
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Summer 2019

Applied deep learning in intelligent transportation
systems and embedding exploration
Xiaoyuan Liang
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations
Part of the Databases and Information Systems Commons, Management Information Systems

Commons, and the Transportation Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Liang, Xiaoyuan, "Applied deep learning in intelligent transportation systems and embedding exploration" (2019). Dissertations. 1422.
https://digitalcommons.njit.edu/dissertations/1422

https://digitalcommons.njit.edu/?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1068?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1422?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

APPLIED DEEP LEARNING IN INTELLIGENT TRANSPORTATION
SYSTEMS AND EMBEDDING EXPLORATION

by
Xiaoyuan Liang

Deep learning techniques have achieved tremendous success in many real applications

in recent years and show their great potential in many areas including transportation.

Even though transportation becomes increasingly indispensable in people’s daily

life, its related problems, such as traffic congestion and energy waste, have not

been completely solved, yet some problems have become even more critical. This

dissertation focuses on solving the following fundamental problems: (1) passenger

demand prediction, (2) transportation mode detection, (3) traffic light control, in the

transportation field using deep learning. The dissertation also extends the application

of deep learning to an embedding system for visualization and data retrieval.

The first part of this dissertation is about a Spatio-TEmporal Fuzzy neural

Network (STEF-Net) which accurately predicts passenger demand by incorporating

the complex interaction of all known important factors, such as temporal, spatial and

external information. Specifically, a convolutional long short-term memory network

is employed to simultaneously capture spatio-temporal feature interaction, and a

fuzzy neural network to model external factors. A novel feature fusion method with

convolution and an attention layer is proposed to keep the temporal relation and

discriminative spatio-temporal feature interaction. Experiments on a large-scale real-

world dataset show the proposed model outperforms the state-of-the-art approaches.

The second part is a light-weight and energy-efficient system which detects

transportation modes using only accelerometer sensors in smartphones. Understanding

people’s transportation modes is beneficial to many civilian applications, such as

urban transportation planning. The system collects accelerometer data in an efficient



way and leverages a convolutional neural network to determine transportation modes.

Different architectures and classification methods are tested with the proposed

convolutional neural network to optimize the system design. Performance evaluation

shows that the proposed approach achieves better accuracy than existing work in

detecting people’s transportation modes.

The third component of this dissertation is a deep reinforcement learning model,

based on Q learning, to control the traffic light. Existing inefficient traffic light control

causes numerous problems, such as long delay and waste of energy. In the proposed

model, the complex traffic scenario is quantified as states by collecting data and

dividing the whole intersection into grids. The timing changes of a traffic light are

the actions, which are modeled as a high-dimension Markov decision process. The

reward is the cumulative waiting time difference between two cycles. To solve the

model, a convolutional neural network is employed to map states to rewards, which

is further optimized by several components, such as dueling network, target network,

double Q-learning network, and prioritized experience replay. The simulation results

in Simulation of Urban MObility (SUMO) show the efficiency of the proposed model

in controlling traffic lights.

The last part of this dissertation studies the hierarchical structure in an

embedding system. Traditional embedding approaches associate a real-valued

embedding vector with each symbol or data point, which generates storage-inefficient

representation and fails to effectively encode the internal semantic structure of data.

A regularized autoencoder framework is proposed to learn compact Hierarchical

K-way D-dimensional (HKD) discrete embedding of data points, aiming at capturing

semantic structures of data. Experimental results on synthetic and real-world datasets

show that the proposed HKD embedding can effectively reveal the semantic structure

of data via visualization and greatly reduce the search space of nearest neighbor

retrieval while preserving high accuracy.



APPLIED DEEP LEARNING IN INTELLIGENT TRANSPORTATION
SYSTEMS AND EMBEDDING EXPLORATION

by
Xiaoyuan Liang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2019



Copyright c© 2019 by Xiaoyuan Liang

ALL RIGHTS RESERVED



APPROVAL PAGE

APPLIED DEEP LEARNING IN INTELLIGENT TRANSPORTATION
SYSTEMS AND EMBEDDING EXPLORATION

Xiaoyuan Liang

Dr. Guiling Wang, Thesis Advisor Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Ali Mili, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Dr. Zhi Wei, Committee Member Date
Associate Professor of Computer Science, New Jersey Institute of Technology

Dr. Zhu Han, Committee Member Date
Professor of Electrical and Computer Engineering, University of Houston
Professor of Computer Science and Engineering, Kyung Hee University, South
Korea

Dr. Renqiang Min, Committee Member Date
Researcher, NEC Laboratories America Inc



BIOGRAPHICAL SKETCH

Author: Xiaoyuan Liang

Degree: Doctor of Philosophy

Date: August 2019

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science

New Jersey Institute of Technology, 2019

• Bachelor Degree of Engineering in Information Security
Harbin Institute of Technology, 2013

Major: Computer Science

Presentations and Publications:

Xiaoyuan Liang, Martin Renqiang Min, Hongyu Guo, and Guiling Wang, “Learning
k-way d-dimensional discrete embedding for hierarchical data visualization and
retrieval,” The 28th International Joint Conference on Artificial Intelligence,
Macau, China, 2019 August.

Xiaoyuan Liang, Guiling Wang, Martin Renqiang Min, Qi Yi, and Zhu Han, “A deep
spatio-temporal fuzzy neural network for passenger demand prediction,” The
SIAM International Conference on Data Mining, Calgary AB, Canada, 2019
May.

Xiaoyuan Liang, Xunsheng Du, Guiling Wang, and Zhu Han, “A deep reinforcement
learning network for traffic light cycle control,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 2, pp. 1243-1253, 2019 January.

Xiaoyuan Liang, Guiling Wang and Zhu Han, “A low-cost collaborative indoor local-
ization system based on smartphone platform,” The 14th IEEE International
Conference on Green Computing and Communications, Halifax NS, Canada,
2018 July.

Xiaoyuan Liang, Tan Yan, Joyoung Lee, and Guiling Wang, “A distributed inter-
section management protocol for safety, efficiency, and driver’s comfort,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1924-1935, 2018 June.

iv



Jie Tian, Yi Wang, Xiaoyuan Liang, Guiling Wang, and Yujun Zhang, “WA-MAC: a
weather adaptive MAC protocol in survivability-heterogeneous wireless sensor
networks,” Elsevier Ad Hoc Networks, vol. 67, pp. 40-52, 2017 December.

Xiaoyuan Liang, and Guiling Wang, “A convolutional neural network for trans-
portation mode detection based on smartphone platform,” The 14th IEEE
International Conference on Mobile Ad-hoc and Sensor Systems, Orlando FL,
USA, 2017 October.

Xin Gao, Jie Tian, Xiaoyuan Liang, and Guiling Wang, “ARPP: an augmented reality
3D ping-pong game system on Android mobile platform,” The 23rd IEEE
Wireless and Optical Communication Conference, Newark NJ, USA, 2017 May.

Jie Tian, Xiaoyuan Liang, and Guiling Wang, “Deployment and reallocation in mobile
survivability-heterogeneous wireless sensor networks for barrier coverage,”
Elsevier Ad Hoc Networks, vol. 36, pp. 321-331, 2016 January.

Xiaoyuan Liang, Jie Tian, Xiaoning Ding, and Guiling Wang, “A risk and
similarity aware application recommender system,” Journal of Computing and
Information Technology, vol. 23 (4), pp. 303-315, 2015 December.

Jie Tian, Xiaoyuan Liang, Tan Yan, Mahesh Kumar Somashekar, Guiling Wang,
and Cesar Bandera, “A novel set division algorithm for joint scheduling and
routing in wireless sensor networks,” Springer Wireless Networks, vol. 21, pp.
1443-1455, 2015 July.

v



To my lovely wife, Yan! This cannot be this easy without
your support!

vi



ACKNOWLEDGMENT

Foremost, I would like to express my sincere gratitude to my advisor, Dr. Guiling

Wang for the continuous support and guidance of my Ph.D. study and research.

Her patience, enthusiasm, knowledge and insightful vision has provided me endless

interesting thoughts in the research and life throughout my whole Ph.D. studies in

these years and will continue to influence me in my future life to explore the research

and the sea of knowledge.

Besides my advisor, I would like to thank Dr. Zhu Han and Dr. Martin Renqiang

Min, for their immense knowledge and critical suggestions, not only on my research,

but also the attitude to research. They taught me to focus on the things that will

make a real impact, which is a precious experience for me. Thanks also goes to my

dissertation committee members, Dr. Ali Mili and Dr. Zhi Wei, for taking time from

their busy schedules to review my dissertation and provide constructive comments.

Their feedback were important for me to finish this dissertation.

I would also like to thank all my colleagues and collaborators, Dr. Hongyu Guo,

Dr. Tan Yan, Dr. Jie Tian, Dr. Xin Gao, Mr. Yuchuan Zhang, and Mr. Xunsheng

Du, for their hard work and contribution in finishing the academic papers. Thanks

also to all my friends for their time and help.

Lastly, special thanks are given to my parents, Youde Liang and Qingbi Duan,

for their upbringing, understanding and support all the time, from when I was born

to now, through all my hardship and happiness. Thank my brother, Xiaolin Liang,

for his support to the family. Hope his child, Yinuo, has a happy life! All my family

members are thanked for their care and support in the past years.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background on Deep Learning . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Passenger Demand Prediction . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Transportation Mode Detection . . . . . . . . . . . . . . . . . . . . . 3

1.4 Traffic Light Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Embedding Visualization and Retrieval . . . . . . . . . . . . . . . . . 7

1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Passenger Demand/Traffic Flow Prediction . . . . . . . . . . . . . . . 9

2.2 Transportation Mode Detection . . . . . . . . . . . . . . . . . . . . . 11

2.3 Traffic Light Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Embedding Visualization and Retrieval . . . . . . . . . . . . . . . . . 15

3 A DEEP SPATIO-TEMPORAL FUZZY NEURAL NETWORK FOR PASSENGER
DEMAND PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 STEF-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Overview of the Deep Learning Model . . . . . . . . . . . . . 24

3.3.3 Modeling Spatio-temporal Features . . . . . . . . . . . . . . . 25

3.3.4 Modeling External Uncertain Features . . . . . . . . . . . . . . 27

3.3.5 Feature Fusion Module . . . . . . . . . . . . . . . . . . . . . . 29

3.3.6 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Evaluation Objectives and Metrics . . . . . . . . . . . . . . . . 31

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

3.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Hyperparameters and Development Environment . . . . . . . . 33

3.4.4 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 A DEEP CONVOLUTIONAL NEURAL NETWORK FOR TRANSPORTATION
MODE DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Deep Learning Model . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Traditional Machine Learning Methods . . . . . . . . . . . . . . . . . 57

4.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Traditional Classification Models . . . . . . . . . . . . . . . . . 58

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Classification Results . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 DEEP REINFORCEMENT LEARNING FOR TRAFFIC LIGHT CONTROL 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Background on Deep Reinforcement Learning . . . . . . . . . . . . . . 75

5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

5.4 Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.3 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Double Dueling Deep Q Network . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 83

5.5.2 Dueling DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.3 Target Network . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.4 Double DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5.5 Prioritized Experience Replay . . . . . . . . . . . . . . . . . . 88

5.5.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.7 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.1 Evaluation Methodology and Parameters . . . . . . . . . . . . 90

5.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 LEARNING K-WAY D-DIMENSIONAL DISCRETE EMBEDDING FOR
HIERARCHICAL DATA VISUALIZATION AND RETRIEVAL . . . . . 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Hierarchical K-way D-dimensional Discrete Embedding . . . . . . . . 101

6.2.1 Learning Hierarchical Discrete Codes with an Autoencoder . . 102

6.2.2 Regularized Autoencoder Preserving Neighborhoods . . . . . . 105

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Settings and Baselines . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.2 Results on the Synthetic Dataset . . . . . . . . . . . . . . . . . 108
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CHAPTER 1

INTRODUCTION

1.1 Background on Deep Learning

Deep learning [60, 68, 70, 42] has been successfully applied in many fields, such as

computer vision [32, 73, 83] and natural language processing [17, 79, 92, 103]. Deep

learning is usually composed of multiple processing layers to learn representations of

data with multiple levels of abstraction [60]. Among all DL techniques, Convolutional

Neural Networks (CNNs) [59] and Recurrent Neural Networks (RNNs) [98] are

undoubtedly two popular models. A CNN is composed of one or more convolutional

layers with fully connected layers on top. CNNs are generally the method of choice

to process the data by moving windows to capture the obvious features in windows.

CNNs [68] are often deployed to model data with spatial feature interaction while

RNNs are often used to process data with temporal feature interaction. An RNN

is a class of artificial neural networks in which connections between units form a

directed cycle. It creates an internal state of the network, which allows it to exhibit

dynamic temporal behaviors. Unlike feedforward neural networks, RNNs can use

their internal memory to process arbitrary sequences of inputs. A special RNN called

LSTM is widely adopted to overcome the vanishing gradient problem in traditional

RNNs [42].

Reinforcement learning is another category of algorithms in machine learning

and is different from supervised learning and unsupervised learning [112, 64]. It

interacts with the environment to get rewards from actions. Its goal is to take

the action to maximize the numerical rewards in the long run. In reinforcement

learning, an agent, the action executor, takes an action and the environment returns

a numerical reward based on the action and current state. Combining deep learning
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and reinforcement learning enables the system to learn complex information from the

environment for better decisions. Reinforcement learning is widely applied into games

to achieve higher scores than humans [107, 108].

1.2 Passenger Demand Prediction

Accurate future passenger demand prediction is very important in the field of

transportation [69, 102]. Knowing the future demands, a Transportation Network

Company (TNC) can wisely pre-allocate resources (vehicles and drivers) to meet

the demands, such that the best service can be provided to passengers with a

minimum waiting time, and unnecessary driving around on road can be prevented,

reducing energy consumption and traffic jam. However, passenger demand prediction

is very challenging considering the future demands are simultaneously influenced

by many factors, including spatial and temporal factors, as well as many discrete

external factors, such as weather and being daytime or nighttime [69]. These factors

have complex and non-linear interactions with future demands and capturing the

interactions in one model to make prediction is very difficult. Moreover, data of

external factors are often either inaccurate or too coarse due to data-collection sensors’

sparse deployment and unavoidable errors.

To predict passenger demand in the near future, previous studies have proposed

various models. One of the most well-known methods uses the Auto-Regressive

Integrated Moving Average (ARIMA) [102, 85]. ARIMA-based methods only consider

the temporal correlation among the passenger demands, which limits the prediction

performance. Recent studies [141, 136] propose deep learning models considering

both temporal and spatial feature interactions, which outperform previous methods

considering only one type of factor. However, the work handles the spatial and

temporal feature interaction sequentially, resulting in information loss. In addition,

they ignore other important discrete external factors, e.g., the weather. Although the

2



model proposed in [50] considers the weather impact, it fails to consider inaccuracies

within the collected data. The challenges become the accurate passenger demand

prediction fusing all the related information into one model.

A deep Spatio-Temporal Fuzzy Neural Network (STEF-Net) is proposed

to predict the passenger demand in the near future, which fuses all correlated

information in one model. This model contains the following contributions: (1) It is

the first model that combines a fuzzy neural network and deep learning techniques into

one to handle data uncertainty and learn complex interaction among multiple factors.

(2) It is composed of a new feature fusion method using a convolution operation, which

can preserve the temporal relations of the outputs, capture the spatial information

and achieve better performance than commonly used weighted addition. (3) It

provides explainable results on when the historical information influences most in the

prediction and how the weather can influence the prediction via adopting an attention

layer on every time step. (4) Extensive experiments are conducted on real data to

show that this model significantly outperforms state-of-the-art models in prediction

accuracy.

1.3 Transportation Mode Detection

The information of travelers’ transportation modes is important for developing many

transportational applications. For example, (1) knowledge of people’s transportation

modes is useful for improving urban transportation planning [39, 46]. The new method

would transform the way how transportation demand information is gathered for

supplementing the traditional information acquisition practice based on telephone

interviews and questionnaires, which is expensive and time consuming to conduct

[110]. (2) The knowledge can also improve the performance of localizing and

positioning systems. With the awareness of transportation modes, localizing

systems can more precisely narrow down users’ location [39]. (3) The information
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facilitates targeted and customized advertisements and services [110] based on the

transportation modes the users are taking. (4) The acquired information can also

help improve smartphone users’ physical habits for environment protection purpose.

For example, the CO2 footprint as well as the calories burned by individuals can be

better monitored with the information [75, 46]. In this way, the data can help users

build green transportation habits to protect the environment.

Most previous studies use data from the Global Positioning System (GPS) to

detect people’s transportation modes [110, 128, 75]. However, GPS-based methods

suffer from the following drawbacks [39, 46]: (1) GPS signals are not available

everywhere. GPS requires an unobstructed view to satellites, limiting its applicability

in metropolitan areas with highrises or in shielded areas; (2) a GPS sensor consumes

a significant amount of energy and may rapidly deplete the battery of a mobile

device. To address these issues, some existing work uses alternative sensors to detect

transportation modes. For example, Jahangiri et al. [46] propose leveraging an

accelerometer coupled with a gyroscope and a rotation vector sensor to detect five

transportation modes. Fang et al. [23] use a deep neural network to classify five

transportation modes based on the data from the accelerometer, magnetometer and

gyroscope. Hemminki et al. [39] propose using an accelerometer sensor to detect six

transportation modes. However, the detection accuracy of the above work, less than

90%, still needs improvement when only using the accelerometer sensor. In contrast,

the proposed approach can detect all common transportation modes, including being

stationary, walking, bicycling, taking bus, driving a car, taking subway, and taking

train, using data only acquired from accelerometer sensors in smartphones. Thus the

challenges exist in how to improve the accuracy with low energy consumption, which

is applicable to all smartphones.

The proposed transportation mode detection system on smartphones is composed

of three parts, data collection, data pre-processing and deep learning model. The
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data collection decides what data to collect and how the data are collected. The

pre-processing part deals with the fluctuation caused by smartphones’ different places

and orientation. The core part, deep learning model, is essentially a convolutional

neural network on a series of one-dimension acceleration magnitude. This system

is the first attempt to adopt a deep convolutional neural network framework on the

accelerometer data only to detect transportation modes in near realtime, about 1

second. Different from many existing systems, this system can be widely applied

due to the availability of accelerometers in smartphones. The system is energy

efficient by only using the accelerometers since accelerometers consumes much less

energy than other types of motion sensors [33]. Comparing to the work that only

uses accelerometers, the proposed system is robust to the position and orientation of

smartphones since the magnitude instead of the vector in three axes is used, which

greatly improves the user experience. The proposed system is proven to outperform

existing studies and accurately detect transportation modes via extensive experiments

when the same window size is taken on the same dataset.

1.4 Traffic Light Control

An efficient intersection management is critical to improve the road safety. The

intersection management of busy or major roads is primarily done through traffic

lights, whose inefficient control causes numerous problems, such as long delay of

travelers and huge waste of energy. Even worse, it may also incur vehicular

accidents [86, 71]. Existing traffic light control either deploys fixed programs without

considering real-time traffic or considering the traffic to a very limited degree [10]. The

fixed programs set the traffic signals equal time duration in every cycle, or different

time duration based on historical information. Some control programs [9] take inputs

from sensors such as underground inductive loop detectors to detect the existence of
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vehicles in front of traffic lights. However, the inputs are processed in a very coarse

way to determine the duration of green/red lights.

To improve the efficiency of traditional traffic lights, adaptive traffic light

control systems are studied in [76, 35, 140], which dynamically adjusts the cycle

length of traffic lights based on traffic information estimated from loop detector

sensors [116] or cameras. Early work defines the states by the number of waiting

vehicles or the waiting queue length [22, 2]. But real traffic situation cannot be

accurately captured by the number of waiting vehicles or queue length [29]. With

the popularization of VANETs and cameras, more information about roads can be

extracted and transmitted via the network, such as vehicles’ speed and waiting time

[37]. However, more information causes the dramatically increasing number of states.

When the number of states increases, the complexity in a traditional reinforcement

learning system grows exponentially. With the rapid development of deep learning,

deep neural networks have been employed to deal with the large number of states,

which constitutes a deep reinforcement learning model [84]. A few recent studies have

proposed to apply deep reinforcement learning in the traffic light control problem

[63, 121]. But there are two types of main limitation in the existing studies: (1) the

traffic signals are usually split into fixed-time intervals, and the duration of green/red

lights can only be a multiple of this fixed-length interval, which is not efficient in

many situations; (2) the traffic signals are designed to change in a random sequence,

which is not a safe or comfortable way for drivers. Thus, the challenges rely on how

to control the timing in a whole cycle using the collected road traffic information.

The proposed traffic light control system is a real-time system, which learns

the timing in a cycle from the current road traffic information. The core part is

a deep reinforcement learning model based on Q learning. The proposed Deep

Dueling Double Q Network (3DQN) combines deep learning and reinforcement

learning into one model and improves the performance with prioritized experience
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replay, target network, double network and dueling network. This model is the first

one to combine dueling network, target network, double Q network and prioritized

experience replay into one framework to solve the traffic light control problem, which

can be easily applied into other problems. The proposed model is the first one to

decide the phases’ time duration in a whole cycle instead of dividing the time into

segments. Extensive experiments on a traffic micro-simulator, Simulation of Urban

MObility (SUMO) [54], show the effectiveness and high-efficiency of the proposed

model.

1.5 Embedding Visualization and Retrieval

Data embedding methods have been successfully deployed in many real-world

applications, including unsupervised and supervised data visualization [73, 83, 82],

natural language understanding [79, 92, 103], computer vision [26], information

retrieval [16], bioinformatics analysis [21], and many others. In a neural network,

word embedding is designed as real-valued vectors, while each word is assigned an

independent integer vectors, such as one-hot vectors.

Existing embedding strategies, however, fail to sufficiently reveal essential

semantic structures of the data in the embedded space. Typically, these methods

associate a real-valued embedding vector with each symbol or data point, which

is equivalent to applying a linear transformation to “one-hot” encoding of discrete

symbols or data points. Despite their simplicity, these methods are incapable of

encoding the internal semantic structure of data, failing to effectively preserve the

interplay of the symbols/data points in the embedded space, such as the hierarchical

relationship of the symbols or data samples. Hierarchical clusters of data will allow

one to know how the symbols/data points are grouped and how lower layer groups

form upper layer clusters. Such structural information is, therefore, critical for data
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understanding and fast information retrieval. In this field, exploring the semantic

neighboring information via visualization is a challenging and promising problem.

The proposed Hierarchical K-way D-dimensional (HKD) codes employ

an auto-encoder framework to transfer embeddings into discrete codes. The codes

are learnt via the reconstruction and KL divergence, which are both associated

with decaying weights. The learnt codes guarantee the nearest neighbors share the

same codes in the front dimensions and are differentiated in the last few dimensions.

The proposed auto-encoder framework is the first one to learn hierarchical discrete

embedding, which enables hierarchical data visualization and fast nearest neighbor

retrieval in addition to embedding storage efficiency. These salient features make

the proposed embedding strategy particularly attractive in practice, where both the

computation power and storage resources may not be abundant.

1.6 Structure

The remaining of the thesis is structured as follows, Chapter 2 introduces the

related work. Chapter 3 presents the details of STEF-Net for passenger demand

prediction. Chapter 4 shows a deep neural network for transportation mode detection

on smartphones. Chapter 5 discusses the deep reinforcement learning model, 3DQN,

to control traffic lights. Chapter 6 explores the embedding visualization and nearest

neighbor retrieval using deep auto-encoders. The dissertation is finally summarized

in Chapter 7.
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CHAPTER 2

RELATED WORK

This chapter presents the related work in the domain of passenger demand prediction

(Section 2.1), transportation mode detection (Section 2.2), traffic light control

(Section 2.3) and embedding visualization and retrieval (Section 2.4).

2.1 Passenger Demand/Traffic Flow Prediction

Deep Learning and Fuzzy Learning: Deep learning [60, 69, 67] has been successfully

applied in many fields, such as computer vision and natural language processing

[32]. Among all deep learning techniques, CNNs [59] and RNNs [98] are two popular

models. CNNs [68] are often deployed to model data with spatial feature interaction.

A CNN is composed of one or more convolutional layers with fully connected layers

on top. It also uses tied weights and pooling layers. In particular, maxpooling is

often used in Fukushimas convolutional architecture [27]. This architecture allows

CNNs to take advantage of the 2-dimension structure of the input data. RNNs

are often used to process data with temporal feature interaction. An RNN is a

class of artificial neural networks in which connections between units form a directed

cycle. It creates an internal state of the network, which allows it to exhibit dynamic

temporal behaviors. Unlike feedforward neural networks, RNNs can use their internal

memory to process arbitrary sequences of inputs. A special RNN called LSTM is

widely adopted to overcome the vanishing gradient problem in traditional RNNs [42].

However, neither CNNs nor LSTMs are perfect models for addressing spatial-temporal

problems. Except CNNs and LSTMs, attention [123] is another modeling mechanism

to capture temporal relevance among sequences, which is common in natural language

processing.
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To handle imperfect data, fuzzy learning is a powerful tool and shows better

performance than deterministic methods [134]. Combining fuzzy theory and neural

networks can improve complex data representation with probability distribution over

cross-layer units [139]. Even though they have been widely applied in control systems

[139] and portfolio management [20, 78]. no existing work applies fuzzy neural

networks in demand prediction. Fuzzy learning can be fused into a neural network in

two ways: One is to learn different data representation from both fuzzy learning and

neural network and then to fuse their outputs. One example of this kind is done by

Deng et al. [20]. They apply deep neural network and fuzzy learning on the data at

the same time and fuse their outputs in a model. The other is to sequentially apply

fuzzy and neural network [139].

Passenger Demand/Traffic Flow Prediction: Passenger demand prediction is

closely related to traffic flow prediction. Both have the same-format data and are

influenced by the same complex factors. Both are reviewed in this section. Traditional

approaches to predict future passenger demands only consider temporal information,

such as ARIMA [102, 85] or ANN [11]. These studies do not consider the spatial

correlation, which cannot accurately predict the future demands.

Recent advances in deep learning [60] motivate researchers to apply deep

learning techniques for passenger demand and traffic flow prediction. Recent studies

employ CNNs to capture complex spatial feature interaction [136] or RNNs (including

LSTMs) to capture temporal feature interaction [138, 133]. Some pioneering work

combines CNNs and RNNs to capture both spatial and temporal feature interaction in

the data recently. Yao et al. [132] propose a multi-view model, which employs a CNN

and an LSTM to capture the spatial and temporal feature interaction sequentially, but

not simultaneously, which potentially leads to information loss. The above work either

captures only one of the spatial and temporal feature interaction or captures both
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sequentially. None of the methods fully captures spatial-temporal feature interaction

simultaneously.

ConvLSTMs [104] are another deep learning model, which combines CNNs and

LSTMs. A ConvLSTM can simultaneously capture the spatial and temporal feature

interactions. It replaces the fully connected layer in the traditional LSTM with a

convolutional layer, which shows better performance than the traditional LSTM in

precipitation nowcasting. The follow-up work by [50] uses ConvLSTMs to predict

the passenger demands. The model is composed of a ConvLSTM and a LSTM to

process the weather information, the travel time rate and demand intensity, and

simply fuses the results from the two networks. However, The model fails to consider

the inaccuracy of external data and the inaccuracy of simple prediction result fusion.

AttConLSTM, a multi-step model built upon the attention-based encoder-decoder

framework for passenger demand prediction is proposed in [141]. However, it fails

to consider external factors, which greatly influences passenger demands. Different

from all previous models, this dissertation’s model captures spatio-temporal feature

interaction simultaneously without information loss, employs a fuzzy neural network

to handle external data inaccuracy and includes a new and effective feature fusion

method based on convolution.

2.2 Transportation Mode Detection

There have been several efforts on activity detection using acceleration data.

There are several studies using accelerometers only to detect transportation modes

[87, 75, 39, 130]. Hemminki et al. [39] collect accelerometer data at the frequency

from 60 to 100Hz and divide the data into 1.2-second windows with 50% overlap.

They extract 27 features in every window and train an adaptive boosting model to

classify the data into six modes, stationary, walk, bus, train, metro and tram. They

achieve an accuracy of 80.1%. Manzoni et al. [75] collect accelerometer data at the
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frequency of 25Hz and divide it into windows of 10.24-second length with 50% time

overlap. They also extract features from the FFT coefficients in every window and

train a decision tree model to classify the data into eight modes, walk, bicycle, bus,

car, metro, train, still, and motorcycle. They achieve an accuracy of 82.14%. Yang

[130] collects accelerometer data at the frequency of 36Hz and divide the data into

10-second windows with 50% overlap. Features are extracted from both time and

frequency domains and a decision tree model is used to classify six transportation

modes, sitting, standing, walk, run, bicycle, and car. The accuracy is 90.6%.

Compared with the existing studies using acceleration data, the proposed system

can provide higher accuracy. Existing studies usually use the traditional machine

learning methods to detect transportation modes. In this work, it is shown that

CNNs outperform traditional machine learning methods in detecting transportation

modes. In addition, among the traditional methods, the random forest performs best

in the accuracy metric instead of other ones used in the existing work.

The work in [7] fuses the data from five biaxial accelerometers fixed at five body

parts to recognize users’ activities, such as walking, sitting, standing and running. A

similar work [77] compares the performance of the acceleration data from six body

parts in recognizing standing, sitting, walking and so on. Another work [3] presents

a system to recognize the sitting, standing, lying and walking by requiring a device

fixed at users’ waists. But the above work requires extra accelerometers. Kwapisz et

al. propose a system in Android phones put in the front pants leg pocket to recognize

users’ 6 activities, such as sitting and walking [58]. Lee et al. use an HMM model to

classify the activities [61] while Anguita et al. use a multiclass hardware-friendly SVM

[4]. A fusion system of motion sensors is proposed to recognize physical activities in

[105]. However, none of the above work focuses on detecting users’ transportation

modes using deep learning models.
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Some other related work may use other sensors and extra information to

detect transportation modes. Specifically, some studies employ deep learning to

detect transportation modes [124, 126, 109, 23]. All of these studies use the data

from GPS or other sensors, which are not comparable to this study in terms of

energy consumption. In addition, Wang et al. [126] (74.1% in unknown number

of transportation modes) and Fang et al. [23] (95.43% in five modes) use the deep

neural network with fully-connected layers to perform the detection while Vu et al.

[124] (93.1% in five modes) and Song et al. [109] (83.26% in five modes) employ

recurrent neural networks to discover the relation among close samples. The work

uses the information from other sensors, such as GPS and Gyro, which is different from

this chapter’s work only using the accelerometer. None of them considers applying

CNNs in detecting transportation modes. The above work merges the motorised

transportation modes into one cluster, which provides a coarse-grained service. A

model based on sensor data from accelerometer, gyroscope, magnetic field, rotation

vector, geomagnetic rotation vector, linear acceleration, and uncalibrated versions

where applicable, is proposed in [53] to detect six transportation modes, including

walk, bike, MRT, bus, car and stationary. The model employs four separate machine

learning methods, Gaussian näıve Bayes, discriminant analysis, SVM and k-NN. It

can achieve 96% accuracy on average. Su et al. [111] propose an online SVM model

to detect six transportation modes on the data from all motion sensors, including

accelerometer, gravity sensor, gyroscope, magnetometer, and barometer. They can

achieve an accuracy of 97.1%. Reddy et al. [96] propose a fusion model with decision

trees and Hidden Markov Model (HMM) using GPS and accelerometer data to classify

stationary, walk, run, bicycle and motorized transportation. They achieve an accuracy

of 93.6%. Feng et al. [24] discover that combining GPS and accelerometer can achieve

higher accuracy than using GPS or accelerometer data only, and using accelerometer

only has a higher accuracy than using GPS only in their model. Stenneth et al. [110]
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build a random forest model combining GPS and Geographical Information System

(GIS) to classify stationary, walk, bicycle, car, bus, and train. They achieve an

accuracy of 93.5%. Compared with the existing related work, it is obvious that this

dissertation’s work provides even a higher accuracy with accelerometer only and it is

more efficient with only one low power-consuming sensor.

2.3 Traffic Light Control

Previous work has been done to dynamically control traffic lights. But due to the

limited computing power and simulation tools, early studies focus on solving the

problem by fuzzy logic [14], linear programming [90], etc. In these studies, road traffic

is modeled by limited information, which cannot be applied in large scale.

With the success of deep learning in artificial intelligence, more and more

researchers use deep learning to solve transportation problems. Deep learning includes

supervised learning, unsupervised learning and reinforcement learning. In the traffic

light control problem, since no labels are available and the traffic scenario is influenced

by a series of actions, reinforcement learning is a good way to solve the problem and

has been applied in traffic light control since 1990s. El-Tantawy et al. [22] summarize

the methods from 1997 to 2010 that use reinforcement learning to control traffic light

timing. During this period, the reinforcement learning techniques are limited to

tabular Q learning and a linear function is normally used to estimate the Q value.

Due to the technique limitation at the time in reinforcement learning, they usually

make a small-size state space, such as the number of waiting vehicles [2, 72] and

the statistics of traffic flow [5, 6]. A signal control system is proposed in [94]. The

authors use the queue length and current light time as the state and use a linear

function to approximate the Q values. A cooperative traffic light control system

based on reinforcement learning is proposed in [72]. The authors propose to cluster

vehicles and use a linear function to approximate the Q values; however, only the
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queue information is used in the states. The complexity in a traffic road system can

not be actually presented by such limited information. When much useful relevant

information is omitted in the limited states, it seems unable to act optimally in traffic

light control [29].

With the development of deep learning and reinforcement learning, they

are combined together as deep reinforcement learning to estimate the Q value.

Some researchers have applied deep reinforcement learning to control the wireless

communication [142, 115], but the systems cannot be directly applied in traffic light

control scenarios due to different actions and states. Here is the summarization of

the recent studies that use the value-based deep reinforcement learning to control

traffic lights in Table 2.1. There are three types of limitation in these previous

studies. Firstly, most of them test their models in a simple cross-shape intersection

with through traffic only [63, 121]. Secondly, none of the previous work determines

the traffic signal timing in a whole cycle. Thirdly, deep reinforcement learning is

a fast developing field, where a lot of new ideas are proposed in these two years,

such as dueling deep Q network [127], but they have not been applied in traffic

control. In this dissertation, the following progress is made. Firstly, the intersection

scenario contains multiple phases, which corresponds a high-dimension action space

in a cycle. Secondly, the proposed model guarantees that the traffic signal time

smoothly changes between two neighboring actions, which is precisely defined in the

MDP model. Thirdly, the proposed model employs the state-of-the-art techniques in

value-based reinforcement learning algorithms to achieve good performance.

2.4 Embedding Visualization and Retrieval

Data embedding methods have been successfully deployed in many real-world

applications, including unsupervised and supervised data visualization [73, 83, 82],

natural language understanding [79, 92, 103], computer vision [26], information
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Table 2.1 Previous Studies Using Value-based Deep Reinforcement
Learning

Study State Action Reward Time
step

Note

Genders et
al. (2016)
[29]

Position,
speed

4
phases

Change in
cumulative delay

NA Convolutional
neural network

Li et al.
(2016) [63]

Queue
length

2
phases

Difference between
flows in two
directions

5s Stacked
auto-encoders

Van Der
Pol (2016)
[121]

Position 2
phases

Teleport, wait time,
stop, switch, and
delay

1s Double Q network,
Prioritized
experience replay

Gao et al.
(2017) [28]

Position,
speed

4
phases

Change in
cumulative staying
time

6/10s Convolutional
neural network,
experience replay

retrieval [16], bioinformatics analysis [21], and many others. The proposed method is

built on the success of the recent K-way D-dimensional discrete encoding [13, 106].

These discrete encoding algorithms encode, through deep neural networks, data points

with discrete codes, thus being able to significantly reduce the storage space when

compared to real-valued embedding.

Conventional methods considering the hierarchical structure in data retrieval

are usually based on Huffman coding [44]. But Huffman codes do not contain the

semantic information and are not suitable in a large embedding system. In most

embedding systems, such as word embedding [31, 92], one-hot vectors are commonly

used to denote every symbol and a linear transformation is used to get embedding

from vectors. Even the continuous values in the embedding can represent the semantic

information in the dataset, the one-hot vectors [36] consumes a large size of storage

and the transformation matrix is also large. Some recent work [51, 101, 137] explores

character or sub-word based embedding to achieve smaller vocabulary size and better
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performance. A hash function [113] is proposed to automatically map texts to pre-

defined bases with a smaller vocabulary size. But the above work is very limited for

fixed characters and sub-words based on a given language, which cannot capture all

semantic features in other types of data. In this work, the KD codes are learned

for almost any embedding system. The work most related to this work is the KD

code learning as introduced in [106, 13]. The work in [106] provides an autoencoder

framework to learn the KD codes while [13] proposes an end-to-end KD code learning

framework for different tasks, where the KD codes are learned to minimize task-

specific losses. Another related work is about the k-ary tree [95], which builds a tree

structure for the entities, but k-ary tree requires the children size to be either 0 or k.

In this dissertation, the number of children can be any number from 0 to k, which

greatly helps to capture the semantic information. In contrast, a novel autoencoder

regularizer is introduced to force the autoencoder for the hierarchical structures while

generating discrete embedding codes. This framework can be worked on any existing

embedding to extract the hierarchical semantic information.

The semantic information learning from high dimension to low dimensions

is usually implemented by pairwised methods, such as SNE [40] and t-SNE [73].

However, the computation complexity of t-SNE is very high, which limits their

applicability to small datasets. Some improvements are proposed to reduce the

complexity, like BarnesHut trees [119], fast multipole methods [30] and many others

[120, 131], but the above work does not reach to a linear complexity. Based on

t-SNE, pt-SEE [81] is proposed to use exemplars as cluster information to reduce the

computation complexity to a linear complexity. pt-SEE only provides the distribution

for continuous values in the both high and low dimensions. Thus, it cannot be directly

applied in this work. What’s more important, pt-SEE equally treats every unit,

which cannot be directly used for hierarchical structures. The proposed autoencoder

regularization schema builds on the pt-SEE strategy [81], where forming embeddings
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are encouraged to cluster around the prototypes or exemplars. Nevertheless, this

method treats all embedding dimensions equally when computing their distance with

the exemplars, thus discards the semantic structures of those data points. The

proposed approach here treats each embedding dimensions with different weights

which correspond to their closeness with different exemplars. Those distances directly

reflect their relationship with other data points.
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CHAPTER 3

A DEEP SPATIO-TEMPORAL FUZZY NEURAL NETWORK FOR

PASSENGER DEMAND PREDICTION

3.1 Introduction

Accurate future passenger demand prediction is very important in the field of

transportation. Knowing the future demands, a TNC can wisely pre-allocate resources

(vehicles and drivers) to meet the demands, such that the best service can be provided

to passengers with a minimum waiting time, and unnecessary driving around on

road can be prevented, reducing energy consumption and traffic jam. However,

passenger demand prediction is very challenging considering the future demands

are simultaneously influenced by many factors, including continuous spatial and

temporal factors, as well as many discrete external factors, such as weather and

being daytime or nighttime. These factors have complex and non-linear interactions

with future demands and capturing the interactions in one model to make prediction

is very difficult. Moreover, data of external factors are often either inaccurate or too

coarse due to data-collection sensors’ sparse deployment and unavoidable errors. The

challenging nature of future passenger demand prediction requires special handling

and many existing modeling of spatio-temporal forecasting cannot be directly applied.

To predict passenger demands in the near future, previous studies have proposed

various models. One of the most well-known methods uses the ARIMA [102, 85].

ARIMA-based methods only consider the temporal correlation among the passenger

demands, which limits the prediction performance. Recent studies [141, 136] propose

deep learning models considering both temporal and spatial feature interaction,

which outperform previous methods considering only one type of factor. However,

they handle the spatial and temporal feature interaction sequentially, resulting in

information loss. In addition, they ignore other important discrete external factors,
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e.g., the weather. Although the model proposed in [50] considers the weather impact,

it fails to consider the uncertainty within the collected data.

To tackle this challenging problem with desirable performance, a deep STEF-

Net is proposed to predict the passenger demand in a city area. In this network, all

related factors are fused to model the complex interaction among them, including

spatial-temporal dependencies, external information and temporal relevance, and

design an end-to-end learning framework with different neural networks modeling

different types of feature interaction. Specifically, the proposed model simultaneously

captures the spatial and temporal dependencies via a ConvLSTM. A ConvLSTM

replaces the full connection in a traditional LSTM with the convolutional operation

such that the spatial and temporal feature interactions can be simultaneously

captured and information loss can be avoided compared to sequential processing by

stacking convolutional layers and LSTMs. Regarding the uncertainty of external

factors, a fuzzy neural network is proposed. A fuzzy neural network, which combines

the fuzzy theory and neural networks, can learn the feature representation with high

error tolerance and trainable rules. It shows significantly better performance than

deterministic neural networks for this data type. A new feature fusion method using

convolution is proposed to connect the two separate networks without losing temporal

information. An attention layer is further employed to capture the temporal relevance

of the high-level fused data, considering the future demands are unequally influenced

by past ones. The proposed model is evaluated on the real data from Didi Chuxing,

the biggest TNC in China, which is similar to Uber in the United States. The

experimental results show that the proposed model outperforms the state-of-the-art

models.

In summary, the contributions of this chapter include: (1) This work is the

first to combine a fuzzy neural network and deep learning techniques to handle

data uncertainty and learn complex interactions among multiple factors, which can
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achieve better performance than solely using deep learning. (2) A new feature fusion

method using convolution is proposed, which can preserve the temporal relation of

the outputs, capture the spatial information and achieve better performance than

commonly used weighted addition. (3) An attention layer is adopted for the first time

on every time step to provide explainable results on when the historical information

influences most in the prediction and how the weather can influence the prediction.

(4) Extensive experiments are conducted on real data to evaluate the proposed model.

The proposed model significantly outperforms state-of-the-art models in prediction

accuracy.

3.2 Problem Formulation

Being consistent with existing work, the following definitions are made. Based on the

definitions, the problem statement of this chapter is given.

Definition 3.2.1 Region In this chapter, the passenger demands in different areas

in a city are predicted. The whole city is partitioned into W × H equal-size grids.

A grid is called a region, which is denoted by r. Let ri,j denote the region with the

coordinate i, j, where i ∈ [0,W ) and j ∈ [0, H).

Definition 3.2.2 Service request A service request sk made by a passenger is

composed of the request ID, pick-up coordinates sk,pc (longitude and latitude), and

pick-up time sk,pt. (Note that drop-off location and time are not considered for

demand predictions.) A service request sk = {sk,pc, sk,pt}. A valid request’s pick-up

location should be in the city. If it is outside the city, it is discarded. The total

number of available legal requests is denoted by N .

Definition 3.2.3 Passenger demands Time is divided into equal intervals. The

tth time interval, starting from 0, is the interval of [t× C, (t+ 1)× C), where C is a

constant representing the interval’s time span. The passenger demand of a region ri,j

is accumulated in the specific tth time interval based on the requests’ pick-up time.

The passenger demand in region ri,j at the tth time interval is denoted by dti,j.

dti,j = |{k ∈ [0, N) : sk,pc ∈ ri,j ∧ sk,pt ∈ [t× C, (t+ 1)× C)}|. (3.1)

21



The whole area’s demands are denoted by D, which means

Dt = {dti,j|∀i ∈ [0,W ),∀j ∈ [0, H)}. (3.2)

It can be imagined that Dt is a demand snapshot of the whole area at the tth time

interval, where every pixel is the demand of that particular location.

Definition 3.2.4 External information Let et denote the external information

set at the tth time interval. The external factors impacting the passenger demands

considered in the paper includes the weather, the day in a week and being daytime

or nighttime. The process details of the external information will be given in next

section.

Problem statement The problem is defined as follows. Suppose the current

time interval is t. Given the historical passenger demands and the external

information at the tth time interval, the goal is to predict the passenger demands

in all regions in the city at the (t + 1)th time interval. Specifically, in this problem,

the historical data, demands and external information in the last k time intervals are

taken as input and the output is the predicted passenger demands at the (t + 1)th

time interval. Let D̂
t+1

denote the predicted passenger demands at the (t+ 1)th time

interval. D̂
t+1

is a function f of the previous k time intervals’ data.

D̂
t+1

= f(Dt−k,Dt−k+1, ...,Dt, et−k, et−k+1, ..., et). (3.3)

This chapter’s goal is to minimize the difference between D̂
t+1

and the true passenger

demands Dt+1.

3.3 STEF-Net

3.3.1 Preliminary Analysis

In this section, a preliminary data analysis is conducted to provide some intuition

on how passenger demands are influenced by different factors. A dataset from Didi
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Raining 

Figure 3.1 Illustration of different hourly passenger demands in different days.

Chuxing, China 1 is used to extract the passenger demand information. The data

contains over 5.24 million service requests from 11/01/2016 to 11/30/2016. Figure

3.1 shows the total passenger demands over different hours in different days. Two

Mondays and a Friday as representatives of weekdays and a Saturday as that of

weekends are picked as examples. A rainy Monday and a sunny Monday are compared

to show the impact of weather on passenger demands. Except the rainy Monday, all

the other days are sunny. In the figure, the x axis is the hour of the day and the

y axis is the passenger demands during the hour. It can be seen that the passenger

demands have different patterns in different days, at different time of the day, and

under different weathers. For example, at the noon time, the demand drops on

Monday and Friday but it increases on Saturday. About the weather factor, on the

rainy Monday, it starts to rain at 2pm. Comparing the sunny Monday with the rainy

Monday, it is shown that the patterns of passenger demands on the two days before

1The source of raw data: DiDi Chuxing GAIA Open Data Initiative. Available at:
https://gaia.didichuxing.com
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Figure 3.2 Proposed model for passenger demand prediction: STEF-Net.

rain are similar while the patterns become different after rain comes. Specifically, the

number of passenger demand keeps decreasing on rainy Monday while it gets increased

once on sunny Monday. Figure 3.1 shows the passenger demands are determined by

complex interaction among many factors.

3.3.2 Overview of the Deep Learning Model

A deep learning model, STEF-Net, is proposed to predict the passenger demands

incorporating the complex interaction between various factors. This model is

illustrated in Figure 3.2, which is mainly composed of four components. (1) As

shown in the left side of the figure, a stacking ConvLSTM is employed to capture the

spatial-temporal feature interaction with the passenger demands. The input is the

historical passenger demands with location and time information, and the output is

the prediction using only spatial-temporal information. (2) As shown in the right side

of the figure, in parallel, a fuzzy neural network is employed to capture the external

information’s interaction on passenger demands. The input is the data about external

information and the output is the prediction using external information. (3) As shown
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on the bottom of the figure, the outputs from the stacked ConvLSTMs and the fuzzy

neural network are fused into one network to generate the final output. A new feature

fusion method using convolution on the data from the same time period is proposed,

which keeps the temporal relation of the outputs from the two networks. Considering

the passenger demands are unequally influenced by different time intervals, this model

further adapts an attention layer on the high-level fused data to capture the temporal

relevance. The data are then reshaped into the output format, which matches the

regions in a city. (4) As shown in the right corner of the figure, a loss function is

employed to measure the difference between the predicted value and true value. A

neural network’s goal is to minimize the loss defined by an objective function. In the

following, every component is presented in detail.

3.3.3 Modeling Spatio-temporal Features

This model enables to simultaneously capture the deep spatial and temporal

dependencies in passenger demands by stacking ConvLSTMs. A ConvLSTM is a

neural network model that combines convolutional operation and LSTM units, where

an LSTM is known to well handle temporal feature interaction without the vanishing

gradient problem, while convolutional networks are known to gracefully handle spatial

feature interaction. A ConvLSTM uses the convolution operation to replace the full

connection in traditional LSTMs. In a traditional LSTM, a cell is composed of input

gate it, forget gate ft, memory cell status ct, output gate ot, and final state ht. In

a traditional LSTM, all the elements are 1D tensors, which accepts the input from

T × L dimensions and generates outputs into T × L′ dimensions. T is the length of

the time sequences, L is the length of one input vector, and L′ is the length of one

output vector.

A ConvLSTM can be explained as follows. To make it general, let xt denote the

input at the tth time step in the time sequence. The core idea is to transfer all the
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inputs, memory cell values, hidden states, and various gates into 3D tensors, where

the first two dimensions are considered as the spatial information, rows and columns,

and the last dimension is the channels. All the notation of weights and outputs are

bold to present they are 3D tensors. The elements in a cell can be calculated as

follows,

it = σ (Wxi ∗ xt + Whi ∗Ht−1 + bi) ,

ft = σ(Wxf ∗ xt + Whf ∗Ht−1 + bf ),

ct = ft ◦ ct−1 + itσ(Wxc ∗ xt + Whc ∗Ht−1 + bc),

ot = σ(Wxo ∗ xt + Who ∗Ht−1 + Wco ◦ ct + bo),

ht = ot ◦ tanh(ct).

(3.4)

In the above equations, ∗ is the convolution operation and ◦ is the Hadamard

(element-wise) product. W and b are corresponding weights and biases, respectively,

indexed for different calculation. σ and tanh are two activation functions under the

input x given by following equations, respectively,

σ(x) =
1

1 + e−x
,

tanh(x) =
ex + e−x

ex + e−x
.

(3.5)

To adopt a ConvLSTM in this problem, the first two dimensions in the passenger

demand data are treated as rows and columns at one time interval. The ConvLSTM

in this problem can be considered as a function RT×W×H×L → RT×W×H×L′ , where

T , L and L′ are the same as those in the traditional LSTM, and W and H are the

length of rows and columns, corresponding to the width and height of the grids in the

city-wide area in this problem. Several ConvLSTM layers are stacked in the proposed

neural network. In the last ConvLSTM layer, the length of the output vector is set

1, which means the output is a 4D tensor with the size of T ×W × H × 1. This is

equivalent to a 3D tensor with the size of T ×W ×H.
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3.3.4 Modeling External Uncertain Features

Passenger demands are influenced by many external factors in addition to location

and time which are handled in the previous section. It is required to identify the

factors and obtain corresponding data to train this model. Note that existing data

about external factors are likely inaccurate or of coarse granularity, and thus it is

proposed for the first time to employ a fuzzy neural network to model the data. In

the section, the factor selection and data pre-processing is first present, and then the

fuzzy neural network modeling is given.

Factor selection and data pre-processing The proposed model aims to include

all highly correlated factors and chooses (1) the weather, (2) the day in a week, and

(3) being daytime or nighttime. Obviously, weather greatly influences a passenger’s

choice between taking Uber and walking, waiting and then taking a bus. When it rains

heavily or when it is very cold or very hot, people tend to take a more comfortable

way of transportation. In this model, the weather is represented by temperature,

dew point, humidity, pressure, wind speed, and weather condition. The first five

variables are numerical variables. The last one, weather condition, is represented by

ten different categories: clear, partly cloudy, scattered cloud, mostly cloudy, haze,

light rain, shower, mist, patches of fog, and fog. The categories are indexed from 1

to 10. The numbers are embedded using one-hot vectors with ten dummy variables.

The second factor, the day in a week, refers to the 7 days in a week, which also

influences people’s daily transportation behavior. This factor is a categorical variable

and is represented by a one-hot vector with seven dummy variables. The third factor

is whether it is dark outside and it is differentiated by the sunrise and sunset time

of the day. In summary, to represent all the three factors, 24 variables are chosen in

total in this model. The external information is a 1D tensor.
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Figure 3.3 Illustration of the fuzzy neural network.

Fuzzy Neural Network Modeling A fuzzy neural network is adopted to learn

the representation of the external information. The fuzzy neural network is composed

of two hidden layers, membership function layer and logic rule layer. The architecture

is shown in Figure 3.3. The membership function layer calculates the degree that

an input node belongs to a certain fuzzy set. Let xi denote the ith element in

the input. In the membership function layer, every element is split by multiple

Gaussian distributions. Let j index the Gaussian distribution for the ith element.

One distribution is denoted by (µi,j, δi,j). The membership function layer’s output is

calculated as follows,

hi,j = e

−(xi−µi,j)
2

δ2
i,j . (3.6)

The logic rule layer performs the “AND” fuzzy logic operation as follows,

oj =
∏
i

hi,j. (3.7)

Through the rule layer, the output can present the probability that it is related to

every unit. In the fuzzy neural network, all time intervals’ external information shares

the same member function layer and logic rule layer.
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The output from the fuzzy neural network of one interval’s external information

is reshaped into two dimensions to match the passenger demands in a whole city, which

is W × H. The outputs from the past T time intervals’ external information are a

3D tensor with the shape size of T ×W ×H.

3.3.5 Feature Fusion Module

In the above two sections, the passenger demand data and external information are

mapped into the same feature representation format from two separate networks.

They need to be combined to predict the next time interval’s demand.

Previous work employs weighted addition [50, 136] to fuse the two components.

In this model, convolution is employed to fuse the outputs from two networks. In

addition, to keep the temporal feature interaction, the data from the same time

interval are fused first and then an attention layer is employed to generate the final

output.

The outputs of the passenger demand and external information at the tth are

denoted by Ot,p and Ot,e, respectively. Let Ot,f denote the output after fusion with

convolution denoted by ⊕. The illustration of fusion with convolution is shown in

Figure 3.4. The calculation can be presented by the following equation,

Ot,f = Ot,p ⊕Ot,e. (3.8)

The two are concatenated by adding a new dimension, which can be imaged as the

channel in a CNN. After concatenation, Ot,f ∈ RW×H×2. To make the output’s

dimension consistent, a convolutional operation with window size w×h (w � W&h�

H) with 1 channel is applied, which outputs a 2D tensor with the size of W ×H. In

this way, the fusion with convolution method only needs w× h parameters while the

weighted addition requires 2×W ×H parameters in the previous work [50, 136]. In
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⊕

Convolution

Figure 3.4 The fusion method with convolution.

addition, the convolutional operation can further learn the spatial information on the

fused data.

After fusing the data, a bidirectional LSTM and attention are used to further

capture the temporal relevance. In the bidirectional LSTM, the data are flattened

into one dimension and fed into LSTMs:

−→
ht =

−−−−→
LSTM

(
wt,
−−→
ht−1

)
, (3.9)

←−
ht =

←−−−−
LSTM

(
w′t,
←−−
ht+1

)
. (3.10)

wt and w′t are the weights in the forward and backward LSTMs, respectively. The

outputs from the forward and backward are added in an element-wise way:

ht =
−→
ht +

←−
ht. (3.11)

The number of units in the LSTM is the same as the number of grids, which is equal

to W ×H. All the time steps are concatenated into a matrix H:

H = (h1,h2, ...,ht). (3.12)

For all time steps’ values in every grid, linear transformation and a softmax activation

function are used to get the attention weights on the time step domain:

a = softmax(WH). (3.13)
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The outputs are the weighted sum of the hidden states and the attention weights in

an element-wise way. The passenger prediction is the outputs after being weighted

by attention.

3.3.6 Objective Function

In this model, the objective function is defined as the mean square error between

the true passenger demands and predicted passenger demands. The model is trained

based on mini-batches. Suppose there are m samples in a mini-batch and every sample

is indexed by i, the objective function L(θ) with trainable parameters θ is defined as

follows,

L(θ) =
1

m

m∑
i=1

‖D̂
(t+1)

i −D(t+1)
i ‖2, (3.14)

It is the mean square error between the predicted and true passenger demand in

a mini-batch. The optimization algorithm in this model is the ADAptive Moment

estimation (Adam) [52], which adaptively changes the effective learning rate during

training.

The training pipeline of the proposed model, STEF-Net, is presented in

Algorithm 1.

3.4 Evaluation

3.4.1 Evaluation Objectives and Metrics

STEF-Net is evaluated by comparing it with state-of-the-art models on real data with

regard to the accuracy in passenger demands prediction. The accuracy is measured

by two metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).

The MAE and RMSE are two widely employed metrics to evaluate the performance

of a prediction system [136].
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Algorithm 1: Training pipeline of STEF-Net

Input : Historical observations: D1, D2, ..., Dt, ....

External information: e1, e2, ..., et, ....

Output: A well learnt STEF-Net model

Notation:

θ: parameters in the STEF-Net

M : Memory

1 Initialization

2 for ∀t > k do

3 Generate training data D = [Dt−k, Dt−k+1, ..., Dt]

4 Embed external information E = [et−k, et−k+1, ..., et]

5 Generate a training sample <{D, E}, Dt+1> into memory M .

end

6 Initialize the parameters θ in the STEF-Net

7 repeat

8 Randomly select a mini-batch of samples m from memory M

9 Calculate the cost function L(θ) in Equation 3.14

10 Update parameters θ using Adam back propagation

until convergence criterion met ;

32



3.4.2 Dataset

The dataset used for training and testing is from Didi Chuxing 2. The data contains

over 5.24 million non-duplicating service requests from 11/01/2016 to 11/30/2016 in

Chengdu City, China. In the dataset, every service request record is composed of the

request ID, pick-up time, pick-up coordinates, drop-off time and drop-off coordinates.

(Note that drop-off time and drop-off coordinates are not needed here.) The data of

the first 23 days is used for training and that of the last 7 days (one week) for testing.

The data from the dataset are extracted in a specific area in Chengdu City based on

the pick-up coordinates, where the longitude is from 30.60E to 30.73E and the latitude

is from 104.00N to 104.15N. The area is about 14.41km × 14.39km. The whole area

is divided into 20×20 same-size grids. The passenger demands are accumulated in

every grid from the raw data. The length and width of every grid are both about 700

meters. The time interval is set half an hour. Same as previous studies [136, 141],

the passenger demands are scaled into [0,1] using max-min scaling. In the final step,

the demand values are recovered by the inverse of max-min scaling.

Regarding the external information, the day of a week is extracted from the

pick-up time. The weather information and sunrise/sunset information are crawled

from the Weather Underground website [118] using Python. The website provides

historical weather information in Chengdu. As presented in previous section, 24

features about the external information are extracted.

3.4.3 Hyperparameters and Development Environment

In this network, 3 ConvLSTMs are stacked and all the ConvLSTMs use 64 filters of

size 3×3. A convolutional layer with one filter is added after the stacked ConvLSTMs

to convert the data into a 20×20 tensor. The membership layer in the fuzzy neural

network is composed of 24×400 units, and the fuzzy rule layer has 400 units. The

2The source of raw data: DiDi Chuxing GAIA Open Data Initiative. Available at:
https://gaia.didichuxing.com (Accessed on June 26th, 2019).
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outputs from the fuzzy neural network are reshaped into 20×20 and the following

convolutional layer has one filter with the kernel size of 3×3. In the fusion part, the

convolutional layer has one filter with the kernel size of 3×3. The output is reshaped

into 20×20 to match the prediction in the whole city. The parameters in the fuzzy

neural network are uniformly initialized from 0 to 1. All the other parameters are

uniformly initialized.

In this model, to be consistent with the previous studies [50, 141], previous eight

time intervals’ data are by default used to predict the current time interval’s passenger

demands, It means the current time interval’s passenger demands are predicted based

on the historical 4 hours’ data. 2 hours’ data are also used to predict the demands

to see how the time length can influence the prediction accuracy.

The proposed model is developed on the top of Keras [15] with the backend of

Tensorflow [1]. The model is running on a desktop with an Intel Xeon 3.10GHz×4

CPU and a GeForce GTX 1050 Ti GPU. The model is trained by mini-batches. Every

mini-batch has 16 samples. Every model is trained using 50 epochs and the results

are generated after that.

3.4.4 Baselines

For a thorough comparison with existing methods, the proposed model is compared

with three categories of methods, time-series (ARIMA), regression-based (Ridge and

XGBoost) and neural network-based methods (ST-ResNet, AttConLSTM and FCL-

Net). The methods are presented as follows:

• ARIMA [85]: ARIMA uses both moving average and autoregressive to predict

the next time interval’s passenger demands.

• Ridge linear regression [43]: Ridge linear regression uses a linear equation to

model the relationship between historical features and future passenger demand.

All features in this paper are reshaped into a vector and feed vectors into the

linear regression.
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• XGBoost [12]: XGBoost (2016) is a widely used boosting method with a

tree structure. All features are also reshaped into vectors to feed the XGBoost

model.

• AttConLSTM[141]: AttConLSTM (2018) fuses attention and ConvLSTM

into an auto-encoder model. It stacks CNNs and ConvLSTMs to encode and

decode the passenger demands and extracts passenger demands patterns as

references in an attention network.

• FCL-Net [50]: FCL-Net (2017) employs ConvLSTM and LSTM to extract

information from demands, time and weather. It fuses the outputs from two

networks by addition.

• ST-ResNet [136]: ST-ResNet (2017) uses ResNet to capture the spatial

and temporal information on demands from three categories, recent, near and

distant. Only weather information at the current time interval is considered.

It fuses data by addition. Because the distant demands require at least three

weeks for one sample, the recent and near categories are taken.

All the models follow the settings in their original papers, and all of them are trained

50 epochs.

3.4.5 Results

Comparisons with Baselines The comparison results are presented with baselines

in Table 3.1. From this table, it is shown that the proposed model outperforms all

the others regarding both metrics. When the historical data is 4 hours, the proposed

model can achieve 3.89 in RMSE and 2.27 in MAE. The results at least 9.9% better

in MAE and 11.3% better in RMSE than the best one among all baseline methods

and about 34.6% better in MAE and 37.8% better in RMSE than the worst among all

baselines. Ridge linear regression performs worst because it only considers the linear

relation among features. Note that the models on 2 hour data and 4 hour data are

trained to predict future demands, respectively. When more historical data is utilized

to predict, the performance improves.
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Table 3.1 Comparisons with Different Baselines

Model name
2 hours 4 hours

MAE RMSE MAE RMSE

ARIMA 3.61 6.42 2.85 4.91

Ridge linear 3.50 6.32 3.47 6.25

XGBoost 3.48 6.18 3.29 5.87

ST-ResNet 2.90 5.15 2.86 5.02

AttConLSTM 2.63 4.58 2.60 4.55

FCL-Net 2.58 4.46 2.52 4.39

STEF-Net 2.31 4.05 2.27 3.89
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(a) The second last time step in a sunny
day

(b) The last time step in a sunny day

(c) The second last time step in a rainy
day

(d) The last time step in a rainy day

Figure 3.5 The attention probabilities of the historical time steps that influence
the current passenger demands under different weather conditions.

Qualitative Results This section illustrates how the passenger demands are

influenced by the historical data. Heatmaps are used to plot the attention weights

under different weather conditions (sunny or rainy) at 8pm on two different days

in Figure 3.5. In each day, the attention weights of the last time step and the

second to the last time step were plotted, which represent the intermediate history

and next intermediate history. Note that there are 20×20 grids, and thus in the

heatmaps, every small square represent one geographic grid. Center grids represent

the downtown area of the city and border grids represent suburban areas. Comparing

Figure 6.3(a) with Figure 6.3(b), and comparing Figure 6.3(g) with Figure 6.3(g), it

is shown that the current passenger demands in the city center are more influenced

by the second to the last time step than by the last one while those in the border
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area are more influenced by the last time step regardless of the weather. Comparing

figures in the sunny day and rainy day in Figure 3.5, it is shown that the weather

greatly influences the passenger demands. When the outside is rainy, the passenger

demands are less influenced by the last time step in the center of the city (downtown).

The rainy weather may incur passengers in the downtown area to change their travel

plan by pre-scheduling their activities, e.g., reducing the outdoor activities, while the

users in the suburbs are not influenced much.

Ablation Studies: Comparisons with Variants of STEF-Net In the evaluation,

STEF-Net with its variants are also compared to explore how different components

influence the prediction performance. The following variants are explored,

• ConvLSTM → CNN&LSTM : 3 convolutional layers with the 64 windows

of size 3×3 and 3 LSTM layers with 64 units in each layer are stacked to replace

ConvLSTMs for the demand information processing.

• ConvLSTM → LSTM: 3 LSTM layers with 64 units in each layer are stacked

to replace ConvLSTMs for the demand information processing.

• Fuzzy → LSTM: 3 LSTM layers with 64 units in each layer are stacked to

replace the fuzzy neural network for the external information processing.

• No attention layers: no attention layers are used after the outputs from the

ConvLSTM and the fuzzy neural network are fused.

• No external information: no external information is used in the model.

Features from the ConvLSTM are directly fed to the attention layer.

• Weighted addition: weighted addition is used to replace the convolutional

operation in data fusion.

The results are shown in Table 3.2. It is shown that the proposed model,

STEF-Net, has the best performance among all variants. Specifically, the proposed

model can achieve the smallest RMSE and MAE compared to its variants. Comparing

to these variants, it is shown that the ConvLSTM can effectively capture the spatio-

temporal information, which performs better than both CNN&LSTM and LSTM,

and the fuzzy neural network can outperform the LSTM in processing the external
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Table 3.2 Results in Ablation Studies

Model name MAE RMSE

ConvLSTM → CNN&LSTM 2.32 4.01

ConvLSTM → LSTM 2.36 4.09

Fuzzy → LSTM 2.58 4.51

No attention layers 2.59 4.35

No external data 2.40 4.24

Weighted addition 2.38 4.09

STEF-Net 2.27 3.89
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information. In addition, it is shown that attention layers can further capture the

temporal relevance and improve the performance. Among all the components, fuzzy

neural network can significantly improve the performance comparing to the LSTM.

The feature fusion method can further capture the temporal feature interaction and

the weighted addition performs worse than the fusion with convolution. Comparing

the results between the proposed model with the model without external information,

it is shown that the external information is important in predicting the passenger

demands, which matches the intuition of fusing it into the proposed model.

3.5 Chapter Summary

In this chapter, a deep Spatio-TEmporal Fuzzy neural Network (STEF-Net) is

proposed to accurately predict passenger demands in the near future. The proposed

model can effectively capture complex input dependencies, including spatial, temporal

and external factors, which may influence future passenger demands. In the

proposed approach, deep learning is combined with a fuzzy neural network to

model spatio-temporal and external information, respectively. A new feature fusion

method with convolution followed by an attention layer is employed to fuse two

neural networks into one and keep temporal relations for further temporal relevance

modeling. Extensive experiments on real-world dataset show that, the proposed

model outperforms the state-of-the-art approaches with over 10% improvement in

RMSE.
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CHAPTER 4

A DEEP CONVOLUTIONAL NEURAL NETWORK FOR

TRANSPORTATION MODE DETECTION

4.1 Introduction

The increasing sensing and computing capabilities of smartphones offer a promising

new approach to monitoring human activities [58, 4], including means to detect

travelers’ transportation modes, which is particularly important for developing many

transportational applications. For example, (1) knowledge of people’s transportation

modes is useful for improving urban transportation planning [39, 46]. The new method

would transform the way how transportation demand information is gathered for

supplementing the traditional information acquisition practice based on telephone

interviews and questionnaires, which is expensive and time consuming to conduct

[110]. (2) The knowledge can also improve the performance of location and positioning

systems. With the awareness of transportation modes, localizing systems can more

precisely narrow down users’ location [39]. (3) The information facilitates targeted

and customized advertisements and services [110]. (4) The acquired information

can also help improve smartphone users’ physical habits for environment protection

purpose. For example, the CO2 footprint as well as the calories burned by individuals

can be better monitored with the information [75, 46]. In this way, the data can help

users build green transportation habits to protect the environment.

Most previous studies use data from the Global Positioning System (GPS) to

detect people’s transportation modes [110, 128, 75]. However, GPS-based methods

suffer from the following drawbacks [39, 46]: (1) GPS signals are not available

everywhere. GPS requires an unobstructed view to satellites, limiting its applicability

in metropolitan areas with highrises or in shielded areas; (2) a GPS sensor consumes

a significant amount of energy and may rapidly deplete the battery of a mobile
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device. To address these issues, some existing work uses alternative sensors to detect

transportation modes. For example, Jahangiri et al. [46] propose leveraging an

accelerometer coupled with a gyroscope and a rotation vector sensor to detect five

transportation modes. Fang et al. [23] use a deep neural network to classify five

transportation modes based on the data from the accelerometer, magnetometer and

gyroscope. Hemminki et al. [39] propose using an accelerometer sensor to detect

six transportation modes. However, only a limited number of transportation modes

are detected in the above work, such as walk, bicycle, run and car and the detection

accuracy of the above work, less than 90%, still needs improvement when only using

the accelerometer sensor. In contrast, the proposed approach detects all common

transportation modes, including stationary, walk, bicycle, car, bus, subway and

train, using data only acquired from accelerometer sensors in smartphones. The

key design objectives of the new work include low energy consumption, applicability

in all situations and detection accuracy.

To obtain these objectives, a system utilizing smartphone accelerometers is

proposed to detect users’ transportation modes efficiently. In the system, the

acceleration data are collected from accelerometers in smartphones. The data are

processed by removing gravity and smoothing. To minimize the influence from

different axes and rotation, the magnitude instead of the value in every axis is

used to develop the new models. In this way, the detection accuracy will not be

affected by the position of a smartphone since a user can hold her phone in any

orientation. The data are divided into small windows. Data in every window are

fed into a proposed CNN to detect the window’s corresponding transportation mode.

Traditional classification models in machine learning are trained with features from

both time and frequency domains as benchmarks in this work. Simulation results

show that the proposed system can achieve a higher detection accuracy than all peer

methods. To summarize, this work makes the following contributions. (1) In this
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chapter, a transportation mode detection system is proposed by applying a deep

learning framework onto data acquired by smartphones. (2) Different from existing

systems, the proposed transportation mode detection system is robust to the position

and orientation of smartphones since the magnitude instead of the vector in three

axes is considered. (3) The proposed system uses only accelerometer sensors, which

are available in all modern smartphones and it is more energy-efficient compared to

systems using multiple types of sensors [33].

The remainder of this chapter is organized as follows. Section 4.2 presents new

system model. Section 4.3 discusses the details of the deep learning employed system.

Section 4.4 introduces the models using traditional machine learning methods as a

benchmark. Section 4.5 shows the experiments. Section 4.6 compares the system

with existing work. This chapter concludes in Section 4.7.

4.2 System Model

In this chapter, the main goal is to detect people’s transportation modes using a

smartphone. To achieve this goal, a system built upon deep learning techniques

using only data acquired through smartphone accelerometers, like Google Nexus 5X

and Nexus 6, is proposed to balance the energy consumption and accuracy. The

energy consumption in this work mainly comes from the data-collecting sensors,

i.e. accelerometers. The accelerometer is a low energy-consumption sensor, which

consumes 10 times less than other motion sensors [33]. The high detection

accuracy mainly relies on the proposed model using the state-of-the-art deep learning

techniques. Deep learning methods are rapidly developing in computer vision and

other machine learning fields in recent years [60]. These approaches can represent

highly complex functions by stacking multiple layers in a deep artificial neural

network. Every layer in the network is composed of a simple but non-linear module,
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system.

which receives its lower-layers’ information. By utilizing the deep learning method,

the accelerometer’s data can be fully exploited to detect transportation modes.

In this chapter, a system model is designed including smartphones and a server

to detect transportation modes. The architecture is shown in Figure 4.1. In the

system, input data are gathered from different mobile devices and are uploaded to a

server. The server pre-processes the data and trains a deep learning model accordingly

to infer the corresponding transportation modes. There are seven transportation

modes supported in the proposed system, including stationary, walk, bicycle, bus,

car, subway and train.

In the proposed work, an Android application is developed. Smartphones,

installed with the application, are carried by four users all the time when they

travel. Every user is also asked to manually input the current transportation mode

as the ground truth whenever the mode changes. In every transportation mode,

two-hour data are totally recorded. The details of the data will be presented in

Section 4.5. The acceleration data are automatically sampled by the application and

uploaded to the server along with the corresponding ground truth data regarding

transportation modes. The server gathers all data and removes noisy information

in the data, including gravity and unrelated fluctuation. On the server end, a

44



Data 

collection

Pre-

processing

Deep 

learning

3-D

acceleration

1-D 

acceleration

Transportation 

mode

Figure 4.2 Flow chart of the proposed transportation mode detection system.

deep learning model is trained using all labeled acceleration data gathered from

users and the model is applied for the online detection. The deep learning model

is a convolutional neural network in the system implementation, which focuses

on detecting the aforementioned seven most popular transportation modes. The

proposed method can also be potentially applied to detect other activities, such as

climbing and running.

4.3 Algorithm

The objective of this work is to design a system to efficiently detect transportation

modes in real time through smartphones. There are two tasks in implementing such

a system: the first one is to determine what data should be collected and how

to collect the data efficiently from smartphones; the second one is to process the

data in an effective way to detect the transportation modes. For the first task, an

Android application is developed to collect the accelerometer data. The application

is implemented in a way to balance the energy consumption and the movement

information collected by its sensor. For the second task, a series of processes are

proposed to clean the data, followed by a convolutional neural network to detect

people’s transportation modes. Specifically, the proposed system is presented in the

following three steps, as shown in Figure 4.2, including (1) Data collection, which is

performed by the Android application, (2) Data preprocessing: the data are processed

to remove the impact of the gravity, to be smoothed, and to be transferred into

one-dimension segments. (3) Deep learning model: a convolutional neural network

on one-dimension data is built to determine people’s transportation modes.
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4.3.1 Data Collection

The system is built utilizing the accelerometer’s data to detect transportation

modes. The design choice is made due to accelerometer’s energy-efficiency, consuming

10 times less power than other motion sensors [33], like gyroscope. To collect

accelerometer data, an Android application is developed. The phone was carried

under different transportation modes and the collected data were manually labeled

with the corresponding transportation mode by the corresponding travellers. When

collecting the data, the phone was placed as usual and was not required to stay

in a specific position or orientation. In previous studies, the acceleration sampling

frequency ranges from 25Hz [75] to 100Hz [7, 46]. In this chapter, a middle sampling

frequency, 50Hz, is chosen, which is the same as the one adopted in the prior

study [87]. This frequency can balance the information precision and the energy

consumption.

The original data acquired from an accelerometer are organized as three

dimensional vectors, where each vector component corresponds to the value in one

axis in the mobile phone’s coordinate system. The coordinate system is shown in

Figure 4.3 [34]. One piece of sample data is a vector with one value per axis in the

coordinate system in the unit of m/s2.

4.3.2 Preprocessing

The collected acceleration data contain a gravity component, which is pervasively

sampled as it is generated by the earth and everyone on the earth is affected. Thus, the

first step of preprocessing is to remove the gravity component so that the remaining

part only carries characteristics of different transportation modes. The data are then

smoothed to remove large fluctuation, which may be caused by sudden movements.

For example, a walking person may suddenly stop to check his beeping phone and
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Figure 4.3 Coordinate system in a mobile phone.

then continue walking. Finally, the acceleration magnitude is obtained to build the

classification model.

Removing gravity Removing gravity is not straightforward because the gravity

part is reflected in all three axes. When a phone is put on a stationary desk with the

screen up, the acceleration value should be (0, 0,−g), where g is the gravity constant.

However, a phone can be placed in any direction, so even when the phone is stationary,

the first two dimension of the data may not be zero and the last one may not be −g.

Generally, all the three axes will contain a component of the gravity except in the

above case. Removing the gravity results in a new movement record, which is used for

actual transportation mode detection. The acceleration data obtained after removing

the gravity part are called linear acceleration data.

Since the gravity is much more stable than the acceleration generated by

movement during a relative long period of time [48, 33], a low-pass filter is applied

to remove gravity [49]. Let Ak denote the vector collected from the accelerometer
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and Gk denote the gravity vector at the kth time point in the mobile phone’s

coordinate system. Let Lk denote the linear acceleration data after removing the

gravity component. The gravity is then estimated by the following equation[48, 33],

Gk = α ·Gk−1 + (1− α)Ak, (4.1)

where α is the exponential decay weight between old estimated gravity and the new

one. An empirical value, 0.8, is taken in the system [34]. Lk is calculated as follows,

Lk = Ak −Gk. (4.2)

The linear acceleration data are the collected acceleration data minus the estimated

gravity in three axes.

Smoothing Data smoothing is necessary since a phone’s movement is not always

consistent with its user’s movement and the inconsistent part needs to be removed

as cleanly as possible. There are two causes of the inconsistency. One is the sudden

movement of a phone irrelevant to its user’s movement. For example, a user may

suddenly pick up the phone while driving or in other transportation modes. In a

sudden movement like this, the acceleration changes abruptly. More importantly,

the data do not reflect its user’s movement, and thus affect detecting the true

transportation modes. Therefore, the data are smoothed to reduce the influence

by similar sudden movements.

The data are smoothed by the central moving average algorithm, which is a

special Savitzky-Golay filter[99]. It is calculated by averaging an odd number of

nearest neighbors, m, in the time series. m is a predefined constant value, which is

set to 5 in this dissertation. For the original acceleration at the kth time point, Lk,

let L̂k denote the corresponding estimated linear acceleration value after smoothing.
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K is the total number of vectors in the data. L̂k is estimated as follows,

L̂k =



∑2k−1
i=1 Li
2k−1 k ∈ [1, bm

2
c],∑k+bm/2c

i=k−bm/2c Li

m
k ∈ (bm

2
c, K − bm

2
c),

∑K
i=2k−K Li

2(K−k)+1
k ∈ [K − bm

2
c, K].

(4.3)

If the number of neighbors in one side is less than K, then the average algorithm

takes the same maximum possible number of neighbors from both sides.

Magnitude Inconsistency aforementioned may also come from the fact that a

phone’s orientation is likely to be different from that of its user. The phone may

be put in any position and orientation subject to changes at times. Thus, classifiers

are trained using the magnitude of the acceleration data. Even though there may

be some information loss, the magnitude is more robust to a phone’s changing and

unpredictable orientation [96]. For L̂k=(L̂kx , L̂ky , L̂kz), |L̂k| denotes its magnitude,

which is calculated as follows,

|L̂k| =
√ ∑

i=x,y,z

L̂2
ki
. (4.4)

To conduct real-time detection, the time series data are divided into small

windows. The system detects every separate window’s transportation mode.

Specifically, the data are grouped into a window of samples with a window size of S

seconds and a sliding size of s seconds. By default, S is set to 10.24 seconds (512

samples) and s is set to 1.28 seconds (64 samples). The reason for choosing the two

values is that the frequency transformation in traditional machine learning methods

requires the number of samples to be the exponentiation of 2. With the selected

values, a transportation mode is detected almost every second based on the 10-second

historical information. The values of S and s are changed in the experiments to

examine their impact on performance.
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4.3.3 Deep Learning Model

The deep learning model adopted in this system is a CNN. CNNs, as one special type

of deep learning models, are commonly used to recognize objects in image processing.

In this chapter, a CNN is built on the one-dimension acceleration data to determine

the transportation mode in every time window. One of the key elements in the CNN’s

architecture is the various types of operation in constructing the layers. Therefore

the operations, convolution, max-pooling and full-connection of the CNN used in

the proposed approach are first introduced followed by its architecture. The next

subsections introduce the nonlinear function in every layer, the loss in evaluating the

performance of a classification model and the optimization method used to minimize

the loss function. The last element is the normalization on the data to improve

performance.

Convolution, max-pooling, and full-connection The convolutional operation

is a basic module between two neural layers in a CNN. Units in a convolutional layer

are organized by feature maps, which aggregates local patches in the feature map of

the previous layer through a set of weights. The set of weights is called a filter bank.

All units in a feature map share the same weights in a filter bank. In a feature map,

the filter bank shifts a fixed length of step defined by the stride, to generate one unit.

Different feature maps have different filter banks. The convolutional operation makes

the presence of a pattern more important than the pattern’s position.

Figure 4.4 shows an example on how the calculation takes place in a convolu-

tional layer. In the figure, the feature map from the previous layer is denoted by

X, which is assumed to be a one-dimensional vector. The collection of filter banks

is denoted by W , where the index j indicates the jth filter bank. Every filter bank

generates one feature map of the next layer by shifting a window on the previous

layer’s feature map. The shifting stride is pre-defined, which splits X into multiple
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Figure 4.4 Illustration of the calculation in a convolutional layer.

segments, X1, X2, ..., Xi, with the same size as the filter bank. The feature map of

the next layer from the jth filter bank is denoted by Oj, which contains the sum of

multiplication between all segments in X and the filter bank. The value oi of the ith

unit in the feature map is the sum of values multiplied by the weights in the filter,

oj,i =
∑
k

wj,kxi,k + bj. (4.5)

In the equation, xi,k and wj,k are elements in Xi and Wj, respectively. bj is the

bias for this filter bank. The value in a unit is the sum of all weighted values in a

corresponding segment. The generated feature maps are used to generate the next

layer’s feature map. Thus, in a convolutional layer, three things need to be defined,

the number of filter banks, the shape of a filter bank, and the shape of the stride.

The max pooling layer is used to pick out the salient values from a local patch

of units. It can reduce the dimensionality by removing less important information in
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the feature map. Specifically, the max pooling operation selects the max value in a

local patch of units and then the local patch shifts a step with the stride size. Thus,

it is required to define the size of local patches and the stride’s size in a max pooling

layer.

The fully-connected layer is to connect all units in the previous layer to all units

in the next layer. In a fully-connected layer, the number of units in the next layer is

required to be set as a hyperparameter.

Overall architecture The CNN is designed for one-dimensional data with the

architecture shown in Fig. 4.5. The architecture takes the one-dimensional
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256×32
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7×1

Output

Figure 4.5 The proposed CNN architecture in this transportation mode detection
system.

acceleration data in a window as input and outputs the probability of being every

transportation mode for the window. The architecture consists of a succession
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Figure 4.6 The hidden N layers in Figure 4.5.

of convolutional, max pooling and fully-connected layers, whose specification is as

follows.

The input feature is a 512 × 1 vector regarding magnitude of the acceleration

data. The first dimension is the temporal space in the window and the second

dimension is the size of values at every temporal point. The first convolutional layer

has 32 filter banks with the 15×1 shape and the filter bank moves with a stride of

1 feature at a time. The following max pooling layer is set to a 4-feature window

and a stride of two features. The convolutional layer and max pooling layer are

repeated N times. In the proposed network, N is 6. All the max pooling layers are

configured using the same parameters. The second and third convolutional layers

have 64 filter banks on a 10-feature window with a stride size of 1 feature. The other

four convolutional layers filter the data with 64 filter banks on a 5-feature window

with a stride of 1 feature. Conducting the convolution and max pooling processes

six times, shown in Figure 4.6, the data become 8 × 64. The data are flattened

and fed into a fully-connected layer to become 200 × 1. A dropout layer is not

employed in the proposed system, but it is added after the fully-connected layer only

for comparison, which is used to evaluate whether the dropout layer can help improve
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the performance. Finally, the data are transferred into a 7 × 1 output vector with full

connection. The value in the output is the probability for one transportation mode.

Nonlinear function In a neural network, the common ways to model a neuron’s

output f as a function of its input x are with tanh, sigmoid or Rectified Linear Unit

(ReLU). ReLU outperforms the other two with its simple form (f(x) = max(0, x))

in the fast convergence of stochastic gradient descent [57], but it may generate ‘dead’

neurons, which are never activated. In the proposed model, a leaky ReLU[38] is

employed, which is defined as follows:

f(x) =


x, if x > 0

βx, if x ≤ 0

. (4.6)

β is a small constant to avoid zero gradient in the negative side. In the experiments,

it is shown that the leaky ReLU can converge faster than the traditional ReLU.

The nonlinear activation function is attached to every convolutional layer and the

fully-connected layer.

Loss function A loss function is used to evaluate how labels derived by the current

classification model deviate from the corresponding true labels. The loss function is

usually composed of two parts, the variance between the estimated labels and true

labels, and the regularization. The loss L is shown in the following equation,

L = V + λ ·R, (4.7)

where V denotes the variance and R is the regularization value. λ is the weight decay

determining how much the regularization affects the final loss.

The variance is expressed by the softmax cross entropy, as follows:

V = −
∑
id

∑
c

tid,c · log(yid,c) (4.8)
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where id denotes the index of a sample in the mini-batch and yid,c is the value of

sample id at class c in the output layer. If the sample belongs to class c, the value

of tid,c is 1; otherwise, it is 0. If an estimated label is the same as the true one, the

contribution to the final V from the sample is 0; if the estimated label and the true

one are different, the contribution becomes very large.

The regularization is to avoid overfitting during model training [125]. The

proposed neural network contains over 100,000 parameters. To overcome overfitting,

there are two possible ways, regularization [125] and dropout [57]. Regularization

is to decrease the scale of a neural network by making weights as close to zero as

possible. Dropout is to randomly make some weights as zero to increase the network’s

robustness. In this network, the L2 regularization is employed in the loss function.

In L2 regularization, the value of R is the squared sum of all weights in the CNN.

Optimization Gradient descent is one of the most popular algorithms to optimize

the loss function in neural networks. Among all variants of gradient descent

algorithms, Adaptive Moment Estimation (Adam) [52] is favorably reviewed due to

its capability for attaining satisfactory overall performance with a fast convergence

and adaptive learning rate [97]. The Adam optimization method adaptively updates

the learning rate considering both first-order and second-order moments using the

stochastic gradient descent procedure. Specifically, let θ denote the parameters in

the CNN and L(θ) denote the loss function. Adam first calculates the gradients of

the parameters,

g = ∇θL(θ). (4.9)
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It then respectively updates the first-order and second-order biased moments, s and

r, by the exponential moving average,

s = ρss + (1− ρs)g,

r = ρrr + (1− ρr)g,
(4.10)

where ρs and ρr are the exponential decay rates for the first-order and second-order

moments, respectively. The first-order and second-order biased moments are corrected

using the time step t through the following equations,

ŝ =
s

1− ρts
,

r̂ =
r

1− ρtr
.

(4.11)

Finally the parameters are updated as follows,

θ =θ + ∆θ

=θ + (−ε ŝ√
r̂ + δ

),
(4.12)

where ε is the initial learning rate and δ is a small positive constant to attain numerical

stability.

Normalization The classification results can be improved through normalization.

Assume the dataset is not too large to store in the memory. The whole training

dataset is used to normalize the whole dataset. The mean µ and variance σ of the

training dataset are derived first. The normalized data x′ from the original x is

calculated through [66],

x′ =
x− µ
σ

. (4.13)

The normalization process is done before the data is used to train the CNN.
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4.4 Traditional Machine Learning Methods

The traditional machine learning methods, including Bayes Classifiers, C4.5 Decision

Tree, K-Nearest Neighbors, Random Forest, Adaptive Boosting, Neural Network

and Support Vector Machine, are taken as the benchmarks for comparison [68]. In

traditional machine learning methods, common features adopted in previous work

[68, 39, 46] are selected from the training data to develop the models. The trained

models are subsequently used to classify new data. In the following, the features and

models in the traditional machine learning methods are explained briefly.

4.4.1 Features

In every window, the features are selected in both time and frequency domains, which

are listed in Table 4.1, which are usually widely employed as features in peer work.

When obtaining the features in the frequency domain, a window function is applied

to the data.

Table 4.1 Features in Traditional Methods

Domain Features

Time mean, standard deviation, median, root mean square,

min, max, range, kurtosis, and skewness

Frequency log-scale power spectral density at 1-10Hz, and power

spectral centroid
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The data in a window are scaled by a window function before they are

transferred into the frequency domain. Window functions are shown effective in

reducing the lobeside effect [89]. A commonly-used window function, Hamming, is

employed in the system with the following formula,

wn = β − γcos(2πn

N
), (4.14)

where wn is the weight value in the window, β and γ are two constants and n is an

integer from 1 to N . N is the number of samples in a window. By default, β is set to

0.54 and γ is set to 0.46, which are used to balance the information loss and reduce

lobeside effect.

Till now, features in the traditional methods are obtained, but different features

have different scales [66]. The normalization is applied on every feature in the data,

which is the same process as shown in Section 4.3.3.

4.4.2 Traditional Classification Models

Several common traditional machine learning models are adopted to classify the data.

Brief introduction to every model is given in the following paragraphs. Every model’s

parameters are finely tuned by 10-folder cross validation.

Bayes classifiers Bayes classifiers are statistical classifiers [8]. They predict an

instance’s class by calculating the probability that the instance belongs to each

particular class via the similarity of feature values. The simplest one in Bayes

classifiers is the Naive Bayes (NB), which assumes that all features are uncorrelated

[8]. It calculates the probability of one instance X in one specific class C based on

the Bayes’ Theorem,

P (C|X) =
P (X|C)P (C)

P (X)
. (4.15)

58



In the equation, P (X) and P (C) are known priors. In the assumption, the features

are mutually independent, so P (X|C) is the product of the probability of all features

in one specific class. The instance is classified into the class with the maximum

probability. A more complicated Bayesian classifier is Bayesian Networks (BNs) [93].

A Bayesian Network is a directed acyclic graph, which is to build a graph by the

estimated correlation between features.

Decision tree The Decision Tree (DT) is to build a classification tree. The tree

structure is presented as a leaf indicating a class and each node specifying some

test on a single feature value with the branch and subtree for the possible outcome.

To classify a case, it starts at the root and moves through the tree until a leaf is

encountered [8]. The tree is split by information gain [45] and Gini index [62]. Only

one feature is used to split the tree at every node. One of the most popular decision

trees is C4.5 [8], which is used in this chapter for comparison.

K-nearest neighbors The K-Nearest Neighbors (K-NN) classifier is to classify an

instance based on the closest k nearest neighbors in the training data [19]. It is

called the lazy-learning algorithm, since its computation/overhead is much lighter

during learning than testing time. The closeness between instances is defined as the

distance, which is usually Euclidean or Manhattan distance. Among the k nearest

neighbors, the instance is classified into the most common class, which class that the

most neighbors belong to [93, 8]. The performance of K-NN may be affected by the

choice of k.

Random forest The Random Forest (RF) method uses ensembles of unpruned

decision trees [41, 114]. A common decision tree is usually pruned to avoid overfitting,

but in random forest, the decision trees are unpruned. It draws bootstrap samples

from the training data. It randomly chooses a subset of features in the samples to
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build a complete decision tree according to the samples. Multiple decision trees are

built with different samples in the same way. The classification result is predicted by

aggregating the classification results from all trees.

Adaptive boosting The Adaptive Boosting (AB) is to train multiple weak

classifiers from subsets with the same size. The final classification result is obtained

by aggregating the classifiers with weights. The weights are adaptive. If one instance

outside the subset in the training data is classified correctly, then the weight is

reduced; otherwise it increases [25].

Neural network The Neural Network (NN) is a set of connected input/output

units in which a weight is associated with each connection. A Neural network is

usually composed of an input layer, one or more hidden layers and an output layer.

The data is received in the input layer and processed in the hidden layers. The output

layer produces the classification results [8]. The network is built by updating weights

via backpropagation.

Support vector machine The Support Vector Machine (SVM) builds a hyperplane

to separate two data classes by maximizing the margin between two classes and

the hyperplane based on a cost function. The SVM is at first outlined for linearly

separable cases. A kernel function is defined to transfer nonlinear features into linear

ones with high dimensions [18, 8]. The SVM classifies multiple classes via training

several SVMs on every two classes, or every one class and another class including all

the data in the other classes.

4.5 Experiments

Key experimental results are presented in this section with performance attained by

the method. The implementation details are first presented, and then the data are
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analyzed. Finally, the detection performance of the system and the comparison with

other methods are presented in detail.

4.5.1 Implementation

In the system, an Android application is developed and installed on a Google Nexus

5X and a Google Nexus 6, which are shared by four different users at different time.

During their transportation, users can freely hold the phone in any orientation to

their preference. The orientation and placement of mobile phones are not restricted

in the system. The Android application records the accelerometer data at 50Hz and

the current transportation mode is manually input by the user. Matlab is used to

preprocess the data and the CNN is built using Tensorflow [1] on one NVIDIA GTX

1050 Ti 4GB GPU. The traditional models are built and tested in Weka [129].

The acceleration data are collected in the following seven transportation modes,

stationary, walk, bicycle, bus, car, subway and train. The data in every state are

collected for about 2 hours. Specifically, the stationary state is sampled on campus;

the walk state is acquired on campus and in nearby parks; the bus state is taken

when users go to school and back home; the car state is recorded in local roads and

on highways; the subway is taken in New York City; and the train is acquired from

New Jersey to Washington, D.C..

By default, a 512-sample window moves 64 samples every time to generate a

new window data (512 and 64 are chosen for generating frequency values in traditional

machine learning models, which are nor required in the CNN). It means one output

is generated every 1.28 seconds based on about 10-second historical values. In the

experiments, the data are primarily split into 80% as training and 20% as testing

sets. The parameters in the CNN are shown in Table 4.2.
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Table 4.2 Parameters Used in the Convolutional Neural Network

Parameter Value

Minibatch size 100

L2 regularization λ 0.001

Leaky ReLU β 0.01

1st-order moment weight ρs 0.9

2nd-order moment weight ρr 0.999

Learning rate ε 0.0001

Constant δ 10−8
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Figure 4.7 The acceleration during a period in seven modes.

4.5.2 Data Analysis

The acceleration data in different transportation modes are analyzed. Figure 4.7

shows a period in all modes after smoothing. In the figure, the x-axis is data index

and the y-axis is the acceleration magnitude. From the figure, it is shown that

the acceleration data in different modes show different patterns. For example, the

acceleration data in bicycle shows obvious periodicity and the data in walk have

the largest acceleration values compared with others. The acceleration value in the

stationary mode is the smallest. The figure also shows that the data in the bus and

car are similar in the shape as both modes keep low acceleration at most time and

have a few rapid changes.

In the frequency domain, a time-frequency figure is drawn in Figure 4.8. The

data are sampled every 128 values with 64 values overlapping with neighbors. It

means that the window is 2.56 seconds and the overlap is 1.28 seconds. In Figure 4.8,

the x-axis is the frequency and y-axis is the time. The color shows the magnitude,
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Figure 4.8 Time-frequency figures in different transportation modes.

which is the same as the log-scale power spectral density. From Figure 4.8, it is shown

that the most power is gathered in the frequencies less than 10Hz. It is reasonable

for us to select the power density in the frequency from 1Hz to 10Hz as features.

4.5.3 Classification Results

The classification results attained by CNNs of different architectures are first

compared with the proposed CNN, and then the testing accuracy changes during the

training process are graphed. Finally, the detection accuracy attained by traditional

machine learning models is presented.

CNNs’ results The proposed CNN method’s result matrix is shown in Table 4.3.

In the table, every row means one transportation mode in the ground truth. Every

transportation mode has 600 samples in the testing data. The columns show the

predicted transportation mode by the proposed CNN. It is shown from the table that
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the proposed CNN can achieve the accuracy of 94.48%. The result also shows that it

is hard to classify the motorised transportation modes, like car, bus and subway.

Table 4.3 Classification Matrix of the Proposed System

Stationary Walk Bicycle Bus Car Subway Train Accuracy

(%)

Stationary 598 2 0 0 0 0 0 99.7

Walk 3 558 0 7 4 12 14 93.0

Bicycle 0 0 592 2 6 0 0 98.7

Bus 0 6 0 554 28 12 0 92.3

Car 0 3 6 30 533 26 2 88.9

Subway 1 19 0 12 33 535 0 89.2

Train 0 0 0 0 3 0 597 99.5

Average accuracy 94.48

The comparison among multiple CNNs is presented in Table 4.4. The first row

shows the results from the employed architecture of CNN in this system. The other

rows are the compared CNNs. In the compared CNNs, one part of the proposed

CNN is modified to get a new CNN model. All CNNs are trained 1.5 million batch
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Table 4.4 The Proposed System’s Classification Results

Activation function Regularization Dropout Accuracy (%)

Leaky ReLU L2 No 94.48

Leaky ReLU No No 92.63

Leaky ReLU L2 0.9 91.90

ReLU L2 No 91.87
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Figure 4.9 Testing accuracy changes during the training period.

iterations with 100 windows in one batch. The results show that the proposed CNN

outperforms the other three. Specifically, the CNN achieves an accuracy of 94.48%.

The accuracy changes in the four CNNs during the training are shown in Figure

4.9. In the figure, the x-axis shows the iteration index and the y-axis indicates the

testing accuracy. The data in the figure are smoothed with a parameter 0.5. Shown

in the figure, the proposed CNN outperforms the others and converges faster than

the others.

Comparison with traditional methods In this part, The results are compared

between the proposed CNN and other traditional machine learning methods under

different window sizes. The window size changes from 128 to 512 with 64

distinguishing values between two adjacent windows. It means the time length in

a window is from 2.56 to 10.24 seconds. The classification results under different

classification models with different window sizes are shown in Table 4.5.

The table shows that the proposed CNN outperforms the other methods under

all window sizes. Specifically, among all traditional methods, random forest performs

best in accuracy by assembling multiple decision trees and different features. Even

so, the proposed CNN outperforms random forest by 94.48% to 90.11% when the

67



Table 4.5 Classification Results Comparing with Traditional Models
under Different Window Sizes

Algorithm
Window size

128 256 512

Naive Bayes 58.34% 59.87% 60.79%

Bayes Network 62.47% 65.30% 68.77%

Decision Tree 67.34% 72.96% 81.96%

K Nearest Neighbor 66.48% 69.07% 76.03%

Random Forest 74.09% 79.68% 90.11%

Adaptive Boosting 65.63% 71.65% 80.73%

Neural Network 69.14% 70.43% 76.30%

Supporting Vector 73.26% 75.76% 84.80%

CNN 75.48% 82.42% 94.48%
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window size is 512. In addition, considering any particular classification algorithm,

the larger the window size is, the higher the accuracy can be reached. It means when

the window size is too small, much information cannot be covered in the window.

For example, a sudden stop while driving may be classified as stationary when the

window size just catches the stop period.

4.6 Comparison

In this section, the performance is compared with other studies using accelerometers

in detecting transportation modes.

There are several studies using accelerometers only to detect transportation

modes [87, 75, 39, 130]. Hemminki et al. [39] collect accelerometer data at the

frequency from 60 to 100Hz and divide the data into 1.2-second windows with 50%

overlap. They extract 27 features in every window and train an adaptive boosting

to classify the data into six modes, stationary, walk, bus, train, metro and tram.

They achieve an accuracy of 80.1%. Manzoni et al. [75] collect accelerometer data

at the frequency of 25Hz and divide it into windows of 10.24 seconds length with

50% time overlap. They also extract features from the FFT coefficients in every

window and train a decision tree to classify the data into eight modes, walk, bicycle,

bus, car, metro, train, still, and motorcycle. They achieve an accuracy of 82.14%.

Yang [130] collects accelerometer data at the frequency of 36Hz and divide the data

into 10-second windows with 50% overlap. Features are extracted from time and

frequency domains and a decision tree is used to classify six transportation modes,

sitting, standing, walk, run, bicycle, and car. The accuracy is 90.6%. Table 4.6 shows

a summary of the three studies using only the acceleration data. Compared with

the existing studies using acceleration data, the proposed system can provide higher

accuracy. Existing studies usually use the traditional machine learning methods to

detect transportation methods. In this work, it is shown that CNNs outperform
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traditional machine learning methods in detecting transportation modes. In addition,

among the traditional methods, random forest performs best in the accuracy metric

instead of other ones used in the existing work.

Table 4.6 Summary of Past Work Using Acceleration to Detect
Transportation Modes

Study Classes Data Window Method Accuracy

Hemminki

et al. [39]

1.stationary

2.walk 3.bus

4.train 5.metro

6.tram

Accelerometer

60-100Hz

pockets, bags

1.2

seconds

Adaptive

boosting

80.1%

Manzoni

et al. [75]

1.walk

2.bicycle 3.bus

4.car 5.metro

6.train 7.still

8.motorcycle

Accelerometer

25Hz

10.24

seconds

Decision tree 82.14%

Yang

[130]

1.stand 2.sit

3.walk 4.run

5.bicycle 6.car

Accelerometer

36Hz

10

seconds

Decision tree 90.6%

This

chapter

1.stationary

2.walk

3.bicycle 4.bus

5.car 6.subway

7.train

Accelerometer

50Hz

10.24

seconds

Convolutional

neural

network

94.48%

4.7 Chapter Summary

In this chapter, a robust system on Android smartphones is proposed to accurately

detect users’ transportation modes by employing the smartphone’s accelerometer.

This is the first system that utilizes convolutional neural networks to detect

70



transportation modes with the accelerometer only. In this system, the collected data

are processed by removing gravity and smoothing. The acceleration magnitude is used

to build a convolutional neural network to recognize the corresponding transportation

mode. Extensive experiments verify that the proposed system outperforms the CNNs

of other architectures and traditional machine learning models. The proposed system

can achieve as high as 94.48% in detection accuracy, which outperforms the existing

studies.
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CHAPTER 5

DEEP REINFORCEMENT LEARNING FOR TRAFFIC LIGHT

CONTROL

5.1 Introduction

The intersection management of busy or major roads is primarily done through

traffic lights, whose inefficient control causes numerous problems, such as long delay

of travelers and huge waste of energy. Even worse, it may also incur vehicular

accidents [86, 71]. Existing traffic light control either deploys fixed programs without

considering real-time traffic or considering the traffic to a very limited degree [10]. The

fixed programs set the traffic signals equal time duration in every cycle, or different

time duration based on historical information. Some control programs take inputs

from sensors such as underground inductive loop detectors to detect the existence of

vehicles in front of traffic lights. However, the inputs are processed in a very coarse

way to determine the duration of green/red lights.

In some cases, existing traffic light control systems work, though at a low

efficiency. However, in many other cases, such as a football event or a more common

high traffic hour scenario, the traffic light control systems become paralyzed. Instead,

it is often to witness an experienced policeman directly manages the intersection

by waving signals. In high traffic scenarios, a human operator observes the real

time traffic condition in the intersecting roads and smartly determines the duration

of the allowed passing time for each direction using his/her long-term experience

and understanding about the intersection, which is very effective. This observation

motivates us to propose a smart intersection traffic light management system which

can take real-time traffic condition as input and learn how to manage the intersection

just like the human operator. To implement such a system, ‘eyes’ are needed to

watch the real-time road condition and ‘a brain’ to process it. For the former,
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recent advances in sensor and networking technology enables taking real-time traffic

information as input, such as the number of vehicles, the locations of vehicles, and

their waiting time [22]. For the ‘brain’ part, reinforcement learning, as a type of

machine learning techniques, is a promising way to solve the problem. A reinforcement

learning system’s goal is to make an action agent learn the optimal policy through

interacting with the environment to maximize the reward, e.g., the minimum waiting

time in this intersection control scenario. It usually contains three components: states

of the environment, action space of the agent, and reward from every action [112].

A well-known application of reinforcement learning is AlphaGo [107], followed by

AlphaGo Zero [108]. AlphaGo, acting as the action agent in a Go game (environment),

first observes the current image of the chessboard (state), and takes the image as the

input of a reinforcement learning model to determine where to place the optimal

next playing piece ‘stone’ (action). Its final reward is to win the game or to lose.

Thus, the reward may not be obvious during the playing process but becomes clear

when the game is over. When applying reinforcement learning to the traffic light

control problem, the key point is to define the three components at an intersection

and quantify them to be computable.

Some previous work proposes to dynamically control the traffic lights using

reinforcement learning. Some define the states by the number of waiting vehicles

or the waiting queue length [22, 2]. But real traffic situation cannot be accurately

captured by only the number of waiting vehicles or queue length [29]. With the

popularization of vehicular networks and sensor networks, more accurate on-road

traffic information can be extracted, such as vehicles’ speed and waiting time [37].

However, rich information causes the number of states to increase dramatically. When

the number of states increases, the complexity in a traditional reinforcement learning

system grows exponentially. With the rapid development of deep learning [68], deep

neural networks have been employed to deal with the large number of states, which
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constitutes a deep reinforcement learning model [84]. A few recent studies have

proposed to apply deep reinforcement learning in the traffic light control problem

[63, 121]. But there are two main limitations in existing studies: (1) the traffic

signals are usually split into fixed-time intervals, and the duration of green/red lights

can only be a multiple of this fixed-length interval, which is not efficient in many

situations; (2) the traffic signals are designed to change in a random sequence, which

is not a safe or comfortable way for drivers. In this chapter, the problem on how to

control the traffic light signal duration in a cycle is studied based on the extracted

information from vehicular networks or sensor networks.

The general idea is to mimic an experienced operator to control the signal

duration in every cycle based on the information gathered from vehicular networks.

To implement such an idea, the operation of the experienced operator is modeled

as an Markov Decision Process (MDP). The MDP is a high-dimension model, which

contains the time duration of every phase. The system learns the control strategy

based on the MDP by trial and error in a deep reinforcement learning model. To fit

a deep reinforcement learning model, the whole intersection is divided into grids to

build a matrix, each element of which is the vehicles’ information in the corresponding

grid collected by vehicular networks or extracted from cameras via image processing.

The matrix is defined as the states and the reward is the cumulative waiting time

difference between two cycles. In the proposed model, a convolutional neural network

is employed to match the states and expected future rewards. Note that, every traffic

light’s action produced from this model affects the environment. When the traffic

flow changes dynamically, the environment becomes unpredictable. To solve this

problem, a series of state-of-the-art techniques in the proposed model is employed to

improve the performance, including dueling network [127], target network [84], double

Q-learning network [122], and prioritized experience replay [100].
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The contribution of the chapter includes 1) This work is the first one to combine

dueling network, target network, double Q network and prioritized experience replay

into one framework to solve the traffic light control problem, which can be easily

applied into other problems. 2) The proposed control system decides the phases’ time

duration in a whole cycle instead of dividing the time into segments. 3) Extensive

experiments on a traffic micro-simulator, Simulation of Urban MObility (SUMO) [54],

show the effectiveness and high-efficiency of the proposed model.

The reminder of this chapter is organized as follows. The model and problem

statement are introduced in Section 5.3. The background on reinforcement learning

is introduced in Section 5.2. Section 5.4 details the proposed reinforcement learning

model in the traffic light control system. Section 5.5 extends the reinforcement

learning model into a deep learning model to handle the complex states in the this

system. The model is evaluated in Section 5.6. Finally, the chapter is concluded in

Section 5.7.

5.2 Background on Deep Reinforcement Learning

Reinforcement Learning (RL) is a type of algorithms in machine learning. It interacts

with the environment to learn better actions to maximize the objective reward

function in the long run through trial and error. In reinforcement learning, an agent,

the action executor, takes an action and the environment returns a numerical reward

based on the action and the current state. A four-tuple 〈S,A,R, T 〉 can be used to

define the reinforcement learning model:

• S : the possible state space. s is a specific state (s ∈ S);

• A : the possible action space. a is an action (a ∈ A);

• R : the reward space. rs,a denotes the reward in taking action a at state s;
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• T : the transition function space among all states, which represents the

probability of the transition from one state to another.

In a deterministic model, T is usually omitted.

A policy is made up of a series of consequent actions. The goal in reinforcement

learning is to learn an optimal policy to maximize the cumulative expected rewards

starting from the initial state. Generally speaking, the agent at one specific state s

takes an action a to reach state s′ and gets a reward r, which is denoted by 〈s, a, r, s′〉.

Let t denote the tth step in the policy π. The cumulative reward in the future by

taking an action a at state s is defined by Q(s, a) in the following equation,

Qπ(s, a) = E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]
= E

[
∞∑
k=0

γkrt+k|st = s, at = a, π

]
.

(5.1)

In the equation, γ is the discount factor, which is usually in [0, 1). It means the

nearest rewards are worthier than the rewards in the future.

The optimal action policy π∗ can be obtained recursively. If the agent knows

the optimal Q values of the succeeding states, the optimal policy simply chooses

the action that achieves the highest cumulative reward. Thus, the optimal Q(s, a) is

calculated based on the optimal Q values of the succeeding states. It can be expressed

by the Bellman optimality equation to calculate Qπ∗(s, a),

Qπ∗(s, a) = Es′
[
rt + γmax

a′
Qπ∗(s′, a′)|s, a

]
. (5.2)

The intuition is that the cumulative reward is equal to the sum of the immediate

reward and optimal future reward thereafter. If the estimated optimal future reward

can be obtained, the cumulative reward since now can be calculated. This equation

can be solved by dynamic programming, but it requires that the number of states is

finite to make the computing complexity manageable. When the number of states

becomes large, a function θ is needed to approximate the Q value.
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Figure 5.1 The traffic light control model in the proposed system.

5.3 Problem Statement

This chapter targets on controlling the traffic lights at road intersections. A traffic

light at an intersection has three signals: green, yellow and red. When there are

vehicles from multiple directions at an intersection, one traffic light may not be enough

to manage all the vehicles and multiple traffic lights need to cooperate at a multi-

direction intersection. A status is defined as one of all the legal combinations of all

traffic lights’ red and green signals omitting the yellow signals. At an intersection, the

traffic signal guides vehicles from non-conflicting directions at one time by changing

the traffic lights’ statuses. The time duration staying at one status is called one phase.

The number of phases is decided by the number of legal statuses at an intersection.

All the phases cyclically change in a fixed sequence to guide vehicles to pass the

intersection. It is called a cycle when the phases repeat once. The sequence of phases

in a cycle is fixed, but the duration of every phase is adaptive based on the current

traffic condition. If one phase needs to be skipped, its duration can be set 0 second.

In this problem, the duration in every phase is dynamically adjusted to deal with

different traffic situations at an intersection to minimize the delay.

The problem in this chapter is to optimize the efficiency of the intersection usage

by dynamically changing every phase’s duration of a traffic light via learning from

historical experiences. The duration of a phase should be extended strategically if
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there are more vehicles in that direction. In this chapter, a deep Q learning network is

built to learn the timing strategy of every phase to optimize the traffic management.

The proposed network self-updates by continuously receiving states and rewards from

the environment. The model is shown in Figure 5.1. The left side shows the structure

in a traffic light. The traffic light first gathers road traffic information via a vehicular

network [37] or other tools, which is presented by the dashed purple lines in the figure.

The traffic light processes the data to obtain the road traffic’s state and reward, which

has been assumed in many previous studies [29, 121, 28]. The traffic light chooses an

action based on the current state and reward using a deep neural network shown in

the right side. The left side is the reinforcement learning part and the right side is

the deep learning part.

5.4 Reinforcement Learning Model

In this section, the three elements of the proposed RL model are defined: states,

actions and rewards.

5.4.1 States

The states are defined based on the position and speed of vehicles at an intersection.

Through a vehicular network or other tools, vehicles’ position and speed can be

obtained [37]. The traffic light can extract a virtual snapshot image of the current

intersection. The whole intersection is divided into same-size small square-shape

grids. The length of grids, c, should guarantee that no two vehicles can be held in

the same grid and one entire vehicle can be put into a grid to reduce computation.

In every grid, the state value is a two-value vector < position, speed > of the inside

vehicle. The position dimension is a binary value, which denotes whether there is a

vehicle in the grid. If there is a vehicle in a grid, the value in the grid is 1; otherwise,

it is 0. The value in the speed dimension is an integer, denoting the vehicle’s current

speed in m/s.
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Fig. 5.2 is an example to show how to set up the state values. Figure 5.2(a)

shows a snapshot of the traffic status at a simple one-lane four-way intersection, which

is divided into square-shape grids. The position matrix has the same size of the grids,

which is shown in Figure 5.2(b). In the matrix, one cell corresponds to one grid in

Figure 5.2(a). The blank cells mean no vehicle in the corresponding grid, which are

0. The other cells with vehicles inside are set 1.0. The value in the speed dimension

is built in a similar way. If there is a vehicle in the grid, the corresponding value is

the vehicle’s speed; otherwise, it is 0.

5.4.2 Actions

In the proposed model, the actions’ space is defined by how to update the duration

of every phase in the next cycle. Considering the system may become unstable if the

duration change between two cycles is too large, a change step is specified. In this

chapter, it is set to be 5 seconds. The duration changes of two phases between two

neighboring cycles are modeled as a high-dimension MDP. In the model, the traffic

light changes only one phase’s duration by 5 seconds if there is any change.

The intersection in Figure 5.2(a) is taken as an example. At the intersection,

there are four phases, north-south green, north-east&south-west green, east-west

green, and east-south&west-north green. The other unmentioned directions are red

by default. The yellow signals are omitted here and will be presented later. Let a

four-tuple < t1, t2, t3, t4 > denote the duration of the four phases in current cycle.

The legal actions in the next cycle is shown in Figure 5.3. In the figure, one circle

means the durations of the four phases in one cycle. Note that the duration change

from the current cycle to the succeeding cycle is 5 seconds. The duration of one and

only one phase in the next cycle is the current duration added or subtracted by 5

seconds. After choosing the phases’ duration in the next cycle, the current duration

becomes the chosen one. The traffic light can select an action in a similar way as the
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Figure 5.2 Process to build the state matrix.

80



t
1

, t
2

, 

t
3

, t
4

t
1

+5, t
2

, 

t
3

, t
4

t
1

, t
2

+5, 

t
3

, t
4

t
1

, t
2

, 

t
3

+5, t
4

t
1

, t
2

, 

t
3

, t
4

+5

t
1

-5, t
2

, 

t
3

, t
4

t
1

, t
2

-5, 

t
3

, t
4

t
1

, t
2

, 

t
3

-5, t
4

t
1

, t
2

, 

t
3

, t
4

-5

Figure 5.3 Part of the Markov decision process in a multiple traffic lights
scenario.
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previous procedure. In addition, the max duration of a phase is set 60 seconds and

the minimal is 0 second.

The MDP is a flexible model. It can be applied into a more complex intersection

with more traffic lights, such as an irregular intersection with five or six ways, which

needs more phases. When there are more phases at an intersection, they can be added

in the MDP model as a higher-dimension value. The dimension of the circle in the

MDP is equal to the number of phases at the intersection.

The phases in a traffic light cyclically change in sequence. Yellow signal is

required between two neighboring phases to guarantee safety, which allows running

vehicles to stop before signals become red. The yellow signal duration Tyellow is

defined by the maximum speed vmax on that road divided by the most commonly-seen

decelerating acceleration adec.

Tyellow =
vmax
adec

. (5.3)

It means the running vehicle needs such a length of time to firmly stop in front of the

intersection.

5.4.3 Rewards

The role of rewards is to provide feedback to a reinforcement learning model about the

performance of the previous actions. It is important to define the reward appropriately

so to correctly guide the learning process, which accordingly helps take the best action

policy.

In the proposed system, the main goal is to increase the efficiency of an

intersection and reduce the waiting time of vehicles. Thus, the rewards are defined

as the change of the cumulative waiting time between two neighboring cycles. Let

it denote the ith observed vehicle from the starting time to the starting time point

of the tth cycle and Nt denote the corresponding total number of vehicles till the tth

cycle. The waiting time of vehicle i till the tth cycle is denoted by wit,t, (1 ≤ it ≤ Nt).
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The reward in the tth cycle is defined by the following equation,

rt = Wt −Wt+1, (5.4)

where

Wt =
Nt∑
it=1

wit,t. (5.5)

It means the reward is the increment in cumulative waiting time between before

taking the action and after the action. If the reward in the current cycle becomes

larger than before, the waiting time increases less than before. Considering the delay

is non-decreasing with time, the overall reward is always negative. The proposed

model aims to maximize the reward so to reduce the waiting time.

5.5 Double Dueling Deep Q Network

In the traffic light control system in vehicular networks, the number of states are very

large, and thus it is challenging to directly solve equation (5.2). In this chapter, a CNN

is proposed [67] to approximate the Q value. Combining with the state-of-the-art

techniques, the proposed whole network is called Double Dueling Deep Q Network

(3DQN).

5.5.1 Convolutional Neural Network

The architecture of the proposed CNN is shown in Figure 5.4. It is composed of

three convolutional layers and several fully-connected layers. In the proposed system,

the input is the small grids including the vehicles’ position and speed information.

The number of grids at an intersection is 60 × 60. The input data become 60 ×

60 × 2 with both position and speed information. The data are first put through

three convolutional layers. Each convolutional layer includes three parts, convolution,

pooling and activation. The convolutional layer includes multiple filters. Every filter

contains a set of weights, which aggregates local patches in the previous layer and
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Figure 5.4 The architecture of the deep convolutional neural network to
approximate the Q value.

shifts a fixed length of step defined by the stride each time. Different filters have

different weights to generate different features in the next layer. The convolutional

operation makes the presence of a pattern more important than the pattern’s position.

The pooling layer selects the salient values from a local patch of units to replace the

whole patch. The pooling process removes less important information and reduces

the dimensionality. The activation function is to decide how a unit is activated. The

most common way is to apply a non-linear function on the output. In this chapter,

the leaky ReLU [38] is employed as the activation function with the following form

(let x denote the output from a unit),

f(x) =


x, if x > 0,

βx, if x ≤ 0.

(5.6)

β is a small constant to avoid zero gradient in the negative side. The leaky ReLU

can converge faster than other activation functions, such as tanh and sigmoid, and

prevent the generation of “dead” neurons from regular ReLU.

In the architecture, three convolutional layers and full connection layers are

constructed as follows. The first convolutional layer contains 32 filters. Each filter’s

size is 4× 4 and it moves 2× 2 stride every time through the full depth of the input
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data. The second convolutional layer has 64 filters. Each filter’s size is 2 × 2 and it

moves 2 × 2 stride every time. The size of the output after two convolutional layers

is 15 × 15 × 64. The third convolutional layer has 128 filters with the size of 2 × 2

and the stride’s size is 1×1. The third convolutional layer’s output is a 15×15×128

tensor. A fully-connected layer transfers the tensor into a 128× 1 matrix. After the

fully-connected layer, the data are split into two parts with the same size 64×1. The

first part is then used to calculate the value and the second part is for the advantage.

The advantage of an action means how well it can achieve by taking an action over

all the other actions. Because the number of possible actions in this system is 9 as

shown in Figure 5.3, the size of the advantage is 9× 1. They are combined again to

get the Q value, which is the architecture of the dueling Deep Q Network (DQN).

With the Q value corresponding to every action, illegal actions must be highly

penalized, which may cause accidents or reach the max/min signal duration. The

output combines the Q value and tentative actions to force the traffic light to take

a legal action. Finally the Q values of every action are obtained in the output with

penalized values. The parameters in the CNN is denoted by θ. Q(s, a) now becomes

Q(s, a; θ), which is estimated under the CNN θ. The details in the architecture are

presented in the next subsections.

5.5.2 Dueling DQN

As mentioned before, the proposed network contains a dueling DQN[127]. In the

network, the Q value is estimated by the value at the current state and each action’s

advantage compared to other actions. The value of a state V (s; θ) denotes the overall

expected rewards by taking probabilistic actions in the future steps. The advantage

corresponds to every action, which is defined as A(s, a; θ). The Q value is the sum

of the value V and the advantage function A, which is calculated by the following
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equation,

Q(s, a; θ) =V (s; θ)+(
A(s, a; θ)− 1

|A|
∑
a′

A(s, a′; θ)

)
.

(5.7)

A(s, a; θ) shows how important an action is to the value function among all actions.

If the A value of an action is positive, it means the action shows a better performance

in numerical rewards compared to the average performance of all possible actions;

otherwise, if the value of an action is negative, it means the action’s potential reward

is less than the average. It has been shown that the subtraction from the mean of

all advantage values can improve the stability of optimization compared to using the

advantage value directly. The dueling architecture is shown to effectively improve the

performance in reinforcement learning.

5.5.3 Target Network

To update the parameters in the neural network, a target value is defined to help

guide the update process. Let Qtarget(s, a) denote the target Q value at the state

s when taking action a. The neural network is updated by the Mean Square Error

(MSE) in the following equation,

J =
∑
s

P (s)[Qtarget(s, a)−Q(s, a; θ)]2, (5.8)

where P (s) denotes the probability of state s in the training mini-batch. The MSE

can be considered as a loss function to guide the updating process of the primary

network. To provide stable update in each iteration, a separate target network θ−,

the same architecture as the primary neural network but different parameters, is

usually employed to generate the target value. The calculation of the target Q value

is presented in the double DQN part.
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Figure 5.5 The architecture of the reinforcement learning model in this system.

The parameters θ in the primary neural network are updated by back

propagation with Equation (5.8). θ− is updated based on the θ in the following

equation,

θ− = αθ− + (1− α)θ. (5.9)

α is the update rate, which presents how much the newest parameters affect the

components in the target network. A target network can help mitigate the over

optimistic value estimation problem.

5.5.4 Double DQN

The target Q value is generated by the double Q-learning algorithm [122]. In the

double DQN, the target network is to generate the target Q value and the action is

generated from the primary network. The target Q value can be expressed in the

following equation,

Qtarget(s, a) = r + γQ(s′, arg max
a′

(Q(s′, a′; θ)), θ−). (5.10)

It is shown that the double DQN effectively mitigates the overestimation and improves

the performance [122].

In addition, the ε-greedy algorithm is employed to balance the exploration and

exploitation in choosing actions. With the increasing steps of training process, the

value of ε decreases gradually. The starting and ending values of ε are set. The
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number of steps is set to reach the ending value from the starting value. The value

of ε linearly decreases to the ending value. When ε reaches the ending value, it keeps

the value in the following procedures.

5.5.5 Prioritized Experience Replay

During the updating process, the gradients are updated through the experience replay

strategy. A prioritized experience replay strategy chooses samples from the memory

based on priorities, which can lead to faster learning and to better final policy[100].

The key idea is to increase the replay probability of the samples that have a high

temporal difference error. There are two possible methods estimating the probability

of an experience in a replay, proportional and rank-based. Rank-based prioritized

experience replay can provide a more stable performance since it is not affected by

some extreme large errors. In this system, the rank-based method is taken to calculate

the priority of an experience sample. The temporal difference error δ of an experience

sample i is defined in the following equation,

δi = |Q(s, a; θ)i −Qtarget(s, a)i|. (5.11)

The experiences are ranked by the errors and then the priority pi of experience i is

the reciprocal of its rank. Finally, the probability of sampling the experience i is

calculated in the following equation,

Pi =
pτi∑
k p

τ
k

. (5.12)

τ presents how much prioritization is used. When τ is 0, it is random sampling.

5.5.6 Optimization

In this chapter, the neural networks are optimized by the ADAptive Moment

estimation (Adam) [52]. The Adam is evaluated and compared with other back

propagation optimization algorithms in [97], which concludes that the Adam attains
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satisfactory overall performance with a fast convergence and adaptive learning rate.

The Adam optimization method adaptively updates the learning rate considering both

first-order and second-order moments using the stochastic gradient descent procedure.

Specifically, let θ denote the parameters in the CNN and J(θ) denote the loss function.

Adam first calculates the gradients of the parameters,

g = ∇θJ(θ). (5.13)

It then respectively updates the first-order and second-order biased moments, s and

r, by the exponential moving average,

s = ρss + (1− ρs)g,

r = ρrr + (1− ρr)g,
(5.14)

where ρs and ρr are the exponential decay rates for the first-order and second-order

moments, respectively. The first-order and second-order biased moments are corrected

using the time step t through the following equations,

ŝ =
s

1− ρts
,

r̂ =
r

1− ρtr
.

(5.15)

Finally the parameters are updated as follows,

θ =θ + ∆θ

=θ +

(
−εr

ŝ√
r̂ + δ

)
,

(5.16)

where εr is the initial learning rate and δ is a small positive constant to attain

numerical stability.

5.5.7 Overall Architecture

The proposed deep learning architecture is illustrated in Figure 5.5. The current

state and the tentative actions are fed to the primary convolutional neural network
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to choose the most rewarding action. The current state and action along with the

next state and received reward are stored into the memory as a four-tuple 〈s, a, r, s′〉.

The data in the memory are selected by the prioritized experience replay to generate

mini-batches and they are used to update the primary neural network’s parameters.

The target network θ− is a separate neural network to increase stability during the

learning. Double DQN [122] and dueling DQN [127] are used to reduce the possible

overestimation and improve performance. Through this way, the approximating

function can be trained and the Q value at every state to every action can be

calculated. The optimal policy can then be obtained by choosing the action with

the max Q value.

The pseudocode of the proposed 3DQN with prioritized experience replay is

shown in Algorithm 2. Its goal is to train a mature adaptive traffic light, which

can change its phases’ duration based on different traffic scenarios. The agent first

chooses actions randomly till the number of steps is over the pre-train steps and the

memory has enough samples for at least one mini-batch. Before the training, every

samples’ priorities are the same. Thus, they are randomly selected into a mini-batch

to train. After training once, the samples’ priorities change and they are selected by

different probabilities. The parameters in the neural network is updated by the Adam

back propagation [97]. The agent chooses actions based on the ε and the action that

has the max Q value. The agent finally learns to get a high reward by reacting on

different traffic scenarios.

5.6 Evaluation

5.6.1 Evaluation Methodology and Parameters

Evaluation Metrics The proposed model’s objective is to maximize the defined

reward, which is to reduce the cumulative delay of all vehicles. Thus, the performance

of the proposed model is evaluated using the following two metrics: cumulative reward

and average waiting time. The cumulative reward is measured by adding up the
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Algorithm 2: 3DQN with Prioritized Experience Replay Algorithm

Input : replay memory size M , minibatch size B, greedy ε, pre-train steps

tp, target network update rate α, discount factor γ

Output: A well learnt 3DQN model

Notation:

θ: the parameters in the primary neural network.

θ−: the parameters in the target neural network.

m: the replay memory.

i: step number.

1 Initialize parameters θ, θ− with random values.

2 Initialize m to be empty and i to be zero.

3 Initialize s with the starting scenario at the intersection.

while there exists a state s do

4 Choose an action a according to the ε greedy.

5 Take an action a and observe reward r and new state s′.

if the size of memory m > M then

6 Remove the oldest experiences in the memory.

end

7 Add the four-tuple 〈s, a, r, s′〉 into M .

8 Assign s′ to s: s ← s′.

9 i← i+ 1.

if |M | > B and i > tp then

10 Select B samples from m based on the sampling priorities.

11 Calculate the loss J :

12

J =
∑
s

1

B
[r + γQ(s′, arg max

a′
(Q(s′, a′; θ)), θ−)−

Q(s, a; θ)]2.

13 Update θ with ∇J using Adam back propagation.

14 Update θ− with θ:

15 θ− = αθ− + (1− α)θ.

16 Update every experience’s sampling priority based on δ.

17 Update the value of ε.

end

end
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Figure 5.6 The intersection scenario tested in the evaluation.

rewards of all cycles in every episode within one hour period. The average waiting

time is measured by dividing the total waiting time by the number of vehicles in an

episode.

Traffic Parameters The evaluation is conducted in SUMO [54], which provides

real-time traffic simulation. Python APIs provided by SUMO are used to obtain the

intersection’s information and to send orders to change the traffic light’s timing. The

intersection is composed of four perpendicular roads, as shown in Figure 5.6. Each

road has three lanes. The right-most lane allows right-turn and through traffic, the

middle lane only allows through traffic, and the left inner lane allows only left-turn
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traffic. The simulated intersection is a 300m × 300m area. The grid length c is 5

meters, which means the total number of grids is 60 × 60. The lane length is 150

meters. Vehicles are 5 meters long and the minimal gap between two vehicles is 2

meters. Vehicles arrive at the intersection following a random process. The average

vehicle arrival rate in every lane is 1/10 per second (i.e., on average, there is one

vehicle arriving every 10 seconds). Two lanes allow for through traffic, so the flow

rate of all through traffic (west-to-east, east-to-west, north-to-south, south-to-north)

is 2/10 per second (i.e., on average, there are two vehicles every 10 seconds). Turning

traffic (east-to-south, west-to-north, south-to-west, north-to-east) is 1/10 per second.

Krauss following model [55] is used for vehicles on the road, which guarantees safe

driving. The max speed of a vehicle is 13.9 m/s (50 km/h). The max accelerating

acceleration is 1.0 m/s2 and the decelerating acceleration is 4.5 m/s2. The duration

of yellow signals Tyellow is set to be 4 seconds.

Model Parameters The model is trained in iterations. One iteration is an episode

in an hour. The reward is accumulated in an episode. The simulation results are

the average of 50 iterations. The development environment is built on the top of

Tensorflow [1]. The parameters in the deep learning network are shown in Table 5.1.

Comparison Study The performance of the proposed system is compared with

three strategies: The first one is the simplest setting: the traffic light’s duration is

fixed. It is set 30 seconds and 40 seconds for every phase. The second one is a

conventional method called Adaptive Traffic Signal Control (ATSC) [90], which set

the traffic lights with fixed-time signals. The third one is a state-of-the-art method,

Deep Q Network (DQN) [63]. In ATSC, the authors propose a Webster’s method to

estimate the optimal light time duration based on the most recent cycles’ saturation.

In DQN, the authors propose to use reinforcement learning with an auto-encoder.

They use the queue length as the state to control traffic lights. The authors show
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that one single Q network can learn good control strategy in a two-phase intersection.

Regarding the proposed framework, the ablation studies are also conducted with

different reinforcement learning architectures and different parameters to present the

proposed model’s good performance.

Table 5.1 Parameters in the Reinforcement Learning Network

Parameter Value

Replay memory size M 20000

Starting ε 1

Ending ε 0.01

Steps from starting ε to ending ε 10000

Pre-training steps tp 2000

Target network update rate α 0.001

Discount factor γ 0.99

Learning rate εr 0.0001

Leaky ReLU β 0.01
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5.6.2 Experimental Results

Cumulative reward The cumulative reward in every episode is first evaluated

under the same traffic flow rate from every lane. All strategies have the same

rewards as the proposed work. Note that the aim is to maximize the the rewards,

which is to minimize the cumulative waiting time, represented as a negative number.

The simulation results are shown in Figure 5.7. From this figure, it is seen that

the proposed 3DQN outperforms the other strategies. Specifically, the cumulative

reward in 3DQN is greater than -50000 (note that the reward is negative since the

vehicles’ delay is positive) while that in the two fixed-time strategies is less than

-6000. The fixed-time traffic signals always obtains a low reward even after more

iterations while the proposed model can learn to achieve a higher reward with more

iterations. This is because the fixed-time traffic signals do not change the signals’ time

under different traffic scenarios. DQN’s performance is very unstable, which cannot

accurately capture the whole information in a complex intersection by a deep neural

network with the queue length only. Because the normal traffic scenario is much more

complex than a simple two-phase intersection, the traffic information represented by

queue length is inaccurate, which makes DQN choose false actions when two traffic

scenarios are different but the queue length is the same. In addition, one network

in DQN is easy to overfit the training data. ATSC only chooses the phases’ time

duration based on several previous cycles, which is inaccurate to predict the future

traffic scenarios. In 3DQN, the signals’ time changes to achieve the best expected

rewards, which learns a more general strategy to handle different traffic states. When

the training process iterates over 1000 times, the cumulative rewards become more

stable than previous iterations. It means 3DQN has learnt how to handle different

traffic scenarios to get the most rewards after 1000 iterations.
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Figure 5.7 Cumulative reward during all the training episodes.

Average waiting time The average waiting time of vehicles in every episode is

calculated, which is shown in Figure 5.8. From this figure, it is shown that 3DQN

outperforms the other four strategies. Specifically, the average waiting time in the

fixed-time signals is always over 35 seconds. The proposed model can learn to reduce

the waiting time to about 26 seconds after 1200 iterations from over 35 seconds, which

is at least 25.7% less than the fixed-time strategies. ATSC can get better performance

than the fixed-time strategy, but it only uses several most recent cycles’ information,

which cannot well represent future traffic. DQN’s performance is very unstable, which

means one neural network with the queue length cannot accurately capture the real

traffic information. The results show that the proposed model can obtain the most

stable and best performance in vehicles’ average waiting time among all the methods.

Ablation studies In this part, the proposed model is evaluated by comparing to

others with different parameters and different architectures. In the proposed model, a

series of techniques are employed to improve the performance of deep Q networks. For

comparison, one of these techniques is removed each time to see how every technique
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Figure 5.8 Average waiting time during all the training episodes.

influences the performance. The techniques include double network, dueling network

and prioritized experience replay. The reward changes in all methods are shown in

Figure 5.9. It is shown that the proposed model can learn fastest among the four

models. It means the proposed model reaches the best policy faster than others.

Specifically, even there is some fluctuation in the first 400 iterations, the proposed

model still outperforms the other three after 500 iterations. The proposed model can

achieve greater than -47000 rewards while the others have less than -50000 rewards.

Average waiting time under rush hours In this part, the proposed model is

evaluated by comparing the performance under the rush hours. The rush hour means

the traffic flows from all lanes are not the same, which is usually seen in the real

world. During the rush hours, the traffic flow rate from one direction doubles, and

the traffic flow rates in the other lanes keep the same as normal hours. Specifically,

in the experiments, the arrival rate of vehicles on the lanes from the west to east

becomes 2/10 per second and the arrival rates of vehicles on the other lanes are

still 1/10 per second. The experimental results are shown in Figure 5.10. From the

figure, it is shown that the best policy becomes harder to be learnt than the previous

97



0 200 400 600 800 1000 1200 1400 1600

Episode times

−70000

−65000

−60000

−55000

−50000

−45000

R
e
w

a
rd

3DQN

No double

No dueling

No prioritization

Figure 5.9 Cumulative reward during all the training episodes in different
network architectures.

scenario. This is because the traffic scenario becomes more complex, which contains

more uncertain factors. But after trial and error, the proposed model can still learn a

good policy to reduce the average waiting time. Specifically, the average waiting time

in 3DQN is about 33 seconds after 1000 iterations while the average waiting time in

the other two fixed-time methods is over 45 seconds. The proposed model reduces

about 26.7% of the average waiting than the fixed-time methods. ATSC can achieve

better results than one fixed-time method and worse than the other because the

optimal phases’ time duration in the most recent cycles does not work in the future

traffic considering the traffic scenario becomes very complex. DQN’s performance

becomes more unstable than that in the previous scenario. In summary, 3DQN can

achieve the best performance under the rush hours.

5.7 Chapter Summary

In this chapter, the traffic light control problem is proposed to be solved by using

the deep reinforcement learning model. The traffic information is gathered from

98



0 200 400 600 800 1000 1200 1400
Episode times

30

40

50

60

70

Av
er
ag

e 
wa

iti
ng

 ti
m
e 
(s
)

3DQN
DQN
ATSC
Fixed-time 30s
Fixed-time 40s

Figure 5.10 Average waiting time in all the training episodes during the rush
hours with unbalanced traffic from all lanes.

vehicular networks. The states are three-dimension values with the vehicles’ position

and speed information. The actions are modeled as a Markov decision process and the

rewards are the cumulative waiting time difference between two cycles. To handle the

complex traffic scenario in this problem, a Double Dueling Deep Q network (3DQN)

with prioritized experience replay is proposed. The model can learn a good policy

under both the rush hours and normal traffic flow rates. It can reduce over 20%

of the average waiting timing from the starting training. The proposed model also

outperforms others in learning speed, which is shown in extensive simulation in SUMO

and TensorFlow.
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CHAPTER 6

LEARNING K-WAY D-DIMENSIONAL DISCRETE EMBEDDING

FOR HIERARCHICAL DATA VISUALIZATION AND RETRIEVAL

6.1 Introduction

Data embedding methods have been successfully deployed in many applications,

including unsupervised and supervised data visualization [73, 83, 82], natural

language understanding [79, 92, 103], computer vision [26], information retrieval [16],

bioinformatics analysis [21], and many others.

These embedding strategies, however, fail to sufficiently reveal essential semantic

structures of the data in the embedded space. Typically, these methods associate a

real-valued embedding vector with each symbol or data point, which is equivalent

to applying a linear transformation to “one-hot” encoding of discrete symbols or

data points. Despite their simplicity, these methods are incapable of encoding the

internal semantic structure of data, failing to effectively preserve the interplay of the

symbols/data points in the embedded space, such as the hierarchical relationship of

the symbols or data samples. Hierarchical clusters of data will allow one to know how

the symbols/data points are grouped and how lower layer groups form upper layer

clusters. Such structural information is, therefore, critical for data understanding and

fast information retrieval.

To cope with the aforementioned challenge, this dissertation proposes a

regularized autoencoder framework for data embedding. The proposed approach

is capable of capturing essential semantic structures of the data, thus leading to

both hierarchical data visualization and exploration, and efficient nearest neighbor

retrieval. This method builds on the success of the recent K-way D-dimensional

discrete encoding [13, 106]. These discrete encoding algorithms encode, through

deep neural networks, data points with discrete codes, thus being able to significantly

100



reduce the storage space when compared to real-valued embedding. The goal of

this part of the disseration is at enforcing the discrete codes to have structural

information: different bits of a code are used to identify their relationships with

other data points. In detail, a regularized autoencoder is leveraged to learn

compact hierarchical K-way D-dimensional discrete embedding of symbols or data

points. An autoencoder framework is employed with a discrete embedding layer

regularized by a stochastic exemplar-centered neighborhood preserving loss, in which

different dimensions of a discrete code vector are combined using exponentially

decaying weights to achieve Hierarchical K-way D-dimensional embedding (HKD).

Consequently, the HKD embedding codes have a tree structure, where similar symbols

tend to have the same codes in front bits while the back codes are different from

each other to separate them. In addition, the autoencoder is regularized to preserve

exemplar-centered neighborhoods, resulting in embeddings with similar codes tightly

close to each other.

Experimental results on synthetic and real-world datasets show that, the

proposed HKD embedding can, in addition to storage efficiency, reveal the semantic

structure of data via hierarchical data visualization and greatly reduce search space

of nearest neighbor retrieval while preserving high accuracy.

This model is the first one to propose a method to learn hierarchical discrete

embedding, thus enabling hierarchical data visualization and fast nearest neighbor

retrieval in addition to embedding storage efficiency. These salient features make the

proposed embedding strategy particularly attractive in practice, where neither the

computation power nor the storage resources are abundant.

6.2 Hierarchical K-way D-dimensional Discrete Embedding

The proposed Hierarchical K-way D-dimensional Discrete Embedding method (denoted

as HKD encoding) leverages an autoencoder framework, where data features/embeddings
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are first encoded into the HKD embeddings which are then required to be able

to decode (reconstruct) the original given data features/embeddings. Two novel

components are devised to attain the goals of the HKD encoding, as follows. First,

the HKD embedding codes have a tree structure, where similar symbols tend to have

the same codes in front bits while the back codes are different from each other to

separate them. Second, the autoencoder is regularized to preserve exemplar-centered

neighborhoods, resulting in embeddings with similar codes tightly close to each other.

The two novel components will be discussed in detail as follows.

6.2.1 Learning Hierarchical Discrete Codes with an Autoencoder

The aim of the proposed HKD encoding method is to associate every symbol (data

point) with a K-way D-dimensional discrete code. The whole process from embedding

to discrete codes and verse vice is illustrated in Figures 6.1, and will be discussed in

detail next.

Suppose, the discrete code for the ith symbol (data point) is denoted by ci =

(ci,1, ci,2, ..., ci,D), where ci,d is a set of code bits with cardinality K. Consider ci,d

is a one-hot vector. With this setting, given a symbol/data point i’s embedding ei,

the HKD first uses an encoder to learn its discrete codes ci. Next, a decoder in the

HKD framework is then deployed to reconstruct the embedding êi to approach the

real embedding ei as much as possible. The encoding and decoding processes are

formally formulated as follows.

HKD Encoding As illustrated in Figure 6.1, given the embedding ei, the hidden

layers of the neural network first transfer the embedding into the K*D dimensional

values hi:

hi = f(Mei), (6.1)

where M denotes the weights of the hidden layer and f is a nonlinear activation

function with multiple hidden layers.
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Figure 6.1 Illustration of the framework in the HKD method.

Subsequently, the hidden layer’ outputs are equally split into D partitions, where

each partition has K values and each corresponds to exactly one dimension in the final

discrete codes. Let li,d(d = 1, 2, ..., D) denote the dth partition and lj,i,d denote the

exact jth value in the dth partition, the code probabilities pi,d are then calculated via

a Softmax function on every partition, as follows:

pi,d = softmax(li,d)

=
exp(li,d)∑K
j=1 exp(lj,i,d)

.
(6.2)

The computed code probabilities pi,d are used to form the discrete encodes by first

passing through an argmax function and then representing by a one-hot vector:

ci,d = one hot

(
arg max

j
{pj,i,d}

)
, j = 1, 2, ..., K. (6.3)
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To cope with the possible gap between the discrete codes and continuous

variables, a temperature τ is used to approximate the discrete codes during training

as in [13],

ci,d ≈ softmax

(
hi,d
τ

)
. (6.4)

Similar techniques have been introduced in a Gumbel-Softmax trick [47, 74].

HKD Decoding After the encoding phase, a decoder is applied on the discrete codes

generated by the encoder to reconstruct the original embeddings, as follows.

êi =
∑
d

wd g(Proj (Ai,dci,d)), (6.5)

where g(·) is a sub-neural network with one or more hidden layers shared by all code

dimensions as in Figure 6.1, Ai,d is the transformation weights for the ith symbol

in the dth dimension, and wd is the decayed weight for dimension d, which will be

presented in the next subsection. Proj(x) is a projection function, which is shown

as follows,

Proj(x) =


x

||x||+ε if ||x|| ≥ 1

x otherwise
. (6.6)

The loss of the autoencoder here is to minimize the reconstruction error, which

is defined by the mean square error,

E =
1

n

n∑
i

||êi − ei||2, (6.7)

where n denotes the number of data points in the dataset.

To further capture hierarchical semantic structures of the given data in the

embedding space, a regularizer is leveraged to force the model to incorporate data

neighborhood information during the encoding process, which is discussed next.
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6.2.2 Regularized Autoencoder Preserving Neighborhoods

The adopted regularization method aims at enabling the generated discrete KD

codes to capture the semantic information in the data. To this end, the parametric

t-distributed stochastic exemplar-centered embedding (pt-SEE) strategy [81] is

leveraged, by extending pt-SEE to weight different dimensions of the KD codes, to

model the neighborhood information of the data points. Pt-SEE is an extension of

t-SNE [73], which is an effective method to preserve the neighboring information

when learning low-dimensional embeddings. pt-SEE significantly reduces the compu-

tational complexity of t-SNE. In specific, unlike t-SNE, pt-SEE does not compute

pairwise neighboring probabilities. Instead, it chooses an enough number z exemplars

to represent the distribution of raw data (z � n). The z exemplars can be formed

in two ways, one is chosen by running some iterations of k-means on the raw data

features/embeddings and the other is randomly chosen from the dataset. Promisingly,

it has at most linear computational complexity with respect to the size of the whole

dataset.

Formally, let ej denote the raw embedding of the jth exemplar chosen by k-

means or random sampling, where j ∈ [1, z]. Same as before, ei denotes the raw

embedding/feature vector of the ith data point. The neighboring probability in the

raw data feature/embedding space is estimated by a Gaussian distribution.

pj|i =
exp(−d(ei, ej)/2σ

2
i )∑z

k=1 exp(−d(ei, ek)/2σ2
i )
,

pj|i =
pj|i
n
.

(6.8)

Here, d(·) is a problem-specific distance function, for e.g., squared Euclidean distance

or Poincaré distance, i ∈ [1, n], and j ∈ [1, z]. Variance of the Gaussian distribution

σi is set such that the perplexity of the conditional distribution pj|i equals to a user-

specified perplexity u that can be interpreted as the expected number of nearest

exemplars of data point i.

105



In the proposed HKD encoding approach, because discrete codes cannot be

directly used to calculate the neighboring probabilities, the code probabilities are

used instead. In detail, to compute the neighboring probabilities in the code space,

a t-distribution is used:

qj|i =
(1 + dij)

−1∑n
i=1

∑z
j=1(1 + dij)−1

,

dij = ||pi − pej ||
2.

(6.9)

where pej denotes the code probabilities of the jth exemplar.

In this way, the neighboring probabilities in the discrete code space are

obtained. However, doing so, the KL divergence strategy simply treats every KD code

equally. To attain a hierarchical coding, a weighted version of distance calculation

is considered, which makes the front codes more important than the back codes,

resulting in the following distance calculation formula,

dij = ||w ◦ (pi − pej)||
2, (6.10)

where ◦ denotes element-wise multiplication, and w is a weight vector with the same

size as pi, in which all the weights for the dth dimension of pi have the same values

wd calculated by a decay function,

wd = w0exp(−λd), (6.11)

where w0 is the initial starting weight. And the exemplar-based KL divergence is

computed as follows,

KL =
n∑
i=1

z∑
j=1

pj|ilog
pj|i
qj|i

. (6.12)

The final cost function of the proposed HKD approach consists of two parts:

the reconstruction error plus the exemplar-based KL divergence.

J = αE + βKL, (6.13)
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where β is the penalty coefficient for the KL divergence regularization term.

To train the proposed model, the pseudo-code of the whole training procedure in

Algorithm 3. In this algorithm, the goal is to train a network to generate hierarchical

K-way D-dimensional discrete codes.

Algorithm 3: The training of the proposed HKD algorithm

Input : Training dataset E = {ei, i ∈ [1, n]}
Output: A code generation network including all weights in Fig. 1.

Notation:

z : number of examplars

b : mini-batch size

1 Select examplars ej, (j ∈ [1, z]) by running T (e.g., 100) iterations of

K-means and/or random data sampling.

while not done do

2 Randomly sample from E for a mini-batch of size b, ß = {ei, i ∈ [1, b]}.
3 Feed the batch ß and all examplars ej into the network to calculate the

loss according to Eq. (6.13).

4 Update all weights through back-propagation.

end

6.3 Experiments

6.3.1 Settings and Baselines

The proposed method is evaluated in terms of its capability to hierarchically organize

codes for speeding up nearest neighbor search and visualizing the semantic structure

of the given data. To evaluate the method, the following two metrics are adopted.

The first one is the percentage of nearest neighbor entities that share the same code

in the first N (out of D) codes and the reduced percentage of entities that are not

neighbors and have different codes. The second one is the visualization on how the

embedding codes correspond to the clusters of the given data.

107



The proposed approach is compared against the state-of-the-art KD code

learning method [106] on three datasets: a synthetic dataset, Poincaré embedding

[88] on WordNet [80] and embedding on the CIFAR100 dataset [56]. The first

one is a synthetic dataset, aiming at better understanding the behavior of the

proposed HKD encoding schema. For the synthetic data, the data are generated

using two-dimensional independent Gaussian distributions. There are in total 16

clusters, which is shown in Figure 6.2(a). Second, the proposed encoding schema

is evaluated using the Poincaré embedding, with the aim of investigating how the

proposed method can keep the hierarchy in the code space. The last experiment uses

the widely-used CIFAR100 dataset.

In the evaluation, the examplars are made by two parts, one is the centers

generated by k-means, and the other is centers combined with 10 nearest neighbors

of every point. It means different points’ examplars are different. The number of

examplars are 10∼20% of the number of training data points. The network is trained

using RMSprop [117] with learning rate of 0.0001 and mini-batch of size 128. The

whole model is built using PyTorch [91] and is trained using a GTX 1080 Ti GPU. The

hyperparameters are chosen based on the validation data by comparing the magnitude

of different loss terms. They are different in different models, which will be presented

in the their experimental results.

6.3.2 Results on the Synthetic Dataset

The synthetic dataset is split into two parts, training and test. The code performance

on the training set is shown in Table 6.1 and test set is shown in Tables 6.2. In this

dataset, the number of hidden units is set 20 considering there are only 2 dimensions

in the raw data. The value of D is set 16 and K is 16. The value of α is 0.1. The two

KL divergences’ weights are both 1 and the perplexities in the two KL divergences

are 5 and 11 respectively. The hierarchical property is evaluated by the accuracy of
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(a) An illustration to the synthetic
dataset

(b) An illustration to the two superclasses in
the CIFAR100 dataset

Figure 6.2 Illustration of the two datasets.

the same first N codes in every entity’s nearest neighbors. The accuracy is defined

by the percentage of same codes in the first N codes in the nearest neighbors. The

experiments also evaluate how smaller the search space can be reduced in finding

nearest neighbors, which is defined by the average percentage of the number of entities

that have the same first N codes to the total number of entities. This metric indicates

that the research space from the number of the whole entities can be reduced.

The data visualization is also explored using generated HKD codes. If two

codes are exactly the same in the first N dimensions, they have the same color. The

results are shown in Figure 6.3. The figures in Figure 6.3 clearly show that the HKD

codes can form hierarchical clusters which are consistent with the known clusters

of the synthetic data. For example, with the first layer code (sub-figure (a)), the

embeddings are clustered into 2 clusters, which are consistent with the known super

clusters as shown in Figure 6.2(a). When moving down the hierarchical structure

of codes formed, more and more sub-clusters are formed by the HKD codes. As

an example, on the second layer of the codes (sub-figure (b)), the two clusters from

sub-figure (a) are perfectly divided into four clusters. These four clusters are further

divided into 8 clusters when moving down one more layer of the HKD code hierarchy,
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Table 6.1 Nearest Neighbor Preserving Percentage by KD Codes on the Training
Set of the Synthetic Data

First N layer (s) 1 2 3 4 5 6 7 8

KNN=5

Shu et al. 0.53 0.32 0.28 0.25 0.21 0.20 0.20 0.2

HKD 1.0 1.0 0.999 0.999 0.999 0.999 0.999 0.985

KNN=10

Shu et al. 0.46 0.23 0.19 0.15 0.10 0.10 0.10 0.10

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.976

KNN=15

Shu et al. 0.44 0.21 0.16 0.12 0.08 0.07 0.06 0.06

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.968

KNN=20

Shu et al. 0.43 0.19 0.15 0.10 0.06 0.05 0.05 0.05

HKD 1.0 1.0 0.996 0.996 0.996 0.996 0.996 0.960

Search complexity

reduction (%)

63.1 77.3 85.4 89.4 90.9 91.7 92.5 93.7
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Table 6.2 Nearest Neighbor Preserving Percentage by KD Codes on the
Test Set of the Synthetic Data

First N code (s) 1 2 3 4 5 6 7 8

KNN=5

Shu et al. 0.57 0.39 0.31 0.24 0.23 0.22 0.20 0.2

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.968

KNN=10

Shu et al. 0.52 0.31 0.23 0.14 0.13 0.12 0.11 0.10

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.962

KNN=15

Shu et al. 0.49 0.28 0.19 0.10 0.09 0.07 0.06 0.06

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.958

KNN=20

Shu et al. 0.43 0.19 0.15 0.10 0.06 0.05 0.05 0.05

HKD 1.0 1.0 0.996 0.996 0.996 0.996 0.996 0.953

Search complexity

reduction (%)

64.3 77.1 85.3 89.1 90.7 91.4 92.3 93.6
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as shown in sub-figure (c). When moving down to the either layer of the HKD codes

(sub-figure (h)), 16 sub-clusters are formed.

Ablation studies on the synthetic data are also conducted by the following

variants: no reconstruction error, no KL divergence, and no decay weights. The

results in Table 6.3 clearly indicate that the HKD model can accurately retrieval

nearest neighbors via searching codes step by step along the hierarchical structure

formed, significantly outperforming the variants. For example, the proposed method

with the first two layers of codes can cover 100% of all the data points, which are

meaningfully better than about 50% achieved by the best variant. It is shown that

the reconstruction, examplar-based KL divergence and decay weights are important

in the proposed model.

These results show that the HKD encoding schema can capture the semantic

structure of the given data when generating discrete embedding codes. Next, the

proposed HKD method is evaluated against real-world datasets.

6.3.3 Results on the Poincaré Embedding of WordNet

Hierarchical embedding can be achieved by the Poincaré embedding method [88].

The embedding generated by the Poincaré embedding method is chosen to train the

proposed hierarchical codes to explore whether the codes can maintain the hierarchical

property.

In this task, the mammal subtree in the WordNet dataset is selected. In

the dataset, there are 1182 entities and 7724 semantic relations among them. The

Poincaré embedding is first trained with 10 dimensions per entity for 30 epochs.

The trained Poincaré embedding is used to encode the hierarchical KD codes. The

code size is 16×16. There are 200 centroids from K-means and 100 samples that are

randomly selected as the examplars. The value of α is 1. One KL divergence is used,

and its weight β is 1 and perplexity is 10.
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Table 6.3 Ablation Study Results of HKD Codes Preserving Nearest Neighbors
on the Test Set of the Synthetic Data

First N code (s) 1 2 3 4 5 6 7 8

KNN=5

No reconstruction 0.51 0.19 0.16 0.12 0.08 0.07 0.06 0.06

No KL divergence 0.17 0.12 0.07 0.06 0.05 0.05 0.05 0.05

No decay weights 0.45 0.28 0.17 0.11 0.11 0.08 0.07 0.07

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.968

KNN=10

No reconstruction 0.55 0.23 0.19 0.13 0.09 0.08 0.08 0.08

No KL divergence 0.20 0.14 0.08 0.06 0.06 0.06 0.05 0.05

No decay weights 0.50 0.31 0.19 0.14 0.14 0.10 0.09 0.08

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.962

KNN=15

No reconstruction 0.55 0.23 0.19 0.13 0.10 0.08 0.08 0.08

No KL divergence 0.20 0.14 0.09 0.06 0.06 0.06 0.05 0.05

No decay weights 0.51 0.31 0.19 0.14 0.11 0.10 0.10 0.09

HKD 1.0 1.0 0.997 0.997 0.997 0.997 0.997 0.958

KNN=20

No reconstruction 0.53 0.25 0.20 0.12 0.10 0.08 0.08 0.08

No KL divergence 0.21 0.14 0.10 0.07 0.06 0.06 0.05 0.05

No decay weights 0.52 0.31 0.20 0.15 0.15 0.11 0.10 0.08

HKD 1.0 1.0 0.996 0.996 0.996 0.996 0.996 0.953

The results on the training data and test data of Poincaré embedding are shown

in Tables 6.4 and 6.5, respectively. The first 8 codes are chosen and the number of

nearest neighbors between 5 and 20 are selected. It is shown that the proposed method

can have about 100% of the five nearest neighbors having the same first codes and

the percentage maintains over 90% after searching the first eight codes. Meanwhile,

the search space shrinks to only 5.6% of the whole dataset after looking for the first

six codes.

To have better insights into the encoding codes, a case study is also conducted

using the ‘dog’ category in the WordNet dataset. Results are presented in Table 6.7.

In this table, the entity ‘dog.n.01’ is chosen as the base and other entities’ distances

to it are calculated. Comparing the distance and the codes in this table, it is shown
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Table 6.4 Nearest Neighbor Preserving Percentage by KD Codes on the Training
Set of Poincaré Embedding Dataset

First N layer (s) 1 2 3 4 5 6 7 8

KNN=5
Shu et al. 0.62 0.36 0.32 0.26 0.23 0.22 0.21 0.19

HKD 1.0 0.99 0.98 0.97 0.95 0.95 0.94 0.94

KNN=10
Shu et al. 0.56 0.28 0.23 0.17 0.14 0.13 0.12 0.08

HKD 0.99 0.97 0.96 0.94 0.92 0.91 0.90 0.90

KNN=15
Shu et al. 0.54 0.24 0.19 0.13 0.10 0.09 0.08 0.06

HKD 0.98 0.95 0.94 0.93 0.91 0.90 0.90 0.89

KNN=20
Shu et al. 0.54 0.23 0.18 0.11 0.09 0.08 0.07 0.05

HKD 0.97 0.94 0.93 0.92 0.90 0.88 0.87 0.86

Search complexity

reduction (%)

77.4 88.1 89.9 92.1 93.6 94.4 95.3 95.7

that, in the proposed method, the nearer the entity is to the ‘dog.n.01’ entity, the

more similar the codes are to those of the ‘dog.n.01’ entity. More specifically, when

the distance is closer, the more codes at the first places are the same as those of the

‘dog.n.01’ entity. When the distance becomes further, the different codes may become

more front. For example, the first code that is different between ‘hunting.dog.n.01’

and ‘dog.n.01’ is at the 7th dimension while the first code that is different between

‘whitetail prairie dog.n.01’ and ‘dog.n.01’ is at the 2nd dimension because ‘whitetail

prairie dog.n.01’ is further to ‘dog.n.01’. Meanwhile, ‘flying fox.n.01’ is chosen to

show entities at different categories have totally different codes. Comparing to the

codes from Shu et al. shown in Table 6.6, it is shown that the codes are generated

randomly in all dimensions.

6.3.4 Results on the CIFAR100 Dataset

In the CIFAR100 dataset, there are 20 superclasses, and each superclass has 5 classes.

This dataset has 50000 training images and 10000 test images in total. The wide

ResNet [135] is used to pre-train the dataset based on class information to get every
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Table 6.5 Nearest Neighbor Preserving Percentage by KD Codes on the Test Set
of Poincaré Embedding Dataset

First N code (s) 1 2 3 4 5 6 7 8

KNN=5

Shu et al. 0.53 0.20 0.16 0.09 0.04 0.03 0.02 0.02

HKD 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.93

KNN=10

Shu et al. 0.52 0.20 0.15 0.09 0.04 0.02 0.2 0.01

HKD 0.99 0.98 0.97 0.96 0.95 0.94 0.92 0.90

KNN=15

Shu et al. 0.52 0.20 0.15 0.09 0.04 0.02 0.2 0.01

HKD 0.99 0.96 0.95 0.94 0.94 0.92 0.92 0.89

KNN=20

Shu et al. 0.52 0.20 0.15 0.09 0.04 0.02 0.1 0.01

HKD 0.98 0.96 0.93 0.92 0.90 0.89 0.87 0.86

Search complexity

reduction (%)

76.8 88.0 88.8 91.6 93.2 94.0 94.8 95.4

image’s embedding. In this dataset, the number of hidden units is set 100. The value

of D is set 16 and K is 16. The value of α is 0.01. In this one, the KL divergence

on the centers and nearest neighbors is used, whose weight is 1 and perplexity is 15.

Two superclasses with five classes in each superclass are chosen, which are shown in

Figure 6.2(b) after t-SNE. Two kinds of colors denote two superclasses. HKD codes

in two superclasses are explored via visualization as shown in Figure 6.4. In these

figures, dots in one color denote these points share the same codes in the first N

dimensions. Through the first code, one class from the two superclasses can be split,
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Table 6.6 Code Case Studies on Poincaré Embedding Dataset Using the Method
From [Shu and Nakayama, 2018]

Entity Code Distance to

‘dog.n.01’

dog.n.01 [12 0 8 11 7 14 14 3 4 15 12 11 10 12 15 12] 0.00

hunting dog.n.01 [12 0 1 14 14 4 3 3 10 13 12 12 10 12 15 14] 0.05

coondog.n.01 [1 7 12 14 7 14 11 3 13 13 5 2 14 9 15 12] 0.29

hearing dog.n.01 [1 0 5 1 2 4 3 3 13 13 12 1 10 12 2 14] 0.43

crab-eating dog.n.01 [12 0 6 14 7 12 3 3 0 15 12 11 14 12 15 2] 1.15

whitetail prairie dog.n.01 [12 0 6 11 14 5 12 5 3 13 12 4 5 3 8 12] 2.35

flying fox.n.01 [12 0 6 4 8 5 12 7 10 14 12 1 5 9 8 10] 1.92

which is shown in Figure 6.4(a). When moving down the hierarchical structure of

codes formed, more and more classes can be extracted, which are shown from Figure

6.4(b) to Figure 6.4(h). More specifically, the proposed model can find smaller classes,

which are grouped by only a few nearest neighbors, which is shown in Figure 6.4(h).

The nearest neighbor retrieval results are available in the supplementary material.

6.4 Chapter Summary

In this chapter, a regularized autoencoder framework is proposed to generate

hierarchical K-way D-dimensional codes from symbol/data point embeddings. The

generated codes can significantly speed up the retrieval process by effectively reducing

the search space. Such reduction is attained by making neighbor embeddings hold
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Table 6.7 Code Case Studies on Poincaré Embedding Dataset Using the
Proposed Method

Entity Code Distance to

‘dog.n.01’

dog.n.01 [11 13 7 0 6 9 0 15 6 11 13 4 13 3 7 1] 0.00

hunting dog.n.01 [11 13 7 0 6 9 11 15 6 4 13 4 13 3 7 1] 0.05

coondog.n.01 [11 13 7 0 6 9 13 5 2 11 13 2 13 3 7 1] 0.29

hearing dog.n.01 [11 13 7 0 6 4 12 13 5 11 14 5 13 3 7 11] 0.43

crab-eating dog.n.01 [11 13 7 0 6 15 5 11 6 10 13 0 13 3 8 9] 1.15

whitetail prairie dog.n.01 [11 12 7 0 13 11 4 1 5 10 13 5 9 12 2 14] 2.35

flying fox.n.01 [7 13 7 8 13 1 1 1 6 10 14 4 6 3 0 10] 1.92

the same codes in the front dimensions, through leveraging code combinations with

exponentially decaying weights and embracing an examplar-based KL divergence loss.

Experimental results on synthetic and real-world datasets show that the proposed

method can successfully build a hierarchical structure in the discrete KD codes, with

over 90% nearest neighbors sharing the same codes in the first several dimensions. The

empirical studies also indicate that the proposed approach can reveal the semantic

structure of data via hierarchical data visualization.
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Table 6.8 Nearest Neighbor Preserving Percentage by KD Codes on the Training
Set of the CIFAR100 Data

First N layer (s) 1 2 3 4 5 6 7 8

KNN=5

Shu et al. 0.52 0.33 0.25 0.23 0.21 0.20 0.20 0.20

HKD 0.98 0.96 0.93 0.92 0.90 0.87 0.86 0.83

KNN=10

Shu et al. 0.45 0.24 0.16 0.13 0.11 0.10 0.10 0.10

HKD 0.98 0.95 0.92 0.91 0.88 0.87 0.83 0.82

KNN=15

Shu et al. 0.43 0.21 0.13 0.09 0.08 0.07 0.07 0.07

HKD 0.97 0.94 0.91 0.90 0.88 0.86 0.81 0.80

KNN=20

Shu et al. 0.41 0.20 0.11 0.08 0.06 0.05 0.05 0.05

HKD 0.97 0.93 0.91 0.90 0.88 0.84 0.80 0.78

Search complexity

reduction (%)

49.6 91.0 97.6 98.9 99.1 99.2 99.3 99.3
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Table 6.9 Nearest Neighbor Preserving Percentage by KD Codes on the Test Set
of the CIFAR100 Data

First N layer (s) 1 2 3 4 5 6 7 8

KNN=5

Shu et al. 0.72 0.38 0.17 0.11 0.07 0.03 0.02 0.01

HKD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99

KNN=10

Shu et al. 0.72 0.37 0.16 0.11 0.06 0.03 0.02 0.01

HKD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98

KNN=15

Shu et al. 0.72 0.37 0.16 0.11 0.06 0.03 0.02 0.01

HKD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

KNN=20

Shu et al. 0.71 0.37 0.16 0.11 0.06 0.03 0.02 0.01

HKD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96

Search complexity

reduction (%)

49.6 91.0 97.6 98.9 99.1 99.2 99.3 99.4
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(a) The first code (b) The first two codes

(c) The first three codes (d) The first four codes

(e) The first five codes (f) The first six codes

(g) The first seven codes (h) The first eight codes

Figure 6.3 The figures to illustrate that the proposed method can hierarchically
split the data into clusters in the synthetic dataset.
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(a) The first code (b) The first two codes

(c) The first three codes (d) The first four codes

(e) The first five codes (f) The first six codes

(g) The first seven codes (h) The first eight codes

Figure 6.4 The figures to illustrate that the proposed method can hierarchically
split the data into clusters in the CIFAR100 dataset.
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CHAPTER 7

SUMMARY OF THIS DISSERTATION

This dissertation applies deep learning techniques in transportation and has successfully

addressed multiple transportation problems with decent performance, including

passenger demand prediction, transportation mode detection and traffic light control.

Specifically, a deep spatio-temporal fuzzy neural network is proposed to predict the

passenger demands considering all the spatial, temporal and external correlations [69].

The proposed model outperforms the state-of-the-art approaches more than 10% in

RMSE. A lightweight system based on a convolutional neural network is proposed to

detect smartphone users’ transportation modes employing the energy-efficient sensor,

accelerometer [67, 70]. The proposed system can achieve over 94% accuracy in

detecting seven transportation modes. A realtime control system based on deep

reinforcement learning is proposed to control traffic lights to efficiently manage

vehicles such that less waiting time can be achieved [64]. The proposed system can

reduce over 20% waiting time comparing to the starting point and it converges faster

than its variants.

The dissertation further extends general embedding systems by designing

hierarchical k-way d-dimensional codes to replace one-hot codes to explore the data

visualization and retrieval. The proposed codes can reduce the searching space over

90% when searching nearest neighbors [65].
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