24 research outputs found

    Efficient Query Processing for SPARQL Federations with Replicated Fragments

    Get PDF
    Low reliability and availability of public SPARQL endpoints prevent real-world applications from exploiting all the potential of these querying infras-tructures. Fragmenting data on servers can improve data availability but degrades performance. Replicating fragments can offer new tradeoff between performance and availability. We propose FEDRA, a framework for querying Linked Data that takes advantage of client-side data replication, and performs a source selection algorithm that aims to reduce the number of selected public SPARQL endpoints, execution time, and intermediate results. FEDRA has been implemented on the state-of-the-art query engines ANAPSID and FedX, and empirically evaluated on a variety of real-world datasets

    Optimizing Analytical Queries over Semantic Web Sources

    Get PDF

    Co-evolution of RDF Datasets

    Get PDF
    Linking Data initiatives have fostered the publication of large number of RDF datasets in the Linked Open Data (LOD) cloud, as well as the development of query processing infrastructures to access these data in a federated fashion. However, different experimental studies have shown that availability of LOD datasets cannot be always ensured, being RDF data replication required for envisioning reliable federated query frameworks. Albeit enhancing data availability, RDF data replication requires synchronization and conflict resolution when replicas and source datasets are allowed to change data over time, i.e., co-evolution management needs to be provided to ensure consistency. In this paper, we tackle the problem of RDF data co-evolution and devise an approach for conflict resolution during co-evolution of RDF datasets. Our proposed approach is property-oriented and allows for exploiting semantics about RDF properties during co-evolution management. The quality of our approach is empirically evaluated in different scenarios on the DBpedia-live dataset. Experimental results suggest that proposed proposed techniques have a positive impact on the quality of data in source datasets and replicas.Comment: 18 pages, 4 figures, Accepted in ICWE, 201

    Federated Query Processing over Heterogeneous Data Sources in a Semantic Data Lake

    Get PDF
    Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for citizens. Big Data plays an important role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized nature of the Web, allowing for the availability of heterogeneous data generated and maintained by autonomous data providers. Consequently, the growing volume of data consumed by different applications raise the need for effective data integration approaches able to process a large volume of data that is represented in different format, schema and model, which may also include sensitive data, e.g., financial transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data sources in their original format, that reduce the overhead of materialized data integration. Query processing over Data Lakes require the semantic description of data collected from heterogeneous data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake. Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale semantic data integration, exploration, and discovery. Federated query processing techniques utilize source descriptions to find relevant data sources and find efficient execution plan that minimize the total execution time and maximize the completeness of answers. Existing federated query processing engines employ a coarse-grained description model where the semantics encoded in data sources are ignored. Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake. First, we tackle the challenge of knowledge representation and propose a novel source description model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities belonging to the same semantic concept. Then, we propose a technique for data source selection and query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario, that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and access control requirements imposed by data providers. We introduce a privacy-aware federated query technique, BOUNCER, able to enforce privacy and access control regulations during query processing over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source descriptions in order to express privacy and access control policies as well as their automatic enforcement during source selection, query decomposition, and planning. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over data sources that not only contain the relevant entities to answer a query, but also are regulated by policies that allow for accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and co-evolution of data sources. We present a novel approach for interest-based RDF update propagation that consistently maintains a full or partial replication of large datasets and deal with co-evolution

    Col-Graph: Towards Writable and Scalable Linked Open Data

    Get PDF
    International audienceLinked Open Data faces severe issues of scalability, availability and data quality. these issues are observed by data consumers performing federated queries; SPARQL endpoints do not respond and results can be wrong or out-of-date. If a data consumer finds an error, how can she fix it? This raises the issue of the writability of Linked Data. In this paper, we devise aan extension of the federation of Linked Data to data consumers. A data consumer can make partial copies of different datasets and make them available through a SPARQL endpoint. A data consumer can update her local copy and share updates with data providers and consumers. Update sharing improves general data quality, and replicated data creates opportunities for federated query engines to improve availability. However, when updates occur in an uncontrolled way, consistency issues arise. In this paper, we define fragments as SPARQL CONSTRUCT queries and propose a correction criterion to maintain these fragments incrementally without reevaluating the query. We define a coordination free protocol based on the counting of triples derivations and provenance. We analyze the theoretical complexity of the protocol in time, space and traffic. Experimental results suggest the scalability of our approach

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle

    Query Optimization Techniques For Scaling Up To Data Variety

    Get PDF
    Even though Data Lakes are efficient in terms of data storage, they increase the complexity of query processing; this can lead to expensive query execution. Hence, novel techniques for generating query execution plans are demanded. Those techniques have to be able to exploit the main characteristics of Data Lakes. Ontario is a federated query engine capable of processing queries over heterogeneous data sources. Ontario uses source descriptions based on RDF Molecule Templates, i.e., an abstract description of the properties belonging to the entities in the unified schema of the data in the Data Lake. This thesis proposes new heuristics tailored to the problem of query processing over heterogeneous data sources including heuristics specifically designed for certain data models. The proposed heuristics are integrated into the Ontario query optimizer. Ontario is compared to state-of-the-art RDF query engines in order to study the overhead introduced by considering heterogeneity during query processing. The results of the empirical evaluation suggest that there is no significant overhead when considering heterogeneity. Furthermore, the baseline version of Ontario is compared to two different sets of additional heuristics, i.e., heuristics specifically designed for certain data models and heuristics that do not consider the data model. The analysis of the obtained experimental results shows that source-specific heuristics are able to improve query performance. Ontario optimization techniques are able to generate effective and efficient query plans that can be executed over heterogeneous data sources in a Data Lake

    XML: aplicações e tecnologias associadas: 6th National Conference

    Get PDF
    This volume contains the papers presented at the Sixth Portuguese XML Conference, called XATA (XML, Aplicações e Tecnologias Associadas), held in Évora, Portugal, 14-15 February, 2008. The conference followed on from a successful series held throughout Portugal in the last years: XATA2003 was held in Braga, XATA2004 was held in Porto, XATA2005 was held in Braga, XATA2006 was held in Portalegre and XATA2007 was held in Lisboa. Dued to research evaluation criteria that are being used to evaluate researchers and research centers national conferences are becoming deserted. Many did not manage to gather enough submissions to proceed in this scenario. XATA made it through. However with a large decrease in the number of submissions. In this edition a special meeting will join the steering committee with some interested attendees to discuss XATA's future: internationalization, conference model, ... We think XATA is important in the national context. It has succeeded in gathering and identifying a comunity that shares the same research interests and has promoted some colaborations. We want to keep "the wheel spinning"... This edition has its program distributed by first day's afternoon and next day's morning. This way we are facilitating travel arrangements and we will have one night to meet
    corecore