66 research outputs found

    Delay Extraction Based Equivalent Elmore Model For RLC On-Chip Interconnects

    Get PDF
    As feature sizes for VLSI technology is shrinking, associated with higher operating frequency, signal integrity analysis of on-chip interconnects has become a real challenge for circuit designers. For this purpose, computer-aided-design (CAD) tools are necessary to simulate signal propagation of on-chip interconnects which has been an active area for research. Although SPICE models exist which can accurately predict signal degradation of interconnects, they are computationally expensive. As a result, more effective and analytic models for interconnects are required to capture the response at the output of high speed VLSI circuits. This thesis contributes to the development of efficient and closed form solution models for signal integrity analysis of on-chip interconnects. The proposed model uses a delay extraction algorithm to improve the accuracy of two-pole Elmore based models used in the analysis of on-chip distributed RLC interconnects. In the proposed scheme, the time of fight signal delay is extracted without increasing the number of poles or affecting the stability of the transfer function. This algorithm is used for both unit step and ramp inputs. From the delay rational approximation of the transfer function, analytic fitted expressions are obtained for the 50% delay and rise time for unit step input. The proposed algorithm is tested on point to point interconnections and tree structure networks. Numerical examples illustrate improved 50% delay and rise time estimates when compared to traditional Elmore based two-pole models

    Parameterized modeling and model order reduction for large electrical systems

    Get PDF

    Addressing Computational Complexity of High Speed Distributed Circuits Using Model Order Reduction

    Get PDF
    Advanced in the fabrication technology of integrated circuits (ICs) over the last couple of years has resulted in an unparalleled expansion of the functionality of microelectronic systems. Today’s ICs feature complex deep-submicron mixed-signal designs and have found numerous applications in industry due to their lower manufacturing costs and higher performance levels. The tendency towards smaller feature sizes and increasing clock rates is placing higher demands on signal integrity design by highlighting previously negligible interconnect effects such as distortion, reflection, ringing, delay, and crosstalk. These effects if not predicted in the early stages of the design cycle can severely degrade circuit performance and reliability. The objective of this thesis is to develop new model order reduction (MOR) techniques to minimize the computational complexity of non-linear circuits and electronic systems that have delay elements. MOR techniques provide a mechanism to generate reduced order models from the detailed description of the original modified nodal analysis (MNA) formulation. The following contributions are made in this thesis: 1. The first project presents a methodology for reduction of Partial Element Equivalent Circuit (PEEC) models. PEEC method is widely used in electromagnetic compatibility and signal integrity problems in both the time and frequency domains. The PEEC model with retardation has been applied to 3-D analysis but often result in large and dense matrices, which are computationally expensive to solve. In this thesis, a new moment matching technique based on Multi-order Arnoldi is described to model PEEC networks with retardation. 2. The second project deals with developing an efficient model order reduction algorithm for simulating large interconnect networks with nonlinear elements. The proposed methodology is based on a multidimensional subspace method and uses constraint equations to link the nonlinear elements and biasing sources to the reduced order model. This approach significantly improves the simulation time of distributed nonlinear systems, since additional ports are not required to link the nonlinear elements to the reduced order model, yielding appreciable savings in the size of the reduced order model and computational time. 3. A parameterized reduction technique for nonlinear systems is presented. The proposed method uses multidimensional subspace and variational analysis to capture the variances of design parameters and approximates the weakly nonlinear functions as a Taylor series. An SVD approach is presented to address the efficiency of reduced order model. The proposed methodology significantly improves the simulation time of weakly nonlinear systems since the size of the reduced system is smaller than the original system and a new reduced model is not required each time a design parameter is changed

    Guaranteed passive parameterized model order reduction of the partial element equivalent circuit (PEEC) method

    Get PDF
    The decrease of IC feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the system under study as a function of design parameters, such as geometrical and substrate features, in addition to frequency (or time). Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters. We propose an innovative PMOR technique applicable to PEEC analysis, which combines traditional passivity-preserving model order reduction methods and positive interpolation schemes. It is able to provide parametric reduced-order models, stable, and passive by construction over a user-defined range of design parameter values. Numerical examples validate the proposed approach

    Experimental and simulation approaches for improving integrated circuit impedance characterisation under electrostatic discharge condition

    Get PDF
    This study was conducted to produce an accurate macro model of an Integrated Circuit (IC) by means of experiment, to be implemented for any application, both in time domain and frequency domain analysis. A probe is designed and optimised to measure a multipin IC with different pin distance. The multipin IC characteristic impedance was experimentally measured using two probes, where the measured combinations of S-Parameter are combined using a self-written software to produce a complete S-Parameter representation of the IC. The S-Parameter file is not suitable for time domain analysis, because vector fitting is required for each simulation. The S-Parameter file is then converted to macro model with controlled accuracy level. The macro model is also ensured its passivity and causality by using commercial macro modelling software (IdEM). The macro model has shown good correlation between time domain and frequency domain analysis. The macro model was then exported as a SPICE model, and was implemented on an Advanced Driver Assistance Systems (ADAS) printed circuit board (PCB). Co-simulation was then performed on the PCB and the results are compared with the measurement results of the fabricated PCB. The SPICE model used in this simulation has shown good resonant frequency correlation between 91 % to 99 %. Finally, the PCB along with the SPICE model was simulated with an Electrostatic Discharge (ESD) gun to observe the current distribution. This research has produced a practical and accurate method, to accurately model an IC as a SPICE model. The SPICE model will help many engineers to improve the accuracy of the virtual prototyping, hence reducing the product’s time to market

    Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis

    Full text link

    Model reduction of parasitic coupling networks of mixed-signal VLSI circuits

    Get PDF
    Purpose: This paper aims to present a method for the efficient reduction of networks modelling parasitic couplings in very-large-scale integration (VLSI) circuits. Design/methodology/approach: The parasitic effects are modelled by large RLC networks and current sources for the digital switching currents. Based on the determined behaviour of the digital modules, an efficient description of these networks is proposed, which allows for a more efficient model reduction than standard methods. Findings: The proposed method enables a fast and efficient simulation of the parasitic effects. Additionally, an extension of the reduction method to elements, which incorporate some supply voltage dependence to model the internal currents more precisely than independent current sources is presented. Practical implications: The presented method can be applied to large electrical networks, used in the modelling of parasitic effects, for reducing their size. A reduced model is created which can be used in investigations with circuit simulators requiring a lowered computational effort. Originality/value: Contrary to existing methods, the presented method includes the knowledge of the behaviour of the sources in the model to enhance the model reduction process. © Emerald Group Publishing Limited 0332-1649

    Modeling and simulation of VLSI interconnections with moments

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references.Supported in part by the Joint Services Electronics Program. DAAL03-86-K-0002Steven Paul McCormick
    • …
    corecore