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Abstract

This thesis presents a new CAD simulation method for determining waveform estimates of
MOS circuits. The methods are particularly useful in determining the delay times and coupling
noise voltages of interconnection networks. Additionally, switching devices are also accurately
emulated with a macromodeled equivalent circuit.

The moment representation, based on the Laplace Transform, is used as the model for both
signals and transfer functions of interconnection networks. A large interconnection network can
be modeled by a small number of polynomial terms, making network analysis much simpler,
computationally. A new matrix algorithm is developed for solving for the moment representa-
tion of almost any linear network. Transistor switching circuits are modeled by macromodeled
linear network equivalents.

On CMOS test circuits, after several logic stages the moment representation waveforms de-
viated no more than 10% from SPICE's waveforms, but were computed substantially faster than
SPICE. The simulation speed is further improved by "compiling" results, in which an entire
switching and interconnection circuit is represented by a macromodeled moment representation
approximation.

Thesis Supervisor: Jonathan Allen
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1

Introduction

VLSI circuitry'has created enormous possibilities for digital system design, but has also cre-
ated a new set of design problems. A system must be extensively evaluated before fabrication
of even a prototype, since parts are not off-the-shelf and may take valuable months to make.
Determining the performance of digital circuits before fabrication is an essential task. VLSI cir-
cuit designers must rely on Computer Aided Design (CAD) tools. Most often, the performance
of a VLSI system is determined through simulation. General, numerical simulators (like SPICE
[1]) are accurate, but are too slow for simulating large circuits. Popular alternatives to SPICE

are simulators with simple circuit models that are computed rapidly.

Previously, estimating speed performance through simple models was relatively easy. Cir-
cuit speeds of older MOS technologies was controlled by transistor drive and total load capaci-
tance. Circuit speeds of bipolar technologies were mainly controlled by the same parameters.
Printed circuit board delays were largely ignored since chip output switching times have ex-
ceeded printed circuit board interconnection times. Increasingly, however, the performance of
all VLSI technologies is being dominated by interconnection performance. As transistor dimen-
sions shrink, device speed performance improves. However, interconnection delays across an
entire chip are becoming much longer. This is true for MoS, bipolar and GaAs technologies,
even though interconnection circuit models are quite different. With faster switching chips,
propagation delays on printed circuit boards and chip carriers are also increasingly significant.

As chips and printed circuit boards become more complex another difficulty is increasingly
observed on all VLSI technologies-cross-talk noise between coupled interconnections. Coupling
on silicon MOS chips can intensify by the increased relative sidewall heights of finer linewidth
interconnections, and as always, coupling is observed between overlapping conductors. Cou-
pling is far greater on GaAs and Silicon-on-Sapphire chips than silicon chips because of semi-

insulating substrates. On printed circuit boards, increased coupling is due to finer linewidths
and spacings, an increased number of layers, and faster transitions. Chapter 2 discusses inter-

connection propagation delay and coupling in detail, and in general, shows why it is becoming

15
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CHAPTER 1. INTRODUCTION

more important to examine interconnection performance.

This thesis focuses on circuit modeling methods that can be used for fast computer simu-

lation of interconnection behavior-that is, the circuit modeling is optimized for circuits with

interconnection dominance. The modeling in this thesis determines voltage waveforms on any
node, which can subsequently be used for determining delay times and noise levels.

The problem of extracting an equivalent circuit from layout geometries is not considered
in this thesis. It is assumed that interconnection behavior can be modeled by linear circuit
elements (distributed or discrete) and that these can be extracted from physical layouts. Circuit
extraction from interconnections is discussed in [2,3,4,5] and circuit connectivity extraction is
discussed in [6,7].

1.1 Existing Performance Extraction Techniques

First, we will examine existing simulation and performance modeling methods for intercon-
nection circuits.

1.1.1 Direct Method Simulation

Currently, direct method circuit simulators like SPICE [1] and ASTAP [8] are the mainstay of

IC circuit designers for simulating circuit performance. These flexible simulators accept almost
any circuit with linear or non-linear, discrete elements and determine the voltage waveform on

any node.

Direct method simulation is much too costly for simulating complete chips and certainly
for simulating complete systems or system backplanes. For instance, the circuit size of SPICE

simulations is effectively limited to hundreds of nodes, thus, limiting these simulators to analysis

of individual cells. As circuit performance moves from transistor dominance to interconnection

dominance, direct method simulators need to devote less time to costly non-linear transistor

model evaluation. But, with direct method simulators, distributed elements of interconnections

must be broken into a series of discrete elements, adding excessively to the already limiting

number of circuit nodes.

Relaxation and iteration simulation methods [9,10,11] offer a simulation speed and circuit
size improvement over direct methods for Mos digital circuits. This is achieved by breaking
circuits, usually on capacitive boundaries, and solving the sub-circuits separately, where the

waveform on one sub-circuit controls the simulation of the next sub-circuit, which control the
next, and so forth. When the interaction between separate cells is strong, the sub-circuits must

be solved iteratively. Relaxation methods enable circuit size to be increased to thousands of

nodes-still a size prohibiting entire chip simulation.

An even more comprehensive simulation method solves Maxwell's Equations for intercon-

nections. These simulators perform the most accurate simulation of interconnections, including

non-TEM transmission line effects, skin effect, etc. But, they are limited to very small circuits,

16



1.1. EXISTING PERFORMANCE EXTRACTION TECHNIQUES
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FIGURE 1-1: Elmore delay of a waveform.

in some cases they are able to simulate just a single crossing of two interconnections.

1.1.2 Specialized Simulators

Because of circuit size limitations with direct method simulators many specialized, faster
simulators have been developed-usually at the expense of accuracy. A prime example of this
is RSIM [12] for MOS circuits. This program started as a switch-level logic simulator, and simple
delay models were added to it. Each logic state transition on a node causes a delay model

computation for a time estimate of the transition. The delay models in RSIM are based on
transistor resistance and load capacitance-models which are inadequate for interconnection

dominated circuits.

Improved delay models have been developed which can be built into MOS switch-level simu-

lators. The next sections describe improved delay models which are specific to interconnection

dominated circuits.

1.1.3 Waveform Bounding of RC Trees

Waveform bounding methods are used to find an Elmore time approximation, a low bound

and a high bound of the voltage waveform on a circuit node. The Elmore time [13] actually
equals the area under the step response waveform if the initial and final values are shifted to 1 v.
and 0 v., respectively. That is, the Elmore time equals the shaded area in Figure 1-1. The
Elmore time can be used to make a waveform estimate, most often in the form of an exponential,

i.e., in the form of

v(t) = Voet/ td.

These methods were first developed by Penfield et al. [141 for RC tree circuits consisting of
resistive tree networks, with a capacitance to ground at each node. Distributed RC elements

__ 1__1 _ _�II I __�__
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CHAPTER 1. INTRODUCTION

are also allowed. Later, the class of permissible circuit was extended to include RC meshes [15]

and general RC networks [16]. The tightness of the bounds was improved in [17].

These methods have several limitations. First, on some nodes the Elmore time waveform

estimates are poor and the bounds are loose. This is quite noticeable for nodes near the driven

end of an RC line. Second, the RC circuit forms are limited and do not model all desirable

interconnection situations for RC lines. These methods, for instance, cannot model capacitive

coupling or resistive substrate effects (like those shown in Figure 2-1(e) and (f)). Third, non-

linear elements can only be modeled by linear element approximations.

1.1.4 Second Order RC Tree Model

Horowitz [18] has developed second order RC tree methods as an extension of the previous

RC tree methods. Two things were added in this work. The first addition is improved, second-

order waveform estimates that match the Elmore time, the second-order moment (moment is

extensively defined in Chapter 3) and the sum of the open-circuit time constants (or term bl

of the transfer function, al+,l++b22+. ). The second addition is the ability to model switching

pass gates in the middle of an RC tree.

This work addresses the first limitation presented in the last section. However, it still

contains the other limitations mentioned for RC tree methods.

1.1.5 Transmission Line Modal Analysis

Much effort has been devoted to modeling both lossless and lossy transmission lines with

computationally faster algorithms. A good discussion of this is in [19]. Direct method sim-

ulation is particularly inefficient for transmission line circuits, since generally the distributed

transmission lines must be modeled by a very large number of discrete nodes, more than is

needed for RC lines. A much faster analysis technique is achieved with modal analysis. Modal

analysis is possible in either the time domain or the frequency domain.

Time domain modal analysis works only for lossless transmission lines and assumes a con-

stant dielectric medium and constant coupling along the length of the transmission lines.1 Time

domain modal analysis is advantageous in that it is possible to simulate coupled networks and

non-linear drivers and loads (if solved with direct methods), The major disadvantage is that

lossy lines cannot be simulated unless the line is divided into many sections connected by

discrete resistors [22].

Frequency domain modal analysis can simulate lossy lines, but only with linear driver and

load networks. Again, it assumes a constant dielectric medium and constant coupling along

the length of the transmission lines. To operate in a time domain simulator, an FFT interface

'Transmission line analysis with varying coupling coefficients has been addressed in [20] and [21].

18



1.2. SIMULATION WITH THE MOMENT REPRESENTATION .

is needed to translate between the time domain and frequency domain. Mild non-linearities in

frequency domain modal analysis has been investigated by [23].

Both time domain and frequency domain modal analysis has been added to direct method

simulators. Accordingly, performance is often constrained by other features of the simulator.

These methods are incorporated into the simulator methods presented in this thesis (see Chap-

ter 5) and operate with much improved speed.

1.2 Simulation with the Moment Representation

In general, the specialized interconnection simulation methods described in the previous
sections suffer several drawbacks. The most noticeable one is that no one method can be used

universally for all configurations of interconnection simulation. A different method must be

applied to each propagation class (i.e., LC vs. RC propagation) and to each type of circuit

stimulation (i.e., a single-ended driver vs. a switched transmission gate vs. a noise spike ...).

Additionally, many of these methods have limited capacity to simulate non-linear circuit ele-

ments. Most use a linearized approximation for non-linear drivers and loads. This often leads

to approximate solutions with large errors, particularly when input waveforms fluctuate over a

wide range of input slopes.

Direct method circuit simulators have the flexibility to overcome these drawbacks, but these

simulators are too slow to accommodate the large scale simulations needed for VLSI design.

The moment representation simulation methods, introduced in this thesis, address these

drawbacks. The moment representation simulator uses nodal analysis, so, like direct method

simulators, the circuit configurations can be very flexible. It can simulate both LC and RC

interconnections with or without coupling, charge sharing circuits, single-ended drivers, pass

gates and so forth. A major difference, however, is that direct methods operate in the time

domain while the moment representation simulator operates in the moment representation do-

main, which is a subspace of the frequency domain. The moment representation domain better

accommodates linear interconnection circuits, especially with distributed circuit elements.

While the frequency domain usually precludes non-linear circuit elements, this thesis pre-

sents a moment representation macromodeling method which very accurately constructs a linear

circuit equivalent for a non-linear transistor circuit. The equivalent is valid through the entire

duration of any transition. The linear equivalents have variable circuit elements with values

that are macromodeled functions of input signal slope and output load. This macromodeling

method permits very rapid and accurate simulation of non-linear elements and is favorable for

combined linear and non-linear circuits.

Several features of the moment representation allow very rapid simulation of circuits:

1. An entire logic transition is solved in the moment representation simulator with one

matrix equation solution. On the other hand, direct methods require at least one matrix

_I )·)_ LI�----�l--· L·LIL_ --·-- I�^ -----_�· 111 --^-- - -�-�L---
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FIGURE 1-2: Transitions of node voltage, v(t).

equation solution at each incremental time-step-several dozen time-steps may be needed

for each logic transition.

2. The macromodeling algorithms for non-linear circuits are much faster than Newton-

Raphson iteration used in direct methods.

3. The response of circuits can be compiled by a preprocessor into a very compact moment

representation form. This is analogous to finding a linear circuit transfer function, except

that non-linear elements are also permitted.

An experimental simulator was developed to test the moment representation simulation

methods. The moment representation algorithms were embedded in an event-driven logic sim-

ulator in much the same way that RSIM's simple timing models were added to a switch-level

logic simulator [12]. The logic simulation algorithms are well-known, so they are discussed in

the thesis only in the briefest fashion. Details of event-driven logic simulation are found in

[12,24]. Waveform related issues of event-driven simulation, such as what to do when events

overlap or when events cancel, are detailed in [25,26]. The simulator algorithms were tested

on digital circuits containing Mos transistor and interconnection models. Simulator results are

interspersed throughout the thesis at appropriate locations. The following paragraphs briefly

outline the operation of the experimental simulator.

The voltage on any node is broken into a series of transitions separated by periods of d.c.

voltage, as shown in Figure 1-2. Each transition has a starting time, designated t through t4

in Figure 1-2, a d.c. transition value, and a waveform. The simulator models a node voltage by

transitions-at the starting time of a transition, the node voltage is defined by the waveform

portion of the transition; when the waveform decays to a final, constant value,2 the node voltage

is given by a constant d.c. value. The simulator must keep track of the d.c. value and update

it at the end of each transition. As shown in Figure 1-2, the transition can represent any type

of perturbation in the waveform, and is not always a logic transition.

2For an asymptotically decaying waveform this point is taken to be where the voltage decays to within 2% of
the final voltage.
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CHAPTER 1. INTRODUCTION

Within the event-driven simulator, transition waveforms are represented in two forms: in
the time domain and in the moment representation domain. The different forms are used in

different places in the simulation algorithms to gain maximum efficiency in both simulation
time and simulation memory requirements. Figure 1-3 shows the general flow of operations in

the simulator and also shows locations in the simulation algorithms where the two waveform

representations are used. The double lines indicate where the time domain is used, all other
places use the moment representation.

Initially, the user supplies a set of input transitions to the simulator. These are converted
to the moment representation domain and are inserted into the transition event queue.

During simulation, transitions are pulled from the queue sequentially by starting time. The
node on which the transition occurs is said to be activated. The moment domain waveform

of the transition is then converted to the time domain. As we will see in Chapter 6, this is

required for macromodel function evaluation. Chapter 6 also describes how an MOS circuit is
split into disjoint sub-networks. Each sub-network with an input connection to the active node

is simulated separately. The choice of simulation algorithm depends on whether the transition

represents a signal change or noise spike and whether the sub-network has a compiled circuit

model. For a noise transition, the peak noise voltage is compared against noise margins for

the active node. A warning is issued to the user if exceeded. For a signal transition, if a com-

piled circuit model exists, then precomputed simulation results are fetched from macromodel

tables, otherwise, the sub-network must be solved, first by converting non-linear elements into

equivalent linear networks, and then by solving the linear network. In either case, if the signal

transition on any sub-network causes an output change, then the new transition(s) are added

to the event queue.

The user may select to probe the output waveform of any node. All output transitions for

a probed node are converted to the time domain and are assembled into a single, continuous

waveform for user viewing.

1.3 Overview of Remaining Chapters

Chapter 2 discusses interconnection properties, and demonstrates the importance of exam-

ining interconnections of advanced technologies. The information in Chapter 2 is not crucial to

understanding later chapters and may be skipped.

Remaining chapters describe the moment representation simulation algorithms. Chapter 3

defines and characterizes the moment representation. It presents the methods for converting

between the time domain and moment representation domain and discusses the transition model

for waveforms.

There are several advantages to circuit modeling with the moment representation methods;

the major advantage is presented in Chapter 4. It shows a method for solving any linear circuit
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1.3. OVERVIEW OF REMAINING CHAPTERS

composed of resistors, capacitors, inductors and independent sources in any configuration. Fur-

thermore, distributed circuit elements, such as distributed RC's or LC's which are so prevalent

as interconnection models, can be included as simple two-terminal elements without loss of
accuracy.

Chapter 5 outlines some special algorithms for solving transmission line circuits with the
moment representation. It shows that existing transmission line modal analysis methods can
be used with the moment representation to give very good results.

The macromodeling feature of the moment representation simulator is introduced in Chap-
ter 6. First it describes how Mos transistor circuits are divided into subnetworks, and then

it describes an accurate method for converting a non-linear circuit into an equivalent linear
circuit. The linear circuit is then suitable for solution with the methods of Chapter 4.

A final feature of the moment representation is presented in Chapter 7. It shows that a
circuit that is to be simulated through many input transitions can be compiled into a small

macromodeled moment representation description. Subsequent simulations of compiled circuit
models are much faster.

1 ·_·��X_�� _· __� _� 1_-----�1·--1 1 --
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2

VLSI Interconnection Properties

When studying VLSI circuits, many types of interconnections must be considered which

have dissimilar signal propagation behaviors. In this chapter, propagation characteristics will

be studied, first in a general manner, then for specific VLSI technologies.

2.1 Propagation Characteristics of VLSI Interconnections

Interconnections on VLSI chips, printed circuit boards and high-density ceramic chip carri-

ers have different properties. For our purposes, all interconnection properties can be illustrated

by equivalent lumped element circuit approximations. We will assume that circuit elements are

constant over all time and frequency. The lumped element circuit approximation of a general

RLGC interconnection is shown in Figure 2-1(b). If a very large number of these two-port

circuits are chained together, the propagation behavior resembles the behavior of its equivalent

interconnection.

Partial differential equations describing propagation along a general RLGC interconnection

are:
a i(z, t) C v(, t)+C +G v(z,t)= 0,ox Ot
Ov(,t) + i(z, t)a V( + t)L + R i(.r. t)= 0, (2.1)

or in the frequency domain,

di(x, j) + jw C v(x, jw) + G v(x, jw) = 0,
dx

d v(x, jw) + jw L i(x, jw) + R i(x, jw) = 0. (2.2)dx
Typically, one or more of the terms can be neglected, depending on the signal frequency, w

(which is approximated for a transition with rise or fall time, r, by w ~ 2r/r) and on values of

R, L, G, and C; the line resistance, inductance, conductance and capacitance per unit length,

respectively. Accordingly, different propagation classes result-the more prevalent classes are

listed below. We will always ignore G since only good insulators are assumed.
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES
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FIGURE 2-1: Lumped element circuit approximations for propagation classes.

(a) transmission line, (b) general RLGC propagation, (c) RC prop-
agation, (d) TEM propagation, (e) and (f) resistive substrate prop-
agation, and (g) tracking propagation.
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2.2. COUPLING CHARACTERISTICS OF VLSI INTERCONNECTIONS

* RC propagation prevails as the most common propagation class for silicon Mos integrated
circuits. These interconnections have (1) very fine line widths, leading to large R's, and
(2) a closely spaced groundplane, leading to small L's, thus, R > wL. With the G and
L terms absent in this class (Figure 2-1(c)), Equations (2.1) reduce to the diffusion par-
tial differential equation-also applicable for describing heat flow, impurity concentration
movement, etc.

* LC propagation or Transverse Electromagnetic (TEM) propagation contains only the L
and C terms of Equation (2.1) (also illustrated in Figure 2-1(d)) since wL > R. These in-
terconnections are lossless transmission lines. Because of its faster, wave-like propagation,
LC propagation is more desirable than RC propagation. Efforts have been made to ensure
this propagation class in Wafer Scale Integration circuitry [27] and in VLSI packaging in-

terconnections [28], mostly by raising the interconnection higher above the groundplane.

This propagation class also exists in GaAs technologies, but not for MOS technologies,
as it is difficult to reduce the R term below the L term at typical Mos dimensions and

switching speeds.

* As one would expect, there is a transition region between the previous two propagation

classes where the resistive and inductive components have comparable magnitudes. The

resulting differential equations are more difficult to solve with heuristic methods and

are often neglected in interconnection analysis. Interconnections that exhibit wave-like

propagation but have a non-negligible resistive component are lossy transmission lines.

Some consideration is given to this propagation class in later sections.

* Hasegawa [29] has studied signal. propagation on metal lines above a highly resistive

silicon substrate. Due to the non-perfect ground plane, the transmissions line models

more resemble those of Figure 2-1(e) and (f). Despite the harder analysis, Seki [30] has

demonstrated some speed advantages to a lossy substrate.

* If the interconnection time constant is much shorter than the input signal time constant,

it suffices to consider an interconnection as a single node in which propagation is instanta-

neous. In this tracking propagation class, an entire interconnection is modeled by a single

lumped capacitor as shown in Figure 2-1(g). This propagation class is included here for

completeness. But, as we will see in future sections, this type of propagation is becoming

less pertinent to VLSI interconnections.

2.2 Coupling Characteristics of VLSI Interconnections

As we will soon see, coupling characteristics of VLSI interconnections are also becoming im-

portant with technology improvements. In general, coupling between two interconnections may

I_-----L·l ^-llL_--1··.._· ··�1 ·I^^--IC-- L_ _
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES

have inductive, capacitive and resistive components as shown in Figure 2-2(b). The behavior

on line 1 is described by

d il(z, jw) + jwC1 v1(z, jw) - jw C12 v2(, jw) - GI, vi(z, Jw) + G12 v2(X, jW) = 0
dz

dV1(x, jw) + jw L 11 i1(x, jw) + jw L 2 i2(, jw) + RI i1 (x, jw) = 0 (2.3)
dx

where

C11 = Clo + C12,

ll = Lo - L1,

and

Gl = Glo + G12.

In matrix form the equations for all lines are

d i(x, jw)+ jwa C v(x, jw) - G v(x, jw) = 0,
dx

+ jw L i(x, jw) + R i(x, jw) = 0. (2.4)dx

These equations are the telegrapher's equations. Again, for all examples in this thesis we assume

perfect insulators around the interconnections, and the G terms vanish.

The arguments are the same here as in the previous section for neglecting either the resistive

or the inductive components or both. We will consider the components depending on the relative

magnitudes of R and wL.

* With RC .propagation, inductive terms disappear, leaving the lumped element circuit

approximation shown in Figure 2-2(c).

* LC propagation leaves only the L and C terms as shown in Figure 2-2(d).

* Tracking propagation has only the lumped capacitors shown in Figure 2-2(e).

Coupled RC and LC interconnections have the circuit "symbols pictured in Figure 2-3.

2.3 Interconnection Propagation on Sample Technologies

In this section, interconnection characteristics of various VLSI technologies are examined.

A propagation class is linked to each technology.

Technologies we will consider are:

1. silicon MOS,

2. silicon bipolar,

28
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FIGURE 2-2: Lumped element circuit approximation for coupled lines.

(a) actual, coupled transmission lines, (b) general RLGC propaga-
tion, (c) RC propagation. (d) TEM propagation, and (e) tracking
propagation.
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES
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FIGURE 2-3: Two-port circuit symbols for coupled RCand LClines.

3. silicon-on-sapphire (SOS),

4. GaAs,

5. an improved interconnection technology for Wafer Scale Integration (WSI), and

6. a ceramic chip carrier technology.

The first four technologies are chip level technologies and assume a lithography capability of

about 1 Mm linewidths. Aluminum metalization is assumed; but the exact metalization material

is not crucial in this cursory examination. The last two technologies require some explanation.

While most wafer scale integration circuitry uses existing metalization for inter-chip com-

munication, the WSI technology considered here uses a coarser interconnect metalization on top

of the fine-lined chip interconnections. This enables faster communication between chips, since

conventional IC lines exhibiting RC signal propagation are unacceptably slow over complete

wafers. Bergendahl [27 has suggested placing eight thick-film layers on a wafer, two layers for

power, two for z and y direction wiring and four for vias between layers as shown in Figure 2-4.

To achieve LC propagation, Bergendahl suggests a minimum metal thickness of 10 Mm with an

insulator thickness of 5-10 pm. Metal widths and spacings may be as low as 5 pm.

The ceramic chip carrier technology considered here is an advanced technology developed at

IBM for mounting and interconnecting integrated circuits [31,32]. As shown in Figure 2-5, it has

33 metalization layers of which sixteen are signal distribution lines spaced 0.5mm horizontally

and between 0.15 mm and 0.2 mm vertically. The remaining layers are used for voltage reference

planes, power distribution and local signal distribution.

Now we will match each interconnection technology to a propagation class. Table 2-1 lists ap-

proximate values for relevant technology parameters. Parameters for conductor-to-groundplane

spacing, H, are illustrated in Figure 2-6 for the chip technologies. Notice that while the same

conductor dimensions are assumed, H is quite different between silicon and both SOS and

I -
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2.3. INTERCONNECTION PROPAGATION ON SAMPLE TECHNOLOGIES
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FIGURE 2-4: Eight layer Wafer Scale Integration interconnections.

There are eight planarized metal layers, four for interconnections
and four for vias. This figure shows a wafer-to-y-signal connection, a
y-signal-to-x-signal connection and a x-signal-to-surface connection.
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES
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FIGURE 2-6: Integrated circuit groundplanes.

GaAs. This is due to the insulating properties of the sapphire and GaAs substrates. This anal-
ysis assumes that silicon forms a good groundplane at its top surface.1 Values for transition

time, r, are approximate values for a switching device driving a long interconnection. In some

cases r ranges over an order of magnitude. This range is also reflected in the wL estimates.

The bottom line of this table is the expected propagation class for each technology. It stems

from a comparison of the series resistance and series inductive impedance estimates. We see
with these estimated interconnection parameters that we can expect (1) RC propagation on

silicon MOS interconnections, (2) transmission line or LC propagation on GaAs, wafer scale

integration and ceramic chip carrier interconnections, and (3) a mixture or RLC propagation

on SOS and silicon bipolar interconnections.

Because of the different nature of RC and LC interconnections, they are considered sepa-

rately in the next sections.

2.4 Analysis of Silicon MOS Interconnections

To date, propagation on metal MOS interconnections has only marginally limited IC per-
formance. This chapter shows that as MOS interconnection linewidths are scaled down, the
intrinsic propagation delays along maximum length lines are becoming significant, and that the
coupling between adjacent lines is also increasing to a noticeable level. Reasons for this are

best understood through the scaling theory.

'Inductance values are also computed by assuming that the silicon surface is an ideal groundplane. Evidence
suggests that this is not strictly true, and that the magnetic field extends into the silicon substrate [33], effectively
increasing the inductance of silicon MOS and bipolar technologies.
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2.4. ANALYSIS OF SILICON MOS INTERCONNECTIONS

conductor to groundplane distance
conductor thickness dimension
approximate transition time
relative dielectric constant of insulating medium
relative permeability of insulating medium
conductor ground capacitance per unit length
series inductance per unit length
series inductive impedance per unit length
series resistance per unit length

Table 2-1: Interconnection characteristics of sample technologies.

Silicon Silicon Silicon Wafer Ceramic
MOS bipolar on GaAs Scale Chip

Sapphire Integration Carrier
H (/um) 0.7 0.7 300 300 10 200 - 1600

T (pm) 1 1 1 1 10 70

r (nsec) 1.0 0.1 1.0 0.01 - 0.1 0.1 - 1.0 0.01 - 1.0

ER,insulator 3.9 3.9 10.5 12 3 9.4

/- R,insulator 1 1 1 1 1 1

C (pF/m) 190 190 63 72 95 110

L (A H/m) 0.23 0.23 1.9 1.9 0.35 0.93

wL (fi/m) 1.5K 15K 12K 117K-1.17M 2.2K - 22K 5.9K - 590K

R (!Q/m) 19K 19K 19K 19K 260 25

Propagation RC RLC RLC LC LC LC
class

H
T

ER,insulator

AR,insulator
C
L
wL
R
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES

2.4.1 Effects of Classical Scaling on Interconnections

The classical Mos scaling theory proposed by Dennard [34] predicts how Ic layouts and

operating ranges will change as inevitable improvements in IC technology occur. The theory

assumes a proportional reduction of all dimensions; the amount of reduction is denoted by a > 1

such that any dimension I - 1' = I/a. (Values after scaling are identified with a prime.) It

also assumes retention of constant electric fields, resulting in a voltage reduction by v' = v/a.

Classical scaling of geometries is illustrated in Figures 2-7(a) and 2-7(b).

With the scaling theory we can predict interconnection propagation times for a scaled design.

By computing the change in line resistance and capacitance:

wt t
R' = p p a = aR, (2.5)

and
'w'' ew 1

C = , = T' = C/, (2.6)

we see that interconnection propagation times determined by the RC product remain constant,

since R'C' = RC. While the scaling theory correctly predicts that MOS transistors gain in

speed, interconnections do not. Without altering the classical scaling scenario, interconnection

delays will dominate at some point in the scaling process.

The classical theory states that interconnection line lengths reduce by a. But, in practice,

the larger number of circuit elements is usually accompanied by an increase in average intercon-

nection length relative to the minimum feature size [35,36]; that is, Ive > I/a.2 Conceivably,

some interconnections (clocks, busses, etc.) span the chip's entire length. Thus, for worst case

interconnections, ,,ma does not scale with a, but remains roughly constant. 3 Thus, the maxi-

mum delay for classically scaled interconnections now grows to approximately a 2 RC. It is this

worse case propagation time which is of most concern.

We now investigate the above effects in more detail by examining the sample circuit in

Figure 2-8(a)-a typical circuit configuration for an interconnection. It contains a driving gate-

modeled as in Figure 2-8(b) with a stepped voltage source, an equivalent drive resistance, Rd,

and drive capacitance, Cd-a uniformly distributed RC interconnection and a load capacitance,

C/d. We can approximate the propagation time from the driving gate to load with the Elmore

time, which for this circuit is

Td = Rd (Cd + Cld + CI) + RICid + 2 R CI. (2.7)

2In [36] it is shown that in some circuits, the average interconnection length does not vary with a larger
number of circuit elements, but in most cases, the average interconnection length is proportional to GI, where
G is the number of gates, and n is a circuit-dependent value larger than zero.

3 This assumes constant overall chip dimensions. Actually, the maximum chip dimension has tended to increase
making the situation worse.
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2.4. ANALYSIS OF SILICON MOS INTERCONNECTIONS
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FIGURE 2-7: Scaling of IC interconnections.

(a) original structure, (b) classical scaling of the structure by the
amount a, and (c) a more realistically scaled structure with increased
height-to-width ratio.
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FIGURE 2-8: Sample circuit and model for studying delay.

The Elmore time is discussed in Sections 1.1.3 and 3.2. It suffices to say here that if the step

response is sharp enough or symmetric enough, Td closely matches the delay time when vo(t)

passes through the important, logic threshold range.

Figure 2-10 shows a plot of the five additive terms of Equation (2.7) versus interconnection

length, I. Values are calculated from a representative minimum-width, first-level metal line of

the 1.5 /Am process shown in Figure 2-9. The first and second terms of Equation (2.7) have no

dependence on I and in fact by themselves represent the delay if no interconnection is present.

These terms are lumped together into the self and fanout delay term. Both the third term

(representing the charging of the line capacitance through the drive resistor) and the fourth

term of Equation (2.7) (representing the charging of the load capacitance through the line

resistance) have a linear dependence on line length. The fifth term is the intrinsic delay of

the RC line. This delay cannot be reduced by increasing driver strength and only marginally

by increasing linewidth. For long line lengths-above 6.5 mm for this example-the intrinsic

delay dominates over all other delays. However, this length is close to the maximum line length

defined by the maximum chip dimension.

Next, we look at the effects of scaling on Equation (2.7). Calculating new, scaled transistor

drive resistances and transistor capacitances gives:

bRt_ Vd., Vds Vd /=
R'nd~ &/-- = Rd,

= A'
Cd= = Cld/a,

and likewise
EA'

C = to = Cd/a.
ox

_II_ _



2.4. ANALYSIS OF SILICON MOS INTERCONNECTIONS

silicon

FIGURE 2-9: Interconnection dimensions of 1.5 pm process.

These dimensions are close to those reported in [37] for a represen-
tative 1.5 m nMOS technology.

Td
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self and fanout delay

= Rd ( Cd+Cld)
, total delay
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FIGURE 2-10: Delay vs. line length for 1.5 m process.
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES

Td

100 1000 10000

line length (um)

FIGURE 2-11: Delay vs. line length for 0.5 pm process.

Figure 2-11 illustrates the effects of scaling down the 1.5 pm process to a 0.5 pm process

(a = 3). The intrinsic RC interconnection delay begins to dominate at a shorter line length

(0.7 mm)-at a line length well below the maximum line length.

2.4.2 MOS Scaling in Practice

For reasons described above, conductor thickness and height are usually not shrunk as

readily as the width and spacing dimensions as shown in Figure 2-7(c). One investigation

[381 estimates that conductor thickness is scaled down by t' = t/V. Scaling the conductor

thickness by a factor less than a-i.e., increasing the thickness-to-width ratio-decreases the

line resistance, thus reducing propagation delays. Increasing the height-to-width ratio has a

smaller affect on ground capacitance. In the above example, improved scaling with t' = tv~

and h' = h/v/G reduces resistance by 42% and ground capacitance of an isolated conductor by

25%.

This more realistic scaling of mIos circuits has, however, enlarged another problem. A greater

amount of capacitance is observed between the sidewalls of adjacent conductors. Figure 2-12

plots the ground and coupling capacitance components of an interconnection parallel to other

equi-spaced interconnections on both sides. It shows that as the spacing shrinks, the coupling

capacitance increases, and the ground capacitance decreases. The total capacitance also in-

creases at smaller spacings. The two plots show the relative ground and coupling capacitances
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2.5. ANALYSIS OF VLSI TRANSMISSION LINE INTERCONNECTIONS

Table 2-2: Comparison of maximum coupling capacitance ratios of 1.5 tsm and 0.5pm process.

for the original 1.5 m and the scaled 0.5 im process with conductor thickness scaled only by

v. After accounting for scaling, the -axis covers the same separation range. This shows

that considerably more coupling capacitance exists for the finer linewidth process. This is also

shown in Table 2-2.

On an integrated circuit, increased coupling capacitance effects two performance measures:

delay time and coupling noise. Increased total delay time arises primarily from increased total

capacitance. As scaling progresses as described in this section, checks will be needed for a

larger number of nodes-nodes which the designer may not suspect of having potential cross-

talk problems. The luxury of simulating the noise with a time-consuming simulator cannot be

afforded over the hundreds of thousands of nodes on a VLSI circuit.

2.5 Analysis of VLSI Transmission Line Interconnections

This section analyzes technologies which are dominated by LC propagation on intercon-

nections. Silicon bipolar and SOS technologies are included in this discussion, but lossless

transmission is assumed. We will see that interconnection propagation time over the length of

a circuit is indeed a concern. We will also see that coupling effects of VLSI transmission lines

is a major concern in the design of these systems.

2.5.1 Transmission Line Propagation

Table 2-3 shows simple calculations for interconnection propagation times and circuit prop-

agation times for each technology. Comparing the two propagation time figures shows in all

1.5 m 0.5 /im
poly-poly separation (m) 1.5 0.5

Coupling ratio (2CcI/C) 19 % 33 %

metall-metall separation (m) 1.0 0.33
Coupling ratio (2C,/Cg) 58 % 79 %

separation (pm) 1.8 0.6
Coupling ratio (2CcI/C) 40 % 65 %

metal2-metal2 separation (m) 1.8 0.6
Coupling ratio (2Cc/Cg) 60 % 77 %

separation (pm) 2.4 0.8
Coupling ratio (2CC/C9 ) 52 % 72 %

metall over poly Coupling ratio (CC/Cg,m,) 54 % 43 %

metal2 over metall Coupling ratio (CcICg,m2) 53 % 55 %

�-�---�
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2.5. ANALYSIS OF VLSI TRANSMISSION LINE INTERCONNECTIONS

U

'max

interconnect

T7 circuit

transmission line propagation velocity (1/VE)
approximate maximum line length
propagation time over max
approximate circuit switching time

Table 2-3: Transmission line characteristics of sample technologies.

- T T T K T T T 

T = .Oum /- T = 1.Oum - -f7\
H = 0.7um I SiO2

H = 300um a

Si ,Ior GaAs

FIGURE 2-13: GaAs dimensions contrasted with silicon's.

cases, except for SOS, that the signal propagation time across the maximum dimension of

the wiring surface is comparable to or exceeds the propagation time of the switching devices.

For the ceramic chip carriers, interconnection propagation time can be quit significant when

mounted with chips from a high-speed technology.

2.5.2 Transmission Line Coupling

Transmission line coupling has been the subject of much recent investigation. This is largely

due to the increased interconnection density which is needed to support smaller circuitry.

In GaAs and SOS technologies, the fact that substrates are semi-insulating adds to the

coupling capacitance. An examination of typical GaAs interconnection dimensions (Figure 2-13)

shows that the line-to-line spacing is much less than the line-to-groundplane spacing. The

reverse is true for silicon circuits, since the line-to-groundplane spacing is only the thickness of

the field Si0 2.

Silicon Silicon Wafer Ceramic
bipolar on GaAs Scale Chip

Sapphire Integration Carrier
u (m/nsec) 0.151 0.091 0.085 0.173 0.099

Imax (m) 0.01 0.01 0.005 0.1 0.15

Tinterconnect (nsec) 0.066 0.110 0.059 0.578 1.52

'circuit (nsec) 0.1 1.0 0.01 - 0.1 0.1 - 1.0 0.01 - 1.0

�-�--
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CHAPTER 2. VLSI INTERCONNECTION PROPERTIES
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FIGURE 2-14: Transmission line coupling waveforms.

In a 1982 study [33], the coupling capacitance between similar adjacent lines on silicon,
sapphire and GaAs substrates was measured. The lines were 1 pm wide, spaced by 1 pm and
were only 0.1 pm thick. The amount of coupling per unit distance between two adjacent lines
was found to be

C . 5.6% for Silicon,

cotple - 45% for Sapphire,
49% for GaAs.

Conductors with a larger thickness would have greater coupling.

Figure 2-14 shows the effects of transmission line coupling on two, 3 mm long GaAs intercon-

nections with 50% coupling. The driving ends of the lines are ideally terminated in this example

to eliminate reflections. The loading ends have a small capacitance. A substantial noise spike

I
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2.6. DIscussIoN

is seen on the coupled line at the loading end. If the loading ends were ideally terminated, no

noise would exist on the loading end, but voltage swings on the signal line would be halved.

A noise spike would still exist at the driving end. The coupling effects of interconnections on

GaAs substrates is further studied in [39,40,41].
Coupling effects on the IBM ceramic chip carrier has been the subject of several studies.

Rubin [42] investigated the cross-talk noise in the 'presence of reference plane meshes with

varying grid spacings. Gu [43] has investigated signal and coupling noise of interconnections in

the presence of evenly-spaced crossing lines. The crossing lines add a large number of evenly

spaced discontinuities. It is shown that for very sharp transitions ( < 50psec.) the distortion

on the line of 2 cm or more is too large.

2.6 Discussion

The major conclusion to be drawn from this chapter is that interconnections will play an

increasingly dominant role in affecting the performance of digital VLSI circuits. The speed of

switching circuits will no longer be the limiting factor for many circuits. As linewidths decrease

on Silicon MOS IC's, interconnection resistance increases. Some of this can be traded off for

increased inter-nodal capacitance. Either way, interconnection problems must be analyzed.

Coupling effects on semi-insulating substrate technologies, SOS and GaAs, is larger than on

silicon substrate technologies. Inter-chip communication is already a major factor in limiting

system performance. Signal propagation and noise degradation on chip carriers or printed

circuit boards now must be analyzed much more closely.

�_111 _ �II I_·_·I____ I I_ ________ _I _ _ I
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3

The Moment Representation

The moment representation is used to describe both waveforms and circuits. In this chapter,

we will look at the relationship between waveforms and the moment representation. In following

chapters we look at the relationships between circuits and the moment representation.

The first section of this chapter describes the usage of waveforms in this thesis. The next

section defines the moment representation. We will see that the moment representation forms

a subspace of the Laplace transform. For purposes of simulation, the moment representation

is preferred to the Laplace transform because of its simpler computer implementation. The

moment representation also forms a superset of the earlier Elmore time representation and

closely relates to the second order representation used by Horowitz in [18]. Thus, it characterizes

responses more accurately than these earlier representations.

There exists a simple many-to-one projection of the Laplace transform to the moment

representation. Thus, most moment representation properties are derived from known Laplace

transform properties. These properties are covered in this chapter.

As illustrated in Figure 3-1, there is a closed form, one-to-one mapping between the time

domain and the Laplace transform and a projection from the Laplace transform to the n th order

moment representation domain. Hence, it follows that there is an exact projection from the time

domain to the moment representation domain. As we will see, this is through moment integrals.

There is not, however, a direct mapping from the moment representation domain to the time

domain. The last chapter showed that the simulation algorithms need such a translation. This

chapter concludes with a presentation of fast heuristic algorithms that are possible by assuming

a shape for the time domain waveform.

3.1 Node Voltage Transitions and Waveforms

The node voltage of a logic circuit is composed of a series of transitions. For instance,

the representative logic circuit node voltage, (t), in Figure 3-2 is composed of five separate

transitions, vl(t) through v 5(t). (A hatted variable, as in t, indicates a global quantity, whereas

45
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CHAPTER 3. THE MOMENT REPRESENTATION

series

FIGURE 3-1: Interfaces between representation domains.

an unhatted variable indicates the quantity for an isolated transition.) Each of the transitions

is caused by a change of logic state somewhere in the circuit. Transitions are classified and
tagged at their creation as one of two types:

signal transition: Two conditions must exist for the simulator to declare a signal transition.

First, the transition must be the result of a change in input state on the circuitry that
drives the node. Second, the transition must have sufficient d.c. change to cause a logic
shift.

noise transition: A noise transition is defined as anything else. A noise transition may arrise

from coupling effects or from charge sharing. It is often characterized by a zero d.c. change,
but in some cases may have a sufficiently large d.c. change to cause a logic change.

The motivation for tagging transitions into these types involves the actions taken for each type.
Noise transitions cause warnings and indicate a potential circuit error. Signal transitions control
the flow of the logical simulation, as their affects are propagated. The first two transitions in

Figure 3-2 are normal logic state transitions. The third is a noise transition caused perhaps by
a logic transition on a neighboring node. The last two transitions are, again, normal logic state
transitions of this node; but the transitions are closely spaced in time such that they overlap.

The net result of the last two transitions is a spike resembling the noise waveform of v3(t). The

different modeling arrises from different causes for the waveforms. As seen later in this chapter,
transitions are also classified as d.c.-shifted or non-d.c.-shifted depending on whether or not the

waveform initial and final voltages are equal.

The moment representation is a means of expressing the waveform for a single transition.

Each moment representation waveform has its own time and voltage scale (denoted without
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3.1. NODE VOLTAGE TRANSITIONS AND WAVEFORMS
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CHAPTER 3. THE MOMENT REPRESENTATION

hats) as shown in Figure 3-2, and described in the next two sections. Using the moment repre-

sentation algorithms presented in this thesis, each transition waveform is computed individually.

Then, the total waveform is constructed by summing individual transition waveforms. For the
particular example in Figure 3-2, five moment representation waveforms are needed to con-

struct the total waveform. In general, a node voltage in the moment representation simulator

is a d.c. voltage interspersed by a chronological series of transitions. After each transition, the

d.c. voltage is updated to reflect the d.c. voltage change of the transition.
Most discussion and examples in this thesis focus around single transitions. While it is

often assumed that only one transition occurs between t = 0 and t = oo, all discussions can be
generalized to include many transitions where the individual transitions are combined.

3.2 Representation Definition

We now assume that (i) has only one transition for all t > 0. This assumption holds for
the remainder of this chapter so that we are not troubled by upper time bounds in the following

analysis.

The moment representation of this waveform is defined through the Laplace transform of
the waveform's derivative. The Laplace transform pair of its derivative, V'(t), is

v'(t) V(s) e~- t I(t) di (3.1)

Any initial delay between the global time origin, t = 0, and the start of the transition is removed

from the Laplace transform integral by defining a new time origin, t = 0, where the transition

begins, as shown in each transition of Figure 3-2. The variable to denotes the delay from the
global origin to the transform origin, or = t + to. With the new time origin, Equation (3.1)

becomes

b'(t + to) , V(s) = e t ° (j et v'(t) dt) . (3.2)

In general, it is best to move the origin, t = 0, as close as possible to the start of the transi-

tion, in order to keep the best approximation in the next step. Expanding et of Equation (3.2)

into a Maclaurin series,

ao 00 2 2 ' 3 a t +...
V(s) = ats s t'tii) d(t)d- s t -+ d3!2! 3! 'd

(3.3)

and finally defining the integral quantities as M 0, M 1, M 2, etc., gives

V(s)e = e to M - s h + M2. M3f +u (3.4)

The Mo, M, ... terms are the moments of the v'(t) function. It is also useful to talk about the
normalized moments, ft = M/Mo, M2 = A,12/Mo, etc. The normalized moments are similar
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3.2. REPRESENTATION DEFINITION

to the moments of a probability density function-the first moment relates to the mean of a

function, the second moment relates to the mean and variance of a function, and so forth. 1

also equals the Elmore time constant presented in Section 1.1.3 and discussed in the RC tree

literature [13,14,44].

As shown later, a greater approximation order results in a more accurate waveform approx-

imation, but requires more computation when performing operations on the waveform. An

approximation order of three is typical for the simulation examples in this thesis, and gives

close approximations to true circuit waveforms.

The polynomial portion of Equation (3.5) by itself is referred to as the moment polynomial.

From this point onward, a function of s with a tilde, as in V/(s), indicates a moment rep-

resentation or moment polynomial, differentiating it from the Laplace transform, V(s). A

subscript, as in V(s),, indicates an n th order moment representation.

3.2.1 Expressed in terms of v(t)

It is useful to express the waveform representation in terms of the original waveform and

not its derivative. To guarantee that moments of the original function are defined, we shift

the function such that the final value asymptotically approaches zero, as in the transitions of

Figure 3-2. The shifted function is denoted v(t), where

v(t) = (t)- (o).

This does not change the analysis of the last section, since

d d
v(t) = v(t) = u'(t).

Furthermore, we must ensure that the moment integrals are finite. For an order n ap-

proximation this requires fo7 t" v(t)dt to be finite. All waveforms in this thesis meet this

requirement.1

' Reasons for this statement being true may not be clear at this point, but, in Section 3.6, all assumed waveform
shapes obey this requirement, and circuit waveforms are forced to this requirement by restriction 3 on Page 70.

For any initial delay, to, we find the nth order projection of any Laplace transform, V(s), into

the moment representation domain by taking the Maclaurin series expansion (Taylor's series

expansion around 0) of V(s) with respect to s and truncating the terms with polynomial

order greater than n. That is,

V(s) _== e - to fo - Ms + M 2 -... + Mn n) (3.5)

The n th order moment representation is defined as the set of numbers, {to, Mo, Ml,... Mn}

and n is the approximation order.I

------ -------------- -------------·-- - --- ·-- ----------- ·------- ··--- ------· ·-' --- --
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CHAPTER 3. THE MOMENT REPRESENTATION

Table 3-1: Terms of moment representation for one transition.

By using the above restriction, it is easy to convert Equation (3.3) to a

Integrating by parts, we know that

form with v(t).

d (t)
tn d()dt = [tn v(t)] - n j tn- 1 v(t) dt.

The tnv(t) term vanishes at both t = 0 and t = oo (using the restriction). Thus, Equation (3.3)

becomes:

(3.6)

Equating the s °, s, s 2, ... terms of Equations (3.4), (3.3) and (3.6) gives

Mo = '(t)dt = -v(O),

- = Ml -jtv'(t) dt jv(t) dt,

M2 q = v(t) dt t V(t)dt,

and so forth.

The terms of the waveform representation are summarized in Table 3-1 and Figure 3-3.

Here the moments are easier to see with the negative of the waveform, -v(t) = (oo) - (t).

term i'(t) waveform -v(t) waveform
to delay delay

Mo fv i '(t) dt -v(0) = (oo)- (O)
d.c. transition

Ml fo t '(t) dt fo°[-v(t) dt
first moment area under -v(t) waveform

Elmore time constant

M2 fo0 t 2 '(t) dt 2 fo t [-v(t)] dt
second moment twice first moment

M3 fO t3 (t) dt 3 fO t2 [-v(t)]dt
third moment three times second moment
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3.3. PROPERTIES OF THE MOMENT REPRESENTATION

- v(t)

t

2 2
a =M2-Ml

Lar

t

FIGURE 3-3: Graphical meaning of some moment representation terms.

3.2.2 Expressed in terms of the V(s) rational function

It is also useful to express the moments in terms of the constants of the more common
rational function form for the Laplace transform,

) = ao + al s + a2 s 2 + a3s 3 + ...
1 + bl s + b2 s2 + b3

3 + ... (3.7)

The moments are easily found by taking terms from the Maclaurin series projection of Equation

(3.7) into the moment representation domain:

Mo = [V(s)]S,= = ao

M1 = _ [d V(s)] = aobl - al

d V(S)=0M 2 = L d2V[ds2 = 2(aobl - aob2 - al bl + a2 )
ds2 1

M3 [d3 V(s) 6[ao(b3 - 2bib2 + b) + al(b2 - b2 ) + a2 bl - a3]
ds3

,=0

and so forth.

3.3 Properties of the Moment Representation

Since the waveform representation is a projection from the Laplace transform, the well

known Laplace transform properties can be used to derive a list of moment representation

- - -- · - - ----·------ --- ·------- -------------------- ----- -��----------�--�- ··-�
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CHAPTER 3. THE MOMENT REPRESENTATION

properties. The Laplace transform properties are derived in most any circuit theory textbook,

such as [45].

3.3.1 Shifting in Time

Shifting a waveform in time results in a multiplication of the Laplace transform by a con-

stant:

v(t- r) + e V(s).

This fact was already used in going from Equation (3.1) to (3.2). From Equation (3.3) we see

that it is easy to time shift a waveform representation by changing to:

to,shifted = to + T.

Sometimes it becomes necessary to hold to constant and change the M terms. In these cases,

the moment polynomial of Equation (3.3) is multiplied by the Maclaurin Series expansion of
e - s = 1 - Sr + .2. .+ and exact terms of VAhited are

MOV,hifted = M o,

Ml,V,hifted = Mot + M1 (3.8)

M2,V,hifted = Mor 2 + 2M 1 + M 2 ,

M3,Vshifted = Mo 3 + 3M 1r2 + 3M 2 T + M3.

3.3.2 The Linearity Property

Laplace transforms exhibit the linearity property:

a v(t) + b v2(t)' a V(s) + b V2(s).

This property easily projects into the waveform representation, provided the two to terms are

equal. If not, they must be equated with the second time shifting method described in the pre-

vious section, using Equation (3.9). (Usually, the waveform with greater to is shifted backward,

so the resulting waveform's starting point is the earlier of the two original starting points.)

With this provision, the new waveform terms of Vtotal(s)n = a 1(s) + b V2 (s), are:

to,Vtott = min(to,vl, to,v2) to,v,,,

(The waveform with the largest to is time
shifted by to,v... - to,vma,)

itotal(O) = a 1(0) + b 2 (0)

Mo,vtot,, = a Mo,v + b Mo,v 2 (3.9)

M,vtotal = aMl,v, + b Mi,v2

M2,Vtotal = a M 2,v, + b M 2 ,v2

M3,Vto,,t = a M3 ,v, + b M3 ,V
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3.3. PROPERTIES OF THE MOMENT REPRESENTATION .

This operation should be used with some caution. As we will see later, inverse transforms

assume a single, smooth transition, so one cannot indiscriminately combine different waveforms

with widely separated starting times.

3.3.3 Derivatives of Waveforms

Using the Laplace transform pair for the time derivative of a function,

d v'(t) , V(s) - (O) = -(O) + Mos - Ml 2 + 2! 3 (310)

we see that the following substitutions can be made:

iMO,Vderiv = -v(0)

M,Vderit = -Mo (3.11)

M2,Vderiv = -2M1

MV3,Vdcriv = -3M 2

This is in agreement with Table 3-1 of Section 3.2.1.

3.3.4 Linear Network Properties

The great advantage of using the Laplace transform in linear circuit analysis is that circuit

elements and networks can be represented by Laplace transforms. Furthermore, circuit calcula-

tions with Laplace transforms are very simple-any independent linear circuit described by its

impulse response transform H(s) responds to an input waveform described by transform V(s)

with an output waveform described by transform Y(s) = V(s) H(s).

This fact projects into the moment representation domain. The response of a linear network

is easily found in terms of the moment representation parameters with

Y(s)n = V(s)n H(s)n = es(t, v+tOH) Mo, v - Mlv s + M, Sn

Mo,H - M,H + M2,H 2! + Mn (3.12)

The next chapter describes the link between circuits and the moment representation in much

detail.

3.3.5 Non-Linear Network Properties

This is where the helpful list of Laplace transform properties ends. Analysis of non-linear

networks with Laplace transforms is cumbersome, to say the least. However, in Chapter 6

a macromodeling method is presented for converting a non-linear digital circuit into a linear

circuit equivalent. After this conversion, the moment representation again becomes beneficial.

1- a -
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CHAPTER 3. THE MOMENT REPRESENTATION

3.4 Representations of Simple Waveform Functions

Table 3-2 shows some well-known Laplace transform pairs for simple waveform functions, as

well as the unshifted waveform representation parameters. These transform pairs, particularly

the exponentials, will be used in the next sections.

3.5 Time Domain to Moment Representation Conversion

A necessary step of the simulator is converting between the time domain representation,

b(t), and the moment representation, V(s). This section presents the time domain to moment

representation conversion method, and the next section presents the moment representation to

waveform conversion methods.

The ability to convert a time domain waveform to moment representation is needed (1) as

an interface routine to the user's input should an input waveform be specified by an arbitrarily

shaped waveform, and (2) in the macromodel parameter extract routines, where macromodel

parameters are extracted from SPICE waveforms. Inner loops of the simulator program do not

rely on this algorithm, so efficiency of this conversion is not crucial.

This conversion method is readily seen in the last column of Table 3-1. The to (defined

where the waveform first deviates by more than a few percent from the initial voltage), (O)

and Mo representation parameters are easily picked off of the waveform. Then, the waveform

is shifted from (t) to v(t), and the integrals for M 1, M 2, ... M, are evaluated numerically.

3.6 Moment Representation to Time Domain Conversion

Conversion from the moment representation to time domain representation is needed sub-

stantially throughout the simulation program as demonstrated in Section 1.2. Unfortunately,

this conversion is more arduous, since there is no unique direct technique to undo the projec-

tions shown in Figure 3-1. The overall accuracy and computation time of the simulator are

greatly dependent on the accuracy and efficiency of this conversion method.

3.6.1 Basic principles

While general inverse Laplace transform methods exist [46], they are not appropriate for the

moment representation. Strictly speaking, the inverse Laplace transform of the moment poly-

nomial would yield impulses, doublet (double impulses), etc. Too much information is lost in

the Maclaurin series approximation to use the general inverse transform methods. Specifically,

the general inverse transform methods need both Pa(s) and Qm(s) of a Laplace transform,

QPn-. The Maclaurin Series merges P and Q into a single polynomial.
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-v(t) v'(t) V(s)

-v(t)
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Table 3-2: Laplace transforms and waveform representation terms for simple functions.

[1- t ]
·[u(t)- u(t- )]

e- t cos/3t

-_ b

, - >~~~~~1

- w --

. . .

- -·--------- ~~~~~~~~~~~~~-·-------- ···~~~~~~~~~~~~~-----·- ------- ----------------------- --------------- --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-- --

55

I

I

t
¢-7



CHAPTER 3. THE MOMENT REPRESENTATION

Instead, a technique analogous to the method of undetermined coefficients is adopted. This

technique (1) assumes a waveform shape, g(t), which may be linear, exponentially decaying,

underdamped decaying, etc., and (2) computes various coefficients and parameters of g(t) such

that the first n moments of g(t) equal the first n moments of V(s)n:

Mi.g = Ml,v,

'12, = M2,v,

Mlng =Mn,v

g(t) is said to be an assumed waveform shape of order n. A greater approximation order

generally yields a better approximation to the true waveform, but generally requires more

computation.

Ideally, the number of variable parameters in g(t) equals n, the number of constraints on

the waveform. In some cases, this is not true, and heuristic methods must approximate some

parameters.

The success of this method depends on how well the assumed waveform shape captures

the form of all real waveform shapes that it models. It is found, for instance, that most logic

transitions are modeled quite well by exponential functions.

Commonly used assumed waveform shapes are listed in Table 3-3. Most have a fixed order-

only the last has an arbitrary order. Restrictions for some waveforms are noted in the fourth

column. The restrictions apply to the d.c. change. (If the waveform's final value returns to the

initial value, then Mo = 0.) Conversion with some assumed waveform shapes-those requiring

special algorithms-are described in the next sections of this chapter. The last section discusses

how a good choice of g(t) can be made.

3.6.2 Polynomial Exponential

The polynomial exponential assumed waveform shape is the most general of the entries on

Table 3-3. Is has an arbitrary approximation order, and as n increases, the approximation

becomes more exact. Because of its general nature and its ease in computation, this method

will be discussed in more detail. This method does not, in general, give the most accurate

match to true waveforms, so it is not always the prefered method.

The polynomial exponential waveform approximation, described by

g()= ) o~kl 2-- +... +k e-, 7 (3.13)

assumes a dominant real pole at -1/r*.

If the true waveform being modeled has any perturbations away from a single pole (expo-

nential) waveform, these are reflected in the polynomial terms with n > 0.

_
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3.6. MOMENT REPRESENTATION TO TIME DOMAIN CONVERSION

waveform shape

linear

single exponential

erlang

underdamped
signal
exponential

underdamped
noise
exponential

double exponential

polynomial
exponential

g(t)

A[1- ][u(t) - u(t- )]

Ae-

A e --At n - 1 e-;

Ae-r cos 3t

A e-; sin O3t

(kl + k 2t)e- ra

+(k 3 + k 4 t)e 'b

[ko + ki I + k 2 ( ) 2+
·.. + kn(v)n] e-

d.c.
restriction

Mo O

Mo $O

Mo = O

Mo $0

Mo = 

approz.
order

1

1

2+

2

3

3

n

method

A =Mo
T = 2 M1 / Mo

A =Mo
r = M / Mo

n = round ( )
M, --

A= M

A= Mo
2M.-M2

2 2 -M 2

12 M2

227M2-24M M3

T'-
Ml27 M -24 Ml M3

2 M M3 -3 M2

3M 2 -2 MIM3

see Section 3.6.3

see Section 3.6.2

Table 3-3: Common Assumed Waveform Shapes
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CHAPTER 3. THE MOMENT REPRESENTATION

Estimating r

A value for r. must be estimated from the moment representation parameters, M0, M 1, ... ,

M,. For finding ,r we assume the true waveform is described by a series of exponentials,

P t t t

v(S) = ( - )(S -2) ... ( - ~) v(t) = c.e- r + e r + + Ce rn.

This assumption differs from the assumed waveform shape; we configure this part of the problem

differently, since overall, there is one more parameter than the number of moment constraints.

The i th order moment of the above waveform is

1
Mi = i!(csr + C2 r2 + ... + Cnr). (3.14)

If r. is the dominant time constant, then

> 7, 7. ,*n

particularly for large i, 2 and therefore

Thus, a good approximation for from an nh order momen r.epresentation is

Thus, a good approximation for r. from an nik order moment representation is

1 Mn
1 Mn (3.15)
n Mn-1

In reality, our estimate of r is just a ratio of moments, but it serves as a very good time constant

approximation for the true waveform's asymptotic decay.

Computing the polynomial

Once an estimate of r. is computed, the polynomial terms of Equation (3.13) are computed

from a linear combination of a set of basis functions, {fo(t), fi(t), ... , f(t)}, i.e.,

g(t) = ao fo(t) + al fi(t) + ... + a, fN(t).

Figure 3-4 shows one possible set of basis functions.

The key to efficient computation with this method is for basis function fi(t) to have all

moments of order less than i be equal to zero. Then, the a coefficients can be computed in

increasing order; each is computed without affecting the lower-ordered coefficients.

Suppose fV(s) = MO- M s + A S2 ... + M sn is the initial, moment representation

approximation. The conversion begins by setting

ao = Mo.

2The non-dominant r's may be complex. In this case, r. must be larger than the inverse of the complex pole's
magnitude.
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FIGURE 3-4: Basis functions for the polynomial exponential waveform approximation.

The i t' order basis function is fi(t) = ( e - ). From (3.10) we
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Then the transform of.the first basis function, Fo(s), is subtracted, giving the transform of the

unmatched waveform

V (s) = V(s) - aoFo(s)

= 0- (M - aoMI,Fo)s' + (M2 - aoM2 ) - + (Mn - aoMn,Fo)

Next the s' term of V,(s) is zeroed by subtracting

V(8)- a F(s)- V2,

where
Mi,vi
M1 ,F

The process is continued where, in general,

i th term of Vi(s)

ith term of Fi(s)

and

Vi+(s) = Vi(s) - ai Fi(s).

After n repetitions, V,(s) = 0, and g(t) is found by

g(t) = aofo(t)+ al fi(t)+ a2f 2(t)+ ... + a, fn(t)

= ao[ 1 le

+al rt ]et

+a2 [ -2 t + 1 t2 ]e- 

+a3 [ 6t - 6t
2 + t

3 1e-

[ko + kit + k 2 t 2 + + ktn] e' r

Figure 3-5 shows the effects of increasing the approximation orders of polynomial exponential

approximations.

3.6.3 Double Exponential

The double exponential assumed waveform shape,

(kl + k 2 t)e- + (k 3 + k 4t)e- rb (3.16)

is harder to compute, but in many cases gives better results than the polynomial exponential

shape with the same approximation order. The fit of the double exponential is better, in

particular, if the true waveform exhibits a strong two-time-constant behavior as is seen in some

RC circuits [26]. The double exponential waveform has not d.c. change restriction, since it may
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CHAPTER 3. THE MOMENT REPRESENTATION

or may not be monotonic. For these reasons, it is the preferred waveform shape for most pure

RC circuits.

This assumed waveform shape has two more parameters (kl, k 2, k 3, k 4, ra and rb) than

constraints (Mo, M1, M 2, M 3), so two parameters, ra and Tb, are estimated and the rest (kl,

... , k4) are fitted exactly to the moment constraints, based on the estimates for ra and rb.

Estimating the time-constants

The method for estimating the waveform's time constants is similar to the one for estimating

the polynomial exponential time constant (Section 3.6.2) where we assume the waveform is

described by any series of exponentials as in Equation (3.14). But, now we need two dominant

time-constants, ra and rb. Neglecting all but these two time constants, Equation (3.14) becomes

M ; (ca Tr' + cb T) (3.17)

The second and third order moments are used to approximate r, the dominant pole:

M3/3! - cb (3.18)
M2I2! - cb 7b2'

M 3 /3! - b (3.19)
T3

and the zeroth and first order moments are used to approximate Tb:

M -Ca Ta, (3.20)
Mo- Ca

cb = . (3.21)
Tb

The calculation of each time constant requires a guess for the other, so an iterative process is

used, where the above sequence of equations, (3.18) through (3.21), is followed with cb = rb = 0,

initially. This iterative process attempts to find a solution to Equation (3.17) for the first four

moments.

The values for ra and rb do not need to be exact! So, while one iteration suffices, a few

iterations are better, and more than five only marginally improve results. Figure 3-6 shows these

effects. Since the hard constraints are placed in the next step (computing the k's), the pole

locations can vary by as much as 20% without affecting the resultant waveform substantially.

Computing the k's

Now we go back to assuming the double exponential waveform shape of Equation (3.16).

The first four moments of the are:

Mo = k 1 + k3

M1 = kiTa + 2T + + k3Tb + k4 b2

m = k1 Ta + k22a3 + k3Tb2 + k 4 2Trb

= k 1 + k 2 37,4 + k3 T + k4 3T4
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time (ns

This example demonstrates the iteration affects in finding time con-
stants. The affects are more observable when the fit is harder to
achieve, as in this example of fitting exponentials to a straight line.
For real circuit-like waveforms, the solution converges very rapidly.
Note, also that the waveform shape is rather insensitive to precise
pole locations.
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FIGURE 3-6: Effects of iterating to find double exponential poles.
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CHAPTER 3. THE MOMENT REPRESENTATION

These form a set of linear equations, which is solved for kl, k 2, k3 and k4.

3.6.4 Choice of g(t)

The choice of g(t) for any given waveform depends on these factors:

* approximation order. If the user wants quick but inexact results, a g(t) with small n is

appropriate, whereas for accurate results, a larger n is appropriate.

This factor must be decided by the user. An approximation order must be selected for

the simulation. All subsequent moment polynomial calculations are made to that order.

Different approximation orders can be given to particular circuits if differing degrees of

accuracy are desired. Example circuits in this thesis all have approximation orders of

three.

* transition type. As shown in Table 3-3, some assumed waveform shapes are applicable only

to transitions with a non-zero d.c. change and others are applicable only to waveforms

with the same initial and final value. Which waveform shape to apply is easily determined

by examination of the Mo moment representation term.

* circuit type. An intelligent choice of g(t) based on the circuit type yields better results.

For instance, a CMOS circuit with only RC interconnection will have no ringing, and its

waveforms can be best approximated by real exponential function. A circuit expected to

have ringing may be best approximated by complex exponential functions.

A general procedure has been developed for selecting a g(t) based on the first two factors.

It is also based on observations of how well each of the assumed waveform shapes in Table 3-3

matches to real waveforms in MOS logic and interconnection circuits. Figure 3-7 illustrates the

procedure for both transition types. The value for order on the left indicates the user-selected

approximation order. Initially, the procedure assumes a damped waveform. The chart gives

the preferred choice for g(t)-a third order preferred g(t) for a transition with a d.c. shift is the

double exponential, for instance.

In some cases the initial g(t) choice fails to give a satisfactory approximation, because the

time-constant waveform parameter, r, is negative. This condition indicates an underdamped

waveform and requires an alternative assumed waveform shape. The arrows in Figure 3-7 show

the path of alternatives to take in these conditions. The paths reflect these observations:

* When an error condition exists for a transition with a d.c. shift, little is gained by trying

lower ordered, damped waveforms, and a direct jump to the underdamped waveform is

prudent.

* An error condition for a non-d.c.-shifted transition is often handled by either an under-

damped noise exponential or an erlang.
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exponential > signal
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Procedure for selecting assumed waveform shape.
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When the path of preferred g(t)'s ends in an error condition, it indicates that insufficient

information is present in the moment parameters to reconstruct the waveform with the list

given in Table 3-3. In general, this can be corrected by moving to a higher approximation

order. Note for instance that a non-d.c.-shifted waveform always results in an error with an

approximation order less than three. The error condition was never reached while correctly

using the experimental simulator on real circuit waveforms-it was reached only while contriving

waveform parameters which are known to be troublesome.

Example 3.1 Different waveform approximations for a sample logic transition waveform.

5.0

4.0 .

3.0 .

2.0 .

1.0 .

0.0

true waveform
....... line (1)

-.... single exponential (1)
- - - - polynomial exponential (2)
......... double exponential (3)

L ,.

I . I I I
0 5 10 15 20

time (nsec)

3.7 Discussion

In this chapter we have seen that the moment representation has a link to both the time

domain and the frequency domain Laplace transform. The moment representation is actually
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a projection from the Laplace transform domain. This allows us to easily translate a number

of Laplace transform properties to useful moment representation properties.

The link between the time domain and the moment representation domain is through mo-

ment integrals. The time domain to moment representation conversion domain is exact. The

moment representation to time domain conversion is more relevant to the simulator operation

and is done by heuristic approximations. A waveform shape is assumed, and then waveform

parameters are computed such that its moments match the moment representation values.
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4

General Linear Network Solutions
for the Moment Representation

In this chapter, we examine the first of two techniques for solving linear networks in the

moment representation domain. It is capable of finding the moment representation solution to

almost any linear, reciprocal circuit containing R's, L's and C's, but is particularly useful in

solving (1) circuits with coupled or uncoupled RC interconnections, (2) circuits with MOS tran-

sistor macromodels (described in Chapter 6), and (3) any RLC circuit with damped responses.

The second linear network technique-discussed in Chapter 5-applies to coupled or uncoupled

LC transmission line circuit. While the technique of this chapter is possible for transmission

line circuits, the second technique offers a better solution.

The technique presented in this chapter is based on a new, Moment Polynomial Nodal

Analysis (MPNA) method for computing the voltage response time moments of a linear circuit.

The moment polynomial refers to just the time-moment terms, M 0, M 1, ... , of the moment

representation. In fact, this chapter deals only with these terms, and assumes a constant to

and v(0) between input and output transitions.

In a more limited sense, the problem addressed in this chapter has been the subject of

much recent research. Penfield [47], Wyatt [15] and Lin and Mead [16] have shown methods for

computing the normalized first moment (Elmore delay) only of RC trees, RC meshes and RC

networks, respectively.' Horowitz [18] has developed a second order method which computes

the first and second moments of RC trees. The trees in these cases could also contain switching

elements, thus being able to model charge sharing circuits [48].

The method presented in this chapter is much more general. It is capable of finding the

moment polynomial of the voltage on any node of any circuit containing linear resistors, ca-

pacitors, inductors (including coupled inductors) and independent sources, provided the circuit

'Penfield and Wyatt also compute bounds on the waveform, which is not done here.
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satisfies the following minimal set of constraints:

1. The circuit forms a solvable, connected network.

By solvable we mean that sources do not impose an impossible constraint on the circuit-

as two, series current sources with different values do.

By connected we mean that no two nodes are completely isolated from each other. There

is always a path of circuit elements between any two nodes.

2. Independent voltage sources form part of a Thevenin equivalent (a voltage source in series

with a R, L, or C circuit element).

3. The step response node voltages have no impulses, and settle asymptotically to a final
value.

This restriction precludes only some pathological circuits such as a switched current source
connected in series with an inductor or a d.c. current source connected in series with a

capacitor.

All circuits studied in previous RC modeling methods are a subset of allowable circuits for the

MPNA method. In addition, the MPNA method allows sources to have any waveform shape that

is representable by a moment representation. This is untrue of some other RC circuit methods

with moment orders larger than one.

The MPNA method presented in this chapter computes the moment polynomial to any

arbitrarily large order, p, without algorithmic change. Thus, if p = 0, then only the d.c.

responses are computed, if p = 1, the d.c. responses and Elmore delays are computed, if p = 2,

the d.c. responses, Elmore delays and second moment waveform information are computed, etc.

The previous chapter demonstrated that as p increases, the true waveform can be reconstructed

with greater accuracy.

The MPNA method solves a linear network with nodal analysis in the moment representation

domain. From Chapter 3 we know that the moment representation domain is a subspace of the

Laplace transform domain, but where a moment representation is a truncated Maclaurin series

expansion of the Laplace transform. Nodal analysis of the circuit yields a matrix equation,

which is then solved using gaussian elimination or LU decomposition. The matrix equations

are set up and solved in the same fashion as in a standard, direct method circuit simulator. The

difference, however, between standard simulations and MPNA is that the MPNA matrix elements

are polynomials in s, or moment polynomials.

One note shall be made here on the use of the term polynomial. In the last chapter and in

general usage, "polynomials" do not have negative ordered terms, but in this chapter negative

ordered terms are allowed for moment representation admittance functions. Negative ordered

polynomial terms are still not permitted for waveform representations, which in short, translates

to circuit restriction 3 above.
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I(s) = Y(s) V(s)
V ks)

Y (S

FIGURE 4-1: Thevenin and Norton equivalent circuits.

In comparing and contrasting MPNA methods with direct simulation methods, we make

three observations:

* The similarity in formulating circuit equations accounts for the increased circuit flexibility

of MPNA methods over previous RC circuit methods.

* Circuit restriction 2 on Page 70 is necessary since modified nodal analysis-common in

standard circuit simulators-is not practical with the moment representation method.

* The computational savings with MPNA arises from the fact that only one matrix equation

solution is necessary per input signal transition, whereas many are needed for standard
circuit simulators-one at each time step.

The next two sections describe how MPNA matrix equations are set up and solved.

4.1 Formulating the Moment Polynomial Matrix Equations

The first step in formulating the nodal analysis equations is to convert all voltage sources

from their Thevenin equivalent form to their Norton equivalent form (see Figure 4-1). This

leaves current sources as the only source elements in the circuit.

Before writing the equations, one node is chosen as the datum (or ground) node. All node
voltages are defined relative to the voltage on the datum node. Next, the Kirchoff's current
law equations in the Laplace transform domain are written for each circuit node. For a circuit

with n + 1 nodes, n equations are written. (The datum node is ignored.) In matrix form,

Y(s) v(s)= i(s) (4.1)

where Y(s) is the n x n Laplace transform admittance matrix, v(s) is the n x 1 node voltage
matrix, and i(s) is the n x 1 source current matrix. Element v(s) of v(s) is the Laplace

transform of the node voltage at node m. Element i,(s) of i(s) is the Laplace transform of the
net source current flowing into node m.

Projecting Equation (4.1) into the moment representation domain, each of these matrices
becomes a polynomial matri--a matrix with polynomial elements. Polynomial matrices can

____
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be split into scalar matrices. For instance, the admittance polynomial matrix can be split into
three scalar matrices,

rs) = rs- + G + Cs.

The scalar matrices r, G and C are the inductive, conductive and capacitive admittance
matrices, respectively. (r has values of , hence the inverted L.) An important advantage of
the Yis) matrix is that it can be inverted, even though neither r, G nor C is invertible. More
is said about this later.

The procedure for constructing Y(s) from knowledge of the circuit branch elements is iden-
tical to the procedure used in SPICE and described in [49]. It goes as follows. Initially, empty
matrices are created for i"s) = 0 and i(s) = 0. Then, one by one the contributions of each
branch element are added to the matrices. Each branch element type has a template pattern
for its contributions into the matrices. These are illustrated in Figure 4-2 for discrete element
types.

Notice that both inductors and capacitors may have non-zero initial conditions. Taking one
of the element types-the inductor, for instance-we see that the inductor moment represen-
tation relation (equal to the Laplace transform relation),

1
ir = - q = Is(v - vq)- i

is reflected in the template pattern. If one of the element nodes is the datum node, the matrix

entries for that node are not included in the matrices, since vdatum = 0.

When all of the branch element contributions have been added to the matrices, MIs) and
i(s) are the desired result.

Example 4.1 Write the Laplace transform nodal analysis matrix equations for the circuit be-
low.

V(s)= 1

__ _ __ I
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The Thevenin equivalent is converted into a Norton equivalent with Iquiv(s) = V(s)/L s =

5s-1.
58- 1

-1
0

0

Example 4.2 Write the

low.

0

1

1+s

-1

0

0

-1

2+s

-1

0

0

-1

1 + 2s

-s

Laplace transform nodal analysis matrix equations for the circuit be-

1 O

-1

2+s

-1

0

1 O

o 0

-1 0

1.5 + s -0.5

-0.5 0.5 + 3s

4.1.1 Distributed Circuit Elements

It is also possible to include distributed circuit elements in the MPNA equations, provided
the elements can be described by a moment polynomial admittance matrix. This includes a
large number of elements that cannot be included directly into time-domain circuit simulators

like SPICE. For instance, the distributed RC element of Figure 4-3 is described by Laplace

transform equation, [50]

' /coth((V')
-V/ csch( )

- csch(v/-)

£/ coth(v/rs)
v [li(s)
V2 (s) J

Taking the Maclaurin Series gives the moment representation matrix entries shown in Figure 4-3.

4.1.2 Moment Polynomial Matrix Properties

At this point we want to consider how to solve the MPNA equations. But, first, we must take

a little detour to examine some matrix properties. All of these properties have been developed

0 V1 5s - 1

0 v2 0

-s V3 0

2s V4 0 I (4.2)

G=.5

vz 0V2 0

V3 $

v4 3s

3

(4.3)

2(s) ] =

____
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r = total resistance
c = total capacitance

P q

1 + c2 r 2 2c3r2 3 1 c 7c2 r 2 31c3r23

q -_ S + 31 3 1 + cr2 + 312 +

6 FIGU360RE 15120 Distributed3 45RC element template945

FIGURE 4-3: Distributed RC element template

in linear algebra texts (such as [51]), so only the interesting results are presented here. First

we start with a definition.

A field is a numbering system in which the operations of addition, subtraction, multiplication

and division (except by 0) are performed without restriction. More precisely:

A field is a set of numbers, F, and dyadic operations + and , such that if a, b

and c are any elements of F, then:

1. The + and · operations are commutative and associative,

2. a + b and a b exist in F,

3. there exists a unique 0 E F such that 0 + a = a + O = 0,

4. there exists a unique (-a) E F such that a = (-a) = (-a) + a = 0,

5. a.(b+c) = ab+a.c and (b+c)-a = b a+ca,

6. there exists a unique 1 such that 1 $ 0 and a 1 = 1· a = a,

7. if a $ 0 then there exists a unique (a-') E F such that a a-'1 = a -1 · a = 1.

Obviously, the sets of real numbers and complex numbers form fields. So does the set of

infinite degree moment polynomials, given that we allow negative-ordered polynomial terms.

Appendix A'shows details of moment polynomial operations. The set of moment polynomials

truncated to a fixed order does not form a field, since one can easily violate condition 2.

The notation Fmx, is used for a matrix with elements from F arranged in-m rows and n

columns. For these matrices, we shall define addition, multiplication, inverses and determinants

in the standard fashion in which we are familiar with for real number matrices. The following

theorems are valid for matrices of any field.

* If A E nxn~ and b and x E cnxl, then the solution to Ax = b is = A-lb.

_��_11_1_ 1_ .II_-IIIUCI I-
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* The solution to Ax = b is unique if the following equivalent statements are true:

- A has an inverse,

- det(A) # 0,

- Ax = 0 has only the trivial solution.

Three elementary row operations are defined for mxn,:

Row operation 1: Two rows are interchanged.

Row operation 2: A row is multiplied by c E Y where c $ 0.

Row operation 3: A row is replaced by itself plus k times another row, where k E F.

One last useful theorem involving these row operations on matrices of F is:

* Any elementary row operation on the n x n + 1 matrix [Alb] will not affect the solution

of Ax = b.

4.2 Solution of the Moment Polynomial Matrix Equation

The motivation of the preceding section was to show that matrix solution techniques us-

ing row reduction are not limited just to matrices of real numbers. The same row reduction

techniques can solve any matrix with elements from a field number set-including the infinite-

order moment polynomial number set. We are now prepared to look at methods for solving

Equation (4.1).

4.2.1 Gaussian Elimination

Gaussian elimination is an efficient row reduction algorithm for solving a matrix equation

like Y. v = i. It is a well-known algorithm discussed in any linear algebra text on in [49]. It

will be presented here only with an example. A dual purpose of the example is to demonstrate

the applicability of matrix algorithms to the infinite-order moment polynomial number field.

Example 4.3 Solve the matrix Equation (4.2) of Example 4.1 using gaussian elimination.

Step 1-forward elimination: Reduce Y(s) to upper triangular form by successively zeroing

out the lower triangular terms by row operations

Yiowk (5) i- Yrowk (S) - ( Y (S) rowj (s), for k > j
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or

Ykm(S) Y N.(s) (j(S))Yi (s) for k, m > j

(8) - i(S) - ((s) i j(s)
k\YI` Z(YI-- yjj(s)

(4.4)

for k > j. (4.5)

To zero the first column's lower triangular elements,

row 2 row2 - (is- + ) row1 = roW2 -
1 1 2 1 3)rOW
-- + - _ ... )ow
5 25 125

-1

2 + 4s + 15 2 ...5 25

-1

0

Row 3 and 4 were initially zeroed and thus are left unchanged. To zero the second column:

row 3 - roW 3 -(
-1

row 2 = row 3 -

giving

5
- 1

0

0

0

-1

2+ 4s + 1 S2 . .

0

0

0

-1
1 11s_ 7 2

-s

0

0

-8

2s

1
(-.

(S) =

1 7
5 100 ... )row2

58 - 1

1- +s + S2 ...
1 _ 3 + 13 2 .
2 10 100

O

Lastly, column 3 is zeroed in row 4 by

roW4 - row 4 -
-s

11 - 7 2..
5 100 

-) roW3 = roW4

44 2 .)row3
- (-2s + .)row 35

0

-1
1 11 - 7S2 

0

0

0

-S

2s - 2s2 + 22S3...

58-1

5 25

2 -0 100+ lo

S 5 2 + 112S3. ..

and

giving

58 - 1

0O
0
0O
O

0 O

-1 0 (s)=

1+ 2 -s

-s 2s

58 - 1

1 -5S+ 252...

0

0O
O

I

giving

58-1

0

0

0
O

-1

0

0

·b(s) .

(4.6)
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CHAPTER 4. GENERAL LINEAR NETWORK SOLUTIONS

Step 2-backward elimination: Solve for v(s) terms starting with the last and working

upward, with

k() = (8)- nk+ m(8) :km(s)Dk M> zka/ =k+l 'W(4.7)
kk(s)

Thus, V4 is calculated first:

S 5 2 + 112S3 + ... 1 2
v4 = =- + +* -- 2s+7s2+...

2s - 2s 2 + 144.s3 + ... 2 

Then,

(1 3 s + 13 2+ .)- (-S)(2- 2s + 7S2+ . .)

+ - +

and so forth, giving a final solution

1 - 22 +...
1 - 5 + 82 +

1 - 4s + 142 + ...

- 2s + 72 + ...

4.2.2 LU Decomposition

In many standard circuit simulation programs, (like SPICE and ASTAP) LU decomposition

is implemented for matrix solutions [49]. LU decomposition is a slight modification of gaus-

sian elimination. It progresses through the same sequence of elementary row operations, the

difference being that intermediate row multipliers are preserved during the forward elimination

process. Rather than placing unnecessary zeros in the lower triangular section of (s), the row

multiplier, (/) in Equation (4.4), is placed in ykj. The net effect is to generate the sum of a

lower triangular matrix (without the diagonal 1's) and an upper triangular matrix

[\] =L- I+ U (4.8)

where

A =LU.

LU decomposition is advantageous if the same linear circuit (Ys)) is solved for many dif-

ferent source currents and initial conditions ((s)). The circuit matrix, I(s), is LU decomposed

once, thereafter containing all of the information needed to solve Y(s)(s) = (s) for any number

of (s)'s with Equations (4.5) and (4.7).

In considering LU decomposition for the infinite polynomial number field, the relevant point

of this section was that LU decomposition of the matrix is subjected to the same elementary

row operations. Thus, LU decomposition is perfectly suitable for infinite-ordered moment

polynomials.
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4.2. SOLUTION OF THE MOMENT POLYNOMIAL MATRIX EQUATION

Example 4.4 What is the LU decomposed matrix for '[s) in Equation (4.2) of Example 4.1?

By putting the row multipliers found during forward elimination in Example 4.3 into the

appropriate locations of the matrix in Equation (4.6), we have

5s-1 -1 0 0

I + 21 ... 2+ 4s 1 2...--1 0
° -_II + 1 S S2. S..

5 1i 0 2 2 -2 S

0 0 -2s+ 44S2 2s - 2s2 + 22 ...

4.2.3 Finite Truncation in Moment Polynomial Gaussian Elimination

The previous section demonstrates that gaussian elimination and LU decomposition can

solve MPNA equations if no polynomial truncation is performed. Obviously, this is impossible

in practice, for just about any moment polynomial division operation potentially yields an

infinite degree polynomial. And yet, it is not sufficient to truncate all polynomials at the same

order of s. We can easily see this by considering the zero moment solution (d.c. solution) to

Example 4.2. If all polynomials are truncated past the s terms, this is equivalent to solving

the resistive admittance matrix, G, only. Clearly, this will not do, since the capacitances play

a significant role in determining the d.c. response.

This section shows that if we chose the truncation order wisely during gaussian elimina-

tion, the final solution for i,(s) will have moment polynomials guaranteed to be accurate to a

prespecified order, and computed with a minimal number of floating point operations.

To start, a few definitions are made. All orders are moment polynomial orders of s.

* The minimum order of a polynomial, denoted by [a(s)J for polynomial (s), is the order

for the lowest ordered, non-zero term of a(s). If a(s) = 0, the minimum order is undefined.

* Result order, p, is the highest desired moment order of the terms in v(s).

* An operation truncation order, T [a(s) op b(s)], is the highest necessary order of the

calculated result of a(s) op b(s). Truncation rules are given in Appendix A for truncation

orders for addition, subtraction, multiplication and division of moment polynomials.

* A circuit element order is the minimum Laplace transform order of the circuit element's

admittance. The circuit element order of an inductor is -1, of a resistor, 0, and of a

capacitor, +1. It is also defined for a connection of elements as the minimum moment

polynomial order of the combined admittance function.

_l1ls�-·�·-·11111111I� ____ ---- --�·-�-- �--�-C·-- I--
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CHAPTER 4. GENERAL LINEAR NETWORK SOLUTIONS

* The node order of node j, 8j, is the minimum over all paths between node j and ground

of the maximum circuit element order along the path. In forming the paths, independent

sources are zeroed, i.e., voltage sources are shorted and current sources are opened.

Example 4.5 What are the node orders for the nodes in the circuit of Example 4.1?

81 = -1, 2 = 3 = 0, 4 = 1

Example 4.6 What are the node orders for the nodes in the circuit of Example 4.2?

[31 = 82 = 83 = 84 = 1

The truncation orders for Gaussian Elimination are based on a circuit's node orders. Basi-

cally, when calculating any new term of row j of Y(s) or (s), it must be calculated to order

p, the desired result order, plus the node order of node j. By definition of p, any new term of

v(s) must be calculated to order p.

The following important theorem states this more precisely-in terms of the gaussian elim-

ination equations:

____

I
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4.2. SOLUTION OF THE MOMENT POLYNOMIAL MATRIX EQUATION 81

The proof for this is non-trivial, and is included in Appendix B. It is based on the properties

of admittance matrices of reciprocal networks.

One can start to see a justification for this by understanding, for instance, what information

is needed for computing just the d.c. response to a circuit (p = 0). If a node is resistive (j = 0),

only the inductance and resistance information is needed (s - 1 and s o terms), not capacitance.

Thus, terms with order greater than 0 are not needed for its nodal analysis equation. If a node

is capacitive (Bj = 1) then the d.c. response is determined by a ratio of capacitances; thus, a

truncation order of 1.

In algorithmic form, the gaussian elimination solution for moment polynomials looks just

like a gaussian elimination algorithm for real number matrices, with two differences. First,

a few procedure calls are added to set a global truncation order variable. In the algorithms

below, these statements are marked with a "=". Second, all arithmetic operations on matrix

elements are polynomial operations. These are distinguished from scalar operations with a box.

Procedure LUDECOMPOSE converts the Y(s) matrix into an LU factorization as described

in Equation (4.8). Procedure SOLVE-LINEAR solves 1Ys)u(s) = (s) for v(s) from i(s) and the

LU decomposition of MTs). The node-order parameter to both routines is an integer array,

Theorem 4.1 To guarantee exact b(s) moment terms to order p, it is sufficient to calculate

the intermediate results during gaussian elimination to these orders:

* during forward elimination with equations:

Lnm(S)= km(S)- Yjm(s)

and

k(S) = k(S)- j() (S)j(S)

the truncation order for

subtraction = p + Bk

multiplication = p+ Bk

division = p + 3k - LYkk]

* during backward elimination with equation:

k(S) = k()m=k+l m() Ykm()
kk(S)

the truncation order for:

division = p
summation and subtraction = p+ Bk

multiplication = p+ 3k

III · _�·L-YI·IIIXa�·^·IIII -·--III- I1
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CHAPTER 4. GENERAL LINEAR NETWORK SOLUTIONS

where the jth element is Bj. The algorithm for computing node-order is the topic of the next

section.

Algorithm 4.1
pvector = array [polynomial]
pmatrix = array [array [polynomial]]

procedure LUDECOMPOSE (Y. pmatrix, n: integer, node-order: array[integer],
p: integer)

returns (pmatrix) begin

{ Gaussian elimination of Y}
for j from 1 to n - 1 do begin

diagonal: polynomial := Y[j, j];
if ISZEROPOLYNOMIAL(diagonal) then error ("matrix is singular");
for k from j + I to n do begin

SETTRUNCATIONORDER(p + node.order[k]-
POLYNOMIAL.LOWORDER(diagonal)); 

mult: polynomial := yIk, j] I diagonal;
Y[k, j] := mult;
if not(ISzERO_POLYNOMIAL(mult)) then begin

SETTRUNCATIONORDER(p + nodeorder[j]); -
for m from j + 1 to n do begin

ylk, m] := YIlk, m] [ mult [] 1[j, m];
end

end
end

end

if ISZEROSPOLYNOMIAL(Y[n, n]) then error ("matrix is singular");
return (1);

end

Algorithm 4.2
{ solve a system of equations from the L U decomposed array and vector i. }
procedure SOLVELINEAR (Y pmatrix, i: pvector, n: integer,

node-order: array[integer], p: integer)
returns (pvector) begin

{ create v }
v: pmatrix := create pvector(n);

{ account for the forward elimination steps on i;
for j from 2 to n do begin
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4.2. SOLUTION OF THE MOMENT POLYNOMIAL MATRIX EQUATION

SETTRUNCATIONORDER(p + node.order[j]); 4
sum: polynomial:= ZEROPOLYNOMIAL();
for k from 1 to j- 1 do begin

sum:= sum Ed jli, k] Ml 'v[k];
end

v[j] :i[j] sum;
end

{ back substitution }
for j from n to 1 by -1 do begin

SETTRUNCATIONORDER(p+ nodeorder[j]); :=
sum: polynomial:= ZEROPOLYNOMIAL();
for k from j + 1 to n do begin

sum := sum 5 Yfj, k] v[k];
end

sum := v[j3 FJ sum;
SETTRUNCATIONORDER(p); 4=-

V[j] := SUm F Mj, j];
end

return (v);
end

4.2.4 Computing Node Orders

The node order of each node is computed prior to solution with gaussian elimination or LU

decomposition, as it is needed in setting the truncation orders. Conceptually, node orders of
a circuit are found by first constructing an undirected graph. There is a vertex (or node) in
the graph which corresponds to each node of the circuit. Also, an edge is placed in the graph
between a pair of vertices corresponding to each circuit element. An edge is labeled with a

"-1", "0" or "+1" depending on its corresponding circuit element's order.

Node orders are assigned by tracing, first, all nodes connected to the ground node through -
1 edges. These nodes are marked with node order "-1". Then all previously unmarked nodes
connected to ground through any path of edges labeled 0 or less are traced. These nodes are
marked "0". Lastly, all previously unmarked nodes connected to ground through any edge are

marked with node order "+1". At this point, any unmarked node represents a floating node,
and indicates an unsolvable network.

The node tracing algorithm is done with a modification of the standard depth-first search

algorithm described in [52]. It is expressed algorithmically below, where 5 represents the
undirected graph of the circuit.

�II _ ·I_·__ I_ _ _ _
-~~ 1___~__IC_ ---- l~·II
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Algorithm 4.3
procedure COMPUTENODEORDERS (: graph) returns (array[integer]) begin

nodeorder: array[integer] := CREATEARRAY(n);
for each vertex v in graph 5 do nodeorder[v] := "unknown";

SEARCH(, nodeorder, "ground-vertex", -1); { inductive nodes }
SEARCH(g, node-order, "ground-vertex", 0); { resistive nodes }
SEARCH(g, nodeorder, "ground-vertex", 1); { capacitive nodes }

return (nodeorder);
end

Algorithm 4.4
procedure SEARCH (: graph, node-order: array[integer],

v: vertex, order: integer) begin

nodeorder[v] := order;
for each vertex w through edge x adjacent to v in graph G do

if (node.orderw] = "unmarked") and (LABEL[X] < order)
then SEARCH(g, nodeorder, w, order);

end

The undirected graph is constructed concurrently with the admittance matrix. As each ele-

ment's template is added to Ms), a new edge is added to 5. While almost all of the information

in 5 is contained in Ms) (all but the ground connections), a separate linked list structure is

maintained for 5 to minimize the node order computation time at the expense of some memory.

The time required to compute node orders is insignificant in comparison to gaussian elimination

time.

4.2.5 Pivoting for Accuracy

To avoid numerical roundoff problems found in stiff simulation problems, matrix solutions

usually employ a pivoting algorithm where rows and/or columns are interchanged during gaus-

sian elimination. The need for this is diminished with nodal analysis, since the pivot, or diagonal

term is always the dominant element of any row or column.

There are cases, however, where finite precision arithmetic can affect the solution's accuracy.

For instance, the solution to the circuit of Figure 4-4, described by

1000001 + s -1000000 1 I

-1000000 -1000000 + s 0 (s 



4.3. EXAMPLES

R=1 ()R=10 ()

V= 1

FIGURE 4-4: Circuit requiring node pivoting.

yields a solution,

bl(s) = 2 (s) = 0.88889 - 1.5802 s + 2.8093 s2 -

with 22-bit mantissa arithmetic precision. Full pivoting or partial pivoting strategies cannot

be used in the MPNA solution algorithms, since this can disrupt the diagonal-term minimum

polynomial orders which are needed for Theorem 4.1 to operate correctly.

Instead, diagonal pivoting is used where both rows and their corresponding columns are

swapped. This equates to simply renumbering nodes. With diagonal pivoting, during any stage

of forward elimination the best choice for the next pivot is yjj(s) with the maximum lyjj(s)j - b

or when more than one node has the same b, to choose the node with minimum value of yjj,b.

Thus, in the above example, the second node is eliminated first, and a true solution of

{i(s) = 2(s) = 1 - 2s + 4s2 - -

is computed.

4.2.6 Pivoting for Sparsity

Matrix pivoting for purposes of achieving sparsity in the LU decomposed matrix is hindered

for the same reasons as pivoting for accuracy. Once again, only rows and columns can be

interchanged together. In some instances, it may be advantageous to move a heavily connected

node to a lower position in a matrix. It may also be advantageous to number nodes of a ladder

type network in consecutive fashion, since these form a band-matrix, where only the diagonal,

and terms one away from the diagonal are non-zero.

4.3 Examples

On the following pages are several examples of results obtained from the algorithms de-

scribed in this chapter. All are representative of circuit topologies which model VLSI circuits

or interconnections. Namely, the topologies match models for

* connecting RC trees,

* charge sharing circuits,

* lumped RC trees,

1__11 _11�_� _I� - - -
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CHAPTER 4. GENERAL LINEAR NETWORK SOLUTIONS

* distributed RC trees,

* discrete coupled RC lines, and

* discrete coupled RLC lines (damped).

Each of the following examples shows a plot of the simulation results of SPICE (in solid lines),

and the moment polynomial method calculated to order 3 and with a double exponential inverse

(in dotted lines).

4.4 Computational Requirements

In this section, the computational requirements for the MPNA algorithms are compared

against the computational requirements for direct methods, and where applicable, against the

computational needs of the RC tree algorithms of Penfield [47] and Horowitz [18].

Chapter 7 shows a method for moving linear network solutions out of the simulation loop and
into the preprocessor step. So, this computation time is not a major concern. This discussion

is included here for completeness.
The quantitative value for computation in this section is based on the number of floating

point operations needed to compute one waveform or closed-form waveform expression. This

figure of merit is chosen over CPU time for two reasons, (1) to first order, it compares the
algorithms more directly, rather than the efficiency of compilers, and (2) some of the simu-

lation times are extremely small and difficult to measure. To generate a single number for
equivalent computations, each type of floating point operation is scaled by approximate relative

computation times, i.e., the number of equivalent computations is

(# additions)
+(# subtractions)

+3 (# multiplications)
+4 (# divisions)

+10(# square roots)

Table 4-1 shows the number of equivalent computations for each circuit. The three columns

given for MPNA are computed with different result orders. Direct method estimates are com-

puted as follows. The number of floating point operations for one matrix solution is determined

using the same circuit matrix, the same set of matrix operations, and the same pivoting for

both MPNA and direct methods. First order numerical integration is assumed. The number

of time-steps is estimated by running SPICE simulations where the automatic time-step control

keeps node voltages within 5-10 % accuracy at all times. These accuracies may conceivably be

worse than the moment polynomial method. SPICE waveforms shown in the preceding examples

used several times more time-steps than this number to give an accurate number.

From Table 4-1 we see that the special RC methods are more efficient computationally,

but these are also very limited in ability. The RC tree method for instance applies to only
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Example 4.7

( 1K ( 1K () 2K 0(7 vv 7VJyi--v 0svIL-
1i rP - 1 - - . -I

I
7 '� 1T V�.LV..ydpL�

SPICE
........ MPNA

5 10 15. 20 25 30 35 40 45

time (nsec)

FIGURE 4-5: Two connecting RC trees
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Example 4.8

() 1K ( 1K (0) 2K ()
: , , ,kA. ," 'c , 'VIA. ;

1 pF F 1pF

_I

= 3pF

- SPICE
........ MPNA

2 4 6 8 10 12 14
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FIGURE 4-6: Charge sharing
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Example 4.9

50 O 50 (0 50 0
1 v. L
Ov.

50 eI ®

pF I.pF

T''

SPICE
........ MPNA

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

time (nsec)

FIGURE 4-7: 10-stage RC line
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Exampl

r=1K r= K
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FIGURE 4-8: Distributed RC tree
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Example 4.11

1.5
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FIGURE 4-9: 10-stage coupled RC lines
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Example 4.12
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FIGURE 4-10: Two-stage coupled RLC lines
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4.5. DIscUSSION 

Table 4-1: Equivalent computations of examples for each method

two example circuits, and computes only first moment information. The RC tree models of

Horowitz are equally limited, and only compute first and second moment information. Neither

of these is capable of computing important coupling information.

Another thing to observe in Table 4-1 is that in all cases, the moment polynomial method

requires less computation than direct methods. This is particularly true when modeling dis-

tributed elements, since these are treated as one element with MPNA equations. For instance, in

Example 4.10 the computation requirements are 5-20 times less than direct methods, depending

on result order.

Two final observations are made regarding the computational complexity of the MPNA al-

gorithms. First, for a given circuit, each increase in order results in an increase of computation

by two on average. Second, for a fixed result order and a variable number of nodes, n, the

number of computations varies between O(n) and O(n3). O(n 3) occurs only for a completely

filled admittance matrix, which rarely happens with interconnection circuits. Figure 4-11 show

more realistic complexity orders for interconnection circuits which vary between O(n 0 5) and
O(n l.9).

4.5 Discussion

In this chapter we have seen that one can solve linear networks for the moment representation

of all node voltage waveforms. By following the truncation order for intermediate calculations,

the moment representations are guaranteed to be accurate to any desired order. Unlike other

simulation algorithms, the type of circuit is not constrained to just RC trees, meshes, or to

circuits with grounded capacitors at each node, etc.

2This figure is separated into two numbers, the first for the matrix solution time, the second for the number
of operation to find one double exponential inverse, (about 400).

3 Based on 3-stage lumped approximation for each distributed RC section.

Penfield Horowitz MPNA MPNA MPNA2 direct
p = 1 p= 2 p=3 methods

Example 4.7 100 83 200 370+400 1600
Example 4.8 150 310 510+400 1600
Example 4.9 50 180 500 1000 1700+400 5800
Example 4.10 45 440 940 1700+400 _90003

Example 4.11 1500 6000 15000+400 54000
Example 4.12 2200 4200 7400+400 13000

- -·------------ -�-----------� �- -'-~-� - -�----s-�--�-
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1 I I.I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 10 20

n
FIGURE 4-11: Computations vs. node count for n-stage RC lines (-) and -stage coupled RC
lines (- - -).
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5

Transmission Line Solutions for the
Moment Representation

This chapter presents some special considerations for finding solutions to transmission line

circuits. It relys on the previous chapter's methods, but improvements can be made for much.

better solutions. In this discussion, we will consider only lossless, coupled or uncoupled trans-

mission lines which are in a homogeneous medium along their length. We also allow arbitrary

networks at the transmission line ends. Abrupt changes in transmission line direction, coupling

or dielectric surroundings can be modeled by two connected sections.

The advantage of the improved transmission line modeling is easily seen by considering the

voltage response on the uncoupled, uniform LC line shown in Figure 5-1. The ends are ideally

terminated to eliminate reflections. The voltage response at some distance, lx, due to input

Vin(s) is
1 

vi(s) = V(s) · e- (5.1)

where u = 1/VLT-C is the propagation velocity. We could model this distributed transmission

line in the moment representation domain as described in Section 4.1.1 by taking the Maclaurin

series of Equation (5.1):

1 xI X s2l(s) = in(s) (1 - --s ~-5 3 + )
u 2u 

But, since this response (aside from multiplying by the transmission coefficient of one-half)

represents just a signal delay of EL, an exact solution is easily computed by incrementing the
to term of the moment representation, tov, = to,vi, + EL, or

V1(S) = Vin(S) e se [o 

The moment polynomial portion of the transfer function has one term, () SO
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VmJ 

FIGURE 5-1: Response of single transmission line.

This solution is far easier to compute than a solution with MPNA, and is more accurate.

Figure 5-2 shows an extreme example of what may occur with an MPNA solution. The waveform

starting location is not updated, and the resulting double exponential waveform is far from the

correct waveform that is obtained by increasing to. The above example demonstrates the basic

technique for transmission line solutions with the moment representation-increment to rather

than the moment polynomial. To handle circuits with reflections or coupling we turn to previous

work on modal analysis of transmission lines.

5.1 Modal Analysis of Coupled Lossless Transmission Lines

In this section we consider a set of N coupled, lossless transmission lines. One common

configuration is shown in Figure 5-3. The theoretical basis for this coupled transmission line

modeling is well developed, and was introduced in Section 1.1.5. Here, we look at these existing

methods more thoroughly.

Any excitation applied at one end of N coupled conductors activates a set of N modes which

propagate to the opposite end at different velocities. In this thesis the two ends are designated

as the transmitting and receiving ends, and variables are given t and r subscripts, respectively,

to distinguish between quantities at the two ends. While this designation is arbitrary, we will

assume that signals originate at the transmitting end. With the new method, mode strengths

are computed for any specific input excitation, hence the name modal analysis. The modes

propagate to the receiving end at their specific mode velocities; the mode strengths remain

constant while making the end-to-end transition. At the receiving end, some energy reflects

back to the transmitting end, depending on external circuitry connected to the transmission

lines.

The telegrapher's equations (Equation (2.4)) with R and G absent reduce to an eigenvalue

problem. Modal propagation velocities on coupled transmission lines are related to the eigen-

values of the matrix product, LC, where L is the inductance matrix per unit length of the

conductors and C is the capacitance matrix per unit length [53]. If the mnh eigenvalue of LC

is Am, then the propagation velocity of mode m is

U, = 1/rv-n.
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Vin (t)

V1 (t) [MPNA solution]

Vl (t) [exact solution]

0.0 .1 .2 .3 .4 .5 .6
time (nsec.)

from MPNA and modal analysis of transmission lines.

third order double exponential inverses of a sample

FIGURE 5-2: Waveforms

All waveforms are
output waveform.

VVo~L

Vr2 + o-fir

LC line N V. +
VrNne 2

-grunuplane

FIGURE 5-3: Coupled transmission line geometries.
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CHAPTER 5. TRANSMISSION LINE SOLUTIONS

The strength of mode m is designated hmr±(t), where a "+" subscript indicates propagation in

the +x direction and vice versa. At any x position, transmission line voltages and currents are

related to mode strengths through the modal matrices, Mv and MI, by

v(x, t) = Mv h(x, t) (5.2)

i(x, t) = Mr h(x, t) (5.3)

where h(x, t) is the vector of total mode strengths at x,

hl+(t - h(t -

h(x, t)= + 
hN+(t- ) hN(t - ) -

The voltage modal matrix, Mv contains eigenvectors of LC, where column 1 contains the

eigenvectors corresponding to A1, column 2 contains the eigenvectors corresponding to A2, and

so forth. In this discussion, the eigenvectors may be scaled by any non-zero value. In cases

where the N eigenvalues are not all distinct, care should be taken to ensure that the eigenvectors

are linearly independent. The eigenvalues and eigenvectors may be found with any standard

algorithm such as those described in [54]. The voltage and current modal matrices are related

by

MI = L- 1 My A,

My = C - 1 Ml A,

where

l/u2u 0

A=

0 1/UN

Figure 5-4 depicts the modal analysis method. First, a set of voltages applied to the trans-

mitting end, is mapped into mode strengths with the voltage modal matrix. Next, the modes

are propagated to the receiving end at their individual speeds. At time t = 1/um mode m

reaches the receiving end and is mapped back into transmission line voltages.

Thus far, we have not considered the effects of the transmitting or receiving circuitry. This

circuitry and the transmission line characteristic impedances must be considered when calculat-

ing reflections and transmissions at endpoints. The common technique for computing interface

behavior is to substitute the equivalent circuit of Figure 5-5 for each uncoupled mode trans-

mission line in Figure 5-4. As shown in the equivalent circuit, each mode has a characteristic

impedance, Z, = Lm/um where L' = M T L MI. The sources in Figure 5-4 are activated

when a propagating signal reaches the endpoint, i.e.,

jt(t) = 2 hm(t- /u,) _ jm(t- 
Zm
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CHAPTER 5. TRANSMISSION LINE SOLUTIONS

I

hN-

transmit
interface circuit

uncoupled
mode signals
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interface circuit

FIGURE 5-6: Modal analysis circuit.

jrm(t) = 2 htmjtm(t - I/).
Zm

This method, known as the method of characteristics, was first presented in [55] for a single

transmission line.

The circuit that results from the above substitutions can be transformed into the circuit

shown in Figure 5-6 by moving the transmission line impedances and sources outside of the

modal matrices. The resulting transmission line impedances and sources are now represented

by a characteristic admittance matrix, Yo, and a pair of current source vectors, it(t) and

i,(t). These connect directly to the external transmit and receive circuitry. The characteristic

admittance matrix is found directly from the transmission line properties, e.g.,

Yo = L - 1 (LC)-y

= Ml A-' 1 C

= L My A -' 1.

Signals still pass from end to end as mode strengths with h+(t)
values are computed at the transmit and receive ends by

and h_(t). The current source

it(t) = 2 MI h_(t - /urn), and

i,(t) = 2 MI h+(t - 1/u).

The reflected mode strength from each is computed from the voltage at the interface network

and from the incoming mode strengths:

h+(t) = Mv1 vt(t) - h(t- -), (5.4)

--
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5.2. MODAL ANALYSIS WITH THE MOMENT REPRESENTATION

h_(t) = MA1 v,(t) - h+(t - ). (5.5)
Urn

Considering two conditions of signal excitation on the transmitting end:

* when the excitation is caused entirely by the transmitter circuitry, only the first term of

the right hand side of Equation (5.4) is non-zero,

* when the excitation is caused by a signal propagating from the receiving end, the reflected

signal is computed by the difference between the first and second terms of Equation (5.4).
When the first and second terms are equal, the transmitting end is ideally terminated

since the two terms cancel, leaving no reflected signal.

5.2 Modal Analysis with the Moment Representation

Modal analysis methods translate easily into the moment representation domain. To de-
velop the method, we will consider a signal initially generated by the transmit circuit with the

transmission lines at rest. The moment representation simulator performs the following steps:

1. Solve the entire transmit interface circuit (see Figure 5-6) for v(s) using the methods
of Chapter 4. The voltage excitation comes from the transmit circuit, and since the

transmission lines are at rest, the current source vector, t(s) = 0. The transmission line
admittance matrix is resistive, so in the moment representation domain of this portion of

the circuit is Yo s° .

2. Find the moment representation mode strengths with

h+(s) = Mfj's 0 it(s), (5.6)

which is derived by rewriting Equation (5.2) in the moment representation domain.

3. Compute each mode's arrival time at the receiving end,

tm = t + /u, for mode m,

and queue each mode's arrival on the other end as a separate transition in the simulator's

global event queue. The individual mode signals on the opposite end are formed by

zeroing all but one term of the h+(s) vector and then shifting it in time by incrementing

the moment representation to term, i.e.,

O

hm+(S) = eStm hm+(s)

0 
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CHAPTER 5. TRANSMISSION LINE SOLUTIONS

If the arrival times of different modes are equal or nearly equal, as is often the case, then

their separate transitions can be combined into a single transition. We use the moment

representation time shifting algorithm of Equation (3.9) to match all of the moments to

a global starting time. To combine modes m and n, for instance,

hm+,n+() = estm [hm+(s) + {1-S(tn- tm) + 2(t _ t)2 } hn+()]

The notation will refer to a mode strength vector containing one or more individual modes

all time shifted to a common starting point, tn.

The advantage of combining transitions is to decrease the number of transitions which

otherwise could be very numerous if signal reflections remain strong at both ends. Caution

must be used in deciding which transitions to combine, since too much shifting can smear

distinct signals into an inaccurate single waveform. It is usually safe if the difference

between arrival times is small relative to the waveform durations, or if

Itn - tm < Ml,hm -lMO,hm -

4. When a signal reaches the receiving end, convert the mode strength(s) into the current

source waveforms

Zi(s) = 2Mih{m}+().

5. Solve the receive interface circuit, using the methods of Chapter 4.

6. At this stage we are repeating the cycle started in Step 1 above. Appropriate modifications

to terminology are easily made to account for the fact that we are the receiving end, rather

than the transmitting end. But first, one additional feature must be added to calculate

the reflected signal strength at any interface. This is achieved by modifying Equation (5.6)

in Step 2 to mirror Equation (5.4) in the moment representation domain, or

h+(s) = MVlso' t(s), - hfm}_(s).

After some number of reflections, the magnitudes of the mode signals decay to an insignificantly

small value. Before any mode transition is added to the event queue, this condition is tested,

and the signal is terminated if it is too small.

The algorithm for calculating the waveforms at either endpoint is stated concisely below.
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5.2. MODAL ANALYSIS WITH THE MOMENT REPRESENTATION

Algorithm 5.1
Excitations can come from the external circuit or from within the transmission line
or both. The procedure parameters are:

h{m}q: Excitations from within transmission line or 0 if none.
i=: Excitations from external transmit or receive circuit or 0 if none.
Y: Interface circuit admittance matrix, equal to Yezternal + Yo.
M: Current modal matrix.
M, 1: Inverse voltage modal matrix.
t: Mode propagation times for length of transmission line.

All matrices are polynomial matrices.
procedure LCIJNTERFACESOLVE(h{m}:, i, Y, MI, M1', t) begin
{ Compute source currents as the sum of externally applied sources and

the incident modes equivalent currents. }
i := i + 2MI h{m};
{ Solve the interface circuit. }
V := SOLVE(Y, i);

{ Compute new mode strengths. }

{ Delay modes by propagation times for length 1. }
for each mode, n do

ho[n] := e-"t[n] h[n];
for each set of closely spaced transitions, hn};, at time, tn in h do begin

if MAGNITUDE(h{n(,}) > threshold then

QUEUETRANSITION(tn, n:);
end

end
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Example 5.1 (Two coupled transmission lines.)

What is the moment representation solution to the circuit below?
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5.3. DISCUSSION

Propagation times are 49.6 picoseconds for mode 1 and 57.7 picoseconds for mode 2. Since

transition rise times are longer than the difference between propagation times, both modes are

combined into one transition in this example.

The solution through the first internal reflection from the transmit end is shown below in

dotted lines. The response from SPICE is shown in solid lines. The SPICE solution did not use

modal analysis, and was done with 50 stages of coupled LC equivalent sections. The SPICE

waveform ringing is an artifact of this, and does not reflect the true solution. For this example

the moment representation solution is more correct than SPICE.

SPICE

........ MPNA
Vrl

Vt,

¢i

Vt2

Vt2

Vr2

1

0.0 25.0 50.0 75.0 100.0 125.0 150.0

time (psec.)

5.3 Discussion

This chapter has presented a modal analysis method for simulating lossless coupled trans-

mission lines in the moment representation domain. This special modeling is needed because

transmission line circuits tend to retain sharp transitions even through large delays. If the

large delays are contained in the polynomial portion of the moment representation-as hap-

pens when we use the methods of Chapter 4-the time domain waveform approximations are
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CHAPTER 5. TRANSMISSION LINE SOLUTIONS

poor. The modal analysis methods operate by adjusting the to time delay term of the moment

representation, rendering a much improved fit to the true solution.

Coupled transmission lines are simulated by modeling mode strengths in the moment repre-

sentation domain. The interfaces at both ends of a set of coupled transmission lines is modeled

by an equivalent resistive network, and is simulated using the linear circuit methods presented

in Chapter 4. Each reflection is treated as a separate transition, or set of transitions in the

event of widely varying mode velocities.

The computational requirements for moment representation modal analysis depend on sev-

eral factors:

* the number of individual conductors contained in the coupled transmission lines,

* the number of reflections before a signal decays to an insignificant level,

* the closeness of the propagating mode velocities, and

* the complexity of the transmit and receive circuits.

During simulation the linear network solution time for the interface circuits is the most complex

step. Chapter 7 shows a method for removing this computation time from the simulation steps.

One final note is made regarding lossy transmission lines. Lossy transmission lines have

been modeled in the past by using an extension of time domain modal analysis [22] where

many sections of lossless transmission line are connected in series with approximating resistors.

The number of sections depends on the amount of attenuation; more attenuation requires more

discrete sections. This type of modeling can be applied to moment representation simulation.
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6

Macromodels for Non-Linear
Networks

Clearly, non-linear circuits, cannot be simulated with the linear network methods described

in Chapter 4. Yet, non-linear transistor elements are a significant building block in digital

circuits. In this chapter a macromodeling method is presented which translates a transistor

circuit into an equivalent linear circuit that causes the same response. The linear circuit element

values do not remain constant and are functions of the transistor circuit input waveform and

output loading admittance. So, like SPICE, simulation time is increased for non-linear circuits.

However, an advantage of combining macromodeling and the moment representation is that for a

given circuit, the input-output characteristics can be precompiled into a small set of macromodel

functions. Simulation speed is then considerably improved. This feature is demonstrated in the

next chapter.

The macromodeling techniques in this thesis are based on the successful methods developed

by Brocco [26,56]. The methods are modified to fit into the moment representation frame-

work. Because of the more precise circuit and waveform specification ability of the moment

representation, the macromodeling is improved even further over the previous methods.

A major issue in macromodeling is the number of macromodel function parameters. On

the one hand, we desire as few as possible for efficiency reasons, but on the other hand, we

desire enough to ensure an accurate performance characterization. In this work, two parameters

describe the environment of an MOS transistor circuit with good accuracy. These are, roughly,

the time for the input and time for the output waveforms to traverse through critical operating

regions of the transistors. The output waveform parameter is mapped into an effective load

capacitance parameter. The macromodeling converts a non-linear circuit into a sub-circuit of

linear elements. The macromodel functions describe values for the circuit elements.

The above synopsis shows the steps taken during simulation: (1) a moment representation

waveform is converted to the time domain, (2) time domain parameters are used to look up
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CHAPTER 6. MACROMODELS FOR NON-LINEAR NETWORKS

macromodel function values, and (3) an equivalent linear circuit is formed using the macromodel

function values.

Macromodel functions are constructed by extracting moments from real waveforms of the

non-linear circuits. Most commonly, the waveforms are from SPICE simulations. Different circuit

models are needed for the two types of transistor cells. First we look at MOS transistor circut

decoupling, and examine what constitutes a macromodel cell.

6.1 MOS Network Decoupling

Digital MOS circuits are divided into sub-circuits for different reasons. Two types of sub-

circuits-cells and sub-networks-are discussed next.

6.1.1 Cells

A cell is a portion of a circuit which performs a well-characterized circuit function. A cell's

boundary is usually defined by the circuit designer, and has input and output signals passing

across its border. A typical cell may constitute an inverter, a NOR gate, an adder circuit, or

an ALU. A cell may contain nothing more than interconnection lines, or may call other cells

hierarchically.

Since cell hierarchy and cell structure are not primary subjects of this thesis, and since the

subject could occupy an entire chapter, if not thesis, on its own, it will suffice to say that any

MOS circuitry can be composed of the following elementary cell types.

Interconnection cell: A portion of a circuit representing one or more interconnections. It

is composed of nodes connected by linear circuit elements. These cells do not contain

non-linear circuits.

Transistor driver cell: An output node driven to a high or low voltage through a transistor

path to VDD or ground. The transistors are controlled by one or more controlling inputs

to the cell. A logic gate output is modeled by a transistor driver cell.

Transistor transmission cell: Two nodes connected by a path through one or more transis-

tors. The transistors are controlled by one or more controlling inputs to the cell. A CMOS

transmission gate is, for instance, modeled by a transistor transmission cell.

6.1.2 Sub-networks

A sub-network is a portion of a circuit consisting of a set of nodes and elements which are

connected through MOSFET sources and drains, resistors, or inductors. Basically, a sub-network

is the smallest set of tightly connected or conducting nodes which must be solved as a unit if

iteration is to be avoided. The boundary of a sub-network is computed by the preprocessor

program with the algorithm described by Bryant in [52]. Bryant refers to sub-networks as
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6.1. MOS NETWORK DECOUPLING

transistor groups-the different term is used here, since resistors and inductors also connect

pieces of the sub-network.'

When circuit designers connect cells together, they almost certainly form sub-networks

which are different from the cells. The notion of a sub-network is usually only useful in circuit

simulation. Many simulators for MOS circuits [52,10] exploit the fact that a signal waveform

can be closely determined by simulating sub-network circuits individually with known input

signals applied to transistor gates in the sub-network.

The moment representation simulator exploits this same feature for calculating signal wave-

forms. The preprocessor program regroups circuit components into sub-networks. During simu-

lation, each sub-network is solved independently; the only link between sub-networks is achieved

by passing the output waveform of one sub-network to the input of another sub-network.

Coupling noise waveforms are computed with more than one sub-network, since capacitively

coupled nodes are not typically in the same sub-network. A special simulator feature added for

calculating capacitive coupling noise is outlined in this paragraph and is depicted in Figure 6-1.

If the node of one sub-network undergoes a signal transition, and if this node is capacitively

coupled to a node or nodes of another sub-network, then the circuit formed by the combination

of the two sub-networks is solved for the noise waveform. All other capacitively coupled sub-

networks are ignored (with the exception of extremely noise sensitive nodes) hence, their nodes

are assumed to be held at constant voltages. If a sub-network is capacitively influenced by more

than one sub-network at the same time, then the influences are calculated individually (i.e.,

still only two sub-networks are combined at once) and then the waveforms are summed. Only

the negligible effect of double coupling (where one line couples to a second line which couples

to a third line) is not treated.

6.1.3 Macromodel Cells

Circuits are macromodeled on cell boundaries. A macromodeled cell is best utilized when

replicated many times since much preprocessing is needed for each macromodeled cell, and

sharing this among many circuits makes the most efficient use of the preprocessing. The best

boundary for a macromodel cell is at the corresponding boundaries of the circuit cell or layout

cell. Of the cell types defined above, transistor driver cells and transistor transmission cells are

macromodeled, while interconnections are not.

One restriction exists in forming macromodel cell boundaries and in connecting macromodel

cells: circuit feedback paths must not cross cell boundaries. That is, a circuit feedback loop must

be entirely contained within one macromodel cell. (See Figure 6-2.) This restriction does not

'The sub-network can also be defined by the terms given in Chapter 4. A sub-network is a set of nodes
connected through circuit elements with order 0 or less. MOSFET source-to-drain connections have circuit
element orders equal to 0 and MOSFET gate-to-source and gate-to-drain connections have element orders equal
to +1.
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FIGURE 6-1: Sub-network boundaries.

To find the coupling noise caused at node x by a transition at node
a, the circuit formed by combining sub-network 1 and 2 is solved
independently of sub-network 3.

apply to clocked logic feedback, as in the case of a clocked finite-state machine.

6.2 Fundamentals of Macromodeling

The motivation behind macromodeling is to reduce a computationally expensive task to a
simple table lookup task. Table values are computed once, by the expensive method, but then
can be accessed quickly, any number of times.

A macromodel function is any function with respect to important, controlling input param-
eters, Pi, p2, ... P,. Sample values of an n-dimensional macromodel function, F(pl, P2, * pn),

are stored in an n-dimensional array, at discrete, closely-spaced increments of the input param-

eter data points. When a macromodel value is fetched from the tables with an input parameter

located between two data points, some form of interpolation is used. In this thesis, linear

interpolation is assumed, and only one- and two-dimensional functions are used.

Previous macromodeling efforts for circuit simulation have macromodeled

1. logic gate output waveform delay time and slope versus input waveform slope and output

load capacitance [57,26,25],

2. MOSFET id, versus d, and vg,, [9,58],
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I I

(a) (b)

FIGURE 6-2: Illegal (a) and legal (b) macromodel cells for a cross-coupled inverter circuit.

3. ECL gate drive values versus effective load capacitance and input pulse duration [59].

In this thesis, macromodel functions describe moment representation values or circuit element

values versus the input waveform slope and output driving-point (or load) admittance.

Transistor driver cells and transistor transmission cells are modeled slightly differently.

Transistor driver cells are discussed in detail. In the next sections, the circuit model, in-

put parameters, macromodel functions and macromodel extraction of driver cells are covered.

Then, transistor transmission cells are covered briefly.

6.3 Transistor Driver Cell Model

Figure 6-3(a) depicts a general transistor driver cell connected to load admittance, Yload(s),

which includes all circuit elements in the sub-network. It is modeled by the circuit of Fig-

ure 6-3(b). The elements surrounded by a dashed line are macromodeled. Transistor driver cells

have distinct inputs and outputs, which are in separate sub-networks. The inputs' sub-networks

are solved first, and then the output's sub-network. We assume that the output response has

no effect on the input sub-network, which to a good approximation is true for CMOS gates.

Miller feedback capacitance of single level logic gates is the only connection between inputs and

outputs.

6.3.1 Input Capacitance

A capacitance exists on any cell input that connects to a MOSFET gate. The transistor

capacitance is modeled by a single grounded capacitor, Ci,, even though it actually connects

to the source and drain. The Cin approximation completely decouples the input and output
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sub-networks. For any input transition an equivalent capacitance, Cin is calculated by

Aqi- Cgd(AVin - AVd) + Cgs(AVn - AVs)
Cin A =

where the voltage and charge terms are defined in Figure 6-4.

The values of AVd and AV, depend on the input transistor's circuit configuration, so it's

often best to determine Cin by measuring Aqin directly while the macromodel extractions are

made.

6.4 Macromodel Input Parameters

The transition behavior of a transistor driver cell is governed by two things: (1) the input

waveform slope and (2) the loading circuit connected to the output. By carefully quantifying the

input signal waveform, Vin(s), and load admittance, Yload(s) with a single value apiece, macro-

model functions are kept compact and fast. Now, the question arises how we can accurately

characterize a waveform representation (,(s) or Yload(s)) with a single value.

Let us first consider the possibility of using the lowest-ordered, unassumed term in the

moment polynomial. By this, we mean M1 of the input signal waveform2 and M1 of the

driving-point admittance3 . These equal the input waveform's Elmore time and the load's total

ground capacitance, respectively. These values as macromodel parameters work well for some

circuits, but, as shown in [56], can lead to errors of 100% or more for circuits with large line

resistances. Thus, M 1 of V,(s) and Yload(s) are not good macromodel parameters.

6.4.1 Input Waveform Parameter

The waveforms of Figure 6-5 demonstrate why M1 of Vin(s) is a poor parameter. Both

waveforms are representative of MOSFET and/or RC interconnect waveforms, and both have

identical M 1. However, if these waveforms drive an inverter input, for instance, the responses

are noticeably different. The critical section of a voltage waveform which defines an inverter

response is the section which passes through the inverter high-gain input voltage region. Thus, a

better macromodel parameter for input waveform shape is the amount of time for the waveform

to pass through the high-gain voltage region.

More precisely, the input waveform macromodel parameter is

tr,in - Vcr2 - crl (6.1)

where Vr,1, Vcr2, tr, and Vr2 are the critical voltages and times defined in Figure 6-5.

2 ifo is the d.c. transition voltage and is always -(Vhigh - Vow) for a logic transition.
3The load on the macromodel driver cell has no resistive or inductive paths to ground, and is only capacitive.

From Theorem B.1 we know that M1 is the lowest ordered, non-zero term.
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FIGURE 6-3: (a) General macromodel driver cell, (b) Linear network equivalent for a changing
output, (c) Linear network equivalent for static output.
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6.4. MACROMODEL INPUT PARAMETERS

This macromodel parameter was first used in [26] and is also used in this thesis. Two

things are readily seen. First, the overall delay of the critical line segment can vary. Another

input waveform parameter, td,in, is extracted from the input waveform, and the cell output

delay is adjusted by adding td,in to correct for the overall shift in input time. Secondly, if

the input waveform is in the moment representation, it must be converted to a time domain

representation.

The possibility of using many moment representation terms (more than just M1 ) for macro-

model input parameters has also been considered. An advantage of using M 1 , M2 and M 3, for

instance, is that we can avoid the time consuming task of converting each moment represen-

tation waveform into the time domain with the double exponential assumed waveform shape.

This idea was rejected, for three reasons: first, macromodel functions with third order moment

representation terms as input parameters are not smooth. The accuracy of macromodeling is

largely affected by the smoothness of the functions; it is difficult to interpolate accurately on

macromodel functions that jump around alot, and hence function evaluations are inaccurate.

Second, the size of macromodel function tables is extremely large, since (1) table dimensions

must be increased to at least three for third order moment representation modeling, (2) to

acheive any type of accuracy, very closely spaced macromodel data points are necessary, and

(3) moment representations terms may span a broad range of values, even when intelligently

"normalized". Third, it is hard to extract macromodel functions from circuit data. Appendix C

discusses this topic in more detail.

6.4.2 Output Load Parameter

Unlike other macromodeling efforts, the output load macromodel parameter for this thesis

is also based on the time for a waveform-in this case the output waveform-to pass through

a critical region. This critical region covers (1) the region where the driving transistors are

conducting most, and (2) the critical regions for inputs to succeeding stages. The output

voltage critical region is selected as the voltages between 0% and 75%, of the output voltage

swing as shown in Figure 6-6.

To use a time, t 75% - t0 %, based on the output waveform as a macromodel parameter brings

out two problems:

1. the output voltage waveform must be presupposed before the output voltage macromodel

functions are known,

2. performing test simulations to compute macromodel functions at regularly spaced inter-

vals of t7 5% - to% is difficult, as this would require iteration to find the correct input to

achieve a specific output transition time.

Hence, another macromodel parameter, effective load capacitance, Cbf, is chosen for the

macromodel parameters. Cff is, very approximately, the capacitance which can replace Yload (),
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Vcrl = Vo 5

4

critical
output

voltage 3
range

2

r-it= 1.25 v. 
1

0

FIGURE 6-6: Critical range of output voltage.

such that the output voltage waveform of the cell passes through the same end points of the

critical output voltage range as the real output-namely, the output voltage passes through Pi

and P2 of Figure 6-6. During simulation, effective load capacitance is computed as follows:

1. For each occurrence of a macromodel driver cell, an approximate step response waveform,

Vstep(t), is computed for the output node with a simple equivalent circuit substituted for

the macromodel cell (Figure 6-7(a)).

2. The effective load for a step input is computed such that the output voltage of Fig-

Rd:. Rdc '

: :a *. + -t

:*~~ L~ ~ A -e Rdc Cload

: :...............................

,.......

(a) (b)

FIGURE 6-7: Approximating circuit for computing Vstep(t).

V,
c. ,JuL

input
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ures 6-7(a) and 6-7(b) are the same at t = 0 and t = tcr,out, i.e.

tcr,out

Cst = Rdc ln(Vcr,out/Vo)

where Rdc is the static incremental output resistance

R 1stepRd = aVtep
alout tep=Vmm

3. Cstep equals Ceff only if the inverter response is fast compared to the interconnect step

response, Vstep(t). If the inverter response is slow compared to Vstep(t), then Yload is better

approximated by Cload = Ml,Xad, the total load capacitance to ground.

For each output transition during simulation, the effective load capacitance is computed

in the range between C.tep and Cload.4 This is done by comparing the time constants

of the macromodel voltage source, Vmm(s), (the derivation of Vmm(s) is described in the

next section) and the step response, Vtep(s). Ceff is approximated by

Ceff = Cstep + (Cload - Cstp) 1 + rtp/
1 + step/Tmm

where

rstep MiVtep/MOVstep

and

Tmm - Ml,Vmm /Mo,, m. -

Note that steps 1 and 2 require more computation, but only once per circuit, whereas step 3

requires little computation, but more often; once per circuit transition.

Example 6.1 What is Ceff for the circuit below when the inverter output time constant, mm,

is O.01ns, O.ns and 1.Ons?

r= 10k
c =.1 pF

Vinv I .02 pF

static inverter macromodel
,..................................

R dc 961 -
0-

Vm: mm

4For RC loads Cte p < Cltod, and if the load capacitance is a single capacitor to ground, then Ctep = Ctoad.

0 $

:.................................... :
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Attach the inverter's load to the static inverter macromodel, and solve for
V,m(s) = 1, a step input. This gives

Vatep(s) = 1 - 0.106 x 10-9 s + 0.0535 x 10- 8 s2 - 0.0305 X 10- 2 7 S3

which is plotted with a solid line below.

1.0

.8

.6

.4

.2

0.0

From the value of t,,

Vstep (t)

.0 25.0 50.0 75.0 100.0
time (psec.)

Ctep =- R ln(.25)t = 0.0245 pF

which gives the approximate response plotted with a dashed line above. From inspection of the

circuit, the total ground capacitance of the load is Cload = 0.12 pF.

From (6.2) above,

,tep(S) = M,v,,,, = 0.106 ns,

and finally, from Equation (3)

Ceff = 0.0245 + 0.10/955 pF
1 + (0.106/Tm.)

0.0327 pF for 7mm = 0.01 ns
= <0.0709 pF for rmm = 0.1 ns

0.1108 pF for ,mm = 1.0 ns

It is important to adjust the load capacitance parameter particularly for lines with much

resistance. This is demonstrated in Example 6.6 at the end of this chapter, where the input

voltage conditions set Ctff to be much different from Cload. Propagation delay errors are about

five times less while using Ceff as the macromodel parameter instead of using Clrod as the

macromodel parameter.

Vi,,(s) with

(6.2)

__ _
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6.5 Macromodel Output Functions

Figure 6-8 shows the linear circuit equivalents for a transistor driver cell in MOS technology.

The value of a circuit element enclosed in a dashed box is a macromodel function. The complex-

ity of the circuit differs depending on the order of the analysis. A higher ordered linear circuit

equivalent yields a better fit to the true circuit response. Figure 6-9 demonstrates one instance

of this by showing simulation waveforms of an inverter and of the three transistor circuits from

Figure 6-8. The second order fit is very close in this example.

Circuit elements of the linear circuit equivalents are described below:

* The no-load voltage source, Vl, equals the open-circuit cell output voltage. fl/,(s) is a

moment representation with constant Mo and macromodeled to, M 1, M 2, M 3 , ... These

macromodels are one-dimensional functions of the input voltage slope, tr,,vn. It is often

the case with all but the fastest inputs that V,l traces out the d.c. transfer function

between input and output.

* The d.c. resistance, Rdc, is the incremental resistance observed at the output after the

transition is completed. That is,

Rd o = V1
dc Iout vot

where V,,t = Vo,, for a falling transition and V,,t = Vhigh for a rising transition.

* The L,,mm and C,,mm circuit elements adjust the cell's output admittance during the tran-

sition. Their values are macromodeled functions of t, vi, and Ceff,Yoad.

These macromodel functions and scalar values model the cell output given any input or load

condition in the desired range. These functions and scalars (summarized in Table 6-1) form a

driver cell macromodel set. A different macromodel set is needed for each transition type caused

by a different set of input conditions. For instance, an inverter has one set for a falling output

transition and another set for a rising output transition. A full adder circuit may need as many

as 24 macromodel sets for the sum output signal and 12 macromodel sets for the carry output

signal. Figure 6-10 shows a full adder Karnough map, and marks each input transition that

causes a different output transition. Depending on circuit implementation, some macromodel

sets may be shared, if they are equal.

Embedded in the moment representation simulator is a logic simulator. Each cell has a

procedure to calculate the output logic states. Any change in an output state causes the

output transition waveform to be computed with a specific macromodel set. The operation of

the logic simulator is described by Brocco [26], which also discusses the issues of conflicting and

overlapping transitions.

�_11___11_111_�1_111I�1_--�--rrmlllli�_111_.111111111111_1_1
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Rdc

Cin p1 Vm Imm
L

output

-1I

I

I

(D.C. resistance approximation)

input
or

Cin I
I
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V.
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L I
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(First-order approximation)

Lmm
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FIGURE 6-8: Transistor driver cell linear circuit equivalents.

Elements in dashed boxes are not constant, and depend on input
waveform and output load.
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5

(volts)

time (nsec.)

FIGURE 6-9: SPICE simulation of true inverter and linear circuit equivalents.

Table 6-1: Macromodel functions and scalar values of a third-order macromodel set.

t0 ,nl(tr, V )

Mo,nl

M1,nt( t, in)

M 2,nl(t r, Vin)
M3,nl(t, vin)

Rdc

Cmm(tr, Vn , Ceff, Yload)

Lmm(tr, vjn, Cef, Ylod)

1_1�_11111111_-� ^-I_�-·I_ . - -1_�_·11___
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00 01 11 10
AB

Cin,\ 00 01 11 10

0

1

0 0A
AI
TY

Sum Cotout

FIGURE 6-10: Full Adder Karnough map with output transition possibilities.

Each arrow represents a macromodel set for an output transition.
The sum function has 24 macromodel sets-the maximum for a 3
input combinational function. The carry function has 12 macromodel
sets.

6.6 Extracting Macromodel Function Values

This section describes the procedure for calculating values in a driver macromodel set.

Computing macromodel numbers is called macromodel extraction. The amount of computation

needed for macromodel extraction is not a critical concern, since this is done once per cell. The

computation may, in fact, be considerable. This will be detailed later.

Macromodel numbers are found from any source of transistor cell waveform information.

Namely, the macromodels can be extracted from waveforms generated from SPICE simulations

of the cell, or from waveforms measured on the real cell circuit, if possible. All macromodel

functions presented in this thesis derive from SPICE simulations.

Test circuit (a) of Figure 6-11 extracts the scalar value for Rdc = aVout/Alout. This test

circuit is done under static conditions.

The procedure for extracting the macromodel functions is to conduct macromodel extraction

tests with closely spaced increments of macromodel parameter data points. Test circuit (b) of

Figure 6-11 extracts Vnl(t) waveforms of a transistor driver cell. The response at Vut is mea-

sured when transitions with different tr,i,, are applied at the input. It has been observed that

the input waveform shape which gives the best overall matching to true waveforms is a combi-

nation of a ramp and exponential tail, as shown in Figure 6-12. The output waveform moments

are extracted from the time domain waveforms as described in Section 3.5. The macromodel

function to,v,(tr,v,,) is defined as the time delay between td,in of the input waveform and to of

the output waveform.

Test circuit (c) of Figure 6-11 extracts the admittance macromodel parameters, Cmm and

Lm,m. These tests are performed with different combinations of input signal slope and load

capacitance. The output load is a pure capacitance in the tests, so Cff = Cload. For each

test with specific load capacitance and input waveform slope, the measured output waveform

P
Cm\

0

1 -f -+; - -
1- ;- I 'L0I

II T

1 I

IW e - | In
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Vlo w or Vhigh {

A Vout

Vlow or Vhigh

(a) Test circuit for extracting Rdc.

ut nl

(b) Test circuit for extracting Vn,(s) =

- Ml,nL (tr, V,,) s + M2,,l(tr,
S2

T. - '

Cload

(c) Test circuit for extracting Cmm(tr, vin, Cff,yoad) and Lmm(tr,¾v, Ceff,Yload)

FIGURE 6-11: Macromodel extraction test circuits.

0-
0---C

C

constant
inputs

CELL output

transition
input
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out

VVout -

1+-

Vlow or V
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Exponential Tail

Linear Portion

15

FIGURE 6-12: Test input waveform.

is converted from a the time domain into a moment representation. Values for C,,mm and Lmm,,

are found such that the second order moment representation of V,t(s) is the same for the cell

test circuit and the second order linear equivalent circuit in Figure 6-8. For this to be true,

1 + Rdc(Cmm + Clod)S + Lmm(Cmm + Cload) 2'

In terms of moment representations (with e-' to suppressed),

-
2
+ 

This equation necessarily means that A

Lmm,

S
2

Mo,v. - Ml,vIs + M2 ,V, 1 2

1 + Rdc(Cmm + Cload)s + Lmm(Cmm + Cload) 2s

4o,v., = Mo,vt as we expect. Solving for Cm, and

AM
Cram = Cload,

Rd

Lmm =

(6.3)

(6.4)
Cmm

where

Mlout = M1,vo,,/Mo,

AM1 = Mlvo, - Ml,t and
Mo

AM2 = M2,Vout - M2 ,,Vn,
2Mo

5

4

3

2

1

5

ame nsec.)
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Example 6.2 Plot macromodel functions for the following CMOS inverter for a falling output.

Vdd = 5v.

input

L= 1.6 um
W= =8um

output

L = 1.6 urn
W =4um

1-
Using SPICE5 for values of Ceff =0.1, 0.2, 0.5, 1.0, and 2.0 pF, and t,i, =0.02, 0.08, 0.2, 0.8,

2.0, 5.0 and 8.0 sec/v., a total of 35 simulations, the following macromodel set is derived. The

scalar values are: Mo = -5v., Rd, = 961Q.

5n-channel SPICE parameters: Vto = 0.75v., po = 520 cm 2 /v sec, -y = 0.16 v1/ 2, t,, = 250A, Xj = 0.2pm,
Ld = 0.16/m, Nub = 1 X 10

1 6 cm-3, C) = 0.23 x 10-3 pF/pm2 , Cj, = 0.2 x 10-3pF/Pm, Cgso = Cgdo =

2.2 x 10-4pF/pm, R,h = 52.5Q.

p-channel SPICE parameters: Vo = -0.75v., po = 190 cm 2 /v sec, y = 0.55 vl/2, to, = 250A, X, = 0.25pm,
Ld = 0.2pm, N,,b = 1 x 1016 cm - 3 , C = 0.67 x 10-3pF/Jm2, C, = 0.6 x 10-3pF/pm, Cgo = CgdO =

2.8 x 10-4pF/pm, Rsh = 120Q.

i -------------------- ------------------ ---·- ---------------------- -.. "I�l--~ll-�~~~~Y~"~I-�-- �----·LI�
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V,I macromodel functions vs. input transition time.

The square root and cube root of M2 and M 3 are stored as the macromodel functions respec-
tively. This makes all units be time, and keeps the macromodel functions closer to linear.
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Example 6.3 Plot macromodel functions for the shown path of the following CMOS circuit.

0

0.2 pF 0.4 pF

: _.
·....... .. 

simulations using

give the following

................................................................................

the same transistor models and macromodel input parameter data

functions. The scalar values are: Mo = -5v., Rd = 961R.

*

4,,

I~- I 

2 4

A

6 · r8

tr, in (nsec)

VT a macromodel functions vs. input transition time.

SPICE

points

14 -

(nsec)
12
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Table 6-2: Number of single precision floating point numbers for a macromodel set.

From the above two examples, we can make these interesting observations:

* In the first example, the lV,l(s) macromodel functions are very close to linear functions

of time. This is to be expected since V,,(t) traces out the same d.c. transfer function at

linearly increasing rates.

* In the second example, the AMl,vnl, M2,v,,, ... macromodel function values are small,

indicating Vnl(t) is approximately a voltage step. Also, tov,, is much larger for the multi-

stage macromodel than for the inverter macromodel.

* In the second example, admittance macromodel functions are independent of the input

slope. This observation and the last observation are true because there is significantly

more restoring logic between the input and output.

6.6.1 Macromodel Extraction CPU Time

The CPU time required to extract a complete macromodel set depends heavily on the

cell's circuit complexity. The macromodel examples in this chapter require approximately 5-40

minutes for SPICE simulation on an HP 9000/350 workstation6 per macromodel set. The same

workstation required less than one-half minute to extract the macromodel functions for one

macromodel set from the simulation waveforms. To extract all macromodel sets for a cell may

require several hours of CPU time. The SPICE simulation and macromodel extraction is done

automatically, and is controlled by UNIX's "make" program facility.

6.6.2 Macromodel Memory Requirements

Macromodel functions are stored as one-dimensional and two-dimensional arrays. parameter

data point values are stored in one-dimensional arrays, and index the macromodel function

tables. Each third-order macromodel set takes no more than about 150 floating point numbers

for all macromodel functions and data points (see Table 6-2).

8The HP 9000/350 has approximately a 3 MIPS processor.
7 With 2nd order admittance model.

order maximum floating- minimum floating-
point numbers point numbers

1 77 18
2 140 30

37 150 34

130



6.7. TRANSISTOR TRANSMISSION CELLS

For very linear functions, the size of a macromodel set can be reduced automatically with a

macromodel trimming program. The trimming program tries to locate two macromodel values

that are separated by as much as possible, provided all intermediate macromodel points are

offset from the line between the end-points by no more than a prespecified fraction (e.g., 1%)

of the total macromodel function range. This type of trimming can considerably reduce the

macromodel function array size in Example 6.3, for instance.

The size of a macromodel set is further reduced in some cases by raising the macromodel

parameters to a power. This linearizes some macromodel functions that are not originally linear.

For instance, the C,, function of Example 6.2 can be approximately linearized as shown in

the three-dimensional plots of Figure 6-13. The procedure for this is automatic, and is outlined

below:

1. Find logarithms of macromodel scale values.

2. Perform a linear regression on the macromodel functions with the logarithm scale.

3. Find function slope with linear regression, and raise scale values by the slope.

4. store the slope values in the macromodel set, so future macromodel functions calls use

the same parameter.

For the inverter of Example 6.2, two macromodel sets are needed, totalling to about 220

floating point numbers or 0.86 KByte. In comparison, a three input, full adder needs about 3300

floating point numbers or about 3.2 Kbyte. While it is true, in general, that as the number of

cell inputs and internal logic states increases, the internal logic complexity increases and the

macromodel sets become simpler; it is also true that the number of macromodel sets increases

exponentially, effectively limiting the number of cell inputs to around a dozen.

6.7 Transistor Transmission Cells

Transistor transmission cells are used to model the non-linear effects of isolated transmission

gates or pass transistors. Their prevalence in MOS circuits makes this an important cell type.

Brocco [26] was the first to incorporate transmission gate macromodeling into RC tree solutions.

Once again, these methods are joined into the moment representation simulation methods. The

macromodel parameters are basically the same. The principle difference is in the waveform and

circuit representation. The moment representation allows for a more accurate solution, since

the methods in [26] are effectively a first-order macromodel and a second order linear network

solution.

A large number of issues must be addressed to correctly model MOS transmission gates

properly. The reader should consult [26] or [56] for a thorough understanding of these. These

I__I.__11I -sl��^lll�p--·-----I· ^Illlllly- ·�ll*Y 1I^._-·-�-�I_� ··-�^1. �·�11YXIII..· -1I·II---1---·�-^I ·IIIP--.·�--··�·�IX^�I� .--- *·lll··__·lllllp·ylC·llll�·lllllll�·l
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FIGURE 6-13: Approximate linearization of a macromodel function.
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Y drive

conducting
pass cell

FIGURE 6-14: Conducting transmission cell

-- unchanging node states I changing node states -

Y drive
pass cell

-"

FIGURE 6-15: Switching transmission cell

issues are discussed briefly here, except where significant differences arise in using the moment

representation.

Solutions for transistor transmission cell simulations separate into two distinct problem

types depending on where the input signal transition is applied to the circuit. In a conducting

transmission cell problem the transition is applied to the driving gate as shown in Figure 6-14;

in a switching transmission cell problem the transition is applied to the controlling inputs of

the transmission gate as shown in Figure 6-15. The two problem types are discussed separately

below.

6.7.1 Conducting Transmission Cell

The d.c., first and second order linear circuit equivalent models for a conducting transmission

cell are shown in Figure 6-16. They are, in short, just the admittance portion of the linear circuit

equivalents for a transistor driver cell.

The macromodel parameters for the linear circuit elements are, once again, a signal tran-

Y load

V high
or

Vlow

Y load

____��_·� _1 �__11_1 1111 11 1 __·1_1·_Ll··�___·____111_·· 11 11·-(IIIII-�I1�--·�-1111^--�-�1·. I1_�LI1--l_-. IPI·--·ll -�-·II_·_ -·I� I _
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input Rdc
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(a)

input
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0C

Cin

Lmm
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X , L,( r _ ___ ! I

I
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I
I

.
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(c)

FIGURE 6-16: Linear circuit equivalents for a conducting transmission cell

Elements in dashed boxes are not constant, and depend on input
waveform and output load.
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6.7. TRANSISTOR TRANSMISSION CELLS

sition time and an effective load capacitance. The procedure for computing the parameters is

described below.

* A precursory, first order simulation is performed on the sub-network with Rdc substituted

for the transmission cell (Figure 6-16(a)). This gives- approximate waveforms at both

terminals of the transmission cell.

* The input transition time is the time required for the signal, Vl(t), on the driving end

of the transmission cell to traverse through a critical region. The actual parameter is

defined, as in (6.1) and Figure 6-5 as

tcr2 -tcrl

Vcr 2 - Vcrl

* The effective load capacitance is defined for Yload in the same way as for an driver gate, and

as described in Section 6.4. The behavior through the critical region of V2(t) determines

the value of Ceff.

* For both parameters, critical voltages at 0% and 75% of the total transition are used.

Fewer macromodel functions are needed for transmission cells than for driver cells. For a

conducting transmission cell, these are:

Rdc

Cmm (tr,V Cff )
Lmm(tr,V, Cff )

To determine the macromodel functions, experiments are performed on the circuit in Fig-

ure 6-17. As with transistor driver cells, the experiments can be done with SPICE or with real

transmission gate circuits, and the input signal slope and load capacitance are stepped through

the range of expected values for circuit operation. The method for computing the macromodel

function values from experimental waveforms is the same as for a transistor driver cell, and is

described in Section 6.6.

6.7.2 Switching Transmission Cell

Switching transmission cells can be difficult to model. Single transistor transmission cells

which are typically found in NMOS circuits are more easily modeled than the more complex

two transistor cells of CMOS circuits. Single transistor transmission cells are modeled with the

linear circuit equivalent models shown in Figure 6-18. The switch closes at time to, where to

depends on the input waveform,

to = to,mm(tr,Vc) + t d,Vc-

A non-zero d.c. voltage on Vth delineates a threshold drop on the pass transistor for the particu-

lar transition. The other circuit elements model the admittance properties of the pass transistor

�__�_ 1 _�________1____111_·1--·�-�_1__1---�-_-- 1_11111 --- - --.- _i_·- -- .·-.·^--� -·_1---1��---11111
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conducting
pass cell

Cloadj%7

FIGURE 6-17: Conducting transmission cell macromodel extraction circuit.

and are macromodeled depending on the input waveform and the effective capacitance of the

load.

The two transistor transmission gates common in CMOS circuits have two independent, con-

trolling inputs, adding to the complexity of their models. If both inputs arrive simultaneously,

concerns would be minimized, but this does not usually happen. Three approaches can be taken

to model these cells:

1. Use the same linear models for the one transistor transmission cell, and increase the

number of macromodel parameters to four: Ceff, tr,vc,,, tr,v,.p and td,vc,, - td,v,cp

2. Compute approximate circuit values for the single transistor models based on the easier-

to-calculate response that the transmission cell would have if it were driving just a single

load capacitor. (This approach in used in [26].)

3. Solve the entire network for both combinations of switch positions, and combine the

waveforms.

The first method is rejected because of the large macromodel function size and the difficult

macromodel extraction which would be needed. The second approach is rejected because the

time domain responses are difficult to obtain with the more complex, higher-order moment

representation circuits. The third approach has been selected for this thesis. It operates with

the following sequence:

* When the first signal arrives (at t = t), solve the network with one path conducting for

the given transition, as shown in Figure 6-19(a). Find waveforms for the desired output

nodes. We will designate one such waveform as V,,,l(t).

* When the second signal arrives (at t = t2 ), solve the network with both paths conducting,

as shown in Figure 6-19(b). The resulting waveforms are designated as V,,,2(t).
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FIGURE 6-18: Linear circuit equivalents for a one-transistor switching transmission cell.

Elements in dashed boxes are not constant, and depend on input
waveform and output load.
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FIGURE 6-19: Second
cell.

order linear circuit equivalents for a two-transistor switching transmission

* Combine the two waveforms:

Vtota(t) = { Vs,1 (t) ,(t)
V1W'1 (t2) Vt,,,2 (t)

for t < t _< t2,
for t > t 2

The linear circuit element macromodel parameters are the signal transition time of the

transmission cell's controlling inputs, T,vc, and the effective load capacitance, Cff,Yload

The following macromodel functions are needed for each switching transmission cell macro-

model set.
to(tr,Vc)

Rdc

Cmm(tr,v,, Ce)

Lmm(tr,vc, Ceff)
These macromodel function values are determined with the experimental test circuit shown in

Figure 6-20. In all extraction tests the input transition turns the transmission cell "on". For

I b c
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switchinc

Rtest= 1K

Vlow or Vhigh
+

CloadIK7

FIGURE 6-20: Test circuit for extracting switching transmission cell macromodel values.

circuits with two controlling inputs, like the one shown, the path not being tested is "off"'. For

a one-transistor transmission cell, two macromodel sets are needed to cover the two driving

logic state possibilities. For a two-transistor transmission cell, four macromodel sets are needed

to cover all combinations of driving logic state, and transistor path. Rdrive exists in the circuit

to approximate the effects of the driving circuit. It's value has little effect on the macromodel

function, and is not critical.

During extraction, this circuit is treated as a regular driver cell, where V,(t) is the transition

input. Macromodel function values are extracted as described in Section 6.4. Only to,v,(tr,vc)

is retained from the Vl functions.

Example 6.4 Plot macromodel functions for the following CMOS transmission gate for the
conducting case using the SPICE transistor parameters listed in Example 6.2.

V
c,p

._ L= 1.6um
," W=8 um

L= 1.6 um
W=4um

Vc,n

� �-�..--�--1I11IIII*. .--.--l�rmi_-__l·I�L·II^LI·--·-·_� 11I- ---F I.� - I --- I I
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6.8 Examples

This section contains several examples, showing results of the macromodeling methods de-

scribed in this chapter. These examples are designed to test all important aspects of macro-

modeling for moment representation simulation. Each of the examples shows a plot of the

simulation results of SPICE (in solid lines) and the third order moment polynomial method

calculated with a double exponential inverse (in dotted lines). All macromodel parameters are

extracted from SPICE simulations.

Each example also includes a table showing numerical differences between waveforms derived

from the two methods. Delay time is defined by the time difference in waveform crossings at

V = 2.5volts. For some waveforms, such delay times are very small and percentage errors

appear large, when in fact, the global delay errors are small.
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Example 6.5 (Inverter chain)
This example tests the inverter macromodeling methods. Load capacitances are selected to

fall between parameter data points and to test all regions of inverter operation.

i

pF

time (nsec.)

td td td slope slope slope
node SPICE mom. rep. % diff SPICE mom. rep. % diff

a .443 .366 19.1 -6.31 -6.59 4.24
b 1.24 1.19 4.26 3.12 3.37 1.60
c 3.12 3.03 2.98 -1.46 -1.46 .0667
d 4.97 4.73 4.86 1.72 1.71 .704
e 5.63 5.26 6.47 -4.39 -4.39 .0011

Waveform comparison for inverter chain example.

-- --
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Example 6.6 (Inverter driving interconnection)
This example demonstrates the effects of combining macromodeled and linear circuits. It

shows the effects of using Ccff for a macromodel parameter (... ) versus the total load capacitance

~' 500 um r

polysilicon

A
x=0

5

4

3

2

1

A
x = 250

r = 10.65 K
:.. c=0.119pF

A
x =500

in

x = 500

.5 1.0 1.5

time (nsec.)

td td td slope slope slope
node SPICE mom. rep. % diff SPICE mom. rep. % diff

z = 000 m .319 .350 9.51 -4.69 -4.73 .789
x = 250 m 1.21 1.20 .241 -1.49 -1.53 2.68
x = 500 m 1.42 1.41 .742 -1.49 -1.50 .156

Waveform comparison for inverter driving interconnection example.
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Example 6.7 (Multi-stage logic)
In this example, more complex macromodel circuits are tested.

in

5.

4

3

2

1.

I

I~~~~~~~~~~~~~~

in a' .:a, 

2 I 6 I8 10
1 2 4 6 8 10

time (nsec.)

td td td slope slope slope
node SPICE mom. rep. % diff SPICE mom. rep. % diff

a 2.55 2.41 5.43 -2.57 -2.65 3.03
b 2.77 2.64 4.75 -2.45 -2.50 2.14
c 5.79 5.58 3.74 1.86 1.90 2.46

Waveform comparison for multi-stage logic example.

...... ..... ...... ..... ...... ..... ...... ..... ........... ...... ..... ...... ..... ...... ..... ...... .....
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Example 6.8 (Conducting CMOS transmission gate)

C

0.1 k
= pF T

_ Pm

5

4

3

2

1

d

0.2 i
pF _

d

1 2 3 4 5 6 7

time (nsec.)

td td td slope slope slope
node SPICE mom. rep. % diff SPICE mom. rep. % diff

a .218 .332 41.6 -6.10 -3.94 43.1
b .823 .962 15.5 -1.72 -1.63 5.21
c 1.35 1.44 6.37 -1.44 -1.41 1.76
d 1.64 1.70 3.75 -1.52 -1.42 7.43

Waveform comparison for conducting CMOS transmission gate example.
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SPICE First Order Third Order
Example transient Moment Rep. Moment Rep.

analysis Macromodeling Macromodeling
Inverter chain 23.4 0.080 0.223

Inverter driving interconnection 6.50 0.245 0.729
Multi-stage logic 48.3 0.039 0.178

Conducting CMOS transmission gate 19.07 0.172 0.401

Table 6-3: Simulation time in CPU seconds.

6.9 Computational Requirements

In Table 6-3 the computational requirements of macromodeled moment representation sim-

ulation and SPICE simulation are compared for the above examples. Only pertinent, transient

simulation time is included in the values. The table shows that speedups of one to two orders

of magnitude are possible. For larger circuits, even better improvements are expected.

The largest portion of the moment representation simulation time is spent solving linear

networks and converting moment representations to time-domain waveforms. The ratio depends

heavily on the circuit. Of the above examples, the extremes lie with the inverter chain example

on the one hand, where computing time-domain waveforms and slopes takes 60% of CPU time,

to the inverter driving interconnection example on the other hand, where solving the linear

networktakes 92% of the CPU time. Macromodel lookup occupies an insignificant fraction of

the CPU time.

6.10 Discussion

This chapter has shown a macromodeling method which enables non-linear circuits to be

solved rapidly. Linear circuits are formed which match the behavior at the edge of a cell when

connected to other cell circuits. The linear elements are macromodeled functions which depend

on what is connected on either side. For the typical driver cell type, the macromodel parameters

are input waveform slope and effective output load capacitance. Once the non-linear circuit has

been transformed into a linear circuit, it is solved with the methods described in Chapter 4.

The macromodeling methods require more computation, because both the input and output

parameters depend on waveform information that has to be converted from moment represen-

tations. Nonetheless, these methods are significantly faster than non-linear simulation methods

included in SPICE. The next chapter shows that improvements to the simulation algorithm

amass even further improvements to simulation speed.

A negative aspect of this macromodeling method is the computation time needed to compute

the macromodel function values. This may be hours of CPU time per macromodel cell. Yet, if
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this simulation method is applied to a cell library, the utilization of the macromodels is very

high, making them extremely efficient. This issue is also addressed in the next chapter.
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7

Circuit Model Compilation

We have now seen all of the basic simulation and modeling techniques for the moment rep-

resentation and are ready to address some efficiency issues for moment representation methods.

This chapter presents a simulation method for compiling an entire sub-network into a few

simple macromodel functions. The benefit of this method is greatly improved simulation speed.

First, the method is described; then the method is evaluated with some estimated CPU run-time

costs.

7.1 Circuit Model Levels

We begin this discussion by looking at the different levels of circuit modeling that are

possible with the moment representation. Here we are interested in which circuit level exists

during simulation. The levels are shown in Figure 7-1 for a sample sub-network containing an

inverter driving an interconnection leading to the input of another inverter. The interconnection

is capacitively coupled to another sub-network.

The first two circuit model levels are familiar. The first level (circuit (a)) contains non-linear

circuit elements and is represented by a non-linear matrix equation. The circuit can be solved

by direct methods methods (Newton-Raphson iteration and numerical integration).

The second level (circuit (b)) is the moment representation level formulated in previous

chapters. It contains a macromodeled linear network. To simulate one cycle at this level, the

simulator (1) looks up macromodel values for the driving inverter's linear equivalent circuit

based on the input signal slope and load, (2) solves the linear network for output node mo-

ment representations, and (3) converts output node moment representations to time domain

equations, if needed.

The next two circuits, in (c) and (d), depict new, simple circuit model levels described in

the next two sections.
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.. A A - AV A *A * A

(b) Macromodeled Linear

(b) Macromodeled Linear

i ·, .. .... .... .... . ............

I .::
Vx I

.~~ ._

: -: :
................................ :

(c) Compiled

_ Hj

> H (S)

(d) Muldi-Stage Compiled

FIGURE 7-1: Circuit model levels.
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7.1.1 Compiled Circuit Model

Once complete sub-network details are known, a sub-network circuit can be compiled into

the circuit model shown in Figure 7-1(c). It contains only a macromodeled voltage source.

The compiled circuit model is equivalent to a circuit transfer function. If the entire sub-

network was linear, the voltage source, V,(s), of the compiled circuit model would equal the

circuit transfer function multiplied by the input waveform transform. However, since the circuit

is non-linear, V(s) is a macromodeled function with input voltage slope the only parameter.

These macromodels do not depend on load, since this information is compiled into the fV(s)

macromodel functions. This fact decreases the size of a complete macromodel set for a compiled

circuit model, since only the following information is needed for a third-order model:

to( t,i)

Mox

m',(tr,in)

M2,.(tr,in)

M 3 ,.(tr,in)

The size of this macromodel set typically varies between 20 and 50 floating point numbers.

The method for converting a network from the macromodeled linear circuit model to a

compiled circuit model is simple. as shown in Algorithm 7.1. Basically, the linear network is

solved for each t,i~ data point of the original network. Then voltage moment values of relevant

output nodes are stored in new macromodel functions.

____ I
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Algorithm 7.1

{ L is the original, macromodeled linear circuit sub-network, C is the new, compiled sub-
network. The macromodel functions of £ are originally unfilled. The notation £[Ti,] indi-
cates the macromodel set in £ for the input transition, Tin, where Tin refers to a specific
combination of input state and input transition. C[Tin, Tot] indicates the macromodel set
in C for input transition, Tin, and output transition, Tout. }

procedure SUBNETWORKCOMPILE (, C: subnetwork) begin
SET.STATICCONDITIONS(1);
for each input transition, Tin in L do begin

for each macromodel data point, tr in L[Tin] do begin
Cef := COM PUTEEFFECTIVELOAD(E, Tin, tr);
UPDATE_.MACROMODEL-ELEMENTS(£, Tin, tr, Cf);

V := SOLVE.NETWORK(£);

for each output transition, To.t in L caused by Tin do begin
V := v[Tot];
{ Get the macromodel set for this pair of input and output transitions. )
m := C[Tin, Tot];
{ Set the macromodel functions to Vz moment representation values. }
m.to(tr) := tosv,;
m.Mo := ilo,v.;
m.Mli(tr) := Mv,;
m.M 2 (t') := .2,v;

m.M 3 (tr) := M3,V,;

end
end

end
end

Example 7.1 Plot compiled circuit model macromodel functions for node x in the circuit be-
low.

a _..
r= 10.7 K 04

=.113pF .034pF

r= 150

vb~ ~~ / T c =.0945 pF 
I~ .034 pF

There are four macromodel sets for this circuit-one for each combination of input signal
level and transition on nodes a and b. Two are plotted below.
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7.1.2 Multi-Stage Compiled Circuit Model

The last circuit level model depicted in Figure 7-1(d) is a multi-stage compiled circuit model.

Each block in the circuit represents a sub-network. The idea here is that several interconnected

sub-network stages, H1, H2 and H3, can be combined into one equivalent compiled circuit

model, H,.

This idea is analogous to computing a combined transfer function of a linear system. If all

of the sub-networks were linear then we could find Hf(s) = Hi(s) H2(s) H3(3). Since the
networks are not linear, it suffices to model Hft(s) with

Hr(s) = e -sto(tr'Vi" ) (1Mo + i(t,vi,) + M 2(tr,,.) + M3(tr,Vi,) + ')

where to(tr, Vin), Mo, MI(t,,V), MI2 (tr,vi), ... form a macromodel set. Each combination of

input logic levels and transition has a different macromodel set.

The number of sub-network enclosed in a multi-stage compiled circuit model is limited by

the number of input logic combinations and internal logic states, since, the number of output

macromodel sets may grow exponentially with increasing size. Currently, sub-networks are

combined only at the request of the user.

Algorithm 7.1 also computes the macromodel functions for a multi-stage circuit model. The

difference here is that routine SOLVE-NETWORK computes the output response of the cascaded
sub-networks.

7.2 Computation Requirements

The big advantage of circuit model compilation is simulation efficiency. Circuit model

compilation represents the final improvement in simulation efficiency, so we will look into com-

putational requirements more thoroughly, now.

During simulation, each input transition causes the following computation steps for a sin-

gle, compiled circuit model: (1) macromodel function lookup for the output voltage moment

representation values, (2) computation of the time domain waveform at relevant outputs. The

time consuming task of solving linear circuits is not done during simulation.

First, consider the CPU time required to do a complete chip simulation. Simulation time

decreases as simpler circuit models are used. In this section we consider what the computation

is needed to simulate a chip using each circuit level shown in Figure 7-1.

Simulation time estimates in this section are based on the parameters listed in Table 7-1.

These parameters approximate values for a chip using a standard cell approach where intercon-

nections are carefully modeled. The estimated number of linear circuit nodes per sub-network

assumes that (1) interconnections are modeled with distributed circuit elements, as in Exam-

ple 4.10, and (2) noise waveforms are computed for one coupled line. These parameters also
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Table 7-1: Parameters for complete system CPU time estimates.

first order third order
Non-linear circuit model 55,500
Macromodeled linear circuit model 1106 1725
Compiled circuit model 3.8 97
Multi-stage compiled circuit model 1.5 39

Table 7-2: Simulation times for different circuit model levels in hours/MIP.

assume a small macromodel cell size, as indicated in the average number of transistors per sub-

network. Larger macromodel cells would further improve moment representation simulation

times.

Based on these parameters and on careful simulation time measurements of average sized

cells, simulation times are estimated. Table 7-2 lists simulation time estimates for each circuit

model level. Two run-times are given for moment representation methods-for first-order and

third-order simulations. The non-linear times are based on SPICE simulations, but the total

time is estimated by assuming that each sub-network is simulated separately. Thus, this time

reflects, more accurately, the CPU run-time of a chip-wide simulation with SPLICE [10] or with

waveform relaxation methods [11]. At the level of circuit complexity prescribed by the chip

parameters, the macromodeled linear circuit model simulations consume most of its CPU time

solving linear networks. The compiled circuit model eliminates this burden; saving at least an

order of magnitude in simulation run-time. Some additional benefit is gained by combining

sub-networks into multi-stage models.

Translating circuits from a complex circuit model to a simpler circuit model is not without a

cost. Some set of simulations must be done with the expensive method, and model parameters

must be extracted before one can simulate with the simpler model. We have already seen

that converting a cell from a non-linear circuit model to a macromodeled linear circuit model

Number of sub-networks 104
Simulation input transitions per sub-network 103
The average sub-network has:

Number of transistors 8
Number of linear circuit nodes 10
Number of macromodel sets 15
Number of data points per macromodel sets 6
Number of connected output nodes 3

Macromodel cells in circuit library 300
Average number of sub-networks per multi-stage

circuit model 2.5

-- ---- x~-- -
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Non-Linear Circuit Modell
1

750

Macromodeled Linear Circuit Model

155

Compiled Circuit Model

3.5

[Multi-Stage Compiled Circuit Model

Table 7-3: Third-order circuit model translation times in hours/MIP.

(macromodel extraction) is time-consuming. Table 7-3 shows the CPU time for converting from

a higher level circuit model to a lower level circuit model.

We clearly see, even when translation time from the top level circuit model is added to

simulation time, that it is still advantageous to compile circuits to the simplest level and to

simulate at this level. This is true in general when many simulation cycles are needed for each

circuit. If cell libraries are shared among several chip designs, the macromodel extraction time

can also be shared. At the macromodeled linear circuit level and below, exact interconnectivity

and circuit usage is assumed. Hence, translation below this level is done only on a per circuit

basis, i.e., in the preprocessor.

--
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8

Conclusions and Future Work

This thesis has presented the moment representation as a.means for simulating digital

circuits containing interconnections and non-linear active devices. The methods are optimized

for simulating interconnection networks. Chapter 2 showed a strong motivation for this, namely,

it is because VLSI circuits are being increasingly effected by interconnection performance.

In Chapter 3 the moment representation was defined. It demonstrated that the moment

representation has two views: in one view it is a series of moment parameters for a time domain

waveform, in the other view it is a projection from the Laplace transform. The first view

allows us to covert between the moment representation and the time domain with a set of

special algorithms, described in Chapter 3. The number of moment representation parameters

is variable as specified by the representation order". The user can prescribe a simulation

order-as the order increases, accuracy increases at the expense of computation complexity.

Using the second view of the moment representation, i.e., as a mapping from the Laplace

transform, Chapter 4 showed a method for solving any linear circuit configuration with in-

dependent current sources, resistors, capacitors, inductors (including mutual inductors) and

distributed combinations of the above, with a very minimal set of restrictions. This circuit

flexibility is achieved by using nodal analysis matrix equations. Transmission line circuits can

be treated specially with modal analysis, as Chapter 5 describes, to give an exact value for

propagation delay time, and hence a better waveform solution.

Chapter 6 described a very accurate macromodeling method that enables moment repre-

sentation simulation of non-linear drivers and admittances. Non-linear elements are converted

into linear circuit equivalents which may have many, variable circuit elements. Circuit element

values are macromodeled as functions of input signal slope and output load. We saw that this

method is favorable for very rapid simulation of combined linear and non-linear circuits.

Lastly, in Chapter 7 a circuit model compilation method was presented which can drastically

enhance simulation speed. The chapter illustrated how a circuit's output waveform moment

representation can be compiled into a small set of macromodel functions which depend on the
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input waveform. This method can be viewed as using the circuit's transfer function to compute

the response, but the method also models the behavior of non-linear circuit elements.

Direct simulation methods are far too slow to consider for the complete chip simulation

which is needed for adequate circuit performance verification. As a result, many specialized

methods have tackled interconnection simulation, as we saw in Chapter 1. Moment represen-

tation methods offer many advantages over these.

The moment representation simulator is capable of simulating all configurations of inter-

connection simulation. It can simulate LC and RC interconnections with or without coupling,

circuits with charge sharing, single-ended drivers, pass gates, etc. The moment representation

is very suited to interconnection problems of digital circuits, since it is able to (1) simulate an

entire transition in one matrix solution (2) directly include distributed circuit elements (3) re-

sponses to any non-linear circuit can be "compiled" by a preprocessor into a very compact

moment representation form.

Moment representation methods can simulate non-linear circuits with a high degree of ac-

curacy. On a number of non-linear test examples, after several stages of logic all third-order

moment representation simulated waveforms had delay times that were within 10% of those

computed by SPICE. Noise waveforms had peak magnitudes within 18% on all tested circuits.

Typically, accuracies were far better than these worse case results.

8.1 Future Work

This thesis has presented fundamentals which were necessary to make the first successful

version of the moment representation simulator. A number of unresolved issues and questions

still remain. Below is a partial list of these questions for future investigation.

* Can the moment representation be replaced by other field number system during network

solution? Different representations may make some parts of the problem easier and others

more difficult. One possible representation may be the set of rational polynomials of s,

the Laplace Transform variable. This form is more easily converted to a time-domain

waveform, but is more difficult to do be derived from a time-domain waveform.

* Is it possible to automatically make a more intelligent selection of inverse Laplace Trans-

form assumed waveform shape?

* Is it possible to extend circuit flexibility to include dependent source elements? Improved

Miller capacitance modeling of MOS loads, accurate modeling of bipolar devices and

circuit feedback modeling are just a few potential uses of dependent sources.

Circuit matrices with dependent sources are not always symmetric and diagonally dom-

inant. Truncation algorithms presented in this thesis depend on this fact. Yet, several

examples have shown that circuits with voltage dependent current-sources can be solved
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by selectively increasing the truncation orders of b during forward elimination. A general

algorithm for this has not been determined.

* Can we solve non-linear networks without knowing actual macromodel parameters, and

instead leave them as symbolic variables? Rather than resolving the network for each

different input waveform, a symbolic function is evaluated. It is quite possible to redefine

mathematical procedures with symbolic numbers and to incorporate these into the matrix

solution routine. But, whether this would reduce computation or whether the functions

would become too complex for moderately sized circuits are unknown.

* Can lossy transmission lines be simulated?

* Lastly, is it possible to use these models in the reverse direction? This thesis has as-

sumed circuit analysis through simulation, but one should be able to use the moment

representation as a synthesis tool. For instance, if we have a compiled circuit model, it

is possible possible to determine an input waveform shape to the circuit that guarantees

a performance specification on the output-be that specification speed or noise margins.

We could, for instance, determine the minimum transition time that guarantees a network

with no noise margin violations.

A more difficult problem to consider is whether the moment representation can be used in

the reverse direction to find a critical circuit element value that meets a specification-for

instance, a minimum drive resistance that guarantees a network with no noise margin

violations. Unlike variable waveforms, variable circuit elements require changes to the

matrix circuit solution methods. It may be that symbolic, variable circuit values will

answer this need.

_�_I_ __·_ I �___II ____ �1111_

159



160 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

A

_�I �_ ___ __ __�__ �



A

Moment Polynomial Operations

Basic polynomial operations form the backbone of the circuit simulation techniques of this

thesis. Polynomial operations are needed for addition, subtraction, multiplication and division

of polynomials with the form

f(S) = fm m + fm+l Sm+l + fn-1 Sn-l + f Sn (A.1)

where m is the polynomial's base order, denoted by Lf(s)J, and n is the polynomial's order.

The result of each operation is truncated to a maximum order p, the truncation order. The

truncation order is always specified in advance of the operation to minimize the actual number

of floating point operations.

A.1 Definitions

The operations for addition, subtraction and multiplication are common algebraic calcula-

tions. Presented in a mathematical form most like its true computer implementation:

* addition of a(s) + b(s) = c(s) is

ci = a + bi, for all min{ La, LbJ} < i p,

* subtraction of a(s) - b(s) = (s) is

ci = ai - bi, for all min{LaJ, LbJ} < i < p,

* and multiplication of a(s) b(s) = c(s) is

ci = E am bi_m, for all (LaJ + LbJ) i < p,
m=O

Algebraically, division of polynomials does not yield an answer in the form of Equation (A.1).

The Maclaurin Series of the quotient is taken, however, without loss of accuracy in the first p
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162 APPENDIX A. MOMI

terms of a(s)/b(s). First, the dividend and divisor terms are
lowest-ordered term of the denominator:

ENT POLYNOMIAL OPERATIONS

normalized with respect to the

ao = aLaJ
bLbJ

al = aJ+
blbJ

and

bo = 1

bkbJ+l
bl =

bib]

6 lbbLbJ

Then, quotient terms are found as needed:

LcJ = LaJ - bJ

ClcJ

cLcJ+l

ccJ +2

CLcj+3

ClcJ+4

= ao

= al - ao b

= ao bl bl - ao b2 + a 2 - a bl

= -(ao b3 + b2 (a, - 2 ao bi) + b (a2 - b (al - bi ao)) - a3 ))

= -(bl (a 3 - bl (a2 - bl (al - bl ao))) + b2 (a 2 - b (2al - bl 3ao))

+b3 (al - bl 2 ao) + ao (b 4 - b2 b2) - a4 ))

cp

A.2 Minimum Polynomial Orders

From the above definitions, the minimum polynomial orders which result from each opera-

tion are:

La(s) b(s) = min La(s)J, L[b(s) }

-La(s) b(s) = La(s)J + Lb(s)J

(A.2)

(A.3)

La(s)/b(s) = La(s)] - Lb(s)J (A.4)



A.3. TRUNCATION ORDER RULES

A.3 Truncation Order Rules

With the above definitions, we can define a set of operations truncation rules. These rules

take the form of, "assuming the result of a(s) op b(s) has a truncation order of x, to guarantee

an exact result to order x the truncation orders of the two operands must be...."

The first two rules are easy:

If T [a(s) ± b(s)] = x, then T [a(s) = x,

and T [(s)] =.

If [(s)-b(s)] = x, then T[i(s)] = x- b(s)],

and T [b(s)] = - a(s)J.

From the division equations above, we see that the number of terms needed in the numerator

and denominator equals x, or the number of terms in all of the bracketed areas of

a aj La + + aas T[a] 

b LbJ s bj +' + a Tb] s b] C lai-LbJ sLJ l Lj + + C 5s

are equal. Thus,

If [a(s)/b(s)] = x, then T[(s)] = - lb(s)J,

and 7 [(s)] = x - La(s)J + 2 Lb(s)J.

A.4 Floating Point Operation Counts

Table A-1 shows the number of floating point operations needed for polynomial operations

of varying truncation orders.
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APPENDIX A. MOMENT POLYNOMIAL OPERATIONS

Table A-1: Maximum number of floating-point operations for polynomial operations.

floating point operations
adds and

operation p subtracts multiplies divides
addition or 0 1 0 0
subtraction 1 2 0 0

2 3 0 0
3 4 0 0
4 5 0 0

multiplication 0 0 1 0
1 1 3 0
2 3 6 0
3 6 10 0
4 10 15 0

division 0 0 0 1
1 1 1 3
2 4 5 5
3 10 12 7
4 21 26 9
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B

Truncation Orders During Gaussian
Elimination

This appendix section develops a proof that the truncation orders shown in Theorem 4.1

guarantee an exact result for (s) to order p if the linear circuit obeys the MPNA restrictions

listed on Page 70.

B.1 Moment Representation Admittance Properties

First, we consider the moment representation admittance function of a combination of

elements.

Theorem B.1 The minimum order of Yab(s), the combined admittance between two nodes, a

and b, of any connection of R, L and C elements, is x, where x is the minimum over all paths

between the two nodes of the maximum circuit element order along the path. That is,

min[ max {L([eicent(S)J} = LY'b(S)J-X. (B.1)
all paths all path elements

Proof: If Itoti(s) is the current that flows between nodes a and b when Vab(s) is applied

across a-b, then

Ital(S) = Yab(S) Vab(S)-

Assume a voltage, V'b(s) = 1, is applied across a-b, then iotl(s) = Yab(s) and from Equa-

tion (A.3),

LItoal(s)J = Lab(S) = . (B.2)

Now define any set of unique paths between node a and b such that at least one path goes

through all elements, and such that one path, minpath, is the minimum path in defined in

Equation (B.1). From KCL,

Itotal(S)= Ipath(S). (B.3)
all paths
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APPENDIX B. TRUNCATION ORDERS DURING GAUSSIAN ELIMINATION

From Equations (B.2) and (B.3) and the addition minimum order equation, (A.2),

LIpth()J = x, for minpath,{ LIpah(s)J > x, for any other path.

Since any element current is the sum of one or more path currents,

LIt(s)] = x, for any element along minpath, (B.4)
[lt(s)J > x, for any other element.

Applying KVL along any path, we know that the sums of voltage drops equals Vab(s), or

Vab(S) = IpEth (s) for any path.
all path elements Yelement

Using minimum order rules:

lKb(s)J min p LI(s)J - Li,,l(s)J}, for any path, (B.5)

Since lVab(s)J = 0, Equation B.5 can be rewritten

max { Lelt(s)J - LI,,t(s)J} = 0, for any path,
all path elements

and from Equation B.4,

maxallpath elements{Lyet(s)j} = x, for any element along minpath,
maxa path elements{ leit(S))J} > x, for any other element.

This is equivalent to the theorem statement.

B.2 MPNA matrix properties

Because we have restricted the set of permissible circuits to reciprocal RLC circuits, there

are several things we can say about the minimum orders of MPNA matrix elements. Each of the

following theorems is based on the fact that the nodal analysis equations of RLC circuits have

1. at a diagonal term, the positive sum of admittances of all circuit elements connected to

the node for that equation,

ykk(s) = Ykl(s) + + /kk-1(S) + k0(S) + ykk+l(S) + ''' + Ykn(S) (B.6)

(For a mutual inductance, the diagonal admittance term, is scaled by Lp,/M, but, is

always positive and non-zero.)

2. at an off-diagonal term, yjk(s), the admittance of a circuit element connected between

nodes j and k only.
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Theorem B.2 The diagonal terms of admittance matrix, M/s), have minimum order

LYkk(s)J < Bk

for any node k.

Proof: From the definition of Bk, there is a path to ground with a maximum circuit element

order of Bk. Either that path is to ground directly, in which case, from Theorem B.1, L[ko(s)J =

Bk, or it is through another node. If it is through another node, the element between it and

node k must have LPkm(s)J < Bk. Furthermore, since all admittance terms are positive, when

the admittances are summed as in Equation (B.6), there is a positive term of order less than

or equal to Bk.

Theorem B.3 The minimum order of any off-diagonal term, where defined, is never less than

the order of the diagonal term in its row or column, or

Ljik(s)J > jj(s)J and l[jk(s)J > Lkk(s)J, for any j, k.

Proof: In a reciprocal network, Yjk = Ykj, and from Equation (B.6), and since the positive-

only terms cannot cancel in Equation (B.6), if there is a contribution of any minimum order in

an off-diagonal term, then there must also be a contribution in the diagonal term of the same

order.

Theorem B.4 The minimum order of any current term of i(s) is never less than the order of

the diagonal term in its row, given that circuit Restriction 3 on Page 70 is satisfied, or

Lik(s) > L kk(s)J, for any k.

Proof: From the nodal analysis equation of node k,

ik(s) = ki(S) Di(s) + k2(s) 2() + + Ykn(S) Vn(S)

we see that none of the individual terms of the summation can have order less than tIkk(s)j,

since, from Theorem B.3, Lyk.(s)J > [Lkk(s)J for any x, and from Restriction 3, Lg(s)J > 0.

B.2.1 Gaussian Elimination of Nodal Analysis Matrices

In this section we examine what happens to the circuit described by Y(s)ib(s) = (s) during

the forward elimination steps of gaussian elimination. We start by looking at what happens

after the first column is zeroed below 11(s). Suppose Node 1 is connected to three other nodes

as shown in Figure B-1(a). Since Row 1 (Equation 1) is unchanged, Node 1 sees the same

impedances and voltages, but now none of the remaining equations depends on v. This can

be exactly represented in a circuit sense by decoupling Node 1 as shown in Figure B-l(b).

�II_1IIU� _111�I C 1 --· ·- ·---- 1 1 - 11 -
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i
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"4 > V>
Ym .
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Vk

Vm

(b)

FIGURE B-1: Circuit representation of Node 1 before (a) and after (b) zeroing the first column.
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B.2. MPNA MATRIX PROPERTIES

The dependent source paths are reflected in the non-symmetric first row and column. The

remaining n - 1 rows and columns of i(s) and n - 1 rows of (s) contain the sum of the

original circuit and the 3-terminal active, reciprocal network which models Node 1 and its

interconnections. We can see the original network terms and 3-terminal terms directly in the

forward elimination equations.

k,(S = Ykm(S)

original
network

ik(s) = ik(s)

Pkj(8)
-YPjj(S) Yim(S)

3-terminal
equivalent network

_i(S) ij(s)

As expected, the admittance matrix for the 3-terminal network,

-1 [ jl(S) lj(S)h S ) jl(Sk() 9jl(S) Plm(S)
(S YI(S) Y1 j(S) Ykl(S) lk(S) Pkl(S) m(S)

Y1 S) /ml (s) lj(8) ml(S) lk( ) ml()lm( )

is symmetric (reciprocal) if the original network is symmetric (reciprocal).

Extending this to any step of the forward elimination process, we have a matrix equation

of the form:

norton equivs.

" , volta

" "%% SOUl

originm

equ
mult

of.

tge controlled

rce branches

al reciprocal network
+

ivalent reciprocal,
i-terminal network
nodes 1 through j

v 

This continues until the last node is represented by only a current source driving a single

admittance. During the backward elimination steps, the node voltages are easily evaluated by

their equivalent, single-node circuits.

From the above discussion, we can extend the theorems of the previous section to the nodal

analysis matrix equation during any step of the gaussian elimination process. Theorems B.2

0

_ I� II __ _I_ �_ ____11_111__·_111_�__-^---�··11_1�--1111

169

I

m



APPENDIX B. TRUNCATION ORDERS DURING GAUSSIAN ELIMINATION

and B.4 still hold at any time, since their proofs depend only on a node's equivalent admit-

tance to ground and any other admittances between it and other node voltages. Theorem B.3

also holds for off-diagonal terms where defined, since an off-diagonal term still represents an

admittance connected between two valid node voltages, and hence, Equation (B.6) still holds.

B.3 Truncation Orders for Gaussian Elimination

We are now ready to compute the necessary truncation orders for gaussian elimination op-

erations involving moment representation polynomials. This is done by systematically applying

the truncation rules found in Appendix Section A.3 to the gaussian elimination equations.

B.3.1 Backward elimination

This will be done backwards, by first considering the backward elimination equation,

Zk(S) - Z-i=k+l Vm(S) Pkm(S)
Vk(S) = ( ) kk (S) (B.7)

We want a final answer to order p, thus

[k(S)] = p.

By recursively applying truncation rules:

[T k(s) - EM=k+l m(s) km) (B.8)

kk(s) (B.8)

1. T Zk(S)- E v(s) () = p+ Lykk(s)], (B.9)
m=k+l

which, from Theorem B.2, gives

T k(s)- m ,m(S) km(s) = P + Lkk(S)J < p + k. (B.10)

m=k+l

(a) T [k(s)] = P+ Lkk(S)J < P+ lk, for m > k (B.11)

(b) T ['m(s) Ykm(S)] = P + L kk(S)J < p + Sk, for m > k (B.12)

i-. [km(s)I < + 6k - Lm(S)J, for m > k (B.13)

From circuit restriction 3, Lm(s)J > 0, and

T[.ikm(s)] < P+ k, for m > k (B.14)

ii. [im(s)] = p+ Lkk(S)J - [Ykm(S)J, for m > k (B.15)

But, from Theorem B.3, Lkk(s)] - Lkm(S)J < 0, so

T[Sm()] = p, for m > k (B.16)
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which matches Equation (B.8).

Vm(S) km(S)J + 2 Lkk(8)J (B.17)2. [(kk(8) = [ L E
m=k+l

From Theorem B.4, we know that Lik(s)J > Lkk(s)J and from Theorem B.3 and circuit

restriction 3, LIm(s) ykm(s)J > Lykk(s)J for any m > k. So,

T [kk(s)] < P + LYkk(9)J p + sk

In summary, by the definition of p, the result minimum order, we can say

T[k(s)] = p for any k.

In doing the operations of Equation (B.7), the truncation order for:

division = p
summation and subtraction = p + Bk
multiplication = p + Bk

(from Equation (B.8))
(from Equation (B.10))
(from Equation (B.12))

For backward elimination to work properly, forward elimination must give the following

truncation orders. From Equation (B.11),

T[ik] = p+ Bk for any k, (B.20)

and from Equations (B.14) and (B.18),

T [km(S)] = p+ Bk for any k and m > k.

B.3.2 Forward Elimination

In the forward elimination phase, we use

km ,(s) = k,,() (kj(s)) yj(S)

to calculate new terms of the Y(s) matrix. The starting point for this,

T [km(S) = + Bk

is from Equation (B.21).

Applying truncation rules to this:

j(s)] =+B13k

1. [km(s)] = p + Bk

(B.18)

(B.19)

(B.21)

(B.22)

T km(s)

(B.23)

(B.24)

I __ _ ___ _ -_ _ 1__1__·1___ �1 �I__X�_I � _��_ � __III1IIIIIPII�II___
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2. T [(YPj(s)) ( )] +B k (B.26)

(a) T[Ijm(s)] = p + Bk - L yj( (B.27)
Pkj(s)

T [Pjm(s)] = p + Bk - L[kj (S)J + L~[jj(s)J (B.28)

We now wish to show that this equals p+ Bj. This is done by considering two cases:

Case 1 Bj > Sk

Since %[jj(s)J - kj(s)J < 0 for all reciprocal RLC circuits (Theorem B.3),

Equation (B.28) becomes

[jm(s)] < P + k (B.29)

and by definition of Case 1,

T [jm(s)] < p + Bj. (B.30)

case 2 Bj < B3k

If this case is true, then by the definition of Bk, there must not be an element

connected to node k with order less than Bk, or L[kj(s)J > Bk. Thus Equa-

tion (B.28) becomes

[jm(sl)] P + Lj;(S)J < p + Bjj (B.31)

(b) T [k (s)ij )] + Bk - ,m(s)J (B.32)

From Theorem B.3,

fT [jj(s)] = p + Bk- Ljj(s)]J (B.33)

i. T [kj(S)] = p + Bk - lj m (S)J + Ljj(S)J (B.34)

From Theorem (B.3),

T [kj(s)] = p + Bk (B.35)

ii'. T[jj(s)] = p + Bk - Ljm(s)] - Lkj(s)J + 2 l[jj(s) (B.36)
Since %Lim(s)J > Ljj(s)J,

T ii(s) = P + Bk - LYkj(S) + Ljj(S)J (B.37)

and since this is similar to Equation (B.28), we use the same reasoning to con-
clude

T[iijj(s)] = P + Bj (B.38)

In summary of the forward elimination section, we can say that when calculating any term of

Y(s) during forward elimination, it is sufficient (from Equations (B.25), (B.30), (B.31), (B.35)
and (B.38)) to truncate at

T [ky(s)] = P+ Bk.
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In performing the actual calculation of Equation (B.22)f on row k, the truncation order for

subtraction
multiplication
division

= p +Bk
= P+ Bk
= P + Bk - LYkkJ

(from Equation (B.24))
(from Equation (B.26))
(from Equation (B.33))

Following the same forward elimination steps one can also show that the same truncation

orders are needed for calculating the terms of i(s) during forward elimination with

k(5) = ik() - ij((j() 
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C

Using Moments as Macromodel
Parameters

This appendix examines the feasibility of using moment representation terms directly as

macromodel parameters. Advantages for doing this are apparent for large approximation or-

ders, since the time-consuming moment representation to time domain conversion could be

avoided. It is shown that this is not a practical alternative to doing the conversion from mo-

ment representation to time domain.

The moment representation is a global descriptor of waveforms-meaning that the moment

terms are used to describe the overall waveform shape. Furthermore, the moment terms are not

independent-a minor change in one without changing the other often results in an extreme

change in the calculated waveform. (This demonstrates the importance of developing the trun-

cation rules in Chapter 4.) Yet, when looking at the effects of input waveforms on non-linear

digital circuits, it is often only a local time fragment of the waveform that is important. Time

fragments are not readily extracted from the moments.

The possibility of macromodeling with moment representation terms is not an important

issue for small approximation orders, like n = 1 or n = 2. At these orders, macromodel

functions are smooth, but as one can see in Table 3-3, the computations to covert a moment

representation to time domain are already trivial. The big computational savings are seen with

approximation orders of three or more-in the rest of this discussion, we consider only the

possibility of macromodeling the double exponential assumed waveform shape.

We start by considering only a subset of the desired problem-we will attempt to macro-

model the slope of a waveform through a fixed critical region with moment terms as parameters.

It is possible to reduce the number of macromodel parameters to two for third-order monotonic

signal waveforms (or more generally, for third-order waveforms with positive non-zero Mo and

M 1 terms.) This reduction in number of variables is achieved by normalizing voltages by Mo
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and times by Ml/Mo. This leaves two variables:

M2 Mo
X2 =

and
M 3 M2

X3 = M3

We can undo this normalization at the end by multiplying the normalized slope by M 1/Mo .

A plot of normalized waveform slope through a 40%-60% critical region versus X2 and X3

is shown in Figure C-1. A large number of function values are not shown-these are at points

where X2 and X 3 combinations have complex poles or are otherwise impossible combinations.

In general, the plot shows macromodel functions which jump around in value. The functions

clustered towards the middle of the plot are from waveforms exhibiting single time constant

behavior. Figure C-1 also shows the specific locations of a few simple waveforms. Note that

two of the specific waveforms are close to function discontinuities.

We expect macromodel functions for nonlinear elements to be equally or more irregular,

since these are originally defined in terms of the slope through a critical region.

The above example does not deal with a number of important conditions, namely (1) non-

monotonic waveforms, (2) monotonic waveforms with parameters falling outside the range of

0.1 < X 2 < 3.0 and 0.2 < X 3 < 3.2, (3) different critical voltage ranges, and (4) different

assumed waveform types. A change in any of the above conditions would necessitate a new

macromodel table or an additional macromodel parameter.

The above example demonstrates reasons for not using this type of macromodeling. First,

macromodel functions with third order moment terms for parameters jump around substantially.

The accuracy of macromodel function evaluation is poor, since accurate interpolation is difficult

at discontinuities. Second, large macromodel function tables are needed to cope with the large

number of variables, and large number of data points. To counteract function irregularity, a

large number of points is required.
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FIGURE C-1: Macromodel plot of critical region waveform slope vs. X2 and X3.

Values are computed from the double exponential waveform shape.
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