between the
predicted values and the ground truths for three different traffic
events under two datasets, and Fig. 6 shows the prediction
results of MSTP using traffic generated by the MEC platform.
The overall prediction error can be observed from the Cu-
mulative Distribution Function (CDF), and these simulation
results demonstrate the excellent prediction performance of
MSTP. This is because our MSTP method not only considers
the temporal and spatial relationships of mobile traffic, but also
achieves a more comprehensive and powerful representation of
the coupled spatio-temporal dependencies through integrating
multi-order spatio-temporal information.

C. Clustering and Edge Model Transfer

Furthermore, we analyze the results of region clustering and
the performance of edge model transfer. Fig. 7 shows traffic
patterns based on real mobile traffic data in some regions for
different clusters and the associated training loss, where the
regional traffic of the same category shows certain similarities.
Fig. 8 shows the comparisons among the predicted traffic by
the local model, the transferred edge model, the improved edge
model, and the ground-truth traffic in the transferred target
regions. Note that the local model is trained with scarce local
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Fig. 7. Traffic patterns for different clusters and clustering training loss.
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Fig. 8. Prediction results of transferred edge models for different clusters.

data, the transferred edge model is directly transferred from a
similar region, and the improved edge model is the model that
is transferred from a similar region and then further trained
with local data. RCMT achieves excellent traffic prediction
performance without the use of global information. Specif-
ically, compared with the local models, the prediction errors
of the transferred edge models of three clusters are reduced by
8.49%, 48.20%, and 7.48%, respectively, while the prediction
errors of the improved edge models are reduced by 18.33%,
54.38%, and 27.35%, respectively. These results demonstrate
that the transferred model can effectively reduce the prediction
error for data scarcity regions compared to the local model.
This is because our proposed method introduces structured
information to regional deep clustering, which can capture
the spatio-temporal similarities of regions to support efficient
edge model transfer. Therefore, our method overcomes the
limitation of insufficient data in some regions and improves
the traffic prediction performance for the distributed DT-MEC
network through effective region clustering and edge model
transfer.

D. Training Cost and Effect of Parameters

We evaluate the training cost of edge models and analyze
the effect of parameters on prediction performance, as shown
in Fig. 9. When weight parameter ϖ increases from 0.1
to 0.5, the prediction performance of different traffic events
is significantly improved in Fig. 9(a), which indicates that
capturing the spatio-temporal dependencies of traffic can bring
benefits to traffic prediction. When ϖ increases to 0.7, the
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Fig. 9. Weight parameter ϖ, number of similarity regions λ, number of
iterations, and training time.
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Fig. 10. Actor network training reward and training loss.
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Fig. 11. Total cost and CDF of total cost.

prediction performance shows a downtrend, indicating that the
introduction of too much spatial correlation can interfere with
the acquisition of traffic features and thus affect the traffic
prediction performance. We also evaluate the effect of the
number of similar regions λ on the prediction performance,
as shown in Fig. 9(b). We can observe that the optimal λ is
different for different traffic events and geographic settings.
Overall, with the increase of λ, the RMSE of 6 traffic events
show a downward trend to varying degrees. However, with the
excessive increase of λ, e.g., for TN-Internet traffic, when λ is
greater than 5, the RMSE increases significantly. Simulation
results show that with a carefully chosen λ to capture the
correlations among similar regions can account for spatial
dependencies and indeed improve the prediction performance.
The training loss of MSTP is shown in Fig. 9(c), and the
average training time of our scheme is 42s, as shown in
Fig. 9(d). We can observe that our proposed MSTP can achieve
excellent prediction performance with low model training cost,
which is suitable for MEC servers with limited capacity.

E. Actor Network Convergence and Training Loss

The convergence and loss of the Actor network can re-
flect the learning efficiency and stability of network model.
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Fig. 12. Service migration cost and CDF of service migration cost.
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Fig. 13. Service QoS degradation cost and CDF of service QoS degradation
cost.

Fig. 10 shows the training reward and loss of the Actor
network. Although the stochastic property of the MEC network
causes certain reward and loss fluctuations, FCSM achieves
the best convergence at about 2200 iterations, which signifi-
cantly outperforms the other comparison algorithms. This is
because FCSM employs a distributed learning scheme that
only requires a lightweight network architecture, and achieves
efficient model training through intra-cluster parameter sharing
and global asynchronous parameter aggregation among agents.
FCSM does not require the sharing of input state information
among agents, and only lightweight Actor network parameters
need to be transferred. This improves system communica-
tion efficiency and model convergence speed. In addition,
the convergence of FCSM is proved in Theorem 2, which
provides a theoretical guarantee for the convergence of FCSM.
We can observe that SADDPG has the worst convergence
with around 12000 iterations. This is because the centralized
exploration with single agent requires a neural network model
with complex architecture and a large number of parameters
to process global state information.

F. System Total Cost and Service Migration Cost

System total cost and service migration cost are key per-
formance metrics for network operators to deploy and operate
MEC networks. The total system cost and service migration
cost are shown in Fig. 11 and Fig. 12. We can observe that
the total cost of FCSM is significantly lower than that of other
comparison methods with an average cost of 2855.05. This
is because FCSM adopts a federated DRL-based parameter
update method. Through intra-cluster parameter sharing and
global asynchronous parameter aggregation, it can learn global
information and optimize the long-term total system cost.
Specifically, FCSM puts base stations into sleep mode during
low-traffic periods to reduce network energy cost. Mean-
while, FCSM meets local service requests by proper service
migration and improves QoS through appropriate resource
allocation. We can also observe that our average migration
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Fig. 14. Service utility and CDF of service utility.
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Fig. 15. Computing, storage and communication resource utilization of
different algorithms.

cost is 227.78, which is higher than that of the comparison
algorithms. This is because FCSM migrates services to meet
local service requests and causes higher migration cost.

G. QoS Degradation Cost, Service Utility and Resource
Utilization

QoS degradation cost and service utility are important met-
rics, which represents the ability of the MEC network to admit
mobile user requests. As shown in Fig. 13 and Fig. 14, FCSM
can reduce QoS degradation cost and improve service utility
of the MEC network. Specifically, the QoS degradation cost of
FCSM is 5.37, while that of MADDPG is as high as 38. This
is because FCSM reasonably migrates services and greatly
satisfies the service requests of mobile users. Furthermore, the
efficient allocation of network resources can reduce communi-
cation and computing delay, thereby reducing QoS degradation
cost. Overall, FCSM significantly improves the QoS of users
while responding to service requests. Furthermore, we evaluate
the computing, storage and communication resource utilization
of different methods, which reflects whether the algorithm
fully make use of the network resources of edge servers. As
shown in Fig. 15, the average computing, storage and commu-
nication resource utilization of FCSM are 94.45%, 78.30% and
94.44%, respectively. FCSM improves the resource utilization
of active infrastructure by switching base stations according
to the changes in traffic load. Moreover, FCSM properly
migrates services, significantly satisfying the service requests
of mobile users, and improves resource utilization through
efficient resource allocation.

VIII. CONCLUSION

In this paper, we have proposed a traffic prediction-assisted
federated DRL framework for service migration in the DT-
MEC network. Firstly, a distributed traffic prediction scheme
for large-scale MEC networks has been proposed, which
achieves high-efficiency and low-cost traffic prediction through
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multi-order feature integration of spatio-temporal information
and edge model transfer. Then, we have formulated the cost-
efficient service migration problem as a multi-agent Markov
model, and have proposed a federated collaboration-based
cost-efficient service migration scheme. Furthermore, through
theoretical analysis, we have proved the convergence of
FCSM. Finally, we have evaluated the performance of MSTP
and FCSM. Simulation results show that MSTP yields superior
traffic prediction performance relative to prior approaches, and
FCSM reduces the long-term cost of MEC networks and shows
excellent convergence. Since the learning efficiency of a multi-
agent system is greatly affected by the stochastic properties of
networks, our future work will focus on the optimization of
the multi-agent learning process to improve robustness.

APPENDIX A
PROOF OF LEMMA 1

Proof : According to the definition of A(o), the element
a
(o)
n,n′ in the nth row and n′th column is

a
(o)
n,n′ =

|N̄ |∑
k(1),...,k(o−1)=1

1√
dn

√
dn′

ank(1)

(
Πo−2

q=1ak(q)k(q+1)

)
ak(o−1)n′

dk(1) · · · dk(o−1)

=
1√

dn
√
dn′

â
(o)
n,n′ . (35)

Hence, let F = [f⊤
1 , . . . ,f

⊤
|N̄ |]

⊤, and then we have

f̂n = a(o)
n F =

|N̄ |∑
k=1

1√
dn

√
dk
â
(o)
n,kfk =

|N̄ |∑
k=1

a
(o)
n,kfk. (36)

Furthermore, the representation of regions n and n′ after left
multiplying by A(o) is f̂n and f̂n′ . The distance between f̂n

and f̂n′ is

∥∥∥f̂n − f̂n′

∥∥∥ =

∥∥∥∥∥∥
|N̄ |∑
k=1

a
(o)
n,kfk −

|N̄ |∑
k=1

a
(o)
n′,kfk

∥∥∥∥∥∥
≤

|N̄ |∑
k=1

∥∥∥a(o)n,k − a
(o)
n′,k

∥∥∥ ∥fk∥. (37)

From (37), we can see that when the values of a(o)n,k and a(o)n′,k

are close, the magnitude of
∥∥∥f̂n − f̂n′

∥∥∥ can be small, which
is consistent with the idea of o-order graph regularization.
Since graph regularization can introduce structural information
into the model, the operation of A(o)fn can introduce o-order
structural information.

APPENDIX B
PROOF OF THEOREM 1

Proof : The update of the ℓth layer LSTM at the t time step
is expressed as

L(ℓ)(t) = σ
(
L̃

(ℓ−1)
(t)W

(ℓ−1)
r1

+L(ℓ)(t− 1)W
(ℓ−1)
r2 + b(ℓ−1)

)
. (38)

To simplify the proof, we assume that the activation function
σ(x) = x, the parameter W

(ℓ−1)
r1 = W

(ℓ−1)
r2 = I, b(ℓ−1) =

b,∀ℓ ∈ {1, 2, · · · , L}, and let the initial hidden state of LSTM
L(ℓ)(0) = 0, then (38) can be simplified as

L(ℓ)(t) = L̃
(ℓ−1)

(t) +L(ℓ)(t− 1) + b

=

t∑
τ=1

L̃
(ℓ−1)

(τ) + tb. (39)

L(ℓ) contains the output of T time series L(ℓ)(1), . . . ,L(ℓ)(T ),
then we have L(ℓ) = ML̃

(ℓ−1)
+NB.

On the other hand, for GCN, we also simplify σ(x) = x

and W (ℓ−1)
g = I,∀ℓ ∈ {1, 2, · · · , L}, and D̃

− 1
2 ÃD̃

− 1
2 is ab-

breviated as Â. Hence, the graph convolution operation of the
ℓth layer is G(ℓ)(t) = ÂG(ℓ−1)(t) = Â

ℓ
G(0)(t) = Â

ℓ
F̄ (t).

After integrating the information representation of LSTM and
GCN, we have (33) and Theorem 1 is proved.

APPENDIX C
PROOF OF THEOREM 2

Proof : The expectation of the difference between the global
losses for two consecutive epochs is

E
[
J (θτ )− J

(
θτ−1

)]
≤ E

[
(1− α)J

(
θτ−1

)
+ αJ(θτ ′

k )− J
(
θτ−1

)]
= αE

[
J(θτ ′

k )− J(θτ ′
)
]
+ αE

[
J(θτ ′

)− J(θτ−1)
]
, (40)

where θτ ′

k is the result of G rounds of intra-cluster parameter
update from the model parameters θτ ′

of the previous epoch
in cluster k. For the first term in (40), we have

E
[
J(θτ ′

k )− J(θτ ′
)
]
≤ 1

Nk

Nk∑
j=1

E
[
J
(
θτ ′,G
k,j

)
− J

(
θτ ′,0
k,j

)]
.

(41)

According to conclusion in [44] and ηkβ < 1, we have

E
[
J(θτ ′

k )− J
(
θτ ′

)]
≤ − ηk

2Nk

G∑
g=1

Nk∑
j=1

E
[∥∥∥∇J (

θτ ′,g
k,j

)∥∥∥2]+
ηkσ

2
maxGH

2B

1 + ζ2

1− ζ2
.

(42)

For the second term in (40), since the β-smoothness of the
loss function, we have

E
[
J(θτ ′

)− J(θτ−1)
]

≤ E
[∥∥∇J(θτ−1)

∥∥∥θτ ′
− θτ−1∥

]
+
β

2
E
[
∥θτ ′

− θτ−1∥2
]
.

(43)

For ∥θτ ′
− θτ−1∥ in (43), according to federated global

parameters aggregation in (32), we have

∥θτ ′
− θτ−1∥

≤ ∥θτ ′
− θτ ′+1∥+ ∥θτ ′+1 − θτ ′+2∥+ · · ·+

∥∥θτ−2 − θτ−1
∥∥

= α
∥∥∥θ(τ ′+1)′

k − θτ ′
∥∥∥+ · · ·+ α

∥∥∥θ(τ−1)′

k − θτ−2
∥∥∥, (44)
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where θ
(τ ′+1)′

k can be obtained from θ(τ ′+1)′ through intra-
cluster update for G rounds. For the first term in (44), simplify
the notation (τ ′ +1)′ as τk, and assume that the gap between
θτk
k and the global parameter θτ ′

is smaller than the update
gap in cluster k, then we have

∥θτk
k − θτ ′

∥ ≤ ∥θτk
k − θτk∥

=

∥∥∥∥∥∥ 1

Nk

Nk∑
j=1

θτk,G
k,j − 1

Nk

Nk∑
j=1

θτk,0
k,j

∥∥∥∥∥∥
≤ 1

Nk

Nk∑
j=1

[∥∥∥(θτk,G
k,j − θτk,G−1

k,j )
∥∥∥+ . . .

+
∥∥∥(θτk,1

k,j − θτk,0
k,j )

∥∥∥] . (45)

Without loss of generality, we analyze the difference between
the (g + 1)th and gth intra-cluster parameter update in (45),∥∥∥θτk,g+1

k,j − θτk,g
k,j

∥∥∥
≤

∥∥∥(Θτk,g,H
k −Θτk,g,H−1

k )WIj

∥∥∥+ . . .

+
∥∥∥(Θτk,g,2

k −Θτk,g,1
k )WIj

∥∥∥+
∥∥∥(Θτk,g,1

k W −Θτk,g,0
k )Ij
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≤

√
Nkηkδ ∥W∥+ · · ·+

√
Nkηkδ ∥W∥

≤ H
√
Nkηkδ ∥W∥ , (46)

where Ij ∈ NNk×1 is a 0-1 column vector, and only the jth
element is 1. Since a single local iteration has a minor impact
on the parameters, we simplify the expression for the last term
of the first inequality in (46). Substituting the result from (46)
back into (45), we have

∥θτk
k − θτ ′

∥ ≤ GH
√
Nkηkδ ∥W∥. (47)

Substituting the result from (47) successively back into (44)
and (43), we have

E
[
J(θτ ′

)− J(θτ−1)
]

≤ ΥαGH
√
Nkηkδ

2 ∥W∥+ β

2
Υ2α2G2H2Nkη

2
kδ

2 ∥W∥2.
(48)

According to (40), (42), and (48), we have

E
[
J (θτ )− J

(
θτ−1

)]
≤

− α
ηk
2Nk

G∑
g=1

Nk∑
j=1

E
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2
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(49)

For (49), multiplying both sides by 2
αηkG

, then we rearrange
the terms to obtain

1

GNk

G∑
g=1

Nk∑
j=1

E
[∥∥∥∇J (

θτ ′,g
k,j

)∥∥∥2]

≤
2E
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J
(
θτ−1

)
− J (θτ )

]
αηkG

+
σ2
maxH
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1 + ζ2

1− ζ2

+ 2ΥαH
√
Nkδ

2 ∥W∥+ βΥ2α2GH2Nkηkδ
2 ∥W∥2.

(50)

Therefore, we obtain the expectation of squared gradient norm
in (50) after local iteration and intra-cluster update in each
epoch. Furthermore, for all τ ∈ {1, . . . , T}, an upper bound
of the time-averaged squared gradient norm can be obtained
in (34) with global asynchronous parameter aggregation.
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