4,455 research outputs found

    Train-scheduling optimization model for railway networks with multiplatform stations

    Get PDF
    This paper focuses on optimizing the schedule of trains on railway networks composed of busy complex stations. A mathematical formulation of this problem is provided as a Mixed Integer Linear Program (MILP). However, the creation of an optimal new timetable is an NP-hard problem; therefore, the MILP can be solved for easy cases, computation time being impractical for more complex examples. In these cases, a heuristic approach is provided that makes use of genetic algorithms to find a good solution jointly with heuristic techniques to generate an initial population. The algorithm was applied to a number of problem instances producing feasible, though not optimal, solutions in several seconds on a laptop, and compared to other proposals. Some improvements are suggested to obtain better results and further improve computation time. Rail transport is recognized as a sustainable and energy-efficient means of transport. Moreover, each freight train can take a large number of trucks off the roads, making them safer. Studies in this field can help to make railways more attractive to travelers by reducing operative cost, and increasing the number of services and their punctuality. To improve the transit system and service, it is necessary to build optimal train scheduling. There is an interest from the industry in automating the scheduling process. Fast computerized train scheduling, moreover, can be used to explore the effects of alternative draft timetables, operating policies, station layouts, and random delays or failures.Postprint (published version

    Precise vehicle location as a fundamental parameter for intelligent selfaware rail-track maintenance systems

    Get PDF
    The rail industry in the UK is undergoing substantial changes in response to a modernisation vision for 2040. Development and implementation of these will lead to a highly automated and safe railway. Real-time regulation of traffic will optimise the performance of the network, with trains running in succession within an adjacent movable safety zone. Critically, maintenance will use intelligent trainborne and track-based systems. These will provide accurate and timely information for condition based intervention at precise track locations, reducing possession downtime and minimising the presence of workers in operating railways. Clearly, precise knowledge of trains’ real-time location is of paramount importance. The positional accuracy demand of the future railway is less than 2m. A critical consideration of this requirement is the capability to resolve train occupancy in adjacent tracks, with the highest degree of confidence. A finer resolution is required for locating faults such as damage or missing parts, precisely. Location of trains currently relies on track signalling technology. However, these systems mostly provide an indication of the presence of trains within discrete track sections. The standard Global Navigation Satellite Systems (GNSS), cannot precisely and reliably resolve location as required either. Within the context of the needs of the future railway, state of the art location technologies and systems were reviewed and critiqued. It was found that no current technology is able to resolve location as required. Uncertainty is a significant factor. A new integrated approach employing complimentary technologies and more efficient data fusion process, can potentially offer a more accurate and robust solution. Data fusion architectures enabling intelligent self-aware rail-track maintenance systems are proposed

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Applied deep learning in intelligent transportation systems and embedding exploration

    Get PDF
    Deep learning techniques have achieved tremendous success in many real applications in recent years and show their great potential in many areas including transportation. Even though transportation becomes increasingly indispensable in people’s daily life, its related problems, such as traffic congestion and energy waste, have not been completely solved, yet some problems have become even more critical. This dissertation focuses on solving the following fundamental problems: (1) passenger demand prediction, (2) transportation mode detection, (3) traffic light control, in the transportation field using deep learning. The dissertation also extends the application of deep learning to an embedding system for visualization and data retrieval. The first part of this dissertation is about a Spatio-TEmporal Fuzzy neural Network (STEF-Net) which accurately predicts passenger demand by incorporating the complex interaction of all known important factors, such as temporal, spatial and external information. Specifically, a convolutional long short-term memory network is employed to simultaneously capture spatio-temporal feature interaction, and a fuzzy neural network to model external factors. A novel feature fusion method with convolution and an attention layer is proposed to keep the temporal relation and discriminative spatio-temporal feature interaction. Experiments on a large-scale real-world dataset show the proposed model outperforms the state-of-the-art approaches. The second part is a light-weight and energy-efficient system which detects transportation modes using only accelerometer sensors in smartphones. Understanding people’s transportation modes is beneficial to many civilian applications, such as urban transportation planning. The system collects accelerometer data in an efficient way and leverages a convolutional neural network to determine transportation modes. Different architectures and classification methods are tested with the proposed convolutional neural network to optimize the system design. Performance evaluation shows that the proposed approach achieves better accuracy than existing work in detecting people’s transportation modes. The third component of this dissertation is a deep reinforcement learning model, based on Q learning, to control the traffic light. Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. In the proposed model, the complex traffic scenario is quantified as states by collecting data and dividing the whole intersection into grids. The timing changes of a traffic light are the actions, which are modeled as a high-dimension Markov decision process. The reward is the cumulative waiting time difference between two cycles. To solve the model, a convolutional neural network is employed to map states to rewards, which is further optimized by several components, such as dueling network, target network, double Q-learning network, and prioritized experience replay. The simulation results in Simulation of Urban MObility (SUMO) show the efficiency of the proposed model in controlling traffic lights. The last part of this dissertation studies the hierarchical structure in an embedding system. Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which generates storage-inefficient representation and fails to effectively encode the internal semantic structure of data. A regularized autoencoder framework is proposed to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of data points, aiming at capturing semantic structures of data. Experimental results on synthetic and real-world datasets show that the proposed HKD embedding can effectively reveal the semantic structure of data via visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    Data-Driven Distributionally Robust Electric Vehicle Balancing for Autonomous Mobility-on-Demand Systems under Demand and Supply Uncertainties

    Full text link
    Electric vehicles (EVs) are being rapidly adopted due to their economic and societal benefits. Autonomous mobility-on-demand (AMoD) systems also embrace this trend. However, the long charging time and high recharging frequency of EVs pose challenges to efficiently managing EV AMoD systems. The complicated dynamic charging and mobility process of EV AMoD systems makes the demand and supply uncertainties significant when designing vehicle balancing algorithms. In this work, we design a data-driven distributionally robust optimization (DRO) approach to balance EVs for both the mobility service and the charging process. The optimization goal is to minimize the worst-case expected cost under both passenger mobility demand uncertainties and EV supply uncertainties. We then propose a novel distributional uncertainty sets construction algorithm that guarantees the produced parameters are contained in desired confidence regions with a given probability. To solve the proposed DRO AMoD EV balancing problem, we derive an equivalent computationally tractable convex optimization problem. Based on real-world EV data of a taxi system, we show that with our solution the average total balancing cost is reduced by 14.49%, and the average mobility fairness and charging fairness are improved by 15.78% and 34.51%, respectively, compared to solutions that do not consider uncertainties.Comment: 16 page

    Applications of Genetic Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and Comprehensive Review

    Get PDF
    Railway systems are time-varying and complex systems with nonlinear behaviors that require effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have emerged as a popular optimization technique in recent years due to their ability to handle complex, multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful optimization techniques has been extensively used in the railway sector, and applied to various problems such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with their dedicated application in the railway domain are discussed too. More than 250 publications are listed and classified to provide a comprehensive analysis and road map for experts and researchers in the field helping them to identify research gaps and opportunities

    Optimizing speed profiles for sustainable train operation with wayside energy storage systems

    Get PDF
    Large hauling capability and low rolling resistance has put rail transit at the forefront of mass transportation mode sustainability in terms of congestion mitigation and energy conservation. As such, rail vehicles are one of the least energy-intensive modes of transportation and least environmentally polluting. Despite, these positives, improper driving habits and wastage of the braking energy through dissipation in braking resistors result in unnecessary consumption, extra costs to the operator and increased atmospheric greenhouse gas emissions. This study presents an intelligent method for the optimization of the number and locations of wayside energy storage system (WESS) units that maximize the net benefits of the operation of a rail line. First, the optimized speed profiles with and without WESS is determined for a single alignment segment. Then, using the speed profiles obtained as an input, the number and locations of the WESS units that maximize the net benefit is determined for an entire rail line. The energy recovery methods used comprise optimal coasting, regenerative braking, and positioning of the energy storage devices to achieve maximum receptivity. Coasting saves energy by maintaining motion with propulsion disabled, but this increases the total travel time. Regenerative braking converts the kinetic energy of the train into electrical energy for the powering of subsequent acceleration cycles and although it does not affect travel time, it reduces the time available for coasting, indicative of a tradeoff. The study entails the design of a model that simulates the movement of the train over an existing alignment section while considering alignment topography, speed limits, and train schedule. Since on-time performance is the priority of railroad operations, the simulator instructs the driver to operate according to several motion regimes to optimize the energy consumption while maintaining schedule. The model consists of several time-varying inputs which add increased levels of complexity to the problem. This, in addition to its combinatorial nature, necessitates a heuristic algorithm to solve it, because traditional analytical solution methods are deficient. The optimization problem is solved by applying Genetic Algorithms (GA) because of their ability to search for a global solution in a complex multi-dimensional space. This strategy adds sustainability and reduces the carbon footprint of the operator. A case study is conducted on a single segment of a commuter rail line and yields a 34% energy reduction. The case study is extended to an entire line with multiple segments where the aim is to optimize the locations of wayside energy storage devices (WESS) for maximum economic benefit. It was found that out of the 10 alignment segments in the study, a maximized benefit of over $600,000 was achieved with WESS units installed on only three of those segments. The methods derived in this study can be used to generate speed profiles for planning purposes, to assist in recovery from service disruptions, to plan for infrastructural upgrades related to energy harvesting or to assist in the development of Driver Advisory Systems (DAS)

    Integrated optimization of train timetables rescheduling and response vehicles on a disrupted metro line

    Full text link
    When an unexpected metro disruption occurs, metro managers need to reschedule timetables to avoid trains going into the disruption area, and transport passengers stranded at disruption stations as quickly as possible. This paper proposes a two-stage optimization model to jointly make decisions for two tasks. In the first stage, the timetable rescheduling problem with cancellation and short-turning strategies is formulated as a mixed integer linear programming (MILP). In particular, the instantaneous parameters and variables are used to describe the accumulation of time-varying passenger flow. In the second one, a system-optimal dynamic traffic assignment (SODTA) model is employed to dynamically schedule response vehicles, which is able to capture the dynamic traffic and congestion. Numerical cases of Beijing Metro Line 9 verify the efficiency and effectiveness of our proposed model, and results show that: (1) when occurring a disruption event during peak hours, the impact on the normal timetable is greater, and passengers in the direction with fewer train services are more affected; (2) if passengers stranded at the terminal stations of disruption area are not transported in time, they will rapidly increase at a speed of more than 300 passengers per minute; (3) compared with the fixed shortest path, using the response vehicles reduces the total travel time about 7%. However, it results in increased travel time for some passengers.Comment: 32 pages, 21 figure

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown
    • …
    corecore