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ABSTRACT Railway systems are time-varying and complex systems with nonlinear behaviors that require
effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have
emerged as a popular optimization technique in recent years due to their ability to handle complex,
multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful
optimization techniques has been extensively used in the railway sector, and applied to various problems
such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review
of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The
paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the
challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular
hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm
optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with
their dedicated application in the railway domain are discussed too. More than 250 publications are listed
and classified to provide a comprehensive analysis and road map for experts and researchers in the field
helping them to identify research gaps and opportunities.

INDEX TERMS Genetic algorithm, railway systems, NSGA, multi-objective algorithm, scheduling, energy
saving, particle swarm optimization, railway energy management systems, ant colony optimization, neural
network.

I. INTRODUCTION
The railway system (RS) is a critical part of the transportation
infrastructure in many countries, providing efficient and safe
transportation of passengers and goods. However, it is a com-
plex and dynamic system that requires careful optimization
to ensure its efficient operation.

Optimization techniques can play a significant role in
improving the efficiency, safety, and reliability of the RSs.
By using optimization techniques, it is possible to reduce
operating costs, increase capacity, improve the accuracy of
train schedules, andminimize the risk of accidents. In railway
systems, there are wide scopes for improvements including
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mechanical domains like train operation and rolling stock
optimizations, electrical domains like energy consumption
and power systems optimizations, or systems integration opti-
mization like maintenance, signal and communication, and
safety optimizations which can be achieved by using different
optimization techniques.

Evolutionary algorithms (EAs) have been widely used to
optimize different aspects of engineering issues in recent
years [1], [2]. They are a class of optimization algo-
rithms inspired by natural selection and genetics. They use
a population of candidate solutions and iteratively apply
genetic operators, like mutation and crossover, to develop
the solutions toward an optimal solution. EAs are also used
widely in RSs due to their complexity, nonlinearity, and
uncertainty [3], [4].
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Genetic algorithm (GAs) is one of the earliest and most
widely used types of EAs in RSs. It is inspired by the pro-
cess of natural selection and uses a population of candidate
solutions to find an optimal solution. It is a computational
optimization technique that is based on the principles of
natural selection and genetics. It is a popular metaheuristic
optimization technique that has been applied in various fields,
including transportation systems such as railways. The appli-
cation of GA in RSs has been growing in recent years due
to its ability to optimize various aspects of railway systems
including designing, development, operation, and utilization.
Especially in scheduling, energy, forecasting, designing, fault
diagnosis, maintenance, allocation, and network planning
domains.

Scheduling is one of the significant challenges in railway
systems due to the complexity of the system and the need
to ensure that trains operate efficiently and on time. Sev-
eral studies have applied GA to optimize train scheduling
in railway systems. For instance, the hybrid multi-objective
GA-based approaches to solve the train scheduling problem,
which considers both the speed and the capacity of the railway
network are presented in [5], [6], and [7]. The proposed
approaches are able to optimize train schedules and reduce
the waiting times for trains.

Energy consumption is also an important area that requires
optimization. The railway system is a significant energy
consumer [8], and optimizing energy consumption can
reduce operating costs and improve environmental sustain-
ability. GAs have also been used to optimize energy-related
processes and increase energy efficiency, especially by opti-
mization of regenerative braking energy. One example of the
application of GA in regenerative braking energy optimiza-
tion is the work by Che et al. [9]. They proposed a promising
utilization method of regenerative braking energy according
to power regulation with a GA to ensure that it is completely
consumed by other adjacent traction trains. The proposed
scheme consists of railway power conditioners, energy trans-
fer converters, and a central controller. The results showed
that the utilization rate after implanting the method increased
to 93.3%. Regarding optimum utilization of the regenerative
braking energy, there are also some other studies developing
hybrid GAs optimizing the train timetable, train synchroniza-
tion, and train driving method [10], [11]. Overall, GA-based
optimizationmethods for regenerative braking energy in elec-
tric RSs have been widely utilized.

Another significant application of GA in railway sys-
tems is in the optimization of railway network design. The
railway network design involves determining the location
and size of railway stations, the location and number of
tracks, and the location of maintenance and repair facilities.
GA has been used in several studies to optimize railway
network design [12]. Resource allocation is another critical
aspect of railway operations that can be optimized using
GA [13]. Resource allocation involves determining the opti-
mal allocation of resources, such as locomotives, wagons,
and crew, to ensure efficient and effective railway operations.

According to the wide range of applications and new variants
of GA utilized in the railway section, there is a need for
a review study to classify all these important aspects and
compares the new variants together with their pros and cons
from a different application point of view.

Some comprehensive reviews about applications of GA
have also been conducted in the literature in other domains.
These reviews cover a broad spectrum of subjects like engi-
neering design, scheduling, and forecasting. One of the
most complete reviews is conducted by Katoch et. al [14],
which considered around 220 papers covering the descrip-
tion of well-known GA algorithms and their implementation
together with their pros and cons. In [15] the basic GA
and its recounts history in the electromagnetics literature is
described. Meanwhile, the application of advanced genetic
operators within the realm of electromagnetics is presented.
There are some other studies investigating the applications
of GA in hybrid electric vehicles [16], medicine [17], and
operation management [18]. These publications are out of
the scope of the railway context and definitely require further
and specific investigations and improvements to solve railway
issues. Overall, the authors could not find any review paper
dedicated to the application of GA in RSs. Accordingly, this
paper is prepared to cover this gap providing an understand-
ing of the development of GA and its variants in the railway
domain and recognizing the most significant applications to
give a roadmap to help experts on im-proving the efficiency
and reliability of ERSs. Meanwhile, this paper presents a
literature review together with a bibliometric analysis of the
application of GA in railway systems, including the various
optimization problems that have been addressed using GA.

The subsequent sections of the paper are arranged in the
following manner: Section II discusses the review methodol-
ogy and bibliometric analysis of theGA-based publications in
the railway section. Some basics of GA are briefly reviewed
initially in section III; then, the strategy for searching the
literature and the examination of GA implementations in the
railway sector are introduced. Section IV is dedicated to study
the most important GA variants in RSs together with their
applications and performances. In section V the main opti-
mization methods used in RSs that have been combined with
GA known as hybrid GAs are discussed. Finally, section VI
gives some future trends and concludes the paper.

II. REVIEW METHODOLOGY AND BIBLIOMETRIC
ANALYSIS
The purpose of the keyword survey is to identify and cat-
egorize the different re-search streams and evolutionary
algorithm methods.

To achieve this, the Scopus Web of Science database was
used as the primary source for publications, and a Boolean
search was conducted to obtain a comprehensive collection
of articles. A total of 1147 documents were included in the
search from 2008 to 2022, with additional restrictions on
language (English) and research areas (engineering, energy,
environmental science, computer science, multidisciplinary,
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FIGURE 1. Extracted maps regarding bibliometric analysis of the keywords in the genetic algorithm method in railway section. a) network cluster
map. b) time overlay visualization map.

and mathematics). The VOS Viewer software was chosen
as the analytical tool to extract key terms and research
streams. The resulting cluster map, depicted in Figure 1.a.,
shows that the keywords can be grouped into five main
clusters that represent different topics of research combined
with genetic algorithms in evolutionary methods. The size
of each circle represents the frequency of the selected key-
word, while the distance and lines represent the relationships
between keywords in the same group. The clusters are clas-
sified and can be labeled based on their content, which
included energy, scheduling, forecasting, design & main-
tenance, multi-objective optimization, and neural networks.
The analysis revealed that the strongest relationships were
between the ‘‘ design & maintenance ’’ cluster and the other
clusters. These clusters were identified as the main topics
to be discussed in the paper. The most commonly used
keywords among these clusters were ‘‘genetic algorithm,’’
railroad’’, ‘‘optimization,’’ ‘‘scheduling,’’ ‘‘energy utiliza-
tion,’’ and ‘‘multi-objective optimization’’. Meanwhile, the
most commonly used keywords related to the application
of GE method in different aspects of railway systems are
found as ‘‘scheduling’’, ‘‘energy’’, ‘‘forecasting,’’ ‘‘sensitiv-
ity analysis’’, ‘‘maglev suspension, ‘‘plants & structures’’,
passenger flows’’, ‘‘maintenance’’, ‘‘fleet operation’’, ‘‘reli-
ability’’, ‘‘railway bridge’’, ‘‘timetable’’ and ‘‘vibration’’.

A time overlay visualization map of the analysis, shown in
Figure 1.b., indicates that these keywords, along with others
related to the ‘‘multi-objective optimizations’’ and ‘‘energy’’
clusters, have become increasingly significant since 2019 and
have received significant attention in recent years.

According to the bibliometric analysis and results, the
study on the application of GAmethod in railway systems and
each of the mentioned aspects and clusters is likely to spread

more in the coming years. According to the research stream
and gap founding, the next sections present an overview of
the different methods found as clusters, their pros and cons
with challenges, and future works.

III. GENETIC ALGORITHM METHODOLOGY
GA is an evolutionary algorithm method inspired by the
process of natural selection and genetics. In GA, a population
of potential solutions is iteratively evolved through the appli-
cation of genetic operators such as selection, crossover, and
mutation. These operators simulate the biological processes
of reproduction, crossover between parents, and random
mutations that occur in natural evolution. The fitness of each
individual in the population is evaluated using an objective
function that quantifies the quality of the solution. GA has
been successfully applied to a wide range of optimiza-
tion problems, including those in the fields of engineering,
finance, and biology. One of the key strengths of GA is
its ability to search a large and complex search space effi-
ciently, making it suitable for problems with a large number
of variables or constraints. Additionally, GA can incorpo-
rate prior knowledge or constraints into the fitness function,
which can help to generate solutions that align with domain-
specific knowledge. However, GA has some limitations, such
as its susceptibility to premature convergence and the diffi-
culty of handling constraints or non-continuous optimization
problems.

A. GA METHOD DESCRIPTION
The GAwas one of the first stochastic algorithms that utilized
a population-based approach. The concept of GAwas derived
fromDarwin’s theory of evolution [19], which focused on the
survival of the fittest species and their genes. Each potential
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solution is viewed as a chromosome, with each parameter
serving as a gene. An objective function is used to measure
the fitness of each individual in the population. To enhance
weak solutions, the selection process chooses the best solu-
tions at random using a mechanism such as a roulette wheel.
This operator favors the best solutions due to the probability
being proportional to their fitness, but it also helps to avoid
local optima by allowing poorer solutions to be selected. This
implies that if fit solutions become caught in a local solution,
they can be extracted by other solutions.

The reliability of the GA algorithm stems from its stochas-
tic nature, as it maintains the best solutions within each
generation and employs them to enhance other solutions;
therefore, with each successive generation, the whole pop-
ulation improves. GA algorithm is based on four steps as
follows [20]:

1) INITIAL POPULATION
The population in the genetic algorithm consists of various
solutions that correspond to the chromosomes of individuals,
and each chromosome contains a collection of variables that
simulate genes. During the initialization stage, the primary
goal is to distribute the solutions evenly throughout the search
space to maximize the population’s diversity and increase the
likelihood of identifying promising areas.

2) SELECTION
The fundamental basis for this part of the GA is derived from
natural selection. In nature, the strongest individuals have
greater odds of food and get-tingmated, leading to their genes
being more prevalent in the next generation. Consequently,
the GA utilizes a roulette wheel to allocate probabilities to
individuals based on their fitness levels and selects them
to create the subsequent generation in proportion to their
objective values.

Due to the stochastic nature of a roulette wheel, individuals
who are not fit have a low chance of contributing to the for-
mation of the next generation. However, if a poor solution is
selected, its genetic makeup can still be passed on to the next
generation. Therefore, it is important to avoid eliminating
such solutions, as doing so would decrease the variety within
the population.

3) CROSSOVER
Once the selection operator has identified individuals, they
must be utilized to generate the next generation. Naturally,
the chromosomes from amale and female mix to create a new
chromosome. As depicted in Figure 2. in a genetic algorithm,
two selected solutions (parent solutions) are combined using
techniques such as single-point or double-point crossover,
to generate two new solutions (children’s solutions).

The single-point crossover involves exchanging the chro-
mosomes of two parent solutions at a single point, both before
and after it. On the other hand, the double-point crossover
involves two crossover points, where only the chromosomes
between these points are changed.

FIGURE 2. Technique in crossover step. a) Single point. b) double point.

FIGURE 3. Mutation operator.

4) MUTATION
In order to prevent a genetic algorithm from becoming a basic
random search, themutation rate is kept low, as highmutation
rates can have this effect. The mutation operator is used
to add an additional level of randomness to the population,
which helps to maintain diversity and prevents solutions from
becoming too similar; as a result, the likelihood of avoiding
local solutions is increased within the genetic algorithm.
Figure 3. provides a concept of how this operator works,
where minor alterations are made to randomly chosen genes
following the recombination (crossover) phase.

B. APPLICATION OF GA IN RAILWAY SYSTEMS
As demonstrated in the bibliometric analysis section, in the
context of railway systems, based on the most commonly
used keywords related to the application of GA method, they
can be used for various purposes such as scheduling, energy
saving, forecasting, sensitivity analysis, plants & structures,
passenger flows, maintenance, fleet operation, reliability,
timetable, and vibration.

According to the publications discovered during the analy-
sis, the exploration of GA applications in the railway industry
is not a new area of research and has been ongoing for
quite some time. Nevertheless, in recent years, the research
community has demonstrated greater attention to this matter.
To verify this assertion, the analysis collected publications of
all types between 2008 and 2022.

Figure 4 depicts the quantity of GA publications within
the railway sector per annum including journals, confer-
ences, and book/chapter. Between 2008 and 2011, there were
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FIGURE 4. Number of GA method publications in railway domain by year.

relatively few studies conducted in this area. Accordingly, the
data presented in this figure highlights three distinct phases
for GA publications in the railway domain: 2008-2014,
2015-2017, and 2018 to the present day. Since 2018, there
has been a significant rise in annual publication rates for both
journals and conferences, such that nearly 48% of all publi-
cations are concentrated within the 2018-2022 timeframe.

Table 1 lists the GA applications found in railway-related
publications, which are divided into seven main categories:
scheduling, control optimization, network planning, and
allocation, designing, driving and energy, forecasting, fault
diagnosis, and maintenance. It is recognized that categorizing
applications is challenging because numerous applications
encompass several areas and may belong to several cate-
gories. Each of the subcategories may be included in other
subjects. Maybe some of them could be placed in other
categories too since there is a lot of connection between
some of the clusters. However, the categories and classifi-
cations in Table 1 are according to the authors’ engineering
knowledge and expertise. For each category, the highly cited
papers are addressed with their specified purposes and area
of application.

1) SCHEDULING
According to the bibliometric results, it is evident that a
significant portion of GA applications in the railway sec-
tor is focused on scheduling, which comprises about 28.9%
of the total papers. Scheduling applications are primarily
concerned with timetable optimizations [5], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], travel
time [24], [28], [33], [34], [35], [36], [37], [38], [39], [40],
[41], train scheduling/rescheduling [5], [24], [31], [42], [43],
[44], [45], [46], [47], [48], where a train schedule provides
information on the specific routes taken by different train
types, along with their departure and arrival times at var-
ious stops along the way. Rescheduling is implemented in
response to delays, which require the generation of new
schedules that causeminimal disruption to the existing sched-
ules. Train routing also is dedicated to the train scheduling
subcategory, but with more concentration on the routes. Train
routing typically offers several routes or stop plans to select
from, while the routes and stop plans for train schedulingmay
be fixed and unable to be altered.

Furthermore, GA has been applied to scheduling tasks such
as rolling stock and crane scheduling in railway systems [49],
[50], [51], [52], [53], and train crew scheduling [54], [55],
[56]. In such scheduling applications, GA is used directly
to pinpoint the best possible mix of plans or schedules.
Additionally, scheduling applications have been utilized for
vehicle/train maintenance and power supply substations for
electrified railways which are dedicated to energy and main-
tenance categories.

2) ENERGY
Energy demonstrates the second biggest application area
with almost 18.5% of total publications. This reveals that
energy is an important area that requires optimization.
The RS is a significant energy consumer, and optimizing
energy consumption can reduce operating costs and improve
environmental sustainability [57]. Meanwhile, integrating
renewable energy sources and other distribution generations
has increased the necessity of energy optimization and intelli-
gent control by smart energy management systems [58], [59],
[60]. According to the literature and bibliometric analysis,
GAs have been used to optimize energy-related processes
including energy utilization or energy efficiency [61], [62],
[63], [64], [65], energy saving/conservation [27], [39], [74],
[75], [76], [77], [78], [66], [67], [68], [69], [70], [71], [72],
[73], energy storage systems [27], [79], [80], [81], [82], [83],
[84], and regenerative braking energy [9], [10], [85], [86],
[87], [88], [89]. According to the time overlay-based visual-
ization map shown in Fig.1b, energy subcategories are trends
and hot topics which became more significant since 2018 and
have been given great attention in recent years.

Subcategories like energy utilization, energy efficiency,
and energy saving/conservation are also interlinked with the
scheduling domain in terms of optimal train scheduling and
speed control to reduce the consumption of energy. However,
due to the terms regenerative braking energy, power supply
system optimization, optimal voltage control, energy storage
systems, and optimal locations of power infrastructures they
have been considered in the energy domain. As a new trend in
the integration of ESS and RSs, GA can be used to optimize
the operation of the system and improve its performance in
terms of optimizing the control strategy and finding the opti-
mal setpoints for charging and discharging [81], designing
optimal size and configuration of the ESS, and finding the
optimal locations [90], [91].

3) CONTROL
Active controls, which are utilized for achieving adaptive or
semi-adaptive systems, constitute the third largest application
area, accounting for almost 18.2% of the total publications.
Controllers represent a fundamental aspect of active control,
and various controllers have been employed across different
applications.

According to the literature and bibliometric analysis, GAs
have been used together mostly with model predictive control
(MPC) [92], [93], [94], [95], fuzzy logic [21], [56], [84], [96],
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TABLE 1. Main application of GA method in different aspects of railway systems.
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TABLE 1. (Continued.) Main application of GA method in different aspects of railway systems.

[97], [98], [99], [100], neural network (NN) [47], [90], [101],
[102], [103], [104], [105], [106], [107], [108], [109], [110],
[111], [112], [113], [114], [115], [116], [117], [118],
sliding mode control (SMC) [70], [119], [120], [121],
PID [70], [122], [123], [124], [125], [126], [127].

For instance, fuzzy logic combined with GA was imple-
mented in [21] to reduce energy consumption in railways
traffic operation, particularly in high-speed lines. In [84] a
modified energy management system with GA and fuzzy
logic to optimally size a tramwaywith a hybrid energy storage
system is presented.

Meanwhile, Acıkbas et al. presented a novel method
using ANN and GA as coasting schemes to reduce the
energy consumption of mass rail transit systems [108]. Train
rescheduling problems and optimizing the rail profile for
high-speed railways also has been addressed with GA and
ANN in [47] and [116] respectively.

Proportional integral derivative (PID) controller-based sys-
tems are presented in [123] and [127] to control MAGLEV
systems and regulate the levitation process of maglev vehi-
cles. Vibration control of the train and pantograph-catenary
control is also done by using PID and GA in [125] and [126].

Strategies based on model predictive control (MPC) and
numerical optimization of an objective function using GA

for real-time control of a metro system are proposed in [93]
and [94]. In another study [92], an energy consumption mini-
mization method in a subway ventilation system is presented
based on combined MPC and GA.

Sliding mode control (SMC) is another common con-
trol method that is applied along with GA. A random
reinforcement GA to avoid the local optimum efficiently
combined with SMC is developed for speed curve tracking
with bounded disturbance for subway trains in [70]. In [121],
a novel electromagnetic guiding system with current control
modules for MAGLEV system is proposed and to remove
the sensitivity of the proposed method to system parameters,
a control strategy based on a combination of cascade sliding
mode and GA is applied.

4) DESIGN
Design represents the next largest application area of GA
in RSs. According to bibliometric study results, it can
be subdivided into subcategories of designing vehicles like
bogies or rolling stock, designing system layouts like railway
bridges and catenaries, suspension and dynamic of trains,
multi-modal and intermodal network design, route design and
station design [7], [12], [101], [128], [129], [130], [131],
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[132], [133], [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143], [144], [145], [146], [147], [148], [149],
[150], [151], [152], [153], [154], [155], [156], [157], [158],
[159].

As optimizations of train designs, [12] outlines an
approach to create a dynamic model for an articulated mono-
rail, which is then optimized using a genetic algorithm to
enhance its curving dynamics. This model features six car
bodies and seven straddle-type bogies. Furthermore, the other
study explores the theoretical and experimental aspects of
quasi-static load spectra on bogie frame structures of high-
speed trains [157].

System layout optimizations are discovered for railway
bridges [132], [150], [154], overhead catenary [137], and sus-
pension and dynamics of vehicles [130], [131], [149], [158].

Another absorbing design optimization was detected
for the multimodal and intermodal station for optimizing
the transportation of goods and passengers in a railway
system that involves multiple modes of transport or inter-
modal transfers [128], [141], [142], [143], [145], [146],
[152]. Furthermore, route design optimizations in RSs refer-
ring to the use of GA to determine the most efficient
and cost-effective routes for railway trains are noticed
in [7], [136], [139], [147], [151], and [159]. The use of
GA to optimize the layout, configuration, and operation of
railway stations and facilities are the other domains that are
discovered [101], [134], [135], [140], [148].

5) NETWORK PLANNING/ALLOCATION
Both allocation and network planning applications involve
usually determining the destination or recipient of certain
items. Allocation applications are mainly concerned with
allocating train sets and vehicles, platforms, crews, and
resources. Some other aspects of applications in this category
include alignment, optimal locations, monitoring sensors,
signaling and communications, and power sources.

Using GA to optimize the alignment and layout of rail-
way tracks aiming to improve the performance of the track
system in terms of safety, capacity, and speed while minimiz-
ing construction and maintenance costs are found in [160],
[161], [162], and [163]. Optimizing location and capac-
ity of stations/sites [164], [165], balise locations [166],
power quality compensators [167], the best energy manage-
ment strategy, location, and size for ESS [90], [91], [168],
the locations of monitoring sensors [169], [170], signaling
devices [166], [171], designing dimensioning of the electric
railway system based on neutral zones location optimiza-
tions [172] are found as the other interesting optimization
areas.

Allocating platform optimization using GA involves opti-
mizing the assignment of train platforms to arriving trains at
a station or terminal aiming to maximize the use of available
platforms while minimizing the waiting times for trains and
passengers discovered in [173], [174], and [175].

Allocating vehicle optimization in RS involves optimizing
the assignment of train sets and vehicles to specific routes,

stations, and services [176], [177], [178]. The objective
is found to improve the efficiency and utilization of train
sets and vehicles, minimize delays, and enhance the overall
performance of the railway system.

Allocating crew optimization involves optimizing the
assignment of crewmembers to specific train services or tasks
in a railway system [179] and allocating resources optimiza-
tion is found as the other application domains.

6) FAULT DIAGNOSIS AND MAINTENANCE
Fault diagnosis and maintenance applications by GA in rail-
way systems usually involve the determination of the health
condition of components or subsystems of the RS, detect-
ing faults or failures, predicting their future occurrence, and
performing maintenance actions to prevent or minimize their
impact on the system’s performance.

Fault Diagnosis of different parts of RS, like rolling bear-
ing, track circuit, auxiliary inverter, etc. are discovered as one
of the common subcategories [107].

Maintenance scheduling and track optimization in RS
involve the use of GA algorithms to optimize the timing
and frequency of maintenance activities to minimize system
downtime and maximize operational efficiency [25], [180],
[181], [182].

The GA algorithm analyzes data from various sources
such as track condition monitoring, historical maintenance
records, and train scheduling to determine the optimal timing
for track maintenance activities to maximize the lifespan of
the track and minimize downtime due to maintenance [25].

Calibration found as the other main application which
involves the use of GAs to optimize the calibration of mea-
surement systems used in railway operations, and determine
the optimal settings for sensors and measurement devices
such as accelerometers, strain gauges, and temperature sen-
sors, which are used to monitor various aspects of railway
operations [25], [183], [184], [185], [186], [187].

Vibration optimization in RS using GAs to optimize the
vibration characteristics of trains, tracks, and other com-
ponents is found as other main applications [188], [189].
Vibration is a major issue in RS as it can lead to wear
and tear on the tracks, vehicle components, and surrounding
infrastructure. GAs can be used to analyze data from various
sources such as vehicle acceleration data, track geometry
data, and environmental data to determine the optimal settings
for various parameters such as track stiffness, vehicle sus-
pension, and damping. The GA algorithm can also determine
the most effective vibration mitigation strategies such as the
use of active suspension systems or the addition of damping
materials to reduce vibration levels. Last but not least is the
sensitivity analysis in RSs using GAs to analyze the sensi-
tivity of different variables on the overall performance of the
RS [130], [190], [191].

7) FORECASTING
Forecasting was discovered as the last main domain in RSs
involving GAs to predict future events or trends based on
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historical data. These applications are typically used for pre-
dicting demand for railway services, forecasting train delays,
traffic, possible risks or damages, predicting maintenance
needs, and estimating future energy consumption. By analyz-
ing large amounts of historical data, GA can identify patterns
and trends that can be used tomake accurate predictions about
the future.

Forecasting train and passenger traffic [154], [192], [193],
[194], [195] includes the use of GAs to predict the future
behavior of both train and passenger traffic to optimize the
use of resources, such as trains and tracks, by accurately pre-
dicting the number of passengers and trains that will use the
system at different times. This can be achieved by collecting
and analyzing historical data on train and passenger traffic,
train schedules, routes, and other variables to predict future
train traffic patterns. Prediction of tickets [196], thermal
capacity [197], and risk identifications [198], [199], [200],
[201] are found as the other subcategories in this domain.

IV. GA VARIANTS APPLICATIONS IN RAILWAY SYSTEMS
GA variants emerged to address the limitations and chal-
lenges of the original GA algorithm and to adapt the
algorithm to different types of optimization problems.
The original GA was introduced by John Holland in the
1970s [204] and was inspired by the process of natural
selection. While the original GA was successful in solving
many optimization problems, it had some limitations and
challenges. For example, it could get stuck in local optima,
it could be slow to converge, and it was not suitable for certain
types of optimization problems such as those with contin-
uous decision variables. To address these limitations and
challenges, researchers developed various variants of GA.
These variants introduced new techniques and strategies for
selection, crossover, mutation, and adaptation. Some variants
were designed for specific types of optimization problems,
such as binary optimization, real-valued optimization, and
multi-objective optimization. Other variants were designed to
address general challenges in optimization, such as premature
convergence, diversity maintenance, and scalability.

There are many variants of GA that have been developed
over the years. Here are some of the commonly used andwell-
known variants of GA specially used in railway section:

• Binary-coded Genetic Algorithm
• Real-coded Genetic Algorithm
• Integer-coded Genetic Algorithm
• Permutation-based Genetic Algorithm
• Niching Genetic Algorithm
• Non-dominated Sorting Genetic Algorithm
• Adaptive/ Self-Adaptive Genetic Algorithm
• Parallel Genetic Algorithm
• Memetic Algorithm
• Multi-Objective Genetic Algorithm
• Hybrid Genetic Algorithm

These variants of GA have different characteristics and are
suited for different types of optimization problems.

Hybrid genetic algorithm is a type of optimization
algorithm that combines two or more optimization techniques
to improve its performance and efficiency such as a local
search method, a simulated annealing algorithm, or a particle
swarm optimization algorithm. Accordingly, we have sepa-
rated it and discussed it in section V.

A. BINARY-CODED GA (BCGA)
In this variant, the solution is represented as a string of 1s
and 0s. Each element of the string represents a binary digit,
and the entire string represents a candidate solution. BCGA
is commonly used for combinatorial optimization problems.

One of the critical applications is the optimization of train
scheduling, which involves determining the arrival times of
trains, their routes, and stops [205]. BCGA can be used to
minimize the total delay, reduce waiting times, and maximize
the use of track and train capacities. Another application is the
optimization of track occupancy time, where the algorithm
can minimize track usage time, reduce conflicts, and enhance
safety. Train traffic control systems can also benefit from the
use of BCGA by optimizing signal settings and minimizing
waiting times, collisions, and maximizing throughput [206].
Finally, BCGA can be used also in ATO and train formation
optimization by determining the optimal sequence and length
of carriages that reduce empty carriage movements, and total
weight, and minimize damage to track and rolling stock
components [207].

B. REAL-CODED GENETIC ALGORITHM (RCGA)
RCGA is a variant of the traditional GA that allows the
optimization of problems with continuous variables. In this
algorithm, the chromosome is represented by a vector of real
numbers, which allows the representation of the actual values
of the decision variables. The RCGA approach has been
widely applied to various optimization problems in different
fields, including railway systems, due to its ability to handle
real-valued decision variables and its capability to converge
to optimal solutions effectively.

One of the primary applications of RCGA in RSs is in train
scheduling optimization problems. The optimization problem
involves a large number of decision variables, such as the
departure and arrival times of the trains, the routes to be taken,
and the speeds of the trains. RCGA is a suitable optimization
technique for such problems because it can handle the contin-
uous decision variables and optimize the schedules in a more
efficient way [208], [209].

Another application of RCGA in RSs is in the optimiza-
tion of railway vehicle maintenance. The maintenance of
railway vehicles is an essential aspect of RSs because it
directly affects the safety and reliability of the system. The
optimization problem involves deciding when and how to
perform maintenance activities, such as inspections, repairs,
and replacements, in a way that minimizes the overall cost
and maximizes the availability and reliability of the vehicles
[210]. RCGA has been used to optimize the maintenance
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schedules and decisions in RS, resulting in improved system
performance and reduced maintenance costs.

C. INTEGER-CODED GENETIC ALGORITHM (ICGA)
Integer-coded genetic algorithm (ICGA) is a variant of
genetic algorithms specifically designed to work with inte-
ger representation of problem solutions. In this variant, the
solution is represented as a vector of integers. Like real-
codedGA, this algorithm optimizes the value of this vector by
creating new solutions through reproduction, crossover, and
mutation. ICGA is commonly used for optimization problems
that require discrete variables.

In recent years, ICGA has gained significant attention due
to its versatility, computational efficiency, and application
potential in various areas, including transportation manage-
ment and optimization. In the RSs, they can be used for
various applications such as train scheduling, rail network
design, and maintenance planning.

ICGA can be used for train scheduling [206], where the
chromosome represents the train’s departure and arrival times
at different stations. Fitness function can be defined based on
the number of conflicts and the utilization of resources such
as tracks and platforms. Meanwhile, ICGA can be used to
optimize the rail network design by defining the chromosome
as the placement of stations, tracks, and other infrastructure.
The fitness function can be defined based on factors such as
total distance, connectivity, and capacity.

D. PERMUTATION-CODED GENETIC ALGORITHM (PCGA)
In this variant, the solution is represented as a vector of
numbers that represent the order in which elements should
appear. The algorithm optimizes the order of these elements
by creating new solutions through reproduction, crossover,
and mutation. PCGA is commonly used for optimization
problems that require sequences or arrangements of elements,
such as the traveling salesman problem. PCGA can also be
applied to various aspects of RSs, especially in optimizing
complex and large-scale problems. One of the significant
applications of PCGA is the optimization of crew scheduling,
where the algorithm can allocate tasks, shifts, and rest periods
to crews while minimizing operational costs, labor hours, and
fatigue. Another application is the optimization of routing
and scheduling of multiple trains, where the algorithm can
determine the combination of routes and departure times that
maximize throughput, minimize delay and interference, and
optimize resource utilization. PCGA can also be applied to
the optimization of railwaymaintenance, where the algorithm
can determine the optimal allocation of maintenance tasks to
minimize downtime, reduce maintenance costs, and optimize
resource allocation [211], [212].

E. MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA)
MOGA is a type of genetic algorithm that is used to
solve optimization problems with multiple, often conflict-
ing, objectives. MOGA works by generating a population of

candidate solutions, evaluating their fitness based on mul-
tiple objectives, and then evolving the population through
selection, crossover, and mutation to generate new candidate
solutions. MOGAs have been widely used in railway systems
to address complex optimization problems involvingmultiple
conflicting objectives. In RSs, MOGAs have been applied
to various problems such as scheduling, routing, resource
allocation, and train control, among others [7]. For exam-
ple, in train scheduling, objectives may include minimizing
travel time, maximizing passenger satisfaction, and mini-
mizing costs. These objectives are often conflicting, and it
is not possible to optimize one objective without affecting
the others. MOGAs can be used to find a set of optimal
solutions that represent a trade-off between these conflicting
objectives.

In addition, MOGAs can also be used for optimal design
of different elements RS like ventilation and aerodynamic
design of substation [140], [213] or energy distribution anal-
ysis [214].

F. PARALLEL GENETIC ALGORITHM (PGA)
A PGA is a type of optimization algorithm used to solve
complex problems in a faster and more efficient manner
by running multiple instances of the algorithm simultane-
ously on multiple processors. It is a population-based search
algorithm that emulates the process of natural evolution to
find optimal solutions. In PGA, multiple populations are
created and evolved simultaneously, with each population
running on a separate processor or computational unit. The
populations exchange information periodically to improve
the diversity of the search and avoid premature convergence
to suboptimal solutions.

PGA has been used in RSs for various applications, such as
scheduling [5], planningmodel [192], [215], alignment [216],
and network design optimization [217]. PGAs can effectively
solve complex problems with large solution spaces and mul-
tiple objectives, which is often the case in RSs.

Real-time control involves making decisions during the
operation of the RSs, such as controlling train speed, routing,
and signaling in implementing the digital twin concept can be
other applications of PGA [218].

G. NICHING GENETIC ALGORITHM (NGA)
NGA is used to find multiple solutions in the same problem
space by using the concept of niches, which represent differ-
ent regions of the search space with diverse solutions.

NGA is a type of GA that aims to maintain diversity in the
population by preserving multiple niches or subpopulations
in the search space. In the RSs, NGAs can be applied in
several areas, including:

Generation of driving profiles in the context of railway
system design [219], for clustering of system environmental
variables and analysis of railway driving missions [220].
Aerodynamic shape optimization of trains and the design of
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hybrid locomotives are the other application found in the
literature [221], [222].

H. NON-DOMINATED SORTING GENETIC ALGORITHM II
(NSGA-II)
NSGA-II is a variant of MOGA that was developed by
Kalyanmoy Deb in 2002 [223]. It is an extension of the
original NSGA algorithm, whichwas proposed in 2000 [224].

NSGA-II is a popularmulti-objectivemethod that is specif-
ically designed to solve optimization problems with multiple
objectives, where traditional optimization methods may not
be effective. NSGA-II is based on the idea of non-dominated
sorting, which involves sorting solutions into multiple layers,
where each layer represents a set of solutions that are not
dominated by any other solution in the same layer.

In RSs, NSGA-II has been widely used for train
scheduling and routing problems [38], time table optimiza-
tions [22], [225], ATO and energy consumption [226],
optimal allocation of tunnels for limiting damages [191],
multistage energy distribution for whole vehicles in high-
speed train collisions [227], optimization of a railway wheel
profile [228], railway freight operation planning [229], opti-
mization of the AC railway power supply system [172], and
maintenance [230].

I. IMMUNE GENETIC ALGORITHM (IGA)
IGA is a hybrid algorithm that combines the principles of
GAs and immune systems to solve optimization problems.
In IGA, the population of candidate solutions is represented
as a set of antibodies, and the optimization process is modeled
as an immune response. It is a variant of GAs that mimics
the immune system’s behavior to improve the algorithm’s
performance. In RSs, IGA has been used for train scheduling,
routing, and optimization problems [231], [232], ATO [233],
sustainable urban land use planning approach [234], and site
selection of the emergency supply railway station [235].

J. MEMETIC GENETIC ALGORITHM (MGA)
Memetic Genetic Algorithm (MGA) is a type of genetic
algorithm that combines the traditional genetic algorithm
with local search techniques. This hybrid approach is used
to improve the optimization process and find better solutions
to complex optimization problems. In RSs, MGA is found
to be applied to various optimization problems such as train
operation optimization, scheduling, track maintenance, and
crew scheduling [63], [236]. The main application of MGA
has been found to optimize intermodal transport networks,
considering factors such as cost, transit time, and modal
shift [98], [237], [238].

Themain applications of the above-mentioned GA variants
together with the related papers are summarized in Table 2.
According to the bibliometric results, the variant’s applica-
tion distribution in publications is plotted in Fig. 5. It is
obvious that the NSGA and MOGA are the most widely used

TABLE 2. Application of GA variants in different domains of railway
systems.

FIGURE 5. GA variants application distribution in railway domain.

variants in RSs. It is due to theMOGA andNSGA capabilities
to handle multiple objectives simultaneously.

Overall, the choice of which variant of genetic algorithm
to use depends on the specific problem at hand and the
characteristics of the search space. Each variant has its own
strengths and weaknesses, and the best approach may involve
a combination of different algorithms.
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V. HYBRID GENETIC ALGORITHMS
As mentioned before, Hybrid Genetic Algorithms (HGAs)
are types of optimization algorithms that combine the prin-
ciples of GA with other optimization techniques to overcome
the limitations of traditional GA. The objective of HGAs is to
enhance the search process by exploiting the complementary
strengths of different optimization algorithms.

There are several HGAs that have been used in railway
systems to optimize various aspects of railway operations
and improve system efficiency. Some of these HGAs are
discussed in this section with their specific application in
railway section.

A. GENETIC ALGORITHM WITH TABU SEARCH (GATS)
GATS is a hybrid algorithm that combines the exploration
ability of genetic algorithms with the local search capability
of tabu search. This algorithm has been used for the opti-
mization of train scheduling and crew rostering in railway
systems. The nature of the connections between these two
methods, and revealing different kinds of opportunities that
exist for creating such a hybrid approach to the benefits of
their supplementary properties are shown in [241].

In [225] a novel method is formulated for the train syn-
chronization problem and timetable Synchronization of mass
rapid transit systems using improve NSGA II, combined with
differential evolution, and a hybrid combination with local
search techniques like heuristic hill climbing, tabu search, and
simulated annealing.

Amodel for efficiently expand of multimodal freight trans-
port network systems based on genetic local search andGATS
is accomplished in [128] by comparing the performances.
Minimizing the objectives of the passengers’ waiting and trip
times and trains’ travel times were also found in [242] done
by GATS.

B. GENETIC ALGORITHM WITH SIMULATED ANNEALING
(GASA)
GASA is a hybrid algorithm that combines the global search
ability of genetic algorithms with the local search capability
of simulated annealing. This algorithm has been used for the
optimization of train scheduling, route planning, and crew
rostering in railway systems.

In [225] a novel method is formulated for the train syn-
chronization problem and timetable synchronization of mass
rapid transit systems using improved NSGA II, and a hybrid
combination with and simulated annealing.

An improved method based on improved crossover and
selection methods with-out breaking the fixed track utiliza-
tion rule constraint is proposed in [243] for real-time track
Reallocation in busy complex railway stations.

In [244], GASA was presented as a method of solution
for the dynamic fleet-sizing and for rail freight car fleet-
sizing problem and the results showed the high efficiency and
effectiveness of the proposed algorithm.

A GA and simulated annealing are proposed to find the
optimal preventive maintenance scheduling and spare parts
problems for a rolling stock system considering intervals and
the optimal spare parts number of all components [245].

C. GENETIC ALGORITHM WITH PARTICLE SWARM
OPTIMIZATION (GAPSO)
GAPSO is a hybrid algorithm that combines the population-
based search ability of genetic algorithms with the swarm
intelligence of particle swarm optimization. This algorithm
has been used for the optimization of train scheduling and
the allocation of railway resources such as tracks and trains.

GAPSO applications to reschedule high-speed railway
timetables with the consideration of primary delays as a case
study in China are discussed in [246]. It is shown that the
objective values calculated by the developed GAPSO are
reduced by 15.6%, 48.8%, and 25.7% compared with the
other methods.

A novel model which takes advantage of the GAPSO
algorithm with fuzzy logic controller to realize the integrated
scheduling of multi-AGV with conflict-free path planning
is studied in [100]. It is shown that from the convergence
speed point of view, the proposed method is more effective
and reliable than GA algorithms, especially on largescale
problems.

The authors of [78] presented an integrated model to reach
the global optimality of energy-efficient operation by opti-
mizing the timetable and train trajectory simultaneously. The
results confirmed that hybrid GAPSO obtains the best results
compared with the results obtained by the other traditional
heuristic algorithms.

As an other application of GAPSO, the railway align-
ment optimization in mountainous regions has been studied
in [247]. The outcomes demonstrated that it can provide more
favorable solutions when compared to options created by
skilled designers, or those produced using a non-stepwise
particle swarm algorithm or simple GA.

D. GENETIC ALGORITHM WITH ANT COLONY
OPTIMIZATION (GACO)
GACO is a hybrid algorithm that combines the global search
ability of genetic algorithms with the self-organizing behav-
ior of ant colony optimization. This algorithm has been used
for the optimization of train scheduling, resource allocation,
and routing in railway systems.

The optimal speed control of a multiple-mass train for min-
imum energy consumption using GACO is studied in [64].
In this study, the GACO is applied to the energy efficiency
problem of electrical trains for various track gradients and
curvatures.

In [248], the carrier’s delivery route model using rail-
way stations is simulated by the optimized routing strategy
based on an integrated ant colony algorithm and genetic
algorithm. Therefore, GACO is designed for this problem.
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The computational results showed that the method could be a
feasible solution for handling the ‘‘last-mile’’ problem.

E. GENETIC ALGORITHM WITH DIFFERENTIAL
EVOLUTION (GADE)
GADE is a hybrid algorithm that combines the exploration
ability of genetic algorithms with the mutation and crossover
operators of differential evolution. This algorithm has been
used for optimization problems such as train scheduling and
crew rostering.

In [225] a multifunctional method is proposed for the
train synchronization problem and timetable synchronization
of mass rapid transit systems using improve NSGA II GA,
combined with differential evolution, and a hybrid combi-
nation with local search techniques. It is revealed based on
the results that the use of the proposed GADE-based scheme
outperforms the original NSGA-II in terms of convergence
and spread of solutions generated for this application.

An evolutionary framework to automatically plan naviga-
tion paths for crowds in public spaces is proposed in [249].
In this study mainly according to the fitness evaluation mech-
anism, a structure based on differential evolution is developed
to efficiently evolve path planning strategies. Meanwhile,
since the population is bigger after the generation of new indi-
viduals, the selection is important to maintain the population,
for which the NSGA-II is adopted.

F. GENETIC ALGORITHM WITH HARMONY SEARCH
(GAHS)
GAHS is a hybrid algorithm that combines the global search
ability of genetic algorithms with the improvisation ability of
harmony search. This algorithm can be used for optimization
problems such as train scheduling and resource allocation.

The authors couldn’t find any papers that specifically dis-
cuss the applications of genetic algorithms combined with
harmony search in the railway section. However, the integra-
tion of these two methods is studied in [250].

G. GENETIC ALGORITHM WITH ARTIFICIAL BEE
COLONY (GABC)
GABC is a hybrid algorithm that combines the population-
based search ability of GAs with the intelligent foraging
behavior of artificial bee colony. This algorithm also can be
used for optimization problems such as train scheduling and
route planning. The authors couldn’t find any papers that
specifically discuss the applications of genetic algorithms
combined with ABC in the railway section. However, the
advantages of hybridization in some other areas which can
also be implemented in RS found in [251], [252], and [253].

H. GENETIC ALGORITHM WITH FUZZY LOGIC (GAFL)
GAFL is a hybrid algorithm that incorporates fuzzy logic
for making decisions during the optimization process. This
algorithm has been used for optimization problems such as
train scheduling and crew rostering.

A fuzzy-logic controlled GA proposed for the solution
of the crew scheduling problem in the rail-freight sector
is presented in [56]. The proposed GAFL utilizes a hybrid
approach that combines a fuzzy-logic controller with a GA
to enhance its performance. The fuzzy-logic controller is
embedded in the GA to dynamically adjust the mutation
and crossover probabilities based on the GA’s performance.
The computational findings indicate that this hybrid approach
produces a schedule with a 10% lower cost compared to a GA
that uses fixed mutation and crossover rates.

In a study published in [99], a new fuzzy logic supervision
strategy was devised to integrate renewable production and
storage units into a railway power substation. This strat-
egy helped to limit the power drawn from the grid and
to increase the consumption of locally-produced renewable
energy by using empirically-supervised parameters. The opti-
mization method employed an experimental design to reduce
the number of design variables and mitigate the ‘‘curse of
dimensionality’’ before iteratively applying the GA method
through the Sophemis platform for parallel optimization and
Simulink GUI interface. The numerical outcomes indicated
that the economic indicator (i.e., the objective function) could
be easily improved with the optimal solutions obtained using
this method, but the simulation results showed only mini-
mal changes in hybrid railway power substation supervision
behavior.

In [84] an adaptive energy management system is pre-
sented for a tramway that utilizes a hybrid energy storage
system comprising both batteries and supercapacitors. The
hybrid ESS is sized using MOGA optimization, and the sys-
tem also employs a fuzzy logic-based control strategy. The
proposed approach has been shown to achieve cost savings of
up to 25.5% (compared to just super capacitor-based system)
while maintaining an overall efficiency of approximately
84.4%.

A novel model which takes advantage of the GAPSO
algorithm with fuzzy logic controller to adaptive auto-tuning
to solve the model aiming realization of the integrated
scheduling of multi-AGV with conflict-free path planning
is studied in [100]. It is shown that from the convergence
speed point of view, the proposed method is more effective
and reliable than GA algorithms, especially on largescale
problems.

The purpose of the study in [97] is to develop an eco-
driving model that can generate efficient driving commands
while taking into account the uncertainties of climatological
conditions. The uncertainties related to temperature, pressure,
and wind are represented using fuzzy numbers, and a Genetic
Algorithm with fuzzy parameters is employed to solve the
optimization problem. To ensure accuracy, a railway simula-
tor is used in the process. The proposed model is applied to a
realistic Spanish high-speed railway scenario, demonstrating
the importance of considering climatological parameters to
adapt driving commands. Results indicate that energy savings
of up to 34.7% can be achieved during summer conditions
when the uncertainty of climatological parameters is taken
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into account, as opposed to the 29.76% savings that can be
achieved without considering these factors.

I. GENETIC ALGORITHM WITH NEURAL NETWORKS
(GANN)
GANN is a hybrid algorithm that combines the genetic
algorithm with neural networks to optimize the weights and
architecture of neural networks for various problems such as
function approximation, classification, and prediction.

A novel method based on artificial neural network and GA
combined method is presented in [116] to optimize the rail
profile for high-speed RS. The results obtained from the com-
putational analysis indicate that the rail profile that has been
optimized performs better in terms of contact conditions and
wear between the wheel and rail. Additionally, the optimized
rail profile retains good dynamic performance.

A strategy is proposed for real-time controlling of a
Maglev system based on the combination of neural networks
and GA [254]. The suitable control inputs were calculated
utilizing a back propagation-based learning mechanism. Sim-
ulations based on Delphi 7 environment revealed that the
proposed method was successful and effective.

GANN is also used for the weight optimization prob-
lem [106]. In this context, a combination approach involving,
finite element analysis, Neural Networks and GA has been
successfully used to optimize the weight of bogie frame such
that the safety factor at all three critical locations are above
2.5. For the modified design, a weight reduction of 7.6% in
the existing bolster is presented.

After examining the current state of using the generalized
regression neural network (GRNN) in railway freight volume
prediction, [113] has enhanced the model’s performance by
incorporating an improved neural network. The improved
method employs a GA to search for the optimal spread,
which is the only factor of the GRNN, and then uses the
optimal spread for forecasting in the GRNN. In the process
of forecasting railway freight volume, this method employs
data increments during calculation and uses the goal values
obtained after the calculation as the forecasted results. Com-
pared to the results of the GRNN, the GA-improved GRNN
achieves higher prediction accuracy. Finally, based on this
method, the railway freight volumes for the next 2 years are
forecasted, and this improved method offers a new approach
to predict railway freight volume.

The main applications of the above-mentioned HGAs
together with the related papers are summarized in Table 3.
According to the bibliometric results, the HGAs application
distribution in publications is plotted in Fig. 6. It is obvious
that theGANNandGATbS are themost widely usedHGAs in
RSs. It may show their capabilities in terms of effectiveness,
performance, and accessibility.

Overall, these hybrid GAs have been successful in
optimizing various aspects of railway systems and have
helped improve system efficiency, reduce costs, and increase
resource utilization. These HGA have proven to be effective

TABLE 3. Application of HGAs in different domains of railway systems.

FIGURE 6. Hybrid GA application distribution in the railway domain.

in optimizing various aspects of railway systems, and their
success has led to further research and development in the
field of railway operations optimization.

The choice of which HGAs to use depends on the specific
problem at hand and the characteristics of the search space.
Each method has its own strengths and weaknesses, and
the best approach may involve a combination of different
algorithms.

VI. CONCLUSION AND FUTURE TRENDS
In this paper, a comprehensive review study is conducted
to examine the use of GA and its various variants in the
railway section. More than 250 publications were reviewed
and summarized. The study encompassed a wide range of
applications, including optimization of railway networks,
maintenance, scheduling, fault diagnosis, design, forecasting,
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energy, etc. Additionally, the paper discussed the most
popular GA variants and hybridization of GAs with other
optimization techniques to enhance their effectiveness in
solving railway-related problems. The bibliometric analysis
further highlighted the trends in research in this field and
identified the most prominent research directions. Overall,
this review demonstrates the potential of GA and its vari-
ants in improving various aspects of railway operations and
highlights the need for further research in this area to tackle
emerging challenges and develop more efficient and effective
solutions.

As research in the field of GAs progresses, new devel-
opments and trends emerge, which can be used to improve
railway operations and safety. One promising future trend is
the integration of GAs with other optimization techniques.
For instance, GAs can be combined with swarm intelli-
gence or machine learning algorithms to produce hybrid
approaches that leverage the strengths of multiple optimiza-
tion techniques. This integration can improve the efficiency
and accuracy of railway optimization problems, leading to
more effective solutions. Another trend is the use of GAs in
conjunction with big data and IoT technologies. These tech-
nologies enable the collection of vast amounts of data from
various sources, which can be utilized to optimize railway
systems. GAs can be used to analyze and model this data,
and to generate optimized solutions for complex problems,
such as train scheduling and predictive maintenance.

Moreover, there is a growing interest in developing intel-
ligent decision support systems using GAs. These systems
can assist railway operators in making real-time decisions by
providing accurate and timely information and realizing the
digital twin concept. Accordingly, the main research gaps of
this study are studying the integration of GA with emerging
technologies such as artificial intelligence, machine learning,
or big data analytics and exploring the practical implementa-
tion of GA-based solutions in real-time railway operations.
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