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Abstract. While the Web of Data in principle offers access to a wide range of interlinked data, the architecture of the Semantic
Web today relies mostly on the data providers to maintain access to their data through SPARQL endpoints. Several studies,
however, have shown that such endpoints often experience downtime, meaning that the data they maintain becomes inaccessible.
While decentralized systems based on Peer-to-Peer (P2P) technology have previously shown to increase the availability of
knowledge graphs, even when a large proportion of the nodes fail, processing queries in such a setup can be an expensive task
since data necessary to answer a single query might be distributed over multiple nodes. In this paper, we therefore propose an
approach to optimizing SPARQL queries over decentralized knowledge graphs, called LOTHBROK. While there are potentially
many aspects to consider when optimizing such queries, we focus on three aspects: cardinality estimation, locality awareness, and
data fragmentation. We empirically show that LOTHBROK is able to achieve significantly faster query processing performance
compared to the state of the art when processing challenging queries as well as when the network is under high load.

Keywords: LOTHBROK, Peer-to-Peer, characteristic sets, query optimization, cardinality estimation, data locality, SPARQL,
RDF, knowledge graphs

1. Introduction

Due to the popularity of decentralized knowledge graphs on the Web, more and increasingly large knowledge
graphs encoded in RDF are becoming available [1]. Furthermore, RDF knowledge graphs made available today are
becoming exceedingly large. For instance, Wikidata [2] and Bio2RDF [3] contain more than 14 billion triples each.
As a result, data providers experience an increasing burden of maintaining access to the datasets; and without any
monetary incentives to do so, datasets often end up becoming unavailable [4–6] and outdated [7].

In recent years, several decentralized systems [6–11] have been proposed to alleviate the aforementioned burden
from the data providers by reducing the computational load required to keep the data available, albeit using different
methods to do so. For instance, Linked Data Fragments (LDF)-based approaches [9–13] reduce the computational
load on the server by distributing some of the query processing effort to the client, ensuring that the server only
processes requests with low time complexity. On the other hand, Peer-to-Peer (P2P) systems [6–8] remove the
centralized point of failure that a server represents and replicate the data across several nodes in a decentralized
fashion, ensuring that even if the uploading node fails, the data is still accessible. For instance, RDFPeers [14] uses
a structured overlay over a P2P network that relies on Dynamic Hash Tables (DHTs) to determine where to replicate
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certain data. However, in situations where nodes frequently leave or join the network (i.e., churn), and data is often
uploaded to the network, nodes have to go through a costly adjustment process to update the overlay and redistribute
the data. Instead, systems like PIQNIC [6] and COLCHAIN [7] use unstructured P2P systems as foundation, where
there is no global control over where data is replicated, making the network more stable under churn.

COLCHAIN builds upon PIQNIC and divides the entire network into communities of nodes that not only replicate
the same data, but also collaborate on keeping certain data (fragments) up-to-date. This is done by using blockchain
technology [15–18] where chains of updates maintain the history of changes to the data fragments. By linking such
update chains to the data fragments in a community, COLCHAIN allows community participants to collaborate on
keeping the data up-to-date while using consensus to make malicious updates less likely and allowing users to roll-
back updates to an earlier version on request. Furthermore, the decentralized nature of COLCHAIN also increases
the availability of the uploaded data by replicating the data on nodes within the community.

Nevertheless, while PIQNIC and COLCHAIN already use decentralized indexes [19] to determine where data is
located during query time, subgraphs needed to answer a query are usually scattered across multiple nodes. Fur-
thermore, the indexes provide limited information that prevents the nodes from considering locality and accurately
estimating join cardinalities when optimizing queries. As a result, such systems often experience an unnecessarily
large amount of intermediate results when processing a query. This problem is exacerbated by the decentralized
nature of the systems, since the intermediate results have to be transferred between nodes, causing a significant
communication overhead.

While there are potentially many aspects to consider when optimizing queries in a decentralized setup, we will
focus on three such aspects: cardinality estimation, locality awareness, and data fragmentation. Suboptimal solu-
tions to any of these three aspects can lead to an increased communication overhead and lower performance. For in-
stance, while fragmenting large knowledge graphs into smaller fragments ensures that nodes do not have to replicate
entire knowledge graphs, using a fragmentation technique that spreads out the data relevant to a single (sub)query
across several fragments can increase the communication overhead since nodes might have to send an excessive
number of requests to obtain all relevant data to answer a particular query [20–23]. On the other hand, inaccurate
cardinality estimations can lead to a suboptimal join strategy that increases the amount of intermediate results and
therefore runtime [24, 25]. And while several approaches have proposed reasonably accurate cardinality estimation
techniques [24–26] over knowledge graphs, and for federated engines in particular [25, 27–29], such approaches
cannot easily be transferred to a decentralized setup since nodes in a decentralized setup lack a global overview of
the network and the data is scattered across multiple nodes. Finally, considering locality of the data when processing
queries can help ensure that larger subqueries are delegated to nodes that can process them without communicating
with other nodes, lowering the data transfer overall.

Nevertheless, while an optimization approach that maximizes the degree to which entire queries can be processed
by a single node could decrease the communication overhead, a study [20] found that processing entire queries on
one node can actually decrease the overall performance when the network is under heavy load, and that it is equally
important to balance out the query load between nodes. As such, there is a need for a more holistic approach to
query optimization that is able to delegate the processing of subqueries to other nodes in the network, thus reducing
the communication overhead to the extent possible. For instance, query optimization techniques that are based on
star-shaped subqueries have previously been shown to increase performance by at least an order of magnitude [10–
12, 30]. This, and the fact that conjunctive subqueries are relatively efficient to process [31], means that decomposing
and processing queries based on star-shaped subqueries can significantly reduce the communication overhead in
decentralized systems.

In this paper, we therefore extend our work on PIQNIC [6] and COLCHAIN [7] in three aspects that work together
to reduce the communication overhead when processing SPARQL queries, and in doing so, improve query pro-
cessing performance in an approach that we call LOTHBROK. LOTHBROK adapts Characteristic Sets [10–12, 24] to
fragment data in decentralized P2P systems. Furthermore, LOTHBROK builds upon Prefix-Partitioned Bloom Filters
(PPBFs) [19] and proposes a new indexing scheme called Semantically Partitioned Bloom Filters (SPBFs) to ob-
tain more accurate cardinality estimations. Lastly, LOTHBROK also introduces a locality-aware query optimization
strategy that takes advantage of the SPBF indexes and is able to delegate the processing of (sub)queries to neighbor-
ing nodes in the network holding relevant data. We evaluate LOTHBROK thoroughly using LargeRDFBench [32], a
benchmark suite for federated RDF systems that comprises 13 datasets with over a billion triples and includes 40



queries of varying complexity and sizes of intermediate results. Furthermore, we evaluate LOTHBROK using syn-
thetic data and queries from WatDiv [33] to test the scalability of LOTHBROK under load. In summary, we make the
following contributions:

– A data fragmentation technique that builds on Characteristic Sets [24]
– SPBF indexes adapted to the characteristic set fragmentation technique
– A cardinality estimation approach over decentralized RDF fragments using the SPBF indexes to provide more

accurate cardinality estimations
– A locality-aware query optimization algorithm that uses SPBF indexes to delegate subqueries to neighboring

nodes and reduce the communication overhead
– A thorough experimental evaluation of the impact of the presented techniques on query processing perfor-

mance using real-world data from a well-known benchmark suite, and large-scale synthetic datasets

The paper is structured as follows: Section 2 discusses related work while Section 3 describes background infor-
mation. Then, Section 4 presents LOTHBROK, Section 5 details how LOTHBROK optimizes queries, and Section 6
describes the query execution approach, while Section 7 presents our experimental evaluation. Lastly, Section 8
concludes the paper with an outlook to future work.

2. Related Work

The availability problem has prompted significant amount of research in the areas of decentralized query process-
ing and decentralized architectures for knowledge graphs. In this section, we therefore discuss existing approaches
related to LOTHBROK; client-server architectures, federated systems, and P2P systems.

2.1. Client-Server Architectures

SPARQL endpoints are Web services providing an HTTP interface that accepts SPARQL queries and remain
some of the most popular interfaces for querying RDF data on the Web. However, several studies [4, 5] have found
that such endpoints are often unavailable and experience downtime.

Linked Data Fragment (LDF) interfaces, such as Triple Pattern Fragments (TPF) [9], attempt to increase the
availability of the server by shifting some of the query processing load towards the client while the server only
processes requests with low time complexity. For instance, TPF servers only process individual triple patterns while
the TPF clients process joins and other expensive operations. Today, several TPF clients exist that rely on either a
greedy algorithm [9], a metadata based strategy [34], or star-shaped query decomposition combined with adaptive
query processing techniques [35] to determine the join order of the triple patterns in a query. However, while in
all these approaches the server can handle more concurrent requests in comparison to SPARQL endpoints without
becoming unresponsive, TPF naturally incurs a large network overhead when processing queries since intermediate
bindings from previously evaluated triple patterns are transferred along with subsequently evaluated triple patterns
to limit the amount of intermediate results, one by one. Furthermore, studies found that the performance of TPF is
heavily affected by the type of triple pattern (i.e., the position of variables in the triple pattern) [13] and the shape
of the query [36, 37].

Several different systems have since been proposed to lower the network overhead. For instance, Bindings-
Restricted TPF (brTPF) [38] bulks bindings from previously evaluated triple patterns such that multiple bindings
can be attached to a single request. While this reduces the number of requests made for a triple pattern, it still incurs
a somewhat large data transfer overhead, since each request still evaluates a single triple pattern. hybridSE [39]
combines a brTPF server with a SPARQL endpoint and takes advantage of the strengths of each approach; sub-
queries with large numbers of intermediate results are sent to the SPARQL endpoint to overcome the limitations
posed by LDF systems. However, hybridSE often answers complex queries using the SPARQL endpoint and is thus
vulnerable to server failure.

To further limit the network overhead, Star Pattern Fragments (SPF) [11] clients send conjunctive subqueries
in the shape of stars (star patterns) to the server and process more complex patterns locally on the client. Such



conjunctive subqueries can be processed relatively efficiently by the server [31], which results in the transfer of
significantly fewer intermediate results than in systems like TPF and brTPF. On the other hand, Smart-KG [12] ships
predicate-family partitions (i.e., characteristic sets) to the client and processes the entire query locally; however,
triple patterns with infrequent predicate values (according to a certain threshold) are sent to and evaluated by the
server. While this takes advantage of the distributed resources that the clients possess, Smart-KG often ends up
transferring excessive amounts of data unnecessarily since entire partitions of a dataset are transferred regardless of
any bindings from previously evaluated star patterns. WiseKG [10] combines SPF and Smart-KG and uses a cost
model to determine which strategy (SPF or Smart-KG) is the most cost-effective to process a given star-shaped
subquery. Like SPF and Smart-KG, WiseKG processes more complex patterns on the client. Nevertheless, all the
aforementioned LDF approaches rely on a centralized server or a fixed set of servers that are subject to failure.

Lastly, different from LDF approaches, SaGe [40] decreases the load on the server by suspending queries after
a fixed time quantum to prevent long-running queries from exhausting server resources; the queries can then be
restarted by making a new request to the server. However, SaGe processes entire, and possibly complex, queries on
the server, and as stated above, such servers are subject to failure.

2.2. Federated Systems

Federated systems enable answering queries over data spread out across multiple independent SPARQL end-
points [41–45] or LDF servers [46] offering access to different datasets. While such approaches spread out query
processing over several servers, lowering the load on each individual server, they sometimes generate suboptimal
query execution plans that increase the number of intermediate results and the load on individual servers [47]. As
such, several approaches [25, 27–29, 48, 49] have attempted to optimize federated queries in different ways. For
instance, [44] builds an index over time by remembering which endpoints in the federation can provide answers to
which triple patterns. Furthermore, [48] decomposes queries into subqueries that can be evaluated by a single end-
point. While [48] uses a similar query decomposition strategy as LOTHBROK, they target federations over SPARQL
endpoints, and as previously mentioned, such endpoints suffer from availability issues. On the other hand, [25, 49]
estimate the selectivity of joins to produce more efficient join plans. For instance, [25] uses characteristic sets [24]
and pairs [50] to index the data in the federation and combines this with Dynamic Programming (DP) to optimize
query execution plans. Furthermore, [46] proposes an interface for processing federated queries over heterogeneous
LDF interfaces. To achieve this, the query optimizer is adapted to the characteristics of the different interfaces as
well as the locality of the data, i.e., knowledge of which nodes hold which data. Inspired by these approaches, LOTH-
BROK fragments knowledge graphs based on characteristic sets and uses a similar cardinality estimation technique
to optimize join plans in consideration of data locality in the network.

2.3. Peer-to-Peer Systems

Peer-to-Peer (P2P) systems [6–8, 14, 23, 51, 52] tackle the availability issue from a different perspective: by
removing the central point of failure completely and replicating the data across multiple nodes in a P2P network,
they can ensure the data remains available even if the original node that uploaded the data fails. As such, they consist
of a set of nodes (often resource limited) that act both as servers and clients, maintaining a limited local datastore.
The structure of the network, i.e., connections between the nodes, as well as data placement (data allocation), varies
from system to system. For instance, some systems [8, 14, 51] enforce data placement by applying a structured
overlay over the network, such as Dynamic Hash Tables (DHTs) [53]. On the other hand, PIQNIC [6] imposes no
structure on top the network; nodes are connected randomly to a set of neighbors that are shuffled periodically with
another node’s neighbors to increase the degree of joinability between the fragments of neighboring nodes. Lastly,
COLCHAIN [7] extends PIQNIC and divides the entire network into smaller communities of nodes that collaborate
on keeping certain data available and up-to-date. By applying community-based ledgers of updates and relying on
a consensus protocol within a community, COLCHAIN lets users actively participate in keeping the data up-to-date.

Each P2P system has different ways of processing queries. For instance, due to the lack of global knowledge over
the network, basic P2P systems have to flood the network with requests for a given horizon to increase the likelyhood
of receiving complete query results. To counteract this, distributed indexes [19, 29, 54] like Prefix-Partitioned Bloom



Filter (PPBF) indexes [19] determine which nodes may include relevant data for a given query and thus allow
the system to prune nodes from consideration during query optimization. Yet, the aforementioned systems still
experience a significant overhead partly caused by inaccurate cardinality estimations, query optimization that does
not consider the locality of data, as well as data fragmentation that splits up closely related data. For instance, PIQNIC
and COLCHAIN both use a predicate-based fragmentation strategy that creates a fragment for each predicate. This,
together with the replication and allocation strategy used, means that data relevant to a single query is distributed
over a significant number of fragments and nodes.

However, while an approach that maximizes the degree to which entire queries can be processed by one node can
lower the communication overhead, distributing some of the query processing load across multiple nodes is equally
important when optimizing queries in a decentralized context [20] to avoid overloading individual nodes. As such,
LOTHBROK limits the communication overhead by fragmenting data based on characteristic sets and introducing
a new indexing scheme that lets nodes take advantage of the fragmentation to more accurately estimate subquery
cardinality and distribute the processing of subqueries to nodes in the network based on data locality. Furthermore,
since fragments are created based on characteristic sets, entire star patterns can be processed efficiently by single
nodes, further distributing the query processing load, lowering the communication overhead at the same time, and
increasing the query throughput.

3. Background

A commonly used format for storing semantic data is the Resource Description Framework (RDF) [55]. RDF
structures data as triples, defined as follows.

Definition 1 (RDF Triple). Let I, B, and L be the disjoint sets of IRIs, blank nodes, and literals. An RDF triple is a
triple t of the form t = (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where s, p, and o are called subject, predicate, and
object.

Given the definition of an RDF triple, a knowledge graph G is a finite set of RDF triples. The most popular
language to query knowledge graphs is SPARQL [56]. A SPARQL query consists of one or more triple patterns. A
triple pattern t is a triple of the form t = (s, p, o) ∈ (I ∪ B∪V)× (I ∪V)× (I ∪ B∪ L∪V) where V is the set of all
variables. A Basic Graph Pattern (BGP) is a set of conjunctive triple patterns. Without loss of generality, we focus
our discussion in the main part of this paper on BGPs and describe in Section 5 how our approach can support other
operators, such as UNION and OPTIONAL; our experimental evaluation in Section 7 includes queries with a variety
of SPARQL operators including UNION and OPTIONAL.

A complex BGP P can be decomposed into a set of star patterns. A star pattern P′ is a set of triple patterns that
share the same subject, i.e., ∀t1 = (s1, p1, o1), t2 = (s2, p2, o2) such that t1, t2 ∈ P′, it is the case that s1 = s2. Note
that while star patterns can be defined as both subject-based and object-based star patterns, for ease of presentation,
we focus on subject-based star patterns only since subject-subject joins are much more common in real query
loads [57]; LOTHBROK can trivially be adapted to object-based star patterns by using the same principles presented
in this paper for object-object joins rather than subject-subject joins.

Definition 2 (Star Decomposition [11]). Given a BGP P = {t1, . . . , tn} with subjects S P = {s1, . . . , sm}, the
star decomposition of P, S(P) = {Ps(P) | s ∈ S P}, is a set of star patterns Ps(P) for each s ∈ S P, such that
P = ∪s∈S P Ps(P) where Ps(P) = {(s′, p′, o′) | (s′, p′, o′) ∈ P ∧ s′ = s}.

The answer to a BGP P over a knowledge graph G is a set of solution mappings, defined as follows.

Definition 3 (Solution mapping [7, 9]). Given a BGP P and a knowledge graph G, the sets IG , BG , and LG are the
sets of IRIs, blank nodes, and literals in G, and VP is the set of variables in P, a solution mapping µ is a partial
mapping µ : VP 7→ (UG ∪ BG ∪ LG).

Given a BGP P and a solution mapping µ, the notation µ[P] denotes the triple (patterns) obtained by replacing
variables in P according to the bindings in µ. Furthermore, given a knowledge graph G and BGP P, [[P]]G denotes
the set of solution mappings that constitute the answer to P over G, i.e., ∀µ ∈ [[P]]G , µ[P] ∈ G, and ∀T ∈ µ[P], T is
a set of matching triples to P, denoted T [P]. Furthermore, dom(µ) returns the domain of µ, i.e., the set of variables
that are bound in µ and vars(P) returns the variables in P.



3.1. Peer-to-Peer

In its simplest form, an unstructured P2P system consists of a set of interconnected nodes that all maintain a local
datastore managing a set of (partial) knowledge graphs, where each node maintains a local view over the network,
i.e., a set of neighboring nodes (nodes within the local view over the network).

Formally, we define a P2P network N as a set of interconnected nodes N = {n1, . . . , nn} where each node
maintains a local datastore and a local view over the network. The data uploaded to a node in N is replicated
throughout the network. Furthermore, in line with previous work [7, 19], each node maintains a distributed index
describing the knowledge graphs reachable within a certain number of steps (also known as hops), called the horizon
of a node. A node n is defined as follows:

Definition 4 (Node [6, 19]). A node n is a triple n = (G, I,Nn) where:

– G is the set of knowledge graphs in n’s local datastore
– I is n’s distributed index
– Nn is a set of neighboring nodes

While maintaining the structure of the network is important for P2P systems, it is not relevant for the data and
query processing techniques that this paper is focusing on. As such, we do not go into detail on network topology,
data replication and allocation, and periodic shuffles. Instead, we refer the interested reader to related work such
as [6, 7] for more details. In the following, we define data fragmentation and introduce a running example.

In line with previous work [6, 7], and to avoid having to replicate large knowledge graphs throughout the network,
LOTHBROK divides knowledge graphs into smaller disjoint fragments, i.e., partial knowledge graphs, which can be
replicated more easily. Fragments can be obtained using a fragmentation function. A fragmentation function is a
function that, given a knowledge graph, returns a set of disjoint fragments, and is formally defined as follows:

Definition 5 (Fragmentation Function [6, 7]). A fragmentation function F is a function that maps a knowledge
graph G to a set of knowledge graph fragments, i.e., F : G 7→ 2G .

Different fragmentation functions can have different granularities. For instance, the most coarse-granular frag-
mentation function is FC(G) = {G}, i.e., the fragmentation function does not split up the original knowl-
edge graph. COLCHAIN [7] as well as PIQNIC [6] use a predicate-based fragmentation function for G, i.e.,
FP(G) = {{(s′, p′, o′) | (s′, p′, o′) ∈ G ∧ p′ = p} | ∃s, o : (s, p, o) ∈ G}, which creates a fragment for each unique
predicate in G. LOTHBROK uses a fragmentation function based on characteristic sets [24] (i.e., predicate families)
that is detailed in Section 4.2.

The fragments created by the fragmentation function are replicated and allocated at multiple nodes in the network
to ensure availability in case the original provider of the knowledge graph becomes unavailable and to enable
load balancing. The replication and allocation factor are parameters of the underlying network; for instance, in
PIQNIC [6], fragments are replicated and allocated across the node’s neighbors, and nodes index all fragments
available within a certain horizon. On the other hand, COLCHAIN [7] replicates and allocates fragments at nodes that
participate within the same communities. Since this paper focuses on data fragmentation and query optimization,
we omit details on data replication and allocation and refer the interested reader to related work [6, 7] for details.

Consider, as a running example, the unstructured P2P network in Figure 1a consisting of five nodes (N =
{n1, . . . , n5}) that replicate a total of five fragments ( f1, . . . , f5). In this example, each node maintains a set of two
neighbors and each fragment is replicated across two nodes. For instance, node n5 has {n2, n4} as its set of neigh-
bors, and replicates the fragments { f2, f4, f5} in its local datastore. While the running example is based on an un-
structured network, such as the one presented in [6], LOTHBROK could be adapted to more structured setups, such
as the one presented in [7].

3.2. Distributed Indexes

To speed up query processing performance, systems like PIQNIC [6] and COLCHAIN [7] use distributed in-
dexes [19, 54] to efficiently identify nodes holding relevant data for a given SPARQL query. The indexes capture
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Fig. 1. (a) Example of an unstructured P2P network N = {n1, . . . , n5} and (b) architecture of a single node n5 that indexes data within a horizon
of 2 nodes.

information about the fragments stored locally at the node itself as well as information about fragments that can be
accessed via its neighbors.

In [7, 19], a distributed index is formally defined as consisting of two mappings; (1) from a triple pattern to the set
of fragments containing relevant data to the triple pattern, and (2) from a fragment to the set of nodes that store the
fragment. Furthermore, to build the indexes for a node’s local view over the network, nodes share partial indexes,
i.e., partial mappings, for the fragments that they have access to, called index slices. In line with [7, 19], we define
distributed indexes and index slices in the following.

Definition 6 (Distributed Index [7, 19]). Let N be the set of nodes within a network, n be a node such that n ∈ N ,
T be the set of all possible triple patterns, and F be the set of fragments that n has access to within its local view
over the network. A distributed index on n is a tuple In = (ν, η) with ν : T 7→ 2F and η : F 7→ 2N . For a triple
pattern t, ν(t) returns the set of fragments in F that t matches. For a fragment f ∈ F , η( f ) returns the nodes on
which f is located.

Given a node n, n’s distributed index is denoted In. Given the definition of a distributed index, we define a node
mapping as a mapping from a triple pattern t in a BGP P to a set of nodes that contain relevant fragments to t, as
follows:

Definition 7 (Node Mapping [7, 19]). For any BPG P and distributed index I, there exists a function match(P, I)
that returns a node mapping M : P 7→ 2N , such that ∀t ∈ P, M(t) returns the indexed nodes that have fragments
holding data matching the triple t.

An index slice for a fragment is a partial mapping from triple patterns to the fragments that contain relevant triples
to the triple patterns, as well as a mapping from the fragment to the nodes that replicate it, and is defined as follows:

Definition 8 (Index Slice [7, 19]). Let f be a fragment. The index slice of f , s f , is a tuple s f = (ν′, η′), where ν′(t)
returns { f} if there exists a triple in f that matches t, and η′( f ) returns the set of all nodes that contain f in their
local datastore. The function s( f ) returns the index slice describing f .

Index slices for the fragments that a node has access to are combined into a distributed index for that particular
node using the ⊕ operator1. The distributed index is then used to check the relevancy and overlap of fragments
during query time to optimize the query. Given a set of slices S , the index obtained by combining the slices in S ,
I(S ), can be computed using the formula in Equation 1 [7, 19].

I(S ) =

(⊕
s∈S

s.ν′,
⊕
s∈S

s.η′
)

(1)

1⊕ is defined in [7, 19] as ( f ⊕ g)(x) = f (x)∪ g(x) if f and g are defined at x; ( f ⊕ g)(x) = f (x) if f is defined at x; ( f ⊕ g)(x) = g(x) if
g is defined at x.



While the definition of distributed indexes allows for several different types of indexes, the index slices used in
PIQNIC [6] and COLCHAIN [7] correspond to Prefix-Partitioned Bloom Filters (PPBFs) [19], which extend regular
Bloom filters [58]. A Bloom filter B for a set S of IRIs such that |S |= n is a tuple B = (b̂,H) where b̂ is a bitvector
of size m and H is a set of k hash functions [19]. Each hash function in H maps the elements from S (i.e., IRIs) to
a position in b̂; these positions are thus set to 1 whereas the positions not mapped to by a function in H are 0. In
other words, [19] represents the combined set of subjects and objects in a fragment in a prefix-partitioned bitvector.
Looking up whether an element e is in S using the Bloom filter for S is done by hashing e using the hash functions
in H and checking the value of each position in b̂. If at least one of those positions is set to 0, it is certain that e 6∈ S .
However, if all corresponding bits are set to 1, it is not certain that e ∈ S , since it could be a false positive caused by
hash collisions, i.e., different values are mapped to the same positions in the underlying bitvector. In this case, we
say that e may be in S , denoted e ∃S .

To check the compatibility of two fragments relevant for conjunctive triple patterns, we check whether or not they
produce any join results. To do this, we could check whether or not the intersection of the bitvectors describing the
subjects and objects of the fragments is empty (i.e., if they have some IRI in common). Given two Bloom filters
B1 = (b̂1,H) and B2 = (b̂2,H), the intersection of B1 and B2 is approximated by the logic AND operation between
b̂1 and b̂2, B1 ∩ B2 ≈ b̂1&b̂2.

To avoid exceedingly large bitvectors, PPBFs partition the bitvector based on the prefix of the IRIs. A PPBF is
formally defined in [19] as follows.

Definition 9 (Prefix-Partitioned Bloom Filter [19]). A PPBF BP is a 4-tuple BP = (P, B̂, θ,H) where

– P a set of prefixes
– B̂ is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂ : |b̂1|= |b̂2|
– θ : P→ B̂ is a prefix-mapping function
– H is a set of hash functions

For each pi ∈ P, Bi = (θ(pi),H) is the Bloom Filter that encodes the names of the IRIs with prefix pi and is called
a partition of BP.

Consider the example where the IRI dbr:Copenhagen is inserted into a PPBF, visualized in Figure 2a. In
this case, the IRI is matched to the prefix dbr, and the IRI is hashed using each hash function in the PPBF; each
corresponding bit in the bitvector for the dbr prefix is thus set to 1.

...

h1 h2 hk

dbr:Copenhagen

...

dbo

...
dbpdbr

......

(a) PPBF BP
1

...

dbr

...

dbp

...
dbo

...

...

(b) BP
1 ∩ BP

2

Fig. 2. Example of (a) inserting an IRI into a PPBF BP
1 and (b) intersection between two PPBFs BP

1 ∩ BP
2 [19].

Like for regular Bloom filters, we say that an IRI i with prefix p may be in a PPBF BP, denoted i ∃BP, if and
only if all positions given by h(i) such that h ∈ H are set to 1 in the bitvector θ(p). PPBFs are used by PIQNIC and
COLCHAIN to prune non-overlapping fragments of joining triple patterns from the query execution plan (i.e., the
match(P, I) function in Definition 7). This is done by finding the intersection of the two PPBFs to check whether
or not they overlap; if the intersection of the two PPBFs is empty, the corresponding fragments do not produce any
join results. The PPBF intersection is defined in [19] as follows.

Definition 10 (Prefix-Partitioned Bloom Filter Intersection [19]). The intersection of two PPBFs with the same
set of hash functions H and bitvectors of the same size, denoted BP

1 ∩ BP
2 , is BP

1 ∩ BP
2 = (P∩, B̂∩, θ∩,H), where

P∩ = BP
1 .P ∩ BP

2 .P, B̂∩ = {BP
1 .θ(p) &BP

2 .θ(p) | p ∈ P∩}, and θ∩ : P∩ → B̂∩.



Consider the example intersection visualized in Figure 2b. As described above, the intersection of two PPBFs
is the bitwise AND operation on the bitvectors for the prefixes that BP

1 and BP
2 have in common. In this example,

BP
2 does not have a bitvector with the prefix dbp, thus this partition is omitted from the intersection. Similarly,

the bitvector partition with the dbo prefix is omitted. Since both PPBFs have bitvectors for the dbr prefix, the
resulting PPBF has one partition for the dbr prefix that is a result of the bitwise AND operation between the two
corresponding partitions in BP

1 and BP
2 .

4. The LOTHBROK Approach

Differently from PIQNIC and COLCHAIN, LOTHBROK uses a fragmentation strategy based on characteristic sets.
To accommodate efficient query processing over such fragments, as well as to enable locality-awareness and more
accurate cardinality estimation, LOTHBROK introduces an indexing scheme that maps star patterns to fragments
rather than triple patterns. In the remainder of this section, we provide a brief overview of the LOTHBROK ar-
chitecture and how LOTHBROK optimizes SPARQL queries over decentralized knowledge graphs, followed by a
formal definition of the fragmentation and indexing approach. Query optimization with details on how to exploit
locality-awareness and join ordering are explained in Section 5.

4.1. Design and Overview

LOTHBROK introduces three contributions, that altogether decrease the communication overhead and in doing so
increases query processing performance. First, LOTHBROK creates fragments based on characteristic sets such that
entire star patterns can be answered by a single fragment. This is beneficial since, as we discussed in Section 1,
such star patterns are relatively efficiently processed by the nodes [31] and reduce the communication overhead. The
characteristic set of a subject value (entity) is the set of predicates that occur in triples with that subject. As such,
LOTHBROK creates one fragment per unique characteristic set and each fragment thus contains all the triples with
the subjects that match the characteristic set of the fragment. Consider, for instance, the example network in Figure 1
and query Q shown in Figure 3a. Table 3b shows the characteristic sets of each fragment in the network. Using this
fragmentation method, each fragment can provide answers to entire star patterns; for instance, P3 ∈ S(Q) can be
processed over just f5, since it is the only fragment containing triples with both predicates present in P3. The formal
definition of the fragmentation approach is presented in Section 4.2.

select * where {
?person dbo:nationality ?country . # tp1 (P1)

?person dbo:author ?publication . # tp2 (P1)

?country dbo:capital ?capital . # tp3 (P2)

?country dbo:currency ?currency . # tp4 (P2)

?publication dbo:publisher ?publisher . #tp5 (P3)

?publication dbp:language ?language . #tp6 (P3)

}

(a) Query Q

Fragment CS
f1 {dbo:nationality,dbo:author,dbo:deathDate}
f2 {dbo:nationality,dbo:author}
f3 {dbo:capital,dbo:currency,dbo:population}
f4 {dbo:capital,dbo:currency}
f5 {dbo:publisher,dbo:language}

(b) CSs of each fragment in the running example

Fig. 3. (a) Example SPARQL query Q and (b) corresponding characteristic sets in the example network.

Second, to accommodate processing entire star patterns over individual fragments, and to encode structural
information that can be used for cardinality estimation and locality awareness, LOTHBROK introduces a novel
indexing scheme, called Semantically Partitioned Blooms Filter (SPBF) Indexes, that builds upon the Prefix-
Partitioned Bloom Filter (PPBF) indexes presented in [19]. In particular, SPBFs partition the bitvectors based
on the IRI’s position in the fragment, i.e., whether it is a subject, predicate, or object. For instance, in the
running example, the SPBF for f5 contains a partition encoding all the subjects with the characteristic set



{dbo:publisher,dbo:language}, as well as partitions encoding all the objects in f5 that occur in a triple
with each predicate. The formal definition of SPBF indexes is discussed in Section 4.3.

Third, LOTHBROK proposes a query optimization technique that takes advantage of the fragmentation based on
characteristic sets and the SPBF indexes to estimate cardinalities and consider data locality while optimizing the
query execution plan. First, LOTHBROK builds a compatibility graph using the SPBF indexes that describes, for a
given query, which fragments are compatible with one another for each star join in the query (i.e., which fragments
may produce results for the joins). Then, LOTHBROK builds a query execution plan using a Dynamic Programming
(DP) algorithm that considers the compatibility of fragments in the compatibility graph and the locality of the
fragments in the index.

In the remainder of this section, we detail data fragmentation (Section 4.2) and indexing (Section 4.3) in LOTH-
BROK. Section 5 details the query optimization approach used by LOTHBROK.

4.2. Data Fragmentation

As discussed in Section 1, star-shaped subqueries can be processed relatively efficiently over a fragment [31], thus
they can also help achieving a better balance between reducing the communication overhead and distributing the
query processing load [10–12]. To facilitate processing such star patterns on single nodes, we propose to fragment
the uploaded knowledge graphs based on characteristic sets [10, 12, 24]. Formally, a characteristic set is defined as
follows:

Definition 11 (Characteristic Set [10, 12, 24]). The characteristic set for a subject s in a given knowledge graph G,
CG(s), is the set of predicates associated with s, i.e., CG(s) = {p | (s, p, o) ∈ G}. The set of characteristic sets of a
knowledge graph G is C(G) = {CG(s) | (s, p, o) ∈ G}.

In other words, the characteristic set of a subject is the set of predicates (i.e., predi-
cate combination) used to describe the subject, i.e., that occur in the same triples as the sub-
ject. For instance, if the triples (dbr:Denmark,dbo:capital,dbr:Copenhagen) and
(dbr:Denmark,dbo:currency,dbr:Danish_Krone) are the only ones with subject dbr:Denmark, then
this subject is described by the characteristic set {dbo:capital,dbo:currency}.

Characteristic sets were first introduced in [24], used for cardinality estimation and, in extension of that, join
ordering. WiseKG [10] and Smart-KG [12] used the notion of characteristic sets for fragmentation of knowledge
graphs in LDF systems to balance the query load between clients and servers. In this paper, we use characteristic
set based fragments as an alternative to the purely predicate-based fragmentation used by for example PIQNIC. We
define the characteristic set based fragmentation function as follows:

Definition 12 (Characteristic Set Fragmentation Function). Let G be a knowledge graph, then the characteristic set
fragmentation function of G, FC(G), is defined using the notation introduced in Definition 11, as:

FC(G) = {{(s, p, o) | (s, p, o) ∈ G ∧CG(s) = Ci} | Ci ∈ C(G)} (2)

That is, the characteristic set fragmentation function creates a fragment for each characteristic set in the knowl-
edge graph. In the characteristic sets shown in Figure 3b, f4 thus contains all triples of all subjects that are described
by the characteristic set {dbo:capital,dbo:currency}.

LOTHBROK nodes can then use these fragments to process entire star patterns. However, for relatively unstruc-
tured knowledge graphs, using fragmentation purely based on characteristic sets can lead to an unwieldy number
of fragments. For instance, in our experimental evaluation in Section 7, fragmenting the data from LargeRDF-
Bench [32] using Equation 2 led to 181,859 distinct fragments, most of which contain very few subjects. Usually,
these fragments are created for subjects that are unique due to one or two predicates, while the remaining predicates
could fit into larger fragments.

Consider, for instance, in the running example, the situation where the following five characteristic sets are found
in the uploaded knowledge graph; for illustration purposes we have extended the notation with the number of
subjects covered by each characteristic set:



CS 1 = ({dbo : nationality,dbo : author,dbo : deathDate}, 500)

CS 2 = ({dbo : nationality,dbo : author}, 500)

CS 3 = ({dbo : publisher,dbo : language}, 1000)

CS 4 = ({dbo : nationality,dbo : author,dbo : language}, 2)

CS 5 = ({dbo : nationality}, 1)

In this case, a separate fragment is created for CS 4 even though it does not carry very much information be-
cause it describes only two subjects. While this is not such a big issue in terms of space, it affects the lookup time
when optimizing the join order and estimating the cardinalities, since the query processor has to consider poten-
tially thousands of such small fragments. As such, and similar to [24], we merge infrequent characteristic sets into
fragments with a larger number of subjects. After fragmenting datasets using Equation 2, we apply a strategy with
two sequential steps for fragments with infrequent characteristic sets.

First, we merge a fragment f1 with characteristic set CS 1 into a fragment f2 with characteristic set CS 2 if CS 1 ⊆
CS 2 by adding the triples of f1 to f2; if there are multiple candidates for f2, we select the one with the smallest set
of predicates. In the example above, for instance, we merge CS 5 into CS 2 by adding the subject from the fragment
with CS 5 to the fragment with CS 2.

Second, we split fragments f with infrequent characteristic sets into two separate fragments, f1 and f2, such
that f1 and f2 can be merged into other fragments with more frequent characteristic sets. In the example above,
we thus split the fragment with CS 4 into two smaller fragments f ′4 and f ′′4 such that f ′4 has the characteristic set
{dbo:nationality,dbo:author} and f ′′4 has the characteristic set {dbo:language}; f ′4 is then merged
into the fragment with CS 2 and f ′′4 is merged into the fragment with CS 3. For example, in the example above, we
end up with the following fragments:

CS 1 = ({dbo : nationality,dbo : author,dbo : deathDate}, 500)

CS 2 = ({dbo : nationality,dbo : author}, 503)

CS 3 = ({dbo : publisher,dbo : language}, 1002)

4.3. Semantically Partitioned Bloom Filter Indexes

The indexing schema presented in [19] (Definition 6) represents the set of subject and object values as prefix-
partitioned bitvectors based on Bloom filters [58] called Prefix-Partitioned Bloom Filters (PPBFs). However, PPBFs
encode the entire set of subjects and objects in a fragment as a single set and ignore the position (subject or object)
of the IRIs in the triples; as such, in a situation where two fragments, for instance, use the same IRIs in the object
position, the intersection of the two PPBFs is non-empty. Then, if the corresponding triple patterns in the query
are joined with a subject-object join, the fragments are not pruned since the PPBFs overlap; however, since we are
looking for a subject-object join rather than an object-object join, these fragments could have been pruned without
affecting the query completeness. Furthermore, PPBF indexes do not include the predicate values in the index slices,
rather they associate the predicate value with the index slice itself (Definition 9), thus maintaining information about
the links between the subjects, predicates, and objects. This is possible since the implementations of PIQNIC and
COLCHAIN use the predicate-based fragmentation function; however, LOTHBROK allows for fragments with several
distinct predicates.

Hence, to efficiently estimate whether or not fragments join for a particular query and to maintain the connec-
tion between the subjets, predicates, and objects for fragments with multiple predicates, we propose an indexing
schema called Semantically Partitioned Bloom Filters (SPBFs), which builds upon PPBF as baseline. As the triples
contained in fragments defined based on characteristic sets (Section 4.2) share the same subjects, SPBFs encode the



subject values in a single prefix-partitioned bitvector, while there is one prefix-partitioned bitvector for each pred-
icate in the fragment that encodes the objects occurring in triples with that predicate. For instance, in the running
example, each subject within f2 occurs in triples with both dbo:nationality and dbo:author as predicates.
The SPBF for f2 contains one partition describing the subject values, one partition describing the object values
connected with the dbo:nationality predicate, and one partition describing the object values connected with
the dbo:author predicate. Formally, an SPBF is defined as follows:

Definition 13 (Semantically Partitioned Bloom Filter). An SPBF BS is a 5-tuple BS = (P,Bs, Bo,Φ,H) where:

– P is a set of distinct predicate values
– Bs is the prefix-partitioned bitvector that summarizes the subjects
– Bo is the set of prefix-partitioned bitvectors that summarize the objects
– ∀Bi ∈ {Bs} ∪ Bo , Bi = (Pi, B̂i, θi) where:

* Pi is a set of prefixes
* B̂i is a set of bitvectors such that ∀b̂1, b̂2 ∈ B̂i : |b̂1|= |b̂2|
* θi : Pi → B̂i is a prefix-mapping function

– Φ : P→ Bo is a predicate-mapping function such that ∀p ∈ P : Φ(p) ∈ Bo
– H is a set of hash functions

Similarly to prefix-partitioned bitvectors, we say that an IRI i at position ρ ∈ {s, p, o} may be in an SPBF BS ,
denoted i ∃ρ BS , if and only if i ∃BS .Bs if ρ = s, ∃p ∈ BS .P : i ∃BS .Φ(p) if ρ = o, or i ∈ BS .P if ρ = p.
Furthermore, Bp(BS ) denotes a function that computes and returns the prefix-partitioned bitvector that contains all
predicates in BS .P. Given a fragment f , BS ( f ) describes the SPBF for f .

Consider again the running example from Figure 1. Figure 4 shows the SPBFs of fragments f1 (Figure 4a)
and f4 (Figure 4b). The SPBF for f1 contains a prefix-partitioned bitvector that encodes all the subject values
in f1, BS ( f1).Bs, as well as a prefix-partitioned bitvector for each predicate that encodes the object values that
are connected with the predicates, i.e., the partition BS ( f1).Φ(dbo:author) that describes the objects that are
connected with the dbo:author predicate, and so on. Similar for the SPBF for f4, BS ( f4).

...
BS ( f1).Bs

dbr ...dbo

...
BS ( f1).Φ(dbo:author)

dbr ...dbp

...
BS ( f1).Φ(dbo:nationality)

dbr ...dbp

...
BS ( f1).Φ(dbo:deathDate)

dbr ...dbp

(a) SPBF BS ( f1)

...
BS ( f4).Bs

dbr ...dbo

...
BS ( f4).Φ(dbo:capital)

dbr ...dbp

...
BS ( f4).Φ(dbo:currency)

dbr ...dbp

(b) SPBF BS ( f4)

Fig. 4. SPBFs of f1, BS ( f1) (a) and f4, BS ( f4) (b) in the running example.

A distributed index as defined in Definition 6 and [7, 19] associates triple patterns in the query with fragments that
contain relevant data to the triple patterns. However, since LOTHBROK partitions data based on characteristic sets,
we adapt the definition of a distributed index to the fragmentation based on characteristic sets and SPBF indexes.
Let relevantFragment(P, f ) be a function that returns true if ∀t = (s, p, o) ∈ P, s ∈ V or s ∃s BS ( f ), p ∈ V or
p ∃p BS ( f ), and o ∈ V or o ∃BS ( f ).Φ(p), or false otherwise. We define an SPBF index as follows:

Definition 14 (Semantically Partitioned Bloom Filter Index [7, 19]). Let n be a node and N be the set of nodes
within n’s local view of the network, P be the set of all possible star patterns, and F be the set of fragments stored
by at least one node in N . The SPBF index on n is a tuple IS

n = (υ, η) with υ : P 7→ 2F and η : F 7→ 2N . υ(P)
returns the set of fragments F such that ∀ f ∈ F, relevantFragment(P, f ) = true. η( f ) returns the set of nodes N
such that f ∈ ni.G, ∀ni ∈ N and ni ∈ N .



In other words, an SPBF index maps a star pattern to the fragments that may contain all the constants within
the star pattern, and the fragments to the nodes that store them. Furthermore, since LOTHBROK, like PIQNIC and
COLCHAIN, builds partial indexes, i.e., slices, for each fragment that are combined to form the node’s distributed
index, we define an SPBF index slice as follows:

Definition 15 (SPBF Slice). Let f be a fragment. The SPBF slice describing f is a tuple sS
f = (υ′, η′) where υ′(P)

returns { f} if and only if relevantFragment(P, f ) = true, and η′( f ) returns the set of all nodes that contain f in
its local datastore.

The function sS ( f ) finds the SPBF slice describing f . The SPBF slice describing a fragment is the SPBF obtained
from the respective fragment. For instance, in the running example, the SPBF slice of f1 corresponds to the SPBF
obtained from f1, i.e., the one in Figure 4a. In Section 5, we detail how SPBF indexes are used to optimize queries
using cardinality estimations and the locality of the data.

5. Query Optimization

To optimize queries over the network, LOTHBROK first determines which fragments are compatible i.e., produce
join results for the given query. This is to prune fragments that would not contribute to the overall query result.
To do this, LOTHBROK builds a graph that includes the fragments that are compatible for star patterns in the given
query, called a compatibility graph. In other words, the nodes in a compatibility graph are fragments, and the edges
connect the compatible ones.

Compatibility graphs encapsulate two things. First, the fragments within a compatibility graph are the fragments
that contribute to the overall query result, i.e., fragments that do not contribute to the result are pruned. Second,
different branches of a compatibility graph for the same subqueries can be processed in parallel. Take, for instance,
again query Q in Figure 3a. In this case, assuming the join order P2 ./ P1 ./ P3 (details on join order optimization
in Section 5.3) and the compatibility of the fragments given in Figure 5g (details on compatibility graphs in Sec-
tion 5.1), then subquery P2 ./ P1 could be processed concurrently over { f1, f4} and { f2, f3} since f1 only depends
on the intermediate results from f4 and f2 only depends on the intermediate results from f3. Hence, it could be
beneficial to process P1 ∪ P2 by delegating the subquery to nodes n2 and n3 concurrently such that n2 processes
[[P2]] f4 ./ [[P1]] f1 locally and n3 processes [[P2]] f3 ./ [[P1]] f2 locally, and using the combined (by union) results as
intermediate bindings when processing [[P3]] f5 on node n1.

To this end, LOTHBROK applies Dynamic Programming (DP) similar to [24, 25] to build a query execution plan
specifying join delegations and parallel processing of subqueries. To further decrease the network overhead, we
adapt the cost function in the DP algorithm to consider data locality and cardinality estimations available using the
SPBF indexes. In other words, the cost function estimates, given a query execution plan, how many intermediate
results processing the join on a particular node incurs, and selects the execution plan that incurs the least data transfer
overhead.

In summary, given a BGP P, LOTHBROK optimizes P by applying the following steps:

1. Select the relevant fragments for each star pattern in P using the SPBF index.
2. Build the compatibility graph GC for P (Section 5.1) by checking the overlap of the corresponding bitvector

partitions in the SPBF index.
3. Build a query execution plan using Dynamic Programming (DP) on P and GC in consideration of cardinality

estimations (Section 5.2) and data locality (Section 5.3).

The output of the above steps is a query execution plan. In the remainder of this section, we go into details with
source selection using compatibility graphs, cardinality estimation, and the query optimization strategy using Dy-
namic Programming. In Section 6, we describe how a query execution plan is processed.



5.1. Fragment and Source Selection

As mentioned above, query optimization in LOTHBROK exploits fragment compatibility. To achieve this, nodes
build a compatibility graph describing which fragments are compatible for a given query. Two fragments are said
to be compatible for a given query if the intersection of the corresponding SPBF partitions is non-empty. A com-
patibility graph is thus an undirected graph where nodes are the relevant fragments for the star patterns in the query
(determined using the SPBF index) and edges describe the compatible ones.

Recall the function BS ( f ) that returns the SPBF for a fragment f , and let vars(P) be a function that returns all
the variables in a star pattern P. Furthermore, given an SPBF BS , a star pattern P, and a variable v, let B(BS , P, v)
denote a function that returns (assuming v can only occur once in P) BS .Bs if v is the subject in P, BS .Φ(p) if v is
the object with predicate p, i.e., (s, p, v) ∈ P, or Bp(BS ) if v is a predicate in P. Then, a compatibility graph of a
BGP P and SPBF index IS is formally defined as follows.

Definition 16 (Compatibility Graph). Given an SPBF index IS and a BGP P, the compatibility graph GC of P over
IS is a tuple GC(P, IS ) = (F,C) such that ∀P1, P2 ∈ S(P) where vars(P1) ∩ vars(P2) 6= ∅ and ∀v ∈ vars(P1) ∩
vars(P2), it is the case that ∀ f1 ∈ IS .υ(P1), f2 ∈ IS .υ(P2) where B(BS ( f1), P1, v) ∩ B(BS ( f2), P2, v) 6= ∅,
( f1, f2) ∈ C and f1, f2 ∈ F. Furthermore, ∀P′ ⊆ P where vars(P′)∩vars(P−P′) = ∅ (i.e., for Cartesian products),
it is the case that ∀ f1 ∈ F such that f1 ∈ IS .υ(P1) for some P1 ∈ S(P′) and ∀ f2 ∈ F such that f2 ∈ IS .υ(P2) for
some P2 ∈ S(P− P′), ( f1, f2) ∈ C.

For instance, in the running example, let BS ( f1).Φ(dbo : nationality) ∩ BS ( f4).Bs 6= ∅, i.e., f1 and f4
produce join results, and BS ( f1).Φ(dbo : nationality) ∩ BS ( f3).Bs = ∅, i.e., f1 and f3 do not overlap. Then,
the compatibility graph for query Q in Figure 3a contains an edge between f1 and f4, but no edge between f1 and
f3. We denote the empty compatibility graph (i.e., where F and C are empty sets) as GC

∅ . Algorithm 1 defines the
GC(P, IS ) function in lines 1-16 that computes a compatibility graph given a BGP P and SPBF index IS .

Figure 5 shows how Algorithm 1 builds the compatibility graph for query Q in Figure 3a. In the following,
we go through each intermediate step of the algorithm, describing the intermediate compatibility graphs built in
the process. First, the GC function selects the star pattern in S(P) with the lowest estimated cardinality in line 2
(cardinality estimation is detailed in Section 5.2). Assume in the running example, that P2 is the star pattern with
the lowest estimated cardinality (Section 5.2), and that it is therefore selected in line 2 as the first star pattern.
Furthermore, assume that f1 is only compatible with f4 and f2 is compatible with f3.

Then, the relevant fragments for the selected star pattern are found using the IS .υ function from the SPBF index
(Definition 14) and iterated over in the for loop in lines 5-8; for each of these fragments, the function calls the
buildBranch(P, IS , f , P′, Pε) function in lines 17-30 that builds the (sub)graph starting from the current frag-
ment. In the example, the loop in lines 5-8 iterates over { f3, f4}, since these are the fragments relevant for P2.

The buildBranch(P, IS , f , P′, Pε) function defines a recursive function that builds a sub-graph starting from
a specific fragment and star pattern. In the first iteration in the running example (i.e., for f3), buildBranch is
called with P = P1 ∪ P3, f = f3, and P′ = P2 as parameters. First, if P does not contain any star patterns that join
with P′, i.e., if P′ is the outer-most star pattern in the join tree or for a Cartesian product, the function returns the
compatibility graph just containing f without any edges (lines 18-19). In the example, since P1 joins with P2, the
algorithm does not enter the if statement in line 19.

Instead, the for loop in lines 21-29 iterates through the star patterns P′′ ∈ P that join with P′, i.e., star patterns
that have at least one variable in common. For each fragment f ′ relevant for P′′ (again found using the SPBF index),
the function checks the compatibility of f and f ′ for each join variable v in line 24, i.e., whether or not f and f ′

may produce join results for each join variable, by intersecting the corresponding partitioned bitvectors in BS ( f )
and BS ( f ′). If the fragments may produce join results, a recursive call is made in line 25 with the P = P − P′′,
f = f ′, and P′ = P′′ as parameters. In the example, the for loop in line 21 has only one iteration for P′′ = P1,
i.e., the only star pattern in S(P) that joins with P2. Hence, the for loop in line 24 checks the compatibility of each
fragment relevant for P1 ( f1 and f2) with f3 (since f = f3 in this call to the function). Since f2 is compatible with
f3 (cf. the join cardinalities in Table 1), a recursive call is made in line 25 with P = P3, f = f2, and P′ = P1.

Since P3 joins with P1, the for loop in line 24 checks the compatibility of f5 and f2 and makes another recursive
call to the function in line 25 with P = ∅, f = f5, and P′ = P3. In this iteration of the function, P is empty, thus



Algorithm 1 Compute the Compatibility Graph of a BGP over an SPBF index

Input: A BGP P = P1 ∪ . . . ∪ Pn; an SPBF index IS = (υ, η)
Output: A compatibility graph GC

1: function GC(P,IS )
2: P′ ← Pk where Pk ∈ S(P) and cardB(Pk) ≤ cardB(P j)∀P j ∈ S(P);
3: Pε ← P′;
4: F,C ← ∅;
5: for all f ∈ IS .υ(P′) do
6: GC

ε ← buildBranch(P− P′, IS , f , P′, Pε);
7: F ← F ∪GC

ε .F;
8: C ← C ∪GC

ε .C;
9: if P− Pε 6= ∅ then

10: GC
ε ← GC(P− Pε , IS );

11: if GC
ε = GC

∅ then return GC
∅

12: for all f1 ∈ F, f2 ∈ GC
ε .F do

13: C ← C ∪ {( f1, f2)};
14: F ← F ∪GC

ε .F;
15: C ← C ∪GC

ε .C;
16: return (F,C);
17: function BUILDBRANCH(P,IS , f ,P′,Pε)
18: if P = ∅ or ∀P′′ ∈ S(P) : vars(P′) ∩ vars(P′′) = ∅ then
19: return ({ f}, ∅);
20: F,C ← ∅;
21: for all P′′ ∈ S(P) s.t. vars(P′) ∩ vars(P′′) 6= ∅ do
22: P′ε ← Pε ∪ P′′;
23: V ← vars(P′) ∩ vars(P′′);
24: for all f ′ ∈ IS .υ(P′′) s.t. ∀v ∈ V : B(BS ( f ), P′, v) ∩ B(BS ( f ′), P′′, v) 6= ∅ do
25: GC

ε ← buildBranch(P− P′′, IS , f ′, P′′, P′ε);
26: if GC

ε 6= GC
∅ then

27: F ← F ∪GC
ε .F ∪ { f};

28: C ← C ∪GC
ε .C ∪ {( f , f ′)};

29: Pε ← Pε ∪ P′ε ;
30: return (F,C);

the graph ({ f5}, ∅) is returned in line 19. This graph is visualized in Figure 5a and contains only f5 with no edges.
Since this compatibility graph is non-empty, it is added to the output graph in lines 26-28 together with f2 (since
f = f2 in this iteration of buildBranch) and the edge between f5 and f2. This graph is visualized in Figure 5b
and returned by the current iteration of the buildBranch function. Upon receiving the graph in Figure 5b, the
function adds f3 (since f = f3 in the current iteration) and an edge between f2 and f3 in lines 26-28, resulting in
the compatibility graph shown on Figure 5c that is returned in line 30.

In the next iteration of the for loop in line 5, the buildBranch is called with P = P1∪P3, f = f4, and P′ = P2.
Following the same procedure as described above for f3, we first build the subgraph containing only f5 shown in
Figure 5d. Then, f1 is added to the graph along with an edge between f1 and f5 (since they produce join results),
resulting in the subgraph shown in Figure 5e. Next, f4 is added along with an edge between f4 and f1, resulting in
the compatibility graph for f4 shown in Figure 5f. After merging this in lines 7-8 with the compatibility graph in
Figure 5c, the resulting compatibility graph can be seen in Figure 5g.

The if statement in lines 2-5 ensures that subqueries with star patterns that do not join (i.e., in the case of Cartesian
products) are included in the compatibility graph. This is done by keeping track of the considered star patterns in P
using the accumulator Pε defined in line 3 and updated in line 29. The example query contains no Cartesian products
and so the compatibility graph on Figure 5g is returned by the algorithm.
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Fig. 5. Recursively building the compatibility graph for the query in Figure 3a by applying Algorithm 1 resulting in GC(Q, IS
n1 ). Yellow nodes

denote the fragments relevant for P2, blue nodes the fragments relevant for P1, and the green nodes the fragments relevant for P3.

The output of Algorithm 1 in the example is the compatibility graph shown in Figure 5g, specifying that f1 is
compatible with { f4, f5} and f2 is compatible with { f3, f5}.

5.2. Cardinality Estimation

In Section 4.2 we have described how LOTHBROK fragments knowledge graphs based on characteristic sets.
Furthermore, in Section 4.3 we described how SPBF indexes connect the objects in a fragment to the predicates they
occur in triples with. Since the SPBF of a fragment includes partitioned bitvectors describing the subjects and objects
(Definition 14), we can estimate the number of values within these partitioned bitvectors and use those estimations
to obtain cardinality estimations in a similar way as [24, 25]. To achieve this, we first define the estimated number
of values in a partitioned bitvector.

Given a partitioned bitvector B and b̂ ∈ B.B̂, let t(b̂) be a function that returns the number of bits in b̂ that
are set. Then, the estimated cardinality of a partitioned bitvector B, denoted cardP(B), is the sum of the estimated
cardinality for all bitvector partitions in B.B̂ [19, 59] and is formally defined as follows:

cardP(B) =
∑

b̂∈B.B̂

ln(1− t(b̂)/|b̂|)
|B.H|·ln(1− 1/|b̂|)

(3)

Consider, for instance, again the running example introduced in Section 3.1 and the SPBF for f4, BS ( f4), in Fig-
ure 4b. Assume that |BS ( f4).H|= 5 and that |b̂|= 20000 for all b̂ ∈ BS ( f4).B̂. Since the partitioned bitvector for the
predicate dbo:capital in f4 (Figure 4b) has two partitions, dbr and dbp, obtaining the estimated cardinality
for BS ( f4).Φ(dbo:capital) is the sum of estimating the cardinality of both prefix partitions. Let the number of
set bits in the bitvector for the dbr prefix be 736 and the number of set bits in the bitvector for the dbp prefix be
249. Then, the estimated cardinality using Equation 3 is:

cardP(BS ( f4).Φ(dbo:capital)) =

ln(1− 736/20000)

5 · ln(1− 1/20000)
+

ln(1− 249/20000)

5 · ln(1− 1/20000)
≈ −0.0375

−0.00025
+
−0.0125

−0.00025
≈ 150 + 50 ≈ 200

Table 1 shows the estimated cardinalities of each partitioned bitvector in the running example.
To estimate the cardinality of star-shaped subqueries, we utilize the fact that the subjects are described by a single

partitioned bitvector. For a star-shaped subquery asking for the set of unique subject values described by a given set
of predicates (i.e., queries with the DISTINCT keyword), the cardinality can be estimated as the sum of the number
of subjects in each fragment that includes all the predicates in the query. For instance, the cardinality of P1 in the
query in Figure 3a is the number of distinct subject values in f1 and f2.



Table 1
Estimated cardinalities for the SPBFs BS ( f1), BS ( f2), BS ( f3), and BS ( f4) for the running example in Figure 1

Partitioned Bitvector cardP Partitioned Bitvector cardP

BS ( f1).Bs 1000 BS ( f3).Bs 100
BS ( f1).Φ(dbo:author) 5000 BS ( f3).Φ(dbo:capital) 100
BS ( f1).Φ(dbo:nationality) 1000 BS ( f3).Φ(dbo:currency) 150
BS ( f1).Φ(dbo:deathDate) 1000 BS ( f3).Φ(dbo:population) 100

BS ( f2).Bs 2000 BS ( f4).Bs 200
BS ( f2).Φ(dbo:author) 3000 BS ( f4).Φ(dbo:capital) 200
BS ( f2).Φ(dbo:nationality) 2000 BS ( f4).Φ(dbo:currency) 500

BS ( f1).Φ(dbo:nationality) ∩ BS ( f3).Bs 0 BS ( f2).Φ(dbo:nationality) ∩ BS ( f3).Bs 100
BS ( f1).Φ(dbo:nationality) ∩ BS ( f4).Bs 50 BS ( f2).Φ(dbo:nationality) ∩ BS ( f4).Bs 0

BS ( f5).Bs 8000 BS ( f1).Φ(dbo:author) ∩ BS ( f5).Bs 500
BS ( f5).Φ(dbo:publisher) 8000 BS ( f2).Φ(dbo:author) ∩ BS ( f5).Bs 1000
BS ( f5).Φ(dbo:language) 9000

Given a star pattern P and a fragment f , the cardinality of P over f , assuming that f is a relevant fragment for P,
is the number of values in the partitioned bitvector on the subject position in BS ( f ), and is formally defined as:

cardD(P, f ) = cardP(BS ( f ).Bs) (4)

For queries not including the DISTINCT keyword, we need to account for duplicates by considering, on average,
the number of triples for each non-variable predicate value in P that each subject value is associated with. Given a
star pattern P and fragment f , let preds(P) denote the non-variable predicate values in P (in the case of a variable
on the predicate position in P, we consider the average number of predicate occurences in the characteristic set).
The cardinality of P is thus estimated as follows [24, 25]:

cardS (P, f ) = cardD(P, f ) ·
∏

pi∈preds(P)

cardP(BS ( f ).Φ(pi))

cardP(BS ( f ).Bs)
(5)

Henceforth, we will refer to the more generalized function card rather than cardD and cardS to be equivalent
to cardD for queries with the DISTINCT modifier and cardS for queries without. Using Equations 4 or 5, the
cardinality of a star pattern P over a node n’s SPBF index is, for all queries (both with and without the DISTINCT
keyword), the aggregated cardinality over each relevant fragment to P, and is formally defined as follows:

cardn(P) =
∑

f∈IS
n .η(P)

card(P, f ) (6)
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Fig. 6. Estimating the cardinality of P1 with the DISTINCT modifier as the number of subjects in f1 and f2 found using Equation 4.



Consider, for instance, in the running example, the star-shaped BGP P1 in Figure 3a and the estimated cardinalities
of the partitioned bitvectors for each fragment in Table 1. Assume in this case that the DISTINCT keyword is
given in the query. Then, cardn1(P1) is computed as the aggregated estimation of subject values in f1 and f2,
cardn1(P1) = 1000 + 2000 = 3000. This is visualized in Figure 6.
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·
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Bs Φ (dbo:author)
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Fig. 7. Estimating the cardinality of P1 without the DISTINCT modifier. Outlines show which bitvector each value is computed from.

If, instead, the DISTINCT keyword was not included in the query, the cardinality cardn1(P1) is, for each relevant
fragment ( f1 and f2), the number of subject values within the fragment multiplied with the average number of triples
with each predicate pi ∈ preds(P1) that each subject value is associated with, cardn1(P1) = 1000 · (5000/1000) ·
(1000/1000)+2000·(3000/2000)·(2000/2000) = 5000+3000 = 8000. Figure 7 visualizes the above computations
and shows which bitvector each value is computed from.

Until now, the cardinality estimations presented in this section are useful for estimating the cardinality of indi-
vidual star patterns in a query [24, 25]. However, to estimate the cardinality of arbitrary BGPs, [50] introduced
characteristic pairs that describe the connections between IRIs described by different characteristic sets. In our case,
however, we rely on the SPBFs of the relevant fragments to compute characteristic pairs without storing additional
information; by intersecting the partitioned bitvectors on the positions corresponding to the join variable, we can
estimate the selectivity of a given join and use that to estimate the cardinality of the join.

Formally, for queries including the DISTINCT keyword, given two star patterns Pk and Pl that join on a variable
v such that (s, p, v) ∈ Pk and v is the subject of all triple patterns in Pl, and two fragments fk and fl that are relevant
for Pk and Pl respectively, the cardinality of the join is estimated as the number of IRIs on the subject position in fk
multiplied by the selectivity of the join, i.e., the chance that each subject in the right side corresponds to a value in
the join. This is defined as follows:

cardD(Pk, Pl, p, fk, fl) = cardP(BS ( fk).Bs) ·
(

cardP(BS ( fk).Φ(p) ∩ BS ( fl).Bs)

cardP(BS ( fk).Φ(p))

)
(7)

For queries that do not include the DISTINCT keyword, we again consider the average predicate occurrences for
each triple pattern in both Pk and Pl, similar to Equation 5 [25, 50]:

cardS (Pk, Pl, p, fk, fl) = cardD(Pk, Pl, p, fk, fl)

·
∏

pk∈Pk−{p}

(
cardP(BS ( fk).Φ(pk))

cardP(BS ( fk).Bs)

)
·
∏

pl∈Pl

(
cardP(BS ( fl).Φ(pl))

cardP(BS ( fl).Bs)

)
(8)

Processing a join between two star patterns over a node n’s SPBF is the aggregated cardinality over each pair of
relevant fragments to the two star patterns, and is for all queries formally defined as follows:

cardn(Pk, Pl, p) =
∑

fk∈IS
n .η(Pk)∧ fl∈IS

n .η(Pl)

card(Pk, Pl, p, fk, fl) (9)
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Fig. 8. Estimating the cardinality of P1 ./ P2 with the DISTINCT modifier.

For instance, consider the join between P1 and P2 in Figure 3a where the DISTINCT keyword is given in the
query. Here, the cardinality cardn1(P1, P2,dbo:nationality) is the aggregated cardinality of the partitioned
bitvectors obtained by intersecting the partitioned bitvector on the object position for the dbo:nationality for
each fk ∈ { f1, f2} with the partitioned bitvector on the subject position for each fl ∈ { f3, f4}. That is, given the
cardinalities of the intersections shown in Table 1, cardn1(P1, P2,dbo:nationality) = 1000·(0/1000)+1000·
(50/1000) + 2000 · (100/2000) + 2000 · (0/1000) = 150. We have visualized this computation in Figure 8.
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Fig. 9. Estimating the cardinality of P1 ./ P2 without the DISTINCT modifier over (a) { f1, f4} and (b) { f2, f3}. The output of Equation 9 is
thus the sum of the two formulas (625 + 225 = 850).

In the case where the DISTINCT keyword is not included in the query, the join between P1 and
P2 in Figure 3a given the partitioned bitvector cardinalities in Table 1 yields the following equation:
cardn1(P1, P2,dbo:nationality) = 1000·(50/1000)·(5000/1000)·(200/200)·(500/200)+2000·(100/2000)·
(3000/2000) · (100/100) · (150/100) = 625 + 225 = 850. Figure 9 visualizes the above computation; Figure 9a



shows the computation over { f1, f4} and Figure 9b over { f2, f3}. The outlines show which partitioned bitvector is
used to compute each number, e.g., the value 50 is found by computing the cardinality of the bitvector intersection
BS ( f1).Φ(dbo : nationality) ∩ BS ( f4).Bs. The result is the sum of the formulas.

5.3. Optimizing Query Execution Plans

Based on the compatibility graph (Section 5.1), the locality of fragments, and cardinality estimations (Sec-
tion 5.2), LOTHBROK builds a query execution plan that specifies which subqueries can be processed in parallel and
which joins are delegated to which nodes as well as the join order. A query execution plan is defined as follows:

Definition 17 (Query Execution Plan). A query execution plan Π consists of the execution plan and the node that
processes the plan, called a delegation. A query execution plan can be one of four types:

– Join Π = Π1 ./
n Π2 where Π1 and Π2 are two (sub)plans and n is the node the join is delegated to.

– Cartesian product Π = Π1×n Π2 where Π1 and Π2 are two (sub)plans and n is the node the Cartesian product
is delegated to.

– Union Π = Π1 ∪n Π2 where Π1 and Π2 are two (sub)plans and n is the node the union is delegated to.
– Selection Π = [[P]]nf where P is a star pattern, f is the fragment that P is processed over, and n is the node

the selection is delegated to.

Since unions are not explicitly executed by any node, instead the partial results of each subplan in the union
are transferred to the nodes that use those intermediate results, we simply omit the specification of delegations for
unions from the description below. Furthermore, we assume that query execution plans are always left-deep, i.e.,
the right side of a join can only consist of a selection or a union of selections. For instance, the execution plan for
query Q, Π = (([[P2]]n2f4 ./n2 [[P1]]n2f1 ) ∪ ([[P2]]n3f3 ./n3 [[P1]]n3f2 )) ./n1 [[P3]]n1f5 (Figure 12g) specifies that the join
[[P2]] f4 ./ [[P1]] f1 is delegated to n2 and processed in parallel with [[P2]] f3 ./ [[P1]] f2 on n3 (specified by the union),
the result of which is transferred to n1 and joined with [[P3]] f5 .

Since our cost function includes the estimated cardinality of a particular subplan, we first extend the framework
for cardinality estimation described in Section 5.2 to enable cardinality estimation of an entire query execution plan.
This is straightforward for Cartesian products, unions, and selections; for Cartesian products it is the multiplication
of the cardinality of the operands, for unions it is the sum of the cardinality of the operands, and for selections it is
the cardinality of the star pattern over a specific fragment defined in Equations 4 and 5. Given the reasoning above,
we define the cardinality of a query execution plan Π, card(Π), covering all types of Π, as follows:

card(Π) =


card(Π1) · card(Π2), if Π = Π1 ×n Π2

card(Π1) + card(Π2), if Π = Π1 ∪Π2

card(P, f ), if Π = [[P]]nf
card(Π1 ./

n Π2), if Π = Π1 ./
n Π2

(10)

To generalize Equation 9 such that we can compute the cardinality of any join Π = Π1 ./n Π2 (e.g., including
joins between a BGP with multiple star patterns and a star pattern), we consider two cases: (1) where Π2 is a union
Π2 = Π′2∪Π′′2 , and (2) where Π2 is a selection Π2 = [[P]]n1f . The cardinality of the join can thus be estimated using
the following formula:

card(Π1 ./
n Π2) =

{
card(Π1 ./

n Π′2) + card(Π1 ./
n Π′′2), if Π2 = Π′2 ∪Π′′2

card./(Π1, P, f ), if Π2 = [[P]]n1f
(11)

The function card./(Π, P, f ) in the second case of Equation 11 computes the cardinality of the join for a particular
selection on the right side of the join, [[P]] f . To achieve this estimation, we consider the estimated cardinality of
Π and the selectivity of the join similar to Equation 7. To avoid a significant overestimation due to the possible



correlation between multiple join variables in the same join, we only consider the most selective join variable for
any specific join. Recall the B(BS , P, v) function that returns the partitioned bitvector in BS that corresponds to
v’s position in P, and let S (Π, P) denote the set of star patterns in Π that join with P and F(Π, f ) denote the set
of fragments in Π that join with f . For instance, for the execution plan in Figure 12d and the compatibility graph
in Figure 5g, S (Π, P3) = {P1} and F(Π, f5) = { f1, f2}. Furthermore, given two star patterns P1 and P2, let
v(P1, P2) = {v | v ∈ vars(P1)∩ vars(P2)}, i.e., the set of join variables. The cardinality of the join between a plan
Π and a selection [[P]] f is, given the DISTINCT keyword, generalized from Equation 7 as follows:

card./D(Π, P, f ) = card(Π) · min
P′∈S (Π,P)∧v∈v(P,P′)

(∑
f ′∈F(Π, f ) cardP(B(BS ( f ), P, v) ∩ B(BS ( f ′), P′, v))∑

f ′∈F(Π, f ) cardP(B(BS ( f ′), P′, v))

)
(12)
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Fig. 10. Estimating the cardinality of Π = ([[P2]]n2f4 ./n2 [[P1]]n2f1 )∪([[P2]]n3f3 ./n3 [[P1]]n3f2 ) with the DISTINCT keyword using the cardinalities
from Table 1 and Equation 12.

As an example, consider computing the cardinality card(Π) of the plan Π visualized in Figure 12d using the
DISTINCT keyword. Since Π is a union, we compute the cardinality of Π1 = [[P2]]n2f4 ./n2 [[P1]]n2f1 and Π2 =
[[P2]]n3f3 ./

n3 [[P1]]n3f2 and let card(Π) = card(Π1)+card(Π2). Using Equation 12 on Π1 and Π2, we get the formula
card(Π) = 200 · (50/200) + 100 · (100/100) = 150 as visualized in Figure 10 (the gray values are the cardinalities
of the left selections in each join obtained using Equation 4).

For queries without the DISTINCT keyword, we once again consider the average predicate occurences. However,
since the predicate occurrences in Π are already considered in card(Π) in Equation 12, we only consider the average
number of occurrences in f for each triple pattern in P that does not join with Π on the object. The cardinality of
the join between a plan Π and selection [[P]] f , without the DISTINCT keyword, is computed as:

card./S (Π, P, f ) = card./D(Π, P, f ) ·
∏

p∈preds(P):(s,p,o)∈P∧o 6∈v(P,P′)∀P′∈S (Π,P)

(
cardP(BS ( f ).Φ(p))

cardP(BS ( f ).Bs)

)
(13)

Once again, computing the cardinality of Π in Figure 12d not including the DISTINCT keyword is card(Π) =
card(Π1) + card(Π2). Using Equation 13 on each of these yields the equation card(Π) = 500 · (50/200) ·
(5000/1000) + 150 · (100/100) · (3000/2000) = 625 + 225 = 850. Figure 11 visualizes this computation.

Using the cardinality estimation shown in Equation 10, Algorithm 2 shows how the transfer cost of a query
execution plan Π on a node n is computed taking into account the locality of the fragments. First, if Π = [[P]]ni

f ,
i.e., Π is a selection, the algorithm checks whether n = ni (line 4); if they are equal it is 0 (since it incurs no transfer
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Fig. 11. Estimating the cardinality of Π in Figure 12d without the DISTINCT modifier for (a) Π1 = [[P2]]n2f4 ./n2 [[P1]]n2f1 and (b)
Π2 = [[P2]]n3f3 ./n3 [[P1]]n3f2 . The output of Equation 10 is thus the sum of the two formulas (625 + 225 = 850).

cost), otherwise the transfer cost of Π is equal to the cardinality of the selection (Equation 5). For instance, the
transfer cost of the execution plan shown in Figure 12c ([[P3]]n1f5 ) on n1 is 0 since f5 is available on n1.

If, instead, Π = Π1 ∪ Π2, i.e., Π is a union, the transfer cost is the sum of the transfer costs for Π1 and Π2

(line 6). For instance, the transfer cost of the execution plan shown in Figure 12a ([[P1]]n2f1 ∪ [[P1]]n3f2 ) on n1 is
5000 + 3000 = 8000, since neither f1 or f2 is available on n1.

Algorithm 2 Compute the transfer cost of a query execution plan

Input: A query execution plan Π; a node n
Output: The estimated transfer cost cost

1: function TRANSFERCOST(Π,n)
2: cost← 0;
3: if Π = [[P]]ni

f then
4: if n 6= ni then cost← card(P, f );
5: else if Π = Π1 ∪Π2 then
6: cost← transferCost(Π1, n) + transferCost(Π2, n);
7: else if Π = Π1 ×ni Π2 then
8: cost← transferCost(Π1, ni) + transferCost(Π2, ni);
9: if ni 6= n then cost← cost + card(Π);

10: else if Π = Π1 ./
ni Π2 then

11: if Π2 = Π′2 ∪Π′′2 then
12: cost← transferCost(Π1 ./

ni Π′2, n) + transferCost(Π1 ./
ni Π′′2 , n);

13: else if Π2 = [[P]]
n j
f then

14: cost← transferCost(Π1, ni);
15: if ni 6= n j then cost← cost + card./S (Π1, P, f );
16: if n 6= ni then cost← cost + card(Π);
17: return cost;
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Fig. 12. Best query execution plan for each subquery in the DP table (Table 2).

Otherwise, if Π = Π1 ×ni Π2, i.e., Π is a Cartesian product, the transfer cost is the sum of the transfer costs for
Π1 and Π2 (line 6), plus the cardinality of the Cartesian product if it is delegated to a different node than the one
processing the (sub)plan, i.e., if n 6= ni (since they have to be transferred from ni to n).

Finally, if Π = Π1 ./
ni Π2, i.e., Π is a join, we once again take advantage of the fact that the right side of a join is

always either a selection or a union of selections; in the latter case, we aggregate the transfer cost over each subplan
in the union (line 12). However, if the right side of the join is a selection Π2 = [[P]]

n j
f , we start by estimating the

transfer cost of the left side of the join (line 14); if n j 6= ni, we further add in line 15 the cardinality of the join
(since these results should have to be sent back to ni). Furthermore, if ni 6= n, we add in line 16 the cardinality of
the execution plan to the cost, since the results have to be transferred from ni to n.

Given the transfer cost in Algorithm 2, the cost of processing a query execution plan Π on a node n is the transfer
cost plus the cardinality of Π. This is formally defined as follows:

costn(Π) = trans f erCost(Π, n) + card(Π) (14)

Given the cost function in Equation 14, we compute the cost of each possible join delegation and apply Dynamic
Programming (DP) to achieve the execution plan with the lowest cost. Table 2 shows the best execution plan in
the DP table for each (sub)plan for processing query Q (Figure 3a) on node n1 in the running example; Figure 12
visualizes the execution plans in Table 2.

Table 2
Entries in the DP table for query Q (Figure 3a)

Subquery Execution Plan Cardinality Cost
P1 [[P1]]n2f1 ∪ [[P1]]n3f2 8,000 8,000

P2 [[P2]]n3f3 ∪ [[P2]]n2f4 650 650

P3 [[P3]]n1f5 9,000 9,000

P2 ./ P1 ([[P2]]n2f4 ./n2 [[P1]]n2f1 ) ∪ ([[P2]]n3f3 ./n3 [[P1]]n3f2 ) 850 1,700

P2 ./ P3 ([[P2]]n3f3 ∪ [[P2]]n2f4 )×n1 [[P3]]n1f5 5,850,000 5,850,650

P1 ./ P3 ([[P1]]n2f1 ∪ [[P1]]n3f2 ) ./n1 [[P3]]n1f5 1,688 9,688

P2 ./ P1 ./ P3 (([[P2]]n2f4 ./n2 [[P1]]n2f1 ) ∪ ([[P2]]n3f3 ./n3 [[P1]]n3f2 )) ./n1 [[P3]]n1f5 154 1,004



6. Query Execution

Until now, we have described in Section 5 how LOTHBROK obtains a query execution plan using compatibility
graphs and locality information provided by the SPBF indexes. In this section, we detail how LOTHBROK evaluates
a query given a query execution plan.

Given a BGP P, a compatibility graph GC = GC(P, IS ), and a query execution plan Π over P and GC , LOTHBROK

processes P by processing the operations specified in Π and, in doing so, delegating joins and Cartesian products
to the nodes specified in Π. The intermediate results from previous steps are used as input to subqueries at a later
stage in the query execution plan. In case of a distributed join, the intermediate results are transferred along with the
partial query to use local bind joins similar to [11, 38]. To formalize how star patterns in the query execution plan
are processed over the fragments, we define a so-called selector function in line with related work [7, 11, 38]. The
selector function returns the results of processing the star pattern over a fragment given a set of solution mappings,
i.e., the set of stars in the fragment that constitute the answer to the star pattern, as follows:

Definition 18 (Selector Function [7, 11, 38]). Given a node n, a star pattern P, and a finite set of distinct solution
mappings Ω, the star pattern-based selector function for P and Ω, denoted s(P,Ω) is for every fragment f in n’s local
datastore defined as follows.

s(P,Ω)( f ) =

{
{t ∈ T | T ⊆ f ∧ T [P]} if Ω = ∅
{t ∈ T | T ⊆ f ∧ ∃µ ∈ [[P]] f , µ

′ ∈ Ω : µ[P] = T ∧ µ′ ⊆ µ} otherwise.

In line with [7, 11, 38], and to avoid long-running requests on each node, we apply pagination to the results of star
pattern requests, i.e., we group the results into reasonably sized pages to avoid excessive data transfer. The page size
used in our experimental evaluation (Section 7) is the page size recommended by related work [7, 11, 38], i.e., 100.
However, for ease of presentation, we assume that all results can fit into one page when presenting the approach
to query processing. Furthermore, to avoid underestimating costs caused by the selector function returning some
duplicate values (e.g., when the same subject has multiple object values for a specific predicate), our implementation
always uses cardS (Equation 5) and card./S (Equation 13) for cardinality estimations, regardless of whether or not
the DISTINCT keyword is given. Last, given a star pattern P, a node n, a fragment fi, and a finite set of solution
mappings Ω, seln( fi, P,Ω) denotes the result of invoking s(P,Ω)( fi) on n.

Let IS
n denote a node n’s SPBF index. The evaluatePlan function in Algorithm 3 defines a recursive func-

tion that processes a query execution plan on a node n by using the selector function defined in Definition 18 for
selections in the plan and making recursive calls to the nodes specified in the plan.

Consider, for instance, the query execution plan Π shown in Figure 12g for query Q in Figure 3a processed
by node n1 in the running example. Figure 13 shows an overview of which parts of the query are sent to which
node during query processing. Since Π is of type join, the function enters the if statement in line 6. Here, the
function first makes a recursive call (since the join was delegated to node n1) with the left-most subplan, i.e.,
Π1 = ([[P2]] f4 ./

n2 [[P1]] f1) ∪ ([[P2]] f3 ./
n3 [[P1]] f2) (visualized in Figure 12d), in line 7.

Since Π1 is of type union, Algorithm 3 in lines 10-11 makes two recursive calls for the two subplans Π1 =
[[P2]] f4 ./

n2 [[P1]] f1 and Π2 = [[P2]] f3 ./
n3 [[P1]] f2 . Note that these two recursive calls can be processed concur-

rently and indeed is done so in the implementation of LOTHBROK. This step is shown in Figure 13a where Π1 is sent
to node n2 and Π2 is sent to node n3. Since both subplans follow the same structure, and thus the same evaluation
process, we will only explain what happens when processing Π1.

When processing the plan Π1 from above, Algorithm 3 first calls the evaluatePlan on node n2 for the subplan
[[P2]] f4 , i.e., the selection for P2 over f4, in line 7. The takeOne function in line 16 selects a random node with
the fragment in its local datastore if the node that processes the subquery does not store the fragment locally. In this
case, since n2 stores f4, it calls the selector function for P2 over f4 locally in line 17. The 500 results of processing
P2 over f4 (cf. Table 1) are then joined with the singleton set of bindings Ω that includes the empty mapping (i.e., a
mapping compatible with any mapping) in line 18 and returned in line 19.



Algorithm 3 Evaluate a join plan

Input: A join plan Π; a node n; a set of solution mappings Ω
Output: A set of solution mappings Ω

1: function EVALUATEPLAN(Π,n,Ω = {∅})
2: if Π = Π1 ×ni Π2 then
3: Ω1 ← evaluatePlan(Π1, ni,Ω);
4: Ω2 ← evaluatePlan(Π2, ni,Ω);
5: Ω← Ω1 × Ω2;
6: else if Π = Π1 ./

ni Π2 then
7: Ω← evaluatePlan(Π1, ni,Ω);
8: Ω← evaluatePlan(Π2, ni,Ω);
9: else if Π = Π1 ∪Π2 then

10: Ω1 ← evaluatePlan(Π1, n,Ω);
11: Ω2 ← evaluatePlan(Π2, n,Ω);
12: Ω← Ω1 ∪ Ω2;
13: else if Π = [[P]] f then
14: N ← IS

n .η( f );
15: if n ∈ N then ni ← n;
16: else ni ← takeOne(N);
17: φ← selni( f , P,Ω);
18: Ω← Ω ./ {µ | dom(µ) = vars(P) and µ[P] ∈ φ};
19: return Ω;

Upon receiving the 500 results in line 7, Algorithm 3 makes another recursive call in line 8 to evaluatePlan
on node n2 for the subplan [[P1]] f1 , i.e., the selection for P1 over f1 with the 500 intermediate results in Ω. Again, n2

calls the local selector for P1 over f1 using the intermediate results in Ω as bindings. This results in 625 intermediate
results in Ω that are the result of processing P1 ./ P2 over f1 and f4, which are returned by the function in line 19.

While n2 found the 625 results from processing [[P2]] f4 ./
n2 [[P1]] f1 in the recursive call in line 10, n3 found the

additional 225 results of processing [[P2]] f3 ./
n3 [[P1]] f2 in the recursive call in line 11 following the same steps as

described above for n2. In line 12, these results are combined and 850 bindings are returned in line 19, which is
visualized on Figure 13a as n2 returning 625 results to n1 and n3 returning 225 results to n1.

The 850 intermediate results in Ω found by processing ([[P2]] f4 ./
n2 [[P1]] f1) ∪ ([[P2]] f3 ./

n3 [[P1]] f2) in line 7
are used as bindings for the recursive call made in line 8 for the subplan [[P3]] f5 . This is visualized in Figure 13b.

n1

n2

n3

[[P1]] f1

[[P2]] f4

[[P1 ]]f2

[[P2 ]]f3

225 results

625 results

(a) Delegating subqueries to n2 and n3

n1

n2

n3

[[P3]] f5

f1
f2
f3
f4
f5

850 results

154 results

(b) Processing [[P3]] f5 locally on node n1

Fig. 13. Processing Π in Figure 12g on n1 by (a) delegating [[P2]] f4 ./n2 [[P1]] f1 to n2 and [[P2]] f3 ./n3 [[P1]] f2 to n3 concurrently and (b)
processing the join between these 850 results and [[P3]] f5 locally on n1 to achieve the 154 results (solid arrows denote neighbors, dotted arrows
subquery delegation, and dashed arrows transferring of intermediate results). n1 can send intermediate results to n3 since it is within its horizon.



Since n1 stores f5 locally, it calls the local selector for P3 over f5 and Ω in line 17. The 154 results of processing P3

over f5 are joined with Ω in line 18 and returned as the final results in line 19.
As mentioned above, our implementation uses pagination of the results meaning, for instance, when processing

the subplan [[P2]] f4 in line 7, the 500 results would be split into multiple pages. In the implementation of LOTH-
BROK, nodes at subsequent steps in the pipeline start processing joins as soon as they receive some intermediate
bindings. For instance, in the running example, n1 starts processing the join between P2 ./ P1 ./ P3 locally as soon
as it receives results for P2 ./ P1 from either n2 or n3.

7. Experimental Evaluation

The experimental evaluation compares LOTHBROK with two state-of-the-art approaches building on P2P sys-
tems: PIQNIC [6] and COLCHAIN [7] with the query optimization approach outlined in [19]. To do this, we im-
plemented the fragmentation, indexing, and cardinality estimation approach as a separate package in Java 8 and
modified PIQNIC’s and COLCHAIN’s query processors to use it. Like COLCHAIN and PIQNIC, LOTHBROK’s query
processor is implemented as an extension to Apache Jena2. Fragments in our implementation are stored as HDT
files [60], allowing for efficient processing of the star patterns. We provide all source code, experimental setup
(queries, datasets, etc.), and the full experimental results on our website3.

7.1. Experimental Setup

In this section, we detail the experimental setup, including a characterization of the used datasets and queries, the
hardware and software setup, experimental configuration, as well as the evaluation metrics.

Datasets and Queries. To test the scalability of the approaches when the network is under heavy load, and to
assess the impact of the query pattern on performance and network usage, we ran experiments with the synthetic
WatDiv [33] benchmark using different dataset sizes: 10 million triples to 1 billion triples. Furthermore, to test
LOTHBROK in a realistic setting where users would upload several interlinked datasets to a network, and ask queries
with varying complexity, we ran experiments using a well-known benchmark suite for federated RDF engines called
LargeRDFBench [32]. LargeRDFBench comprises 13 different, interlinked datasets with over a billion triples in
total. To provide a fair comparison between the systems with and without LOTHBROK, we created an equal number
of fragments for both fragmentations: characteristic sets (Section 4.2) and predicate-based. To do this, we iteratively
merged the characteristic set fragments with the fewest number of subjects into larger fragments following the
approach outlined in Section 4.2 until the number of fragments equalled the number of predicate-based fragments.
The characteristics of the datasets are shown in Table 3. Furthermore, to assess the impact of reducing the number
of characteristic sets on query completeness, we ran similar experiments where we did not create an equal number
of fragments for LOTHBROK, i.e., where we created one fragment for each characteristic set that describes at least
50 subjects and provide the results on our website3; since these results are quite similar to the ones presented in this
section, we will not report on them further.

LargeRDFBench includes 40 different queries [32] that are divided into five different categories of varying com-
plexity and result set sizes: Simple (S), Complex (C), Large Data (L), and Complex and High Data Sources (CH).

For WatDiv, we used WatDiv star query loads from [11] consisting of 1-3 star patterns, called the
watdiv-1_star, watdiv-2_star, and watdiv-3_star query loads, as well as a query load consisting of
path queries, i.e., queries where each star pattern only has one triple pattern, called the watdiv_path query load.
Each of these query loads consists of 6,400 different queries. Furthermore, we combine the aforementioned query
loads into a single query load called watdiv-union. Last, we created a query load with 19,968 queries from the
WatDiv stress testing query templates (156 per node) called watdiv-sts. The complete set of queries is available
on our website3. Figure 14 shows an overview of the following characteristics of each load [11, 61]: Triple pattern

2https://jena.apache.org
3https://relweb.cs.aau.dk/lothbrok

https://jena.apache.org


Table 3
Characteristics of the used datasets

Dataset #triples #subjects #predicates #objects
LargeRDFBench 1,003,960,176 165,785,212 2,160 326,209,517

LinkedTCGA-M 415,030,327 83,006,609 6 166,106,744
LinkedTCGA-E 344,576,146 57,429,904 7 84,403,402
LinkedTCGA-A 35,329,868 5,782,962 383 8,329,393
ChEBI 4,772,706 50,477 28 772,138
DBPedia-Subset 42,849,609 9,495,865 1,063 13,620,028
DrugBank 517,023 19,693 119 276,142
GeoNames 107,950,085 7,479,714 26 35,799,392
Jamendo 1,049,647 335,925 26 440,686
KEGG 1,090,830 34,260 21 939,258
LinkedMDB 6,147,996 694,400 222 2,052,959
NYT 335,198 21,666 36 191,538
SWDF 103,595 11,974 118 37,547
Affymetrix 44,207,146 1,421,763 105 13,240,270

watdiv10M 10,916,457 521,585 86 1,005,832
watdiv100M 108,997,714 5,212,385 86 9,753,266
watdiv1000M 1,092,155,948 52,120,385 86 92,220,397

count #TP (Figure 14a), join vertex count #JV (Figure 14b), join vertex degree DEG (Figure 14c), result cardinality
#Results (Figure 14d), mean triple pattern selectivity SELG(tp) (Figure 14e), and join vertex type (Figure 14f).

Experimental Configuration. We compare the following systems: (1) PIQNIC [6] using PPBF indexes [19]
(PIQNIC), (2) LOTHBROK on top of PIQNIC (LOTHBROKPIQNIC), (3) COLCHAIN [7] using PPBF indexes
(COLCHAIN), and (4) LOTHBROK on top of COLCHAIN (LOTHBROKCOLCHAIN). All configurations were run on net-
works with 128 nodes. To assess the scalability of LOTHBROK under load, we ran 156 watdiv-sts queries con-
currently on each node over 8 different configurations where 2i nodes issue queries concurrently such that 0 ≤ i ≤ 7
(i.e., up to all 128 nodes). Furthermore, to analyze the impact of the query pattern on performance, we ran the Wat-
Div star query loads over each WatDiv dataset size such that for each star query load, each node issued 50 queries.
Lastly, we tested the performance of LOTHBROK over each individual query in LargeRDFBench by running the
queries sequentially in random order on three randomly selected nodes and report the average result.

Hardware Configuration. For all configurations and P2P systems, we ran 128 nodes concurrently on a virtual
machine (VM) with 128 vCPU cores with a clock speed of 2.5GHz, 64KB L1 cache, 512KB L2 cache, 8192KB
L3, and a total of 2TB main memory. To spread out resources evenly across nodes, all nodes were restricted to
use 1 vCPU core and 15GB memory, enforced using the -Xmx and -XX:ActiveProcessorCount options for
the JVM. Furthermore, to simulate a more realistic scenario, where nodes are not run on the same machine, we
simulated a connection speed of 20 MB/s.

Evaluation Metrics. We used measured the following metrics:

– Workload Time (WT): The amount of time (in milliseconds) it takes to complete an entire workload including
queries that time out.

– Throughput (TP): The number of completed queries in the workload divided by the total workload time (i.e.,
number of queries per minute).

– Number of Timeouts (NTO): The number of queries that timed out (timeout being 1200 seconds).
– Query Execution Time (QET): The amount of time (in milliseconds) elapsed between when a query is issued

and when its processing has finished.
– Query Response Time (QRT): The amount of time (in milliseconds) elapsed between when a query is issued

and when the first result is computed.
– Query Optimization Time (QOT): The amount of time (in miliseconds) elapsed between when a query is

issued and when the optimizer has finished (i.e., when query execution starts).



(a) Triple pattern count (#TP) (b) Join vertex count (#JV)

(c) Join vertex degree (DEG) (d) Result cardinality (#Results)

(e) Mean TP selectivity (SELG(tp))

Query load SS SO OO
watdiv-1_star 100% 0% 0%
watdiv-2_stars 55.38% 34.31% 10.31%
watdiv-3_stars 57.67% 30.77% 11.53%
watdiv-paths 0% 100% 0%
watdiv-union 53.27% 41.27% 5.46%
watdiv-sts 55.57% 35.83% 8.6%
largerdfbench 41.41% 45.81% 12.78%

(f) Join vertex type over each query load

Fig. 14. Characteristics of all query loads (WatDiv query loads over watdiv100M; statistics over the watdiv10M and watdiv100M datasets
can be found on our website3).

– Number of Requests (REQ): The number of requests made between nodes when processing a query (including
requests made from nodes that have been delegated subqueries).

– Number of Transferred Bytes (NTB): The amount of data (in bytes) transferred between nodes when process-
ing a query (including data transferred to and from nodes that have been delegated subqueries).

– Number of Relevant Nodes (NRN): The number of distinct nodes that replicate fragments containing relevant
data to a query.

– Number of Relevant Fragments (NRF): The number of distinct fragments containing relevant data to a query.

Software Configuration. Unless otherwise specified, we used the following parameters when running the systems.
For COLCHAIN, we used the following parameters recommended in [7]: Community Size: 20, Number of Commu-
nities: 200. For PIQNIC, we use the following parameters recommended in [6]: Time-to-Live (number of hops): 5,
Number of Neighbors: 5. The replication factor for PIQNIC (i.e., the percentage of nodes replicating each fragment)
was matched with the size of the communities in COLCHAIN to provide a better comparison. Nodes were randomly
assigned neighbors throughout the network. The page size (i.e., how many results can be returned with each request,
was set to 100. Furthermore, to limit the size of HTTP requests, the number of results that each system was allowed
to attach to each request (i.e., |Ω| in Section 6) was set to |Ω|= 30 The timeout for all systems and queries was set
to 20 minutes (1,200 seconds).

7.2. Scalability under Load

In these experiments, we ran the watdiv-sts queries over each WatDiv dataset in configurations where 2i

nodes issued 156 queries from the watdiv-sts query load concurrently such that 0 ≤ i ≤ 7. Figures 15a-15c
show the throughput (TP) of the watdiv-sts query load over each configuration in the scalability tests for the
watdiv10M (Figure 15a), watdiv100M (Figure 15b), and watdiv1000M (Figure 15c) datasets in logarithmic



(a) Throughput (TP) over watdiv10M (b) Throughput (TP) over watdiv100M

(c) Throughput (TP) over watdiv1000M (d) Number of timeouts (NTO) over watdiv10M

(e) Number of timeouts (NTO) over watdiv100M (f) Number of timeouts (NTO) over watdiv1000M

(g) Workload time (WT) over watdiv10M (h) Workload time (WT) over watdiv100M

(i) Workload time (WT) over watdiv1000M

Fig. 15. Throughput (TP), number of timeouts (NTO), and workload time (WT) for watdiv-sts over the watdiv10M, watdiv100M, and
watdiv1000M datasets.

scale. Clearly, LOTHBROK has a significantly higher throughput across all datasets and configurations compared
to the approaches that do not include LOTHBROK (i.e., PIQNIC and COLCHAIN). In fact, for watdiv10M, this
increase in throughput is close to two orders of magnitude. While the increase in throughput that LOTHBROK

provides is smaller for both watdiv100M and watdiv1000M, LOTHBROK still increases the throughput by close
to an order of magnitude for these datasets. Furthermore, while some results show that COLCHAIN has a slightly
higher throughput than PIQNIC, both with and without LOTHBROK on top, this difference is relatively negligible.
Last, the results show that the throughput of LOTHBROK is relatively stable when increasing numbers of nodes issue



queries concurrently. In fact, even when every node in the network issue queries concurrently, the throughput is
relatively close to the highest throughput throughout the configurations.

Figures 15d-15f show the number of queries that timed out (TO) of the watdiv-sts query load over each con-
figuration for each WatDiv dataset. As expected, the number of timeouts increases relatively linearly with the number
of nodes issuing queries concurrently. This is due to the fact that when more nodes issue queries, more queries in to-
tal are executed, meaning the total number of the queries that time out increases. Generally, the queries that time out
correspond to query templates that result in a large number of intermediate results, e.g., by using the owl:sameAs
predicate. Furthermore, PIQNIC and COLCHAIN incur significantly more timeouts without LOTHBROK compared
to with LOTHBROK. In fact, for both watdiv10M and watdiv100M, LOTHBROK experiences no timeouts while
PIQNIC and COLCHAIN experience 267 timeouts for watdiv10M and 1,148 timeouts for watdiv1000M. Even
for watdiv1000M, the number of timeouts experienced by LOTHBROK is just 1,151 while PIQNIC and COLCHAIN

both experience 4,036 timeouts. Furthermore, PIQNIC and COLCHAIN incur the exact same number of timeouts.
Figures 15g-15i show the workload time (WT) for each configuration. In line with the throughput and number of

timeouts, LOTHBROK incurs a significantly lower average workload time than PIQNIC and COLCHAIN across all
experiments and datasets. The slight decrease in the workload time for fewer nodes can be attributed to the network
being able to process more queries concurrently when the overall load is relatively low. Nevertheless, the average
workload time only increases slightly even when all nodes issue queries concurrently.

Overall, our experimental results show that, even when the network is under heavy query processing load, LOTH-
BROK increases the query throughput and decreases the average workload time significantly compared to state-of-
the-art decentralized systems. In fact, the increase in performance is up to two orders of magnitude. As a result,
LOTHBROK is also able to finish more queries without timing out.

7.3. Impact of Query Pattern

To test the impact of the query pattern on the performance of LOTHBROK, we ran the watdiv-1_star,
watdiv-2_star, watdiv-3_star, watdiv-path, watdiv-union, and watdiv-sts query loads on
each system; the watdiv-sts queries consist of, on average, more selective star patterns compared to the other
WatDiv query loads (Figure 14).

Figures 16a-16c show the execution time (QET) for each WatDiv query load over each WatDiv dataset, and Fig-
ures 16d-16f show the response time (QRT) for each WatDiv query load in logarithmic scale. Our results show that
LOTHBROK has significantly better performance across all datasets for almost every query load. As expected, the
improvement in performance is more significant for the query loads with a lower number of star patterns. This is due
to the fact that since the star patterns within these queries represent a large part of the query, LOTHBROK has to issue
fewer requests overall, lowering the network overhead. For instance, the queries in the watdiv-1_star query
load can by LOTHBROK be answered by issuing 0.89 requests per 90 results4, whereas PIQNIC and COLCHAIN have
to issue 9.27 requests per 90 results on average, for watdiv1000M in our experiments. In the watdiv-3_star
query load, the improvement in performance is more modest across the datasets since each star pattern is a relatively
small part of the query resulting in a higher number of requests; however, on average, we still see a performance
increase of up to an order of magnitude.

We notice that for the watdiv-path query load, LOTHBROK actually has a slightly worse performance both
in terms of QET and QRT compared to PIQNIC and COLCHAIN due to higher network usage. Figure 17 shows
the number of relevant fragments (NRF) and the number of relevant nodes (NRN) for each query load over each
dataset after optimization (similar figures are provided for NRF and NRN before optimization on our website3).
Analyzing these results, we see that the decreased performance for watdiv-path is caused by LOTHBROK having
a significantly larger number of relevant fragments and by extension a larger number of relevant nodes compared to
PIQNIC and COLCHAIN. In fact, this is the case for all the WatDiv query loads (9 times larger for watdiv-path
while up to 5 times larger for the other query loads); however, for the other query loads, this is compensated by the
increased performance that the query optimization approach provides. This analysis is corroborated by the number

4Even though one request can fetch up to 90 results, the average number of requests is lower than 1 since the nodes store some data locally.



(a) Query execution time (QET) over watdiv10M (b) Query execution time (QET) over watdiv100M

(c) Query execution time (QET) over watdiv1000M (d) Query response time (QRT) over watdiv10M

(e) Query response time (QRT) over watdiv100M (f) Query response time (QRT) over watdiv1000M

Fig. 16. Query execution time (QET) and query response time (QRT) for the WatDiv datasets and star queries.

of fragments pruned during optimization for each query load (figures provided on our website3); the watdiv-path
query load has significantly less pruned fragments compared to the other query loads except watdiv-1_star.
For PIQNIC and COLCHAIN, the number of relevant fragments will always equal the number of unique predicates in
the query since one fragment is created per predicate; however, due to fragmenting the data based on characteristic
sets, LOTHBROK can encounter multiple fragments for each unique predicate in the query. Furthermore, the number
of relevant fragments is, on average, more than twice as high for LOTHBROK over the watdiv-path query load
than over the other query loads. This is because most of the path queries use common predicates like owl:sameAs.

Nevertheless, the slightly worse performance for LOTHBROK over watdiv-path is compensated by the
significantly improved performance over the other query loads, so we still see a performance increase for the
watdiv-union query load. As such, our experimental results show that LOTHBROK is generally able to increase
performance over queries with star-shaped subqueries (i.e., all other queries than path queries) significantly and
that the increase in performance depends on the shape of the query; queries with fewer but larger star patterns (cf.
Figure 14c) show a bigger performance increase than queries with many but small star patterns.

7.4. Network Usage

Figure 18 shows the network usage when processing WatDiv queries over each WatDiv dataset in terms of the
number of requests (Figures 18a-18c) and the number of transferred bytes (Figures 18d-18f) in logarithmic scale.
LOTHBROK incurs a significant lower network overhead for all query loads except watdiv-path despite the
larger number of relevant fragments as discussed in Section 7.3. This is caused by LOTHBROK having to send
significantly fewer requests for each star pattern since a star pattern can be processed entirely over the relevant
fragments, even if there are more fragments (and thus nodes) to send the requests to. Again, the query loads with
a smaller number of star patterns see a larger decrease in network usage since larger parts of the queries can be



(a) Number of relevant fragments (NRF) over watdiv10M (b) Number of relevant fragments (NRF) over watdiv100M

(c) Number of relevant fragments (NRF) over watdiv1000M (d) Number of relevant nodes (NRN) over watdiv10M

(e) Number of relevant nodes (NRN) over watdiv100M (f) Number of relevant nodes (NRN) over watdiv1000M

Fig. 17. Number of relevant fragments (NRF) and number of relevant nodes (NRN) for the WatDiv datasets and star queries.

processed by individual nodes. Since the queries in the watdiv-path query load do not benefit from the star
pattern-based query processing, the network usage is slightly higher; however, even still, the watdiv-union
shows an improvement in the network usage for LOTHBROK. These results are in line with the experiments shown
in Sections 7.2 and 7.3 and support the hypothesis that LOTHBROK increases performance by lowering the network
overhead when processing queries, compared to state-of-the-art systems such as PIQNIC and COLCHAIN.

7.5. Performance of Individual Queries

In these experiments, we ran the LargeRDFBench queries three times on each system sequentially to test the
performance of those individual queries and report the average results. Figure 19 shows the execution time (Fig-
ure 19a), response time (Figure 19b), and optimization time (Figure 19c) for the C query load over LargeRDFBench
in logarithmic scale. Similar figures for the other LargeRDFBench query loads are provided on our website3. The
results in Figure 19 are similar to the remaining query loads; we show the C query load since this query load had
the most diversity in the performance across the queries.

While, in our experiments, LOTHBROK provides an improvement for the execution time (Figure 19a) across all
the queries in LargeRDFBench, the improvement varies based on the query shape in line with the findings of [10, 11]
and the query shape experiments shown in Section 7.3. For instance, query C4 consists of one highly selective
star pattern with 6 unique predicates. LOTHBROK is thus able to answer C4 with one request to the only fragment
with that predicate combination, while PIQNIC and COLCHAIN have to send at least one request per triple pattern.
Hence, LOTHBROK has around two orders of magnitude better performance for this particular query. On the other
hand, query C5 consists of four star patterns, two of which contain only one triple pattern with one of them being
the very common rdfs:label predicate. As a result, LOTHBROK has more than twice the number of relevant
fragments for C5 compared to both PIQNIC and COLCHAIN. Nevertheless, LOTHBROK still has slightly improved



(a) Number of requests (REQ) over watdiv10M (b) Number of requests (REQ) over watdiv100M
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Fig. 18. Number of requests (REQ) and number of transferred bytes (NTB) for the WatDiv datasets and star queries.

performance for C5 compared to PIQNIC and COLCHAIN since the query still contains two star patterns with three
triple patterns each, meaning the increased optimization and communication overhead that the additional relevant
fragments entail is offset by the benefits of processing the star patterns over the individual fragments. The response
times (Figure 19b) show a similar comparison between the systems as the execution times (Figure 19a) with the
exception of query C4. Again, the reason being that LOTHBROK can process this query with a single request, and
therefore the first result is obtained immediately after receiving the response to the request.

However, the optimization times (Figure 19c) differ quite significantly depending on the number of relevant
fragments to the query. For instance, queries like C5 and C6 (that contain a star pattern consisting of a single triple
pattern with a very common predicate) incur a significant number of relevant fragments for LOTHBROK (286 for C5
and 144 for C6) and thus a higher optimization time. This is the case, since a higher number of relevant fragments
means a higher number of SPBFs have to be intersected which represents an overhead. In all of these cases, however,
the benefits of processing entire star patterns over the fragments, in terms of decreased network overhead mean that
the overall execution time is still lower for LOTHBROK. This is especially the case for C6, which contains a star
pattern with 6 triple patterns that in PIQNIC and COLCHAIN have to be processed individually. On the other hand,
queries like C4 that contain few very selective star patterns have a low optimization time for LOTHBROK, since each
star pattern have very few relevant fragments. In the case of C4, PIQNIC and COLCHAIN have a relatively high
number of relevant fragments due to one of the predicates being the common owl:sameAs predicate that occurs in
multiple datasets. As a result, PIQNIC and COLCHAIN have a significantly higher optimization time for this query
compared to LOTHBROK.

Figure 20 shows the number of transferred bytes (Figure 20a), the number of requests (Figure 20b), the number of
relevant fragments (Figure 20c), and the number of relevant nodes (Figure 20d) for each LargeRDFBench query load
in logarithmic scale. We provide figures displaying each measure in Figure 20 for each individual LargeRDFBench
query on our website3. As with the experiments shown in Section 7.4, LOTHBROK clearly incurs a lower network
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Fig. 19. Query execution time (a), response time (b), and optimization time (c) for the C query load over LargeRDFBench.

usage than both PIQNIC and COLCHAIN, both in terms of data transfer (Figure 20a) and the number of requests
made (Figure 20b). This, together with the performance experiments, shows that LOTHBROK is able to reduce the
network overhead significantly across all query loads and, in doing so, increase the performance overall.

Interestingly, while for most query loads, LOTHBROK has a higher number of relevant fragments (Figure 20c)
in line with the experiments presented in Section 7.3, for the L query load, LOTHBROK has a lower number of
relevant fragments in most queries. The reason is that the queries in this query load mostly use data from the
quite structured linkedTCGA datasets which contain few similar characteristic sets, thus incurring a low number
of relevant fragments per star pattern. On the other hand, for PIQNIC and COLCHAIN, the fact that some star
patterns with a low number of triple patterns include common predicates like rdf:type increases the number
of relevant fragments. The number of relevant nodes (Figure 20d) shows a similar trend to the number of relevant
fragments since each fragment is replicated across 20 nodes; in some cases, however, where two relevant fragments
are simultaneously replicated by some of the same nodes, the actual number of relevant nodes will be a bit lower
than when the relevant nodes replicate exactly one relevant fragment.

Our results are similar for all query loads (figures provided on our website3) and show that even for the complex
queries in query loads C and CH and the queries with a large number of intermediate results in query load L,
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Fig. 20. Number of Transferred Bytes (NTB) (a), Number of Requests (REQ) (b), Number of Relevant Fragments (NRF) (c), and Number of
Relevant Nodes (NRN) (d) for each LArgeRDFBench query load.

LOTHBROK presents a significant performance increase because it lowers the communication overhead. For some
queries, this is quite significant; for instance the queries C4 and S3 where LOTHBROK increases execution time
by up to two orders of magnitude. Furthermore, some queries in the L and CH groups that timed out for PIQNIC

and COLCHAIN, such as L3 and CH2, finished within the timeout of 1200 seconds for LOTHBROK. This is in line
with the results presented in Section 7.2 and suggests that LOTHBROK is able to complete more queries within the
timeout than the state-of-the-art systems.

7.6. Summary

Our experimental evaluations show that LOTHBROK significantly improves query performance while lowering
the communication overhead compared to PIQNIC and COLCHAIN. LOTHBROK does so by distributing subqueries
to other nodes such that the estimated network cost is limited as much as possible, and by processing entire star
patterns over the individual fragments. In doing so, LOTHBROK decreases the network usage both in terms of the
data transfer and number of requests, and increases performance by up to two orders of magnitude compared to the
state of the art. Moreover, LOTHBROK does so while providing scalable performance under load; in fact, even when
all nodes in the network issue queries concurrently, LOTHBROK maintains efficient query processing.

8. Conclusions

In this paper, we proposed LOTHBROK a novel query optimization approach for SPARQL queries over decen-
tralized knowledge graphs. LOTHBROK builds upon recent work on decentralized Peer-to-Peer (P2P) systems [6, 7]
and introduces a novel fragmentation technique based on characteristic sets [24], i.e., predicate families, as well as
a novel indexing scheme that summarizes the sets of subjects and objects in a fragment using partitioned bitvec-
tors. Furthermore, LOTHBROK proposes a query optimization strategy based on cardinality estimation, fragment



compatibility, and data locality that is able to delegate the processing of (sub)queries to other, neighboring nodes
in the network that hold relevant data. We implemented our approach on top of two recent systems and evaluated
LOTHBROK’s capabilities over well-known benchmarking suites containing real-world data and queries, as well as
the performance of LOTHBROK under load using large-scale synthetic datasets and stress-testing query templates.
The experimental results show that LOTHBROK significantly reduces the network overhead when processing queries
in a P2P network and, in doing so, increases performance by up to two orders of magnitude.

While we presented a novel distribution of the workload across nodes in a P2P network, LOTHBROK also presents
an opportunity to explore the effects of alternative strategies, e.g., for cost estimation, considering fragments op-
timized for object-object joins (Figure 14f), or alternative fragmentation and allocation strategies, e.g., based on
SHACL/ShEx shapes [62, 63]. Furthermore, we plan to expand the range of supported queries to include aggrega-
tion and analytical queries [64, 65] and to expand the framework with support of provenance both for data [66–68],
so that the system has information about the origin of the data it uses, as well as for queries [69] so that the system
can explain how query answers were computed.
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