
Clemson University
TigerPrints

All Dissertations Dissertations

8-2008

A REAL-TIME TRAFFIC CONDITION
ASSESSMENT AND PREDICTION
FRAMEWORK USING VEHICLE-
INFRASTRUCTURE INTEGRATION (VII)
WITH COMPUTATIONAL INTELLIGENCE
Yongchang Ma
Clemson University, ma_yongchang@hotmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Civil Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Ma, Yongchang, "A REAL-TIME TRAFFIC CONDITION ASSESSMENT AND PREDICTION FRAMEWORK USING
VEHICLE-INFRASTRUCTURE INTEGRATION (VII) WITH COMPUTATIONAL INTELLIGENCE" (2008). All Dissertations.
178.
https://tigerprints.clemson.edu/all_dissertations/178

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/178?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A REAL-TIME TRAFFIC CONDITION ASSESSMENT AND PREDICTION
FRAMEWORK USING VEHICLE-INFRASTRUCTURE INTEGRATION (VII) WITH

COMPUTATIONAL INTELLIGENCE

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Civil Engineering

by
Yongchang Ma

May 2008

Accepted by:
Dr. Mashrur Chowdhury, Committee Chair

Dr. Adel Sadek
Dr. Wayne Sarasua
Dr. Jennifer Ogle

ABSTRACT

This research developed a real-time traffic condition assessment and prediction

framework using Vehicle-Infrastructure Integration (VII) with computational intelligence

to improve the existing traffic surveillance system. Due to the prohibited expenses and

complexity involved for the field experiment of such a system, this study adopted state-

of-the-art simulation tools as an efficient alternative.

This work developed an integrated traffic and communication simulation platform

to facilitate the design and evaluation of a wide range of online traffic surveillance and

management system in both traffic and communication domain. Using the integrated

simulator, the author evaluated the performance of different combination of

communication medium and architecture. This evaluation led to the development of a

hybrid VII framework exemplified by hierarchical architecture, which is expected to

eliminate single point failures, enhance scalability and easy integration of control

functions for traffic condition assessment and prediction.

In the proposed VII framework, the vehicle on-board equipments and roadside

units (RSUs) work collaboratively, based on an intelligent paradigm known as ”Support

Vector Machine (SVM),” to determine the occurrence and characteristics of an incident

with the kinetics data generated by vehicles. In addition to incident detection, this

research also integrated the computational intelligence paradigm called “Support Vector

Regression (SVR)” within the hybrid VII framework for improving the travel time

prediction capabilities, and supporting on-line leaning functions to improve its

performance over time. Two simulation models that fully implemented the functionalities

 ii

of real-time traffic surveillance were developed on calibrated and validated simulation

network for study sites in Greenville and Spartanburg, South Carolina. The simulation

models’ encouraging performance on traffic condition assessment and prediction justifies

further research on field experiment of such a system to address various research issues in

the areas covered by this work, such as availability and accuracy of vehicle kinetic and

maneuver data, reliability of wireless communication, maintenance of RSUs and wireless

repeaters.

The impact of this research will provide a reliable alternative to traditional traffic

sensors to assess and predict the condition of the transportation system. The integrated

simulation methodology and open source software will provide a tool for design and

evaluation of any real-time traffic surveillance and management systems. Additionally,

the developed VII simulation models will be made available for use by future researchers

and designers of other similar VII systems. Future implementation of the research in the

private and public sector will result in new VII related equipment in vehicles, greater

control of traffic loading, faster incident detection, improved safety, mitigated

congestion, and reduced emissions and fuel consumption.

 iii

DEDICATION

This dissertation is dedicated to my father Weixian Ma and mother Zunli Ge.

 iv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest appreciation and

gratitude to my advisor Dr. Mashrur Chowdhury, for believing in my abilities, for

furnishing me with the required resources, and for his assistance, guidance, understanding

and support throughout this entire dissertation process. I have learned so much, and

without you, this would never have been completed in a satisfactory manner. Thank you

so much for a great experience.

I would also thank Dr. Adel Sadek, Dr. Wayne Sarasua, and Dr. Ogle for serving

in my dissertation committee. Thank you for your insights and guidance throughout the

past three years. Show of gratitude also goes out to Dr. Kuang-Ching Wang for all his

time, effort and expertise in guiding me to complete this dissertation.

Appreciation next goes out to my fellow graduate students, for their friendships

and support. These include Devang Bagaria, Parth Bhafsa, Ryan Fries, Imran Inamdar,

Liz Stephen, Carol Hamlin, and Yan Zhou.

Last but not least, to my parents and family in general, for their never-ending love

and support throughout my life

 v

TABLE OF CONTENTS

Page

TITLE PAGE..i

ABSTRACT...ii

DEDICATION..iv

ACKNOWLEDGMENTS ...v

LIST OF TABLES..viii

LIST OF FIGURES ..ix

CHAPTER

 1. INTRODUCTION ...1

1.1 Background and Motivation...1
1.2 Research Objectives ...12
1.3 Research Hypothesis ..13
1.4 Dissertation Structure ...15

 2. PREVIOUS STUDY..16

2.1 Simulation Platform for Online Traffic Operations17
2.2 Networking and Processing Architecture...21
2.3 Highway Traffic Surveillance Technologies..29
2.4 Computational Intelligence for Highway

Traffic Surveillance System...37
2.5 Summary of Previous Work ...39

 3. METHODOLOGY ..41

3.1 Develop Integrated Simulation Platform..42
3.2 Evaluate Communication Alternatives...51
3.3 Develop VII Simulation Model ..62

 4. ANALYSIS AND RESULTS..85

4.1 Integrated Simulation Platform ..85

 vi

Table of Contents (Continued)

Page

4.2 Evaluation of Communication Alternatives ...96
4.3 Traffic Condition Assessment Framework...107
4.4 Online Travel Time Prediction Using VII Model126

 5. CONCLUSIONS AND RECOMMENDATIONS140

5.1 Conclusions ..140
5.2 Recommendations ..147

APPENDICES ...149

A.1 Implementation of Integrated Simulation Platform in ns-2................149
A.2 Implementation of Integrated Simulation Platform in PARAMICS ..197

REFERENCES ..212

 vii

LIST OF TABLES

Table Page

3.1 Simulated Protocol Hierarchy Stack..45

3.2 Example of list assets for communication analysis57

3.3 Sample Data Log in Vehicle On-Board Units ...71

4.1 Cost Estimate in 2007 Dollar of the Communication Infrastructure103

4.2 Sensitivity Analysis of Threshold Number of Alarms by Vehicles

and Maximum Accumulation Time by Infrastructure Agents.............111

4.3 Detection Rate and False Alarm Rate of the VII Model............................114

4.4 Detection Rate and False Alarm Rate of the VII Model

with 20% VII-enabled Vehicles for Different Traffic Volumes..........115

4.5 Performance of SVR and Instantaneous Travel Time Prediction Models.135

4.6 Comparison of SVR Model with Other Models Reported in Literature....136

 viii

LIST OF FIGURES

Figure Page

 3.1 Research approach in this dissertation...42

 3.2 Integrated simulator process execution flow chart48

 3.3 Architecture of a hypothetic incident detection and management system...49

 3.4 Simulated freeway and placement of sensors and controllers51

 3.5 Topology of centralized and distributed communication network53

 3.6 GIS map of ITS and communication infrastructure in

Greenville, South Carolina...58

 3.7 Relationships between communication requirements

and evaluation MOEs...59

 3.8 Hybrid architecture for VII Model...64

 3.9 Functional elements set up with addressing configuration examples

for the VII model implemented in Spartanburg, South Carolina...........65

 3.10 SVM/SVR model development and evaluation...67

 3.11 Concept of SVM and SVR...70

 3.12 Decision tree for California #7 (Payne and Tignor 1978)79

 3.13 Sample contour map of the traffic condition assessment at a RSU80

 4.1 Density contour map for the studied freeway network when the

incident occurred. An overview of the highway is shown on
the left with the incident marked with a “prohibited” symbol...............87

 4.2 Time between incident occurrence and notification to upstream

controller versus incident location to upstream sensor distance............90

 4.3 Detecting-sensor-to-verifying-sensor communication time versus

incident location expressed as distance from the downstream
local cluster controller..92

 ix

List of Figures (Continued)

Figure Page

 4.4 Verifying-sensor-to-local-controller communication time versus

incident location expressed as distance from the downstream
local cluster controller..93

 4.5 Local-controller-to-upstream-controller communication time

versus incident location distance expressed as from the
downstream local controller...94

 4.6 Linear regression model relating the time between incident

occurrence and notification to upstream controller with
the distance between incident location and upstream sensor.................95

 4.7 Throughput and delivery ratio of the wired centralized network98

 4.8 Throughput and delivery ratio of wired distributed network.......................99

 4.9 Throughput and delivery ratio of wireless centralized network100

 4.10 Throughput and delivery ratio of a wireless distributed network101

 4.11 Throughput to cost ratio of different network architectures103

 4.12 Throughput to cost ratio of wireless-distributed network..........................104

 4.13 Throughput of centralized and distributed networks during an incident ...106

 4.14 Prediction accuracy contour of parameters combination for

developed SVM algorithm...109

 4.15 Comparison of California and SVM Algorithm for detection rate

and false alarm rate ..111

 4.16 Comparison of California algorithm and SVM algorithms for

detection time...112

 4.17 Incident detection time of the VII Model with various penetration

rates of VII-enabled vehicles ...115

 4.18 Incident Detection Time of the VII Model with 20% VII-enabled

Vehicles for Different Traffic Volumes...116

 x

List of Figures (Continued)

Figure Page

 4.19 Prediction accuracy on number of lanes blocked of the VII model

with various penetration rates of VII-enabled vehicles117

 4.20 Distribution of prediction on number of lanes blocked of the VII

model with 15% VII-enabled vehicles...118

 4.21 Prediction accuracy on number of lanes blocked of the VII model

with 20% VII-enabled vehicles for different traffic volumes..............119

 4.22 Prediction on incident location of the VII model.......................................120

 4.23 RMSEP of prediction on incident locations of the VII model with

various penetration rates of VII-enabled vehicles121

 4.24 RMSEP of prediction on incident locations of the VII model with

20% VII-enabled vehicles for different traffic volumes122

 4.25 Number of packets sent and the delivery ratio of the VII model

with various penetration rates of VII-enabled vehicles123

 4.26 Number of packets sent and the delivery ratio of the VII model

with 20% VII-enabled vehicles for different traffic volumes..............124

 4.27 Communication latency of the VII model ...125

 4.28 Travel time pattern with different demand inputs......................................128

 4.29 Prediction performance contour map of parameter combinations

of the developed SVR model ...129

 4.30 Original (a) and smoothed (b) travel time prediction on an afternoon

peak period with recurrent congestion...131

 4.31 MARE and SRE of travel time prediction with different

smoothing factors...132

 4.32 Travel time prediction using instantaneous prediction model133

 4.33 MARE and SRE of travel time prediction with different

penetration rates ...136

 xi

List of Figures (Continued)

Figure Page

 4.34 Percentage of predictions with no significant difference from

actual travel time with different penetration rates137

 4.35 Travel time prediction in both normal traffic conditions and

during incident ...138

 xii

CHAPTER 1

INTRODUCTION

Ensuring that the highway transportation system remains a productive part of the

nation’s infrastructure in the coming decades without costly expansion is of paramount

importance. Increasing population, more vehicles, and urban sprawl now impact a

highway system already overburdened and inadequately maintained. Given the

anticipated increase in highway traffic in coming decades, America can expect problems

of traffic management to continue to grow (Cambridge Systematic and TTI 2005).

Therefore, the United States and other developed nations must create technologies that

reduce the burden on overtaxed road ways that support national and global economies,

while enhancing national security and simultaneously improving environmental quality.

1.1 Background and Motivation

Many countries have been using technologies and systems to better manage and

control their surface transportation network under the umbrella of Intelligent

Transportation Systems (ITS). The operation of numerous key components of ITS, such

as incident management, real-time traffic management, traveler information, and hazard

evacuation, relies heavily on the support of an effective and efficient highway traffic

surveillance system. For example, maintaining the flow of traffic requires continuously

monitoring the highway network for any problems and taking quick action to mitigate the

impacts of those problems. Recent advances in computational intelligence, embedded

 1

systems and wireless communication technologies, can make this process more effective

and efficient.

An opportunity exists for developing the next generation highway traffic

surveillance system in the use of “Vehicle-Infrastructure Integration (VII)” system, an

emerging frontier in ITS. The VII-enabled vehicles, which are equipped with on-board

processors, positioning systems and communication interfaces, are able to collect,

process and disseminate traffic data and information to roadside units (RSUs). In this

envisioned VII system, vehicle on-board units are expected to work autonomously to

collect traffic statistics, such as vehicle locations, following distances and driver

maneuvering at programmed intervals and transmit to RSUs. Additional statistics

including vehicle speeds and accelerations can be converted and derived from these

individual statistics. Research has shown that vehicle-generated data can provide reliable

estimates of traffic conditions, including identifying incidents and congestion (Crabtree et

al. 2006; Cheu et al. 2002; Sermons et al. 1996; Qi et al. 2002).

The existing concepts of VII are currently based on a centralized architecture. It is

extremely difficult, if not impossible, to transmit, aggregate, and process massive

amounts of information that are expected to be generated from VII-enabled vehicles at a

central point. However, a distributed system without centralized control is complicated to

implement system wide control and optimization. A hybrid VII framework, which is

envisioned to monitor, process and control local traffic conditions locally through the

collaboration and coordination of vehicles, RSUs and controllers, is expected to be an

improvement over centralized only or distributed only operations.

 2

1.1.1 Networking and Processing Architecture

The majority of today’s highway traffic surveillance systems rely on the roadside

sensors, which are connected by copper wires, fiber-optic cables, or cellular wireless

network to a centralized control point. At this center, human operators are responsible for

continuously monitoring and analyzing large amounts of data acquired from sensors, such

as loop, radar and video detectors, to make the appropriate traffic control decisions.

These decision-makers select the response strategies adapted to the information provided

by sensors. The implementation commands are then conveyed to the field personals and

equipments via the same communication infrastructure.

However, there are several problems associated with this existing centralized

highway traffic surveillance network. First and foremost, the required dedicated

communication infrastructure is prohibitively expensive as a system grows in coverage

and number of sensors, making it difficult for wider deployment and expansion into

broader suburban and rural areas. Also, the communication infrastructure and control

center of these systems are vulnerable to both terrorist attacks and natural disasters.

Furthermore, the response time of these centralized decision making systems is

prohibitively long, which is a critical issue for any type of quality incident management

system. Finally, human operators who monitor the sensors endure high working stress,

which in turn decreases the system reliability.

Though the centralized architecture is prevalent for highway traffic surveillance

system, distributed control concepts are not new to traffic signal control systems. To

locally optimize traffic delays, traffic signal controllers have long been organized into

 3

local clusters. The state-of-the-art such traffic signal control systems include the Split,

Cycle, Offset Optimization Technique, or SCOOT (Siemens 2006); the Sydney

Coordinated Adaptive Traffic System, or SCATS (Tyco Integrated Systems 2006); and

the Real-time Hierarchical Distributed Effective System, or RHODES (Mirchandani and

Head 1998). While all are quite effective traffic control systems, they are limited to only

the scope of signal control, and fixed signal clusters. Moreover, they also require

expensive communication infrastructures.

To improve the current highway traffic surveillance, Coifman and Ramachandran

(2004) outlined a vision of deploying intelligent sensors along highways that could

engage in distributed sensing and local data processing to report only concise information

to traffic management center (TMC) or other responsible controllers when anomalies are

detected (Coifman and Ramachandran 2004). The strength of this approach lies in the

ability of sensors and controllers to make collaborative decisions without human

intervention.

A hybrid framework, which is expected to improve the overall networking and

processing performance, is the likely solution for large area on-line highway traffic

surveillance systems. The envisioned hierarchical hybrid system is comprised of multiple

layers of components such as TMC, controllers, RSUs, and vehicles. In each layer,

components work in distributed fashion, while the immediate upper level supervisor

manages its employee in a centralized fashion. The number of levels and the

classification varies with the specific traffic network characteristics and application cases

(Kochhal et al. 2003; Subramanian and Katz 2000).

 4

1.1.2 Vehicle-Infrastructure Integration

The recent development of Vehicle-Infrastructure Integration (VII) proposes to

equip vehicles and roadside infrastructures, such as traffic sensors, signals and message

signs, with wireless communication interfaces to communicate with each other. These

emerging VII technologies create great opportunities for the next generation highway

traffic surveillance systems.

Since 2003, FHWA has sponsored a variety of efforts that led to the development

of the national Vehicle Infrastructure Integration (VII) architecture and its functional

requirements (FHWA 2005). Currently, the USDOT is conducting a research program

called the Mobility Applications for Vehicle Infrastructure Integration initiative (National

VII Coalition 2007). In that program, researchers are studying the potential for

transmitting information between infrastructure and vehicles to provide mobility benefits.

Several states including California (PATH 2007) and Michigan (MIDOT 2005) are

testing various methods for implementing these types of programs (ITS America 2007).

Multiple sensors and computers in modern cars have the ability to access several

hundred data types (FHWA 2005). These devices make it possible to provide constantly

changing data, such as speed, acceleration/deceleration, position, and maneuver data to

the traffic surveillance system. The VII system is in turn expected to substantially

improve information availability for highway management, thereby increasing the safety

and efficiency of large-scale highway systems (National VII Coalition 2007). Although

previous and current research has demonstrated the great potential of using VII to benefit

highway and intersection collision avoidance, traveler information dissemination, and

 5

driver based incident reporting system, only limited research has been undertaken

regarding the feasibility of using VII for real-time highway traffic surveillance.

VII California (2006) demonstrated the efficacy of using VII for on-line traffic

condition assessment, while other studies modeled VII traffic for road and weather

condition assessment (Petty and Mahoney 2007; Tanka and Piotrowicz 2007). Rather

than just collecting data from VII, it is possible to use VII for more detailed on-line

traffic condition assessment with an emphasis on incident detection. Various studies

discovered encouraging data showing an increase in the ability of VII to detect highway

incidents using vehicle-generated microscopic data (Qi et al. 2002; Sermons and

Koppelman et al. 1996; Cheu et al. 2002). Crabtree et al. (2007) and Tanikella et al.

(2007) illustrated that travel time data generated from VII can provide reliable estimates

of traffic conditions and identify incidents. However, those studies, based on simple

threaded classification or statistical analysis, did not take full advantage of microscopic

traffic statistics available from VII. The VII system is expected to enable vehicle on-

board units to work autonomously to collect microscopic traffic statistics, such as vehicle

trajectory, space gap and lane changing behavior at programmed intervals. Along with

its unprecedented powerful data collection capability, VII is a suitable and promising tool

for real-time traffic condition assessment and prediction.

1.1.3 Computational Intelligence

Existing incident detection algorithms include spatial measurement-based

algorithms and automatic incident detection (AID) algorithms, which use point-based

or/and link-based data. Spatial-based algorithms include video image processing, and

 6

AID algorithms include pattern recognition based (e.g. California algorithm (Payne and

Tignor 1978)), Catastrophe theory based (e.g. McMaster algorithm (Persaud and Hall

1989)), statistical based (e.g. ARIMA (JHK and Associates 1993), DELOS (Stephanedes

and Chassiakos 1993), Bayesian (Levin and Krause 1979), SSID (Antoniades and

Stephanedes 1996)), and Artificial Intelligence (AI) based. Point-based data collection,

which use traffic flow measurements made at a point, are common types of applications

that employ existing sensor technologies, such as inductive loop detectors, microwave

radar, infrared, ultrasonic, and acoustics detectors (Ozbay and Pushkin 1999).

Conversely, a link-based data collection system uses individual vehicles as probes to

assess the roadway link statistics such as travel time and average speed.

Detection rates, false alarm rates, and time to detection have traditionally been

used to evaluate existing incident detection algorithms. While several algorithms reported

detection rates of 100 percent (ARIMA, Bayesian, SSID), they also either had a high

false alarm rate or longer detection time (Martin et al. 2001). Other algorithms have been

found to provide low false alarm rates (less than 10 false alarms per hour) and short

detection time (less than one minute) including those based on Artificial Neural Networks

(ANN), which was able to achieve a detection rate over 90% (Martin et al. 2001).

However, the performance of almost every AID algorithm is sensitive to the placement

densities of the traffic sensors. Evidently, existing AID algorithms left room for

improvement.

AI-based algorithms with their learning capabilities allow a sensor to improve

detection performance over time to adapt to the changing traffic conditions. While ANNs

 7

have been the most commonly applied AI tool for incident detection, Lin (2004) reported

that the AI paradigm known as the Support Vector Machine (SVM) had a greater learning

and prediction potential compared to ANN. In addition, SVM requires less computation

resources and avoids the over-fitting problems of ANN.

The SVM paradigm family includes one-class SVM for distribution function

estimation, Support Vector Classification (SVC) for pattern classification and Support

Vector Regression (SVR) for regression or function estimation. The underlying theories

behind them are similar. SVM is a collection of algorithms that achieve nonlinear

regression by mapping the training samples onto a high dimensional kernel-induced

feature space, followed by linear regression in that space. Since the kernel mapping is

implicit, depending only on the inner or dot product of the input data vectors, it is

possible to map the data into high dimensions and still keep the computational cost low.

Thus far, SVM has had limited applications in the transportation field. Previous

examples include use for travel time, traffic speed and traffic flow predictions, and

incident detection in the context of ITS applications (Wu et al. 2004; Vanajakshi and

Rilett 2004; Ding et al. 2002; Cheu et al. 2003). SVM is also computationally efficient

since only the cases corresponding to the support vectors add to the computational cost.

Depending on the chosen kernel function, SVM models need only a subset of the

complete case library (as low as 1% of cases) to train the SVM function (Vanajakshi and

Rilett 2004). In addition, Sun et al. applied SVM for vehicle detection using extracted

features from Gabor filters (Sun et al. 2002). This study compared the integrated

application of SVM and Gabor filters with a different approach involving artificial neural

 8

networks, demonstrating the superiority of the SVM approach. Further, Chowdhury et al.

(2006) and Bhavsar et al. (2007) found that SVM is successful for travel time prediction

and suitable for the hierarchical intelligence with respect to low memory and processing

requirements.

In this research, the author propose to use a multi-class SVC model for traffic

condition assessment and a SVR model for travel time prediction. The SVM-based VII

highway traffic surveillance system that emphasizes incident detection and travel time

prediction will comprise vehicle and infrastructure elements interconnected with a

mixture of available short-range and wide-area wireless data-link protocols. This system

uses the SVC model to recognize a particular pattern that appears in the microscopic

traffic data during an incident and applies SVR algorithm to relate the current traffic

condition with the future travel time. The SVM-based VII system is expected to provide

better incident detection and travel time prediction performance by using more detailed

and continuous data generated by vehicles, than existing systems. This system, using the

traffic data in VII-enabled vehicle through vehicle-to-vehicle and vehicle-to-

infrastructure communication, can assess and predict traffic conditions where traffic

sensors are either absent or sparsely placed. It has unique advantages for use in rural and

low flow highway networks with few drivers, weak cell phone signals, and where

expensive highway traffic surveillance infrastructure construction is not cost effective.

1.1.4 Platform for VII Modeling

Although the Federal Highway Administration has developed and published an

architecture and functional requirement for VII (FHWA 2005), the details for building a

 9

function VII system are still quite vague. For instance, while this document outlines

several potential communication protocols available for VII, guidelines for choosing the

correct standard for determining capacities for a particular purpose are undefined or

derived through qualitative analysis.

Due to the complexity and cost involved in conducting field experiments for a VII

system, using the simulation platform that integrates traffic and communication simulator

is a cost effective and efficient alternative to facilitate design and evaluation of any VII-

based highway traffic surveillance system. Furthermore, detailed and realistic simulation

of both traffic and communication interaction can assist researchers in testing various

architecture designs, implementation algorithms and parameter configurations,

eliminating the need for collecting field data after the implementation of a particular

strategy.

Several studies have envisioned an integrated simulation platform connecting

traffic and communication simulators. Earlier work on integrated traffic and

communication simulations has been used to create simplified models of communication

characteristics (Hsin and Wang 1992; Sukthankar et al. 1998; Ghaman et al. 2003). More

recently, simulators integrating microscopic traffic and detailed network protocol modes

were developed for vehicle-to-vehicle communication (Fujimura and Hasegawa 2005;

Choffnes and Bustarnarnte 2005). The authors of these papers made a convincing case

that an integrated traffic and network simulator revealed important findings that were not

otherwise observed. However, none of these studies address communication involves

fixed field equipments. Following this same vision, a simulation platform is necessary to

 10

modeling a VII system that is capable to assess and predict traffic conditions in a real

time fashion.

The author proposes to use an integration of traffic simulator PARAMICS and

network simulator ns-2 to evaluate the proposed VII framework. PARAMICS, a time-

step, behavior-based microscopic traffic simulation software, will be used to realistically

model the traffic flow of the selected test network. The extensive Application

Programming Interface (API) functions of PARAMICS and the microscopic modeling

capability makes it most suitable for customizing software for research applications

(Quadstone Limited 2002). Previous studies have also found PARAMICS to be superior

in its detailed traffic modeling, which closely corresponds to real-world scenarios (Boxill

2000 and Chowdhury et al. 2006). The ns-2 simulator, which is used for communication

network analysis, is an open-source software that can be coded to customize specific

applications. Both the PARAMICS API and ns-2 model are C-based programmable and

have open architecture, making it convenient to synchronize and transfer data, i.e.

communicate between these two software packages. Specifically, the interaction between

infrastructure and high speed vehicles, as well as vehicles generated microscopic data

will be simulated in PARAMICS. In parallel, the real-time vehicle-to-vehicle and

vehicle-to-infrastructure communication including addressing, routing, and scheduling

solutions will also be modeled in the ns-2 synchronously and cooperatively.

 11

1.2 Research Objectives

There remain important technological gaps to be to be filled before a real-time

highway traffic surveillance system using VII becomes a reality. By far, there has been

limited work that addresses the following problems:

1) There is a lack of an effective and efficient platform that comprehensively

addresses traffic and network characteristics for the development and

evaluation of VII network;

2) While centralized architecture suffers from scalability and single point failure

issue, distributed architecture encounters difficulty on system wide control

and optimization, quantitative study of the networking and processing

architecture is needed for VII highway traffic surveillance system;

3) The intelligent algorithms that take advantage of state-of-the-art AI paradigms,

for online traffic condition assessment and prediction using VII do not exist;

4) It warrants the development of a simulation model that implements fully

functionality of real-time highway traffic surveillance before the real world

experiment could be conducted.

To bridge these technical gaps, the primary objective of the proposed research

project is to develop a hybrid VII framework that is capable to assess and predict traffic

conditions accurately and reliably in a real-time fashion using computational intelligence.

The author expects to achieve the primary objective by pursuing the following tasks:

 12

• Develop a VII simulation model that integrates intelligent algorithms for real-

time travel time prediction

• Develop a VII simulation model that integrates intelligent algorithms for online

traffic condition assessment

• Select networking and processing architecture for highway traffic surveillance

• Develop an integrated simulation platform

The immediate impact of the research could be a reliable alternative to traditional

traffic sensors network to assess the condition of the transportation system. This system

can assess conditions where traffic sensors are not present using the RSUs collecting

microscopic traffic statistics from VII-enabled vehicles through vehicle-to-vehicle and

vehicle-to-infrastructure communication. This research will produce a platform, for

evaluating the VII system, by integrating a traffic and communication network simulator

for use in evaluating VII concepts and associated communication methods.

1.3 Research Hypothesis

The research hypothesis is built on three premises. The first premise is that the

data provided through VII-enabled vehicles will improve on-line highway traffic

surveillance performance. In this proposed VII system, vehicle on-board units are

expected to work autonomously to collect microscopic traffic statistics such as vehicle

trajectory, speed, spacing gap and lane change behavior at programmed intervals.

Additional statistics can be converted and derived from these individual statistics. For

instance, the speed and acceleration profiles can be derived from vehicle trajectory, and

 13

the time series statistics can be converted to statistics over space coordinates using the

vehicle trajectory with time stamp. This microscopic and continuous data generated by

vehicles in the VII network is expected to provide faster traffic condition assessment and

lower false detection rates in comparison to existing highway traffic surveillance systems

that rely on traditional traffic.

The second premise is that the data provided by VII-enabled vehicles and

processed in a hybrid framework, is expected to be an improvement over centralized only

operations. In existing on-line centralized traffic management systems, communication

links continuously send data from traffic sensors to a staffed centralized traffic

management center (TMC) for assessment. As this data frequently requires no traffic

management action, unnecessary communication costs are incurred. In addition, these

systems are vulnerable to single point of failure and suffer from scalability issues.

The third premise is that a computational intelligence in each component can

unify the benefits of centralized and distributed management and contribute to the

understanding of the complex highway network. The learning ability of such

computational intelligence as SVM will improve the system performance over time to

accommodate the continuously changing traffic conditions and system parameters.

These three premises, combined with the proposed hierarchical grouping of

infrastructure devices with their computational intelligence and learning capabilities, will

significantly improve the operational efficiency of existing on-line traffic condition

assessment and prediction system. The integrated simulation methodology and open

source software will provide a valuable tool for design and evaluation of any real-time

 14

traffic surveillance and management systems. Also, the developed VII simulation model

will be made available for use by future researchers and designers of other similar VII

systems. Future implementation of the research in the private and public sector will

result in new VII related equipment in vehicles, greater control of traffic loading, faster

incident detection, improved safety, mitigated congestion, and reduced emissions and

fuel consumption.

1.4 Dissertation Structure

The dissertation contains categorized chapters for easy understanding and

organized reference to the conducted research. Chapter 1 presents the background,

motivation, significance and objectives of this research. Previous studies that are relevant

to the various modules of the research conducted for this dissertation are presented in

Chapter 2. Chapter 3 includes the methodology employed in conducting the research and

Chapter 4 presents the study results and analysis. Chapter 5 concludes the research with

contributions and recommendations for its use and future work. Appendices include

supporting data, programming code and information used during the analysis, which

could provide valuable recourses for practitioners and researchers involved in VII-related

work.

 15

CHAPTER 2

PREVIOUS STUDY

The wide scale deployment of extensive highway traffic surveillance systems is

expected to expand at an ever-increasing pace, which poses a great demand and challenge

for the new technologies and operational concepts used in these traffic monitoring

systems. Recent advances in embedded systems and wireless sensor network

technologies have made the integration of infrastructure elements with data processing

units and wireless communication interface possible. This in turn has resulted in the

formation of ad hoc data communication networks that require no additional

communication infrastructure. The communications between vehicle and infrastructure

over this ad hoc network as envisioned in Vehicle-Infrastructure Integration (VII) will

provide enormous opportunities for improving existing traffic monitoring functions.

These future systems, with their built-in intelligence, and decision making abilities that

have a scope of unprecedented flexibility, are expected to have the capability to monitor

the entire segments of highways effectively and efficiently.

This chapter seeks to summarize the evolution of state of the knowledge in real

time traffic condition assessment and prediction in the following areas:

• Simulation platform for online traffic operations

• Networking and processing architecture

• Highway traffic surveillance technology

• Computational intelligence for highway traffic surveillance

 16

2.1 Simulation Platform for Online Traffic Operations

Much effort has been devoted to developing realistic simulation models of online

traffic operations in both traffic and communication domain. These studies are

categorized into three genres according to their ability to adopt explicit or implicit models

for simulating vehicular traffic and communication networking.

Implicit-traffic-explicit-communication refers to simulation platforms that adopt

detailed communication protocol models but simplified vehicular traffic models such as

the random way point model (Zang et al. 2005; Hasegawa 2005; Xu and Barth 2004;

Fujimura and Sato et al. 1999). Marc et al (2006) investigated and compared various

routing/forwarding strategies under the realistic channel model for vehicular ad hoc

networks. In (Marc 2007), a promising position-based message forwarding strategy was

proposed to disseminate time-critical safety information. While the randomized node

movement and message generation models is the common practice of the mobile ad hoc

network research community in validating networking protocols for generic applications,

they are inadequate for real-time validation of specific vehicular traffic operations.

Explicit-traffic-implicit-communication simulators model the effects rather than

process of communication through adopting simplified models of communication

characteristics (Sukthankar et al. 1998; Ghaman et al. 2003). In (Ewing et al. 1996),

intelligent vehicles are assumed to have cellular communication links to the TMC for

downloading traffic statistics and finding optimal paths. In (Mirchandani and Wang

2005; Lee et al. 2004) researchers assumed that distributed traffic sensors have direct

communication links (wired or wireless) to relay their measured data to central servers

 17

for constructing hierarchical traffic models. In (Jayakrishnan and McNally 2006), short

range communication was assumed for vehicles to download their trip history to any

roadside sensor they encounter for analyzing traffic patterns based on distributed

observations. In (MIT 2002), implicit communication was assumed to support various

traffic management operations. In order to overcome scalability limitations of discrete

event-based network simulators, Killat et al. (2007) proposed an approach using

statistical models to simulate data packets communication, thereby to reduce the numbers

of scheduled transmission. This approach had apparent advantages for fast validation of

different operational concepts without concerning the details of communication

efficiency and reliability, which allowed inevitable omission of fine-grain random effects

in network communication process.

Choffnes and Bustarnarnte (2005) analyzed the performance of vehicular ad hoc

networks (VANETs) on their traffic model platform STRAW. They demonstrated that

accurately simulating the interaction between an ad hoc network and the traffic

environment, instead of using a simple random way point model, is critical to the success

of developing and evaluating VANETs. They were the most convincing in advocating the

development of an integrated vehicular network and traffic simulators.

Explicit-traffic-explicit-communication simulators adopt detailed models for

simulating both the traffic and communication aspects of a network. This genre of

simulators achieves higher accuracies in both traffic and communication simulation at the

cost of higher complexities. Such simulators either integrate mature simulators from

each domain (Hsin and Wang 1992; Fitzgibbons et al. 2004; Yin et al. 2004; Schroth et

 18

al. 2006; Eichler et al. 2005; Biswas et al. 2006) or completely compose both functions to

meet study-specific requirements (Avila et al. 2005; Mangharam et al. 2005; Killat 2007).

In the context of Intelligent Vehicle Highway Systems (IVHS) which precedes

ITS, Hsin and Wang (1992) describe the architectural issues and exemplary

implementations following each approach: integrating commercial traffic simulator

MODSIM and communication simulator COMNET, or modeling macroscopic traffic and

communication characteristics using state machines. More recently, Fitzgibbons et al.

(2004) integrated the CORSIM traffic simulator and the QUALNET communication

network simulator to model vehicle ad hoc networks. For inter-vehicle communication in

vehicle ad hoc networks, Yin et al. (2004) implemented software objects for modeling

traffic flows, driver behavior, and network protocols, while Avila et al. (2005) adopted

traffic models based on realistic street maps and simplified communication models based

on state machines.

Eichler et al. (2005) developed and implemented a concept for coupling the traffic

simulator CARISM and the network simulator ns-2. This concept provides a fast and

reliable connection which exchanges synchronization data between the two simulators at

certain points in virtual time to ensure cross-platform interoperability and easy

extensibility. Schroth et al (2006) used CARISMA and ns-2 to form a combined traffic

and network simulation environment, evaluated driver reactions. This research indicated

that in order to precisely identify the effects of the inter-vehicle communication to the

traffic flow, the road traffic, the wireless ad hoc communication and the application logic

must be considered separately. Eichler et al. (2006) also did research in simulation

 19

strategies for context-adaptive message dissemination in vehicular ad hoc networks. This

study proposed an altruistic communications which consider each nodes interests in

information. Traffic information must only be transported according to the needs and

potential benefits. Biswas et al. (2006) demonstrated a simulation of Dedicated Short

Range Communication (DSRC) based vehicle to vehicle wireless communication for the

highway safety improvement, especially focusing on collaborative collision avoidance.

Scgmidt-Eisenlohr et al. (2007) implemented a simulation framework analysis the inter-

vehicle communications protocols in different transmission power and packet generation

rate.

Although fixed infrastructure devices, such as the inductive loop detectors, are the

most common components for communication networking, none of these previously

discussed studies address communication among field sensors, and no explicit-traffic-

explicit-communication simulator that integrated state-of-the-art traffic and

communication simulation software has been reported.

Prevalent modern simulators used for communication studies and intelligent

vehicle/sensors in their respective domains include Network Simulator version 2 (ns-2)

(ISI 2001), Glomosim (Zeng et al. 1998), Jsim (Sobeih et al. 2005), Qualnet (Scalable

Network Technologies 2006), and OPNET (OPNET Technologies 2006). Ns-2 provides

the most comprehensive open source support of communication protocols. CORSIM

(McTrans 2006) and Synchro (Trafficware 2006) are standard choices for vehicular

traffic simulation, but are limited in their ability to interface with other programs.

PARAMICS is a microscopic traffic simulation program that features a flexible

 20

Application Programming Interface (API) for customized interface with other programs.

In this dissertation, ns-2 and PARAMICS are adopted to build an explicit-traffic-explicit-

communication integrated simulator to realistically model traffic data collection,

exchange, and distributed processing on sensors and controllers, and to assess the

instantaneous effects of sensor incident detection and control on the highway traffic

flows. The platform is intended for use by interdisciplinary researchers. Traffic engineers

can flexibly implement and insert advanced incident detection algorithms, distributed

decision making, and real-time traffic management methods in PARAMICS, while

wireless network researchers can evaluate different communication protocols and

network parameters in ns-2.

2.2 Networking and Processing Architecture

Transportation authorities have long used a wide variety of sensing technologies

to monitor vehicular traffic and driving conditions constantly on major highways

throughout the United States. There are existing systems that use sensors to measure

traffic statistics such as speed, volume and vehicle classification. State-of-the-art systems

such as the Maryland’s Coordinated Highways Action Response Team (CHART)

program, Virginia’s Smart Road System, California’s Freeway Performance

Measurement System (PeMS) (UC Berkeley 2006), Traffic.com’s TrafficPulseSM

system, Michigan’s Remote Traffic Microwave Sensors, and ENSCO’s Remote

Monitors, all use sensor collected information. Sensor data is relayed to a control center

via individual wired or wireless communication links. These control centers, staffed with

designated personnel in turn collect and process the received data, thusly enabling traffic

 21

managers to detect incidents, dispatch incident response teams, distribute precautionary

alerts, and assist in real-time and long-term traffic management.

2.2.1 Centralized System

State-of-the-art highway traffic surveillance systems around the world have been

built with an emphasis in observing and controlling from a central location (USDOT

2006, New South Wales Road and Traffic Authority 2006, Wang et al. 2005, City of

Cape Town 2005, Tokuyama 1996). Transportation agencies deploy as many sensors as

affordable along the highway infrastructure and establish Traffic Management Centers

(TMCs) at central locations that collect data from sensors for making centralized control

decisions. Substantial investments have been made to connect all sensors to central or

regional controllers with dedicated communication links. Roadside sensors transmit data

to TMCs following predetermined schedules, while human operators identify possible

incidents from the continuous data streams and initialize reaction decisions.

One of today's largest examples of a centralized sensor system in the U.S. is the

Freeway Performance Measurement System (PeMS) in California (UC Berkeley 2006),

linking more than 25,000 (as of 2004) loop detectors to a TMC. The system collects data

from each sensor every 30 seconds, accumulating more than 2 GB of data per day in a

central database. While the majority of sensors are connected with fiber optic cables, 250

solar powered radar sensors have recently been connected via General Packet Radio

Service (GPRS) cellular wireless links (SpeedInfo Inc. 2005), similar to those using

Cellular Digital Packet Data (CDPD) cellular wireless links (FHWA 2004).

 22

http://en.wikipedia.org/wiki/GPRS
http://en.wikipedia.org/wiki/GPRS

The majority of today’s highway traffic surveillance systems rely on a connected

web of roadside sensors. For freeway management, human operators detect abnormal

conditions through the surveillance or screening of sensor data. Incidents are then

resolved by dispatching human response teams, rerouting approaching traffic, and re-

timing traffic signals (Chowdhury and Sadek 2003). This centralized control

methodology, which imposes an enormous responsibility on operators, is critically

dependent upon an extensive and costly communications backbone.

2.2.2 Distributed System

Though these centralized monitoring and control practices are now prevalently

being used for freeway control, decentralized and hierarchical control methods have long

been used for traffic signal control (Papageorgiou, et al., 2003). Traffic engineers

carefully group traffic signals on closely related road segments, so that signal timings are

consistently controlled to minimize delay and optimize road capacity. By extracting

hierarchical traffic characteristics from sensor data at a given intersection, numerous real-

time signal timing adaptation methods have been created, e.g. SCOOT (Siemens 2006)

SCATS (Tyco Integrated Systems 2006) and RHODES (Mirchandani and Head 1998).

In early 1980s, the UK Transportation Research Laboratory (TRL) developed and

implemented a global, real-time, rule-based expert system named as SCOOT (Siemens

2006). A huge rule base is maintained for the traffic signal network, with which SCOOT

performs global optimization on signal timing to minimize delays. Unfortunately,

SCOOT’s global optimization approach is known to be slow and unable to deal with local

changes in real time.

 23

The Sydney Coordinated Adaptive Traffic System (SCATS), developed by

Australian transportation authority in the late 1970s, is a distributed hierarchical system

that optimizes traffic signal timing using volume data detected by sensors at signal stop-

lines (Tyco Integrated Systems 2006). The system aims at optimizing the saturation flow

based on optimizing individual regions in the network. However, trained specialists are

often needed to properly define the region boundary and offset parameters for each

region.

In early 1990s, the University of Arizona developed a real time adaptive control

system called RHODES (Mirchandani and Head 1998). The system constructs stochastic

traffic flow models to predict the expected condition over the next few minutes. While

it’s hierarchical architecture is conceptually applicable to network wide operation, its

algorithms demand exponential complexity and network wide real-time communication,

rendering its practical use to a very limited network scope.

With advances in ad hoc wireless sensor network technology, it is envisioned that

the future traffic control system would consist of intelligent sensors and controllers

capable of automated incident detection and traffic control (Estrin et al. 2001). However,

there are as yet no been practical solutions for turning this vision into a reality. Only

recently, researchers considered unleashing one level of freedom for the traffic sensors in

California highways by removing the fiber optic cables of some sensors. Instead, the

proposed Power Efficient and Delay Aware Medium Access (PEDAMACS) protocol

allows the TMC to maintain links to only a number of gateway devices, each of which

will collect data from their nearby sensors using multi-hop wireless network forwarding

 24

(Coleri and Varaiya 2004). PEDAMACS does not alter the centralized control method,

since all data are still delivered to TMCs for monitoring and control. In a more confined

scope, sensors with wireless interface have been placed on specialized highways and

vehicles for automated vehicle steering, which have been highlighted in the 1997 and

2003 automated highway system demonstration in San Diego, CA.

In (Coifman and Ramachandran 2004) the authors outlined the vision of

deploying intelligent sensors along highways for distributed sensing, local data

processing, and reporting only concise information to TMC or other responsible

controllers if an anomaly is detected. The strength of the envisioned approach lies in the

ability of sensors and controllers to make collaborative decisions without human

intervention. As described in (Coifman and Ramachandran 2004), sensors, organized in

a hierarchy to facilitate incident detection and verification, collaborate in clusters to

verify incidents and initiate responses. The unique strength of the envisioned approaches

lies in their ability of collaborative decision making. This study, which also estimated

different levels of communication requirements and data precision, concluded that

wireless sensors are more cost-effective than traditional wired sensors in rural areas and

most locations adjacent to a central business district.

2.2.3 Hybrid System

Though rare in highway traffic surveillance, hybrid systems integrating

centralized and decentralized control strategies do exist. Somers (1996) proposed using

intelligent agents to develop a hybrid management network integrating centralized and

distributed control. With respect to air traffic control systems, Feron (2003) applied a

 25

http://ntlsearch.bts.gov/tris/search.do?new=&b1=9&f1=au&t1=Feron%2C+E&d=tr

hybrid of distributed and centralized decision making algorithm to solve the conflicting

air traffic scheduling problem at the National Airspace system (NAS). Wall et al. (2007)

implemented a combined centralized control for vehicle signal and distributed control for

a pedestrian countdown signal system, which improved operations. Chiu and

Mahmassani (2003) developed a hybrid dynamic traffic assignment (DTA) model that

integrated centralized and decentralized DTA frameworks. Kurfees et al. (1995)

presented a hybrid solution for modernizing the urban signal control system, consisting of

a centralized control system for central business district (CBD) and distributed control

system of outlying areas.

2.2.4 Evaluation of Communication Alternatives

There are a variety of efforts intended to help transportation agencies obtain better

understanding of different communication alternatives including medium and architecture

for ITS applications. Among them, the Communication Handbook for Traffic Control

System, developed under Federal Highway Administration (FHWA) sponsorship, was a

survey of various available communication medium and architecture for traffic control

applications (Gordon et al. 1993). Another study sponsored by FHWA evaluated the

performance of various Digital Subscriber Line technologies (xDSL) with both laboratory

experiments and field tests (Jones 2002). The study implemented high speed data services

(e.g., 2 Mbps) with xDSL on the existing twisted pair wire for transferring traffic video

images, and their field studies showed that the xDSL technologies were able to maximize

the DSL throughput and subsequently optimize the video motion/quality relation.

 26

http://ntlsearch.bts.gov/tris/search.do?new=&b1=9&f1=au&t1=Mahmassani%2C+H+S&d=tr

The Texas Department of Transportation sponsored the development of a

reference guidebook and training workshop to establish a fundamental level of

understanding of wired communication concepts and technologies among state

transportation engineers and an evaluation framework for wired communication

alternatives (Brydia et al. 2005). This guidebook recommended the different criteria for

choosing wired technologies (e.g., serial, ISDN, DSL, T1/T3 Twisted Pair, and Fiber),

based on the number of devices, bandwidth, latency, distance, and cost.

The California Department of Transportation (CalTrans) and FHWA conducted a

field operational test (FOT) between June 1994 and September 1998 to evaluate the

benefits of a mobile surveillance system with wireless communication interface

(Kimberley et al. 1999). In 1998, the Philadelphia Satellite Communication

Demonstration project evaluated the effectiveness of using very small aperture terminal

(VSAT) Ku-band satellite communications for traffic and incident management on I-95

corridor (Habesch et al. 1998). Compared to terrestrial-based copper and fiber optic-

based closed circuit television (CCTV) systems, the VSAT-based CCTV system was

found to be superior in terms of quality of service assurance, delay and jitter control.

In 2002, the Kentucky Transportation Center at the University of Kentucky

implemented and evaluated a base station based wireless communication technology as

part of the TRIMARC traffic management system (Hunsucker, 2002). This study

investigated the use of a 220MHz wireless communication system to transmit traffic

measurements from field sensors to traffic management center to support real-time traffic

management in Louisville, Kentucky, finding that this 220MHz communication system

 27

was equal to or better than the leased phone line in terms of functional reliability and cost

effectiveness. The Wisconsin Department of Transportation (WisDOT) has implemented

a statewide digital microwave backbone infrastructure that is used to transport voice and

traffic data for 161 public safety agencies throughout the state (Verhyen 2005).

Among the existing evaluation efforts, some measures of effectiveness (MOEs)

were recognized as the most important indicators of the performance of the

communication system. Gordon et al. (1993) summarized possible attributes such as

bandwidth, signal attenuation, latency, power consumption, signal to noise ratio, bit error

rate, error control technique as the fundamental MOEs for evaluating performance of the

communication network. The authors also suggested that reliability, maintainability, and

expandability were also important for overall effectiveness of communication system. In

addition, quality of service assurance, delay and jitter control of video motion image were

also widely used MOEs to assess the performance of communication network (Habesch

et al. 1998). Kimberley et al. (1999) found that the portability and reliability of a

communication system was a key factor to realizing the expected functionality of the

mobile surveillance system. Hunsucker (2002) evaluated the owned and leased wireless

network in terms of functional reliability and cost effectiveness. Jones (2002) considered

throughput and video image/motion quality as the MOEs for evaluating communication

systems supporting traffic surveillance systems using CCTV. Texas DOT identified the

number of devices, communication link bandwidth and latency as the important criteria

for evaluating communication alternatives (Brydia et al. 2005).

 28

2.3 Highway Traffic Surveillance Technologies

One of the key tasks of highway traffic surveillance is to quickly and reliably

identify incidents and obtain as much detailed information about the incident as possible.

Effective incident detection and verification is important for the timely and appropriate

initialization of real time traffic management. In 2002, the Fatality Analysis Reporting

System identified 42,815 highway fatalities in U.S. (FHWA 2004). If these incidents had

been detected and verified more quickly, medical assistance would have been able to

provide faster treatment, thus possibly saving many lives that were regrettably lost. The

time required to detect and identify incidents impact the consequent phases of incident

management, i.e. incident response, incident clearance, and real time traffic management

during incidents is a key factor in determining incident duration. A 1998 study found that

if a crash is detected faster, for example after two minutes, instead of four, the incident

response personnel travel will through a shorter queue to reach the incident location. The

recovery time for traffic to return to normal also decreases due to the shorter queue

formed (Skabardonis et al. 1998). Improvement on incident detection and verification

performance will drastically reduce motorist delays, business losses, fuel consumption

from sitting in accident related tie-ups, vehicle emissions, and possible secondary

crashes.

Existing incident detection systems can be categorized into two types: sensor

based and human based technologies. Sensor based technologies can be further grouped

by Automatic Incident Detection (AID) algorithms that are based upon traffic sensor

measurements, video camera image processing, and mobile probe sensors technology.

 29

Human based monitoring systems are non-automatic systems that include operators

monitoring closed-circuit television (CCTV) or processing anecdotal information

reported from drivers or other resources. Often a combination of these systems can be

used to achieve the best traffic management performances. However, the VII system with

its capability to continuously monitor the entire roadway network is expected to be a

promising tool for fast and accurate incident detection and mitigation.

2.3.1 Sensor-Based Highway Traffic Surveillance Technology

Automatic Incident Detection (AID) algorithms use point-based or/and link-based

data to detect and verify incident without human intervention. Link-based data is usually

collected by individual vehicles as probes to assess the roadway link statistics (e.g. travel

time and average speed). Link based AID algorithms include the MIT algorithm (Parkany

and Bernstein, 1993; 1995), the ADVANCE algorithm (Sethi et al. 1995), the TTI

algorithm (Balke et al. 1996), and the TRANSMIT algorithm (Mouskos et al. 1999; Niver

et al. 2000). Point-based data collection technologies, which use traffic flow

measurements such as presence, speed, flow, etc. made at a point, are common types of

applications that use existing sensor technologies. Currently, Inductive Loop Detector

(ILD) technology is the most widely used traffic sensor technology today. Unfortunately,

ILD systems suffer from several drawbacks. Their overall lifetime cost (Klein 2001)

including installation, maintenance and repair is quite high, they are short-lived due to

their vulnerability to pavement maintenance activity and heavy traffic conditions, and the

installation and maintenance of ILD systems disrupts regular traffic flow.

 30

In contrast to ILD systems, several novel non-intrusive sensing technologies have

emerged over the last few years (Klein 2001). Some, like active infrared and acoustic

array sensors are quite good but very costly. Others, such as passive infrared and

ultrasonic sensors, are somewhat cheaper but quite weather sensitive. One of the most

promising technologies may be microwave radar which is environmentally insensitive

and multi-lane capable with moderate a cost between $700 and $3300. However,

microwave radar cannot detect stopped vehicles which are the most prevalent during

times of traffic incidents and subsequent heavy congestion. Moreover, the

implementation of most traffic sensor technologies may not be cost effective in rural

areas in which there is less traffic and communication infrastructure support.

The densely deployed sensor network makes it possible to develop AID

algorithms which use one or more sensor measurements to detect and verify incidents

without human assistance. For the latter, neighboring sensors must collaborate to

efficiently detect and verify a traffic incident. AID algorithms can be classified as

comparative (e.g. California algorithm (Payne and Tignor 1978) and APID), traffic flow

theory (e.g. McMaster algorithm (Persaud and Hall 1989)), statistical forecasting (e.g.

ARIMA (JHK and Associates 1993), DELOS (Stephanedes and Chassiakos 1993),

Bayesian (Levin and Krause 1979), SSID (Antoniades and Stephanedes 1996)), and

computational intelligence.

The comparative algorithm, among the earliest of the developed AID algorithms,

compares traffic sensor measurements such as flow, occupancy, and speed with pre-set

threshold values. Once the measurement exceeds the threshold, an incident alarm is

 31

reported. Comparative algorithms include the entire California algorithm family (Payne

1976; Payne et al. 1976; Payne and Knobel 1976; Tignor and Payne 1977; Payne and

Tignor 1987; Levin and Krause 1979a, b), pattern recognition (PATREG) algorithm

(Collins et al. 1979), and the All-Purpose Incident Detection (APID) algorithm (Masters

et al. 1991).

The statistical forecasting algorithm conducts statistical analysis to determine if

the predicted traffic statistics are significantly different from those measured. When the

algorithm detects a deviation from the forecasted values, which is computed based on

historical data, an incident alarm occurs. The Standard Normal Deviate (SND) algorithm

(Dudek et al. 1974), the Bayesian algorithm (Levin and Krause 1978; Tsai and Case,

1979), the Autoregressive Integrated Moving-Average (ARIMA) algorithm (Ahmed and

Cook 1977; 1980; 1982), and the High Occupancy (HIOCC) algorithm (Collins et al.

1979) are all examples of statistical forecasting algorithms. Researchers applied various

filtering and smoothing techniques to remove the noise in the traffic statistic signal to

improve the accuracy of forecasting. The products of these efforts include the Double

Exponential Smoothing (DES) algorithm (Cook and Cleveland 1974), the Low-Pass

Filter (LPF) algorithm (Stephanedes et al. 1992; Stephanedes and Chassiakos 1993a, b;

Chassiakos and Stephanedes 1993), and the Discrete Wavelet Transform and Linear

Discriminate Analysis (DWT-LDA) algorithm (Samant and Adeli 2000; Adeli and

Samant 2000).

Traffic flow theory algorithms compare the traffic parameters estimated by traffic

flow theory with the measured parameters to detect incidents. The representatives of

 32

traffic flow theory consist of the Dynamic Model (Willsky et al. 1980), the Catastrophe

Theory Model, also known as the McMaster algorithm (Gall and Fall 1989; Persaud and

Hall 1989; Persaud et al. 1990; Forbes and Hall 1990; Forbes 1992; Hall et al. 1993), and

the Low-Volume (LV) Incident Detection algorithm (Fambro and Ritch 1979; 1980).

The Computation Intelligence Algorithm refers to applying those advanced

computation paradigms for pattern recognition or parameter estimation in incident

detection procedures. Different techniques were developed to classify incident and/or to

determine incident characteristics, including artificial neural network (ANN) (Ritchie and

Cheu 1993; Cheu and Ritchie 1995; Stephanedes and Liu 1995; Dia and Rose 1997;

Abdulhai and Ritchie 1999; Adeli and Samant 2000), fuzzy logic (FL) (Chang and Wang

1994; Lin and Chang 1998), combination of ANN and FL (Hsiao et al. 1994; Ishak and

Al-Deek 1998), and wavelet analysis (Samant and Adeli 2000; Adeli and Samant 2000).

Among these techniques, ANN is the most popular and the Multi-layer Feed Forward

Neural Network (MLF) and Probabilistic Neural network (PNN) are the two commonly

used method.

As the traffic camera for highway traffic surveillance is passive sensor

technology, the light condition dictates the accuracy. Also, the traffic cameras require

extensive high cost infrastructure support such as wide bandwidth communication and

intensive computation for image processing. There are two types of image processing

techniques. The first derives traffic statistics such as occupancy and volume from video

images to feed the AID algorithm, and the other directly detects slow moving or stuck

vehicles in the camera range to detect incidents. Traficon is an example of the first and

 33

(Versavel 2000) the Autoscope Incident Detection Algorithm (AIDA) is an example of

the second (Michalopoulos 1991; Michalopoulos et al. 1993; Blosseville et al. 1993).

Compound algorithms integrating two or more data resources or techniques have

also been proposed for use in improving the incident detection perfomance. Westerman et

al. (1996) integrated data from loop detector and probe vehicles, whereas Ivan and

colleagues (Ivan et al. 1995; Ivan and Chen 1997; Ivan 1997; Ivan and Sethi 1998) used

MLF ANN to fuse fixed sensor and probe vehicle data during incident detection. Thomas

(1998) also proposed to apply Bayesian discrimination and multiple attribute decision

making techniques to integrate information from multiple sensors and probe vehicles.

Bhandar et al. (1995) took this process a step further by attempting to fuse information

from loop detectors and probe vehicles as well as driver reports.

In addition to the incident detection, another important task of highway traffic

surveillance system is to predict travel time for traveler information dissemination and

traffic management. Numerous technologies and algorithms have been developed using

sensor measurements, such as loop detector and probe vehicles. Park and Rilett (1998)

compared the performance of Kalman filter and feed-forward neural network (FNN)

models for travel time prediction. Zhang and Rice (2003) presented an easy to implement

short-term freeway travel time prediction algorithm based on linear model. Though FNN

is popular in travel time prediction (Huisken and Van Berkum 2003; Park and Rilett

1998; Innamaa 2001; Park and Rilett 1998), Van Lint (2006) proposed state-space neural

network (SSNN) model to explicitly consider the prediction of travel time in each section

to derive the future travel time of the entire segment. This dissertation will develop travel

 34

time prediction algorithms using detailed microscopic vehicle statistics, instead of sensor

measurements as presented by previous researchers.

2.3.2 Human-Based Monitoring Technology

Unlike the sensor based AID technology, human based monitoring technology is a

non-automatic process involving human operators to monitor CCTV images or process

reports from drivers or other witness of incidents. Researchers advocating driver based

incident detection system (e.g. enhanced 911 services) argue these systems provide quick

and accurate detection, rich and interactive information, broad spatial and temporal

coverage, and less capital, maintenance and operational costs, as opposed to other

incident detection technologies (Xie and Parkany 2002). Many simulation studies (Mussa

1997; Mussa and Upchurch 1999; 2000) and field experiments (Skabardonis et al. 1998;

Walters et al. 1999) were performed to evaluate the effectiveness and performance of

driver based incident detection technologies. In one nationwide survey on incident

detection system of Traffic Management Centers (TMC) operators, it was found that

CCTV monitoring and driver based incident detection system are the primary detection

approaches in most TMCs. Indeed, many implemented AID algorithms in these systems

were turned off due to poor performance or difficulty to use.

2.3.3 VII for Highway Traffic Surveillance

In addition to the use of roadway traffic statistics measurements to detect traffic

incidents, methods involving the use of vehicle kinetics have also been developed. Petty

et al. (1997) and Qi et al. (2002) developed an algorithm to detect freeway incidents

 35

using speed and the acceleration profiles of probe vehicles. Other studies also discovered

encouraging data showing an increase in the ability of VII to detect highway incidents

using vehicle-generated microscopic data (Sermons and Koppelman 1996; Cheu 2002).

Crabtree et al. (2007) and Tanikella et al. (2007) illustrated that the travel time data

generated from VII can reliably estimate traffic conditions and identify incidents. In a

recent paper, Torrent-Moreno (2007) presented a position-based message forwarding

strategy between vehicles for exchanging information on time critical safety risks. VII

California (UC Berkeley 2006) presented a field experimental study on the potential for

using VII for real time highway traffic surveillance. In that study, individual vehicles

were used as probe vehicles that sent their location, speed, direction, and time stamp to a

centralized processing center for highway traffic surveillance and traveler information

dissemination.

In addition to the state level research and study, the USDOT is currently

conducting a research program called the Mobility Applications for Vehicle

Infrastructure Integration initiative (National VII Coalition, 2007). In that program,

researchers are studying the potential for transmitting data from the roadside to warn

drivers to avoid collision at an intersection, or to see if individual vehicles, serving as

data collectors, can transmit traffic and road conditions from every major road within the

transportation network, and even notify drivers if their car is under recall. Although it is

recognized that communications between roadside infrastructure and vehicles can

improve safety and mobility, there is a lack of standard to guide the design of the

communication network support particular VII application.

 36

Federal Highway Administration has developed and published an architecture and

functional requirement for VII (FHWA 2005). That document is in high level, the

detailed design guidance remains vague and under various assumptions. For instance, it

mentioned there are several potential communication protocols available for in VII.

However, the guideline to choose the right standard and determine capacity for particular

purpose is undefined or based qualitative analysis.

2.4 Computational Intelligence for Highway Traffic Surveillance System

In 1995, Vladimir Vapnik and his colleagues at AT&T Bell Laboratories

developed the Support Vector Machine (SVM) algorithm based on the statistical learning

theory ((Vapnik 1995; Sewell 2005). The theory was developed to help characterize

properties of learning machines that enable the system to generalize predictive

information. SVM includes a set of supervised learning algorithms from the field of

machine learning applicable to classification as well as regression problems. They use

kernels to map the input data into a high dimensional feature space where linear

classification becomes feasible. SVM algorithms are based on the principal of Structural

Risk Minimization (SRM) and the statistical learning theory developed by Vapnik and

co-workers at AT&T Bell Laboratories (Vapnik 1982).

Although SVMs are popular for their applicability in the problem of pattern

classification, Smola and Scholkopf (Smola and Scholkopf 1998) promoted Support

Vector for Regression (SVR) as a different formulation of SVM. This SVR model

depends only on a subset of the training samples, because the cost function for building

the model ignores the training samples inside the epsilon-tube (a certain threshold

 37

distance from the prediction). SVR has been successfully applied in diverse areas, such as

haptic data prediction, illumination analysis, and financial forecasting (Clarke et al. 2003;

Funt and Xiong 2004; Cao and Tay 2001).

Regression algorithms based on the underlying theory of Support Vector

Machines are termed Support Vector Regression (SVR) algorithms. SVR achieves

nonlinear regression by similarly mapping the training samples into a high dimensional

kernel induced feature space, followed by linear regression in that space. Since the kernel

mapping is implicit (depending only upon the dot product of the input data vectors), it is

possible to map the data to a very high dimension and keep computational costs low.

Figure 1 gives an overview of support vector regression. In this study, Radial Basis

Function (RBF) kernel was used. As shown in Figure 1, the SVR model depends on a

subset S of the training samples, Support Vectors coefficients Cs and a constant b.

The underlying theory behind Support Vector Machines (SVM) and Support

Vector Regression (SVR) is similar. SVM is primarily used for pattern classification,

whereas SVR is used for regression or function estimation. Thus far, SVR has had limited

applications within the transportation field. Previous examples SVR applications to

transportation problems include use for travel time, traffic speed and traffic flow

predictions, and incident detection in the context of ITS applications (Wu et al. 2004;

Vanajakshi and Rilett 2004; Ding 2002; Cheu 2003). In addition, Sun et al. applied SVM

for vehicle detection using extracted features from Gabor filters (Sun 2002). Their

comparison of the integrated application of SVM and Gabor filters using an approach

involving Neural Networks demonstrated the superiority of the SVM approach.

 38

2.5 Summary of Previous Work

Previous study evidently demonstrated that an explicit-traffic-explicit-

communication simulator was critical for simulation study of real-time traffic operations.

Existing research on integrated simulation platform either concentrated on simulating

vehicular ad hoc network (VANET) or did not integrated state-of-the-art traffic simulator.

With the similar vision, this research adopted two state-of-art traffic and communication

simulator PARAMICS and ns-2 to study a VII network composed of vehicles and

infrastructure devices.

The current prevailing centralized highway traffic surveillance system suffers

from scalability, single point failure, and reliability issue due to the requirement

expensive infrastructure and single point control by human operator. On the other hand, it

is difficult to implement system wide control and optimization in a pure distributed

system. A hybrid networking and processing architecture, which could be exemplified by

a hybrid framework and integrate distribute processing within each hierarchy and

centralized control between neighboring hierarchy, is needed. Therefore, it warrants

detailed evaluation of different communication alternatives that would lead to the

selection of appropriate communication medium and architecture.

The highway traffic surveillance system has not expand to broader suburban and

rural areas due to the requirement of expensive infrastructure facilities and drawbacks of

existing technologies, such as driver-based reporting system, traffic camera system, and

sensor-based AID system. A VII-based highway traffic surveillance system is expected to

provide a feasible, effective and efficient alternative. Though ANN is the most common

 39

AI tool used for highway traffic surveillance, this research proposed SVM for real-time

incident detection and travel time prediction for its less computation resource

requirement, greater learning ability and prediction potential.

 40

CHAPTER 3

METHODOLOGY

The research method was formulated to attain the objectives of the dissertation.

The first objective required developing an integrated simulation platform and the second

objectives included evaluating different communication architectures to support on-line

traffic management. The third and fourth objectives are related to VII for traffic condition

assessment and travel time prediction. The author developed two intelligent algorithms:

support vector machine (SVM) for incident detection and support vector regression

(SVR) for travel time prediction. The following sections are organized into the following

four primary categories according to each of the four objectives: develop integrated

simulation platform, evaluate communication alternatives, develop VII simulation model

with online traffic condition assessment function, and develop VII simulation model with

real-time travel time prediction function. As shown in Figure 3.1, the integrated simulator

provided a platform for evaluating communication alternatives and developing the VII

simulation model. Then the VII simulation model was again evaluated and revised based

on the analysis.

 41

 Develop Integrated
Simulation Platform

 Evaluate and
Revise VII

Simulation Model

 VII Simulation Model

 Evaluate
Communication

Alterntaives

Figure 3.1 Research approach in this dissertation

3.1 Develop Integrated Simulation Platform

As the first step shown in Figure 3.1, the author developed an integrated

simulation platform that integrates state-of-the-art microscopic traffic simulator

PARAMICS and packet-level networking simulator ns-2 for accurate evaluation of the

effectiveness, efficiency, and reliability of traffic management methods and networking

protocols.

3.1.1 Traffic Simulation

The microscopic traffic simulation model was used to create a realistic traffic

environment to test the effectiveness of various traffic condition assessment tools. Since

this study would be extremely expensive and complex to complete through field test,

traffic simulation offers an efficient opportunity to collect extensive amounts of

 42

information in a controlled environment that accurately reflects real-world traffic

conditions.

PARAMICS traffic simulation software (Quadstone 2006) was used to model the

traffic flow of the test network in South Carolina. PARAMICS is a time-step, behavior-

based microscopic traffic simulation model, which can incorporate detailed network and

traffic control information to provide a realistic representative of traffic operation

conditions. In PARAMICS, many different Driver Vehicle Units (DVUs), including VII-

enabled vehicles, interact in the simulation model to realistically represent the traffic

conditions in the real world. DVUs allow a reasonable distribution of different vehicle

and driver types, e.g. sports cars with excellent acceleration characteristics or cautious

drivers awaiting a large gap in traffic. An accurate representation of these interactions is

especially important during traffic incidents, such as when the vehicles traveling on a

lane that is blocked ahead must slow down and seek opportunity to change to a non-

blocked travel lane.

Since the VII-enabled vehicles were assigned their own DVU type, the model

allowed only the VII-enabled vehicles to communicate their collected microscopic traffic

data as well as traffic information and control messages with networking simulation

software ns-2. PARAMICS also provided quantifiable measurements of macroscopic

traffic statistics such as occupancy of loop detectors, average speed, flow rate and

network delay.

The Application Programming Interface (API) is an add-on module which

allowed users to modify many features of the underlying PARAMICS models. The API

 43

also allowed the modeling of advanced traffic management strategies such as automatic

incident detection and travel time prediction. The case study for evaluation of the

integrated simulation platform applied an API to randomly generate incidents and

simulate the realistic operation of incident detection and response.

 With PARAMICS, network building began with collection of field data including

geometric, traffic control, and traffic volume data. The network was then calibrated

through comparison between the simulated volume output and the field traffic counts

data, as well as via comparison between the simulator animations and site observation.

The validation process compared site-collected queue lengths and travel times to those

produced by the simulation model. After many iterations and adjustments to the road

network and driver behavior parameters, the simulation model accurately reflected the

observed travel times within one percent and no significant difference was observed

between the field-collected and simulated queue lengths at the bottleneck segment, which

were at the signalized off ramp intersections.

3.1.2 Communication Simulation

The communication networking simulation software ns-2 simulates various

protocols in each hierarchical layer as the internet architecture at packet-level among

nodes for a specified network topology. The simulated layers for this study are

summarized in Table 3.1. Network protocols are developed or modified with individual

source files in C++ and corresponding changes in OTCL library and header file. For

example, user-defined application such as incident signaling in sensor was inserted at the

application layer with a function of C++ source codes. Another example was that the

 44

developed hierarchical message routing scheme at each fixed nodes such as repeaters,

sensors and controllers was implemented as a new routing agent class with several

member functions in the network layer. To start the communication networking

simulation, network topology, nodes parameter configuration, simulation initialization

and tracking were specified in OTCL language.

Table 3.1 Simulated Protocol Hierarchy Stack

Layer Protocol Implement
ation Remark

Application VII Customized Implement various VII application

Transport UDP Embedded /
Customized

Modified UDP protocol to support VII
application

Network IP & VII Routing Embedded /
Customized

Added VII routing protocols to support
hierarchal routing

MAC +
Physical IEEE 802.11 Embedded Configured for different bandwidth and

range for wireless communication

Through ns-2 modeling, real-time effects in the communication networking

domain can be modeled accurately with explicit constraints and variations such as:

z Finite and variable communication bandwidth and latency;

z Random errors and transmission conflicts;

z Synchronization effects in communication and control;

z Out-of-order messages and event effects.

On the other hand, in collaboration with PARMICS, realistic communication patterns and

requirements can be modeled including:

z Communications induced by topology-dependent mobile nodes movement

pattern;

z Communications scope due to RSU and controller placement;

 45

z Communications load with respect to traffic volume, traffic surveillance strategy,

and incident probability;

z Communications induced by message exchange for realistic application of traffic

monitoring application.

Modeling of such effects enhances accuracy in performance evaluation and assessment of

deployment strategies beyond that is achievable with simplified communication

assumption in traffic simulation tools.

3.1.3 Integrated Simulation

The integrated simulation platform is based on the PARAMICS traffic modeler

and the ns-2 network simulator. PARAMICS simulates a transportation system using a

number of network files that define all aspects of a transportation system, including its

infrastructure geometrics, traffic control methods, ITS components, driver characteristics,

and traffic demands. Those text file provides easy method to assess and modify every

aspect of the traffic network. In addition, user-defined functions are programmable via a

plug-in C++ source file and a group of API functions, which connect PARAMICS’s

internal modeling core with external customization and software (Quadstone 2006). This

API interface allows the possibility of implementing traffic statistics logging,

synchronized modeling time step, generating vehicle movement pattern file, and

exchange data and control commands with ns-2. Ns-2’s open-source architecture gives

great freedom for incorporating newly developed protocol components and interfacing

with other software (Sobeih et al. 2005).

 46

A synchronization file was used to act as switcher to control the sequential

running of PARAMICS and ns-2. Since PARAMICS needs a warm up time to load the

traffic into network and ns-2 needs an initialization period to discover the hierarchical

architecture for hierarchical routing, the synchronization file defines the synchronization

start up time for the two simulators to perform synchronized, locked-step executions for

simultaneously modeling traffic dynamics and communication networking. This setup of

running two simulator separately first and synchronized later is beneficial to the

simulation efficiency because synchronization is much more resource intensive than

individual runs. At the end of each synchronized period, PARAMICS updates the mobile

nodes movement and messages sending command in TCL language. At the beginning of

each synchronization step, ns-2 load and push those events transferred from PARAMICS

into its scheduler for execution. Ns-2 is also able to log the real time data and commands

into a set of log file, one for each fixed node, such as sensor and controller, to feed the

data for traffic management simulation.

In the current practice, sensors are connected by repeaters that are within

communication range determined by the physical layer protocol configuration. The

typical communication range for IEEE 80.11 a/b/g is 200-300 meters. The placement of

these repeaters also assures that wherever a vehicle sends a message, there will be at least

one repeater that can receive it. To initiate a simulation, in PARAMICS, users build,

calibrate, and validate a traffic network, while in ns-2, users define the wireless

networking protocol stack, the network topology, and the execution time and interval.

Figure 3.2 shows the simulator execution flow chart.

 47

Start

Read synchronization file

Is PARAMICS turn ?

Reads detector and controller parameter files

PARAMICS simulate traffic:
• Vehicles, roadway and control

devices interaction
• Generate and clear incidents
• Collecting traffic statistics

• Record detector and controller collected information
• Write ns2 into Synchronization file

Is scheduled pause time reached?

Stop

Yes

No

Yes

No

Yes

Is scheduled stop time reached?

Pause

No

Start

Read synchronization file

Is ns2 turn ?

Read detector and controller parameter files

ns2 simulate networking:
• Determine data rate, destination,

routing, and queuing
• Sending and receiving packets
• Collecting MOEs

• Record detector and controller transferred information
• Write PARAMICS into Synchronization file

Is scheduled pause time reached?

Stop

Yes

No

Yes

No

Yes

Is scheduled stop time reached?

Pause

No

Figure 3.2 Integrated simulator process execution flow chart

3.1.4 A Case study to Evaluate the efficacy of Integrated Simulator

As an example of the usage of the hierarchical networking development and the

integrated simulation platform, a hypothetical distributed incident detection and

resolution strategies is designed and simulated as shown in Figure 3.3. In this example,

sensors placed at regular distances along a highway measure vehicle speed and traffic

volume. The distributed detection algorithm consists of three phases: detection,

verification, and notification. For detection, each sensor independently carries out a

shockwave detection algorithm (Chowdhury and Sadek 2003). When a “possible”

incident is detected locally, the sensor invokes verification by sending a query to its

 48

adjacent sensor on each side. If any queried sensor has already observed a corresponding

shockwave, or will see one within a specified time frame, the incident is verified. The

verifying sensor will proceed to notify its local cluster (parent) controller. Upon

receiving the detection notification, the cluster controller determines its response with an

incident resolution strategy. In this example, the cluster controller immediately notifies

its upstream controller to perform traffic diversion.

NS-2 Communication SimulatorNS-2 Communication Simulator

PARAMICS Traffic SimulatorPARAMICS Traffic Simulator
Geometry Traffic

Demand
Incident Traffic

Control

Traffic Simulation Network

sensor 1

Log 1

Node 1

Application

Transport

Network

MAC/Phy

Log 2

Node 2

Application

Transport

Network

MAC/Phy

…

…

Log N

Node n

Application

Transport

Network

MAC/Phy

Controller

Application

Transport

Network

MAC/Phy

VMS Node

Application

Transport

Network

MAC/Phy

VMS

Message File

sensor 2 sensor n

Figure 3.3 Architecture of a hypothetic incident detection and management system

The shockwave detection algorithm is based on the fact that an incident causes

changes in the upstream and downstream traffic flows’ volumes, densities, and speeds.

The effects propagate upstream and downstream from the incident location, such that the

affected zone (that observes a change in the flow) expands like a propagating wave,

 49

namely, the shockwave (Chowdhury and Sadek 2003, May 1990). A backward moving

shockwave progresses upstream of the incident location against the flow of traffic, as

queues started to develop due to decreasing speeds and flow. A forward moving

shockwave progresses downstream as the decreasing number of vehicles traveling past

the incident location reduces demand to the downstream freeway. The sensors detect

these shockwaves by identifying abrupt changes in the instantaneous flow/volume,

density and speed.

The hypothetical incident management system presented in this dissertation

exercises the distributed and collaborative processing ability of the traffic sensor network

through two-phase incident detection including local detection and clustered verification.

The system is modeled in the integrated simulator to assess its feasibility and

functionality.

The test freeway network is selected in Spartanburg, South Carolina, containing 3

freeway corridors I-85, I-26, and I-85 Business that meet and form a triangle. Figure 3.4

shows this network as it appears in the PARAMICS interface. The I-85 segment between

exit 68 and exit 70 has high traffic volumes and a high occurrence rate of incidents that

block all lanes; hence, it was identified as the main link for incident generation. The other

two corridors serve as the alternative routes to the main link. With PARAMICS, network

building began with collection of field data including geometric, traffic control, and

traffic volume data. The network is then calibrated through comparison between the

simulated volume output and the field traffic counts data, as well as via comparison

between the simulator animations to the site observation. The validation process

 50

compared site-collected queue lengths and travel times to those produced by the

simulation model. The process iterated with adjustments to the road network and driver

behavior until the travel times were within one percent and there is no significant

difference between the field observed queue lengths and simulation generated ones.

I-26
I-85

I-85 Bus

Sensor

Repeater
Controller of Concerned Cluster
Controller of Upstream Cluster

1000 ft

Spartanburg, South Carolina

Figure 3.4 Simulated freeway and placement of sensors and controllers

3.2 Evaluate Communication Alternatives

This research sought to develop a systematic approach to evaluate different

communication alternatives for real-time traffic surveillance system. This approach

includes identifying alternative architecture, such as distributed or centralized, and

 51

identifying communication mediums including wired, wireless or a combination of both.

Then, a set of important measures of effectiveness (MOE) for making objective

comparisons between alternatives based on the performance of the communication

systems related to real-time traffic time surveillance was identified. The simulation

platform developed in the previous task was used for efficiently evaluating

communication alternatives with different architecture and mediums by generating

important MOEs.

A case study was performed for a test network in Greenville, South Carolina. The

authors followed the proposed evaluation approach to identify four communication

alternatives, namely the centralized-wired, distributed-wired, centralized-wireless and

distributed-wireless, to generate the selected MOEs, such as throughput, delivery ratio,

and throughput cost ratios, for comparing and analyzing these alternatives.

3.2.1 Alternative Identification

The communication infrastructure for a real-time traffic surveillance system can

adopt either a centralized or distributed architecture. To choose among alternative

communication architectures, one must evaluate the advantage and disadvantage for each,

and carefully balance the trade offs between them. A centralized communication

infrastructure allocates dedicated bandwidth to connect a central controller with a set of

controlled field devices, which are in general referred to as sensors in this dissertation. A

distributed communication infrastructure, on the other hand, makes no distinction among

central controllers and field devices. Each device is connected to nearby peer devices for

relay, sharing, and confirmation of their sensing information. Using traffic camera

 52

system as an example, a centralized solution aggregates all traffic surveillance data to one

place for centralized processing. In contrast, a distributed solution assigns each device

with certain distributed decision making ability and each device adjust the data

generation rate based on such decisions on traffic conditions. Moreover, in distributed

systems, multiple sensors and controllers may share the bandwidth of communication

links among them. Here, competition for communication resources might occur. Figure

3.5 illustrates a sketch of the typical topology of centralized and distributed

communication networks.

Sensor Controller

Centralized Network Distributed Network

Figure 3.5 Topology of centralized and distributed communication network

For selecting the communication medium, although wired lines are the most

prevalent communication medium used in vehicular traffic control system, wireless

communication has become a popular technology for recent ITS applications. Wired

communication can be very costly for large scale implementation. It also causes

inconvenience for maintenance and system extension. However, wireless communication

can be affected by environmental conditions such as adverse terrain and weather

conditions.

 53

3.2.2 MOE Selection

The performance and costs for different communication alternatives must be

evaluated with respect to the specific communication needs of the ITS application in

question. The problem of quantifying, measuring, and controlling the performance

metrics of a network has been studied extensively in the context of Quality of Service

(QoS) analysis (Peterson et al. 2003). The MOEs for the ITS communication system

must therefore be selected in terms of the proper QoS metrics with respect to the

application requirements.

An ITS communications system must transfer information from field components

to the traffic operations center, which will then transmit responses and commands to

various field components (Gordon et al. 1993). According to the respective components’

functionalities, MOEs for the communication system can include its bandwidth and data

rate, where bandwidth of a network is given by bits that can be transmitted over the

network in a certain period of time (Peterson et al. 2003). The reliability of timely

monitoring and response operations is also of crucial importance. Reliability is affected

by environmental (terrain, weather) as well as human factors. For example, while wired

communication is typically considered reliable, its communication can completely break

down due to physical damage to the wires during construction or adverse weather, and

such damages are time consuming to locate and repair. Wireless communication is

sensitive to terrain and weather conditions even during its off-peak operation.

Communications can occasionally be lost or contain errors. The degree of such

errors/loss increases as the adverse conditions worsen, yet at all times, a fraction of

 54

communications can be made successfully, which poses a significant opportunity to

enhance the system’s reliability under all conditions.

The communication system is the most expensive part of a traffic surveillance

system (Gordon et al. 1993). The cost of a communication alternative must be justified

with respect to its QoS requirement. Hence, MOEs must also be defined to quantify the

relationship between costs and performances, such as throughput per unit cost (e.g.,

Megabytes per dollar), to facilitate the system planning process.

3.2.3 Simulation Study

The integrated simulation platform based on the PARAMICS traffic modeler and

the ns-2 network simulator is used to conduct simulation study for evaluation of

communication alternatives. PARAMICS is a detailed microscopic simulator that

provides realistic traffic flow and detector modeling, with an extensive API for plugging

in customized control procedure and external interface (Quadstone 2006). Ns-2 is an

open-source, packet level and event-driven network simulator, allowing modular

incorporation of newly developed protocol components and interface with other software

(Sobeih et al. 2005). User-defined functions are programmable via an API add-on module

in PARAMICS and a plug-in C++ source file, with which the integrated simulator

implements traffic statistics-logging, synchronize sensor data and exchange control

commands with ns-2.

 55

3.2.4 A Case study to Evaluate Communication Alternatives

To illustrate the efficacy of the approach to analyze and evaluate the performance

of different communication alternatives, a case study on selecting the best

communication alternative for a real-time traffic surveillance system in Greenville, South

Carolina, was conducted.

3.2.4.1 Alternative Identification

Greenville is one of the largest cities in South Carolina. With 3 major national

freeways, I-85, I-185, and I-385 passing by, one of the four SC transportation

management centers (TMC) is located here to enhance the traffic management and

operation.

The author first started the alternative identification with collecting data, which

included highway topography, ITS asset locations and traffic volumes. Greenville is one

of the major ITS hubs in South Carolina. The existing ITS equipments includes traffic

cameras, traffic detectors, count stations, a traffic management center, variable message

signs (VMS), and highway advisory radio (HAR) stations. The infrastructure information

in the database includes the locations of facilities and such attributes as cost, bandwidth,

latency and power requirements. Table 3.2 shows the list of the existing ITS equipment.

 56

Table 3.2 Example of list assets for communication analysis

 Asset Resource

1 Traffic Cameras SCDOT

2 Traffic Detector SCDOT

3 Count Station SCDOT

4 Traffic Management Center SCDOT

5 HAR Transmitter SCDOT

6 VMS SCDOT

7 Traffic Signal SCDOT and operation city/county

8 Drop Cabinets SCDOT and operation city/county

9 DOT Owned Fiber SCDOT

10 Leased Fiber Commercial carriers

11 Fiber Node/Hub SCDOT

12 Coaxial Cable SCDOT and commercial carriers

The obtained ITS infrastructure and communication system information was geo-

coded into the GIS software in different layers, each containing the available attributes

(location, bandwidth, cost, etc.) of a particular type of ITS device. This can help analyze

existing and proposed communication alternatives. Figure 3.6 shows a GIS map with a

layout of the existing ITS infrastructure of Greenville.

 57

Figure 3.6 GIS map of ITS and communication infrastructure in Greenville, South
Carolina

Considering the choice over two system architectures (i.e. distributed and

centralized) and two communication media (i.e. wired and wireless), four alternative

communication architecture were studied to support the traffic surveillance system

comprised of traffic cameras and a traffic management center. The four alternative

architectures considered were wired centralized, wireless centralized, wired distributed,

and wireless distributed.

3.2.4.2 MOE Selection

To select the MOEs for this study, the ITS application requirements and the

various system variables for the four communication alternatives were analyzed. To

 58

evaluate both the performance and the cost effectiveness of the alternatives, the study

selected three MOEs: the peak achievable throughput, the successful delivery ratio, and

the throughput per unit cost. Figure 3.7 illustrate the MOE selection process. Delay was

not selected as a MOE because the magnitude of communication latency is far less than

the time magnitude of the traffic surveillance events when the required data rates are

below the provisioned capacity of the communication network.

Figure 3.7 Relationships between communication requirements and evaluation MOEs

3.2.4.3 Simulation Study

The I-85 corridor in Greenville, South Carolina was selected as the study network,

which consists of approximately 11 miles of freeway and 6 interchanges. This segment

of I-85 is the major corridor connecting Atlanta, Georgia, and Charlotte, North Carolina.

It serves the traffic to and from the Greenville metropolitan area with a population of

601,986 according to the 2006 census estimate.

After site selection, the author used the PARAMICS microscopic traffic

simulation software to build, calibrate, and validate the roadway network. Network

building began by collecting various data including geometry, traffic control, and traffic

Requirements

Data Rate

Reliability

Cost

MOEs
Peak Achievable

Throughput
(Bytes per second)

Delivery Ratio (%)

Mbytes/Dollar

System Variables
Area Topography

Bandwidth
Device Reliability

Weather and
Environment

Device Unit Cost
Traffic Condition

 59

volume. The geometric layout data for the roadway network was obtained from South

Carolina Department of Natural Recourses in GIS format. Next, aerial photos from

multiple sources and information collected from site visits were used to verify correct

geometric conditions, such as number of lanes, lane widths, lane allocation, and

curvature. The specific location of each traffic camera was also added to the network

according to the South Carolina Department of Transportation (SCDOT) GIS data base.

The author requested and received the traffic volume and incident data from the SCDOT,

and local planning organizations. The SCDOT provided hourly and average daily traffic

count data, traffic signal timing data, and incident location, severity and duration data.

The local planning organizations provided a planning model for use in predicting the

origins and destinations matrix of the future network traffic. Other data needs such as

speed limits, rights of way, and stripping, were met through observation during site visits.

All this information was used to build the traffic simulation model in PARAMICS.

To ensure that the simulation model reflects traffic conditions accurately, the

calibration and validation steps are of the utmost importance. The calibration steps

involve “face validation” of the traffic model animation and comparison of simulated and

measure traffic volume. The validation of the system performance output was carried out

by comparing observed travel times and queue length with the simulated ones. After

many iterations and adjustments to the road network and driver behavior parameters, the

expert opinions from the local traffic management centers’ staff confirmed that the traffic

model was a realistic representative of the real world. In addition, the overall simulated

vehicular traffic volumes were within one percent of the measured, the highest individual

 60

volume error was no more than ten percent, and most of the individual volume errors

were less than five percent. Furthermore, the simulation model accurately reflected the

observed travel times within one percent and there was no significant difference between

the observed and simulated queue lengths at the bottleneck segment, which were at the

signalized off ramp intersections.

The average annual daily traffic was obtained from the SCDOT and converted to

hourly volume according to the typical traffic volume profile of an average weekday.

The traffic scenario for this study was PM peak period during an average weekday

because the peak traffic flow occurred between 4:30 PM and 6:30 PM at the study site.

The simulations were started at 4:00 PM and allowed at least half an hour of warm up

time. After the traffic volumes were fully loaded into the network, incidents were

generated at random locations and random times between 4:30 PM and 5:00 PM.

The ns-2 communication simulator implemented the T1 data links with a

bandwidth of 1.544MHz as the medium for wired centralized and distributed alternatives.

For the wireless centralized system, the author assumed that traffic surveillance operating

agencies will lease the CDMA2000 data links with a bandwidth of 1.25 MHz. For the

wireless distributed alternative, IEEE 802.11b protocol with a bandwidth of 11MHz is

assumed for communication among sensors and controllers in the field.

The study considered traffic surveillance data generated at constant bit rate and

sent across the network using the User Datagram Protocol (UDP). Different data rates

were simulated to examine the capacity of the four alternatives. For the study scenario

with incidents, the vehicular traffic simulator randomly generated incidents on the

 61

segments under surveillance of traffic cameras during the AM peak hours through

PARAMICS Programmer’s API interface. The program selected various incident

occurrence times, locations and severities accounting for the effects of different incident

scenarios. PARAMICS also determines the duration of incidents through the realistic

simulation of interaction between DVUs including the vehicles involved in incidents and

the vehicles in the queue. The duration of incidents, which is defined as the time period

between incident occurrence and the return to normal traffic condition, directly affects

the communication cost in terms of data rate, which can be altered by the ns-2 during the

simulation. In a centralized system, each device continuously generates constant rate

data at the rate of 384Kbps no matter there is an incident or not. On the contrary, in a

distributed system, the devices send stationary images, which generate a consequent date

rate of 24Kbbs to the controller at a low frequency during the normal condition. Once an

incident was identified or suspected, the corresponding traffic camera transmits full

motion videos with a data rate 384Kbps, which is the same as the constant data rate of the

centralized system, to the controller. Within the two hours simulation period, throughputs

of centralized and distributed system for various incident durations were examined to

compare their communication costs.

3.3 Develop VII Simulation Model

This section discusses the approach used for developing a hybrid architecture,

building a test network, developing a SVM/SVR model for VII system, and evaluating

performance of the VII model. The first step of the approach involved a hybrid

architecture that integrates centralized and distributed architecture.

 62

3.3.1 Design Hierarchical Architecture for VII Model

The hybrid networking concept in the on-line traffic condition assessment and

prediction framework was exemplified with the hierarchical model proposed in

(Mirchandani and Head 1998), leveraging the incremental scopes of road segments,

intersections, and networks. The architecture effectively extracts traffic dynamics at the

various levels, with which optimal control methods were derived.

As shown in Figure 3.8, the hierarchical architecture includes multiple hierarchies,

with each of which is comprised of one type of such components as vehicles, RSU, and

various level of controllers. The traffic sensing, processing, and networking are

composed in a distributed way within its own hierarchy and in a centralized way between

the parent hierarchy and its child hierarchy. From the road level, individual vehicles

collect and process their individual microscopic traffic statistics, and then report the

processed information to the RSU when they are approaching them or through the relay

of wireless repeaters or other vehicles. Each RSU performs its assigned function with

corresponding computing resources. In the proposed system, RSUs in each cluster

working in a distributed fashion, receive data from the vehicles, perform analysis on

traffic conditions along road segments and report data to its controller. Centralized

control functions are also implemented with underlying message exchanging between

RSUs and controllers, or between child controllers and parent controllers. Therefore, an

ad hoc wireless network is formed to support the hybrid framework for on-line traffic

condition assessment. A cluster is a logical grouping of roadside agents and controller

agents in which agents in each level communicate with its lower level agents or upper

 63

level controllers. The number of levels and the classification varies with the specific

traffic network characteristics and application cases (Kochhal, et al., 2003, Subramanian

and Katz 2007). In addition to assess information from the lower level entities in its

cluster, controllers can utilize information from sources other than vehicles, such as cell

phone calls from drivers, weather reports, road condition and various events. The

controllers then interface with other traffic control entities such as the traffic signal

control systems and freeway ramp metering for on-line response. Figure 3.9 presented an

example set up of the functional elements for VII model implemented in Spartanburg,

South Carolina.

……

…
…

RSU

Local
Controller

Vehicle Vehicle Vehicle

……

……

TMC

…
…

RSU

…
…

Vehicle Vehicle Vehicle

……

Local
Controller

……

……

Centralized processing
and networking

Distributed processing
and networking

Figure 3.8 Hybrid architecture for VII Model

The addressing scheme of the hierarchical system must facilitate the location

assisted routing of all kinds of data packets. As shown in Figure 3.9, the addresses of

vehicles, RSUs and controllers are in the format of [RID, Mileage, Direction, Level].

Following the convention of the U.S. highway reference system (Tokuyama 1996), each

 64

highway or major arterial road has a unique road identification number (RID). The

location of each identity on the road is uniquely identified with its mileage from the

road’s starting point. The RSUs or controllers can have one or multiple addresses,

according to its location (on one or multiple highways or an intersection/interchanges), its

monitoring scope (overseeing one or both sides of a road), and its association with one or

multiple clusters and task levels.

Repeater (level 1)
RSU (level 2)

Spartanburg, South Carolina

Controller (level 3)
I-85, 364, North, Level 2

I-85, 370, North, Level 3

I-26, 95, West, Level 3

I-26, 105, West, Level 1

Cluster

EXIT
66

EXIT
68

EXIT
69

EXIT
18

EXIT
19

EXIT
21

I-85, 357, North, Level 1

Figure 3.9 Functional elements set up with addressing configuration examples for the VII
model implemented in Spartanburg, South Carolina

Message routing among sensors and controllers is done in the hierarchical address

space, with tailored emphasis on simplicity for vehicles and repeaters and intelligence at

RSU and controllers. Message forwarding routes discovery is based on local broadcasts:

each repeater (level 1) discovers, records, and registers its immediate neighbors at the

 65

same level and its supervisor RSU at the upper level (level 2). Iteratively, each RSU

continues to discover, record, and register its immediate adjacent RSU and its controller

at level 3, which usually located at interchanges of multiple major highway intersect.

This process iterates until the top level controllers are reached. The hierarchical routing

procedure always forwards messages along the physical roads. RSUs route messages up

or down the same road (if destination is on the same road), or towards its parent

controller (if destination is on a different road). Controllers route messages in one of four

ways: 1) up or down the same road, 2) to an adjacent controller, 3) to its parent controller,

or 4) to its supervised RSUs.

RSUs acquire and process data from vehicles, and participate in collaborative

functions with nearby RSUs and controllers. Collaborative functions are implemented

with underlying message sending and receiving functions for exchanging information in

the hierarchical addressing scheme. The hierarchical, process-based programming

semantics is consistent with existing traffic control and distributed system design

practices.

3.3.2 Develop Computational Intelligence Model

The author developed a SVM algorithm for online traffic condition assessment

and a SVR algorithm for real-time travel time prediction using VII system, as SVM is

quite suitable in pattern recognition and classification, while SVR performs well on

parameter estimation and regression. Using the individual vehicle dynamics measured by

each VII-enabled vehicle, the traffic condition assessment and travel time prediction

 66

module of VII model was able to indentify the occurrence, locations and severity of

incidents, and predict the travel time in a real-time fashion, respectively.

Select Study Site

Develop Simulation Model

Conduct Experiment

Develop
SVM/SVR

Model

Generate
Training
Cases

Evaluate
Performance

Trained
SVM/SVR

Model

Generate
Testing
Cases

Figure 3.10 SVM/SVR model development and evaluation

As shown in Figure 3.10, the first step of this process was to select a test network

and develop a detailed microscopic simulation model for the network. After calibration

and validation, the traffic simulation model was applied to generate training and testing

cases. The development of computational intelligence model for VII was an interactive

process that included designing vehicle data collection plan, cross validation of the

training sets and grid searching of optimal parameters for the SVM/SVR model. The

trained SVM/SVR model was applied to the VII-enabled vehicles generated statistics in a

real time fashion to evaluate the performance of the developed intelligent algorithm.

 67

SVM and SVR is a collection of algorithms based on the similar underlying

theory to achieve nonlinear classification or regression by mapping the training samples

onto a high dimensional kernel-induced feature space, followed by linear classification or

regression in that space. Since the kernel mapping is implicit, depending only on the

inner or dot product of the input data vectors, it is possible to map the data into high

dimensions and still keep the computational cost low.

Figure 3.11 gives an overview of the concepts of SVM and SVR. In this study,

kernel functions such as radial basis function (RBF) will be used (Vanschoenwinkel and

Manderick 2006). As shown in Figure 3.11, the SVM / SVR model depends on a subset

of the training samples s, support vector coefficients Cs and a constant b.

x1,y1
x2,y2
 .
 .
 .

Figure 3.11 Concept of SVM and SVR

SENSOR

SVM/SVR
TRAINING

Training samples
from y = f (x)

Kernel ^

Subset of training samples s
(Support Vectors),

Coefficients cs and constant b

f(xn) =∑cs ^ (xs ,xn) + b

Trained SVM /

SVR Model

New
input xn

f(xn)

 68

3.3.2.1 Study Sites and Simulation Model Development

The microscopic traffic simulation model PARAMICS was used to create a

realistic traffic environment to develop and evaluate the VII model for on-line traffic

assessment framework. The author selected a freeway network in Spartanburg, South

Carolina, (see Figure 3.4) as the study site for develop the incident detection functionality

of VII model. As the I-85 segment between exit 68 and exit 70 has three lanes in each

direction with high traffic volumes and a high occurrence rate of incidents, it was chosen

as the link for the experiment of evaluation of proposed VII incident detection system.

The author simulated incidents blocking 1, 2 and 3 lanes, and recorded their impacts on

vehicle kinetics on the study segment along I-85 North. The Application Programming

Interface (API) program in this study was developed to continuously collect microscopic

traffic statistics and apply SVM algorithm for classification of the collected data.

A freeway network in Greenville, South Carolina was selected as the study site

for developing real time travel time prediction functionality of VII model. Figure 3.6

shows a layout of the network. Simulation model development procedure was already

explained in section 3.2.4.3.

3.3.2.2 Case Generation

With the simulation model developed, the next step was to generate the cases

required for developing and evaluating the proposed incident detection and travel time

prediction model using computational intelligence.

 69

At first, the cases for SVM algorithm were generated. The idea of using the

microscopic traffic data from an individual vehicle to detect incidents was based on the

assumption that when an incident occurs, the kinetics of passing vehicles site would be

affected. These kinetics (i.e. speed drops and increases, increased lane changing, and

significant acceleration and deceleration) could then be recorded by VII-enabled vehicles.

This study identified the speed profile and lane changing behavior over selected time step

st to recognize the patterns that indicate the occurrence of incidents. Specifically, an API

program was developed for each VII-enabled vehicle to log an array of six speed values

and six lane change indicators for each time slice st. Table 3.3 shows a sample of each

vehicle’s data log, which will be the input for SVM algorithm. The VII-enabled vehicles

were assigned as specific types with varying portion to entire traffic population

depending on the penetration rate of VII-enabled vehicles.

Table 3.3 Sample Data Log in Vehicle On-Board Units

Kinetics Time Instant

 t t-st t-2st t-3st t-4st t-5st

Speed (mph) 52.6 62.7 22.4 36.5 52.5 66.0

Lane Change 0 1 0 0 0 0

Decision +1

The decision of the instance yi is either +1 for a vehicle passes an incident site, or

+2 a vehicle stops in the queue, or -1 for a non-incident scenario. After 10 minutes warm

up time, an incident was generated along the segment between Exit 68 and Exit 70 on I-

85 as shown in Figure 3.4. When a VII-enabled vehicle either passed by the stopped in

queue, the speed and lane changing data was stored into the training set file. A total of

 70

129 vehicle cases from 12 incident experiments were recorded. For the other case, 179

vehicles traveling under normal condition from 12 non-incident experiments were

recorded. The non-incident scenario was able to record more data than during the

incident scenario because VII-enabled vehicles will more easily travel through the

network and transmit their recorded data.

 Similar to SVM, the cases for SVR model include a series of vectors (xi, yi),

where yi is the target value and xi is the input vector that has three member variables. The

target value is the average travel time of the vehicles that depart the start point in the next

time interval. The input variables include the average travel time collected at the end of

the study segment, the number of VII-enabled vehicles and number of VII-enabled

vehicles entered the study segment during current time interval.

 For the experiment scenario, four weeks of weekday travel data were collected.

The traffic demand profile for each weekday was different to represent the day-to-day

travel time pattern. Among them, two-week data was randomly selected as training data

and the remaining two-week data were used for testing.

 When the experiment scenario varied with different penetration rate, the SVR

model needed to be trained again, therefore new cases needed to be generated to

accommodate the changes in penetration rate because the VII-enabled vehicle volume

varied significantly for different penetration rate.

 71

3.3.2.3 Develop SVM algorithm

The training sets for SVM algorithms, in which (xi, yi), i=1, …, l where xi ∈ Rn

and yi is the classifier. In the following section, a two-class classification problem, where

y ∈ {-1,1}l, will be introduced first as it is the basis of the multiple classification

problem. Note that this study followed the classical SVM or so called C-SVC (Boser et al.

1992; Cortes and Vapnik 1995) for two-class classification. xi is the input of vehicle

microscopic statistics (i.e. time series of speed and lane change indicator) and n is

determined by the time window size and decision time steps. For example, a given time

step is 4 seconds and the time window is 24 seconds; then n = 2*(24/4) = 12, to provide a

time series representing both vehicular speed and lane change. yi is the classifier of

normal (yi = -1) or abnormal (yi = 1) condition. The objective of the training is to find the

prediction function f(xi) = w * xi + b that optimizes the minimum distance between the

classification hyper-plane for any sample of the training data. This is expressed using the

following formula (Stitson et al. 1996; Chang and Lin 2007).

 wwT
bw 2

1min ,

1)(≥+ bxwytosubject i
T

i li ,...,1=

Equation 3.1

Considering the non-separable data to allow training errors, one can incorporate

an error term ζ multiplying a penalty parameter . The objective of the prediction

function objective can be achieved by solving the following optimization problem (Hsu

C

 et

al. 2007).

 72

∑
=

+
l

i
i

T
bw Cww

1
,, 2

1min ξξ

ii
T

i bxwytosubject ξφ −≥+ 1))((li ,...,1= and 0≥iξ
Equation 3.2

Note that only the transformation coefficients ø of support vectors are not zero and most

of the error terms x are zero.

Here, training vectors xi are mapped into a higher dimensional space by the

function ø, enabling SVM to find linear separating the hyper-plane with the maximal

margin in this higher dimensional space. C>0 is the penalty parameter of the error term.

Furthermore, K(xi,xj)= ø(xi)Tø(xj) is called the kernel function. As research shows that

radial basis function (RBF) generally performs well in many scenarios (Vanschoenwinkel

and Manderick 2006), RBF are selected as the kernel function of this research.

)||||exp(),(2
jiji xxxxK −−= γ ,

Here, γ

0>γ
 is the kernel parameter.

ion 3.3

The results of the class fication would be the sign of the decision function:

bxwT +)(φ
Equation 3.4

If wTφ T

Equat

i

bx +)(>0, then y =1. On the other hand, bxw +)(φ <0 will induce y=-1.

For the multi-class classification problem like in this study y ∈ {-1,1,2}l, a “one-

against-one” (Knerr et al. 1990; Friedman 1996; Kreβel 1999) approach was applied to

 73

construct multip any two different classes using the

method sim

le two-class classifier and classify

ilar to the two-class SVM as shown in following:

∑+
l

t
ijijTij

bw
Cwwijijij ,,

)()(1min ξ
ξ

=i 12

t
ijijTijtosubject)(1() ξφ −≥+ , if tx is in the i th class

t
ijij

t
Tij bxw)(1)()(ξφ +−≤+ , if tx is in the

tx)(bw

j th class

 lt ,...,1= and 0≥ξ
Equation 3.5

After the results of multiple two-class classification were available, voting

strategy was used to predict the class for specific input vector. When the votes for two

classes are the same, the class with smaller index was selected for simplicity (Chang and

Lin 2007). For example, there are three classes {-1,1,2} needed to classified, then 3*(3-

1)/2=3 two-class classifier was constructed and applied respectively. Then, if the results

of the 3 two-class classification come out to be that 1 for -1 VS 1, 2 for -1 VS 2, and 1 for

1 VS 2, the final decision of

ij

this multi-class classification will be 1. If each class got 1

vote, the input vector would be classified as -1 for conservative consideration of

minimizing false alarm rates.

3.3.2.4 Develop SVR Model

Similar to SVM, SVR trains the training data set to identify the support vectors

and mapping function coefficients and constants. The difference between SVM and SVR

are that instead of having finite number of classifier in SVM, SVR has infinite number of

 74

target output in the training data set. As a consequence, SVR would give any possible

value in the output space from a group of input vectors. Given a training data set of (xi,

yi), i=1, …, l where xi objective of the training by

applying

 ∈ Rn and yi is the target output, the

ε -SVR is to find the prediction function and mapping function:

∑∑ ++
l

i

l

i
T

bw CCww *
,,, 2

1min * ξξ
ξξ

== ii 11

T ybtosubject ξεφ −≥−+(

*)(iii
T ybxw ξεφ −≤+−−

iiixw)

li ,...,1= and 0, * ≥ξξ
Equati

ii

on 3.6

here w ε is parameter in ε -SVR represent the marginal error of regression. Due to its

good performa as the kernel function for SVR model.

 The prediction function for new input will be:

 is in the same form of classification function for

SVM, the predicted output of SVR can be any estimate in the output space instead of

nce, RBF was again selected

bxwy T +=)(φ
Equation 3.7

Though, the prediction function of SVR

several pre-defined classifiers of SVM.

3.3.2.5 SVM and SVR Implementation

As noted by (Hsu et al. 2007; Sarle 2007), scaling is important for the success of

AI paradigms such ANN and SVM. Before training, all the data were linearly scaled to a

 75

range of [0, 1] using a common range file. To maximally the usefulness of the training

data and search for optimal parameters, the authors randomly divided them into 5 groups.

Each time, four groups of data were used to train a SVM/SVR model with a possible

combination of parameters, while the trained model was tested on the remaining group to

estimate the prediction accuracy of this testing group. This process was repeated five

times with the same combination, but with different testing groups, to obtain an average

prediction accuracy in terms of percentage for SVM or mean squared error (MSE) for

SVR.

The most important parameters for classifications using SVM with radial basis

kernel are C and γ . The optimal parameters were identified through grid searching of

110 combinations in the range of [C, γ] = [2-5: 22 : 25, 2-15 : 22 : 23]. The authors

performed the experiment by increasing parameters in exponential order, i.e. 2n, in the

range of -5 to 5 for C and -15 to 3 for γ with a step of 2. The identified optimal

parameters were then used to train the entire training set to generate a trained SVM

algorithm. SVR model has one additional important parameter ε as shown in Equation

3.6. Similar to the procedure of finding optimal rapa me ination in train SVM,

SVR ap

ter comb

plied grid searching technique in the range of [C, γ , ε] = [20: 22 : 210, 2-2 : 22 :

28, 20 : 22 : 210] to identify the values of C, γ and ε .

This study used LIBSVM (Chang and Lin 2007), an open source implementation

routine for SVM and SVR, to train and test the SVM/SVR model. The training time of

the SVM/SVR model was less than two seconds in all the training cycles. The prediction

 76

time fo e, which is reasonable and

suitable

In order to provide baseline algorithms for comparison with the developed

intelligent algorithm, two popular and easy-to-implement algorithm, California automatic

incident detection algorithm and instantaneous travel time prediction algorithm were

developed and compared with SVM and SVR models, respectively. The comparison of

e network and same

 The author selected California #7, for its good performance and simplicity among

the California algorithm family, as the baseline algorithm to compare with SVM incident

detection algorithm (Payne and Tignor 1978). California #7 examined the occupancy data

from two neighboring loop detectors to decide the incident states through a decision tree.

There are totally 7 tests that examine three parameters: downstream occupancy (DOCC),

spatial difference in occupancies (OCCDF) and relative spatial difference in occupancies

(OCCRDF) to decide the incident state, which can be one of the four states: incident free,

tentative incident, incident occurred, and incident continuing. The decision tree for

California #7 is shown in Figure 3.12. The virtual loop detectors were placed at the

density of one every quarter mile along the same Spartanburg freeway network in South

Carolina. The occupancy data from the loop detector were aggregated into 1-minute

r an unknown case was in milliseconds magnitud

 for real-time application.

3.3.3 Baseline Algorithm Selection and Development

the SVM/SVR and baseline algorithm was performed in the sam

prevailing traffic conditions.

3.3.3.1 California Algorithm for Incident Detection

 77

interval, average over all lanes. The decision interval was also one minute. Incidents that

block one, two, or three lanes were created in the network after 10 minutes of warm-up

time and 10 minute of no incident period. There were 100 experiments conducted for

tify the

parame

each type of incident. These data was used for off-line calibration to iden

ter set in the decision tree.

State ≥ 1

OCCDF ≥ T1State ≥ 2

DOCC ≥ T3

OCCRDF ≥ T2OCCRDF ≥ T2OCCRDF ≥ T2

0

0

0

3

State Designations
1 Incident free

4 Incident continuing

2 Tentative incident
3 Incident occurred

T F

0

T F

2

10

T F

T

T T

T

F

F

F

F

3.8

(Payne and Tignor 1978) to identify a series f optimal parameter set for the required

detection rates. The Matlab code for parameter calibration was shown in App

T

Figure 3.12 Decision tree for California #7 (Payne and Tignor 1978)

 The author followed the parameter calibration method shown in Equation

o

endix B.

)})(|)({min yTT ≥βα

Equation 3.8

where T is the parameter set in the decision tree,)(Tα and)(Tβ are the consequent

false alarm rate and detection rate for specific parameter set T, y is the required detection

rate threshold. The author varied the required detection rate threshold in a range between

 78

60% and 99.5% to determine a series of the three parameters (T1, T2 and T3) in the

decisio

3.3.3.2 Instantaneous Algorithm for Travel Time Prediction

le to collect the

travel time directly, the averaged travel time of the VII-enabled vehicles arriving at the

end poi be considered as the predicted travel time of the

vehicle

3.3.4 Traffic Condition Assessment

average travel speed, an es sending message interval. To ensure each

VII-enabled vehicle sends exactly one message for each segment when

n tree.

The instantaneous travel time prediction model assume that the travel time does

not change for a short period. Therefore, it only uses the available travel time collected

within the immediate previous time step to predict the travel of vehicles that will start

within the immediate following time step. Since the VII system is ab

nt during each time interval will

s departing the start point during the next time interval.

A traffic condition assessment model was established in each RSU when the VII-

enabled vehicles transmitted the vehicle experienced traffic status to it. Each RSU

divided its supervised section into several segments and estimated the traffic status

indicator in each segment. The number of segment depends on the length of the section,

d VII-enabled vehicl

 traveling at

normal speed, the number of segment can be determined by following equation:

)*/(i svLn = tii

Equation 3.9

 79

Where in is the number of segment in section i, iL is the total length of segment i, iv is

the average travel speed in segment i at normal condition, and s is the periodic VII

enabled vehicles. Since the classifier has 3 possible values: {-1,1,2}, the scale of the

represents the assessed traffic condition in a range of -6 to 12, as introduced above. For

t

message sending interval for each VII-enable vehicle.

The RSU collected the traffic status classifier prediction from the latest 6 VII-

estimated traffic status of each segment is in a range of -6 to 12. When one vehicle stays

in one segment more than one interval, the RSU will use the average predicted classifier

prediction value for that vehicle. Figure 3.13 shows a sample of traffic condition

assessment in a time space diagram estimated at a RSU. The color bar on the right

example, the wide spread deep blue indicates that most segments are in normal condition

at most times. In this case, an incident occurred at segment 6 at 1112 seconds. If the

threshold value was set at -1, after approximate 110 seconds, the incident will be

indentified by the RSU.

 80

deciding the threshold to classify traffic status number into four statuses: incident free,

Figure 3.13 Sample contour map of the traffic condition assessment at a RSU

After obtaining the traffic status in time space diagram, the next task would be

incidents blocking one, two and three lanes.

3.3.5 Evaluate the VII Simulation Model

Using the trained SVM and SVR model, each VII-enabled vehicle traveling on

the study segment on I-85 will continuously send message out with the time stamp,

vehicle location, and the traffic condition based on the collected speed and lane change

profile of itself. The RSU will receive those messages and would be able to assess the

traffic condition and predict travel time.

If an RSU received threshold number of alarms it within maximum accumulation

time tmax, then an incident was identified. To examine the impact of alarm number

threshold and the maximum accumulation time window, the authors also conducted a

 81

sensitivity analysis varying the value of it and tmax. Incident detection performance was

assessed to determine the best combination of them.

 The authors also tested different penetration rates (i.e., the percentage of VII-

enabled

essment framework

were de detection rate, and false alarm rate. The detection time is defined as

the time difference between the incident occurrence and the time it was correctly

identified. The detec rate is the percentage of incidents that are correctly detected

over th s occurred. The false alarm rate is defined as the number of

false alarms per hour for the incident free period. In addition, the delivery ratio and

communication latency as explained in section 3.2.2 are also selected as MOE in the

communication dom

Let ti yi be the predicted value, then ei = yi - ti is defined as

rei = ei / ti is the relative error. Statistical analyses were

performed to e e same. Since the

ctual icted values were not independent with each other, a t-test for the

difference of m ples was conducted. The procedure of the

hypothesis test with 95% confidence level was defined as following:

 vehicles in the total traffic in the study link or segment) to evaluate the

effectiveness of the incident detection and travel time prediction model. For each selected

percentage of VII-enabled vehicles in the network, 100 incident scenarios and 10 hours of

non-incident scenario were tested for incident detection functionality of VII model and 2

weeks of weekday afternoon peak period were tested for travel time prediction

functionality. The measures of performance for traffic condition ass

tection time,

tion

e total number incident

ain.

 be the true value and

the prediction error and

xamine if the true values and the predicted values were th

a and pred

ean of two paired sam

 82

Hypothesis

H0: 0=eμ

HA: 0≠eμ

ignificanceLevel of S

05.0=α

Test Statistics

Nse
OBS /

et =

 Rejection Region

Two tails of a t-distribution with degree of freedom N-1

 P-Value

)(*2 OBSttP >

where N is the number of predictions, e is the true mean of the prediction error, μ e is the

average prediction error, and ∑
=

−−=
N

i
ie Nees

1

2)1/())((is the standard d

prediction error.

Additionally, the MOEs for evaluation of the accuracy and variation of prediction

for the computational intelligence model, such as incident location predict

time prediction model, are defined in Equation 3.10 through Equation 3.13.

Root mean of squared error proportional (RMSEP) in percentage:

eviation of the

ion and travel

∑
=

N

i
ie

Nt 1

2)(1100 with ∑
=

=
N

i
itN

t
1

1

 83

Equation 3.10

Mean relative error (MRE) in percentage:

∑
=i

ire
N 1

Equation 3.11

Mean absolute relative error (MARE) in percentage:

N100

∑
=

N

i
ire

N 1

100

Equation 3.12

Standard deviation of relative error (SRE) in percentage:

()∑
=

−
−

N

i
i MREre

N 1

2100/
1

1100

Equation 3.13

where N is the number of experiments for specific scenario.

 84

CHAPTER 4

ANALYSIS AND RESULTS

This chapter presents the analysis to test a series of research objectives that

hypothesizes: 1) if an integrated simulation platform can support the design and

evaluation of online traffic surveillance system; 2) if distributed architecture provides

better communication efficiency for both wireless and wired mediums; 3) if a hybrid

framework, in combination with a VII system and computational intelligence improves

the incident detection performance; and 4) if a hybrid framework, in combination with a

VII system and computational intelligence, improves the accuracy of online travel time

prediction. The following sections are organized into four primary categories according

to each of these four hypotheses: integrated simulation platform, evaluation of different

communication alternative, performance of the VII model for online traffic condition

assessment, and performance of the VII model for real-time travel time prediction.

4.1 Integrated Simulation Platform

The following section presents a case study for the application of integrated

simulation platform developed in this dissertation in evaluating an incident detection and

responding system using a traffic sensor network. The simulation platform that integrates

the state-of-the-art microscopic traffic simulator PARAMICS and the packet-level

wireless network simulator ns-2 was expected to accurately evaluate the effectiveness,

efficiency, and reliability of traffic management and networking protocols. To

 85

demonstrate the functionalities of the proposed integrated simulation platform, a wireless

sensor network was modeled over a freeway section in Spartanburg, South Carolina for

incident detection.

In this case study, traffic sensors with wireless interfaces were placed every

quarter mile along the highway, where incidents would be randomly generated, to

measure vehicle speed and traffic volume. Since a quarter mile distance was beyond the

typical communication range of existing short range wireless communication protocols

such as IEEE 802.11 a/b/g, wireless repeaters were placed in-between to relay messages.

The incident detection algorithm consists of three phases: individual detection using the

shockwave algorithm (Chowdhury and Sadek 2003), collaborated verification between

adjacent sensors, and notification to cluster (parent) controller by the sensor verifying the

incident. Upon receiving the detection notification, the cluster controller immediately

notifies its upstream cluster controller to warn the drivers of incidents.

Performance metrics collected were incident detection rates, false alarm rates, and

wireless network communication latencies. The interdependencies among the

performance metrics and the sensor and controller placement were examined to predict

the system’s operation and optimality prior to the actual deployment. Since the

shockwave algorithm is the basis for the incident detection algorithm used in the case

study, its basic concepts are first reviewed.

4.1.1 The Shockwave Algorithm

The shockwave caused by an incident changes traffic flow parameters, such as

speed, flow and density, both upstream and downstream of the incident location. As

 86

shockwaves reach them, the sensors that are upstream and downstream of this incident

observe these changes, which are the basis for the algorithm applied in this study to

detect and verify incidents. This concept is shown in Figure 4.1 with an example of a

density contour map of the studied freeway segment during an incident.

2000

4000

6000

8000

10000

12000

14000

0 240 480 720 960 1200 1280 1360 1440 1520 1600 1680 1760 1840

Time (seconds)

D
is

ta
nc

e
(fe

et
)

Low Density

High Density

Normal Density

Incident Start Time

Incident Location

Legend
Density < 10 veh/mi

Density

Density
and < 50 veh/m

 > 50 veh/mi

 > 10 veh/mi
i

Figure 4.1 Density contour map for the studied freeway network when the incident
occurred. An overview of the highway is shown on the left with the incident marked with

a “prohibited” symbol.

As shown in Figure 4.1, an incident that blocked all lanes was created in the

simulated network 1200 seconds after the simulation began making two shockwaves to

begin propagating backwards and forwards at different speeds. The forward shockwave

was the boundary between the low-density traffic immediately downstream (of the

incident) and the normal density traffic further downstream (of the incident). Similarly,

 87

the backward shockwave is the boundary between the high-density traffic immediately

upstream and normal density traffic further upstream. In another word, the forward and

backward shockwave represent the boundary of traffic conditions with and without the

impacts of the incident at downstream and upstream, respectively. The shockwave

propagation curves and the incident location line divided the density contour map into

four regions: immediate downstream to incident location low density, further downstream

normal density, immediate upstream to incident location high density, and further

upstream normal density. In Figure 4.1, the normal density ranged between 10~50

vehicles per mile; below 10 vehicles per mile is considered a low density while over 50

vehicles per mile is considered a high density. The exponential shape of the forward

moving shockwave curve indicated that the boundary of low and normal density traffic

propagated at a rapidly increasing speed. Meanwhile, the backward moving shockwave

propagated at a much slower but also increasing speed. The phenomenon in which the

slope appeared to be flat initially and became sharp as time lapsed agreed with the fact

that the queue accumulated faster as it went further upstream. In this example, an incident

occurred at the location of 6508 feet with immediate downstream and upstream sensors

located 546 feet and 855 feet away from the incident location. It took approximately 30

seconds for the forward moving shockwave to travel 855 feet to reach the immediate

downstream sensor. The backward moving shockwave required 233 seconds to reach the

immediate downstream sensor. Though the downstream sensor was the closer to the

incident location, the backward shockwave took longer time to reach a sensor than the

 88

forward shockwave. The backward and forward shockwaves determined the time in

which incidents were detected by the upstream and downstream sensors.

4.1.2 Detection Performance

Figure 4.2 presents the time between incident occurrence and notification to the

upstream controller versus incident location distance to the upstream controller.

Incidents were generated at different locations at a fixed interval of every 500 feet with

varied distances to the upstream sensor. In Figure 4.2, the maximum and minimum times

at each location are shown with a thin line, while a solid bar is used to indicate the 95

percent confidence bound. This time metric accounts for the time it took the sensors to

detect and verify the incident, and the time to notify the controller over the network. This

time period generally increases with the upstream sensor’s distance from the incident

location.

 89

0

50

100

150

200

250

300

350

400

46 115 163 470 546 615 663 970 1046 1115 1163 1615 1663

Incident Location to Upstream Sensor Distance (ft)

In
ci

de
nt

 O
cc

ur
re

nc
e

to
 U

ps
tre

am
 C

on
tro

lle
r

N
ot

ifi
ca

tio
n

Ti
m

e
(s

ec
)

Figure 4.2 Time between incident occurrence and notification to upstream controller

versus incident location to upstream sensor distance

The simulation was run for 8 hours, which generated a total of 394 experiments,

each of which concludes with the sensor network generated decision on an incident being

detected and verified. For each experiment, a warm up period of 10 minutes was used to

assure the simulated vehicle flow approach stationary condition before any incidents

were generated. Another 10 minutes were simulated to study the false alarm rate before

incidents were generated with random start times and random locations along the freeway

section after this warm up time. The detection rate was 100 percent. The false alarm rate

was measured as the ratio of the number of verified detections to 1) the total number of

detection attempts or 2) the total observation time, given that there is not an actual

incident. Thus,

 90

False alarm rate = 8 false alarms / (394*10*60/30) (number of decision intervals)

/ 8 (number of sensors)

= 0.0125%

OR

 = 8 false alarms / (394 * 10 min)

= 0.12 false alarms per hour

Time-based false alarm rates have been more commonly adopted by incident

management agencies.

4.1.3 Communication Metrics

Figure 4.3 shows the detecting-sensor-to-verifying-sensor communication time

versus incident location expressed as distance from the downstream controller. The first

three readings were due to boundary (between the sensor at the end of a cluster and the

sensor at the beginning of the next cluster) effects of the most downstream sensor. Since

the sensor had only upstream neighbors, upon incident detection, verifying queries only

needed to be sent in one direction, hence halving the communication load and thereby

achieving much lower delays. In practice, most sensors must have both upstream and

downstream sensors to verify incidents. With all other incident locations, the time metric

showed large deviations due to random message transmission latencies using the IEEE

802.11 protocol. Sensors in close range compete with each other for access to the

common wireless channel when transmitting packets. As incident detection and

verification caused multiple sensors to transmit in a close time, some messages had to

delay their transmission due to this congestion.

 91

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

817 1317 1817 2317 2817 3317 3817 4317 4817 5317 5817 6317 6817

Incident Location (ft)

De
te

ct
in

g
Se

ns
or

 to
 V

er
ify

in
g

Se
ns

or

C
om

m
un

ic
at

io
n

Ti
m

e
(s

ec
)

Figure 4.3 Detecting-sensor-to-verifying-sensor communication time versus incident

location expressed as distance from the downstream local cluster controller
Figure 4.4 shows the verifying-sensor-to-local-controller communication time

versus incident location expressed as distance from the downstream controller. The

further the verifying sensor from the local controller, the more time needed for the

notification to be relayed to the controller via multiple hops. At four incident locations,

the communication times were much higher than at other locations. These higher

communication times were due to two sensors detecting the same incident at nearly the

same time and simultaneously initiating verification transmissions that resulted in

transmission contentions and longer delays. While such events are random, they result in

large deviations in the communication time among sensors and controllers. Special cases

such as simultaneous detections must be taken into account when designing real-time

distributed control methods in such a system.

 92

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

817 1317 1817 2317 2817 3317 3817 4317 4817 5317 5817 6317 6817

Incident Location (ft)

Ve
ri

fy
in

g
S

en
so

r t
o

Lo
ca

l C
on

tro
lle

r
C

om
m

un
ic

at
io

n
Ti

m
e

(s
ec

)

Figure 4.4 Verifying-sensor-to-local-controller communication time versus incident

location expressed as distance from the downstream local cluster controller
Figure 4.5 shows the local-controller-to-upstream-controller communication time

versus incident location expressed as distance from the downstream local controller.

Since the distance between two local controllers was fixed, the communication time was

expected to be independent of incident locations. Yet, the results showed a slightly larger

delay when an incident (and therefore the detecting sensor) was closer to the local

controller. A closer inspection of the results revealed that the cause was due again to

transmission conflicts. The closer an incident was to the controller, the earlier the

controller would send a notification to the upstream controller, and the higher the chance

the message would conflict with the verification messages still being forwarded by

nearby sensors.

 93

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

817 1317 1817 2317 2817 3317 3817 4317 4817 5317 5817 6317 6817

Local Controller Distance (ft)

Lo
ca

l C
on

tro
lle

r
to

 U
ps

tre
am

 C
on

tro
lle

r
Co

m
m

un
ic

at
io

n
Ti

m
e

(s
ec

)

Figure 4.5 Local-controller-to-upstream-controller communication time versus incident

location distance expressed as from the downstream local controller

4.1.4 Regression Analysis

A linear regression analysis relating the time between incident occurrence and

notification to the upstream controller with the distance between the incident and an

upstream sensor using Statistical Analysis Software (SAS) (SAS Institute Inc. 2005) was

conducted to illustrate how the simulation results can guide the adjustment of design

parameters. As Figure 4.6 shows, the total time that an upstream cluster controller needs

to be notified increases linearly as the distance between an incident location and its

upstream sensor increases. A comprehensive examination of the results suggested that the

propagation speed of incident-generated shockwaves dominated the incident notification

time. As the distances between sensors increased, the notification time and its variance

increased, indicating that a higher sensor density would effectively enhance the detection

 94

latency and performance predictability. Understanding the extent of communication time

variations is essential for determining potential disturbances to the correct execution of

the distributed algorithms, which shall become increasingly important as the system

scales further increases. In the case study, despite their variations, communication times

were tolerable with respect to the overall incident detection time, which depended more

on the traffic flow’s shockwave propagation speeds.

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Incident Location to Upstream Sensor Distance (ft)

In
ci

de
nt

 O
cc

ur
re

nc
e

to
 U

ps
tre

am
 C

on
tro

lle
r

No
tif

ca
tio

n
Ti

m
e

(s
ec

)

Figure 4.6 Linear regression model relating the time between incident occurrence and
notification to upstream controller with the distance between incident location and

upstream sensor

4.1.5 Summary of Case Study on Integrated Simulation Platform

The author developed an integrated traffic and networking simulation platform to

facilitate the design and evaluation of online traffic surveillance system. As a case study,

a reference design for a distributed incident detection and response system using a

 95

wireless traffic sensor network was developed with a hierarchical network architecture,

with its simulation model implemented in the integrated simulator. The detection rate

and false alarm rate were assessed for a distributed detection algorithm based on a traffic

shockwave theory and distributed network collaborations, detecting and verifying the

presence of shockwaves caused by incidents. While simultaneous detections caused

unforeseen communication latency, the communication times were found to be tolerable

for the case study. Communication latency, ordering, and reliability will become more

crucial once a larger system is in place. Statistical dependency of detection performance

on sensor placement was evaluated, showing opportunities and direction for

improvement.

The integrated simulation platform presented in this study provided a valuable

tool to facilitate a detailed, objective and efficient evaluation of automatic incident

detection system. In addition, it can be applied to evaluate a wide range of online traffic

condition assessment and prediction tools involving complex traffic control strategies and

communication requirements, such as vehicle-to-vehicle and vehicle-to-infrastructure

communications as will be presented in Sections 4.3 and 4.4.

4.2 Evaluation of Communication Alternatives

This study sought to test the hypothesis that distributed communication

architecture provides better communication efficiency. The author selected important

measures of effectiveness (MOE) for making objective comparisons between alternatives

based on the performance of the communication systems related to real-time traffic

condition assessment.

 96

A case study was performed and presented in the following sections for a test

network in Greenville, South Carolina. Four communication alternatives, namely the

centralized-wired, distributed-wired, centralized-wireless and distributed-wireless,

supporting the real-time traffic surveillance system that generates data traffic with

constant bit rate were modeled using the previously developed integrated simulation

platform to generate the selected MOEs, such as throughput, delivery ratio, and

throughput cost ratios, for comparing and analyzing these alternatives.

4.2.1 Capacity of Communication Alternative for Traffic Surveillance System

The following analyses were done by varying the data rates generated by traffic

surveillance system to examine the capacity of the four alternatives. Figure 4.7 through

Figure 4.10 presents the performance measure of throughput and delivery ratio for the

communication alternatives with different architecture and medium.

Figure 4.7 shows the throughput and delivery ratio of the wired centralized

network at various data rates. The simulated centralized network ensures each camera

with a bandwidth of 1.544MHz no matter how many cameras deployed per mile. The

capacity of the T1 centralized network is 1546Kbps. The delivery ratios for data rates

under the capacity were 100%. As the data rates approach the capacity, an increasing

number of packets were dropped. The delivery ratio decreased dramatically and the

throughput remained at 1546Kbps.

 97

600

800

1000

1200

1400

1600

600 800 1000 1200 1400 1600 1800 2000 2200

Data Rate Per Camera (Kbps)

Th
ro

ug
hp

ut
(K

bp
s)

60%

70%

80%

90%

100%

110%

D
el

iv
er

y
R

at
io

Throughput Delivery Ratio

Figure 4.7 Throughput and delivery ratio of the wired centralized network

Figure 4.8 shows the throughput and delivery ratio of the wired distributed

network at various data rates. For traffic surveillance system with a density of 1 camera

per 1.5 miles, the T1 distributed network was able achieve a maximum throughput of

512Kbps at the capacity data rate of 512Kbps. When the data rate was over the capacity,

the delivery ratio decreased from 100% to 43% with data rate of 512Kbps and 1216Kbps,

respectively, and the throughput slightly increased up to 520Kpbs when the data rate is

over 960Kbps. Similarly, the wired distributed network reached maximum throughput at

capacity data rate of 256Kbps when the camera density increased to 1 camera per 0.6

mile.

 98

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Data Rate Per Camera (Kbps)

 T
hr

ou
gh

pu
t (

K
bp

s)

0%

20%

40%

60%

80%

100%

120%

D
el

iv
er

y
R

at
io

Throughput of 1 camera per 1.5 mi Throughput of 1 camera per 0.6 mi

Delivery Ratio of 1 camera per 1.5 mi Delivery Ratio of 1 camera per 0.6 mi

Figure 4.8 Throughput and delivery ratio of wired distributed network

As shown in Figure 4.9, the throughput and delivery ratio of the wireless

centralized network revealed a trend similar to that of the wired centralized network, but

achieved a smaller maximum throughput of 1252Kbps due to its assumed 1.25MHz link

bandwidth.

 99

600

750

900

1050

1200

1350

700 900 1100 1300 1500 1700 1900 2100

Data Rate Per Camera (Kbps)

Th
ro

ug
hp

ut
 (K

bp
s)

50%

60%

70%

80%

90%

100%

110%

D
el

iv
er

y
R

at
io

Throughput Delivery Ratio

Figure 4.9 Throughput and delivery ratio of wireless centralized network

Figure 4.10 shows the throughput and delivery ratio of the wireless distributed

network at various data rates. For a traffic surveillance system with a density of 1 camera

per 1.5 miles, though the system was able to achieve a maximum throughput of 435Kbps,

the delivery ratio began to drop from 100% when the data rate was 384Kbps. Therefore,

when the rate is over 384Kbps, the surveillance system might encounter considerable

delay and jitter effects. Therefore, the capacity rate for this scenario was 384Kbps. When

the camera density increased to 1 camera per 0.6 mile, the system could only support

128Kbps data rate, which is lower than the typical full motion video data rate of typical

traffic cameras. Increasing the wireless link bandwidth from 11MHz to 54MHz, which is

compatible with the IEEE 802.11g standard, can possibly enhance the capacity. Another

solution is to partition the sensors into smaller groups with each group communicating

 100

with a different radio channel, such that bandwidth contention within each group is

reduced. A feature of the wireless distributed system that differs from the other

alternatives is its decrease in throughput upon reaching a peak value due to the increased

random transmission collision at high per-device transmission rates.

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800

Data Rate Per Camera (Kbps)

Th
ro

ug
hp

ut
 (K

bp
s)

0%

20%

40%

60%

80%

100%

120%

D
el

iv
er

y
R

at
io

Throughput of 1 camera per 1.5 mi Throughput of 1 camera per 0.6 mi
Delivery Ratio of 1 camera per 1.5 mi Delivery Ratio of 1 camera per 0.6 mi

Figure 4.10 Throughput and delivery ratio of a wireless distributed network

4.2.2 Cost Effectiveness of Communication Alternatives

In order to assess the cost effectiveness of different communication alternatives,

the author selected and examined the throughput to communication infrastructure

deployment cost ratio as the performance measures.

For cost analysis, installation and operation costs for the different communication

infrastructures have been estimated with best effort according to vendor advertisements

 101

and are summarized in Table 4.1. The cost of various resources including FHWA ITS

online database (USDOT 2007), communication device vendors and communication

service carriers, were converted into 2007 dollars using an inflation rate of 3%. In order

to calculate the throughput cost ratio, the costs were further converted to dollar per

operation second based on the life cycle of devices and operation schedule of a traffic

surveillance system.

Table 4.1 Cost Estimate in 2007 Dollar of the Communication Infrastructure

Unit Cost Installation
Cost

O&M Cost
($/year) Element

Life-
time

(years) Low High Low High

Fiber Optical Cable 20 172/100ft 5000 15000 1000 2000
Transmitter 10 1000 4000 150 250
Optical Regenerator 10 Optional Optional

Wired
Distributed/
Centralized

Optical Receiver 10 800 1200 150 250

Wireless
Distributed Wireless Access 20 400 1000 200 900 1000

Monthly Service 60 140 Wireless
Centralized Modem 10 200 400 50 150

The throughput to cost ratios of four communication alternatives are computed

and presented in Figure 4.11. The wired alternatives were less cost effective than the

wireless ones; particularly for a camera density of one camera per one and a half miles,

the wireless centralized and distributed has comparable cost effectiveness for camera

rates up to 480 Kbps, where the distributed throughput saturates. With the centralized

solution, per-camera rates can be as high as 1400 Kbps. The wireless distributed network,

however, increases its cost-effectiveness as the density of supported devices increases.

The per-camera capacity reaches the inflection point at a capacity of 480 Kbps.

 102

http://www.dealtime.com/xPO-Cisco-802-11G-UPG-RADIO-MOD-FOR-AP1200-AP1100-FCC

Compared to the wireless alternatives, the per-camera rates in wired-centralized networks

can be 1700Kbps, while the same rates reach the maximum capacity of 512 Kbps in

wired distributed networks.

Figure 4.11 Throughput to cost ratio of different network architectures

0

400

800

1200

1600

2000

0 100 200 300 400 500 600 700 800 900 1000

Data Rate Per Camera (Kbps)

Th
ro

ug
hp

ut
 C

os
t R

at
io

 (M
ag

aB
yt

es

2400

2800

/D
ol

la
r)

Wired Distributed Network Wired Centralized Network
Wireless Distributed Network Wireless Centralized Network

Total Cost = Data Rate Per Camera * Number of
Cameras / Throughput Cost Ratio Increase until reach

capacity of 1400Kbps

Increase until reach
capacity of 1700Kbps

Reach maximum at
capacity of 512Kbps

Reach inflection point
at capacity of 384Kbps

Figure 4.12 shows the throughput-to-cost ratio for different camera densities for

the wireless distributed system. The ratio increases substantially when the density

increases, and the optimal density depends upon the desired camera data rate. If the

expected data rate is low while the density is high, a wireless distributed solution is

economically more preferable. The throughput-to-cost ratio also increases if higher rates

with IEEE 802.11g are achievable in the field.

 103

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800

Data Rate Per Camera (Kbps)

Th
ro

ug
hp

ut
 C

os
t R

at
io

 (M
eg

aB
yt

es
/D

ol
la

r)

1 Camera Every 1.5 Miles 1 Camera Every 1 Mile
1 Camera Every 0.6 Mile 1 Camera Every 0.3 Mile

Figure 4.12 Throughput to cost ratio of wireless-distributed network

4.2.3 Efficiency of Communication Alternatives during Incidents

For the study scenario with incidents, the vehicular traffic simulator generated

incidents with random occurrence times, locations and durations on the segments under

surveillance of traffic cameras during the AM peak period through PARAMICS

Programmer’s API interface. The duration of incidents directly affects the

communication cost in terms of data rate, which can be altered by the ns-2 during the

simulation. In a centralized system, each device continuously generates constant rate

data at the rate of 384Kbps no matter there is an incident or not. On the contrary, in a

distributed system, the devices send stationary images with a consequent date rate of

24Kbps to the controlling center at a low frequency during the normal condition. Once an

 104

incident is identified or suspected, the corresponding traffic camera transmits full motion

videos with a data rate 384Kbps to control center. Within the two-hour simulation period,

throughputs of centralized and distributed system for various incident durations were

examined to compare their communication costs.

As evident in Figure 4.13, the centralized and distributed wireless systems

revealed significant differences in throughput during the simulated peak vehicular flow

period. The solid line that represents the centralized system maintains a high throughput

of 384Kbps throughout the entire period. Conversely, the dashed line indicates that the

average the throughput of distributed network increases linearly as the incident duration

increases. The reason is because the incident duration determines the portion of time that

needs high data rate. While Figure 4.13 only displays the results for wireless distributed

and centralized alternatives, similar results were found when analyzing the throughput

difference between wired distributed and centralized alternatives with the incidents

occurred.

 105

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

Incident Duration (Min)

Th
ro

ug
hp

ut
 (K

bp
s)

Wireless
Distributed

Wireless
Centralized

Figure 4.13 Throughput of centralized and distributed networks during an incident

4.2.4 Summary on Evaluation of Communication Alternatives

The presented study attempted to establish the advantage of distributed

architecture in terms of communication efficiency by evaluating the performance of

different communication alternatives under different traffic demands and conditions. The

results showed that the wired alternatives are less cost effective than the wireless ones in

both centralized and distributed communication topologies. For the particular camera

density (1 camera per 1.5 miles), the wireless centralized and distributed alternative has

comparable cost effectiveness before per camera rate goes up to saturation throughput.

The wireless-distributed network, however, increases its cost-effectiveness as the density

of supported devices increases. Throughput-to-cost ratio for different camera densities

 106

increases substantially when the density increases, and the optimal density depends upon

the desired data rate. Therefore, a wireless-distributed solution will be economically

more preferable if the expected data rate is moderate while the camera density is high. In

addition, the distributed architecture outperformed the centralized architecture in terms of

savings in communication costs as minimum amount of data was transferred during

normal vehicular traffic condition.

4.3 Traffic Condition Assessment Framework

The author developed a VII simulation model with a SVM-based intelligent

algorithm for incident detection. Using the individual vehicle dynamics measured by each

VII-enabled vehicle, the intelligent incident detection algorithm was tested for its ability

to identify the occurrence, locations and severity of a highway incident. As a case study,

the following sections present the implementation details and evaluation results of the

proposed VII model on a calibrated and validated simulation network in Spartanburg,

South Carolina. The RSUs were placed at every interchange with many wireless repeater

placed between them to forward messages between vehicles and infrastructure devices, as

well as between infrastructure devices and infrastructure devices. The intelligent

algorithm SVM was implemented in each VII-enabled vehicle to classify traffic

conditions. The RSU detected incidents of the highway segments by collecting and

assessing the traffic condition estimations from individual vehicles.

The selected MOEs for incident detection capabilities include detection and false

alarm rate, detection time, accuracy of prediction on incident locations and number of

 107

lanes blocked by incidents. The communication metrics, such as latency and delivery

ratio, of the VII model were also examined and presented.

4.3.1 Parameter Adjustments for the SVM Algorithm

An important step in developing an SVM algorithm involves determining the

optimal parameters for the algorithm. Figure 4.14 shows the grid searching efforts for

optimal parameters (cost coefficient C and kernel function parameterγ) in a range of

C=2-5~215 and γ =2-15 ~ 23 with a contour map. Each contour line represents a specific

combination of C and γ that produces the same prediction accuracy in percentage

(shown as numbers in each contour line). The contours were used to identify the

parameter combination that yielded the highest prediction accuracy. As shown in Figure

4.14, when [C, γ] falls within a triangle area, a greater than 95% prediction accuracy rate

is achieved. The program determined that the optimal parameter was in the C=25 and

, which gave a cross validation prediction accuracy rate of 98.04%. 12−=γ

 108

Figure 4.14 Prediction accuracy contour of parameters combination for developed

SVM algorithm

The authors performed a sensitivity analysis between the threshold number of

alarms from vehicles (it) and the maximum accumulation time (tmax) in relation to the

detection rate (D_rate) and the false alarm rate (F_rate in terms of false alarms per hour)

for incidents blocking one lane. As Table 4.2 shows, it and tmax affect the incident

detection performance of the proposed VII system. Lower selected threshold number of

alarms and longer maximum accumulation times will result in increase in both detection

rates and false alarm rates. The detection rate for percentage of VII-enabled vehicles over

15% is not affected by changes in it and tmax, while the false alarm rate might increase

significantly. The sensitivity analysis indicated that it = 3 and tmax = 3 min can achieve a

reasonable tradeoff between detection rate, and false alarm rate.

 109

Table 4.2 Sensitivity Analysis of Threshold Number of Alarms by Vehicles and

Maximum Accumulation Time by Infrastructure Agents
 Penetration Rate it

tmax

(min) 5% 10% 15% 20% 25% 30%
F_rate 0.06 0.12 0.6 0.84 0.9 1.2 2 3 D_rate 86% 99% 100% 100% 100% 100%
F_rate 0.06 0.18 0.72 0.9 1.02 1.32 2 5 D_rate 87% 100% 100% 100% 100% 100%
F_rate 0 0.06 0 0.18 0.3 0.3 3 3 D_rate 72% 96% 100% 100% 100% 100%
F_rate 0 0.06 0.18 0.18 0.3 0.36 3 5 D_rate 73% 96% 100% 100% 100% 100%
F_rate 0 0.06 0 0.06 0.06 0.06 4 3 D_rate 53% 93% 100% 100% 100% 100%
F_rate 0 0.06 0 0.06 0.18 0.12 4 5 D_rate 62% 93% 100% 100% 100% 100%

4.3.2 Incident Detection Performance the VII Model with SVM Algorithm

4.3.2.1 Comparison of the SVM Algorithm and California Algorithm

 The authors applied a well known incident detection algorithm known as

California Algorithm #7 (Payne and Tignor 1978) in the same test network as used in the

development of the SVM algorithm. The incident detection performance of these two

incident algorithms were compared in the following analysis.

 110

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1 1.2 1.4

False Alarm Rate (false alarm per hour)

D
et

ec
tio

n
R

at
e

California Algorithm #7 SVM Algorithm

Figure 4.15 Comparison of California and SVM Algorithm for detection rate and false
alarm rate

As shown in Figure 4.15, the SVM algorithm is superior over the California #7 in

terms of detection rate and false alarm rate under identical traffic conditions. The

developed SVM achieved a 100% detection rate at very low false alarm rate, while the

California algorithm approached 100% detection rate with the cost of substantial

increases for the high false alarm rate.

 111

0

50

100

150

200

250

800 1200 1600 2000 2400 2800 3200

Link Volume (veh/hour)

D
et

ec
tio

n
Ti

m
e

(s
ec

on
d)

SVM Algorithm California Algorithm #7

Figure 4.16 Comparison of California algorithm and SVM algorithms for detection time

Figure 4.16 presents the detection time of the California algorithm and SVM

algorithm under various traffic volumes. The detection time of both the California and

SVM algorithm decrease as link volume increases, but the effects diminish when the link

volume is over 2400 veh/hour. The detection times of SVM algorithm are much less than

that of the California algorithm under all traffic conditions. Note that the SVM algorithm

assumed a 20% penetration rate. The California algorithm used the parameter sets that

can achieve a 92% detection rate and a 0.5 false alarm per hour for calibration data sets.

The actual detection rate varies between 80% and 92%, while the false alarm rate varies

in a range between 0.12 and 0.6 false alarm per hour. The traffic detector density is

 112

approximately 1 detector every quarter mile. As the detector density decreases, the

detection time is expected to increase.

4.3.2.2 Incident Detection Rate and False Alarm Rate of the VII Model

As is evident in Table 4.3, the results on detection rates and false alarm rates are

encouraging. Even with a penetration rate is as low as 5%, the SVM incident detection

algorithm can achieve a detection rate between 75% and 100% depending on the number

of lanes blocked by incidents. When the penetration rate is above 15%, almost all

incidents were detected by the VII incident detection system. The false alarm rate slightly

increased as the penetration rate increased but was still within the acceptable range,

which were 10 false alarms per hour reported by a nation wide survey of the real time

traffic management agencies (Martin et al. 2001). However, the false alarm rate will

increase as the network size increases. The detection rate was the percentage of incidents

correctly detected by the proposed VII system over the total number of incidents that

occurred. The false alarm rate was the number of false alarms per hour reported by the

system in which no actual incidents occurred.

Table 4.3 Detection Rate and False Alarm Rate of the VII Model
 Penetration Rate

 5% 10% 15% 20% 25% 30%

Detection Rate incidents blocking
one lane 75% 89% 99% 100% 100% 100%

 incidents blocking
two lanes 98% 99% 100% 100% 100% 100%

 incidents blocking
three lanes 100% 100% 100% 100% 100% 100%

False Alarm Rate
(false alarms per hour) 0.00 0.00 0.00 0.00 0.00 0.10

 113

Table 4.4 shows the detection rate and the false alarm rate under for the SVM

incident detection algorithm with 20% VII-enabled vehicles under various traffic

volumes. When the penetration rate is as high as 20%, the detection rate maintains 100%

for any vehicular traffic volume except 800 vehicles per hour. However, as the link

volume increased to over 2400 vehicles per hour, the false alarm rate increased

considerably. This increase was due to the fact that the incident identification mechanism

implemented in the RSU was designed and tuned up for the moderate to low traffic

volumes. As the traffic volume increases, the parameter sets should be adjusted

accordingly. The two parameters, which have a significant effect on the detection

performance, are the threshold number of alarms (it) from vehicles to signal an incident

and the number of VII-enabled vehicles whose data are used by RSUs to assess traffic

conditions.

Table 4.4 Detection Rate and False Alarm Rate of the VII Model with 20% VII-enabled
Vehicles for Different Traffic Volumes

 Link Volume (veh/hr)
 800 1200 1600 2000 2400 2800 3200

Detection Rate incidents blocking
one lane 93% 100% 100% 100% 100% 100% 100%

 incidents blocking
two lanes 100% 100% 100% 100% 100% 100% 100%

 incidents blocking
three lanes 100% 100% 100% 100% 100% 100% 100%

False Alarm Rate
(false alarms per
hour)

 0.00 0.00 0.00 0.00 0.10 0.50 0.85

 114

4.3.2.3 Incident Detection Time of the VII Model

Figure 4.17 presents the detection time for different penetration rates of VII-

enabled vehicles to detect incidents blocking one, two and three lanes. The boxes in

Figure 4.17 indicate the mean detection time and the upper and lower limit of the bars

show the range of expected detection with 95% confidence level. More severe incidents,

in terms of greater number of lanes blocked, will be detected faster as they quickly affect

more traveling vehicles. Thus, there is a higher chance for VII-enabled vehicles to detect

them. Detection time decreases as penetration rate increases, but the extra benefits

diminish, as the penetration rate is larger than 25%. When the penetration rate is as low

as 15%, the detection time of the proposed VII system is comparable or superior to most

existing AID algorithms.

0

50

100

150

200

250

300

5% 10% 15% 20% 25% 30%

Penetration Rate

D
et

ec
tio

n
Ti

m
e

(s
ec

on
d)

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.17 Incident detection time of the VII Model with various penetration rates of

VII-enabled vehicles

 115

 Figure 4.18 shows the detection time of the SVM incident detection algorithm for

different traffic volumes in the study segment with a 20% VII-enabled vehicle on the

link. The peak hour traffic volume on the study segment was 1600 vehicles per hour, so

the authors varied this value within a range of -50% to +200% to represent dynamic

characteristics of a traffic network. As shown in Figure 4.18, an increase in traffic

volume will have a positive impact on the detection time with the increase in the number

of VII-enabled vehicles. However, after the traffic volume increases to a threshold level

for incidents blocking one, two and three lanes, the detection times do not differ

significantly.

0

20

40

60

80

100

120

140

800 1200 1600 2000 2400 2800 3200

Link Volume (vehecle/hour)

D
et

ec
tio

n
Ti

m
e

(s
ec

on
d)

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.18 Incident Detection Time of the VII Model with 20% VII-enabled Vehicles

for Different Traffic Volumes

 116

4.3.2.4 Prediction on Number of Lanes Blocked

As explained in section 3.3.3, the proposed VII model developed the functionality

of predicting the number of blocked lanes due to incidents. Figure 4.19 shows the

accuracy of such predictions on the number of lanes blocked by incidents. The prediction

accuracy for incidents blocking two or three lanes increased as the percentage of VII-

enabled vehicles increased. On the other hand, the prediction accuracy for incidents

blocking one lane increased as the penetration rate increased from 5% to 10%, and the

accuracy kept decreasing as the penetration further increased.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

5% 10% 15% 20% 25% 30%

Penetration Rate

A
cc

ur
ac

y
of

 P
re

di
ct

io
n

on
 N

um
be

r o
f L

an
es

 B
lo

ck
ed

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.19 Prediction accuracy on number of lanes blocked of the VII model with

various penetration rates of VII-enabled vehicles

 117

 Figure 4.20 shows an example of the distribution of prediction on number of lanes

blocked for VII system with 15% VII-enabled vehicles. The different pattern in each

vertical bar represents the percentage of predicted specific number of lanes blocked by

incidents over the total number of that type of incidents occurred. For example, the left

bar shows that for the incidents actually blocking one lane, around 63% are correctly

predicted as such, while 30% and 7% are wrongly predicted as incidents blocking two or

three lanes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

incidents blocking one
lane

incidents blocking two
lanes

incidents blocking three
lanes

Pe
rc

en
ta

ge
 o

f P
re

di
ct

io
ns

 o
n

N
um

be
r

of
 L

an
es

 B
lo

ck
ed

Pedict one lane blocking Pedict two lanes blocking Pedict three lanes blocking

Figure 4.20 Distribution of prediction on number of lanes blocked of the VII model with

15% VII-enabled vehicles

Figure 4.21 shows the prediction accuracy of the number of lanes blocked for

different traffic volumes with 20% of the vehicles in the network VII-enabled. The lane

blockage prediction did not work well. As the link volume is over 3200 vehicle/hour, the

 118

prediction accuracy for incidents blocking one or two lanes dropped to under 30%. The

model predicting lane blockage accurately for incidents blocking three lanes as the model

was bias due to overestimation of the number of lanes blocked. Therefore, if the model

predicts that one lane is blocked by an incident, it is very likely to be a minor incident

blocking one lane.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

800 1200 1600 2000 2400 2800 3200

Link Volume (vehecle/hour)

A
cc

ur
ac

y
of

 P
re

di
ct

io
n

on
 N

um
be

r o
f L

an
es

B

lo
ck

ed

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.21 Prediction accuracy on number of lanes blocked of the VII model with 20%

VII-enabled vehicles for different traffic volumes

4.3.2.5 Prediction on Incident Location the VII Model

 As shown in Figure 4.22, most predicted incident locations were within 1000 feet

of the actual incident sites. There were more cases of the predicted locations downstream

of the actual location because many vehicles were not able to detect the incident prior to

 119

passing the incident scene. Note that the VII model predicted the incident location based

on the locations where VII-enabled vehicles reported an abnormality. To achieve a low

false alarm rate, many vehicles only detected an abnormality after traveling great

distances from the incident site. A possible improvement involves the use of the location

with the lowest speed instead of the reported location to predict incident locations.

3000

4000

5000

6000

7000

8000

9000

10000

3000 4000 5000 6000 7000 8000 9000 10000

Actual Incident Location (feet)

Pr
ed

ic
te

d
In

ci
de

nt
 L

oc
at

io
n

(fe
et

)

Figure 4.22 Prediction on incident location of the VII model

As shown in Figure 4.23, the RMSEPs of prediction on incident locations varied

little with various penetration rates of VII-enabled vehicles for incidents blocking

different numbers of lanes. The RMSEP falls within the range of 7% and 10.5%.

 120

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

5% 10% 15% 20% 25% 30%

Penetration Rate

R
M

SE
P

of
 P

re
di

ct
io

n
on

 In
ci

de
nt

 L
oc

at
io

n

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.23 RMSEP of prediction on incident locations of the VII model with various

penetration rates of VII-enabled vehicles

 Figure 4.24 shows the RMSEPs of prediction on incident locations of the VII

model with 20% VII-enabled vehicles for different traffic volumes. As expected, there

was no significant difference in the prediction accuracy in terms of RMSEP among

various traffic volumes. Here, the RMSEP varied between 5.4% and 10.2%.

 121

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

800 1200 1600 2000 2400 2800 3200

Link Volume (vehecle/hour)

R
M

SE
P

of
 P

re
di

ct
io

n
on

 In
ci

de
nt

 L
oc

at
io

n

incidents blocking one lane incidents blocking two lanes incidents blocking three lanes

Figure 4.24 RMSEP of prediction on incident locations of the VII model with 20% VII-

enabled vehicles for different traffic volumes

4.3.3 Communication Metrics of the VII Model

As shown in Figure 4.25, the number of packets sent increased linearly as the

percentage of VII-enabled vehicles increased. On the other hand, the delivery ratios

maintained a very high rate, which is close to 100%, regardless of the penetration rate.

This guarantees the reliable operation of the proposed VII system.

 122

0

200

400

600

800

1000

1200

1400

5% 10% 15% 20% 25% 30%

Penetration Rate

N
um

be
r o

f P
ac

ke
ts

99.965%

99.970%

99.975%

99.980%

99.985%

99.990%

99.995%

100.000%

100.005%

100.010%

D
el

ev
er

y
R

at
io

Number of Packets Sent

Delivery Ratio

Figure 4.25 Number of packets sent and the delivery ratio of the VII model with various

penetration rates of VII-enabled vehicles

Figure 4.26 shows the number of packets sent and the delivery ratio of the VII

model with 20% of the vehicles VII-enabled for different traffic volumes. Since the

number of packets sent is similar to that in Figure 4.25, the delivery ratios also maintains

a high rate of close to 100% for any traffic volume. To detect the capacity of the

communication network, more VII-enabled vehicles are needed.

 123

0

200

400

600

800

1000

1200

1400

1600

1800

800 1200 1600 2000 2400 2800 3200

Link Volume (vehecle/hour)

N
um

be
r o

f P
ac

ke
ts

99.94%

99.95%

99.96%

99.97%

99.98%

99.99%

100.00%

100.01%

D
el

ev
er

y
R

at
io

Number of Packets Sent

Delivery Ratio

Figure 4.26 Number of packets sent and the delivery ratio of the VII model with 20%

VII-enabled vehicles for different traffic volumes

 Figure 4.27 presents the communication latency for transmitting a packet from a

vehicle to a RSU. The lower limit of latency for vehicles to send a message at specific

location was dependent on the number of hops a packet must travel for a vehicle to RSU.

Both the mean and variation of latency increased as the distance between the vehicle and

the RSU increased. This is because as the vehicle was far away from the RSU, there were

more number of hops the packets needed to pass by, which resulted in an increase in the

time needed for transmission and presented higher risks to encounter collision and

retransmission.

 124

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000 7000 8000

Distance Between Vehicle and RSU (feet)

La
te

nc
y

(s
ec

on
d)

Figure 4.27 Communication latency of the VII model

4.3.4 Summary on Traffic Condition Assessment Framework

This section presents an analysis of the performance of a VII model on assessing

real-time traffic conditions. The evaluation of the VII model, on a simulated network in

Spartanburg, South Carolina using the integrated simulator, revealed that the SVM

algorithm within the in-vehicle module successfully classified traffic conditions into three

categories (normal conditions, passing a possible incident scene, and stopped in the

queue) by using the vehicle kinetics data, such as speed profiles and lane changing

behaviors. The RSU then reliably assessed different types of incidents, such as incidents

blocking one or more lanes, with alerts from several vehicles on a selected time window.

The incident detection and false alarm rates were quite encouraging. The detection time

 125

was also superior to most existing automatic incident detection algorithms. In addition,

the prediction on incident locations will be useful for the incident response team to

identify incidents in the field. However, the prediction accuracy on the number of lanes

blocked was by an incident was not satisfactory.

The study also found that the detection time decreased as percentage of the VII-

enabled vehicles of the total traffic increased, but the extra benefits diminish as the

proportion is greater than 25%. When the percentage of VII-enabled vehicles was as low

as 15%, the detection time of the VII model was comparable or superior to most of the

existing AID algorithms reported in the literature.

4.4 Online Travel Time Prediction Using VII Model

The author developed an online travel time prediction system by incorporating

different traffic data, such as link travel time and traffic densities, from VII-enabled

vehicles and the use of SVR in parameter estimation. A VII simulation model with the

functionality of online travel time prediction was implemented and tested in calibrated

and validated traffic simulation network in Greenville, South Carolina. The travel time

prediction was performed on a highway corridor 11 miles long with 6 interchanges. The

RSU placed at the each interchange was responsible for collecting travel time and traffic

volume from each VII-enabled vehicle within its supervised segment. All data were

aggregated at a master controller that performed SVR algorithms to predict the travel

time of vehicles departing the start point at the next time step.

 126

The prediction performance of the VII model is presented in the following

sections in terms of selected MOEs, such as MARE, SRE and RMSEP, which were

defined in section 3.3.4.

4.4.1 Travel Time Pattern at the Tested Network

The training and tested data used in this study were travel time data generated by

a PARAMICS traffic simulation model of a freeway network in Greenville, South

Carolina. In order to examine the performance of online travel time perdition algorithm

using a VII model, a sequence of afternoon peak periods with recurrent congestion were

generated by varying the travel demand profile. As shown in Figure 4.28, a wide range of

variations exist in travel time patterns of ten weekdays with five different traffic demand

inputs. Those travel time data created a test environment that included different traffic

conditions. Note that the same traffic demand inputs may result in different travel time

pattern due to the random nature of the microscopic traffic simulation.

 127

0

500

1000

1500

2000

2500

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e

(s
ec

on
ds

)
 Day 1
 Day 2
 Day 3
 Day 4
 Day 5
 Day 6
 Day 7
 Day 8
 Day 9
 Day 10

Figure 4.28 Travel time pattern with different demand inputs

4.4.2 Adjustment of the SVR Travel Time Prediction Model

4.4.2.1 Identifying the Parameters for SVR Model

 Besides the cost coefficient C and kernel function parameterγ , an additional

important parameter was introduced in the SVR model: ε in loss function of epsilon-

SVR. Similar to identifying the optimal parameters combination procedure for SVM

algorithm, the author again applied the grid searching technique.

Figure 4.29 shows the grid searching efforts for optimal parameters (cost

coefficient C, kernel function parameterγ and loss function parameter ε) in a range of

C=20~210, γ =2-2 ~ 28, and ε =20~210 with a sliced contour map. Each contour line

 128

represents a specific combination of C, γ and ε that produces the same prediction

performance in terms of mean squared error (MSE). The contours were used to identify

the parameter combination that yielded the highest prediction accuracy. As shown in

Figure 4.29, when [C, γ , ε] falls within a triangle area at level of C=8, MSE equal or

lower than 5000 can be achieved. The program determined that the optimal parameter

was in the C=28, and , which gave a MSE value of 2411. 42=γ 42=ε

Figure 4.29 Prediction performance contour map of parameter combinations of the

developed SVR model

 129

4.4.2.2 Smoothing the Predicted Travel Time

Figure 4.30 (a) and (b) presents an original and smoothed travel prediction for one

afternoon peak period with recurrent congestion, respectively. As shown in Figure 4.30,

the smoothing functions reduced the variation of the predicted travel time, which resulted

in a positive effect on SRE. Further analysis revealed that smoothing also improves the

MARE and RMSEP.

0

200

400

600

800

1000

1200

1400

1600

1800

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e

(s
ec

on
d)

Actual Travel Time
Predicted Travel Time

(a)

 130

0

200

400

600

800

1000

1200

1400

1600

1800

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e

(s
ec

on
d)

Actual Travel Time
Predicted Travel Time

(b)

Figure 4.30 Original (a) and smoothed (b) travel time prediction on an afternoon peak
period with recurrent congestion

 In order to identify the optimal smoothing factors adopted in the smoothing

function, a sensitivity analysis was conducted to examine the performance of smoothed

travel time prediction with different smoothing factor options. As shown in Figure 4.31,

7-3-0 and 7-2-1 are superior over other options. 7-2-1 yielded the highest accuracy while

7-3-0 retained the variation minimum. The author selected 7-2-1 as the smoothing factor

for this study. Note that the 3 numbers connected by hyphen repented 3 parameters in the

smoothing function as specified in section 3.3.3. For example, 7-2-1 means the smoothed

travel time prediction will be the sum of 70% of current predicted travel time plus 20% of

 131

one time step ago predicted travel time plus 10% of two time steps ago predicted travel

time.

4.92%

4.94%

4.96%

4.98%

5.00%

5.02%

5.04%

5.06%

5.08%

5.10%

10-0-0
(Orginal)

5-3-2 6-3-1 7-3-0 7-2-1 8-2-0 8-1-1 9-1-0 9-0.5-0.5

Smoothing Factor Options

M
A

R
E

: M
ea

n
A

bs
ol

ut
e

R
el

at
iv

e
E

rro
r

2.02%

2.03%

2.04%

2.05%

2.06%

2.07%

2.08%

2.09%

S
R

E
: S

ta
nd

ar
d

D
ev

ia
tio

n
of

 R
el

at
iv

e
E

rro
r

MARE
SRE

Figure 4.31 MARE and SRE of travel time prediction with different smoothing factors

4.4.3 SVR Algorithm for Travel Time Prediction

4.4.3.1 Comparison of SVR with Other Travel Time Prediction Model

 Figure 4.32 showed an example of travel time prediction using the instantaneous

prediction model, which was developed as a base line model for comparison with the

SVR model. As shown in Figure 4.32, while the instantaneous predictive model worked

well during non-congested period, there was a lag between the actual and predicted time

during congestion. This was because the instantaneous model suffered from the

 132

assumption that the travel times of vehicles departing from the start point at the specific

time point would not vary significantly from the travel times of vehicles arriving at the

end at the same time point, while the travel time changed frequently during congestion.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e

(s
ec

on
d)

Actual Travel Time
Predicted Travel Time

Figure 4.32 Travel time prediction using instantaneous prediction model

As shown in Table 4.5, the SVR model was much better than the instantaneous

model in terms of the selected MOEs such RMSEP and MARE. There was little bias in

the prediction for the SVR model while the MRE was close to 0, while the instantaneous

model predicted a overall of 2.23% longer travel time than the actual travel time. Both

RMSEP and MARE indicated that SVR model had much better accuracy than the

instantaneous model. In addition, instantaneous model had a larger variation in its

 133

prediction. The comparison of original and smoothed SVR, also in Table 4.5, show the

smoothed model to be slightly superior over the original model in every aspect.

Table 4.5 Performance of SVR and Instantaneous Travel Time Prediction Models

Model RMSEP MRE MARE SRE

SVR (original) 8.35% 0.13% 5.03% 2.07%

SVR (smoothed) 8.26% 0.09% 4.98% 2.05%

Instantaneous 22.95% 2.23% 13.91% 7.35%

The SVR model developed in this dissertation was compared other reported travel

time prediction model in the literature. As shown in Table 4.6, MARE between 4 and 6

can be considered to be superior and the developed SVR model is among the best.

However, one should note that some models were not suitable for online prediction, as

with the application of an SVR model to time series prediction on travel times, which

generated very low MARE values without specifying the input time window (Wu et al.

2004). For a network 219 miles long, the travel time available at each time point was the

one departed long time ago. It must be acknowledged that these prediction results varied

greatly with the network length, traffic congestion level and travel time data availability

and quality. Most other models used traditional travel time measurement tools, such as

dual loop and cameras, which may be unreliable and need extra effort to deal with (Van

Lint 2006). Many researchers applied ANN, which required large data sets for training, a

very time consuming process not easily adaptable to ever changing traffic conditions.

Conversely, SVR only requires a relative small size of data for training and can be

updated to adapt to new scenarios easily. In addition, SVR is also advantageous in that its

 134

structural risk minimization (SRM) mechanism that always ensures a return of the global

minimum, whereas the empirical risk minimization (ERM) mechanism of ANN cannot

guarantee the global minima (Vapnik 1995).

Table 4.6 Comparison of SVR Model with Other Models Reported in Literature

Model MARE
(%)

Network
Length
(mile)

Data
Source

Training
Data Set

Testing
Data Set

SVR (this study) 5.0 11 VII 20 Peaks 20 peaks

FNN (Innamaa 2007) 4.6-4.9 6.3-17.5 Dual loop /
Camera 4 months 2-3 weeks

SSNN (Van Lint 2006) 5.4 8.1 Dual loop 1071 peaks 118 peaks

SVR (Wu et al. 2004) 1.0-4.4 28-219 Dual loop 28 days 7 days

FNN (Huisken and
Van Berkurn 2003) 4.6 6.3 Dual loop 13 peaks

Linear regression
(Zhang and Rice 2003) 6-11 6.3 Dual loop /

Probe Veh. N/A 20 days

Kalman filter (Park and
Rilett 1998) 6.2 17.3 AVI 131 days 100 days

Spectral FNN (Park et
al. 1999) 7.2 17.3 AVI 131 days 100 days

Modular FNN (Park
and Rilett 1998) 8.1 17.3 AVI 131 days 100 days

Regular FNN (Park
and Rilett 1998) 9.0 17.3 AVI 131 days 100 days

Note: SSNN = state-space neural network; FNN = feed-forward neural network

4.4.3.2 SVR Travel Time Prediction with Different Penetration Rate

Figure 4.33 shows the MARE and SRE of the travel time prediction using VII

model with different penetration rates. The increased number of VII-enabled vehicles

positively affects the prediction accuracy and variation. When the penetration rate is low,

the travel time and traffic volume data collected from VII-enabled vehicles, which were

treated as a sample of the traffic population, becomes unreliable; the sample size is too

 135

small and the deviation of measurement from the population is too high. As the

penetration increases, the positive effects diminish with 20% to 25% of VII-enabled

vehicles being good enough to yield accurate and reliable travel time prediction.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

5% 10% 15% 20% 25% 30%

Penetration Rate

M
A

R
E

: M
ea

n
A

bs
ol

ut
e

R
el

at
iv

e
E

rro
r

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

S
R

E
: S

ta
nd

ar
d

D
ev

ia
tio

n
of

 R
el

at
iv

e
E

rro
r

MARE
SRE

Figure 4.33 MARE and SRE of travel time prediction with different penetration rates

T-test for the difference in the average of actual and predicted travel time to

conducted to further examine the accuracy of the prediction. As shown in Figure 4.34, the

percentage of predictions that have no significant difference with the actual travel time

generally increases as different penetration rates increases. As the penetration rates are

greater than 25%, more than 80% of the prediction will have no significant difference

with the actual travel time.

 136

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0% 5% 10% 15% 20% 25% 30% 35%

Penetration Rate

Pe
rc

en
ta

ge
 o

f P
re

di
ct

io
ns

 w
ith

ou
t S

ig
ni

fa
nt

D

iff
er

en
ce

 fr
om

 A
ct

ua
l V

al
ue

Figure 4.34 Percentage of predictions with no significant difference from actual travel

time with different penetration rates

4.4.3.3 Performance of SVR Travel Time Prediction Model during Incident

Many ANN travel time prediction models failed to perform well during incident

due to the rarity and insufficiency of non-recurrent congestion used to train the ANN

model. However, SVR algorithm predicts travel times based upon vehicles with VII-

enable systems that measure travel time and traffic volumes, which remain unaffected by

congestion caused by either bottlenecks or incidents.

As shown in Figure 4.35, the developed VII model can predict the travel time for

normal traffic conditions and traffic conditions during incidents. The diamond indicates

 137

that the predicted travel time for normal condition and the traffic jams commenced at

approximately 18:00 and lasted for approximately one hour and 45 minutes. Once an

incident blocking two lanes for 30 minutes occurred at 16:35, the travel time pattern

changed significantly. However, the SVR model was still able to accurately provide a

good real time estimate of actual travel time.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

16:00 17:00 18:00 19:00 20:00 21:00 22:00

Departure Time

Tr
av

el
 T

im
e

(s
ec

on
d)

Actual Travel Time during Incident

Predicted Travel Time during Incident

Actual Travel Time for Normal

Predicted Travel Time for Normal

Figure 4.35 Travel time prediction in both normal traffic conditions and during incident

4.4.4 Summary on Travel Time Prediction

This study elucidated encouraging results of travel time predictability using both

the VII system and SVR. The developed travel time prediction model outperformed the

simple instantaneous prediction model, and the accuracy, in terms of MARE, of the

 138

presented SVR model was among the best of the reported results in the literature.

However, specific MOEs may be sensitive to variations in network characteristics

between this and other sites. The smoothing function was found to be beneficial for both

the accuracy and variation of the travel time prediction model. Additionally, increasing

the penetration rate of VII-enabled vehicles was shown to positively affect accuracies and

variations of the prediction. Unlike other prediction models, the proposed model

performed fairly well even during non-recurrent congestion delays.

 139

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The first part of this chapter presents conclusions developed based upon the

results of analysis. The section, following the conclusions, presents recommendations for

use of this research and further study on the areas covered in this dissertation.

5.1 Conclusions

This dissertation presented a real-time traffic condition assessment and prediction

framework using vehicle-infrastructure integration (VII) system with computational

intelligence. As a platform in support of the design and evaluation of the simulation

model of such a framework, an integrated traffic and communication simulator was

developed. Using this integrated simulation platform, various communication alternatives

with combinations of distributed or centralized architecture and wired or wireless

medium were evaluated to facilitate selection and design of appropriate processing and

networking architecture for the proposed VII framework. Additionally, a hybrid

framework utilizing the positive aspects of the centralized and distributed management

was developed. It was able to eliminate the risks of single point failures, enhance

scalability and integration of control functions, thereby was used to support a VII system

to assess and predict traffic conditions in a real-time fashion. Moreover, this research also

integrated two computational intelligence paradigms called “Support Vector Machine

(SVM)” and “Support Vector Regression (SVR)” within the hybrid VII framework for

 140

improving the incident detection and travel time prediction capabilities. Finally, this work

developed and evaluated the simulation model of the proposed traffic condition

assessment and travel time prediction framework.

Though the results of this research were quite encouraging, there were several

potential drawbacks that warrant the attention of future researchers and practitioners.

Foremost, one must keep in mind that this research was conducted using the simulation

tool. In the real-world implementation, the performance of the models developed in this

study may vary due to factors not considered in the computer simulation. Secondly, the

false alarm rate of the proposed VII traffic condition assessment framework was expected

to increase as the volume-to-capacity ratio increased. Future research should include

experiment on a more congested network. While comparing wired and wireless medium,

the reliability issues of wireless communication under the circumstance of various terrain

and weather condition were not addressed in this research. Additionally, the assumption

made in this research that vehicle kinetic and maneuver data could be accurately

measured by a vehicle on-board system needs verification through further research. The

maintenance problem of RSUs and repeaters in the VII system also requires carefully

study and design to fulfill the requirement of real-world implementation.

The immediate impact of this research will provide a reliable alternative to

traditional traffic sensors to assess and predict the condition of the transportation system.

This system can assess traffic conditions where traffic sensors are not present, by using

the roadside units (RSUs) collecting traffic data in individual VII-enabled vehicles

through vehicle-to-vehicle and vehicle-to-infrastructure communication. The following

 141

sub-sections summarized the research efforts in four aspects, which are correspond to

each of the four research objectives.

5.1.1 Integrated Simulation Platform

The integrated simulator developed through this research can be utilized for

evaluating different real-time traffic management applications. This research successfully

met the objective of developing an integrated explicit-traffic-explicit-communication

simulation platform based on ns-2 and PARAMICS software. The platform is capable of

modeling both centralized, distributed or hybrid real time traffic management system. A

notable advantage of integrating ns-2 and PARAMICS is that it allows users to customize

the simulator to generate any selected MOE in both traffic and communication domains,

such as incident detection rate, false alarm rate and detection time as metrics for traffic

related impacts as well as communication latency and delivery ratio for the analysis of

communication effectiveness and efficiency. The integrated simulation platform is

expected to facilitate the design and evaluation of a wide range of online traffic

surveillance and management system for inter-disciplinary research and development.

As a case study on the application and evaluation of the integrated simulation

platform, a distributed incident detection and response system using wireless traffic

sensor network was developed and implemented in the integrated simulator. The

detection rate and false alarm rate were assessed for a distributed shockwave detection

algorithm based on traffic flow theory and distributed network collaborations, detecting

and verifying the presence of shockwaves caused by incidents. While simultaneous

detections caused unforeseen communication latency, the communication times were

 142

confirmed to be tolerable for the case study. Communication latency, ordering, and

reliability shall become more crucial once a larger system is in place. The statistical

dependency of detection performance on sensor placement was evaluated, showing

opportunities and direction for improvement.

5.1.2 Evaluate Communication Alternatives

Using this integrated simulator, this study evaluated different communication

alternatives with a combination of different architectures and mediums to facilitate the

development of a hybrid framework for a VII model. The important MOEs, such as

throughput, delivery ratio, and throughput cost ratios, showed that the wired alternatives

are less cost effective than those wireless alternatives in both centralized and distributed

communication topologies. For the particular camera density (1 camera per 1.5 miles),

the cost-effectiveness of the wireless centralized and distributed system are comparable

and larger than that of wired centralized and distributed system, before camera data rate

goes beyond the saturation throughput. On the other hand, the wireless-distributed

network increases its cost-effectiveness in terms of throughput-to-cost ratio as the density

of supported devices increases when the camera data rate is within the capacity.

Therefore, optimal density of traffic cameras in a wireless-distributed network depends

upon the desired camera data rate. Given the fact that distributed architecture

outperforms centralized architecture in terms of saving communication cost, a wireless-

distributed solution will be economically more preferable if the expected data rate is

moderate while the camera density is high.

 143

5.1.3

5.1.4

Hybrid Framework for VII System

The proposed hybrid framework for a VII model was exemplified via a

communication networking scheme that includes hierarchical addressing, routing and

control. Without relying on any communication infrastructure and a central control point,

the system was able to perform on-line traffic condition assessment using a group of ad

hoc protocols. The performance of this ad hoc network was evaluated using the integrated

simulation platform. As expected, the number of messages sent by vehicles increased

linearly as the penetration rates of VII_enabled vehicles and traffic volume increased.

The delivery ratio was maintained at a very high level (99.95%) and varied little for all

experimental scenarios tested in this study. The latency of transmitting messages between

vehicles and RSUs increased in mean value and variability as the distance between

vehicles and RSUs increased because the packets had to travel more hops to reach the

RSUs. The communication latency was small enough to be negligible.

Traffic Condition Assessment Framework

Another major contribution of this research was the development of a VII model

in the integrated simulation platform that was able to detect highway incidents using data

generated from vehicles, such as speed profile and lane changing behavior represented in

vehicle kinetics, as envisioned in the Vehicle-Infrastructure Integration (VII) system. A

SVM algorithm was developed to organize and process the vehicle-generated data, which

was fed into an RSU to assess traffic conditions in each segment of the highway. The

evaluation of the VII model on a simulated network in Spartanburg, South Carolina

 144

revealed that the SVM algorithm within the in-vehicle module successfully detected

different types of incidents, such as incidents blocking one or more lanes, by using the

vehicle kinetics data, and the RSUs reliably validated the incident with alerts from

several vehicles on a selected time window.

The module performance in terms of the detection and false alarm rates was

encouraging. The detection time was also superior over most existing automatic incident

detection algorithms reported in the literature. In order to compare the VII-based incident

detection system with one most well known automatic incident detection algorithms

called “California Algorithm”, the latter was modeled and compared with the SVM

algorithm under similar traffic and incident conditions. The SVM outperformed

California Algorithm in terms of detection rate, false alarm rate, and detection time.

The study also found that while the detection time decreased as percentage of the

VII-enabled vehicles in the total traffic increased, the extra benefits diminished, when the

proportion of VII_enabled vehicles was larger than 25%. However, when the percentage

of VII_enabled vehicles was as low as 15%, the detection time of the VII model was

comparable or superior to most existing AID algorithms. In addition, the increase in

traffic volume also had a positive impact on the incident detection performance.

The proposed VII model was also able to predict number of lanes blocked during

incidents. As the penetration rate was over 15%, the prediction accuracy was between

50% and 90% depending on number of lanes blocked due to an incident. The penetration

rate of VII-enabled vehicles had different effects on the prediction accuracy for different

number of lanes blocked during an incident. With the increase in penetration rate of VII-

 145

enabled vehicles, the model was able to predict incidents blocking all lanes with superior

accuracy as compared with incidents blocking one or two lanes. On the contrary, the

prediction accuracy for incidents blocking one lane generally decreased as penetration

rate of VII-enabled vehicles increased. The prediction accuracy for incidents that blocked

two lanes did not vary significantly when the penetration rate decreased significantly.

The developed VII model was also able to predict most incident locations within

1000 feet of the actual incident sites, which is expected to be helpful to incident

management agencies tasked with identifying and responding to the incident site. The

average statistical RMSEP of predicting incident location was 9%, and the penetration

rate of VII-enabled vehicles and traffic volume had little effect on the prediction

accuracy.

5.1.5 Travel Time Prediction Framework

An SVR-based travel time prediction model was developed that also used the VII

system. The smoothed SVR model was able to predict travel time with a high level of

accuracy. The fact that only a small amount of data set was needed for training suggests

that SVR is possibly suitable for adaptation to the ever changing highway traffic

conditions. The baseline travel time prediction model using the instantaneous algorithm

was developed and compared with SVR model. In comparison with the baseline and

other travel time prediction models reported in the literature, the developed SVR model

was as good as or superior over others. The increase in the penetration rates of VII-

enabled vehicles had positive effects on improving the travel time prediction accuracy.

 146

5.2 Recommendations

The recommendations are organized in two subsections: recommendations for use

of this research and recommendations for future research.

5.2.1 Recommendations for Use of this Research

The following recommendations are made regarding the use of this research for

on-line traffic management:

• Future implementation of the research in the commercial sectors will result in

new VII related equipments in vehicles to support connected vehicles and

connected vehicle and roadway infrastructure concepts to improve highway

safety and mobility.

• Transportation operation agencies can use the results of the distributed

wireless ad hoc sensor network concept for greater control of traffic loadings,

faster incident detection, improved safety, mitigated congestion, and reduced

travel times without significant investment in the communication

infrastructure.

5.2.2 Recommendations for Future Research

The following recommendations are made for further research on the areas

covered in this study:

• Future research should evaluate the performance of the VII models presented

in this research in other highway networks with larger training and testing

dataset for implementing the SVM and SVR algorithms.

 147

• Follow-up research should also evaluate the relationship between

communication performance and various VII application configurations, such

as the different message size, periodic message sending interval, RSU

densities, as the success of the framework presented in this dissertation

partially depends on real-time communication between vehicles and RSUs.

• With the knowledge of real-time traffic conditions in the network, the

proposed VII framework could be expanded to optimally distribute the traffic

loading through direct communication with vehicles through VII and

continuous update of the loading distribution plan.

• Future research should conduct field study to evaluate and refine the proposed

on-line traffic condition assessment and prediction framework. Additional

comparison of the VII-based SVM incident detection and SVR travel time

prediction model with other traffic condition assessment and prediction

method should also be performed using the real world data.

• Other communication protocols that use vehicles to forward messages to

RSUs should be researched and compared with the presented framework

where the repeaters relay messages.

 148

 149

APPENDICES

The presented source codes in the following sections are also the research

products of James E. Clyburn University Transportation Center, located at South

Carolina State University, funded project titled Integrated Simulation Platform for

Evaluating Wireless Traffic Sensor Network for Traffic Safety and Security.

A.1 Implementation of Integrated Simulation Platform in ns-2

The following sections present selected source codes for the implementation of
integrated simulation platform in ns-2.

A.1.1 Application Layer

A.1.1.1 Header File “snet.h”
#include "timer-handler.h"
#include "packet.h"
#include "app.h"
#include "udp-snet.h"
#define MAX 20

class Snet;

// Sender uses this timer to
// schedule next application data packet transmission time
class SwitchTimer : public TimerHandler {
 public:
 SwitchTimer(Snet* t) : TimerHandler(), t_(t) {}
 inline virtual void expire(Event*);
 protected:
 Snet* t_;
};

class LandmarkSendTimer : public TimerHandler {
 public:
 LandmarkSendTimer(Snet* t) : TimerHandler(), t_(t) {}
 inline virtual void expire(Event*);
 protected:
 Snet* t_;
};

// Snet Application Class Definition
class Snet : public Application {

 150

 public:
 Snet();
 void switch_control(); // called by SwitchTimer:expire (Sender)
 void send_landmark_packet(); // called by
LandmarkSendTimer:expire (Sender)
protected:
 int command(int argc, const char*const* argv);
 void start(); // Start sending data packets (Sender)
 void stop(); // Stop sending data packets (Sender)
 void send_msg(int purpose, char address[20], int scale, float
alertTime, int alertLocation);
 void read_files();
 private:
 virtual void recv_msg(int nbytes, const char *msg = 0);
 int number_of_address;
 int landmark_count;
 double next_landmark_time_;
 int nodenumber_; // node number to which the application is
attached
 int roundnumber_;
 char type_exp_[MAX];
 double delta_t_; // time interval delta t
 double interval_; // Application data packet transmission
interval
 int pktsize_; // Application data packet size
 int running_; // If 1 application is running
 int scale_; // Media scale paramete
 int purpose_;
 SwitchTimer swi_timer_; // SwitchTimer
 LandmarkSendTimer landmark_timer_; // LandmarkSendTimer
 char addr_mult[MAX][MAX];
 char sending_to[MAX];
 int sending_from;
 char temp_filename[50];
 char temp_filename1[150];
 int time_duration[MAX][2];
 int level, phase;
};

A.1.1.2 Main File “snet.cc”
#include <string.h>
#include "random.h"
#include "snet.h"
#include "rtp.h"
#include "udp-snet.h"
#include "packet.h"
#include "unistd.h"
#include "snetrout/snetrout_pkt.h"
#include "snetrout/snetrout.h"

#define HEAD_DISCOVERY 2

 151

#define HEAD_BROADCAST 3
#define DATA_PKT 0
#define UDP_FLOW 1104
#define PRINT_TABLES 555
#define START 0
#define END 1
#define TOPOLOGY_DISCOVERY_WARMUP 80
#define ADDRESS_PKT 10
#define TOPOLOGY_DISCOVERY 1100
#define HIERARCHICAL_WARMUP 403
#define nodeNum 51
#define switch_timeStep 30
#define lanePred_ext 120

FILE *syn;
static char *syn_file="C:\\incident.txt";
FILE *rec;
static char *rec_file="C:\\VII_sim\\int_false\\fr.rtf";
FILE *lat;
static char *lat_file="C:\\VII_sim\\int_false\\latency.txt";
FILE *swi;
FILE *mp;
static char *swi_file="C:\\bang.txt";
static char *mp_name="C:\\nodeM";

static int
switch_startTime,inc_startTime,inc_location,laneBlock,penetration,deman
d;
static float interval[nodeNum];
float warmupTime=200,simDuration=1200;
float rdStatus[23][6][5];
float latency[5000][2];
int seg_length=4*40*3.28;
float chk_Status_int=10;
static float identifyTime;
static int det_laneBlock, det_incSeg,det_location,rep_ab[3];
static int Nveh_msgSent,Nveh_msgRecv;
static int stop_time=1770;
// Snet OTcl linkage class
static class SnetClass : public TclClass {
 public:
 SnetClass() : TclClass("Application/Snet") {}
 TclObject* create(int, const char*const*) {
 return (new Snet);
 }
} class_app_mm;

// When swi_timer_ expires call Snet:switch_control() to switch between
paramics and ns2
void SwitchTimer::expire(Event*)
{
 t_->switch_control();
}

 152

void LandmarkSendTimer::expire(Event*)
{
 t_->send_landmark_packet();
}

// Constructor (also initialize instances of timers)
Snet::Snet() : running_(0), swi_timer_(this), landmark_timer_(this)
{
 for(int i = 0; i < 20; i++)
 {
 time_duration[i][0] = 0;
 time_duration[i][1] = 0;
 }
 bind("pktsize_", &pktsize_);
 bind("nodenumber_", &nodenumber_);
 bind("roundnumber_", &roundnumber_);
 bind("delta_t_", &delta_t_);
}

// OTcl command interpreter
int Snet::command(int argc, const char*const* argv)
{
 Tcl& tcl = Tcl::instance();

 if (argc >= 3) {
 if (strcmp(argv[1], "attach-agent") == 0) {
 agent_ = (Agent*) TclObject::lookup(argv[2]);
 if (agent_ == 0) {
 tcl.resultf("no such agent %s", argv[2]);
 return(TCL_ERROR);
 }
 agent_->attachApp(this);
 return(TCL_OK);
 }
 else if(strcmp(argv[1], "type-exp") == 0) {
 strcpy(type_exp_, argv[2]);
 printf("SNET.CC : type is %s \n",
type_exp_);
 return(TCL_OK);
 }
 else if (strcmp(argv[1], "addr") == 0) {
 number_of_address = argc;
 for(int i=0;i<=number_of_address-3;i++)
 strcpy(addr_mult[i],argv[i+2]);
 return(TCL_OK);
 }
 else if(strcmp(argv[1], "filename") == 0) {
 strcpy(temp_filename,argv[2]);
 if(strcmp(temp_filename, "TEMPORARY") != 0)
 printf("I am %d and file is %s \n",
nodenumber_, temp_filename);
 return(TCL_OK);
 }
 else if(strcmp(argv[1], "time_duration") == 0) {

 153

 level = atoi(argv[2]);
 if(strcmp(argv[3], "START") == 0) phase = START;
 else if(strcmp(argv[3], "END") == 0) phase = END;
 time_duration[level][phase] = atoi(argv[4]);
 return(TCL_OK);
 }
 else if(strcmp(argv[1], "send-to") == 0) {
 sending_from = 1;
 strcpy(sending_to, argv[2]);
 return(TCL_OK);
 }
 else if(strcmp(argv[1], "veh_msg") == 0) {
 send_msg(DATA_PKT, "IX1.0000.0.2",
atoi(argv[2]),atof(argv[3]),atoi(argv[4]));
 return(TCL_OK);
 }
 }
 return (Application::command(argc, argv));
}

void Snet::read_files()
{
 FILE *fk;
 if(strcmp(temp_filename, "TEMPORARY") != 0)
 {
 fk = fopen(temp_filename,"r");
 fscanf(fk,"%f\n", &interval[nodenumber_]);
 fclose(fk);
 }
 else interval[nodenumber_]=16;
}

void Snet::start()
{
 for (int i=0; i<=number_of_address - 3; i++) {
 send_msg(ADDRESS_PKT, addr_mult[i], 0,0,0);
 }
 if(nodenumber_ == 0) {
 if((syn = fopen(syn_file, "r")) != NULL)
 fscanf(syn,"%d %d %d %d %d
%d",&switch_startTime,&inc_startTime,&inc_location,&laneBlock,&penetrat
ion,&demand);
 else
 printf("error open file %s.\n",syn_file);
 fclose(syn);
 }
 send_landmark_packet();
 switch_control();
 read_files();
 swi_timer_.resched((double)switch_timeStep);
}

void Snet::stop()
{

 154

 if(addr_mult[0][9] != '1') {
 send_msg(PRINT_TABLES, "XXX", 0,0,0);
 }
}

void Snet::send_landmark_packet()
{
 // DONE FOR EARLIER TOPOLOGY DISCOVERY
 if ((addr_mult[0][9] != '1') && Scheduler::instance().clock() <
TOPOLOGY_DISCOVERY_WARMUP) {
 send_msg(TOPOLOGY_DISCOVERY, addr_mult[0], 0,0,0);
 }

 switch(addr_mult[0][9]) {
 case '0': level = 0;break;
 case '1': level = 1;break;
 case '2': level = 2;break;
 case '3': level = 3;break;
 case '4': level = 4;break;
 case '5': level = 5;break;
 case '6': level = 6;break;
 case '7': level = 7;break;
 case '8': level = 8;break;
 case '9': level = 9;break;
 }

 /*
 * Higher level controllers do broadcast and lower level controllers
reply back with head discovery message
 * Because of this warmup hierarchy is developed
 */

 if(Scheduler::instance().clock() > TOPOLOGY_DISCOVERY_WARMUP) {
 if(Scheduler::instance().clock() > time_duration[level][START]
&& Scheduler::instance().clock() < time_duration[level][END]) {
 send_msg(HIERARCHICAL_WARMUP, "XXX", HEAD_BROADCAST,0,0);
 }
 if(Scheduler::instance().clock() > time_duration[level+1][START]
&& Scheduler::instance().clock() < time_duration[level+1][END]) {
 send_msg(HIERARCHICAL_WARMUP, "XXX", HEAD_DISCOVERY,0,0);
 }
 }

 /*
 * Sending message to the sensor with address "sending_to"
 */

 if (((sending_from == 1) && ((strcmp(sending_to, "everyone") != 0) &&
(strcmp(sending_to, "head") != 0))) && ((Scheduler::instance().clock()
> warmupTime) && (Scheduler::instance().clock() <
warmupTime+simDuration+1))) {
 send_msg(DATA_PKT, sending_to, 0,0,0);
 }

 155

 next_landmark_time_ = interval[nodenumber_];
 landmark_timer_.resched(next_landmark_time_);
}

// Send application data packet
void Snet::send_msg(int purpose, char address[20], int scale, float
alertTime, int alertLocation)
{
 hdr_mm mh_buf;
 strcpy(mh_buf.address, address);
 mh_buf.nbytes = nodenumber_;
 mh_buf.scale = scale;
 mh_buf.purpose = purpose;
 mh_buf.a_time = alertTime;
 mh_buf.location = alertLocation;
 agent_->sendmsg(pktsize_, (char*) &mh_buf); // send to UDP
 if((mh_buf.purpose == DATA_PKT) &&
Scheduler::instance().clock()>warmupTime && nodenumber_>=20) {
 Nveh_msgSent++;
 }
 return;
}

void Snet::recv_msg(int nbytes, const char *msg)
{
 int i,j,stucked=0;
 static int
check_sta,writed,p_idx,ab_value,i_t,check_time,check_location;
 float rdStatus_sum=0,alertNum=0,rep_location;
 if(msg) {
 hdr_mm* mh_buf = (hdr_mm*) msg;
 int value = mh_buf->scale;
 int location = mh_buf->location;
 int sender = mh_buf->nbytes;
 float sendTime = mh_buf->a_time;

 if((mh_buf->purpose == UDP_FLOW) && (nodenumber_ == 19)) {
 if(Scheduler::instance().clock()-check_time>180) {
 if(i_t==2) i_t=1;
 else i_t=0;
 rep_ab[0]=rep_ab[1];
 rep_ab[1]=0;
 check_time=9999;
 }
 for(j=0;j<6;j++) {
 if(sender==rdStatus[location/seg_length][j][0]
&& (Scheduler::instance().clock()-
rdStatus[location/seg_length][j][3])<80) {
 stucked=1;

 if(rdStatus[location/seg_length][j][3]==sendTime) {
 break;
 }
 else {

 156

 Nveh_msgRecv++;

 rdStatus[location/seg_length][j][2]=(rdStatus[location/seg_length
][j][2]*rdStatus[location/seg_length][j][1]+value)/(rdStatus[location/s
eg_length][j][1]+1);

 rdStatus[location/seg_length][j][1]++;

 rdStatus[location/seg_length][j][3]=sendTime;

 rdStatus[location/seg_length][j][4]=location;
 latency[p_idx][0]=abs(11825-
location);

 latency[p_idx][1]=(Scheduler::instance().clock()-sendTime);
 p_idx++;
 if(value>0 && i_t<3 &&
rep_ab[0]!=sender && rep_ab[1]!=sender && identifyTime==0) {
 if(i_t>=1 && abs(location-
check_location)>1800) {i_t=0;rep_ab[0]=0;rep_ab[1]=0;}
 rep_ab[i_t]=sender;
 i_t++;
 det_location+=location;
 ab_value+=value;
 if(i_t==1)
{check_time=sendTime;check_location=location;}

 if(Scheduler::instance().clock()>switch_startTime+210 && i_t==3)
{

 identifyTime=Scheduler::instance().clock();
 det_laneBlock=1;

 det_location=det_location/3;
 }
 }
 break;
 }
 }
 }
 if(stucked!=1) {
 stucked=0;
 Nveh_msgRecv++;
 for(j=5;j>0;j--) {

 rdStatus[location/seg_length][j][0]=rdStatus[location/seg_length]
[j-1][0];

 rdStatus[location/seg_length][j][1]=rdStatus[location/seg_length]
[j-1][1];

 rdStatus[location/seg_length][j][2]=rdStatus[location/seg_length]
[j-1][2];

 157

 rdStatus[location/seg_length][j][3]=rdStatus[location/seg_length]
[j-1][3];

 rdStatus[location/seg_length][j][4]=rdStatus[location/seg_length]
[j-1][4];
 }
 rdStatus[location/seg_length][0][0]=sender;
 rdStatus[location/seg_length][0][1]=1;
 rdStatus[location/seg_length][0][2]=value;
 rdStatus[location/seg_length][0][3]=sendTime;
 rdStatus[location/seg_length][0][4]=location;
 latency[p_idx][0]=abs(11825-location);

 latency[p_idx][1]=(Scheduler::instance().clock()-sendTime);
 p_idx++;
 if(value>0 && i_t<3 && rep_ab[0]!=sender &&
rep_ab[1]!=sender && identifyTime==0) {
 if(i_t>=1 && abs(location-
check_location)>1800) {i_t=0;rep_ab[0]=0;rep_ab[1]=0;}
 rep_ab[i_t]=sender;
 i_t++;
 ab_value+=value;
 if(i_t==1)
{check_time=sendTime;check_location=location;}

 if(Scheduler::instance().clock()>switch_startTime+210 && i_t==3)
{

 identifyTime=Scheduler::instance().clock();
 det_laneBlock=1;
 det_location=location;
 if(ab_value==6) det_laneBlock=3;
 }
 }
 }
 if(Scheduler::instance().clock()>switch_startTime+210
&& (Scheduler::instance().clock()/chk_Status_int) > check_sta) {

 check_sta=Scheduler::instance().clock()/chk_Status_int+1;

 for(i=(int)4121/seg_length;i<=9214/seg_length;i++) {
 rep_location=0;
 for(j=0;j<6;j++) {

 rdStatus_sum=rdStatus_sum+rdStatus[i][j][2];
 if(rdStatus[i][j][2]>0) {
 alertNum++;

 rep_location+=rdStatus[i][j][4];
 }
 }

 158

 if(rdStatus_sum>=-1 && identifyTime==0 &&
alertNum>0) {

 identifyTime=Scheduler::instance().clock();
 det_laneBlock=1;
 det_incSeg=i;
 det_location=rep_location/alertNum;
 }
 if(det_laneBlock<3 && rdStatus_sum>=4 &&
(Scheduler::instance().clock()-identifyTime)<lanePred_ext &&
identifyTime!=0) {
 det_laneBlock=2;
 det_incSeg=i;
 }
 if(rdStatus_sum>=11.5 &&
(Scheduler::instance().clock()-identifyTime)<lanePred_ext &&
identifyTime!=0) {
 det_laneBlock=3;
 det_incSeg=i;
 break;
 }
 alertNum=0;
 rdStatus_sum=0;
 }
 if((Scheduler::instance().clock()-
identifyTime>lanePred_ext && identifyTime!=0) ||
Scheduler::instance().clock()>stop_time) {
 if((syn = fopen(syn_file, "r")) != NULL)
 fscanf(syn,"%d %d %d %d %d
%d",&switch_startTime,&inc_startTime,&inc_location,&laneBlock,&penetrat
ion,&demand);
 else printf("error open file
%s.\n",syn_file);
 fclose(syn);
 while(1) {
 if(writed==0 && (lat =
fopen(lat_file, "a")) != NULL) {
 for(j=0;j<p_idx;j++)
 fprintf(lat,"%5.0f
%9.5f \n",latency[j][0],latency[j][1]);
 }
 fclose(lat);
 break;
 }
 while(1) {
 if(writed==0 && (rec =
fopen(rec_file, "a")) != NULL) {
 writed=1;
 if(identifyTime!=0 &&
identifyTime<inc_startTime) inc_startTime=900;
 fprintf(rec,"%d %d %d %9.5f
%9.5f %d %d %d %d %d
%d\n",roundnumber_,penetration,demand,identifyTime,identifyTime-

 159

inc_startTime,laneBlock,det_laneBlock,inc_location,(int)det_location,Nv
eh_msgSent,Nveh_msgRecv);
 }
 fclose(rec);
 break;
 }
 while(1) {
 if((swi = fopen(swi_file,"w")) !=
NULL) {
 fprintf(swi,"STOP\n");
 Tcl& tcl = Tcl::instance();
 tcl.evalf("$ns_ at %9.5f
\"finish\"",Scheduler::instance().clock()+5);
 }
 fclose(swi);
 break;
 }
 }
 }
 }
 }
 return;
}

void Snet::switch_control()
{
 char result[20];
 char line[100];
 strcpy(result,"para");
 int syn_time;

 if (nodenumber_ == 0 &&
Scheduler::instance().clock()>=switch_startTime) {
 Tcl& tcl = Tcl::instance();

 while(1) {
 swi = fopen(swi_file,"w");
 if(swi != NULL) {
 fprintf(swi,"para
%d\n",(int)Scheduler::instance().clock());
 fclose(swi);
 break;
 }
 }
 printf("ns2 pause at time %5.0f for round %d, msg_sent %d
VS msg_rev %d\n",
Scheduler::instance().clock(),roundnumber_,Nveh_msgSent,Nveh_msgRecv);
 while(1) {
 swi = fopen(swi_file,"r");
 if(swi != NULL) {
 fscanf(swi,"%s %d\n", &result,&syn_time);
 if(strncmp(result,"ns2",3) == 0 &&
syn_time==30+(int)Scheduler::instance().clock()) {
 fclose(swi);

 160

 if((mp = fopen(mp_name, "r")) == NULL) {
 printf("Error opening movement
pattern file.\n");
 exit(1);
 }
 while(fgets(line, sizeof(line), mp) !=
NULL) {
 tcl.eval(line);
 }
 fclose(mp);
 break;
 }
 fclose(swi);
 sleep(1);
 }
 }
 }
 swi_timer_.resched((double)switch_timeStep);
 return;
}

A.1.2 Transport Layer

A.1.2.1 Header File “udp-snet.h”
#ifndef ns_udp_snet_h
#define ns_udp_snet_h

#include "udp.h"
#include "ip.h"

// Packet Header Structure

struct hdr_mm {
 char address[20]; //Address being passed to network layer
 int purpose; // purpose of passing this packet
 int nbytes; // bytes for pkt
 double time; // current time
 int location;
 float a_time;

 int slot_array[1000];

 inline int& valscale() {return (scale);}
 // Packet header access functions
 static int offset_;
 inline static int& offset() { return offset_; }
 inline static hdr_mm* access(const Packet* p) {
 return (hdr_mm*) p->access(offset_);
 }
};

 161

// Used for Re-assemble segmented (by UDP) MM packet
struct asm_mm {
 int purpose; // mm purpose number
 int rbytes; // currently received bytes
 int tbytes; // total bytes to receive for MM packet
};

// UdpMmAgent Class definition
class UdpSnetAgent : public UdpAgent {
public:
 UdpSnetAgent();
 UdpSnetAgent(packet_t);
 virtual int supportMM() { return 1; }
 virtual void enableMM() { support_mm_ = 1; }
 virtual void sendmsg(int nbytes, const char *flags = 0);
 void recv(Packet*, Handler*);
 virtual void sendaddr(int a, int b, int c = 0);
protected:
 int support_mm_; // set to 1 if above is MmApp
private:
 asm_mm asm_info; // packet re-assembly information
};

#endif

A.1.2.2 Main File “udp-snet.cc”
#include "udp-snet.h"
#include "rtp.h"
#include "random.h"
#include <string.h>

char bhagwan[20];

int hdr_mm::offset_;

// Packet Header Class
static class SensornetHeaderClass : public PacketHeaderClass {
public:
 SensornetHeaderClass() :
PacketHeaderClass("PacketHeader/Sensornet",
 sizeof(hdr_mm)) {
 bind_offset(&hdr_mm::offset_);
 }
} class_mmhdr;

// UdpSnetAgent OTcl linkage class
static class UdpSnetAgentClass : public TclClass {
public:

 162

 UdpSnetAgentClass() : TclClass("Agent/UDP/UDPsnet") {}
 TclObject* create(int, const char*const*) {
 return (new UdpSnetAgent());
 }
} class_udpsnet_agent;

// Constructor (with no arg)
UdpSnetAgent::UdpSnetAgent() : UdpAgent()
{
 support_mm_ = 0;
}

UdpSnetAgent::UdpSnetAgent(packet_t type) : UdpAgent(type)
{
 support_mm_ = 0;
}

//add address
void UdpSnetAgent::sendaddr(int a, int b, int c)
{
 // target_->recvaddr(int a, int b, int c);
}
// Add Support of Sensornet Application to UdpAgent::sendmsg
void UdpSnetAgent::sendmsg(int nbytes, const char* flags)
{
 Packet *p;
 int n, remain;

 if (nbytes == 0) {
 target_->recv(p);
 }

 if (size_) {
 n = (nbytes/size_ + (nbytes%size_ ? 1 : 0));
 remain = nbytes%size_;
 }
 else
 printf("Error: UDPsnet size = 0\n");

 if (nbytes == -1) {
 printf("Error: sendmsg() for UDPsnet should not be -1\n");
 return;
 }
 double local_time =Scheduler::instance().clock();
 while (n-- > 0) {
 p = allocpkt();
 if(n==0 && remain>0)
 hdr_cmn::access(p)->size() = remain;
 else
 hdr_cmn::access(p)->size() = size_;
 hdr_rtp* rh = hdr_rtp::access(p);
 rh->flags() = 0;
 rh->seqno() = ++seqno_;

 163

 hdr_cmn::access(p)->timestamp() =
(u_int32_t)(SAMPLERATE*local_time);
 hdr_mm* mh = hdr_mm::access(p);
 if(flags) // MM header is passed as flags
 memcpy(mh, flags, sizeof(hdr_mm));
 target_->recv(p);
 }
 idle();
}

// Support Packet Re-Assembly and Sensornet Application
void UdpSnetAgent::recv(Packet* p, Handler*)
{
 if(app_) { // if MM Application exists
 // re-assemble MM Application packet if segmented
 hdr_mm* mh = hdr_mm::access(p);
 hdr_mm mh_buf;
 memcpy(&mh_buf, mh, sizeof(hdr_mm));
 app_->recv_msg(mh_buf.nbytes, (char*) &mh_buf);
 if(mh->purpose == asm_info.purpose)
 asm_info.rbytes += hdr_cmn::access(p)->size();
 else {
 //asm_info.purpose = mh->purpose;
 asm_info.tbytes = mh->nbytes;
 asm_info.rbytes = hdr_cmn::access(p)->size();
 }
 // if fully reassembled, pass the packet to application
 }
 Packet::free(p);
}

A.1.3 Network Layer

A.1.3.1 Routing Header File “snetrout.h”
#ifndef cmu_snetrout_h_
#define cmu_snetrout_h_

#include "config.h"
#include "agent.h"
#include "ip.h"
#include "delay.h"
#include "scheduler.h"
#include "queue.h"
#include "trace.h"
#include "arp.h"
#include "ll.h"
#include "mac.h"
#include "priqueue.h"

#include "snet_rtable.h"

 164

#if defined(WIN32) && !defined(snprintf)
#define snprintf _snprintf
#endif /* WIN32 && !snprintf */

typedef double Time;

#define MAX_QUEUE_LENGTH 5
#define ROUTER_PORT 0xff

class SnetRout_Helper;

//class SnetRoutTriggerHandler;
class SnetRout_Agent;

class SnetRout_Agent : public Agent {
 friend class SnetRout_Helper;
 friend class SnetRoutTriggerHandler;
public:
 SnetRout_Agent();
 Agent* agent1_;
 virtual int command(int argc, const char * const * argv);
 void lost_link(Packet *p);
 char addr_proto[20][20];
 char reachable_highways[10][10];
 char gateway_address[20][20];
 int rseqnumber;
 int rec_seqnumber;
 char comp_array[10];
 int flag_value;
 int flag_ack;
protected:
 void New_Packet(Packet* p, char source[20], Packet * p1, int
scope, int count, char discovery_dest[20], int seqnumber_);
 int difference(char address1[20], char address2[20]);
 Packet* snet_rtable(int);
 virtual void recv(Packet *, Handler *);
 void trace(char* fmt, ...);
 void sensor_node (Packet * p);
 void controller1_node (Packet * p);
 int hierarchical_head_discovery(double x1, double y2, double x2,
double y2);
 int hierarchical_head_bcast(double x1, double y1, char
source_address[20]);
 void startUp();
 void sendOutBCastPkt(Packet *p);
 Trace *tracetarget; // Trace Target
 SnetRout_Helper *helper_; // SnetRout Helper, handles
callbacks
 SnetRoutTriggerHandler *trigger_handler;
 snet_RoutingTable *table_; // Routing Table
 PriQueue *ll_queue; // link level output queue

 165

 int seqno_; // Sequence number to advertise with...
 int myaddr_; // My address...
 int return_value;
 int temp_i;
 int possible;
 int found_schedule;
 int k_count;
 int target_intersection;
 int collected_intersection;
 char controller_local_topology [6][50][30];
 int controller_local_topology_phy [6][50];
 double controller_xcor[6][50];
 double controller_ycor[6][50];
 int controller_array_found;
 int controller_array_count;
 int number_of_highways;
 char xcor[200][100];
 char ycor[200][100];
 double xcor1[200];
 double ycor1[200];
 int max_seg_intersection;
 int mult_addr_send;
 int max_seg_depth[8];
 char my_controller_head[20];
 char neighboring_controller[6][20];
 int ncount;
 char slot_array[200][200][20];
 char curr[4][20];
 int done_count;
 int slot_current;
 int status[4];
 int starting_slot[4];
 int slot[100];
 int lane_number;
 int c;
 int nseqnumber[4];
 int change_address;
 int mini_interval_;
 int maxi_interval_;
 int local_scope;
 int last_sensor;
 int downstream_node;
 int upstream_node;
 char upstream_addr[20];
 int upstream_node_controller[6];
 char upstream_addr_controller[6][20];
 char downstream_addr[20];
 int flag_dmac;
 int delay_spec_;
 int rate_, run_;
 char type_exp_[20];
 int estimated_time;
 int last_segment_time;
 int downstream[4];

 166

 int upstream;
 int landmarkpacketnum; // last packet seen from a landmark
 int querypacketnum; // last packet seen from a query
 double p1, q1, r1;
 char myname [20]; // My name...
 char contname [20]; // Controller name...
 char head_addr_ [20];
 double destination_xcor, destination_ycor;
 int heard_head_flag;
 char *subnet_; // My subnet
 MobileNode *node_; // My node
 char *address;
 NsObject *port_dmux_; // my port dmux

 Event *periodic_callback_; // notify for periodic
update

 // Randomness/MAC/logging parameters
 int be_random_;
 int use_mac_;
 int verbose_;
 int trace_wst_;

 // last time a periodic update was sent...
 double lasttup_; // time of last triggered update
 double next_tup; // time of next triggered update
 // Event *trigupd_scheduled; // event marking a scheduled
triggered update

 // SnetRout constants:
 double alpha_; // 0.875
 double wst0_; // 6 (secs)
 double perup_; // 15 (secs) period between updates
 int min_update_periods_; // 3 we must hear an update from a
neighbor
 int i;
 int j;

};

class SnetRout_Helper : public Handler {
 public:
 SnetRout_Helper(SnetRout_Agent *a_) { a = a_; }
 // virtual void handle(Event *e) { a->helper_callback(e); }

 private:
 SnetRout_Agent *a;
};

#endif

 167

A.1.3.2 Routing Header File “snetrout.cc”
extern "C" {
#include <stdarg.h>
#include <float.h>
};

#include "udp-snet.h"
#include "snet.h"
#include "snetrout.h"
#include "snetrout_pkt.h"
#include "priqueue.h"
#include "snet_rtable.h"
#include <random.h>
#include <stdio.h>
#include <time.h>
#include <cmu-trace.h>
#include <address.h>
#include <mobilenode.h>

#define CONTROLLER 2
#define HIGH_CONTROLLER 3
#define SENSOR 1
#define DATA_PKT 0
#define ADDRESS_PKT 10
#define nodeNum 51

#define TOPOLOGY_REQUEST 1101
#define TOPOLOGY_RESPONSE 1102
#define INITIATING_WARMUP 1100
#define RC_BROADCAST 2000
#define SET 2
#define H_BROADCAST "XXXXXXXXXX"
#define UDP_FLOW 1104

#define snetIP_DEF_TTL 332 // default TTTL

#define DESTINATION_PACKET 400
#define DESTINATION_UP 401
#define DESTINATION_DOWN 402
#define TOPOLOGY_DISCOVERY 403
#define TOPOLOGY_DISCOVERY_PROP 404
#define DESTINATION_PACKET_SEC 500
#define DESTINATION_UP_SEC 501
#define DESTINATION_DOWN_SEC 502
#define DUMP_TABLE 555
#define HIERARCHICAL_HEAD_DISCOVERY 2
#define HIERARCHICAL_HEAD_BCAST 3
#define TOPOLOGY_DISCOVERY_TIME 45

extern int devang_pri_array[500];

int hdr_snetrout_pkt::offset_;

 168

static class SnetRoutHeaderClass : public PacketHeaderClass {
public:
 SnetRoutHeaderClass() :
PacketHeaderClass("PacketHeader/SnetRout",sizeof(hdr_snetrout_pkt)) {
 bind_offset(&hdr_snetrout_pkt::offset_);
 }
} class_SnetRouthdr;

void SnetRout_Agent::trace (char *fmt,...)
{
 va_list ap;

 if (!tracetarget)
 return;

 va_start (ap, fmt);
 vsprintf (tracetarget->pt_->buffer (), fmt, ap);
 tracetarget->pt_->dump ();
 va_end (ap);
}

/*
 * This function actually sends down the packet. The packet leaves the
Network layer at this point
 */
void SnetRout_Agent::sendOutBCastPkt(Packet *p)
{
 hdr_ip *iph = HDR_IP(p);
 hdr_cmn *hdrc = HDR_CMN (p);
 struct hdr_snetrout_pkt* rp = hdr_snetrout_pkt::access(p);

 iph->dport() = ROUTER_PORT;
 hdrc->direction() = hdr_cmn::DOWN;
 rp->prev_hop = myaddr_;
 if(strcmp(addr_proto[0], rp->destination_haddress) != 0)
 target_->recv(p, (Handler *)0);
 return;
}
/*
 * Packet received at the network layer
 */
void SnetRout_Agent::recv (Packet * p, Handler *)
{
 hdr_ip *iph = HDR_IP(p);
 struct hdr_mm* mh = hdr_mm::access(p);
 struct hdr_snetrout_pkt* rp = hdr_snetrout_pkt::access(p);
 sprintf(myname, "dadar%d", myaddr_);
 sprintf(contname, "controller%d", myaddr_);
 hdr_cmn *cmh = HDR_CMN(p);
 int src = Address::instance().get_nodeaddr(iph->saddr());
 snet_rtable_ent rte;
 if((mh->purpose == DESTINATION_PACKET) || (mh->purpose ==
TOPOLOGY_DISCOVERY))
 strcpy(rp->destination_haddress, mh->address);

 169

 if(mh->purpose != DATA_PKT && mh->purpose != ADDRESS_PKT && mh-
>purpose != TOPOLOGY_REQUEST && mh->purpose != TOPOLOGY_RESPONSE && mh-
>purpose!= INITIATING_WARMUP && mh->purpose!= DESTINATION_PACKET && mh-
>purpose!= DESTINATION_UP && mh->purpose != DESTINATION_DOWN && mh-
>purpose != TOPOLOGY_DISCOVERY && mh->purpose !=
TOPOLOGY_DISCOVERY_PROP && mh->purpose != DESTINATION_PACKET_SEC && mh-
>purpose != DESTINATION_UP_SEC && mh->purpose != DESTINATION_DOWN_SEC
&& mh->purpose != DUMP_TABLE && mh->purpose !=
HIERARCHICAL_HEAD_DISCOVERY && mh->purpose !=
HIERARCHICAL_HEAD_BCAST && mh->purpose != TOPOLOGY_DISCOVERY_TIME)
 {
 mh->purpose = UDP_FLOW;
 }
 if ((mh->purpose == DATA_PKT)) {
 strcpy(addr_proto[i],mh->address);
 mh->purpose = UDP_FLOW;
 }
 if (mh->purpose == ADDRESS_PKT) {
 strcpy(addr_proto[i],mh->address);
 i++;
 return;
 }
 if (addr_proto[0][9] == '2') {
 if((mh->purpose == UDP_FLOW)) {
 if(myaddr_ != iph->daddr()) {
 controller1_node(p);
 }
 else {
 agent1_->recv(p, (Handler *)0);
 Packet::free(p);
 }
 }
 if ((mh->purpose == INITIATING_WARMUP) || (mh->purpose ==
TOPOLOGY_REQUEST) || (mh->purpose == TOPOLOGY_RESPONSE)) {
 if(Scheduler::instance().clock() <
TOPOLOGY_DISCOVERY_TIME) {
 if(mh->purpose == INITIATING_WARMUP)
 rseqnumber = rseqnumber + 1;
 mult_addr_send = 0;
 controller1_node(p);
 }
 }
 if(mh->purpose == DESTINATION_UP || mh->purpose ==
DESTINATION_DOWN || mh->purpose == TOPOLOGY_DISCOVERY || mh->purpose ==
TOPOLOGY_DISCOVERY_PROP || mh->purpose == DESTINATION_UP_SEC || mh-
>purpose == DESTINATION_DOWN_SEC) {
 if(mh->purpose == TOPOLOGY_DISCOVERY)
 rp->version_val = mh->scale;
 if((strcmp(rp->destination_haddress, addr_proto[0])
== 0) && (rp->version_val != HIERARCHICAL_HEAD_DISCOVERY)) {
 }
 else {
 if(((strcmp(rp->dummy_destination_haddress,
addr_proto[0]) == 0) || (strcmp(rp->dummy_destination_haddress,

 170

addr_proto[1]) == 0)) && (mh->purpose == DESTINATION_UP_SEC || mh-
>purpose == DESTINATION_DOWN_SEC)) {
 printf("DUMMY GOT IT %s %s \n",
addr_proto[0], addr_proto[1]);
 strcpy(rp->dummy_destination_haddress,
"BULL");
 if(mh->purpose == DESTINATION_DOWN_SEC)
 mh->purpose = DESTINATION_DOWN;
 else mh->purpose = DESTINATION_UP;
 }
 controller1_node(p);
 }
 }
 if(mh->purpose == DUMP_TABLE)
 table_->PrintTable(myaddr_);
 }
 else if (addr_proto[0][9] == '1') {
 sensor_node(p);
 }
 else {
 if(mh->nbytes>=20 && myaddr_!=mh->nbytes)
 Packet::free(p);
 else
 sensor_node(p);
 }
 //Packet I'm originating...
 if(src == myaddr_ && cmh->num_forwards() == 0) {
 //Add the IP Header
 cmh->size() += IP_HDR_LEN;
 iph->ttl_ = snetIP_DEF_TTL;
 }
 //Packet I'm forwarding...
 else {
 // Check the TTL. If it is zero, then discard.
 if(--iph->ttl_ == 0) {
 drop(p, DROP_RTR_TTL);
 return;
 }
 }
}
/*
 * The sensors execute this part of code
 */

void SnetRout_Agent::sensor_node (Packet * p)
{
 struct hdr_mm* mh = hdr_mm::access(p);
 struct hdr_snetrout_pkt* rp = hdr_snetrout_pkt::access(p);
 hdr_ip *iph = HDR_IP(p);
 double p5,q5,r5;
 //printf("I am %d getting purpose %d \n", myaddr_, mh->purpose);
 if(mh->purpose == UDP_FLOW) {
 if(rp->time_stamp < 5) {
 rp->prev_hop = myaddr_;

 171

 iph->saddr() = myaddr_;
 if(upstream_node!=0)
 iph->daddr() = upstream_node;
 rp->time_stamp = Scheduler::instance().clock();
 sendOutBCastPkt(p);
 //agent1_->recv(p, (Handler *)0);
 }
 else {
 rp->time_stamp1 = Scheduler::instance().clock();
 rp->prev_hop = myaddr_;
 iph->daddr() = upstream_node;
 sendOutBCastPkt(p);
 }
 }

 if(mh->purpose == TOPOLOGY_RESPONSE) {
 strcpy(downstream_addr, rp->prev_hop_address);
 downstream_node = rp->prev_hop;
 rp->prev_hop = myaddr_;
 iph->daddr() = upstream_node;
 strcpy(rp->prev_hop_address, addr_proto[0]);
 mh->purpose = TOPOLOGY_RESPONSE;
 rp->pointer_to_address = rp->pointer_to_address + 1;
 rp->phy_address[rp->pointer_to_address] = myaddr_;
 strcpy(rp->address_topology[rp->pointer_to_address],
addr_proto[0]);
 node_ = (MobileNode*)Node::get_node_by_address(myaddr_);
 node_->getLoc(&p5, &q5, &r5);
 rp->xcor[rp->pointer_to_address] = p5;
 rp->ycor[rp->pointer_to_address] = q5;
 sendOutBCastPkt(p);
 }
 if((mh->purpose == TOPOLOGY_REQUEST)) {
 int location = strcmp(rp->prev_hop_address, addr_proto[0]);
 if(strncmp(rp->prev_hop_address, addr_proto[0],3) == 0) {
 if((((addr_proto[0][11] == '1') && (location < 0)) ||
((addr_proto[0][11] == '2') && (location > 0))) && ((rp-
>prev_hop_address[9] != '1') || (rp->prev_hop_address[11] ==
addr_proto[0][11])))
 {
 if(strncmp(upstream_addr,rp-
>prev_hop_address,2) != 0) {
 strcpy(upstream_addr, rp-
>prev_hop_address);
 upstream_node = rp->prev_hop;
 }
 else {
 if(addr_proto[0][11] == '1') {
 int difference = strcmp(rp-
>prev_hop_address, upstream_addr);
 if(difference > 0) {
 strcpy(my_controller_head,
rp->prev_cntrl_address1);

 172

 strcpy(upstream_addr, rp-
>prev_hop_address);
 upstream_node = rp->prev_hop;
 }
 }
 if(addr_proto[0][11] == '2') {
 int difference = strcmp(rp-
>prev_hop_address, upstream_addr);
 if (difference < 0) {
 strcpy(my_controller_head,
rp->prev_cntrl_address1);
 strcpy(upstream_addr, rp-
>prev_hop_address);
 upstream_node = rp->prev_hop;
 }
 }
 }
 rp->prev_hop = myaddr_;
 iph->daddr() = IP_BROADCAST;
 strcpy(rp->prev_hop_address, addr_proto[0]);
 if(rp->seqnumber > rseqnumber) {
 sendOutBCastPkt(p);
 rseqnumber = rp->seqnumber;
 }
 }
 }
 }

 if(mh->purpose == DESTINATION_PACKET) {
 //printf("DESTINATION PACKET : coming to right place %s %s
\n", addr_proto[0], rp->destination_haddress);
 if((strncmp(addr_proto[0],rp->destination_haddress,3)==0) &&
(addr_proto[0][11] == rp->destination_haddress[11])) {
 if(strncmp(addr_proto[0],rp->destination_haddress,8)
< 0) {
 if(strncmp(upstream_addr,downstream_addr,8) >
0) {
 mh->purpose = DESTINATION_UP;
 iph->daddr() = upstream_node;
 //printf("sending up first \n");
 sendOutBCastPkt(p);
 return;
 }
 else {
 mh->purpose = DESTINATION_DOWN;
 iph->daddr() = downstream_node;
 sendOutBCastPkt(p);
 return;
 }
 }
 else {
 if(strncmp(upstream_addr,downstream_addr,8) <
0) {
 mh->purpose = DESTINATION_UP;

 173

 iph->daddr() = upstream_node;
 sendOutBCastPkt(p);
 return;
 }
 else {
 mh->purpose = DESTINATION_DOWN;
 iph->daddr() = downstream_node;
 printf("sending down second TO %d\n",
iph->daddr());
 sendOutBCastPkt(p);
 return;
 }
 }
 }
 else {
 mh->purpose = DESTINATION_UP;
 iph->daddr() = upstream_node;
 sendOutBCastPkt(p);
 return;
 }
 }
 /*
 * If the address prefix not same then send to controller
 */
 if((mh->purpose == DESTINATION_UP) || (mh->purpose ==
TOPOLOGY_DISCOVERY) || (mh->purpose == TOPOLOGY_DISCOVERY_PROP) || (mh-
>purpose == DESTINATION_UP_SEC))
 {
 char dest[20];
 if(mh->purpose == DESTINATION_UP_SEC)
 strcpy(dest, rp->dummy_destination_haddress);
 else strcpy(dest, rp->destination_haddress);

 //printf("UP:I am %d and the destination is %s \n",
myaddr_, dest);
 rp->scope = rp->scope + 1;
 if(strcmp(addr_proto[0],dest)==0)
 printf("My packet ... I received it ... \n");
 else {
 iph->daddr() = upstream_node;
 //printf("forwarding %d number %d\n", myaddr_, rp-
>seqnumber);
 sendOutBCastPkt(p);
 return;
 }
 }

 if((mh->purpose == DESTINATION_DOWN) || (mh->purpose ==
DESTINATION_DOWN_SEC)) {
 char dest[20];
 if(mh->purpose == DESTINATION_UP_SEC)
 strcpy(dest, rp->dummy_destination_haddress);
 else strcpy(dest, rp->destination_haddress);

 174

 printf("DOWN:I am %d and the destination is %s \n",
myaddr_, dest);
 if(strcmp(addr_proto[0],dest)==0)
 printf("My packet ... I received it ... \n");
 else {
 iph->daddr() = downstream_node;
 sendOutBCastPkt(p);
 return;
 }
 }
 return;
}

void SnetRout_Agent::controller1_node (Packet * p)
{
 float recv_time;
 struct hdr_mm* mh = hdr_mm::access(p);
 struct hdr_snetrout_pkt* rp = hdr_snetrout_pkt::access(p);
 snet_rtable_ent *prte;
 snet_rtable_ent rte;
 snet_rtable_ent rte1;
 hdr_ip *iph = HDR_IP(p);
 hdr_cmn *cmh = HDR_CMN(p);
 double p5,q5,r5;
 if(mh->purpose == UDP_FLOW) {
 rp->prev_hop = myaddr_;
 iph->saddr() = myaddr_;
 iph->daddr() = upstream_node_controller[0];
 rp->time_stamp = Scheduler::instance().clock();
 FILE* fdelay1;
 char name_of_file1 [300];
 if(rp->time_stamp > 200) {
 sprintf(name_of_file1,
"Type_%s.init_delay.Rate_%d.Run_%d.Final_%d", type_exp_, rate_, run_,
iph->saddr());
 fdelay1 = fopen(name_of_file1,"w");
 fprintf(fdelay1," %f %f\n",
Scheduler::instance().clock() - rp->time_stamp,
Scheduler::instance().clock());
 fclose(fdelay1);
 }
 rp->time_stamp1 = Scheduler::instance().clock();
 //printf("controller %d send msg to %d at
%f\n",myaddr_,upstream_node_controller[0],Scheduler::instance().clock()
);
 sendOutBCastPkt(p);
 }
 if(mh->purpose == INITIATING_WARMUP) {
 printf("STARTING GURUDEV FROM %d \n", myaddr_);
 mult_addr_send = 0;
 while(mult_addr_send < number_of_highways) {
 Packet *p;
 p = allocpkt();
 struct hdr_mm* mh = hdr_mm::access(p);

 175

 struct hdr_snetrout_pkt* rp =
hdr_snetrout_pkt::access(p);
 hdr_ip *iph = HDR_IP(p);
 hdr_cmn *cmh = HDR_CMN(p);
 rp->seqnumber = rseqnumber;
 rp->prev_hop = myaddr_;
 strcpy(rp-
>prev_hop_address,addr_proto[mult_addr_send]);
 strcpy(rp->prev_cntrl_address1,
addr_proto[mult_addr_send]);
 iph->daddr() = IP_BROADCAST;
 mh->purpose = 1101;
 iph->saddr() = myaddr_;
 rseqnumber = rp->seqnumber;
 sendOutBCastPkt(p);
 mult_addr_send++;
 }
 }
 /*
 * Function called when the incoming packet is of type TOPOLOGY
REQUEST and was initiated by someone else
 */
 if((mh->purpose == TOPOLOGY_REQUEST) && (iph->saddr() !=
myaddr_)) {
 int seen_controller_flag;
 int address_number;
 int controller_found_flag;
 int location;
 printf("CONTROLLER:TOPO_REQUEST:SEEING PKT %d \n",
myaddr_);
 for(address_number=0;
address_number<max_seg_intersection; address_number++) {
 if(strncmp(addr_proto[address_number], rp-
>prev_cntrl_address1,3) == 0) {
 location = strcmp(rp->prev_hop_address,
addr_proto[address_number]);
 break;
 }
 }
 if(((rp->prev_hop_address[11] == '1') && (location < 0))
|| ((rp->prev_hop_address[11] == '2') && (location > 0))) {
 printf("CONT:TOPORQT: I SEE THE PKT am %d from %d
COUNT %d\n", myaddr_, rp->prev_hop, ncount);
 /*
 * If it is the first packet just add it and update
the table of neighbors
 */
 if(rp->seqnumber == 1) {
 for(i=0; i<max_seg_intersection; i++) {
 if(strcmp(neighboring_controller[i],
rp->prev_cntrl_address1) == 0) {
 seen_controller_flag = SET;
 strcpy(neighboring_controller[i],
rp->prev_cntrl_address1);

 176

 nseqnumber[i] = rp->seqnumber;
 upstream_node_controller[i] = rp-
>prev_hop;

strcpy(upstream_addr_controller[i], rp->prev_hop_address);
 }
 }
 if(seen_controller_flag != SET) {
 strcpy(neighboring_controller[ncount],
rp->prev_cntrl_address1);
 nseqnumber[ncount] = rp->seqnumber;
 upstream_node_controller[ncount] = rp-
>prev_hop;

strcpy(upstream_addr_controller[ncount], rp->prev_hop_address);
 ncount++;
 }
 }
 /*
 * If it is not the first packet then we have to
check if the packet was delivered by a closer sensor this time and if
so update the table of neighbor
 */
 else {
 for(i=0; i<max_seg_intersection; i++) {
 if(strcmp(neighboring_controller[i],
rp->prev_cntrl_address1) == 0) {
 if(rp->prev_hop_address[11] ==
'1') {
 int difference = strcmp(rp-
>prev_hop_address, upstream_addr_controller[i]);
 if (difference > 0) {

strcpy(my_controller_head, rp->prev_cntrl_address1);

strcpy(upstream_addr_controller[i], rp->prev_hop_address);

upstream_node_controller[i] = rp->prev_hop;
 }
 }
 if(rp->prev_hop_address[11] ==
'2') {
 int difference = strcmp(rp-
>prev_hop_address, upstream_addr_controller[i]);
 if (difference < 0) {

strcpy(my_controller_head, rp->prev_cntrl_address1);

strcpy(upstream_addr_controller[i], rp->prev_hop_address);

upstream_node_controller[i] = rp->prev_hop;
 // dbags printf("I am
%d and up is %d \n", myaddr_, rp->prev_hop);
 }

 177

 }
 controller_found_flag = SET;
 iph->daddr() =
upstream_node_controller[i];
 }
 }
 /*
 * If that particular neighboring
cntroller has never sent me a packet before then I will store his entry
in the neighbor tabe
 */
 if(controller_found_flag != SET) {
 printf(" TWO: NH MI ME %d %d %d\n",
number_of_highways, max_seg_intersection, myaddr_);
 strcpy(neighboring_controller[ncount],
rp->prev_cntrl_address1);
 nseqnumber[ncount] = rp->seqnumber;
 upstream_node_controller[ncount] = rp-
>prev_hop;

strcpy(upstream_addr_controller[ncount], rp->prev_hop_address);
 printf("I AM ... GURUDEV %d %s seeing
pkt from %d %s COUNT %d\n", myaddr_, addr_proto[0],
upstream_node_controller[ncount], upstream_addr_controller[ncount],
ncount);
 ncount++;
 }
 }
 /*
 * All the updates for neighbor tables are done and
we have to now send the RESPONSE packet
 */
 printf("CONT:TOPORQT: ME %d COUNT %d VALUES %d %d
%d %d \n", myaddr_, ncount, upstream_node_controller[0],
upstream_node_controller[1], upstream_node_controller[2],
upstream_node_controller[3]);
 rp->prev_hop = myaddr_;
 mh->purpose = TOPOLOGY_RESPONSE;
 for(i=0; i<max_seg_intersection; i++) {
 /*
 * Check which address matches
the previous hop and send that address in the packet so that it will
propagate
 */
 if(strncmp(addr_proto[i], rp-
>prev_hop_address,3) == 0) {
 strcpy(rp->prev_hop_address,
addr_proto[i]);
 rp->pointer_to_address = 0;
 rp->phy_address[rp->pointer_to_address]
= myaddr_;
 strcpy(rp->address_topology[rp-
>pointer_to_address], addr_proto[i]);

 178

 node_ =
(MobileNode*)Node::get_node_by_address(myaddr_);
 node_->getLoc(&p5, &q5, &r5);
 rp->xcor[rp->pointer_to_address] = p5;
 rp->ycor[rp->pointer_to_address] = q5;
 }
 }
 for(i=0; i<max_seg_intersection; i++) {
 if(strcmp(rp->prev_cntrl_address1,
neighboring_controller[i]) == 0) {
 if(rp->seqnumber > nseqnumber[i]) {
 if(myaddr_ == 0)
 printf("CONT:TOPORQT: SENDING
RESPONSE ME %d %s\n", myaddr_, rp->address_topology[rp-
>pointer_to_address]);
 sendOutBCastPkt(p);
 nseqnumber[i] = rp->seqnumber;
 }
 }
 }
 }
 }
 /*
 * This function is executed if the packet type is TOPOLOGY
RESPONSE
 */
 if((mh->purpose == TOPOLOGY_RESPONSE) && (myaddr_ != rp-
>phy_address[0])) {
 printf("CONT:TOPORESP: FROM %d TO %d ME %d PREV %d RESP
COUNT %d\n", rp->phy_address[0], myaddr_, myaddr_, rp->prev_hop,
controller_array_count);
 int max_sensor_depth;
 max_sensor_depth = 0;
 for(i=0; i<nodeNum; i++) {
 if(rp->address_topology[i][0] != 'I')
 break;
 else max_sensor_depth = i+1;
 }
 controller_array_found = 1;
 /*
 * Check and find whetehr you have received response
from this neighboring controller before
 * If you have then just update the table entry and
if not then create a new entry
 */
 for(i=0; i<max_seg_intersection; i++) {
 if(strcmp(controller_local_topology[i][0], rp-
>address_topology[0]) == 0) {
 controller_array_found = SET;
 temp_i = i;
 break;
 }
 }

 179

 if(controller_array_found == SET && controller_array_count
< 4) {
 /* UPDATE */
 max_seg_depth[temp_i] = max_sensor_depth;
 for(i=0; i< max_sensor_depth; i++) {
 strcpy(controller_local_topology[temp_i][i],rp-
>address_topology[i]);
 controller_local_topology_phy[temp_i][i] = rp-
>phy_address[i];
 controller_xcor[temp_i][i] = rp->xcor[i];
 controller_ycor[temp_i][i] = rp->ycor[i];
 }
 }
 if(controller_array_found != SET && controller_array_count
< 4) {
 /* ADD A NEW ENTRY */
 max_seg_depth[controller_array_count] =
max_sensor_depth;
 for(i=0; i< max_sensor_depth; i++) {

 strncpy(controller_local_topology[controller_array_count][i],rp-
>address_topology[i],15);

 controller_local_topology_phy[controller_array_count][i] = rp-
>phy_address[i];
 controller_xcor[controller_array_count][i] =
rp->xcor[i];
 controller_ycor[controller_array_count][i] =
rp->ycor[i];
 }
 controller_array_count++;
 }
 printf("CONT:TOPORESP: ME %d COUNT %d VALUES %d %d %d %d
\n", myaddr_, ncount, upstream_node_controller[0],
upstream_node_controller[1], upstream_node_controller[2],
upstream_node_controller[3]);
 printf("CONT:TOPORESP: ME %d COUNT %d \n", myaddr_,
controller_array_count);

 for(j=0; j<controller_array_count; j++) {
 for(i=max_seg_depth[j]; i>max_seg_depth[j] - 3; i--)
{
 printf("%d ",
controller_local_topology_phy[j][i]);
 }
 printf(" %f \n", Scheduler::instance().clock());
 }
 for(i=0; i<ncount; i++) {
 printf("%d ", upstream_node_controller[i]);
 }
 printf("COUNT %d \n", ncount);
 }
 /*

 180

 * If the controller finds the node in its table then it can send
it to the next hop
 */
 if(mh->purpose == DESTINATION_DOWN || mh->purpose ==
DESTINATION_UP || mh->purpose == DESTINATION_DOWN_SEC || mh->purpose ==
DESTINATION_UP_SEC) {
 char dest[20];
 if(mh->purpose == DESTINATION_UP_SEC || mh->purpose ==
DESTINATION_DOWN_SEC)
 strcpy(dest, rp->dummy_destination_haddress);
 else strcpy(dest, rp->destination_haddress);
 /*
 * If destination on either of segments of controller
 */
 printf("DESTINATION PACKET: Seeinf dest_down packet %s \n",
addr_proto[0]);
 for(i=0; i<2; i++) {
 if((strncmp(addr_proto[i],dest,3)==0)) {
 printf("DESTINATION PACKET: found match with
one address %d ... I am %s and %d sending to %s \n", i, addr_proto[i],
myaddr_, dest);
 if(strncmp(addr_proto[i],dest,8) < 0) {
 for(j=0;j<4;j++) {
 if((strncmp(addr_proto[i],
upstream_addr_controller[j],3) == 0) && (strncmp(addr_proto[i],
upstream_addr_controller[j],8) < 0)) {
 printf("CONT:DESTUP \n");
 iph->daddr() =
upstream_node_controller[j];
 if(mh->purpose ==
DESTINATION_UP_SEC || mh->purpose == DESTINATION_DOWN_SEC)
 mh->purpose =
DESTINATION_UP_SEC;
 else mh->purpose =
DESTINATION_UP;
 sendOutBCastPkt(p);
 return;
 }
 }
 }
 else {
 for(j=0;j<4;j++) {
 if((strncmp(addr_proto[i],
upstream_addr_controller[j],3) == 0) && (strncmp(addr_proto[i],
upstream_addr_controller[j],8) > 0)) {
 printf("CONT:DESTUP2 \n");
 iph->daddr() =
upstream_node_controller[j];
 if(mh->purpose ==
DESTINATION_UP_SEC || mh->purpose == DESTINATION_DOWN_SEC)
 mh->purpose =
DESTINATION_UP_SEC;
 else mh->purpose =
DESTINATION_UP;

 181

 sendOutBCastPkt(p);
 return;
 }
 }
 }
 }
 }
 /*
 * CHECK FOR ENTRIES ALREADY IN THE TABLE
 */
 FILE *fk;
 char read_cont[20]; int prev_hop, seq_num, hops; int c;
 if(prte = table_->GetEntry(2, dest)) {
 bcopy(prte, &rte, sizeof(rte));
 //printf("DESTINATION PACKET : FOUND AN ENTRY ... OFF
YOU GO ... I am %s and %d sending to %s and %d\n",addr_proto[0],
myaddr_, dest, rte.prev_hop);
 iph->daddr() = rte.prev_hop;
 if(mh->purpose == DESTINATION_UP_SEC || mh->purpose
== DESTINATION_DOWN_SEC)
 mh->purpose = DESTINATION_DOWN_SEC;
 else mh->purpose = DESTINATION_DOWN;
 sendOutBCastPkt(p);
 return;
 }
 printf("CHECKING MY POWERS %s %d \n", addr_proto[0],
myaddr_);
 int flag_routing;
 flag_routing = 2;
 for(int i = 0; i < 10; i++) {
 if(strncmp(rp->destination_haddress,
reachable_highways[i], 3) == 0) {
 flag_routing = 1;
 printf("I am able to go it %s %d %s \n",
addr_proto[0], myaddr_, gateway_address[i]);
 strcpy(rp->dummy_destination_haddress,
gateway_address[i]);
 mh->purpose = DESTINATION_DOWN_SEC;
 break;
 }
 }
 if(flag_routing == 1) {
 if(prte = table_->GetEntry(2, rp-
>dummy_destination_haddress)) {
 bcopy(prte, &rte, sizeof(rte));
 iph->daddr() = rte.prev_hop;
 sendOutBCastPkt(p);
 return;
 }
 }
 /*
 * If no entry OR match found then route the packet to the
higher level...
 */

 182

 if(prte = table_->GetEntry(2, head_addr_)) {
 bcopy(prte, &rte, sizeof(rte));
 iph->daddr() = rte.prev_hop;
 mh->purpose = DESTINATION_DOWN_SEC;
 strcpy(rp->dummy_destination_haddress, head_addr_);
 sendOutBCastPkt(p);
 return;
 }
 }
 /*
 * Sending out discovery message
 */
 if(mh->purpose == TOPOLOGY_DISCOVERY) {
 if(rp->version_val == HIERARCHICAL_HEAD_DISCOVERY &&
heard_head_flag != 1) {
 Packet::free(p);
 return;
 }
 double xcor, ycor, zcor;
 node_ = (MobileNode*)Node::get_node_by_address(myaddr_);
 node_->getLoc(&xcor, &ycor, &zcor);
 strcpy(rp->source_haddress, addr_proto[0]);
 rp->source_xcor = xcor;
 rp->source_ycor = ycor;
 rp->dest_xcor = destination_xcor;
 rp->dest_ycor = destination_ycor;
 rec_seqnumber = rec_seqnumber + 1;
 printf("CONT:TOPODISC:I am %s starting discovery WITH %d at
%f send %d %d %d %d \n", addr_proto[0],rec_seqnumber,
Scheduler::instance().clock(), upstream_node_controller[0],
upstream_node_controller[1], upstream_node_controller[2],
upstream_node_controller[3]);
 for(i=0; i<ncount; i++) {
 for(int k = 0; k < 2; k++) {
 if(strcmp(addr_proto[k],"BULL") != 0) {
 int temp = 0;
 Packet *p1 = allocpkt ();
 New_Packet(p, addr_proto[k], p1, 0, i,
head_addr_, rec_seqnumber);
 /*
 * Put addresses of reachable highways
 */
 struct hdr_snetrout_pkt* rp1 =
hdr_snetrout_pkt::access(p1);
 if(rp1->version_val ==
HIERARCHICAL_HEAD_DISCOVERY) {
 for(int i = 0; i < 10; i++) {
 strncpy(rp1-
>reachable_address[i], reachable_highways[i], 3);
 printf(" <- %s ", rp1-
>reachable_address[i]);
 }
 }
 sendOutBCastPkt(p1);

 183

 }
 }
 }
 }
 /*
 * Forward the Topology discovery message
 */
 if(mh->purpose == TOPOLOGY_DISCOVERY_PROP) {
 if(rp->version_val == HIERARCHICAL_HEAD_BCAST) {
 int diff;
 diff = difference(addr_proto[0], rp-
>source_haddress);
 return_value = hierarchical_head_bcast(rp-
>source_xcor, rp->source_ycor, rp->source_haddress);
 if((return_value == 1) && (diff == 1)) {
 heard_head_flag = 1;
 destination_xcor = rp->source_xcor;
 destination_ycor = rp->source_ycor;
 strcpy(head_addr_, rp->source_haddress);
 printf("CONTROLLER:TOPODISCPROP: HHB ME %s with
%s %f %f \n", addr_proto[0], rp->source_haddress, destination_xcor,
destination_ycor);
 }
 else {
 if(return_value !=1) {
 Packet::free(p);
 return ;
 }
 }
 }
 if(rp->version_val == HIERARCHICAL_HEAD_DISCOVERY) {
 int i_;
 printf("CONTROLLER:STARTING DISCOVERY AT %s FROM %s
FOR %s at %f\n", addr_proto[0], rp->source_haddress, rp-
>destination_haddress, Scheduler::instance().clock());
 if((strcmp(addr_proto[0],rp->destination_haddress) ==
0) || (strcmp(addr_proto[1],rp->destination_haddress)== 0)) {
 printf("GURUDEV FOUND IT: I am %s %d from %s
\n", addr_proto[0], myaddr_, rp->source_haddress);
 /*
 * The below part of code updates the reachable
highways in the array
 */
 int flag = 1;
 for(int i = 0; i<10; i++) {
 if(strncmp(rp->reachable_address[i],
"NUL", 3) == 0)
 break;
 for(i_ = 0; i_<10; i_++) {
 if(strncmp(reachable_highways[i_],
rp->reachable_address[i], 3) == 0) {
 flag = 2;
 break;
 }

 184

 if(strncmp(reachable_highways[i_],
"NUL", 3) == 0) {
 flag = 1;
 break;
 }
 }
 if(flag == 1) {
 strncpy(reachable_highways[i_], rp-
>reachable_address[i], 3);
 strcpy(gateway_address[i_], rp-
>source_haddress);
 }
 }
 flag = 1;
 for(i_ = 0; i_<10; i_++) {
 if(strncmp(reachable_highways[i_], rp-
>source_haddress, 3) == 0) {
 flag = 2;
 break;
 }
 if(strncmp(reachable_highways[i_], "NUL",
3) == 0) {
 flag = 1;
 break;
 }
 }
 if(flag == 1) {
 strncpy(reachable_highways[i_], rp-
>source_haddress, 3);
 }
 for(int i = 0; i<10; i++) {
 if(strncmp(reachable_highways[i], "NUL",
3) != 0)
 printf(" %s %d -->> %s : ",
reachable_highways[i], i, gateway_address[i]);
 else break;
 }
 }
 return_value = hierarchical_head_discovery(rp-
>source_xcor, rp->source_ycor, rp->dest_xcor, rp->dest_ycor);
 }
 printf("I am %s return value in the final func is %d \n",
addr_proto[0], return_value);
 if(return_value == 1) {
 FILE *fk;
 char read_cont[20]; int prev_hop, seq_num, hops; int
c;
 printf("i saw discovery at %f at %s \n",
Scheduler::instance().clock(), addr_proto[0]);
 if(prte = table_->GetEntry1(2, rp->source_haddress))
{
 bcopy(prte, &rte, sizeof(rte));
 printf("FOUND AN ENTRY for %s ... I am %s and
%d\n",rp->source_haddress, addr_proto[0], myaddr_);

 185

 if((rp->seqnumber > rte.sequencenumber) ||
((rp->seqnumber == rte.sequencenumber) && (rte.distance > rp->scope)))
{
 strcpy(rte1.lname, rp->source_haddress);
 rte1.sequencenumber = rp->seqnumber;
 rte1.prev_hop = rp->prev_hop;
 rte1.distance = rp->scope;
 printf("Jus b4 ADDING %s %d %d \n",
rte1.lname, rte1.sequencenumber, rte1.prev_hop);
 table_->AddEntry(rte1);
 printf("i am addding %s \n",
addr_proto[0]);
 for(i=0; i<4; i++) {
 Packet *p1 = allocpkt ();
 New_Packet(p, rp->source_haddress,
p1, rp->scope+1, i, rp->destination_haddress, rp->seqnumber);
 struct hdr_snetrout_pkt* rp1 =
hdr_snetrout_pkt::access(p1);
 for(int i = 0; i<10; i++) {
 strncpy(rp1-
>reachable_address[i], rp->reachable_address[i], 3);
 }
 sendOutBCastPkt(p1);
 }
 }
 }
 else {
 strcpy(rte1.lname, rp->source_haddress);
 rte1.sequencenumber = rp->seqnumber;
 rte1.prev_hop = rp->prev_hop;
 rte1.distance = rp->scope;
 printf("jus b4 ADDING %s %d %d \n", rte1.lname,
rte1.sequencenumber, rte1.prev_hop);
 table_->AddEntry(rte1);
 for(i=0; i<4; i++) {
 Packet *p1 = allocpkt ();
 New_Packet(p, rp->source_haddress, p1,
rp->scope+1, i, rp->destination_haddress, rp->seqnumber);
 struct hdr_snetrout_pkt* rp1 =
hdr_snetrout_pkt::access(p1);
 for(int i = 0; i<10; i++) {
 strncpy(rp1->reachable_address[i],
rp->reachable_address[i], 3);
 }
 sendOutBCastPkt(p1);
 }
 }
 }
 }
return;
}
/*
 * This function creates new packet according to the passed arguments
 */

 186

void SnetRout_Agent::New_Packet (Packet * p, char source[20], Packet *
p1, int scope, int count, char discovery_dest[20], int seqnumber_)
{
 struct hdr_mm* mh1 = hdr_mm::access(p1);
 struct hdr_snetrout_pkt* rp1 = hdr_snetrout_pkt::access(p1);
 struct hdr_snetrout_pkt* rp = hdr_snetrout_pkt::access(p);
 hdr_ip *iph1 = HDR_IP(p1);
 mh1->purpose = TOPOLOGY_DISCOVERY_PROP;
 if(rp->version_val == HIERARCHICAL_HEAD_DISCOVERY)
 strcpy(rp1->destination_haddress,discovery_dest);
 else
 strcpy(rp1->destination_haddress,"BROADCAST_MSG");
 iph1->daddr() = upstream_node_controller[count];
 rp1->seqnumber = seqnumber_;
 rp1->version_val = rp->version_val;
 rp1->source_xcor = rp->source_xcor;
 rp1->source_ycor = rp->source_ycor;
 rp1->dest_xcor = rp->dest_xcor;
 rp1->dest_ycor = rp->dest_ycor;
 rp1->scope = scope;
 strcpy(rp1->source_haddress,source);
 return;
}
/*
 * Calculate the difference in level of the packet originator and the
current node
 */
int SnetRout_Agent::difference(char address1[20], char address2[20])
{
 int first, second;
 switch(address1[9]) {
 case '1': first = 1; break;
 case '2': first = 2; break;
 case '3': first = 3; break;
 case '4': first = 4; break;
 case '5': first = 5; break;
 }
 switch(address2[9]) {
 case '1': second = 1; break;
 case '2': second = 2; break;
 case '3': second = 3; break;
 case '4': second = 4; break;
 case '5': second = 5; break;
 }
 return (second - first);
}

/*
 * Checking the hierarchical bcast limits
 */
int SnetRout_Agent::hierarchical_head_bcast(double xcor, double ycor,
char source_address[20])
{
 int xlim, ylim;

 187

 if(source_address[9] == '3')
 {
 xlim = 5000;
 ylim = 800;
 }
 if(source_address[9] == '4')
 {
 xlim = 5000;
 ylim = 5000;
 }

 printf("he source is %f %f %s \n", xcor, ycor, source_address);
 double xcor2, ycor2, zcor2;
 node_ = (MobileNode*)Node::get_node_by_address(myaddr_);
 node_->getLoc(&xcor2, &ycor2, &zcor2);
 int i_xcor, i_xcor2, i_ycor, i_ycor2;
 i_xcor = xcor; i_xcor2 = xcor2; i_ycor = ycor; i_ycor2 = ycor2;
 if(abs(i_xcor2 - i_xcor) < xlim && abs(i_ycor2 - i_ycor) < ylim)
 {
 return 1;
 }
 else return 0;
}

/*
 * This function tells whetehr the hierarchical head discovery message
should be forwarded by this node or not
 * Basically providing functionality like Location Aided Routing
 */
int SnetRout_Agent::hierarchical_head_discovery(double xcor, double
ycor, double xcor1, double ycor1)
{

 double xcor2,ycor2,zcor2;
 node_ = (MobileNode*)Node::get_node_by_address(myaddr_);
 node_->getLoc(&xcor2, &ycor2, &zcor2);
 printf("values are %f %f %f %f %f %f\n", xcor,xcor1,xcor2, ycor,
ycor1, ycor2);
 if(xcor1 > xcor)
 {
 xcor = xcor - 200;
 xcor1 = xcor1 + 200;
 }
 else
 {
 xcor = xcor + 200;
 xcor1 = xcor1 - 200;
 }
 if(ycor1 > ycor)
 {
 ycor = ycor - 200;
 ycor1 = ycor1 + 200;
 }
 else

 188

 {
 ycor = ycor + 200;
 ycor1 = ycor1 - 200;
 }
 printf("values are %f %f %f %f %f %f\n", xcor,xcor1,xcor2, ycor,
ycor1, ycor2);
 if((((xcor2 < xcor) && (xcor2 > xcor1)) || ((xcor2 > xcor) &&
(xcor2 < xcor1))) && (((ycor2 < ycor) && (ycor2 > ycor1)) || ((ycor2 >
ycor) && (ycor2 < ycor1))))
 {
 printf("appropriate \n");
 return 1;
 }
 else
 {
 printf("out of range \n");
 return 0;
 }
}

static class SnetRoutClass:public TclClass
{
 public:
 SnetRoutClass ():TclClass ("Agent/SnetRout") {}
 TclObject *create (int, const char *const *) {
 return (new SnetRout_Agent ());
 }
} class_snetrout;

SnetRout_Agent::SnetRout_Agent (): Agent (PT_MESSAGE), ll_queue (0),
seqno_ (0), myaddr_ (0), subnet_ (0), node_ (0), port_dmux_(0),
 periodic_callback_ (0), be_random_ (1), use_mac_ (0), verbose_ (1),
trace_wst_ (0), lasttup_ (-10), alpha_ (0.875), wst0_ (6), perup_
(15),
 min_update_periods_ (3) // constants
{
 table_ = new snet_RoutingTable ();
 // helper_ = new SnetRout_Helper (this);
 // trigger_handler = new SnetRoutTriggerHandler(this);
 controller_array_count = 0;
 bind_time ("wst0_", &wst0_);
 bind_time ("perup_", &perup_);
 bind ("use_mac_", &use_mac_);
 bind ("be_random_", &be_random_);
 bind ("alpha_", &alpha_);
 bind ("min_update_periods_", &min_update_periods_);
 bind ("verbose_", &verbose_);
 bind ("trace_wst_", &trace_wst_);
 //DEBUG
 for(int k=0; k<5; k++)
 strcpy(addr_proto[k],"BULL");
 for(int k=0; k<10; k++)

 189

 strcpy(reachable_highways[k], "NUL");
 heard_head_flag = 0;
 address = 0;
}

void SnetRout_Agent::startUp()
{
}

int SnetRout_Agent::command (int argc, const char *const *argv)
{
 if (argc == 2) {
 if (strcmp (argv[1], "start-snetrout") == 0) {
 startUp();
 return (TCL_OK);
 }
 else if (strcmp (argv[1], "dumprtab") == 0) {
 Packet *p2 = allocpkt ();
 hdr_ip *iph2 = HDR_IP(p2);
 snet_rtable_ent *prte;
 printf ("Table Dump %d[%d]\n-------------------------------
---\n",iph2->saddr(), iph2->sport());
 trace ("VTD %.5f %d:%d\n", Scheduler::instance ().clock
(),iph2->saddr(), iph2->sport());
 // Freeing a routing layer packet --> don't need to
 // call drop here.
 Packet::free (p2);
 for (table_->InitLoop (); (prte = table_->NextLoop ());)
 // output_rte ("\t", prte, this);
 printf ("\n");
 return (TCL_OK);
 }
 }
 else if (argc == 3) {
 if(strcasecmp(argv[1], "delay-specs") == 0) {
 delay_spec_=atoi(argv[2]);
 return TCL_OK;
 }
 else if(strcasecmp(argv[1], "Number_Highways") == 0) {
 number_of_highways = atoi(argv[2]);
 max_seg_intersection = 2 * number_of_highways;
 printf("Number_of_Highway Maxima_Intersection ME %d
%d %d\n", number_of_highways, max_seg_intersection, myaddr_);
 return TCL_OK;
 }
 else if(strcmp(argv[1], "type_exp") == 0) {
 strcpy(type_exp_, argv[2]);
 printf("SNETROUT: type %s \n", type_exp_);
 return (TCL_OK);
 }
 else if(strcmp(argv[1], "rate-exp") == 0) {
 rate_ = atoi(argv[2]);
 printf("SNETROUT: rate %d \n", rate_);
 return (TCL_OK);

 190

 }
 else if(strcmp(argv[1], "run_exp") == 0) {
 run_ = atoi(argv[2]);
 printf("SNETROUT: run %d \n", run_);
 return (TCL_OK);
 }
 else if(strcmp(argv[1], "head_addr") == 0) {
 strcpy(head_addr_, argv[2]);
 printf("SNETROUT: type %s \n", head_addr_);
 return (TCL_OK);
 }
 if (strcasecmp (argv[1], "addr") == 0) {
 myaddr_ = Address::instance().str2addr(argv[2]);
 return TCL_OK;
 }
 TclObject *obj;
 if ((obj = TclObject::lookup (argv[2])) == 0) {
 fprintf (stderr, "%s: %s lookup of %s failed\n",
__FILE__, argv[1],argv[2]);
 return TCL_ERROR;
 }
 if (strcmp(argv[1], "attach-agent") == 0) {
 agent1_ = (Agent*) TclObject::lookup(argv[2]);
 return(TCL_OK);
 }
 if (strcasecmp (argv[1], "tracetarget") == 0) {
 tracetarget = (Trace *) obj;
 return TCL_OK;
 }
 else if (strcasecmp (argv[1], "node") == 0) {
 node_ = (MobileNode*) obj;
 return TCL_OK;
 }
 else if (strcasecmp (argv[1], "port-dmux") == 0) {
 port_dmux_ = (NsObject *) obj;
 return TCL_OK;
 }
 else if (strcasecmp (argv[1], "ll-queue") == 0) {
 if (!(ll_queue = (PriQueue *) TclObject::lookup
(argv[2]))) {
 fprintf (stderr, "SnetRout_Agent: ll-queue
lookup of %s failed\n", argv[2]);
 return TCL_ERROR;
 }
 return TCL_OK;
 }
 }
 else if (argc == 4) {
 if(strcmp(argv[1], "dest-coordinates") == 0) {
 destination_xcor = atoi(argv[2]);
 destination_ycor = atoi(argv[3]);
 return (TCL_OK);
 }
 }

 191

 return (Agent::command (argc, argv));
}

A.1.4 TCL File

A.1.4.1 Main File “VII_sp.tcl”
NS-2 TCL Script
Yongchang Ma, Ph.D. Dissertation
Clemson, SC 2007

==
Default Script Options
Basic configurations and model selection

==
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation
model
set val(netif) Phy/WirelessPhy ;# network interface
type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue
type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(rp) SnetRout ;# routing protocol
set val(adhocRouting) AODV ;# ad hoc routing
protocol

set val(ifqlen) 100 ;# max # of packet in queue
set val(ps) 100 ;# packet size in bytes
set val(x) 6000 ;# X dimension of the
topography
set val(y) 6000 ;# Y dimension of the
topography
set val(stop) 1800.0 ;# simulation time
set val(fnnum) 20 ;# number of fixed nodes+1
set val(mnnum) 200 ;# number of mobile nodes
calculate total number of nodes
set val(nn) [expr $val(fnnum)+$val(mnnum)]

set val(fnloc) "./sp_fnLoc2.txt" ;# locations of fixed
nodes
set val(fnadd) "./sp_fnAdd2.txt" ;# address of fixed
nodes
set val(fnFN) "./sp_fnFN2.txt" ;# filename of fixed
nodes
set val(mp) "./nodeM" ;# movement pattern of mobile
nodes

 192

set opt(energymodel) EnergyModel ;
set opt(initialenergy) 5 ;# Initial energy in Joules

Phy/WirelessPhy set CSThresh_ 2.259e-11
Phy/WirelessPhy set RXThresh_ 3.652e-10
Phy/WirelessPhy set bandwidth_ 54e6

==
Simulation Scripts

==

Read parameters from input
set arg [lindex $argv 0]
set arg_1 [lindex $argv 1]
set arg_2 [lindex $argv 2]
set arg_3 [lindex $argv 3]
set arg_4 [lindex $argv 4]

Initialize global variables
set ns_ [new Simulator]

Set trace file and nam file
set tracefd [open \\VII_trace\\temp_trace.tr w]
#set tracefd [open
\\VII_trace\\VII_sp_Run$arg.Time$arg_2.Location$arg_3.Lane$arg_4.tr w]
set namtrace [open VII_sp.nam w]
$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

Set up topography object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

Create god
create-god $val(nn)

Set node configuration
$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channel [new $val(chan)] \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace OFF \
 -macTrace ON \
 -movementTrace OFF

 193

for all the nodes get the routing agent, queue agent and set the node
for {set i 0} {$i < $val(nn) } {incr i} {
 set node_($i) [$ns_ node]
 #$god_ new_node $node_($i)
 set ragent_($i) [$node_($i) get-ragent]
 set ifqq_($i) [$node_($i) get-ifq]
 $node_($i) random-motion 0;
}

define color index
$ns_ color 0 red
$ns_ color 1 blue
$ns_ color 2 chocolate
$ns_ color 3 red
$ns_ color 4 brown
$ns_ color 5 tan
$ns_ color 6 gold
$ns_ color 7 black

for {set i 0} {$i < $val(nn)} {incr i} {
 # Set the UDP agent
 set udp_s($i) [new Agent/UDP/UDPsnet]
 $ns_ attach-agent $node_($i) $udp_s($i)
 $ragent_($i) attach-agent $udp_s($i)

 # Set packet size for UDP
 $udp_s($i) set packetSize_ $val(ps)

 # Set the appilcation agent
 set snet_s($i) [new Application/Snet]

 # Attach the application agent to the UDP agent
 $snet_s($i) attach-agent $udp_s($i)

 # Set the packet size for application agent
 $snet_s($i) set pktsize_ $val(ps)

 # This command is used to pass to the nodes application agent its
identity
 # Basically using this there is a varable in the C++ code of
snet.cc
 # that tells the node number
 $snet_s($i) set nodenumber_ $i

 $snet_s($i) set roundnumber_ $arg
}

Define locations of fixed nodes
puts "Loading locations of controllers, sensors and repeaters..."
source $val(fnloc)

Define the initial locations and address of the mobile nodes
for {set i $val(fnnum)} {$i < $val(nn) } {incr i} {
 $node_($i) set X_ 0.0

 194

 $node_($i) set Y_ 0.0
 $node_($i) set Z_ 0.0
 $node_($i) random-motion 0 ;# disable random motion
 $node_($i) color "blue"
 #puts "[expr $i%7]"
 $node_($i) shape "hexagon"
 $ns_ initial_node_pos $node_($i) 20
 $snet_s($i) addr IX1.0000.0.2
}

Define address of fixed nodes
puts "Loading address of controllers, sensors and repeaters..."
source $val(fnadd)

Define filename of fixed nodes
puts "Loading filename of controllers, sensors and repeaters..."
source $val(fnFN)

for {set i 0} {$i < $val(fnnum)} {incr i} {
 $node_($i) color red
 $node_($i) shape box
 $ns_ initial_node_pos $node_($i) 1

 $snet_s($i) time_duration 3 START 90
 $snet_s($i) time_duration 3 END 110
 $snet_s($i) time_duration 4 START 130
 $snet_s($i) time_duration 4 END 150
}

$ragent_(2) NUMBER_HIGHWAYS 4
$ragent_(19) NUMBER_HIGHWAYS 4

for {set i 0} {$i < $val(fnnum)} {incr i} {
 $ns_ at 0.0 "$snet_s($i) start"
 $ns_ at $val(stop).0 "$snet_s($i) stop"
}

Tell nodes when the simulation ends
for {set i $val(fnnum)} {$i < $val(nn) } {incr i} {
 $ns_ at $val(stop).0 "$node_($i) reset";
}

#Define a 'finish' procedure
proc finish {} {
 global ns_ namtrace tracefd
 global simStart

 $ns_ flush-trace
 close $tracefd
 #Execute nam on the trace file
 #puts "running nam..."
 #exec ../nam-1.11/nam VII_sp.nam &

 195

 set simEnd [clock seconds] ;# end-time of the
simulation
 set execTime [expr $simEnd-$simStart]
 # display some statistics
 puts "Finishing ns... Execution time: $execTime seconds (End:
[clock format $simEnd -format {%d.%m.%y %H:%M:%S}])"
 exit 0 ;# ... and we're done
}

proc getthetime {} {
 set now [exec date]
 puts stdout "$now"
}

$ns_ at $val(stop).0001 "finish"

#puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp
$val(adhocRouting)"
#puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"
#puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

$ns_ at 0.0 "$ns_ set-animation-rate 150ms"
$ns_ run

A.1.4.2 Fixed Nodes Location File “sp_fnLoc.tcl”
$node_(0) set X_ 0
$node_(0) set Y_ 0
$node_(0) set Z_ 0

$node_(1) set X_ 1824.43
$node_(2) set X_ 2018.98
$node_(1) set Y_ 1320.73
$node_(2) set Y_ 1334.76
$node_(1) set Z_ 0
$node_(2) set Z_ 0

$node_(3) set X_ 2212.42
$node_(3) set Y_ 1343.60
$node_(3) set Z_ 0

$node_(4) set X_ 2430.03
$node_(4) set Y_ 1371.04
$node_(4) set Z_ 0

$node_(5) set X_ 2626.79
$node_(5) set Y_ 1390.55
$node_(5) set Z_ 0

 196

$node_(6) set X_ 2807.97
$node_(6) set Y_ 1447.56
$node_(6) set Z_ 0

$node_(7) set X_ 2967.99
$node_(7) set Y_ 1551.22
$node_(7) set Z_ 0

$node_(8) set X_ 3120.70
$node_(8) set Y_ 1685.06
$node_(8) set Z_ 0

$node_(9) set X_ 3267.53
$node_(9) set Y_ 1828.96
$node_(9) set Z_ 0

$node_(10) set X_ 3407.32
$node_(10) set Y_ 1973.17
$node_(10) set Z_ 0

$node_(11) set X_ 3546.27
$node_(11) set Y_ 2114.33
$node_(11) set Z_ 0

$node_(12) set X_ 3679.54
$node_(12) set Y_ 2252.44
$node_(12) set Z_ 0

$node_(13) set X_ 3817.76
$node_(13) set Y_ 2391.46
$node_(13) set Z_ 0

$node_(14) set X_ 3944.59
$node_(14) set Y_ 2523.48
$node_(14) set Z_ 0

$node_(15) set X_ 4089.25
$node_(15) set Y_ 2663.11
$node_(15) set Z_ 0

$node_(16) set X_ 4233.88
$node_(16) set Y_ 2797.56
$node_(16) set Z_ 0

 197

$node_(17) set X_ 4397.03
$node_(17) set Y_ 2895.43
$node_(17) set Z_ 0

$node_(18) set X_ 4602.21
$node_(18) set Y_ 2963.11
$node_(18) set Z_ 0

$node_(19) set X_ 4813.23
$node_(19) set Y_ 3046.34
$node_(19) set Z_ 0

A.1.4.3 Fixed Nodes Address File “sp_fnAdd.tcl”
$snet_s(0) addr IX1.0000.1.2
$snet_s(1) addr IX1.5095.1.2
$snet_s(2) addr IX1.5250.1.2
$snet_s(3) addr IX1.5400.1.2
$snet_s(4) addr IX1.5550.1.2
$snet_s(5) addr IX1.5700.1.2
$snet_s(6) addr IX1.5850.1.2
$snet_s(7) addr IX1.6007.1.2
$snet_s(8) addr IX1.6107.1.2
$snet_s(9) addr IX1.6207.1.2
$snet_s(10) addr IX1.6307.1.2
$snet_s(11) addr IX1.6407.1.2
$snet_s(12) addr IX1.6507.1.2
$snet_s(13) addr IX1.6625.1.2
$snet_s(14) addr IX1.6775.1.2
$snet_s(15) addr IX1.6900.1.2
$snet_s(16) addr IX1.7025.1.2
$snet_s(17) addr IX1.7175.1.2
$snet_s(18) addr IX1.7325.1.2
$snet_s(19) addr IX1.7450.2.2

A.2 Implementation of Integrated Simulation Platform in PARAMICS

The following sections present selected source codes for the implementation of
integrated simulation platform in PARAMICS.

A.2.1 Plugin File for Traffic Condition Assessment
#include "c:\program Files\paramicsV5\programmer\include\programmer.h"

 198

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <process.h>
#include <malloc.h>
#include <memory.h>
#include "svm.h"
#include "plugin.h"
#include "plugin_p.h"

int total_nodeNum=fixed_nodeNum+mobile_nodeNum;

typedef struct coordinate coord;

static char *swi = "C:\\bang.txt";
static char *syn = "C:\\incident.txt";
static char *model_filename="C:\\queue4.scale.model";
static char *range_filename="C:\\range";
static char *nodeM_filename="C:\\nodeM";
static char *roundN_filename="C:\\VII_sim\\int_1line\\20\\roundnumber";
const int penetration=20;
const int demand =3200;
struct svm_model* model;
static char *enter_links[enter_linkNum]={"196:197"};
static char *exit_links[exit_linkNum]={"210:333","531:293"};
static float enterX[enter_linkNum]={1331747.00};
static float enterY[enter_linkNum]={12695591.00};

FILE *swi_file;
FILE *syn_file;
FILE *nodeM;
FILE *roundN;
coord *cur_loc;

static float inc_startTime=900;
static float rec_time=30;
static float left_x=1321840.00,down_y=12690320.00;
static char
*node[node_Num+2]={"196","197","332","210","294","292","531"};
static int node_LES[node_Num+2]={4121,4858,6898,8938,9214,10823,11960};
static char
*links[linkNum+2]={"196:197","197:332","332:210","210:294","294:292","2
92:531"};
static float
startNode_x[linkNum+2]={1331747.00,1332262.13,1333691.38,1335217.1,1335
306.38,1336683.25};
static float
startNode_y[linkNum+2]={12695591.00,12696118.00,12697574.00,12699136.0,
12699233.00,12700037.00};
static float
endNode_x[linkNum+2]={1332262.13,1333691.38,1335217.1,1335306.38,133668
3.25,1337784.25};

 199

static float
endNode_y[linkNum+2]={12696118.00,12697574.00,12699136.0,12699233.00,12
700037.00,12700319.00};
static int arc[linkNum+2]={0,0,0,0,-1,0};
static float center_x[linkNum+2]={0,0,0,0,1337591.6,0};
static float center_y[linkNum+2]={0,0,0,0,12696928.0,0};
static float links_length[linkNum+2],Radius[linkNum+2];
static char *inc_link;
int counter=0;
int tagged=0;
int i,j,k,ab_cnt,i_t,printed;
double rep_ab[3][6];
float lnb0,lnb1,lnb2,check_time,check_pt;
float veh_stat[maxCounter][elem];
int veh_num[7];
float veh_time[7];
float rep_vehStatus_int=4;
int inc_distance;
struct svm_node *x;
struct veh_tt *vtt;
struct veh_tt *vtt_buffer;
struct road_stat *rst;
int max_nr_veh = 1000;
int max_nr_attr = 13;
errno_t err;
double lower=0.0,upper=1.0;
double *feature_max;
double *feature_min;
double *feature_max1;
double *feature_min1;
int max_index=12;
int max_index1=15;
int
in_cnt[7],out_cnt[7],vid,num_tt,vid_buffer,within[fixed_nodeNum+mobile_
nodeNum];
float avg_tt;
int warmup_time=57600+1200;
int startup_time=57600;
int clear;
int time_step=300,rec_nodeM_int=1;
float rdStatus[23][6][4];
int seg_length=4*40*3.28;
int laneBlock=1,inc_location;
Bool inc_occure1 = FALSE;
Bool inc_occure2 = FALSE;
Bool inc_occure3 = FALSE;
static int switch_startTime=300;
static int restartTime=1800;
static int Nveh_msg;

void qpx_NET_postOpen(void)
{
 FILE *fp=NULL;

 200

 int idx,roundnumber_;
 double fmin, fmax;
 qps_GUI_printf("\n-------VII API--------\n");
 err = fopen_s(&roundN,roundN_filename,"r+");
 if(err!=0) qps_GUI_printf("Cannot find file %s
\n",roundN_filename);
 else {
 fscanf_s(roundN,"%d",&roundnumber_);
 roundnumber_++;
 rewind(roundN);
 fprintf(roundN,"%d",roundnumber_);
 }
 if(roundN!=NULL) fclose(roundN);
 clear=(warmup_time-startup_time)/time_step;
 laneBlock=qpg_UTL_randomInteger(APIRNG_FREEWAYLANES,3)+1;
 laneBlock=2;
 inc_location=node_LES[0]+qpg_UTL_randomInteger(APIRNG_INCIDENT,(n
ode_LES[node_Num-1]-node_LES[0]));
 for(i=0; i<linkNum; i++) {
 if(inc_location<=node_LES[i+1]) {
 inc_link=links[i];
 inc_distance=(int)max(180,min((node_LES[i+1]-
inc_location),qpg_LNK_length(qpg_NET_link(inc_link))));
 break;
 }
 }
 qps_GUI_printf("round %d: %d lanes incident will occurre at %5.0f
on Link %s at distance %d feet from the end (LES:
%d);\n",roundnumber_++,laneBlock,inc_startTime,inc_link,inc_distance,in
c_location);
 err = fopen_s(&syn_file,syn,"w+");
 if(err!=0) qps_GUI_printf("Cannot find file %s \n",syn);
 else
 fprintf(syn_file,"%d %d %d %d
",switch_startTime,(int)inc_startTime,inc_location,laneBlock);
 if(syn_file!=NULL) fclose(syn_file);

 if(vtt!=NULL) {qps_GUI_printf("vtt not NULL\n");free(vtt);}
 vtt = (struct veh_tt *) realloc(vtt,max_nr_veh*sizeof(struct
veh_tt));
 vtt_buffer=(struct veh_tt *) realloc(vtt_buffer,500*sizeof(struct
veh_tt));
 rst=(struct road_stat *) calloc(180,sizeof(struct road_stat));
 for(i=0; i<linkNum; i++) {
 links_length[i]=sqrt(pow((endNode_x[i]-
startNode_x[i]),2)+pow((endNode_y[i]-startNode_y[i]),2));
 Radius[i]=sqrt(pow((endNode_x[i]-
center_x[i]),2)+pow((endNode_y[i]-center_y[i]),2));
 }
 fopen_s(&nodeM,nodeM_filename,"w+");
 fclose(nodeM);
 x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct
svm_node));
 if((model=svm_load_model(model_filename))==0)

 201

 {
 qps_GUI_printf("can't open model file
%s\n",model_filename);
 }
 err = fopen_s(&fp,range_filename,"r");
 if(err!=0)
 {
 qps_GUI_printf("cannot find file %s \n",range_filename);
 }
 feature_max = (double *)malloc((max_index+1)* sizeof(double));
 feature_min = (double *)malloc((max_index+1)* sizeof(double));
 if (fgetc(fp) == 'x') {
 fscanf(fp, "%lf %lf\n", &lower, &upper);
 while(fscanf(fp,"%d %lf %lf\n",&idx,&fmin,&fmax)==3)
 {
 if(idx<=max_index)
 {
 feature_min[idx] = fmin;
 feature_max[idx] = fmax;
 }
 }
 }
 fclose(fp);
}
void qpx_VHC_release(VEHICLE* vehicle)
{
 struct veh_motion *vmo=NULL;
 vmo = calloc(1,sizeof(struct veh_motion));
 // check for a bad vehicle
 if(!vehicle) return;
 // store the data with the vehicle
 qps_VHC_userdata(vehicle, (VHC_USERDATA*) vmo);
}
void qpx_VHC_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2)
{
 int j;
 float speed;
 struct veh_motion *vmo=NULL;
 vmo=(struct veh_motion *) calloc(1,sizeof(struct veh_motion));

 vmo = (struct veh_motion *) qpg_VHC_userdata(vehicle);
 if (link2==qpg_NET_link(enter_links[0]) &&
qpg_VHC_type(vehicle)==3 && qpg_CFG_simulationTime()>switch_startTime)
{
 for(i=fixed_nodeNum;i<total_nodeNum;i++) {
 if(within[i]==0) {
 vmo->nodeID=i;
 vmo->startTime=qpg_CFG_simulationTime();
 for(j=0;j<rep_vehStatus_num;j++)
 vmo->speed[j]=qpg_VHC_speed(vehicle);
 within[i]=1;
 vmo->x=left_x+10.0;
 vmo->y=down_y+10.0;
 break;

 202

 }
 }
 qps_VHC_userdata(vehicle, (VHC_USERDATA*) vmo);
 }
 if ((link2==qpg_NET_link(exit_links[0]) ||
link2==qpg_NET_link(exit_links[1])) && qpg_VHC_type(vehicle)==3 && vmo-
>nodeID!=0 && qpg_CFG_simulationTime()>switch_startTime) {
 within[vmo->nodeID]=0;
 speed=sqrt(pow((down_y + 10 - vmo->y),2)+pow((left_x + 10 -
vmo->x),2)) / 0.5;
 vmo->x=left_x+10.00;
 vmo->y=down_y+10.00;
 qps_VHC_userdata(vehicle, (VHC_USERDATA*) vmo);
 fopen_s(&nodeM,nodeM_filename,"a+");
 fprintf(nodeM,"$ns_ at %5.1f \"$node_(%d) setdest %8.2f
%8.2f %8.2f\"\n",qpg_CFG_simulationTime()-0.5,vmo-
>nodeID,10.00/3.28,10.00/3.28,speed/3.28);
 fclose(nodeM);
 }
}

void qpx_LNK_vehicleTimeStep(LINK* link, VEHICLE* vehicle)
{
 int j,idx,stucked=0;
 double scaled_value,v=0;

 /* Generate Incident */
 if(!inc_occure1 && link==qpg_NET_link(inc_link) &&
(3.28*qpg_VHC_distance(vehicle))<=(inc_distance+80) &&
qpg_CFG_simulationTime()>=inc_startTime && qpg_VHC_lane(vehicle)==1)
 {
 qps_VHC_stopped(vehicle,TRUE);
 inc_occure1=TRUE;
 inc_startTime=qpg_CFG_simulationTime();
 inc_location=inc_location+(int)(inc_distance-
3.28*qpg_VHC_distance(vehicle));
 qps_GUI_printf("\n \t Incident occured at: %5.0f.
\n",qpg_CFG_simulationTime());
 err = fopen_s(&syn_file,syn,"w");
 if(err!=0) qps_GUI_printf("Cannot find file %s \n",syn);
 else
 fprintf(syn_file,"%d %d %d %d %d
%d",switch_startTime,(int)inc_startTime,inc_location,laneBlock,penetrat
ion,demand);
 fclose(syn_file);
 }
 if (laneBlock>=2 && !inc_occure2 && link==qpg_NET_link(inc_link)
&& (3.28*qpg_VHC_distance(vehicle))<=(inc_distance+80) &&
qpg_CFG_simulationTime()>=inc_startTime && qpg_VHC_lane(vehicle)==2)
 {
 qps_VHC_stopped(vehicle,TRUE);
 inc_occure2=TRUE;
 qps_GUI_printf(" \t Lane 2 Blocked at: %5.0f.
\n",qpg_CFG_simulationTime());

 203

 }
 if (laneBlock==3 && !inc_occure3 && link==qpg_NET_link(inc_link)
&& (3.28*qpg_VHC_distance(vehicle))<=(inc_distance+80) &&
qpg_CFG_simulationTime()>=inc_startTime && qpg_VHC_lane(vehicle)==3)
 {
 qps_VHC_stopped(vehicle,TRUE);
 inc_occure3=TRUE;
 qps_GUI_printf(" \t Lane 3 Blocked at: %5.0f.
\n",qpg_CFG_simulationTime());
 }

 if(qpg_VHC_type(vehicle)==3 &&
qpg_CFG_simulationTime()>switch_startTime) {
 struct veh_motion *vmo=NULL;
 float speed;
 vmo=(struct veh_motion *) calloc(1,sizeof(struct
veh_motion));
 vmo = (struct veh_motion *) qpg_VHC_userdata(vehicle);
 for(i=0;i<linkNum;i++) {
 if(link==qpg_NET_link(links[i]) && vmo->nodeID!=0) {
 if(fmod(qpg_CFG_simulationTime(),rec_nodeM_int)
== 0) {
 cur_loc =
find_coord(link,qpg_VHC_distance(vehicle),qpg_VHC_lane(vehicle));
 speed=sqrt(pow((cur_loc->y - vmo-
>y),2)+pow((cur_loc->x - vmo->x),2)) / rec_nodeM_int;
 fopen_s(&nodeM,nodeM_filename,"a+");
 fprintf(nodeM,"$ns_ at %5.1f \"$node_(%d)
setdest %8.2f %8.2f %8.2f\"\n",qpg_CFG_simulationTime()-
rec_nodeM_int,vmo->nodeID,(cur_loc->x-left_x)/3.28,(cur_loc->y-
down_y)/3.28,speed/3.28);
 fclose(nodeM);
 vmo->x=cur_loc->x;
 vmo->y=cur_loc->y;
 qps_VHC_userdata(vehicle, (VHC_USERDATA*)
vmo);
 }
 if(fmod((qpg_CFG_simulationTime() - vmo-
>startTime),rep_vehStatus_int) == 0 && qpg_CFG_simulationTime()>vmo-
>alertTime) {
 x = (struct svm_node *)
realloc(x,max_nr_attr*sizeof(struct svm_node));
 for(j=rep_vehStatus_num-1;j>=1;j--) {
 vmo->speed[j]=vmo->speed[j-1];
 vmo->laneChange[j]=vmo-
>laneChange[j-1];
 }
 vmo-
>laneChange[0]=(qpg_VHC_lane(vehicle)==vmo->lane ? 0 : 1);
 vmo->lane=qpg_VHC_lane(vehicle);
 vmo->speed[0]=qpg_VHC_speed(vehicle);
 idx=0;
 for(j=0;j<2*rep_vehStatus_num;j++) {
 if(j<rep_vehStatus_num) {

 204

 scaled_value=lower + (upper-
lower) * (vmo->laneChange[j]-feature_min[j+1])
 /(feature_max[j+1]-
feature_min[j+1]);
 }
 else {
 scaled_value=lower + (upper-
lower) * (vmo->speed[j-rep_vehStatus_num]-feature_min[j+1])
 /(feature_max[j+1]-
feature_min[j+1]);
 }
 x[idx].index=j+1;
 x[idx].value=scaled_value;
 idx++;
 }
 x[idx].index=-1;
 v=svm_predict(model, x);
 vmo->alertTime=qpg_CFG_simulationTime();
 vmo-
>alertLocation=get_LES(qpg_LNK_nodeEnd(link))-
(int)(3.28*qpg_VHC_distance(vehicle));
 if((qpg_CFG_simulationTime()-vmo-
>startTime)>rec_nodeM_int) {

 fopen_s(&nodeM,nodeM_filename,"a+");
 fprintf(nodeM,"$ns_ at %9.5f
\"$snet_s(%d) veh_msg %d %5.2f
%d\"\n",qpg_CFG_simulationTime()+(float)qpg_UTL_randomInteger(APIRNG_MI
SC,1000)/100000,vmo->nodeID,(int)v,qpg_CFG_simulationTime(),vmo-
>alertLocation);
 Nveh_msg++;
 fclose(nodeM);
 }
 qps_VHC_userdata(vehicle, (VHC_USERDATA*)
vmo);
 }
 }
 }
 }
}
void qpx_NET_second(void)
{
 int syn_time,wait_time=0,j;
 float rdStatus_sum=0;
 char checkofy[11];

 if(qpg_CFG_simulationTime()>restartTime) {
 qps_GUI_printf("Restarting...\n");
 qps_GUI_simRestart();
 }
 if(qpg_CFG_simulationTime()>switch_startTime &&
fmod(qpg_CFG_simulationTime(),switch_int) == 0)
 {
 while(1)

 205

 {
 err = fopen_s(&swi_file,swi,"w+");
 if(err != 0) qps_GUI_printf("can not open file
%s, error number is: %d\n",swi,err);
 else {
 fprintf_s(swi_file,"ns2
%d\n",(int)qpg_CFG_simulationTime());
 //qps_GUI_printf("write ns2 at
%d\n",(int)qpg_CFG_simulationTime());
 fclose(swi_file);
 break;
 }
 }

 while(1)
 {
 qps_SIM_running(FALSE);
 wait_time++;
 err = fopen_s(&swi_file,swi,"r+");
 if(err == 0) {
 fscanf_s(swi_file,"%s
%d",checkofy,11,&syn_time);
 //qps_GUI_printf("switch value is: %s; syn_time
is: %d\n",checkofy,syn_time);
 fclose(swi_file);
 if(strncmp(checkofy,"para",3) == 0 &&
syn_time==(int)qpg_CFG_simulationTime()) {
 qps_SIM_running(TRUE);
 fopen_s(&nodeM,nodeM_filename,"w+");
 fclose(nodeM);
 break;
 }
 else if(strncmp(checkofy,"para",3) == 0 &&
syn_time<(int)qpg_CFG_simulationTime()) {
 if(err = fopen_s(&swi_file,swi,"w+")==0)
 fprintf_s(swi_file,"ns2
%d\n",(int)qpg_CFG_simulationTime());
 fclose(swi_file);
 }
 else if(strncmp(checkofy,"STOP",3) == 0) {
 //Sleep(1000);
 qps_GUI_printf("Restarting...\n");
 qps_GUI_simRestart();
 //qps_SIM_running(TRUE);
 //switch_startTime=999999;
 break;
 }
 }
 else Sleep(100);
 if(wait_time>300000) break;
 }
 }
}

 206

static struct coordinate * find_coord(LINK* i_link, float Distance,int
Lane)
{
 struct coordinate *cur_coord;
 int i;
 cur_coord=(struct coordinate *) calloc(1,sizeof(struct
coordinate));
 Distance=3.28*Distance;
 for(i=0; i<linkNum; i++)
 {
 if(qpg_NET_link(links[i])==i_link)
 {
 cur_coord->linkID=i;
 if(arc[i]==0) {
 cur_coord->x=endNode_x[i]-(endNode_x[i]-
startNode_x[i])*Distance/links_length[i]+(12*Lane-6)*(endNode_y[i]-
startNode_y[i])/links_length[i];
 cur_coord->y=endNode_y[i]-(endNode_y[i]-
startNode_y[i])*Distance/links_length[i]-(12*Lane-6)*(endNode_x[i]-
startNode_x[i])/links_length[i];
 }
 else {
 cur_coord-
>x=center_x[i]+arc[i]*Radius[i]*cos(atan((endNode_y[i]-
center_y[i])/(endNode_x[i]-center_x[i]))+Distance/Radius[i])+(12*Lane-
6)*sin(atan((endNode_y[i]-center_y[i])/(endNode_x[i]-
center_x[i]))+Distance/Radius[i]);
 cur_coord-
>y=center_y[i]+arc[i]*Radius[i]*sin(atan((endNode_y[i]-
center_y[i])/(endNode_x[i]-center_x[i]))+Distance/Radius[i])-(12*Lane-
6)*cos(atan((endNode_y[i]-center_y[i])/(endNode_x[i]-
center_x[i]))+Distance/Radius[i]);
 }
 break;
 }
 }
 return cur_coord;
}
static int get_LES(NODE* i_node)
{
 int i;
 int i_LES = 0;
 for(i=0; i<node_Num; i++)
 {
 if(qpg_NET_node(node[i])==i_node)
 {
 i_LES = node_LES[i];
 break;
 }
 }
 return i_LES;
}

 207

A.2.2 Plugin File for Travel Time Prediction
#include "c:\program Files\paramicsV5\programmer\include\programmer.h"
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <process.h>
#include <malloc.h>
#include <memory.h>
#include "svm.h"
#include "plugin.h"

#define rec_num 2
#define enter_linkNum 9
#define exit_linkNum 6
#define head 4
#define para 2
#define interval 6
#define maxCounter 200
#define elem head+para*interval

static char *rec_filename_pre = {"C:\\t"};
static char *rec_filename;

static char *roundN_filename = {"C:\\VII_sim\\tt\\G_C\\roundnumber"};
static char *model_filename="C:\\queue1.scale.model";
static char *range_filename="C:\\range";
struct svm_model* model;
static char
*enter_links[enter_linkNum]={"210:1049","436:1049","437:1273","1503:150
4","1506:186","441:442","447:1447","1400:1402","477:175"};
static char
*exit_links[exit_linkNum]={"200:1495","1298:1296","1330:1321","176:1380
","1393:1404","452:1419"};
struct svm_model* model1;

FILE *rec_file;
FILE *roundN;
static float inc_startTime=530;
static float rec_time=30;
int counter=0;
int tagged=0;
int i,j,k,ab_cnt,i_t,printed;
double rep_ab[3][6];
float lnb0,lnb1,lnb2,check_time,check_pt;
float veh_stat[maxCounter][elem];
int veh_num[7];
float veh_time[7];
float increment=4;
float inc_distance=1500;
struct svm_node *x;
struct svm_node *x1;

 208

struct veh_tt *vtt;
struct veh_tt *vtt_buffer;
struct road_stat *rst;
int max_nr_veh = 1000;
int max_nr_attr = 13;
errno_t err;
double lower=0.0,upper=1.0;
double *feature_max;
double *feature_min;
double *feature_max1;
double *feature_min1;
int max_index=12;
int max_index1=15;
int in_cnt[7],out_cnt[7],vid,num_tt,vid_buffer;
float avg_tt;
int warmup_time=57600+1200;
int startup_time=57600;
int clear;
int time_step=120;
void qpx_NET_postOpen(void)
{
 FILE *fp=NULL;
 int idx,roundnumber_;
 double fmin, fmax;
 char round[4];
 qps_GUI_printf("\n-------VII APIs--------\n");
 clear=(warmup_time-startup_time)/time_step;
 if(vtt!=NULL) {qps_GUI_printf("vtt not NULL\n");free(vtt);}
 vtt = (struct veh_tt *) realloc(vtt,max_nr_veh*sizeof(struct
veh_tt));
 vtt_buffer=(struct veh_tt *) realloc(vtt_buffer,500*sizeof(struct
veh_tt));
 rst=(struct road_stat *) calloc(180,sizeof(struct road_stat));

 err = fopen_s(&roundN,roundN_filename,"r+");
 if(err!=0) qps_GUI_printf("Cannot find file %s
\n",roundN_filename);
 else {
 fscanf_s(roundN,"%d",&roundnumber_);
 roundnumber_++;
 itoa (roundnumber_,round,10);
 rewind(roundN);
 fprintf(roundN,"%d",roundnumber_);
 }
 if(roundN!=NULL) fclose(roundN);
 rec_filename = (char *)malloc((strlen(rec_filename_pre) +
strlen(round) + 1)*sizeof(char));
 strcpy(rec_filename, rec_filename_pre);
 strcat(rec_filename, round);
}

void qpx_VHC_transfer(VEHICLE* vehicle, LINK* link1, LINK* link2)
{

 209

 if (link2==qpg_NET_link(enter_links[0]) &&
qpg_VHC_type(vehicle)==3) {
 in_cnt[0]++;
 vtt[vid].startTime=qpg_VHC_startTime(vehicle);
 vtt[vid].origin=qpg_VHC_origin(vehicle);
 vtt[vid].enterTime=(int)qpg_CFG_simulationTime();
 rst[((int)qpg_CFG_simulationTime()-startup_time)/time_step-
1].enter_num++;
 vid++;
 if(vid>=max_nr_veh) {
 qps_GUI_printf("buffer\n");
 for(i=0;i<vid;i++) {
 if(vtt[i].startTime!=999999) {

 vtt_buffer[vid_buffer].startTime=vtt[i].startTime;

 vtt_buffer[vid_buffer].origin=vtt[i].origin;

 vtt_buffer[vid_buffer].enterTime=vtt[i].enterTime;
 vid_buffer++;
 }
 }
 vid=vid_buffer;
 qps_GUI_printf("post_vid is %d\n",vid);
 for(i=0;i<vid;i++) {
 vtt[i].startTime=vtt_buffer[i].startTime;
 vtt[i].origin=vtt_buffer[i].origin;
 vtt[i].enterTime=vtt_buffer[i].enterTime;
 }
 vid_buffer=0;
 }
 }
 for(i=1;i<enter_linkNum;i++) {
 if(link1==qpg_NET_link(enter_links[i]) &&
qpg_VHC_type(vehicle)==3) in_cnt[0]++;
 }
 if (link1==qpg_NET_link(exit_links[exit_linkNum-1]) &&
qpg_VHC_type(vehicle)==3) {
 out_cnt[0]++;
 for(i=0;i<vid;i++) {
 if(vtt[i].startTime==qpg_VHC_startTime(vehicle) &&
qpg_VHC_origin(vehicle)==vtt[i].origin) {
 avg_tt+=qpg_CFG_simulationTime()-
vtt[i].enterTime;
 num_tt++;
 if((vtt[i].enterTime-
startup_time)/time_step>=1) {
 rst[(vtt[i].enterTime-
startup_time)/time_step-1].leave_num++;
 rst[(vtt[i].enterTime-
startup_time)/time_step-1].tt+=qpg_CFG_simulationTime()-
vtt[i].enterTime;
 rst[(vtt[i].enterTime-
startup_time)/time_step-1].exit_num++;

 210

 }
 if(rst[clear].leave_num==rst[clear].enter_num
&& rst[clear].enter_num!=0 && qpg_CFG_simulationTime()-startup_time-
clear*time_step>time_step && qpg_CFG_simulationTime()>=warmup_time) {
 qps_GUI_printf("\t time step %d, tt
%5.2f, in_tra %d, col_tt
%5.2f\n",clear,rst[clear].tt/(float)rst[clear].exit_num,rst[clear].in_t
ra[0],rst[clear].col_tt[0]);
 fopen_s(&rec_file,rec_filename,"a+");
 fprintf(rec_file,"%5.2f
",rst[clear].tt/(float)rst[clear].exit_num);
 for(j=0;j<1;j++)
{if(rst[clear].col_tt[j]!=0) fprintf(rec_file,"%d:%5.2f
",j+1,rst[clear].col_tt[j]);}
 for(j=0;j<1;j++)
{if(rst[clear].in_tra[j]!=0) fprintf(rec_file,"%d:%d
",j+2,rst[clear].in_tra[j]);}
 for(j=0;j<1;j++)
{if(rst[clear].enter_tra[j]!=0) fprintf(rec_file,"%d:%d
",j+3,rst[clear].enter_tra[j]);}

 fprintf(rec_file,"\n");
 fclose(rec_file);
 clear++;
 }
 vtt[i].startTime=999999;
 break;
 }
 }
 }
 for(i=0;i<exit_linkNum-1;i++) {
 if(link2==qpg_NET_link(exit_links[i]) &&
qpg_VHC_type(vehicle)==3) {
 out_cnt[0]++;
 for(j=0;j<vid;j++) {
 if(vtt[j].startTime==qpg_VHC_startTime(vehicle)
&& qpg_VHC_origin(vehicle)==vtt[j].origin) {
 rst[(vtt[j].enterTime-
startup_time)/time_step-1].leave_num++;
 vtt[j].startTime=999999;
 break;
 }
 }
 }
 }
}
void qpx_NET_second(void)
{
 if(fmod(qpg_CFG_simulationTime(),time_step) == 0)
 {
 for(i=5;i>0;i--) {
 veh_num[i]=veh_num[i-1];
 veh_time[i]=veh_time[i-1];
 }

 211

 veh_num[0]+=in_cnt[0]-out_cnt[0];
 veh_time[0]=avg_tt/(float)(num_tt);
 for(i=0;i<6;i++) {
 rst[((int)qpg_CFG_simulationTime()-
startup_time)/time_step].enter_tra[i]=in_cnt[i];
 rst[((int)qpg_CFG_simulationTime()-
startup_time)/time_step].exit_tra[i]=out_cnt[i];
 rst[((int)qpg_CFG_simulationTime()-
startup_time)/time_step].in_tra[i]=veh_num[i];
 rst[((int)qpg_CFG_simulationTime()-
startup_time)/time_step].col_tt[i]=veh_time[i];
 }
 avg_tt=0;
 num_tt=0;
 for(i=5;i>0;i--) {
 out_cnt[i]=out_cnt[i-1];
 in_cnt[i]=in_cnt[i-1];
 }
 in_cnt[0]=0;
 out_cnt[0]=0;
 qps_GUI_printf("time step %d, veh_num is %d,veh_time is
%5.2f, vid is %d\n",((int)qpg_CFG_simulationTime()-
startup_time)/time_step,veh_num[0],veh_time[0],vid);
 }
}

 212

REFERENCES

Abdulhai, B., and Ritchie, S.G. (1999). “Enhancing the universality and transferability of
freeway incident detection using a Bayesian-based neural network.” Transportation
Research, Part C, 7(5), 261-280.

Adeli, H., and Samant, A. (2000). “An adaptive conjugate gradient neural network-
wavelet model for traffic incident detection.” Computer-Aided Civil and
Infrastructure Engineering, 5(4), 251.260.

Antoniades, C. N., and Y. J. Stephanedes. (1996). “Single-Station Incident Detection
Algorithm (SSID) for Sparsely Instrumented Freeway Sites.” Proc., International
Conference on Applications of Advanced Technologies in Transportation
Engineering, New York, 218-221.

Ahmed, M. S., and Cook, A. R. (1977). “Analysis of freeway traffic time-series data
using Box-Jenkins techniques.” Transportation Research Record, 722, Transportation
Research Board, Washington D.C., 1-9.

Ahmed, M. S., and Cook, A. R. (1980). “Time series models for freeway incident
detection.” Journal of Transportation Engineering, 106(6), 731-745.

Ahmed, M. S., and Cook, A. R. (1982). “Application of time-series analysis techniques to
freeway incident detection.” Transportation Research Board, 841, Transportation
Research Board, Washington D.C., 19-21.

Avila, A., Korkmaz, G., Liu, Y., Teh, H., Ekici, E., Ozguner, F., Ozguner, U., Redmill,
K., Takeshita, O., Tokuda, K., Hamaguchi, M., Nakabayashi, S. and Tsutsui, H.
(2005). “A complete simulator architecture for inter-vehicle communication
intersection warning systems.” Proc., IEEE Conf. on Intelligent Transportation
Systems, Vienna, Austria, 461-466.

Balke, K. N. (1993). An evaluation of existing incident detection algorithms. Research
Report, FHWA/TX-93/1232-20, Texas Transportation Institute, the Texas A&M
University System, College Station, TX.

Balke, K., Dudek, C.L., and Mountain, C.E. (1996). “Using probe-measured travel time
to detect major freeway incidents in Houston, Texas.” Transportation Research
Record, 1554, Transportation Research Board, Washington D.C., 213-220.

 213

Bhavsar, P., Chowdhury, M. A., Sadek, A., Sarasua, W., and Ogle, J. (2007). “Decision
support system for predicting traffic diversion impacts across transportation networks
using support vector regression.” Transportation Research Board Annual Meeting
(CD-ROM), Washington D.C., 2007.

Biswas, S., Tatchikou, R., and Dion, F. (2006). “Vehicle-to-vehicle wireless
communication protocols for enhancing highway traffic safety.” IEEE
Communications Magazine, 44(1), 74-82.

Blosseville, J., Morin, J., and Lochegnies, P. (1993). “Video Image Processing
Application: Automatic Incident Detection Freeways.” Proceedings of the Pacific
Rim Trans Tech Conference, 69-76.

Boser, B. E., Guyon, I., and Vapnik, V. (1992). “A training algorithm for optimal margin
classiers.” Proc. the Fifth Annual Workshop on Computational Learning Theory,
New York, NY, 144-152.

Boxill, S. A., and Yu, L. (2000) “An evaluation of traffic simulator models for supporting
ITS development.” Center for Transportation Training and Research, Texas Southern
University.

Cao, L., and Tay, F. E. H. (2001). “Financial forecasting using support vector machines.”
Neural computing and applications, 10(2), 184-192.

Cambridge Systematics and Texas Transportation Institute. (2005). Traffic Congestion
and Reliability: Trends and Advanced Strategies for Congestion Mitigation. Final
report prepared for FHWA, Washington, D.C.

Chang, C-C., and Lin, C-J. (2007) “LIBSVM: a library for support vector machines.”
<http://www.csie.ntu.edu.tw/~cjlin/libsvm>, (November 2007)

Chang, E. C. P., and Wang, S. H. (1994). “Improved freeway incident detection using
fuzzy set theory.” Transportation Research Record, 1453, Transportation Research
Board, Washington D.C., 75-82.

Chassiakos, A. P., and Stephanedes, Y. J. (1993). “Smoothing algorithms for incident
detection.” Transportation Research Record, 1394, Transportation Research Board,
Washington D.C., 8-16.

Cheu, R. L., Qi, H., and Lee., D. H. (2002). “Mobile Sensor and sample-based algorithm
for freeway incident detection.” Transportation Research Record, 1811,
Transportation Research Board, Washington D.C., 12-20.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BBiswas%2C+Subir%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BTatchikou%2C+Raymond%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.camsys.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm

 214

Cheu, R. L., Srinivasan, D., and Teh, E. T. (2003). “Support vector machine models for
freeway incident detection.” Proc., IEEE Conf. on Intelligent Transportation System,
1, Shanghai, China, 238-243.

Chen, C. H., and Chang, G. L. (1993). “A dynamic real-time incident detection system
for urban arterials—system architecture and preliminary results.” Proc., Conf. on
Pacific Rim Transportation technology, 1, Seattle, 98-104.

Cheu, R. L., and Ritchie, S. G. (1995). “Automated detection of lane-blocking freeway
incidents using artificial neural networks.” Transportation Research, Part C, 3(6),
371-388.

Choe, T., Skabardonis, A., and Varaiya, P. (2002). "Freeway performance measurement
system (PeMS)," Transportation Research Record, 1811, Transportation Research
Board, Washington D.C., 67-75.

Choffnes, D. R., and Bustamante, F. E. (2005). “An Integrated Mobility and Traffic
Model for Vehicular Wireless Networks.” Proc., 2nd ACM International Workshop
on Vehicular Ad Hoc Networks (VANET), Cologne, Germany, 69-78.

Chowdhury, M., A. Sadek, Y. Ma, N. Kanhere and P. Bhavsar. (2006). “Applications of
artificial intelligence paradigms to decision support to real-time traffic management.”
Transportation Research Record, 1968, Transportation Research Board, Washington
D.C., 92-98.

Chowdhury, M. A. and Sadek, A. W. (2003) Fundamental of Intelligent Transportation
System (ITS) Planning, Artech House Publishers, U.S.

Chiu, Y. C., and Mahmassani, H. S. (2003). “Routing profile updating strategies for
online hybrid dynamic traffic assignment operation.” Transportation Research
Record, 1857, Transportation Research Board, Washington D.C., 39-47.

City of Cape Town, South Africa. (2005). Traffic signal services.
<http://www.capetown.gov.za/atrams/>, (October 2007).

Clarke, S. M., Zaeh, M. F. and Griebsch, J. H. (2003). “Predicting haptic data with
support vector regression for telepresence applications.” Design and application of
hybrid intelligent systems, 572-581.

Coifman, B. and Ramachandran, M. (2004). “Distributed surveillance on freeways with
an emphasis on incident detection.” Proc., IEEE Conf on Intelligent Transportation
Systems, Washington, 773-778.

 215

Coleri, S. and Varaiya, P. (2004). “PEDAMACS: Power efficient and delay aware
medium access protocol for sensor networks.” California PATH working paper UCB-
ITS-PWP-2004-6.

Collins, J. F., Hopkins, C. M., and Martin, J. A. (1979). “Automatic incident detection—
TRRL algorithms HIOCC and PATREG.” TRRL Supplementary Report, 526,
Crowthorne, Berkshire, U.K.

Cook, A. R., and Cleveland, D. E. (1974). “Detection of freeway capacity-reducing
incidents by trafficstream measurements.” Transportation Research Record, 495,
Transportation Research Board, Washington D.C., 1-11.

Cortes, C., and Vapnik, V. (1995). “Support-vector network.” Machine Learning,
20,273–297.

Crabtree, J. D., and Stamatiadis, N. (2007). “Using dedicated short-range communication
(DSRC) technonlogy for freeway incident detection: A performance assessment
based on traffic simulation data.” Transportation Research Board Annual Meeting
(CD-ROM), Washington D.C.

Dia, H., and Rose, G. (1997). “Development and evaluation of neural network freeway
incident detection models using field data.” Transportation Research Part C, 5(5),
313-331.

Ding, A., Zhao, X., and Jiao, L. (2002). “Traffic flow time series prediction based on
statistics learning theory.” Proc., 5th IEEE Conf. on International Intelligent
Transportation System, Singapore, 727-730.

Dudek, C. L., Messer, C.J. and Nuckles, N.B. (1974). “Incident detection on urban
freeway.” Transportation Research Record, 495, Transportation Research Board,
Washington D.C., 12-24.

Eichler, S., Benedikt, O., Schroth, C., and Timo, K. (2005). “Simulation of car-to-car
messaging: Analyzing the impact on road traffic.” Proc., IEEE Computer Society's
Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS, Atlanta, 507-510.

Eichler, S., Schroth, C., Kosch, T., and Strassberger, M. (2006). “Strategies for context-
adaptive message dissemination in vehicular ad hoc networks”, Proc., Third Annual
International Conference on Mobile and Ubiquitous Systems: Networking and Services
(IEEE Cat. No. 06EX1437), San Jose, 217-225.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BOstermaier%2C+Benedikt%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BKosch%2C+Timo%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BEichler%2C+S.%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BSchroth%2C+C.%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BKosch%2C+T.%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BStrassberger%2C+M.%7D§ion1=AU&database=49155&yearselect=yearrange&sort=yr

 216

Eichler, S., Schroth, C., Eberspacher, Jorg. (2006). “Car-to-car communication”,
University of St.Gallen - Alexandria Repository (Switzerland).
<http://www.alexandria.unisg.ch/EXPORT/DL/31973.pdf> (November 2007)

Estrin, D., Girod, L., Pottie, G. and Srivastava, M. (2001). “Instrumenting the world with
wireless sensor networks.” International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2001), Salt Lake City, Utah.

Ewing, T., Doss, E., Hanebutte, U., Canfield, T., Brown-VanHoozer, A. and Tentner, A.
(1996). “Argonne Simulation Framework for Intelligent Transportation Systems.” ITS
America the 6th annual meeting, Houston, TX.

Fambro, D. B., and Ritch, G.P. (1979). Automatic detection of freeway incidents during
low volume conditions. Report No. FHWA/TX-79/23-210-1, Texas Transportation
Institute, Texas A&M University System, College Station, TX.

Fambro, D. B., and Ritch, G.P. (1980). “Evaluation of an algorithm for detecting urban
freeway incidents during low-volume conditions.” Transportation Research Record,
773, Transportation Research Board, Washington D.C, 31-39.

Feron, E. (2003). “Distributed And Centralized Conflict Management Under Traffic Flow
Management Constraints,” Massachusetts Institute of Technology.

Federal Highway Administration (FHWA) Office of Safety. (2004). Targeting Highway
Fatalities. <http://safety.fhwa.dot.gov/facts/stats2002/> (November 2007)

FHWA. (2005). VII Architecture and Functional Requirements Version 1.1. ITS Joint
Program Office, US DOT.

Fitzgibbons, B., Fujimoto, R., Guensler, R., Hunter, M., Park, A. and Wu, H. (2004)
“Distributed Simulation Test Bed for Intelligent Transportation Systems Design and
Analysis.” Proc., Annual National Conference on Digital Government Research, 1-2.

Forbes, G. J., and Hall, F. L. (1990). “The applicability of Catastrophe theory in
modeling freeway traffic operations.” Transportation Research Part A, (24)5, Cairns,
Australia, 335-344.

Forbes, G. J. (1992). “Identifying incident congestion.” Journal of ITE, Institute of
Transportation Engineers, (62) 6, 17-22.

Friedman, J. (1996). Another approach to polychotomous classification. Technical report,
Department of Statistics, Stanford University. <http://www-
stat.stanford.edu/reports/friedman/poly.ps.Z.> (November 2007)

http://en.scientificcommons.org/repository/university_of_stgallen_-_alexandria_repository
http://www.alexandria.unisg.ch/EXPORT/DL/31973.pdf
http://ntlsearch.bts.gov/tris/search.do?new=&b1=9&f1=ca&t1=Massachusetts+Institute+of+Technology&d=tr
http://safety.fhwa.dot.gov/facts/stats2002/

 217

Fujimura, K., and Hasegawa, T. (2005). “Performance evaluation of the MAC protocol
for integrated inter-vehicle and road to vehicle.” Proc., IEEE Conf on Intelligent
Transportation Systems, Vienna, Austria, 308-313.

Funt, B., and Xiong, W. (2004). “Estimating illumination chromaticity via support vector
regression.” Proc., 12th Color Imaging Conference on Color Science, Systems &
Applications, AZ, 47-52.

Gall, A. I., and Hall, F. L. (1989). “Distinguishing between incident congestion and
recurrent congestion: a proposed logic.” Transportation Research Record, 1232,
Transportation Research Board, Washington D.C, 1-8.

Ghaman, R. S., Zhang, L., Mchale, G., and Stallard, C. (2003). “The role of traffic
simulation in traffic signal control system development.” Proc., Conf. on IEEE
Intelligent Transportation Systems, 1, Shanghai, China, 872-877.

Hall, F. L., Shi, Y., and Atala, G. (1993). “On-line testing of the McMaster incident
detection algorithm under recurrent congestion.” Transportation Research Record,
1394, Transportation Research Board, Washington D.C, 1-7.

Huisken, G., and Van Berkum, E. C. (2003). “A comparative analysis of short-range
travel time prediction methods.” Transportation Research Board Annual Meeting
(CD-ROM), Washington, D.C.

Hsin, V. J. K., and Wang, P. T. R. (1992). “Modeling concepts for intelligent vehicle
highway systems (IVHS) applications.” Proc., 24th Conference on Winter Simulation,
Arlington, 1201-1209.

Hsu, C-W., Chang, C-C., and Lin, C-J. (2007) “A Practical Guide to Support Vector
Classification.” <http://www.csie.ntu.edu.tw/~cjlin/guide.pdf>.

Innamaa, S. (2001). “Short-term prediction of highway travel time using MLP neural
networks.” Proc., 8th World Congress on Intelligent Transport Systems (CD-ROM),
Sidney, Australia.

Innamaa, S. (2007). “Online Prediction of Travel Time: Experience from a Pilot Trial.”
Transportation Planning and Technology, 30(2), 271-278.

ITS America. (2005). “Primer on VII.”
<http://www.itsa.org/itsa/files/pdf/VIIPrimer.pdf.> (July 2007).

ITS America, “VII Resources,”
<http://www.itsa.org/Library/c197/ITS_Resources/Library.html> (October 2007).

http://www.csie.ntu.edu.tw/~cjlin/guide.pdf
http://www.itsa.org/itsa/files/pdf/VIIPrimer.pdf
http://www.itsa.org/itsa/files/pdf/VIIPrimer.pdf

 218

Ivan, J. N., Schofer, J. L., Koppelman, F. S. and Massone, L. L. E. (1995). “Real-time
data fusion for arterial street incident detection using neural networks.”
Transportation Research Record, 1497, Transportation Research Board, Washington
D.C, 27-35.

Ivan, J. N., and Chen, S.-R. (1997). “Incident detection using vehicle-based and fixed-
location surveillance.” Journal of Transportation Engineering, 123(3), 209-215.

Ivan, J. N. (1997). “Neural network representations for arterial street incident detection
data fusion.” Transportation Research Part C, 5(3), 245-254.

Ivan, J. N., and Sethi, V. (1998). “Data fusion of fixed detector and probe vehicle data for
incident detection.” Journal of Computer-Aided Civil and Infrastructure Engineering,
(13)5, 329-337.

Jayakrishnan, R., and McNally, M. G. (2006) “A Distributed On-Line Database System
for Transportation Managment Using Cooperating Roadside and In-Vehicle
Communication Devices.” <http://www.its.uci.edu/its/research/its.html> (November
2007).

JHK and Associates. (1993). Bay Area Traffic Operations System Incident Detection
Algorithms Report.

Killat, M., Schmidt-Eisenlohr, F., Hartenstein. H. (2007). “Enabling Efficient and
Accurate Large-Scale Simulations of vehicular ad hoc networks (VANETs) for
Vehicular Traffic Management”, University of Munich, Germany.
<http://delivery.acm.org/10.1145/1290000/1287754/p29-
killat.pdf?key1=1287754&key2=1438673911&coll=&dl=ACM&CFID=15151515&C
FTOKEN=6184618> (November 2007)

Klein, L.A. (2001). Sensor technologies and data requirement for ITS. Artech House,
Norwood, MA.

Knerr, S., Personnaz, L., and Dreyfus, G. (1990). Single-layer learning revisited: a
stepwise procedure for building and training a neural network. Springer-Verlag,
Berlin, Germany.

Kochhal, M., Schwiebert, L., and Gupta, S. (2003). "Role-based hierarchical self
organization for wireless ad hoc sensor networks." Proceedings of ACM Workshop on
Wireless Sensor Networks and Applications (WSNA), San Diego, California.

Kreβel, U. (1999). “Pairwise classification and support vector machines.” Advances in
Kernel Methods – Support Vector Learning, 255-258, MIT Press, Cambridge, MA.

http://delivery.acm.org/10.1145/1290000/1287754/p29-killat.pdf?key1=1287754&key2=1438673911&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://delivery.acm.org/10.1145/1290000/1287754/p29-killat.pdf?key1=1287754&key2=1438673911&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://delivery.acm.org/10.1145/1290000/1287754/p29-killat.pdf?key1=1287754&key2=1438673911&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618

 219

Kurfees, W., Collins, J. F., and Tanhaee-Motlagh, M. (1995) “A New Advanced Traffic
Management System For The Memphis Area.” Compendium of Technical Papers on
Institute of Transportation Engineers 65th Annual Meeting, 286-289.

Lee, J. K., Lim, Y. H. and Chi, S. D. (2004). “Hierarchical Modeling and Simulation
Environment for Intelligent Transportation Systems,” Simulation, No. 80, 61-76.

Levin, M., and Krause, G. M. (1979). “Incident-detection algorithms, Part1: Off-Line
evaluation.” Transportation Research Record, 722, Transportation Research Board,
Washington D.C, 49-64.

Lin, W. (2004). “A case study on Support Vector Machine versus Artificial Neural
Networks.” University of Pittsburgh.

Lin, C. K., and Chang, G. L. (1998). “Development of a fuzzy-expert system for incident
detection and classification.” Journal of Mathematical and Computer Modeling,
27(9-11), 9-25.

Mangharam, R., Weller, D. S., Stancil, D. D., Rajkumar, R. and Parikh, J. S. (2005)
“GrooveSim: a topography-accurate simulator for geographic routing in vehicular
networks.” Proc., Conf. on vehicular ad hoc networks (VANET)'05, Cologne,
Germany, 59-68.

Marc, T. M., Felix, S.E., and Hannes, H. (2006). “Effects of a realistic channel model on
packet forwarding in vehicular ad hoc networks.” Proc. Conf. on IEEE Wireless
Communications and Networking Conference (IEEE Cat. No. 06TH8876), Las Vegas,
285-391.

Marc, T. M. (2007). “Inter-vehicle communications: Assessing information dissemination
under Safety Constraints.” 4th Annual Conference on Wireless Demand Network
Systems and Services (WONS '07) (CD-ROM), Oberguyrgl, Austria.

Maurer, J., Thomas, F., Thomas, S., and Werner, W. (2004).“A new Inter-Vehicle
Communications (ivc) Channel model.” Proc., IEEE 60th Vehicular Technology
Conference on Wireless Technologies for Global Security, Los Angeles, 9-13.

Martin, P. T., Perrin, J., and Hansen, B. (2001). “Incident Detection Algorithm
Evaluation.” Prepared for Utah Department of Transportation.

McTrans at University of Florida. (2006) “CORSIM microscopic traffic simulation
model.” <http://mctrans.ce.ufl.edu/featured/TSIS/Version5/corsim.htm> (November
2007)

http://mctrans.ce.ufl.edu/featured/TSIS/Version5/corsim.htm

 220

Michalopoulos, P. G. (1991). “Vehicle detection video through image processing: the
autoscope system.” IEEE Transactions on Vehicular Technology, 40(1), 21-29.

Michalopoulos, P. G., Jacobson, R. D., Anderson, C. A. and DeBruycker, T. B.
(1993).“Automatic incident detection through video image processing.” Traffic
Engineering and Control, 34(2), 66-75.

Michalopoulos, P. G., Jacobson, R. D. and Anderson, C. A. (1993). “Field
implementation and testing of a machine vision based incident detection system.”
Proc., Conf on Pacific Rim TransTech, 1, Seattle, 69-76.

Michigan Department of Transportation. (2005). VII Michigan Test Bed Program
Concept of Operations.

Mirchandani, P., and Head, L. (1998). “RHODES: a real-time traffic signal control
system: architecture, algorithms, and analysis.”
<www.sie.arizona.edu/ATLAS/docs/TRISTANIII.pdf> (October 2006).

Mirchandani, P. and Wang, F. Y. (2005). “RHODES to Intelligent Transportation
Systems.” IEEE Intelligent Systems, 20(1), 10-15.

M.I.T. (2006). “A microscopic traffic simulator for evaluation of dynamic traffic
management systems.” <http://web.mit.edu/its/mitsimlab.html> (November 2007).

Mouskos, K. C., Niver, E., Lee, S., Batz, T. and Dwyer, P. (1999). “Transportation
operations coordinating committee system for managing incidents and traffic:
evaluation of the incident detection 101 system.” Transportation Research Record,
1679, Transportation Research Board, Washington D.C, 50-57.

Mussa, R. N. (1997). “Evaluation of driver-based freeway incident detection.” Journal of
ITE, Institute of Transportation Engineers, 67(3), 33-40.

Mussa, R. N., and Upchurch, J. E. (1999). “Simulation assessment of incident detection
by cellular phone call-in programs.” Transportation, 26(4), 399-416.

Mussa, R. N., and Upchurch, J. E. (2000). “Modeling incident detection using vehicle-to-
roadside communication system.” Journal of the Transportation Research Forum.
39(4), 117-127.

National VII Coalition. “VII Coalition Homepage.” <http://www.vehicle-
infrastructure.org> (October 2007).

http://www.sie.arizona.edu/ATLAS/docs/TRISTANIII.pdf
http://web.mit.edu/its/mitsimlab.html
http://www.vehicle-infrastructure.org/
http://www.vehicle-infrastructure.org/

 221

Niver, E., Mouskos, K. C., Batz, T., and Dwyer, P. (2000). “Evaluation of the
TRANSCOM’s system for managing incidents and traffic (TRANSMIT).” IEEE
Transactions on Intelligent Transportation Systems, 1(1), 15-31.

OPNET Technologies, Inc. (2006). “OPNET network simulation software.”
<http://www.opnet.com/> (November 2007).

Ozbay. K., and Pushkin, K. (1999). Incident Management in Intelligent Transportation
Systems. Artech House: Boston, MA.

Park, D. J., and Rilett, L. R. (1998). “Forecasting multiple-period freeway link travel
times using modular neural networks.” Transportation Research Record. 1617,
Transportation Research Board, Washington, D.C., 163–170.

Park, D. J., Rilett, L. R., and Han, G. (1999). “Spectral Basis Neural Networks for Real-
Time Travel Time Forecasting.” Journal of Transportation Engineering, 125(6), 515–
523.

Parkany, E., and Bernstein, D. (1995). “Design of incident detection algorithms using
vehicle-toroadside communication sensors.” Transportation Research Record, 1494,
Transportation Research Board, Washington D.C, 67-74.

Payne, H. J., and Tignor, S. C. (1978). “Freeway Incident Detection Algorithms Based on
Decision Trees with States.” Transportation Research Record, 682, Transportation
Research Board, Washington D.C, 30-37.

Partners for Advanced Transit and Highways (PATH). (2007). “VII California”,
<http://www.path.berkeley.edu/VIICalifornia> (October 2007).

Petty, K. R., and Mahoney, W. P. III. (2007). Weather applications and products enabled
through vehicle infrastructure integration (VII) feasibility and concept development
study. Publication FHWA-HOP-07-084, FHWA, U.S. Department of Transportation.

Persaud, B. N., and Hall, F. (1989). “Catastrophe theory andpatterns in 30-second
freeway traffic data. Implications for incident detection.” Transportation Research,
Part A, 2, 103-113.

Persaud, B. N., Hall, F. L., and Hall, L. M. (1990). “Congestion identification aspects of
the McMaster incident detection algorithm.” Transportation Research Record, 1287,
Transportation Research Board, Washington D.C, 167-175.

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., and Wang, Y. (2003).
“Review of road traffic control strategies.” Proc., the IEEE Conf. on Electronic
Textiles: A Platform for Pervasive Computing, 91(12), 2043-2065.

http://www.opnet.com/
http://www.path.berkeley.edu/VIICalifornia/

 222

Qi, H., Cheu, R. L., and Lee, D. H. (2002). “Freeway Incident Detection Using
Kinematics Data from Probe Vehicles.” Proc., 9th World Congress on Intelligent
Transport Systems (CD-ROM).

Quadstone Limited. (2005). “Paramics V5.0 Modeler User’s Guide,” Edinburgh, United
Kingdom.

Ritchie, S. G., and Cheu, R. L. (1993). “Simulation of freeway incident detection using
artificial neural networks.” Transportation Research Part C, 1(3), 203-217.

Road and Traffic Authority, New South Wales, Australia. (2006). “Sydney coordinated
sdaptive traffic system (SCATS).”
<http://www.rta.nsw.gov.au/trafficinformation/trafficfacilities/scats> (October 2007).

Samant, A., and Adeli, H. (2000). “Feature extraction for traffic incident detection using
wavelet transform and linear discriminant analysis.” Computer-Aided Civil and
Infrastructure Engineering, 15(4), 241-250.

Sarle, W. S. (1997). “Neural Network FAQ - Periodic posting to the Usenet newsgroup
comp.ai.neural-nets.” <ftp://ftp.sas.com/pub/neural/FAQ.html>. (November 2007)

SAS Institute, Inc. (2005). SAS Language: Reference, Version 8, 1st Ed., SAS Institute
Inc., Cary, NC.

Sato, K., Saisho, K., and Fukuda, A. (1999) “A spatial-temporal resource allocation
protocol (STRAP) with mobility specification: simulation and performance
evaluation,” Proc., 2nd ACM international workshop on Modeling, analysis and
simulation of wireless and mobile systems (MSWiM), Seattle, 87-94.

Scalable Network Technologies. (2006). “QualNet network simulation software.”
<http://www.scalable-networks.com/> (November 2006).

Schroth, C., Dotzer, F., Kosch, T., Ostermaier, B., and Strassberger, M. (2006).
“Simulating the traffic effects of vehicle-to-vehicle messaging systems”, Proc., 5th
International Conference on ITS Telecommunications, 4.

Schmidt-Eisenlohr, F., Torrent-Moreno, M., Mittag, J., and Hartenstein, H. (2007).
“Simulation platform for inter-vehicle communications and analysis of periodic
information exchange.” Proc., 4th Annual Conf. on Wireless on Demand Network
Systems and Services(WONS), Obergurgl, Austria, 50-58.

Sermons, M. W., and F. S. Koppelman. (1996). “Use of vehicle positioning data for
arterial incident detection.” Transportation Research, Part C, 4(2), 87-96.

http://www.rta.nsw.gov.au/trafficinformation/trafficfacilities/scats/
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28schmidt%20eisenlohr%20%20f.%3CIN%3Eau%29&valnm=Schmidt-Eisenlohr%2C+F.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20torrent%20moreno%20%20m.%3CIN%3Eau%29&valnm=+Torrent-Moreno%2C+M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20mittag%20%20j.%3CIN%3Eau%29&valnm=+Mittag%2C+J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20hartenstein%20%20h.%3CIN%3Eau%29&valnm=+Hartenstein%2C+H.&reqloc%20=others&history=yes

 223

Sethi, V., Bhandari, N., Koppelman, F. S., and Schofer, J. L. (1995). “Arterial incident
detection using fixed detector and probe vehicle data.” Transportation Research Part
C, 3(2), 99-112.

Sewell, M. (2005), online resource at <http://www.svms.org/introduction.html>
(November 2007)

Siemens. (2006). “Principles of SCOOT.”
<http://www.itssiemens.com/en/t_nav224.html> (October 2006).

Smola, A., and Scholkopf, B. (1998). A tutorial on support vector regression.
NeuroCOLT2 Technical Report Series, NC2-TR-1998-030.

Skabardonis, A., Chavala, T.C., and Rydzewski, D. (1998). “The I-880 field experiment:
effectiveness of incident detection using cellular phones.” PATH Report UCB-ITS-
PRR-98-1, Institute of Transportation Studies, University of California at Berkeley,
CA.

Sobeih, A., Chen, W. P., Hou, J. C., Kung, L. C., Li, N., Lim, H., Tyan, H. Y. and Zhang,
H. (2005) “J-Sim: A Simulation and Emulation Environment for Wireless Sensor
Networks.” Proc., of the Annual Simulation Symposium (ANSS 2005), Urbana, 104-
109.

SpeedInfo Inc. (2005). “SpeedInfo deploys real time traffic sensor network for SFO Bay
area.” <http://www.speedinfo.com/downloads/WC_press_release_101005.pdf>
(October 2006).

Stephanedes, Y. J., and Chassiakos, A. P. (1993a). “Application of filtering techniques
for incident detection.” Journal of Transportation Engineering, 119(1), 13-26.

Stephanedes, Y. J., and Chassiakos, A. P. (1993b). “Freeway incident detection through
filtering.” Transportation Research Part C, 1(3), 219-233.

Stephanedes, Y. J., Chassiakos, A. P., and Michalopoulos, P.G. (1992). “Comparative
performance evaluation of incident detection algorithms.” Transportation Research
Record, 1360, Transportation Research Board, Washington D.C, 50-57.

Stephanedes, Y. J., and Liu, X. (1995). “Artificial neural networks for freeway incident
detection.” Transportation Research Record, 1494, Transportation Research Board,
Washington D.C, 91-97.

Stitson, M. O., Weston, J. O. E., Gammerman, A., Vovk, V., and Vapnik, V. (1996)
Theory of Support Vector Machines. Technical Report CSD-TR-96-17.

http://www.svms.org/introduction.html

 224

Somers, F. (1996) “HYBRID: Unifying centralized and distributed network management
using intelligent agents,” Proc., IEEE Conf. on Network Operations and Management
Symposium, Kyoto, Japan, 34-43.

Subramanian, L. and Katz, R. H. (2000) “An architecture for building self-configurable
systems.” Proc., IEEE/ACM Workshop on Mobile Ad Hoc Networking and
Computing, Boston, MA.

Sun, Z., Bebis, G., and Miller, R. (2002). “On-road vehicle detection using gabor filters
and support vector machines.” Proc., IEEE 14th International Conf. on Digital Signal
Processing, 2, Santorini, Greece, 1019-1022.

Sukthankar, R., Hancock, J., Pomerleau, D. and Thorpe, C. (1996). “A Simulation and
Design System for Tactical Driving Algorithms.” Proc., Conf. on AI, Simulation and
Planning in High Autonomy Systems (CD-ROM), La Jolla.

Skabardonis, A., Petty, K.F. and Varaiya, P.P. (1999). “Los Angeles I-10 field
experiment: Incident patterns.” Transportation Research Record, 1683,
Transportation Research Board, Washington D.C, 22-30.

Tanikella, H., Smith, B., Zhang, G., Park, B. and Scherer, W. (2007). “Simulating
vehicle-infrastructure-integration-enabled operations applications: Traffic monitoring
case study.” Transportation Research Board Annual Meeting (CD-ROM),
Washington D.C.

Tanka, W. A., and Piotrowicz. G. (2007). “Vehicle infrastructure integration: More than a
very intriguing idea.” Journal of ITE, 29-32.

Tokuyama, H. (1996). Intelligent Transportation Systems in Japan.
<http://www.tfhrc.gov/pubrds/fall96/p96au41.htm> (November 2006).

Torrent-Moreno, M. (2007). “Inter-Vehicle Communications: Assessing Information
Dissemination under Safety Constraints.” Proc., 4th Annual IEEE/IFIP Conference
on Wireless On Demand Network Systems and Services (WONS), Obergurgl, Austria.

Trafficware. (2006). Synchro Studio, <http://www.trafficware.com/> (October 2006).

Tsai, J., and Case, E.R. (1979). “Development of freeway incident detection algorithms
by using pattern recognition techniques.” Transportation Research Record, 722,
Transportation Research Board, Washington D.C, 113-116.

Tyco Integrated Systems. (2006). Traffic management – SCATS. <www.traffic-
tech.com/pdf/scatsbrochure.pdf> (October 2006).

http://www.trafficware.com/

 225

University of California, Berkeley. (2006). “VII California Demonstrates Success:
Finalist in ITSA "Best of" Research and Innovation.” Intellimotion, 12(1).

Van Lint, J. W. C. (2006). “Reliable Real-Time Framework for Short-Term Freeway
Travel Time Prediction.” Journal of Transportation Engineering, 132(12), 921-932.

Vanschoenwinkel, B., and Manderick, B. (2006) “Context-sensitive Kernel Functions: A
Comparison Between Different Context Weights.” Lecture Notes in Computer
Science, 3930, 861-870.

Vapnik, V. (1982). Estimation of Dependences Based on Empirical Data, Springer-
Verlag, New York.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer, New York.

Vanajakshi, L., and Rilett, L. R. (2004). “A comparison of the performance of artificial
neural networks and support vector machines for the prediction of traffic speed. Proc.,
IEEE Conf. on Intelligent Vehicles Symposium, Parma, Italy, 194-199.

Versavel, J. (2000). “Sparing lives, saving time: a unified approach to automatic incident
detection.” Traffic Technology International, Issue: The 2000 International Review of
Advanced Traffic Management, 189.

Versavel, J., and Boucke, B. (1998). “Video for Traffic Data and Incident Detection for
Traficon.” Applications of Advanced Technologies in Transport. 33-40.

Walters, C. H., Wiles, P. B., and Cooner, S. A. (1999). “Incident detection primarily by
cellular phones—an evaluation of a system for Dallas, Texas.” 78th TRB Annual
Meeting (CD-ROM), Transportation Research Board, Washington D.C.

Westman, M., Litjens, R., and Linnartz, J. P. (1996). “Integration of probe vehicle and
induction loop data—estimation of travel times and automatic incident detection.”
PATH Research Report UCB-ITS-PRR-96-13, Institute of Transportation Studies,
University of California, Berkeley, CA.

Willsky, A. S., Chow, E.Y., Gershwin, S. B., Greene, C. S., Houpt, P. and Kurkjian, A.
L. (1980). “Dynamic model-based techniques for the detection of incidents on
freeways.” IEEE Transactions on Automatic Control, 25(3), 347-360.

Wang, K.C., Chowdhury, M. A., and Fries, R. (2005). “Real-time Traffic Monitoring and
Automated Response with Wireless Sensor Networks,” 12th World Congress on
Intelligent Transport Systems, (CD-ROM).

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Manderick:Bernard.html
http://ntlsearch.bts.gov/tris/search.do?new=&b1=9&f1=ctid&t1=8265&d=tr
http://ntlsearch.bts.gov/tris/search.do?new=&b1=9&f1=ctid&t1=8265&d=tr

 226

Wu, C. H., Ho, J. M., and Lee, D.T. (2004). “Travel-time prediction with support vector
regression.” IEEE Transactions on Intelligent Transportation Systems, 5(4), 276-281.

Xie, C., and Parkany, E. (2002). “Use of driver-based data for incident detection.” Proc.,
7th International Conference on Application of Advanced Technologies in
Transportation Engineering, Cambridge, 143-150.

Xu, H., and Barth, M. (2004). “A transmission-interval and power-level modulation
methodology for optimizing inter-vehicle communications.” Proc., Conf. on
Vehicular Ad Hoc Networks (VANET)'04, Philadelphia, 97-98.

Yin, J., ElBatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan, H., and Talty T. (2004).
“Performance evaluation of safety applications over DSRC vehicular ad hoc
networks.” Proc., Conf. on Vehicular Ad Hoc Networks (VANET)'04, Philadelphia, 1-
9.

Zang, Y., Stibor, L., Orfanos, G., Guo, S., and Reumerman, H. J. (2005). “An error
model for inter-vehicle communications in highway scenarios at 5.9GHz.” Proc.,
Conf. on PE-WASUN'05, Montreal, Canada, 49-56.

Zeng, X., Bagrodia, R., and Gerla, M. (1998). “GloMoSim: A library for parallel
simulation of large-scale wireless networks.” Proc., Workshop on Parallel and
Distributed Simulation, Banff, Canada, 154-161.

Zhang, X., and Rice, J. A. (2003). “Short-term travel time prediction.” Transportation.
Research, Part C: Emergency Technology, 11C (3–4), 187–210.

	Clemson University
	TigerPrints
	8-2008

	A REAL-TIME TRAFFIC CONDITION ASSESSMENT AND PREDICTION FRAMEWORK USING VEHICLE-INFRASTRUCTURE INTEGRATION (VII) WITH COMPUTATIONAL INTELLIGENCE
	Yongchang Ma
	Recommended Citation

	front.pdf
	body.pdf
	CHAPTER 1
	1.1 Background and Motivation
	1.1.1 Networking and Processing Architecture
	1.1.2 Vehicle-Infrastructure Integration
	1.1.3 Computational Intelligence
	1.1.4 Platform for VII Modeling

	1.2 Research Objectives
	1.3 Research Hypothesis
	1.4 Dissertation Structure
	CHAPTER 2 PREVIOUS STUDY
	2.1 Simulation Platform for Online Traffic Operations
	2.2 Networking and Processing Architecture
	2.2.1 Centralized System
	2.2.2 Distributed System
	2.2.3 Hybrid System
	2.2.4 Evaluation of Communication Alternatives

	2.3 Highway Traffic Surveillance Technologies
	2.3.1 Sensor-Based Highway Traffic Surveillance Technology
	2.3.2 Human-Based Monitoring Technology
	2.3.3 VII for Highway Traffic Surveillance

	2.4 Computational Intelligence for Highway Traffic Surveillance System
	2.5 Summary of Previous Work

	CHAPTER 3
	METHODOLOGY
	
	3.1 Develop Integrated Simulation Platform
	3.1.1 Traffic Simulation
	3.1.2 Communication Simulation
	3.1.3 Integrated Simulation
	3.1.4 A Case study to Evaluate the efficacy of Integrated Simulator

	3.2 Evaluate Communication Alternatives
	3.2.1 Alternative Identification
	3.2.2 MOE Selection
	3.2.3 Simulation Study
	3.2.4 A Case study to Evaluate Communication Alternatives
	3.2.4.1 Alternative Identification
	3.2.4.2 MOE Selection
	3.2.4.3 Simulation Study

	3.3 Develop VII Simulation Model
	3.3.1 Design Hierarchical Architecture for VII Model
	3.3.2 Develop Computational Intelligence Model
	3.3.2.1 Study Sites and Simulation Model Development
	3.3.2.2 Case Generation
	3.3.2.3 Develop SVM algorithm
	3.3.2.4 Develop SVR Model
	3.3.2.5 SVM and SVR Implementation

	3.3.3 Baseline Algorithm Selection and Development
	3.3.3.1 California Algorithm for Incident Detection
	3.3.3.2 Instantaneous Algorithm for Travel Time Prediction

	3.3.4 Traffic Condition Assessment
	3.3.5 Evaluate the VII Simulation Model

	CHAPTER 4
	ANALYSIS AND RESULTS
	4.1 Integrated Simulation Platform
	4.2 Evaluation of Communication Alternatives
	4.2.1 Capacity of Communication Alternative for Traffic Surveillance System
	4.2.2 Cost Effectiveness of Communication Alternatives
	4.2.3 Efficiency of Communication Alternatives during Incidents
	4.2.4 Summary on Evaluation of Communication Alternatives

	4.3 Traffic Condition Assessment Framework
	4.3.1 Parameter Adjustments for the SVM Algorithm
	4.3.2 Incident Detection Performance the VII Model with SVM Algorithm
	4.3.2.1 Comparison of the SVM Algorithm and California Algorithm
	4.3.2.2 Incident Detection Rate and False Alarm Rate of the VII Model
	4.3.2.3 Incident Detection Time of the VII Model
	4.3.2.4 Prediction on Number of Lanes Blocked
	4.3.2.5 Prediction on Incident Location the VII Model

	4.3.3 Communication Metrics of the VII Model
	4.3.4 Summary on Traffic Condition Assessment Framework

	4.4 Online Travel Time Prediction Using VII Model
	4.4.1 Travel Time Pattern at the Tested Network
	4.4.2 Adjustment of the SVR Travel Time Prediction Model
	4.4.2.1 Identifying the Parameters for SVR Model
	4.4.2.2 Smoothing the Predicted Travel Time

	4.4.3 SVR Algorithm for Travel Time Prediction
	4.4.3.1 Comparison of SVR with Other Travel Time Prediction Model
	4.4.3.2 SVR Travel Time Prediction with Different Penetration Rate
	4.4.3.3 Performance of SVR Travel Time Prediction Model during Incident

	4.4.4 Summary on Travel Time Prediction

	CHAPTER 5
	CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.1.1 Integrated Simulation Platform
	5.1.2 Evaluate Communication Alternatives
	5.1.3 Hybrid Framework for VII System
	5.1.4 Traffic Condition Assessment Framework
	5.1.5 Travel Time Prediction Framework

	5.2 Recommendations
	5.2.1 Recommendations for Use of this Research
	5.2.2 Recommendations for Future Research

	back.pdf
	APPENDICES
	A.1 Implementation of Integrated Simulation Platform in ns-2
	A.1.1 Application Layer
	A.1.1.1 Header File “snet.h”
	A.1.1.2 Main File “snet.cc”

	A.1.2 Transport Layer
	A.1.2.1 Header File “udp-snet.h”
	A.1.2.2 Main File “udp-snet.cc”

	A.1.3 Network Layer
	A.1.3.1 Routing Header File “snetrout.h”
	A.1.3.2 Routing Header File “snetrout.cc”

	A.1.4 TCL File
	A.1.4.1 Main File “VII_sp.tcl”
	A.1.4.2 Fixed Nodes Location File “sp_fnLoc.tcl”
	A.1.4.3 Fixed Nodes Address File “sp_fnAdd.tcl”

	A.2 Implementation of Integrated Simulation Platform in PARAMICS
	A.2.1 Plugin File for Traffic Condition Assessment
	A.2.2 Plugin File for Travel Time Prediction

	 REFERENCES

