5 —_ LEIBN|Z-INFORMATIONSZENTRUM
l | Leibniz TIB TECHNIK UND NATURWISSENSCHAFTEN
‘ U?Z U ie5t UNIVERSITATSBIBLIOTHEK
i niversita
too:4 § Hannover

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAT HANNOVER.
FAKULTAT FUR ELEKTROTECHNIK UND INFORMATIK

Query Optimization Techniques For
Scaling Up To Data Variety

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science in Computer Science

BY

Philipp Daniel Rohde
Matriculation number: 2886190
E-mail: philipp.rohde@stud.uni-hannover.de

First evaluator: Prof. Dr. Soren Auer
Second evaluator: Prof. Dr. Maria-Esther Vidal
Supervisor: M.Sc. Kemele M. Endris

July 4, 2019

[mm)]

m0j0)0| m

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Philipp Daniel Rohde, declare that this thesis titled, 'Query Optimization Tech-
niques For Scaling Up To Data Variety’ and the work presented in it are my own. I
confirm that:

This work was done wholly or mainly while in candidature for a research degree
at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Philipp Daniel Rohde

Signature:

Date:

“Information learned is more valuable than information given.”
— Al Mualim, video game Assassin’s Creed (2007)

Acknowledgements

First, I would like to thank Prof. Dr. Soren Auer and Prof. Dr. Maria-Esther
Vidal for giving me the opportunity to develop my thesis at TIB. I am very grateful
for all the guidance, immense knowledge, motivation, and support from Prof. Dr.
Maria-Esther Vidal. Without all her help, the development of this thesis would have
been impossible.

I would like to show my gratitude towards my supervisor, Kemele M. Endris,
whose support and patience were crucial for the successful implementation of this
thesis.

I would also like to thank my fellow scientists from the Scientific Data Manage-
ment Group, especially Samaneh Jozashoori and Farah Karim, for all the discussions,
proposals, and support on scientific working. I really enjoy being a member of the
team.

Thanks to my friends for being patient with me during the development of my
thesis. Special thanks to my girlfriend, Fiona Eitner, for her invaluable support and
efforts to relax me. I am glad she helped me keeping a good work-life balance.

Finally, I want to give notice that this thesis extends my work already published in
the paper 'Ontario: Federated Query Processing against a Semantic Data Lake’ [12]
at DEXA 2019.

Philipp D. Rohde

IT1

Abstract

Even though Data Lakes are efficient in terms of data storage, they increase the
complexity of query processing; this can lead to expensive query execution. Hence,
novel techniques for generating query execution plans are demanded. Those tech-
niques have to be able to exploit the main characteristics of Data Lakes. Ontario
is a federated query engine capable of processing queries over heterogeneous data
sources. Ontario uses source descriptions based on RDF Molecule Templates, i.e., an
abstract description of the properties belonging to the entities in the unified schema
of the data in the Data Lake. This thesis proposes new heuristics tailored to the
problem of query processing over heterogeneous data sources including heuristics
specifically designed for certain data models. The proposed heuristics are integrated
into the Ontario query optimizer. Ontario is compared to state-of-the-art RDF query
engines in order to study the overhead introduced by considering heterogeneity dur-
ing query processing. The results of the empirical evaluation suggest that there is
no significant overhead when considering heterogeneity. Furthermore, the baseline
version of Ontario is compared to two different sets of additional heuristics, i.e.,
heuristics specifically designed for certain data models and heuristics that do not
consider the data model. The analysis of the obtained experimental results shows
that source-specific heuristics are able to improve query performance. Ontario opti-
mization techniques are able to generate effective and efficient query plans that can
be executed over heterogeneous data sources in a Data Lake.

Keywords: Federated Query Processing, Federated Query Engine, Semantic Data
Lake, Heterogeneous Data Sources, RDF Molecule Template

IV

Contents

(1__Introduction|

(1.1 Motivating Example] 0.

(1.2 Contributions

(1.3 Chapters| .

2 Background|

2.1 Semantic Web Technologies|

[2.1.1 Resource Description Framework|

2.1.4 RML Mappings|

[2.1.5 RDF Molecule Templates

[2.2 Data Integration Systems|

[2.2.1 Mediator/Wrapper Architecture|

[2.2.2 Schema Mapping Approaches|

[2.3 Physical Database Designl

[2.3.1 Indexing

232 Normalizationl

2.4 Federated Query Processing|

[2.4.1 Query Optimization|

13 Related Workl

[3.1 Federated Query Processing over RDF Datal

[3.2 Polystores|

[SARNG N R

© 00 0o 1 O D

11
12
12
13
14
14
15
15
16
18
19
22

[4 Approach|

[> Implementation|
[>.1 Query Processing|
[>.1.1 Query Decomposition|.,
[b.1.2 Query Optimizer|

(6.2 SQL Wrapper|o

6 Experimental Evaluation|

[6.1.2 Benchmarking Queries|
6.2 Data Preparation| Lo
[6.2.1 Converting RDF to 'ISV|
[6.2.2 Implementation of the Relational Schemal.
[6.3 Experimental Setup|.
[6.4 Empirical Evaluation| 00000000
[6.4.1 Experiment I: RDF Engines|
[6.4.2 Experiment II: Ontario with Difterent Heuristics|.
[6.4.3 Experiment III: Additional Queries|

[A LSLOD Simple Queries|

(B Additional Queries|

[C Experiment Results|

(Bibliography|

VI

27
27
29
31
32

35
35
36
38
41
41

44
44
45
46
46
47
48
48
50
20
53
58

60
60
62
62

64

68

70

74

List of Figures

1.1 Motivating Example| L 2
1.2 Motivating Example: Query Plans| 3
2.1 Abstract Representation of an RDF Triplef. 7
2.2 RDFS Inference Example|o oo oo 8
2.3 Example RDF Graph for Actor and Movie Classes| 11
2.4 RDF Molecule Templates from [Figure 2.3 11
[2.5 Mediator/Wrapper Architecture|. o L 12
2.6 Query Processing Pipeline| o000 19
[2.7 Example of Left-Deep and Bushy Trees| 21
[5.1 Implementation Query Decomposition| 36
5.2 Implementation Query Optimizer| 38
6.1 LSLOD Molecule Template Connections| 45
6.2 Query Execution Time per RDF Enginel 50
6.3 Query Plans for SQ3| o 51
6.4 Continuous Performance of RDF Engines| 52
6.5 Query Execution Time for Ontario| 55
6.6 Continuous Performance of Baseline Ontariol. 56
6.7 Continuous Performance of Ontario over SDIJ 57
6.8 Query Execution Time for Additional Queries|. 58

VII

List of Tables

2.1 Minimal Relational Data on Moviesl 10
2.2 Exhibiting Anomalies in Relational Datal. 16
6.1 LSLOD Data Set Characteristies) 46
6.2 LSLOD Query Characteristics|. 47
6.3 Data Source Formatsl 49
[6.4 Number of Results per Query over RDF|00 . 53
IC.1 Query Execution Time|.o 71
[C.2 Query Answer Cardinality| 72
|C.3 Cardinality of Additional Queries| 73
|C.4" Query Execution Time of Additional Queries| 73

VIII

Acronyms

GaV Global-as-View
GLaV Global-Local-as-View

LaV Local-as-View
LSLOD Life Science Linked Open Data

QEP Query Execution Plan

RDF Resource Description Framework
RDF-MT RDF Molecule Template

RDFS RDF Schema

SDL Semantic Data Lake

SSQ star-shaped sub-query

URI Universal Resource Identifier

IX

Chapter 1

Introduction

In recent years, an enormous amount of heterogeneous data has become available
through various platforms. The need for efficient techniques to manage and query
big and heterogeneous data has gained attention. The variety and volume of data
integrated from different data sources have to be handled efficiently and effectively
by Big Data systems. The Semantic Web community invested considerable efforts
in transforming tabular data into linked data and interlinking these data sets with
existing data sets in the Linked Open Data cloud [40], e.g., Linked Open Drug Data
(LODD) [39], and Bio2RDF [5]. However, lifting tabular data to linked data is costly
and assumes a stable schema and data model. Data Lakes have been proposed to pro-
vide a scalable and flexible knowledge discovery, analysis, and reporting. Data Lakes
are composed of heterogeneous data sources in their original data format. Managing
a Data Lake reduces the costs of identifying, storing, cleansing, and integrating data
substantially and promotes flexibility in data analysis. Nevertheless, Data Lakes
introduce complexity during query processing. Contrary to existing federated query
engines, federated query processing over Data Lakes demands the integration and
semantic description of data to be collected from heterogeneous sources. Thus, se-
lecting relevant sources for a specific query, creating an efficient query execution plan
considering the data source types, and combining partial results retrieved from these
sources are the main challenges in query processing over Data Lakes.

This thesis addresses the problem of federated query processing over Semantic
Data Lakes and proposes heuristics to be considered by Ontario, a query engine able
to efficiently operate on heterogeneous data sources. Ontario implements novel query
processing methods for source selection, query decomposition, and query planing that
are capable of exploiting knowledge about the sources and the query to generate
plans over a Semantic Data Lake. Ontario uses RDF Molecule Templates |13], i.e.,

1

Chapter 1. Introduction

SELECT DISTINCT ?drug ?disName ?drugformula ?sename

WHERE {
?drug dailymed:activelngredient dailymed:Simvastatin .

@ "drug dailymed:genericDrug ?dbdrug .

@ "drug dailymed:possibleDiseaseTarget ?disease .

@ “drug owl:sameAs ?sadrug .

@ "disease rdfs:label ?disName

?sadrug sider:sideEffect ?seffect .

> ?seffect sider:sideEffectName ?sename . N

@ ?7dbdrug drugbank:chemicalFormula ?drugformula @ @,‘m @

} Dailymed Diseasome SIDER DrugBank

(a) SPARQL Query: Find targets, and side effects of drugs with (b) Data Sources in a
active ingredient Simvastatin. Data Lake

Figure 1.1: Motivating Example. (a) A SPARQL query composed of four star-
shaped sub-queries accessing four data sources, Dailymed, Diseasome, SIDER, and
DrugBank. (b) Data Sources: Dailymed (RDF in Virtuoso), Diseasome (Local JSON
File), SIDER (TSV in HDFS), DrugBank (XML in MySQL) (taken from [12])

abstract descriptions of the properties of entities in an RDF data set in order to
identify star-shaped sub-queries of an input query. In contrast to state-of-the-art
approaches, Ontario classifies sub-queries according to their type of instantiations
and joins. Additionally, star-shaped sub-queries are annotated with the data engines
where they will be executed. Ontario exploits this knowledge to generate efficient
query execution plans. The performance of Ontario is studied over the LSLOD
benchmark [21] and compared to existing federated query engines, i.e., FedX [41],
ANAPSID [2], and MULDER [13], and different configurations of the data sources,
i.e., only RDF data sets, only RDB data sets, and a Semantic Data Lake composed
of RDF and RDB data sets. Next, the work of this thesis is prompted with the
motivating example from the preceding paper [12].

1.1 Motivating Example

The motivating example and its figures are taken from the paper |[12] which includes
my preceding work on the topic. In the biomedical domain, complex questions fre-
quently need to be answered with multiple data sources of different data models.
Especially in this domain, flexible data management and integration techniques are
required due to the variety of tools and formats data is collected, generated, and
processed with. To provide a unified view over these heterogeneous data sources,
mapping rules are utilized to describe the required transformations from raw data

1.1. Motivating Example

@SIDER

@drugbank U
@SIDER U
@dailymed @drugbank U @dailymed U
@SIDER U @diseasome
@dailymed U
@diseasome @dailymed @drugbank @SIDER @SIDER

(a) FedX Query Plan (b) MULDER Query Plan

Figure 1.2: Motivating Example: Query Plans. (a) FedX creates a left-linear
plan and uses nested loop joins (arrows on top of join) (b) MULDER identifies a
bushy-tree for star-shaped groups. (taken from [12])

into the unified schema. These mappings enable the translation of queries from the
unified schema into queries against the sources using native access interfaces.

This thesis is motivated by comparing the performance of federated SPARQL
query engines over a federation of data sources that provide a SPARQL-based access
interface. For instance, the SPARQL query in requires to collect the
name of possible drug targets, chemical formula, and side effects of drugs labeled
by the FDA that have the active substance Simvastatin. To answer this query, four
data sources of different data formats need to be accessed. Dailymed
publishes FDA label information about marketed drugs in the United States; Dis-
easome makes available a network of disorders and disease genes; DrugBank reports
information about drugs and drug targets, and SIDER presents information on drug
side effects. The example query comprises eight triple patterns that are identified
with ¢1 to ¢8 in[Figure T.Tal The triple patterns ¢1 - t4 can be answered by Dailymed,
while Diseasome is able to answer triple pattern t5. Further, SIDER can answer t6
and t7, t8 is answered by DrugBank. The data access services for each data set is
implemented by different back-ends and provide varying capabilities. For instance,
the endpoint service for SIDER and Diseasome are Spark-based query processors
that translate queries from SPARQL to SQL, where the raw data need to be loaded
in memory to evaluate the query in these data sources. Similarly, the endpoint for
DrugBank translates SPARQL to SQL and executes the translated query in MySQL,
which provides efficient indexing and query optimization for relational data.

3

Chapter 1. Introduction

Federated query engines, FedX [41] and MULDER [13], provide a unified view
over a set of data sources that respect SPARQL protocol. They rely on source de-
scriptions to select relevant sources for the given query and finding an efficient query
execution plan. For instance, FedX contacts the data sources to decide where each
triple pattern will be executed, while MULDER requires RDF Molecule Templates
(RDF-MTSs) to be collected in advance. FedX decomposes the example query into
five sub-queries; t1 - t3, t6 - t7, and t8 that are sent to Dailymed, SIDER, and Drug-
Bank, respectively, and t4 and t5 sent to all four data sources. FedX creates a left
linear tree plan with nested loop joins, an operator that pushes the join operation
down to the data sources by binding the join variables of the right operand with
values extracted from the left operand, as shown in [Figure 1.2a] The FedX planner
assumes the underlying data model is RDF and triples are materialized in a triple
store that is optimized for this data model. However, since the data sources have
different data models and capabilities, pushing down join operations to the sources
results in higher execution time, 20 minutes, and incomplete results. To the contrary,
MULDER decomposes the query into five sub-queries; t1 - t4, t8, and t5 are sent
to Dailymed, DrugBank, and Diseasome, respectively, while ¢6 and ¢7 are executed
in SIDER. MULDER creates a bushy tree plan with nested loop join and GJoin [2]
operators . Based on the selectivity of the operands the type of operator
is decided. Like FedX, MULDER assumes RDF as the underlying data model and
uniform querying capabilities of the data sources in the federation. Based on these
assumptions, MULDER selects a nested loop join for the first two joins, between
sub-queries t1 - t4, t8, and t5. Despite, MULDER creates an efficient bushy tree
plan that helps parallelizing the query execution. The selection of the join operator
ignores the data source capabilities and underlying data model, which results in a
high execution time, 4.6 minutes. This thesis devises optimization techniques guided
by heuristics that enable the creation of source-dependent query plans in order to
reduce query execution time. First, the Ontario query optimizer resorts to data
source descriptions based on RDF Molecule Templates to select the relevant sources
for the query. Then, the query is decomposed into star-shaped sub-queries that can
be executed in the selected sources. Finally, a plan that composes the sub-queries
is generated; physical operators are selected in order to minimize execution time
and maximize answer completeness. State-of-the-art federated query engines are not
able to generate efficient query execution plans for a federation of heterogeneous
data sources since they are designed and optimized for a single data model; Ontario
overcomes this downside by considering the types and capabilities of the sources.

1.2. Contributions

1.2 Contributions

State-of-the-art federated query engines are designed to generate optimized query
execution plans for federations of data sources in a common data model, e.g., RDF.
Lifting a data set to RDF might not be feasible due to the high time complexity.
Therefore, the data sources in a Semantic Data Lake are kept in their original data
model. Mapping definitions like RML mappings can be used to add semantics to non-
RDF data sources, e.g., relational databases. However, considering heterogeneity
adds complexity to query processing due to the varying capabilities of the different
data sources. Using RDF-MT based source descriptions enables effective generation
of query execution plans. The heuristics used in existing query engines are tailored
for a specific data model or considered general since they do not take into account
special capabilities of a data model. This thesis shows that using general heuristics
in a Semantic Data Lake is not sufficient for optimizing the query execution plans.
Therefore, two sets of heuristics are proposed; one set of heuristics contains general
heuristics only, and the second set includes source specific heuristics as well. Source
specific heuristics are tailored for a specific data model that are likely to increase
query performance in a heterogeneous federation. The empirical evaluation shows
that source specific heuristics are able to improve the query performance and that
some queries benefit from the execution in a Semantic Data Lake compared to a
federation of RDF graphs.

1.3 Chapters

This thesis is structured as follows: Section 2 describes the basic concepts that
underlie the development of this thesis. Related work is discussed in Section 3. The
proposed approach is presented in Section 4. Section 5 examines the implementation
of the approach. The experiments are described and their results analyzed in Section
6. Finally, Section 7 concludes and presents further directions of research.

Chapter 2

Background

This chapter introduces the main topics needed to understand the development of
this thesis. In the first part, Semantic Web technologies like the Resource Descrip-
tion Framework (RDF), a query language for RDF data, extensions of RDF and
further related concepts are discussed. Afterwards, data integration systems includ-
ing architecture and schema mapping are presented. The third part explains physical
database design which covers indexing and schema normalization. Finally, federated
query processing and query optimization are examined.

2.1 Semantic Web Technologies

The Semantic Web extends the World Wide Web through standards established
by the World Wide Web Consortium (W3C). These standards describe common
data formats and protocols for data exchange. The Semantic Web aims to enhance
the World Wide Web with semantics, i.e., a web of data readable by humans and
machines. Tim Berners-Lee describes his original vision of the Semantic Web as in
the following;:

“I have a dream for the Web [in which computers] become capable of analyzing all the
data on the Web — the content, links, and transactions between people and computers. A
"Semantic Web’, which makes this possible, has yet to emerge, but when it does, the
day-to-day mechanisms of trade, bureaucracy, and our daily lives will be handled by
machines talking to machines, leaving humans to provide the inspiration and intuition.
The intelligent 'agents’ people have touted for ages will finally materialize. ”

— Tim Berners-Lee, Weaving the Web (1999)

2.1. Semantic Web Technologies

Subject Predicate Object

Figure 2.1: Abstract Representation of an RDF Triple

2.1.1 Resource Description Framework

The Resource Description Framework (RDF) [26] is a graph-based data model and
W3C standard for publishing and exchanging data over the web. The graph is
created from the basic building block of RDF, the RDF triple. Each triple consists
of three parts: (i) subject - an entity or resource, (ii) object - an entity or resource,
and (iii) predicate - a relation between subject and object. All parts of the triple
are represented using Universal Resource Identifiers (URI). Only objects can be
represented as a literal instead of a URI to use data formats like string, integer or
date. An RDF graph is a directed graph with labeled edges |3|, the nodes represent
the subjects and objects while the predicates are the labels of the edges. [Figure 2.1
illustrates an abstract representation of an RDF triple.

RDF uses an own vocabulary to specify the entities and their relations. Several se-
rialization formats for RDF have been created such as N-Triples [9], RDF /XML [15],
and Turtle [36]. shows the use of the RDF vocabulary to represent the
example from in the Turtle format. Two resources (Actor and Movie) and
one relation (starred_in) are defined. Then the fact that Harrison Ford starred in
Star Wars is added. The prefix rdf describes the RDF vocabulary and base is the
base for the relative URIs used for describing the data. The semicolon is used for
adding another predicate and object to the same subject.

Listing 2.1: Example of RDF /Turtle format

@base <http://www.example.org/>
O@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf -systax-ns#>
<Actor> rdf:type rdf:Resource
<starred_in> rdf:type rdf:Property
<Movie> rdf:type rdf:Resource
<Star_Wars> rdf:type <Movie>
<Harrison_Ford> rdf:type <Actor> ;
<starred_in> <Star_Wars>

Chapter 2. Background

'Y

| rdf:type

ex:starred_in
oo o0 iz

Figure 2.2: RDFS Inference Example. Inferred properties shown in red.

rdf:type

T

2.1.2 RDF Schema

RDF Schema (RDFES) [7] is an extension of RDF. RDFS introduces new vocabular-
ies to define more complex relations between resources, e.g., defining hierarchies of
classes with rdfs:subClass0f and specifying the range and domain of properties
with rdfs:domain and rdfs:range, respectively. These extensions can be used for
inference which is one of the advantages of RDFS.

The RDF graph in represents three triple statements (i) an actor stars
in a movie, (ii) Star Wars is a movie, and (iii) Harrison Ford starred in Star Wars.
The property ex:starred_in is modeled with the domain ex:Actor and the range
ex:Movie. Applying RDFS inference results in the implicit knowledge of Harrison
Ford being an actor. Imagine ex:Actor being a subclass of ex:Human. Using the
inference rules [3|, Harrison Ford is also a human.

2.1.3 SPARQL

SPARQL Protocol And RDF Query Language (SPARQL) [37] is a W3C standard
query language for RDF. It can be used to extract, define, and manipulate the data.
SPARQL is based on the Turtle serialization and basic graph pattern matching. A
SPARQL query consists of triple patterns, an RDF triple that contains variables at
any arbitrary place. A set of triple patterns is called basic graph pattern (BGP).
The main query clauses supported are (i) SELECT for retrieving the results of the
query, (ii) CONSTRUCT for constructing an RDF graph from the query, (iii) ASK for
checking if the BGP exists in the data set, and (iv) DESCRIBE for descriptions of
the data [3]. SPARQL queries may contain operators, e.g., AND (denoted by .),
UNION, and OPTIONAL, to connect BGPs as well as FILTER to filter from the output
the instantiations of variables that meet a certain condition. shows the
example SPARQL query ”Get all movies Harrison Ford starred in”. This query is
composed of three triple patterns, e.g., ex:Harrison Ford ex:starred in 7movie

8

2.1. Semantic Web Technologies

Listing 2.2: Example of a SPARQL Query

PREFIX ex: <http://www.example.org/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
SELECT ?movie ?year WHERE {

ex:Harrison_Ford ex:starred_-in 7movie .

?movie rdf:type ex:Movie .

?movie ex:year 7year

corresponds to Harrison Ford starring in ?movie which is restricted to a movie in
the next triple pattern.

On one hand the evaluation of a SPARQL query over an RDF graph using only
the AND and FILTER operators is possible in polynomial time, on the other hand
adding UNION or OPTIONAL operators to the query increases the complexity of query
evaluation to NP-complete [3]. The complexity can be reduced to coNP-complete by
rewriting the query to be in union normal form and being well-designed. A graph
pattern is in union normal form if it is of the form:

(P, UNION P, UNION ... UNION P,), (1)

where each P; (1 < i < n) do not contain the UNION operator. A graph pattern
without UNION and using only a subset of the variables for FILTER expressions is
well-designed if for every sub-pattern P’ = (P, OPT P,) variables occurring in P’
and P, also occur in P; [3].

2.1.4 RML Mappings

RDF Mapping Language (RML) mappings [11] are used to semantify data in other
formats than RDF, i.e., they can be used to model domain-level knowledge for data
derived from heterogeneous sources. For example tabular data about movies like in
can be enriched with semantics using an RML mapping like the one in
Listing 2.3, assuming the data is stored in a TSV file named movies.tsv.

An RML mapping consists of different mappings, in the example only one map-
ping :movies is defined. Each mapping has a source description that specifies the
source path and type. An iterator has to be defined in order to be able to access the
data correctly. This iterator varies for different data types as well as the actual data
representation. In addition to the source description the mapping contains a reference
to the subject class of the mapping (subjectMap). The predicates and objects be-
longing to the subject are specified using predicateObjectMaps. This map includes

9

Chapter 2. Background

title year studioName
Star Wars 1977 Fox

Raiders of the Lost Ark 1981 Paramount
Stargate 1994 Centropolis

Table 2.1: Minimal Relational Data on Movies

the URI of the predicate and the predicate range. If the object is a literal, a reference
to the corresponding column is made, e.g., rml:reference "year". Else the object
is a resource and a template is used to create the URI of the object from the column
value, e.g., rml:template "<http://www.example.org/{studioName}>" evaluates
to <http://www.example.org/Fox> if the value is Fox.

Listing 2.3: Example RML Mapping for Movies

@prefix : <http://www.example.org/>

@prefix rr: <http://www.w3.org/ns/r2rml#>
@prefix rml: <http://semweb.mmlab.be/ns/rml#>
O@prefix ql: <http://semweb.mmlab.be/ns/ql#>

:movies

rml:logicalSource [
rml : source "movies.tsv";
rml:referenceFormulation ql:TSV;
rml:iterator "x"

1

rr:subjectMap [

rr:template "http://www.example.org/{titlel}";
rr:class <http://www.example.org/Movie>

1;

rr:predicateObjectMap [
rr:predicate <http://www.example.org/year>;
rr:objectMap [

rml:reference "year"

]

1

rr:predicateObjectMap [
rr:predicate <http://www.example.org/at_studio>;
rr:objectMap [

rml:template "<http://www.example.org/{studioNamel}"

]

1

10

2.1. Semantic Web Technologies

'
'

E rdf:type E rdf:type
i i
) ex:starred_in
ex:Harrison_Ford ex:Star_Wars
ex:born ex:year
3 A
1942-07-13 1977

Figure 2.3: Example RDF Graph for Actor and Movie Classes

ex:starred_in ex:year

(a) RDF-MT for Actors (b) RDF-MT for Movies

Figure 2.4: RDF Molecule Templates from |[Figure 2.3

2.1.5 RDF Molecule Templates

RDF Molecule Templates (RDF-MTs) are an abstract description of entities belong-
ing to the same RDF class [13]. An RDF-MT of an entity consists of a subject
representing the RDF class and a number of properties that belong to the subject.
shows an example RDF graph with two classes (Actor and Movie). From
this RDF graph two RDF-MTs can be extracted. Each RDF-MT contains the pred-
icates belonging to the subject. As RDF-MTs are metadata representing an RDF
class the predicates are connected to blank nodes. The example from con-
tains three predicates, namely ex:starred_in, ex:born, and ex:year. Two of them
belong to the class ex:Actor and the remaining one describing the year of release

belongs to the class ex:Movie. The resulting RDF-MTs are presented in [Figure 2.4]

11

Chapter 2. Background

[Application 1 } [Application 2]

/ Mediator \

Wrapper 1 Wrapper 2 Wrapper n

Figure 2.5: Mediator/Wrapper Architecture

2.2 Data Integration Systems

Data integration combines the data from different sources and provides a unified view
of them to the user. This process is required for example when two companies need
to merge their databases or in scientific research when combining research results
from different repositories. Data integration has been extensively studied since the
work on rewriting queries using views in the mid-1990’s [17]. This section covers
the Mediator/Wrapper architecture, schema mapping approaches and two different
data integration systems, i.e., the classical Data Warehouse system and the one this
thesis is based on, the Semantic Data Lake.

2.2.1 Mediator/Wrapper Architecture

The Mediator/Wrapper architecture was proposed in the early 90’s to aid decision-
making applications [48]. Since then it has become a very popular architecture
for data integration systems despite the fact that wrapper development involves
a lot of work. The architecture is presented visually in [Figure 2.5 Each data
source has an associated wrapper that provides information about the source, e.g.,
query processing capabilities. The mediator collects the information provided by
the wrappers and performs query execution using the wrappers to access the data
sources. The mediator then integrates the results from the wrappers to one unified
result. The mediators have to evolve with the changes of the data sources in use.
Therefore, Ericsson [14] comes up with a system that is able to deal with unavailable
sources by checking for their health status. Wiederhold [47] suggests to limit the
scope of a mediator to commensurate semantics.

12

2.2. Data Integration Systems

2.2.2 Schema Mapping Approaches

Data integration systems provide a uniform query interface to the possibly hetero-
geneous data sources that are integrated. Therefore, a global schema is introduced
that is used by the users to post their queries. Hence, it is not necessary for the users
to know the schemas of all data sources.

There are two main ways to create schema mappings, namely Global-as-View
(GaV) [27] and Local-as-View. The GaV approach models the global schema as a
view over the local schemas of the data sources. On the contrary, LaV models the
content of a data source as a view over the global schema. There is also a hybrid
approach known as Global-Local-as-View (GLaV) that combines the two aforemen-
tioned approaches, i.e., a view over the data sources is defined as a view over the
global schema [17]. A view definition maps the global and local relations of a schema.
For example, if the global movie relation holds the title, year, and length of a movie
and one of the sources has a relation of movies from 1991 with title, length and
director the view definition would map the titles and lengths, setting the year in the
global schema to 1991 and omitting the information about the director. The main
advantage of the LaV approach is the easy integration of new data sources since the
global schema does not need to be changed. Therefore, the query rewriting in the
LaV approach has quite a high complexity.

Rewriting a query posed over the global schema into a query on the individual
data sources in a system using the GaV approach is straightforward. The query will
simply be unfolded using the view definitions, i.e., every relation from the global
schema mentioned in the query will be replaced by its view definition. As the view
definition contains the relations from the local data sources the unfolded query is
a query over the individual data sources. Query rewriting in the GaV approach is
linear in the number of global relations used.

In the LaV approach the query reformulation is not as easy and matches to the
problem of query rewriting using views [17]. One possibility to rewrite a query in the
LaV approach is the bucket algorithm [20]. This algorithm uses a bucket per each
literal of the query and adds the views to the bucket that contain the literal. The
buckets need to be combined (join of the views) in an efficient way. During the process
partial containment mappings are generated and checked for incompatibilities. If a
partial containment mapping covers all literals of the query the containment mapping
and plan for the query is found. The bucket algorithm is sound but not complete,
there are plans the algorithm does not find. Let V' be the set of views, n = max (|V]),
and |g| the number of buckets. The complexity of the bucket algorithm is as follows:

([V[-n) (2)

13

Chapter 2. Background

2.2.3 Data Warehouse

A traditional data integration system is the Data Warehouse. Usually a Data Ware-
house is an integrated database within a company and used for data analysis in
decision support. A Data Warehouse stores all the data from different databases
and sites of the company in a centralized manner. For the user the Data Ware-
house looks like an ordinary database, but data manipulation queries generally are
forbidden since they would lead to the Data Warehouse being inconsistent with the
sources [16]. Data warehousing, therefore, it implements materialized data inte-
gration. Data Warehouses follow the extract-transform-load (ETL) paradigm. The
needed data will be updated from the sources periodically (extract, load) and trans-
formed to match the warehouse schema (transform). The data access strategy used
is data on-write, i.e., the data is organized in a static schema before it is processed [4].
Queries will be run over the Data Warehouse only and, therefore, complex queries for
data analysis do not interfere with the everyday workload. Since the data is updated
periodically one issue with data warehousing is the up-to-dateness of the data.

2.2.4 Semantic Data Lake

Data Lakes are often regarded as the contrary of Data Warehouses. The data in
a Data Lake will not be transformed into a common data format, but stay in its
original one. Therefore, a Data Lake implements virtual data integration. Also the
data access strategy is different. Data Lakes use data on-read, i.e., the schema of the
data will be checked when the data is used. Data Lakes are designed to store and
access heterogeneous data. However dealing with this data is time-consuming and
inefficient due to the different data models, instance structures and file formats [4].

To overcome the aforementioned problem the Data Lake can be semantified. A
semantified Data Lake is called Semantic Data Lake (SDL). To add semantics to
the Data Lake the data sets are equiped with mappings (cf. [Subsection 2.1.4) to
vocabularies, ontologies or knowledge graphs. This allows the user to deal with the
heterogeneous data as if it was in one common format.

The data can then be queried in a unique high-level declarative query language.
The query processing over Semantic Data Lakes has to face the following challenges:
(1) Query Decomposition: decompose the query into sub-queries and generate an
execution plan, (ii) Source Selection: select relevant sources for the sub-queries using
the predefined mappings, and (iii) Result Extraction: the sub-queries are translated
into the query language of the selected data sources, executed and the results are
combined according to the generated plan, in a way that the original query will be
answered correctly.

14

2.3. Physical Database Design

2.3 Physical Database Design

When setting up a relational database some physical design aspects have to be con-
sidered. For the matter of this thesis indexing and schema normalization are most
important. First, indexing is discussed, followed by normalization.

2.3.1 Indexing

An index is any data structure that given the value of one or more attributes of
a relation as input returns the records with this value quickly [16], i.e., finding all
matching records with checking only a fraction of all possible records of the relation.
Therefore, query execution can be sped up with appropriate indexes since they may
improve the time needed to find all records of a relation meeting a certain condition.
Indexing has been extensively studied in the past and many different kinds of indexes
are implemented in relational database management systems. Most commonly known
is the primary index as the index over the primary key of a relation. Indexes over
candidate keys are called unique indexes since they do not contain any duplicates.
As those indexes may not be sufficient to speed up the queries frequently send to the
database, indexing attributes repeatedly appearing in the WHERE clause should be
considered. This type of indexes is known as secondary indezx. Indexes may contain
more than one attribute and are called composite index if they are combined of at
least two attributes. When the ordering of data records is the same as the ordering
of data entries in an index, the index is called clustered index [38].

The index structure used should be decided depending on the kind of comparisons
made on that attribute. The simplest form of an index might be a sorted file with an
associated index file containing key-pointer pairs where a pointer refers to a record
in the data file. This type of index structure is used for primary indexes. The two
most commonly used structures for indexes are B-trees and hash tables. A B-tree
organizes its blocks in a tree structure. The search keys are stored in a sorted order
in the leafs of the tree and copied from the data file. The last pointer in a leaf points
to the next right leaf, the block with the next higher search keys. B-trees are best
for range searches like year > 1970 and year < 1980 [3§]. Hash tables however
are best for exact matches like year = 1977 [38]. The search key will be hashed
using a hash function which determines the bucket the search key will be stored in.
Retrieving the records matching a search key K is as simple as returning the records
linked to the bucket h(K) where h is the hash function. Depending on the number of
records the hash table can be kept in memory or needs to be stored on a secondary
storage. Hash tables are an alternative choice for primary indexes.

15

Chapter 2. Background

Inserting, updating or deleting a record from a relation leads to an update of the
indexes on this relation. Therefore, creating an index is always a trade-off between
query execution time, storage use, and data manipulation time. Ramakrishnan and
Gehrke [38] present some guidelines for index creation. (i) Attributes should only be
indexed if a query benefits from it and indexes that speed up more than one query
should be preferred. (ii) Attributes occurring in a WHERE clause are candidates for
indexing. (iii) Composite indexes should be considered if a WHERE clause includes
conditions on more than one attribute or if they enable index-only evaluation, i.e.,
accessing the relation can be avoided, for important queries. (iv) At most one
index per relation can be clustered. Since clustering has a significant impact on
performance the choice of clustered indexes is important. Range queries are most
likely to benefit from clustering. Indexes enabling index-only evaluation need not
to be clustered. (v) B+ trees are usually preferable over hash indexes, but a hash
index is better if the index is intended to support index nested loop joins or only very
important equality queries and no range queries use the index. (vi) The impact of
an index on the updates in the workload has to be studied. If maintaining the index
slows down frequent update operations, dropping the index should be considered.
However, an index may speed up certain update operations. For example, an index
on the ID of a movie could speed up an update of the length of that movie specified
by the ID. (vii) An attribute should not be indexed if there exists a value for this
attribute that is present in more than 15% of the records.

2.3.2 Normalization

Creating a relational database schema without paying sufficient attention may lead to
problems. The main problem is redundancy, i.e., the same information is repeated in

more than one tuple. Examples are year and length of a movie in [Table 2.2 When
having redundancies one may face update anomalies and deletion anomalies [16].

title year length studioName starName
Star Wars 1977 124 Fox Carrie Fisher
Star Wars 1977 124 Fox Mark Hamill
Star Wars 1977 124 Fox Harrison Ford
Raiders of the Lost Ark 1981 115 Paramount Harrison Ford
Raiders of the Lost Ark 1981 115 Paramound Karen Allen
Stargate 1994 130 Centropolis Kurt Russell

Table 2.2: Exhibiting Anomalies in Relational Data

16

2.3. Physical Database Design

The former occur when the redundant attribute is updated in just one of the tuples
but not in the others. For example, if Raiders of the Lost Ark is really 116 minutes
long and one carelessly updates only the first tuple of [Table 2.2] The latter anomaly
describes deleting the last tuple from the redundant attribute which leads to the loss
of the information from the other attributes. This would happen if one deletes Kurt
Russel from the set of stars from the movie Stargate in [Table 2.2 There would be
no more stars for this movie and all other information would be lost too.

Therefore, relations should be decomposed to avoid anomalies. Decomposing a
relation can be understood as splitting the relation into multiple relations. Each of
these relations is a subset of the original relation. By combining the information
from all these relations the original information can be restored [44]. Normalization
is achieved by decomposing the relations. There are several normal forms describing
the grade of normalization.

Definition 1 (First Normal Form). A relation is in First Normal Form (I1NF)
if it contains only atomic values.

The values of a relation have to be atomic, i.e., they can not be further decom-
posed. Date [10] suggests that 'the notion of atomicity has no absolute meaning’.
Therefore, one may consider a value atomic for some purpose but not for another.

Definition 2 (Second Normal Form). A relation is in Second Normal Form
(2NF) if there are no partial dependencies.

A relation should not have a functional dependency that is only partially depen-
dent from the candidate key. Hence, this rule is violated by a relation having {A}
as the set of key candidates and a functional dependency AB — C' because there is
no key candidate that includes A and B.

Definition 3 (Third Normal Form). A relation is in Third Normal Form (3NF)
iof there are no transitive dependencies.

Every relation in 3NF does not have functional dependencies which are transitive
dependent from a candidate key, i.e., if {A} is the set of candidate keys and the
relation has the functional dependencies A — B and B — C' this rule is violated due
to the transitivity of the dependencies (A — B — C).

Definition 4 (Boyce-Codd Normal Form). A relation is in Boyce-Codd Normal
Form (BCNF) if for each non-trivial functional dependency (X — YY), X is a super
key.

BCNF is more strict than 3NF and ensures that no redundancy can be detected
with information about the functional dependencies alone [38]. BCNF enforces that

17

Chapter 2. Background

each functional dependency is dependent on the full key. A relation with the can-
didate key {A} and a functional dependency B — C' violates this rule. However
for the same relation the functional dependency AB — C' is valid because AB is a
superkey, i.e., a superset of a candidate key.

Definition 5 (Fourth Normal Form). A relation is in Fourth Normal Form
(4NF) if there are no multi-valued dependencies.

Any table in BCNF that has no multi-valued dependencies is also in 4NF. The
multi-valued dependency A —» B holds for a relation R(A, B,C) if for the tuples
(a,b,c) and (a,d,e) in R also the tuples (a,b,e) and (a,d, c) exist in R.

Definition 6 (Fifth Normal Form). A relation is in Fifth Normal Form (5NF)
if every non-trivial join dependency is implied by the candidate keys.

Definition 7 (Sixth Normal Form). A relation is in Sizth Normal Form (6NF)
if there are no non-trivial join dependencies.

If a relation schema S is decomposed in relations R; to R,, the decomposition
will be a lossless-join decomposition if the relations on S are restricted to a join
dependency on S, denoted as *(Ry, Ra, ..., R,). A join dependency is trivial, if one
of the R; is S itself. The join dependency is implied by the candidate key(s) if and
only if each of the relations R; to R, is a superkey for S.

There are algorithms for transforming the relation schema to the different normal
forms. For this thesis the algorithm from Bernstein [6] for transforming the schema
to 3NF is used. The procedure of this transforming is depicted in [Algorithm 2.1}

Algorlthm 2.1 Synthesis Procedure by Bernstein [6]

: let F' be the set of functional dependencies, find a canonical cover G for F

partition GG into groups such that all of the FDs in each group have identical left sides
merge groups of FDs if they are dependent from one another

construct a relation for each of these groups

if none of the relations contains a candidate key, add a new relation with the candidate
key

U k= W N =

2.4 Federated Query Processing

The databases in a federated system are autonomous, possibly heterogeneous, and
maybe geographically decentralized [35]. The most often used architecture in fed-
erated settings is the Mediator/Wrapper architecture discussed in [Subsection 2.2.1}

18

2.4. Federated Query Processing

Layer 1 Layer 2 Layer 3
Query { | Result
|] o Query N Query n Query
T SRR IRE I 1 Optimizer | Translation Execution

Figure 2.6: Query Processing Pipeline

Query processing in a federation can be split in three layers as indicated by differ-
ent colors in [Figure 2.6, The first two layers, located at the mediator, transform
the input query to a globally optimized query execution plan (QEP) [35]. The first
layer parses the query and afterwards uses the global schema to rewrite the query
into a query on local relations. As mentioned before there are mainly two different
approaches on how to define the global schema (cf. [Subsection 2.2.2). The actual
rewriting technique depends on which approach was chosen for the global schema.
Rewriting the query also includes decomposing the query into sub-queries that are
executable by the sources and identifying the relevant sources that contribute to the
answer of these sub-queries. The second layer performs global optimization of the
query and some execution. This layer considers the allocation of the local relations
and the query processing capabilities of the different data sources. Query optimiza-
tion itself is further discussed in [Subsection 2.4.1] The output is an optimized QEP
with sub-queries and operations that can be executed by the data sources. The third
layer is located at the wrappers and performs query translation and execution. It
also returns the obtained results to the mediator that performs result integration.
Each wrapper needs the local export schema of the associated source to translate the
sub-query into the language used by the data source. Translating may also include
data conversion, e.g., if the global schema represents distances in meters, but a data
source in the federation uses inches. The query is executed after the translation and
the local results are transformed to the common format.

2.4.1 Query Optimization

The objective of the query optimizer is to find a good QEP. This involves two basic
steps. First, enumerating alternative plans, typically only a subset of all possible
QEPs is considered due to the very large number of possible plans. Second, es-
timating the cost of the enumerated plans and choosing the plan with the lowest
cost [38]. The query optimization can be done at two different times relative to the

19

Chapter 2. Background

query execution: (i) statically before the execution of the query, and (ii) dynamically
during the execution [35]. Since static query optimization is done before the query
execution, the sizes of intermediate results are unknown and have to be estimated.
Errors in these estimations can lead to a suboptimal QEP. Following this approach,
it is possible to cache the QEP for a query in order to save the optimization time on
subsequent requests for the same query. Dynamic query optimization is progressed
at query execution time. Therefore, at any point of the execution the decision on
which operator to use next can be based on the actual size of the result previously
produced. The main advantage of dynamic query optimization is that the actual
sizes of intermediate results are available and, therefore, minimizing the probabil-
ity of creating a bad plan. However, the shortcoming of this approach is that the
expensive task of query optimization has to be repeated for each execution of the
query.

The most popular algorithm to enumerate the plans is dynamic programming
(DP). |42] contains an overview of alternative enumeration algorithms. DP creates
very good plans if the cost model is accurate enough. The downside of this approach
is the exponential time and space complexity and, therefore, it is not feasible for
complex queries. An adaptive extension called iterative dynamic programming is
proposed in [25] to overcome this disadvantage. It produces plans as good as DP
for simple queries and good plans for queries too complex for DP. However, itera-
tive dynamic programming is not suitable for very complex queries with dozens of
relations. There are also greedy algorithms, but following the nature of the greedy
paradigm they might get caught in a local optimum. [31] proposes a hypergraph-
based approach to query optimization. Each sub-query will be handled as a node in
the hypergraph. Nodes that share a join variable are merged into a new hypernode.
Those hypernodes represent joins of sub-queries.

DP works in a bottom-up manner, that is starting with sub-plans that only involve
one table. The best access plan(s) are considered for the next step. Then all two-way
join plans using the access plans are evaluated. This includes evaluating different
implementations of the join based on the query. Since using an implementation that
returns an ordered result may be the better alternative if the data is needed to be
sorted for a later operation. Afterwards, all three-way join plans are computed using
the plans from the previous steps. If the query involves n tables, the algorithm
continues in this fashion until all n-way join plans are enumerated. Inferior plans
are pruned as early as possible. A plan can be pruned if there is an alternative plan
that does at least the same amount of work with lower costs. When an inferior plan
is pruned it is no longer be considered by the following steps of the plan generation.
Thus, the complexity is significantly reduced.

20

2.4. Federated Query Processing

(a) Left-Deep Tree (b) Bushy Tree

Figure 2.7: Example of Left-Deep and Bushy Trees

The search space can be further reduced if bushy trees are not considered but
left-deep trees only. shows examples of left-deep and bushy trees. Bushy
trees allow for more parallelism in query execution, e.g., the join of A and B can be
executed in parallel with the join of C' and D. For left-deep trees the inner operand of
a join is always a base relation, ensuring indexes can be used. Relational optimizers
consider left-deep plans only [38].

The classical cost model estimates the cost of every operator of the plan and then
sums up the individual costs. The cost of a plan is the total resource consumption. In
a centralized system this will include CPU costs and disk I/O. In a distributed system
also communication cost must be considered. The response time model which does
not estimate the resource consumption but the response time. It takes intraquery
parallelism into account and finds the plan with the lowest response time.

One of the challenges of query optimization when dealing with heterogeneity in a
federated database system is that the capabilities of the sources may differ from each
other [24]. Several approaches to this problem have been proposed like describing
the capabilities as views or context-free grammars. DP accesses this problem by
using planning functions provided by the wrappers to enumerate the plans. Another
challenge is the cost estimation since it is not necessarily known how the wrapper
executes the plan [24]. The calibration approach uses a generic cost model for all
wrappers and adjusts the parameters of this model based on the results of test queries.
An alternative would be individual wrapper cost models. Using this approach the
developers of the wrapper also provide cost formulas to calculate the cost of the
generated plans. The advantage of this approach is that the cost estimation can be
as accurate as possible. However, the downside of this approach is that wrapper
developers are left with the complicated task of creating cost formulas. The learning
curve approach keeps statistics of the execution costs of queries and estimates the cost
of a plan based on these statistics. This approach releases the wrapper developers
from the burden of cost estimation, but it can be very inaccurate.

21

Chapter 2. Background

2.4.2 Performance Measures

There are several measures to compare the performance of query processing engines.
Standard measures for query processing performance include the time to first answer,
time to last answer, source selection time, query decomposition time, total query
execution time, cardinality of the result set and answer completeness. In the following
a measure for continuous efficiency will be presented.

The diefficiency, introduced in [1], measures the continuous efficiency of a query
engine, i.e., quantifying the answer generation in terms of continuity. In order to
calculate the diefficiency answer traces that record the point of time when the an-
swer is generated are needed. There are two different methods for calculating the
diefficiency, diefQt and diefQk.

The diefficiency at time ¢ measures the continuous efficiency of the query engine
in the first ¢ time units of query execution. Therefore, the area under the curve of
the answer distribution until ¢ is computed:

t
dief,qQt := / X, (x)dx (3)
0

Where p is the engine that executes query () with the answer distribution function
X,0- A higher value means a better efficiency in terms of continuously producing
answers over time.

The diefficiency at k answers measures the continuous behavior from the first
produced answer up to the k-th answer. This results in die f@k being calculated
as follows with t, being the point of time when the k-th answer of query () was
produced:

tg
dief,oQk := / X0 (x)dx (4)
0

A lower value is better in terms of producing answers continuously.

The concepts described in this chapter are important to understand the devel-
opment of this thesis. The Semantic Web technologies play a key role in the query
processing of the proposed approach. It is also crucial to know the difference be-
tween Data Warehouses and Semantic Data Lakes, i.e., the data in a SDL stays in
its original format. In order to optimize the query execution plans for RDB queries
a good understanding of physical database design is needed; the main focus is on in-
dexing and schema normalization. In addition, knowledge about query optimization
is important to be able to improve the query plans and define heuristics guiding the
optimizer. Those concepts are also used in the work related to this thesis.

22

Chapter 3
Related Work

Topics related to this thesis have been extensively treated in the literature. This
chapter presents an overview of what has been done already in federated query pro-
cessing and query optimization for RDF data sources and in terms of heterogeneous
data sources. The research related to this areas is driven by the Database Community
as well as the Semantic Web Community.

3.1 Federated Query Processing over RDF Data

Several query engines have been proposed for federated query processing against RDF
data sources. FedX [41] is one of those query engines. FedX aims at minimizing the
number of requests to be send to the sources and uses exclusive groups for source
selection, i.e., a group of triple patterns that can be exclusively evaluated by a single
endpoint. This approach does not rely on any preprocessed metadata, but relies on
the wvariable counting approach as a basic heuristic for join ordering, i.e., the more
variables an exclusive group contains the higher the estimated cost will be. FedX
generates left-deep tree plans.

SPLENDID [18] is a query engine that solely relies on statistics extracted from
the Vocabulary of Interlinked Datasets (VolD) description of the data sources even
though it was not initially designed for query optimization. The VolD descriptions
are aggregated in a local index. General information like triple count and number
of distinct subjects, predicates and objects are stored for each data set. Statistical
information for every predicate and RDF type are organized in inverted indexes. The
indexes are used for preselecting sources and ASK queries are used to prune sources
that can not answer the triple pattern. SPLENDID uses exclusive groups like FedX,
but it prefers bushy trees.

23

Chapter 3. Related Work

ANAPSID |2 is an adaptive query processing engine for SPARQL endpoints.
For each endpoint ANAPSID stores a list of the predicates in the endpoint. This
information is then used for query decomposition. ANAPSID decomposes the query
in star-shaped sub-queries [45]. The novelty of this approach is the use of adaptive
physical operators to produce results as soon as they arrive from the sources. The
evaluation showed that the adaptive operators implemented perform better than
the traditional blocking operators. ANAPSID also implements heuristics for source
selection for star-shaped queries [30].

SemLAV [34] uses the Local-as-View approach to describe the global schema
of the federation of endpoints. The query rewriting problem is NP-complete and,
therefore, SemLLAV avoids query rewriting by building an instance of the global
schema on-the-fly with data from the relevant views. In contrast to traditional
wrappers the SemLAV wrappers return RDF graphs that are composed of the triples
that match the view definition. In traditional LaV approaches as many rewritings as
possible are executed and SemL AV follows this idea by instanciating as many views
as possible. The number of covered rewritings is dependent on the order in which
the views are instanciated. SemLAV proposes a solution to the so called mazimal
coverage problem.

Fedra |33| tackles the problem of data availability from public endpoints. There-
fore, fragmentation of the data sets and opportunistic replication of the fragments
is proposed. During source selection a divergence threshold must be met by the
relevant sources in order to be selected. Source selection can rely on fragment def-
initions in federations with quite static data or use ASK queries for dynamic data.
Fedra avoids contacting public endpoints if possible and selects as few endpoints
as possible. For deciding which endpoints to prune fragment containment is used.
Fedra then executes the query plan over an existing query engine.

LILAC [32] is an approximate solution to the query decomposition problem with
fragment replication (QDP-FR) and can be used with state-of-the-art federated query
engines. In contrast to Fedra LILAC assumes all fragments are perfectly synchro-
nized. Therefore, LILAC generates the largest Cartesian product free sub-queries
possible to evaluate the triple patterns with just one relevant fragment. One unique
consideration by LILAC is to merge non-selective sub-queries with joinable sub-
queries that can be executed at the same endpoint.

MULDER [13] is a federated query engine and uses the adaptive operators of
ANAPSID and star-shaped sub-queries. The sources are described in terms of RDF
Molecule Templates which have been extracted from the sources in advance. The
decomposition into star-shaped sub-queries as well as the source selection is guided by
the RDF Molecule Templates. MULDER reduces query execution time and increases

24

3.2. Polystores

answer completeness by using semantics in the source descriptions.

Fed-DSATUR [46] applies graph theory to the federated SPARQL query decom-
position problem and maps it to the wvertex coloring problem. The vertex coloring
problem is to find a coloring of the graph with the minimal number of colors used
such that no neighboring vertices have the same color. This problem is NP-complete
and, therefore, Fed-DSATUR is an approximate solution implementing a greedy it-
erative algorithm. Vertices correspond with the triple patterns from the query while
the colors represent the selected endpoint. This approach finds a good trade-off be-
tween execution time and answer completeness by trying to minimize the number of
star-shaped sub-queries and not dropping to many relevant sources.

Optimizing SPARQL queries in a federated system is a challenge. Cost-based
approaches are often not feasible because the database does not have the needed
statistics for such an approach. The heuristic-based SPARQL planner (HSP) [43]
uses several heuristics that consider triple pattern order and join positions to reduce
the query execution time. The proposed heuristics can be used independently or
combined.

3.2 Polystores

More recently, research has begun to also focus on query processing against hetero-
geneous data sources. Different approaches on how to store, integrate, and query the
heterogeneous federation have been proposed. Next some of these solutions will be
discussed in detail.

SeBiDA [28] is a proof-of-concept for a semantified Big Data architecture propos-
ing three requirements for such architectures: (i) ingesting semantic and non-semantic
data, (ii) preserving semantics and metadata, and (iii) enabling scalable and efficient
query processing. Datasets are differentiated in semantic, annotated with semantics
and non-semantic. Non-semantic data sets can optionally be lifted with semantics if
mappings are provided. SeBiDA uses Apache Spark to reformat the data according
to classes. The metadata will be stored in MongoDB and the reformatted data in
Apache Parquet tables. Therefore, the data is integrated in a centralized or clustered
manner and can be queried using SQL.

Constance [19] is a Data Lake system storing the data from different sources in
their original format with focus on collecting and matching metadata. Metadata is
not only collected during the ingestion phase but also in the maintenance layer of
the Constance architecture by a component called Structural Metadata Discovery.
Despite the name this component also extracts metadata from semi-structured data.
The Semantic Metadata Matching component uses semantic annotations to link at-

25

Chapter 3. Related Work

tributes with different labels across the data sources. Constance provides keyword
search as well as answering JSONiq queries.

Ontario |4, [12] is a Semantic Data Lake implementation. The sources are kept
in their original format and mapped to existing semantic vocabularies using RML
mappings if they are not in RDF. Therefore, the global schema looks like an RDF
graph and can be queried with SPARQL. Like in MULDER queries are decomposed in
star-shaped sub-queries based on RDF Molecule Templates. Furthermore, Ontario
uses the adaptive operators introduced in ANAPSID. During query execution the
wrappers translate the SPARQL query to the native query language of the data
source. In contrast to earlier approaches, Ontario does not transform the data from
the different data sources into a common format but is able to use the data sources
in their original format.

PolyWeb [23] is a federated query engine that supports data sources in different
data formats. State-of-the-art query engines support only one single format, e.g.,
RDF or relational databases. PolyWeb works with the native data of the sources
by using their native query language. This reduces the costs of data conversion
but requires query translation. The source selection approach relies on mapping
definitions and an index of predicates with the associated data sources. For query
optimization PolyWeb uses the same cost-base model as FedX and predicate-based
join groups to reduce the number of local joins. All plans generated by this approach
are left-deep trees with nested loop joins.

Several query processing engines have been proposed, but most of the query
engines focus on a single data model, like RDF. Optimizing query execution plans
for a single model has been studied extensively in the past, e.g. ANAPSID introduced
adaptive operators for continuous answer generation and MULDER proposed RDF-
MT based source descriptions to guide query processing. Heuristics for RDF query
engines mainly focus on the selectivity of sub-queries and triple ordering. When
dealing with heterogeneous sources, many systems integrate the data of the federation
at one site in a common data format. For very big data integrating the data might not
be feasible. Therefore, Ontario and PolyWeb keep the sources in their original format
and query them using their native query language. The proposed approach is based
on Ontario and, therefore, addresses query processing over Semantic Data Lakes.
This thesis aims to improve the query performance of Ontario over heterogeneous
data sources by providing source specific heuristics to guide the optimizer. These
heuristics are tailored for the different capabilities of the varying data formats in
the Data Lake. The novelty of the proposed approach is the use of source specific
heuristics when dealing with heterogeneous data sources in their original format.

26

Chapter 4

Approach

Query optimization is often lead by heuristics to decrease the time complexity. The
proposed approach in this thesis builds bushy tree plans following the algorithm of
Ontario |12] with two different sets of heuristics: (i) general heuristics that do not
consider the data format, and (ii) source specific heuristics that consider the data
format. The second approach also includes the heuristics of the first one. Next,
the research problem of this thesis is explained in more detail. Afterwards, the tree
generation algorithm and the different sets of heuristics are described.

4.1 Problem Statement

The problem addressed in this thesis uses previously discussed concepts. Neverthe-
less, the most important concepts are formally defined in order to understand the
problem statement.

Definition 8 (RDF Molecule Template [12]). An RDF Molecule Template is
a 5-tuple o = (S, C, v, IntraL, Inter L), where:
- S - an interface to access data set G;
— C - an RDF class such that the triple pattern (?s rdf:type C) is true in G;
— v - a set of pairs (p, T) such that p is a property with domain C and range T,
and the triple patterns (?s p ?0), and (?s rdf:type C) are true in G;
~ IntraL - a set of pairs (p,C;) such that p is an object property with domain
C and range Cj, and the triple patterns (?s p %0), (%0 rdf:type C;), and (?s
rdf:type C) are true in G;
— InterL - a set of triples (p, Cy, SW) such that p is an object property with
domain C and range Cy, SW is a Web service API that provides access to an

27

Chapter 4. Approach

RDF data set K, the triple patterns (?s p ?0), and (?s rdf:type C) are true in
G, and the triple pattern (%o rdf:type Cy) is true in K

Definition 9 (Semantic Data Lake [12]). A Semantic Data Lake (SDL) is
a triple SDL = (U, S, M), where ¥ a set of RDF Molecule Templates, S a set of
sources in raw formats (stored either in a file system or DBMS) in the Data Lake, M

a set of conjunctive rules that associate sources in S with RDF Molecule Templates
m .

Definition 10 (Instantiation of an RDF-MT [12]). An Instantiation of an
RDF-MT, [o], is defined as a set of RDF molecules, o*, that are the instances of a
class from data source(s) as described in the template:

(0] = {o"|Vp € 0", p C v, where v C o} (5)

Definition 11 (Virtual Knowledge Graph [12]). Given a Semantic Data
Lake SDL = (¥ = {o1,...,05},S = {S1,..., 5.}, M), a Virtual Knowledge Graph
(KG*) for the SDL is a virtual RDF graph that corresponds to the union of all the
instantiations of RDF-MTs, o*, that are created by applying the rules in M to the

data sources in S:
n k

KG* = U U lojls, (6)

The SPARQL queries need to be rewritten into queries on the original data sources
in order to query the Virtual Knowledge Graph. Like already discussed in
[tion 2.1.3|the SPARQL query language is based on matching graph patterns. A Basic
Graph Pattern (BGP) is a set of triple patterns and (optional) filter clauses.

Definition 12 (Basic Graph Pattern [13]). Let I be the set of all URIs, B the
set of blank nodes, L the set of literals and € the set of variables. A SPARQL Basic
Graph Pattern (BGP) expression is defined recursively as follows:
1. A triple pattern T € (IUBUe¢) x (IUe) x ({UBULUe) is a BGP;
2. The expression (P FILTER E) is a BGP, where Pis a BGP and E is a SPARQL
filter expression that evaluates to a Boolean value;
3. The expression (P1 AND P2) is a BGP, where P1 and P2 are BGPs.

According to the definition a BGP contains at least one star-shaped sub-query
(SSQ), a non-empty set of triples that share the same subject variable or constant.

Definition 13 (Star-Shaped Sub-Query [45]). A star-shaped sub-query SSQ(S,
?X) on a variable (or constant) 7X is defined as:

28

4.2. Bushy Tree Generation

— 8SQ(S, 7X) is a triple pattern (?X p o), and p and p are different from 7X.
— 8SQ(S, 7?X) is the union of two stars, SSQ(S1, ?X) and SSQ(S2, ?7X), where
triple patterns in S1 and S2 only share the variable (or constant) 7X.

Definition 14 (Query Rewriting [12]). Let Q a SPARQL query, 5(Q) the set of
Basic Graph Patterns (BGPs) in @, and SQL = (U, S, M) a Semantic Data Lake.
A rewriting Q" of Q) over the sources in S corresponds to a SPARQL query composed
of BGPs in B(Q’) that meet the following conditions [12]:
— B(Q) has the same number of triple patterns as f(Q'), i.e., 7(Q) = 7(Q’)
— there is a function p @ f(Q) — B(Q') that maps BGPs in 5(Q) to its corre-
sponding rewriting in the sources of the SDL.
u(BGP;) = {(BGP;;,S)|BGP;; C BGP;, S a non-empty set and S C S} (7)

The problem addressed by this thesis is the problem of query rewriting in a feder-
ation of heterogeneous data sources. The federation is modeled as a Semantic Data
Lake (SDL). Given a SPARQL query @, a Semantic Data Lake SDL = (¥, S, M),
a Virtual Knowledge Graph KG* of the SDL, and a set of BGPs in (), the problem
can be defined as find a query @’ that satisfies the following conditions [12]:

— The evaluation of () over heterogeneous data sources in SDL is complete, i.e.,

the evaluation of @) in KG* is equivalent to the evaluation of ' in SQL:

HQ/HSDL = HQ”KG* (8)

— The cost of executing) in SDL has a minimal execution cost, i.e., if cost([[Q']]sp;)
represents the execution time of (' in SDL, then

HQHSDL = argmin COSt([[Q,HSDL) 9)
[@Mspr

4.2 Bushy Tree Generation

The different sets of heuristics are integrated into the bushy tree generation of Ontario
which is presented in [Algorithm 4.1, Given a list of star-shaped sub-queries ® and
the actual query Q this algorithm produces a bushy tree a.. First, the triples of each
SSQ are sorted (line 3). Afterwards, the list of SSQs is sorted (line 7). Both sortings
are based on the selectivity of the triples or SSQs, respectively, i.e., the first triple
or SSQ is more selective than the second one and so on. In order to create a tree
from the sorted list of SSQs they have to be joined. Two SSQs are joinable if they
share at least one variable. Starting with one SSQ (line 9) the algorithm creates a

29

Chapter 4. Approach

list of all SSQs that are joinable (line 11). The list of joinable SSQs is sorted (line
12) according to the same rules as before. The first element of this list is joined with
the starting SSQ (line 14). Afterwards, the joined SSQ is removed from the list of
SSQs and the join is inserted instead. If no joinable SSQ was found, the starting
SSQ is added to a list of yet unjoined SSQs. This procedure is repeated until there is
only one element left in the list of SSQs. This element no longer represents a single
SSQ but a tree composed of the generated joins. If there are unjoined SSQs they are
joined with the tree (line 24). In the end, the list of SSQs has become an optimized
bushy tree composed of all sub-queries.

Algorithm 4.1 Bushy Tree Generation
Input: ®: List of star-shaped sub-queries; Q: SELECT query
Output: a: bushy tree
1:a H
: for SSQ € @ do
orderTriples(SSQ)
a.push(SSQ)
end for
6: P+ Q.projs() > Q.projs(): list of join and projection variables
7: a = OrderSSQs(«, P)
8: while len(a) > 1 do
9: SSQ; < a.pop()
10: 0«
11: B« [SSQ; for SSQ; € « if shareVars(SSQ;, SSQ;)]
12: B <« OrderSSQs(3, P)
13: for SSQ; € B do
14: J < join(SSQ;, SSQ;)
15: a.remove(SSQ;)
16: a.push(J)
17: break
18: end for
19: if |5 = 0 then
0: 5.puSh(SSQZ‘)
end if
end while
if len(é) > 0 then
a < join(a, 0)
end if

: return o

Ot =~ W N

N —

N DN DN DN DN DN
Ut = W

(=)

30

4.3. General Heuristics

4.3 General Heuristics

The general heuristics approach makes use of heuristics that do not consider the data
format of the source. Therefore, these heuristics are considered to be general. The
join ordering is based on the selectivity of the sub-query. Just like in Ontario, a
nested loop join is used, if possible. The heuristics are part of the sorting methods of
the query optimizer depicted in|Algorithm 4.1 This approach considers the following
heuristics in order to create the query execution plan.

Heuristic 1 (Percentage of Constants). Triple patterns with the highest number
of constants at any part of the triple pattern are more selective.

This is quite intuitive, e.g., in a relational database a query with a higher number
of bound attributes will more likely return only a few results, hence it is more selective
than a query with less constants. Since this is true for any kind of data source this
heuristic is considered to be general.

Heuristic 2 (Triple Ordering). A set of triple patterns in a sub-query can
be ordered as follows: spo > sp > s > po > o > p. That is, a triple pattern with
constants in all parts precedes a triple pattern with constants in subject and predicate.
Similarly, a triple pattern with constants at subject and predicate precedes a triple
pattern with a constant at subject part only, and so on.

The triple ordering heuristic was proposed in [43] for SPARQL endpoints. Even
though this heuristic can be categorized as general since depending on the capabilities
of the query optimizer of a data source it might help to put the most selective triple
patterns at the beginning of a query. This is especially true for data sources that
do not reorder the triples, but execute them in the exact same order as they were
posted in the original query.

Heuristic 3 (Number of Projected Variables in Sub-Queries). Given two
SSQ)s as potential inner part of a join with the same number of constants and vari-
ables, the SS() with fewer projections is chosen.

The SSQ with fewer projected variables is executed first because it only contains
a subset of the variables contained in the other SSQ. Therefore, choosing the SSQ
with fewer projections leads to a smaller set of instantiations that will be joined with
the outer join operand. As the result is smaller the intermediate result of the join
might also be smaller in comparison to the join with the other SSQ.

31

Chapter 4. Approach

4.4 Source Specific Heuristics

The source specific heuristics used in this approach are based on the findings made
during the development of the paper [12] preceding this thesis. The following cate-
gories of SSQs can be identified: (CI) SSQs with neither constant object nor filter
clause on object variables, (CII) SSQs with neither constant object nor filter clause
on object variables and distributed over multiple relations in the Semantic Data Lake,
(CIII) SSQs with at least one constant object or filter clause on object variables,
and (CIV) SSQs with at least one constant object or filter clause on object variables
and distributed over multiple relations in the Semantic Data Lake.

The tree generation algorithm depicted in [Algorithm 4.1]is modified to also com-
pute the category of each SSQ (Algorithm 4.2)). First, the number of constant objects
and presence of a filter condition on an object of the SSQ is tested (line 2). Second,
the number of relations covered in the data source is checked (line 6). Afterwards,
the category is set according to the definitions above (lines 9-16). The optimizer
considers the following heuristics in addition to the general ones.

Algorithm 4.2 Sub-Query Category Computation
Input: SSQ: star-shaped sub-query; Q: SELECT query; DS: data source
Output: cat: the category of SSQ

1: hasInstantiation < False

if SSQ.constantObjects() > 0 or objectFilter(SSQ, Q) then
3 hasInstantiation < True

4: end if

5: multipleRelations < False

6: if numberRelations(SSQ, DS) > 1 then

7 multipleRelations <+ True

8: end if

9: if not haslnstantiation and not multipleRelations then

10: cat «+ CI

11: else if not haslnstantiation and multipleRelations then

12: cat < CII

13: else if haslnstantiation and not multipleRelations then

14: cat + CIII

15: else

16: cat + CIV > hasInstantiation and multipleRelations
17: end if

18: return cat

W N

32

4.4. Source Specific Heuristics

Heuristic 4 (Pushing down instantiations into a star-shaped sub-query).
[12] Given a star-shaped sub-query SSQ; from category CI executed over an RDF
engine, if this SSQ is part of a join, it is used as inner sub-query of a nested loop
join. Push down filter expressions of @ if they contain variables from SSCQ);. This
transforms sub-queries from CI into sub-queries from CIII.

By using SSQ; as the inner part of a nested loop join the join variable is bound
to the results from the outer operand. Therefore, the intermediate result may be
smaller than the complete result of SSQ; with an unbound join variable. Pushing
down filter expressions of QQ might further reduce the size of intermediate results and
can be evaluated in a reasonable time by RDF engines.

Heuristic 5 (Breaking up joins in star-shaped sub-queries). [12| Given a
star-shaped sub-query SSQ; from category CII executed over an RDF engine, the SSQ
is divided into as many sub-queries as joins are defined in the corresponding RDF-
MT and the attributes used in SSQ;. These sub-queries are connected by nested loop
join operators executed at Ontario level. Thus this heuristic transforms sub-queries
from CII into sub-queries from CIV.

The SSQ is split in several sub-queries joined with a nested loop join in order to
create instantiations. The filter expressions created from the bound join variable can
be efficiently evaluated in SPARQL endpoints. Instantiations are likely to reduce the
number of results returned by the sub-query. Therefore, intermediate results can be
reduced.

Heuristic 6 (Pushing up instantiations into a star-shaped sub-queries).
[12] Given a star-shaped sub-query SSQ; from category CIII or CIV executed over an
RDB engine with an instantiation over an unindexed attribute, the filter is executed
on Ontario level. If the SSQ is part of a join in Q a hash join or GJoin [2] is used.
This rule transforms sub-queries from CIII and CIV into sub-queries from CI and
CII, respectively.

Filtering unindexed attributes at the level of the RDB engine is expensive. There-
fore, it is considered to transfer a larger intermediate result and perform the filtering
at Ontario level. Afterwards, the filtered result is joined using a symmetric join
approach. Hence, the SSQ can be either outer or inner join operand.

Heuristic 7 (Combining joins into a star-shaped sub-query). [12] Given
two star-shaped sub-queries SSQ); and SSQ); from category CI executed over an RDB
engine, if they can be evaluated at the same endpoint and can be joined on an indexed
attribute, merge SSQ; and SSQ); into one star-shaped group SSQ; ;. This transforms
sub-queries from CI into sub-queries from CII.

33

Chapter 4. Approach

Joins on indexed attributes in RDB engines are considered to be fast as long as
the number of joins is kept reasonable. Since both SSQs are described in terms of a
single relation and a join might reduce the intermediate result size, the join of the
two SSQs is pushed down to the RDB engine.

Heuristic 8 (Pushing down SPARQL joins). Given two star-shaped sub-queries
S5Q; and SSQ; executed over an RDF engine, if they share at least one variable and
can be evaluated at the same endpoint, merge them into one star-shaped sub-query
S8Q; ;. This transforms sub-queries from CI and CIII into sub-queries from CII and
CIV, respectively.

This heuristic was already used by the original optimization of Ontario. Since
SPARQL endpoints have indexes over the subjects, predicates, and objects as well
as the combinations of them, pushing down the join relieves the mediator from
performing the join. Depending on the selectivity pushing down the join might
also reduce the intermediate result.

This thesis addresses the problem of query rewriting in a federation of heteroge-
neous sources. Bushy trees are generated in order to increase the parallelism during
query execution. The proposed approach comprises of two different sets of heuristics
to follow during query optimization. The first set contains general heuristics only,
i.e., heuristics that do not consider the type of the data source. The second set of
heuristics is source specific, i.e., heuristics that do consider the data source type for
optimization. The set of source specific heuristics includes the general heuristics as
well as heuristics tailored for RDF and RDB, respectively. The proposed approach
is implemented on top of Ontario.

34

Chapter 5

Implementation

The proposed approach is implemented on top of Ontario, a federated query engine
that is able to execute queries over heterogeneous data sources. Ontario is imple-
mented in Python 3.6. The heuristics are integrated into the query optimization of
the current version of Ontario. Additionally, the SQL wrappers are changed due to
problems addressed later. This chapter is organized as follows: In the beginning,
the implementation of Ontario query processing is discussed which includes query
decomposition and query optimization. Finally, the changes made to the existing
SQL wrappers are presented in detail.

5.1 Query Processing

Query processing includes query decomposition, source selection, query optimization,
and result retrieval. The latter is not discussed here since it is not part of the subject
of this thesis, query optimization. Anyhow, query decomposition and source selection
are covered because they are important for the query optimization. The goal of this
section is to give an overview of the implementation of Ontario’s query processing.
First, the implementation of query decomposition is discussed. Ontario performs
decomposition and source selection at the same time. This is possible due to the use
of RDF-MT based source descriptions. Afterwards, the query optimizer implemented
in Ontario is presented. This is where the proposed heuristics are integrated. Finally,
further remarks to the implementation are made.

35

Chapter 5. Implementation

MediatorCatalyst GraphPattern
+ configuration: Configuration + getVars(): string[1.%]
+ query: string Lo Mse -2 + getConsts(): string[1..*]
+ decompose(): Decomposition[1..*], Query + constantNumber(): integer
- parse(siring): Query + constantPercentage(): integer
parent
parent A
ch|ld(chlk‘]
UnionBlock Service
+ triples: JoinBlock[1.."] + triples: Triple[1.."]
+ filters: Filter[1..*]
chid chid + endpoint: string
Filter Triple chid
+ op: string + subject: Argument JoinBlock
+ left: Argument + predicate: Argument + friples: GraphPattern[1..*]
+ right: Argument + object: Argument
+isGeneral: boolean
+ rdfmts: string[1..%]

Figure 5.1: Implementation Query Decomposition

5.1.1 Query Decomposition

A SPARQL query is decomposed into star-shaped sub-queries that can be answered
by the data sources. The decomposition is guided by RDF-MT based source de-
scriptions which allow decomposition and source selection at the same time. The
actual implementation is depicted in [Figure 5.1} First, the different implementations
of graph patterns are discussed in order to understand the decomposition procedure
of the MediatorCatalyst which is studied afterwards.

Graph Patterns Ontario implements different kinds of graph patterns. The base
class GraphPattern provides methods for basic interactions which have to be im-
plemented by the sub-classes. The method getVars() returns a list of all variables
occurring in the triple patterns of the graph pattern represented as string. Simi-
larly, getConsts () returns a list of all constants of the triple patterns. The methods
constantNumber () and constantPercentage() are used for estimating the selec-
tivity of a graph pattern. They return the number of constants and the percentage
of constants in a graph pattern, respectively. Each triple has three places, sub-
ject, predicate, and object. Therefore, the percentage of constants is the number of
constants divided by three times the number of triples in the graph pattern.

36

5.1. Query Processing

The results of graph patterns within a UnionBlock are combined to form the
union of the individual results. The graph patterns contained in a UnionBlock are
always JoinBlocks. JoinBlocks can contain any type of graph patterns. The graph
patterns of a JoinBlock need to be joined. A Service represents a star-shaped sub-
query that can be answered by the data source endpoint. Services are composed of
lists of Triples and Filters. Triples represent actual RDF triples. The subject,
predicate, and object are stored as Argument, a datatype comprised of the variable
or constant as string, a boolean indicating whether or not the argument is a constant
as well as a boolean to indicate if the argument is an URI or literal. Additionally, a
triple is annotated with a boolean to show whether or not it is general, i.e., using a
general predicate like rdf : type or rdfs:1label as well as the RDF-MTs that are able
to answer this triple. Filters are used to evaluate restrictions on certain variables.
They are composed of the left and right operand as well as the operator used, e.g.,
equal or less.

Mediator Catalyst First, the MediatorCatalyst parses the query string. The
query parser returns a Query object which contains a UnionBlock comprised of
further JoinBlocks. Those graph patterns are based on the stars of the query,
i.e., sub-queries with the same subject. The decomposition starts with the main
UnionBlock. Every JoinBlock contained in the UnionBlock is decomposed. If one
of the graph patterns is a UnionBlock or a JoinBlock it is decomposed according
to its type. Triples or Filters are added to a triple list and filter list, respectively.
In this case a BGP composed of at least one star-shaped group is decomposed. The
following information is collected during the decomposition of a BGP, the predicates,
the stars themselves, connections between the stars, the RDF-MTs able to answer
the stars, and the connections between the RDF-MTs. All predicates occurring in
the stars are stored in a list. A star itself is a more complex structure. It is comprised
of the common subject of the triple patterns as identifier, a list of all the triples, a
list of the RDF-MTs that are able to answer the triple patterns of the star, a Python
dictionary for mapping the predicates to object variables, and data sources that
contain the RDF-MTs. Therefore, source selection is done during the decomposition
based on the RDF-MT based source descriptions. The connections to other stars
indicate which stars can be joined. Additionally, the join position is stored, i.e.; a
join over the subject or an object. The connection between RDF-MTs shows that
the range of at least one of the predicates of a star belonging to the RDF-MT is
from another RDF-MT. Those connections can be used for joins. In the end, all the
collected information about the stars is returned along with the Query object. The
nested structure of UnionBlocks and JoinBlocks is preserved.

37

Chapter 5. Implementation

MetaWrapperPlanner

+ configuration: Configuration
+query: Query
| + decompositions: Decomposition[1..*]

+ plan_type: string

+ make_plan(): Plan

; -create_tree(Decompaosition[1..*]): Tree
-includePhysicalCperators(Tree): Plan
% N
Query Plan Datasource

+ prefs: string[1..%]

+ args: Argumentf1.*]
+ body: UnionBlock

+ distinct: boolean

+ join_vars: string[0..*]

+ vars: string[1..*]

+ projvars: string[1..*]

+ execute(Queue, Queus)
+ constantNumber(): integer

+ constantPercentage(): integer

+ name: string

+ url: string

+ params: Dictionary

+ mappings: Dictionary

+ dstype: string

+ constantNumber(): integer

+ constantPercentage(): integer

tmm A
{ W /Use
chid chiid S

Node Leaf J

+ operator: Operator + friples: Triple[1.%]

+ left: Plan + datasource: Datasource

+right: Plan + rdfmts: string[1.%]

Figure 5.2: Implementation Query Optimizer

5.1.2 Query Optimizer

The query optimizer of Ontario is called MetaWrapperPlanner. It creates an opti-
mized query execution plan from the decomposed query. Additionally, the represen-
tation of the query itself is used, e.g., the Query object is needed to add the duplicate
elimination operator if necessary. Furthermore, it is used get the prefixes which have
to be send to the sources. The optimization is guided by different heuristics. The
plan generation is realized in two steps each one guided by heuristics: (i) create an
optimized query tree from the decomposition, and (ii) include physical operators in
that tree in order to produce an optimized query execution plan. The implementa-
tion is shown in[Figure 5.2, First, the representation of a query is discussed. Second,
the implementation of data sources is explained. Afterwards, the query plan is stud-
ied. The tree structure is not examined because it is an intermediate result and does
not differ much from the structure of the query plan. Finally, the query optimizer is
presented in detail.

38

5.1. Query Processing

Query As previously discussed, the representation of a query contains a UnionBlock
comprised of JoinBlocks. More important at this stage of query processing are the

other attributes of a Query object. The prefixes of a query are stored as a list of
strings (prefs). The attribute args is a list of the projected variables of the query,

i.e., the variables to return. Distinct is a boolean indicating whether or not the

result of the query may contain duplicates. If it is set to true, duplicate elimina-

tion has to be performed. The join variables, i.e., the variables used to join the
sub-queries, are stored as a list called join_vars. The methods constantNumber ()

and constantPercentage () work as described before and they are calling the same
function of the UnionBlock.

Data Source Data sources are represented as objects of the class Datasource.
Each data source has a name that serves as identifier. Hence, two different data
sources in the same federation cannot have the same name. The address of the data
source is stored in the url attribute. The attribute params is a Python dictionary
holding connection parameters, e.g., user name and password for MySQL sources.
Non-RDF sources are associated with mappings in order to add semantics to the
data. The mappings are saved in a Python dictionary named mappings. This dic-
tionary is created from parsing the RML mappings (cf. [Subsection 2.1.4) of the
RDF-MTs belonging to the data source. Additionally, the type of the data source is
stored as string, e.g. SPARQL_Endpoint and MySQL for RDF and MySQL sources,
respectively. The type of the source is needed for source specific heuristics.

Plan A Plan is an abstract class providing attributes and methods the nodes and
leafs of the plan have in common. As for Query, the methods constantNumber ()
and constantPercentage () call the related method of the underlying graph pattern.
The method execute() is used to process the operation represented by the node.
The attribute vars stores a list of the variables occurring in the child nodes. If the
node is a leaf, the list contains the variables of the triples belonging to the leaf. The
variables projected are saved in a list called projvars. A plan is represented by its
root. Hence, in most cases it is a Node. The nodes are an operation performed at
Ontario level, e.g., join, projection, and duplicate elimination. Which operation is
to be executed at the node is saved in the operator attribute. The attributes left
and right hold the left and right operand, respectivley. For unary operations the
right operand is simply left empty. Leafs represent the star-shaped sub-queries that
can be executed at a data source. Therefore, they contain a list of triples that are
evaluated at a specific source. The data source in question is also stored at the leaf.
A list of RDF-MTs that are associated with the triples of the leaf is stored as well.

39

Chapter 5. Implementation

Meta Wrapper Planner The MetaWrapperPlanner is the query optimizer of On-
tario. It creates an optimized query execution plan in two steps guided by heuristics:
(1) create an optimized tree from the decomposition, and (ii) include physical opera-
tors into that tree in order to retrieve an optimized query plan. Therefore, the query
execution plan is optimized during its generation. The configuration basically
stores every information that might be needed for query processing, e.g., in the case
of query optimization the indexed attributes of RDB sources. As discussed before,
the query representation is needed for query planning, e.g., to include the duplicate
elimination operator. The result of the query decomposition is stored in an attribute
decompositions. The query optimizer is able to include different heuristics based
on the specified plan_type, i.e., if the heuristics of the original implementation are
used, the general heuristics or the source specific heuristics.

Ontario calls the method make plan() to retrieve the optimized query execu-
tion plan. First, a tree is created from the decomposition by an internal call to
create_tree(Decomposition). This method is an implementation of the tree gen-
eration algorithm presented in[Algorithm 4.1} The star-shaped sub-queries are taken
from the decompositions. If necessary, the category of each SSQ is computed, i.e., if
source specific heuristics are considered. Each SSQ is converted to an internal rep-
resentation of a tree leaf. The leafs are sorted according to the heuristics based on
selectivity. Which heuristics are considered depends on the given plan type. While
there is more than one node, i.e., the structure is not yet a single tree, leafs that
share at least one variable are joined, i.e., a node is created with the two leafs as left
and right child, respectively. At this point Heuristic [7| can be checked. If all condi-
tions are met, both leaves are merged into a single leaf. Hence, the join is pushed
down to the source. The same approach is used for Heuristic |8 during the decom-
position of a BGP. Once there is only one node remaining, i.e., the root of a proper
tree, SSQs are joined with the root that could not be joined before. Afterwards,
the method includePhysicalOperators(Tree) is called to transform the tree into
a query execution plan. Since the nodes and leaves of the tree can be interpreted
as graph patterns, a main UnionBlock is added that contains the tree and, when
including the physical operators, follows a similar approach as the query decompo-
sition. If there is more than one graph pattern in a UnionBlock, the union operator
is added to connect them. JoinBlocks are connected with a join operator. The
actual implementation of the join depends on the used heuristics and, therefore, it is
also based on the selectivity of the operands. Other operators like filters are added
according to the operator referenced in a node. Finally, operators like projection and
duplicate elimination are added to the plan if necessary. Afterwards, the generation
of an optimized query execution plan is finished and the plan is returned.

40

5.2. SQL Wrapper

5.1.3 Remarks

One change to the original implementation of Ontario, i.e., the version of Ontario
before the work on this thesis started, is that the projection operation is only carried
out if necessary. The original implementation always included a projection. Since
this operation adds overhead to the query execution it is only added if needed, i.e.,
if not all variables returned from the last operation are projected variables. In order
to decide whether or not to use the heuristics defined for RDB sources the optimizer
has to know the indexes. A hand-made JSON file containing all relevant indexes is
used for this purpose. Finding indexes in RDB sources may be integrated into the
RDF-MT extraction and, therefore, into the RDF-MT based source descriptions, but
this is out of the scope of this thesis.

5.2 SQL Wrapper

The original implementation of Ontario includes SQL wrappers with a two phased
result generation: (i) retrieve 10,000 results from the data source, (ii) semantify the
retrieved results. Due to these two phases, retrieving the next results is blocked by the
semantification process. Additionally, the query is modified using LIMIT and OFFSET
to retrieve 10,000 results only. Hence, the query is executed several times depending
on the total number of results. In order to allow for continuous result retrieval the se-
mantification is done during query translation. Thus a query returning the title of all
movies in the database is translated to SELECT CONCAT("http://example.org/",
title) AS title FROM movies instead of the non-semantified query SELECT title
FROM movies, which eliminates the second phase.

Executing the query several times introduces overhead in step one. Since the
query has to be executed ten times if the result size is between 90,001 and 100,000 this
will take longer than running the query once and retrieving the results afterwards.
Ontario uses the mysql-connector-python library to access MySQL databases. The
library offers different ways of retrieving the results, i.e., retrieving the results row
by row or in blocks of fixed size. The latter one is not working from version 8.0.12
onwards. There is a bug that permits the result retrieval to finish because the
very last result will be repeated infinitely. At the point of writing, the current
version is 8.0.16; therefore, Ontario is implemented on version 8.0.11. To solve
the aforementioned problem of executing the query several times the new wrapper
implementation executes the query once and retrieves the results row by row. The
new wrappers enable an easy change of this behavior because the result retrieval is
implemented for all possibilities and is defined by a parameter of the function.

41

Chapter 5. Implementation

The changes to the wrappers are not limited to retrieving the results from the
data sources. However, the translation from SPARQL to SQL queries is extended to
enable translations of SPARQL queries composed of triple patterns from more than
one RDF-MT. Pushing down joins of certain SSQs in SQL is suggested by Heuristic
[7 [Algorithm 5.1] presents the theoretical query translation. The current implemen-
tation is not able to deal with queries containing more than two RDF-MTs. The
query translation operates on the RDF-MTs of the SSQ that are covered by the
data source (line 1). In the simplest case the query contains triple patterns from
one RDF-MT only. In that case the query can be translated with respect to the
mappings of that RDF-MT (line 3). The translation function works on the query
to translate and the RDF-MT to be respected. The mappings needed to be able
to translate the query to SQL (cf. [Subsection 2.1.4)) are directly accessible from
the translation function. Several cases have to be considered when more than one
RDF-MT have to be respected. (i) If the RDF-MTs do not share predicates used
in the query (line 6), the triples belonging to one RDF-MT (line 8) can be trans-
lated with respect to that RDF-MT (line 9). Afterwards, the translations are joined
(line 11). This approach creates SQL queries with sub-queries in the FROM clause,
e.g. SELECT A.b, B.d FROM (SELECT a, b FROM r1) AS A JOIN (SELECT c, d
FROM r2) AS B ON (A.a = B.c). (ii) If all predicates used in the query are shared
between the RDF-MTs (line 12), the query has to be translated with respect to
all RDF-MTs. For each RDF-MT the query is translated (line 14) and finally all
translations are combined with the UNION operator (line 16). (iii) The most complex
case includes some predicates that can be answered by more than one RDF-MT but
also triples that can be exclusively answered by one RDF-MT (lines 17-28).
shows an abstract representation of this case. Pairwise intersections are
needed in order to generate a correct translation. This case is not yet implemented.
All triples that can be exclusively answered by one RDF-MT are translated in the
same manner as in the other cases (line 24). Triples containing a predicate that can
be answered by more than one RDF-MT need to be stored separately (line 25). After
the translations are finished, the sub-queries sharing triples are unified following the
previously mentioned method. Finally, all sub-queries are joined.

The proposed heuristics are integrated into the query optimizer of Ontario. First,
the query is parsed and decomposed. The source selection is guided by the RDF-MT
based source descriptions and integrated into the query decomposition. Next, the
query is optimized following the heuristics enabled by a flag indicating which set of
heuristics should be used. The decomposed query is transformed into a bushy tree
representing the order of execution. Afterwards, the physical operators are included
into that tree. Depending on the operator and heuristics the order of the operands

42

5.2. SQL Wrapper

may change. After all operators are included, the optimized query execution plan is
returned. The SQL wrappers are updated in order to allow semantification during
the query translation. The SPARQL to SQL translation is also extended to enable
translations of queries composed of more than one RDF-MT. The proposed approach
and its implementation is empirically evaluated in the next chapter.

Algorithm 5.1 Query Translation

Input: SSQ: star-shaped sub-query; DS: data source
Output: SQL query translated from SPARQL

1: rdfmts < SSQ.rdfmts() N DS.rdfmts()

2: if len(rdfmts) = 1 then
4

return translate(SSQ, rdfmts[0])

. else
translations < []

6: if intersection_of_predicates(rdfmts) = & then

7: for rdfmt € rdfmts do

8: triples < triples_of rdfmt(SSQ, rdfmt)

9: translations.append(translate(triples, rdfmt))
10: end for

11: return join(translations)
12: else if all rdfmts_same_predicates() then

13: for rdfmt € rdfmts do
14: translations.append (translate(SSQ, rdfmt))
15: end for

16: return union(translations)
17: else > abstract representation of this case; pairwise intersections are needed
18: triples_intersection <— triples_of_intersection(SSQ, rdfmts)
19: translations_union < []
20: for rdfmt € rdfmts do
21: triples « triples_of rdfmt(SSQ, rdfmt)
22: triples_union <« triples N triples_intersection
23: triples < triples \ triples_union
24: translations.append (translate(triples, rdfmt))
25: translations_union.append(translate(triples_union, rdfmt))
26: end for
27 translations.append(union(translations_union))
28: return join(translations)
29: end if
30: end if

43

Chapter 6

Experimental Evaluation

The experimental evaluation aims to measure the performance of query processing
over heterogeneous data sources. The research questions addressed by this thesis are:
RQ1) What is the overhead of considering heterogeneity during federated query pro-
cessing? RQ2) Can RDF-MT based source descriptions be effectively and efficiently
applied for source selection, query decomposition, and optimization for non-RDF
data sources? RQ3) Are Ontario optimization techniques able to generate effective
and efficient query plans for heterogeneous data sources? RQ4) Do the proposed
heuristics improve query performance? The remainder of this chapter is structured
as follows: First, the used benchmark is described. Second, the data preparation is
presented. Afterwards, the setup of the experiment is depicted. Finally, the results
are shown and analyzed.

6.1 LSLOD Benchmark

There are many data sets on the Web that can be queried. For example the Linked
Open Data (LOD) cloud. The LOD cloud contains more than 1200 different data
sets with more than 16000 links [29]. Some of the data sets are of general interest
like DBPedia or Wikidata, but there are also domain specific data sets. Hence, the
LOD cloud contains subclouds of certain domains. One of these subclouds is of the
Life Science domain, referred to as Life Science Linked Open Data (LSLOD) cloud.
There is an existing set of benchmarking queries for this subcloud [21]. These queries
are supposed to simulate frequently used queries in the Life Science domain.

44

6.1. LSLOD Benchmark

Chebi KEGG

Affymetrix ° e ° Drugbank
(]] L4
(]
[] °
%% Diseasesome LinkedCT
.. ..] °
°
: : &~ o
° g ® 3
. o ° °
®ece® ®e
TCGA-A
DailyMed e e o
Medicare Sider

Figure 6.1: LSLOD Molecule Template Connections (adapted from [13])

6.1.1 LSLOD Data Sets

The LSLOD cloud contains ten data sets, namely Affymetrix, ChEBI, DailyMed, Dis-
easome, DrugBank, KEGG, LinkedCT, Medicare, SIDER, and TCGA-A. Affymetrix
contains the probesets used in the Affymetrix microarrays. ChEBI is the Chemical
Entities of biological Interest data set. Dailymed provides information on marketed
drugs along with additional information like chemical structure and indication. Dis-
easome publishes data that allows to find the common genetic origin of many diseases.
DrugBank contains information on drugs, their composition and their interactions
with other drugs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) provides
further information about chemical compounds and reactions focusing on informa-
tion relevant for genetics. LinkedC'T publishes clinical trials. In this benchmark
Medicare data includes drugs only. The drugs from Medicare are linked to drugs
in Dailymed. SIDER contains information on marketed drugs and their adverse ef-
fects. TCGA-A is a subset of the Cancer Genome Atlas (TCGA) data and contains
methylation of exons as well as a large number of links to Affymetrix.

shows the intra- and inter-data set connections. TCGA-A has a high
intraconnectivity. Even though it was mentioned that TCGA-A has a large number
of links to Affymetrix, these links are between two RDF-MTs only. Overall the data
sets of the LSLOD cloud contain 55 RDF-MTs. presents information about
the different data sets, like number of triples, number of distinct subjects, predicates,
and objects, number of RDF-MTs, and the actual RDF file size. Affymetrix is
the largest data set in number of triples even though it covers only one RDF-MT.
TCGA-A has the most RDF-MTs and is the largest data set in terms of RDF file
size and also the second largest in number of triples. State-of-the-art query engines
are compared using the LSLOD benchmark. In order to compare different tools and
enable reproducibility this benchmark is used. The variety of data sets also allows
the natural implementation of the benchmarks in varying data models.

45

Chapter 6. Experimental Evaluation

Dataset #tp #s #p #o #MTs $RDF
Affymetrix 44.20M 1.42M 41 13.24M 1 6.4 GB
ChEBI 4.7TM 50.48K 28 772.14M 1 539 MB
DailyMed 162.92K 9,975 27 67.7T7TK 3 110 MB
Diseasome 72.42K 8,132 27 27.70K 2 14 MB
DrugBank 516.89K 19.57TK 117 276.13K 5 100 MB
KEGG 1.09M 34.26K 21 939.26K 4 118 MB
LinkedCT 9.80M 981.72K 90 3.81M 13 1.7 GB
Medicare 44.49K 6,819 6 23.30K 1 6.8 MB
SIDER 99.15K 2,661 11 27.07K 2 18 MB
TCGA-A 35.33M 5.78M 383 8.29M 23 6.8 GB
Total 96.10M 8.32M 742 27.47TM 99 16.0 GB

Table 6.1: LSLOD Data Set Characteristics, where #tp - number of triples, #s
- number of subjects, #p - number of predicates, #o - number of objects, and $RDF
- RDF file size.

6.1.2 Benchmarking Queries

The benchmark contains 20 queries over the data sets. The queries were created
in collaboration with domain experts and are supposed to simulate frequently used
queries in the Life Science domain [21]. The queries can be divided into two groups,
10 simple queries and 10 complex queries. [Table 6.2 presents the key characteristics of
the simple queries from the LSLOD benchmark. The query optimization is based on
graph patterns. The complex queries do not add any additional challenges in terms
of optimizing the query plan based on its sub-queries. Therefore, it is sufficient to
evaluate the approach using the simple queries only. The queries are used to follow

the test bed and are depicted in [Appendix Al

6.2 Data Preparation

To ensure reproducibility a dump of the unified endpoint [22] from 2016 is used.
The dump contains all triples of the data sources in the LSLOD cloud partitioned
according to the RDF-MTs, i.e., one file per RDF-MT. There is one additional file
belonging to the dump that describes all the RDF-MTs within the data of the dump.
To identify the impact of variety on the performance of existing federated query
engines data sets of different data formats are needed. In this experimental setup
the used data formats are (i) SPARQL endpoint, and (ii) relational database. Hence,

46

6.2. Data Preparation

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9 SQI0

#TPs 4 7 6) 5 3 4 3 8 8
#BGPs 2 1 1 1 2 1 1 1 1 1
#S5Qs 2 3 4 2 3 2 3 2 2 2
UNION v

OPTIONAL v

DISTINCT v v v

Table 6.2: LSLOD Query Characteristics, where #TPs - number of triple pat-
terns, #BGPs - number of Basic Graph Patterns, and #SSQs - number of star-shaped
sub-queries.

the semantic data from the RDF dump needs to be loaded to a relational database.
A common feature of relational database management systems is populating tables

with data from CSV/TSV files. Therefore, the RDF data is converted to TSV.

6.2.1 Converting RDF to TSV

[Algorithm 6.1 describes the process of the RDF to TSV conversion. First the source
root URL of the RDF-MT is extracted from the LSLOD MT file (line 1). Second
all predicates for the RDF-MT are extracted from this file (line 2). Then the prefix
for all predicates is computed, put into a prefix list and cut off from the predicate
itself (line 3). After this preprocessing, the RDF file is read and every triple is put
into a Python dictionary (line 4). If there are predicates with multiple values for
one subject, the Python dictionary entry is updated to use a list instead of a single
value. After reading all triples, each predicate is checked for subjects with multiple
values (line 5). Those predicates are stored in a list to be able to differentiate them
from single value predicates. Afterwards, the Python dictionary is written to disk as
a TSV file (line 6), but only single value predicates are considered here. Predicates
with multiple values for at least one subject are stored in a separate file. Those multi-

Algorlthm 6.1 RDF2TSV

source_root = get_source_root(rdf_file)

predicates = get_predicates_from_mapping(source_root)

prefixes, predicates = compute_prefixes(predicates)

data = read_rdffile(predicates)

multivalue_predicates = find_multivalue_predicates(data, predicates)
6: write_tsv_file(data, predicates, multivalue_predicates)

. write_mapping_file(prefixes, predicates, multivalue_predicates)

[_';._.

UL W

N

47

Chapter 6. Experimental Evaluation

value predicate files contain two columns, one for the subject and one for the object
of the triple. This approach is chosen because it is not feasible to store the Cartesian
product of all predicate values for each subject due to very high redundancy. In the
end, RML mapping files for MySQL are generated (line 7).

6.2.2 Implementation of the Relational Schema

For importing data from TSV into MySQL, a table has to be created in advance.
The table definition is created from the TSV header, i.e., all column names are read
from the previously generated TSV file. Two cases have to be considered when
creating the tables: (i) creation of the main table for the RDF-MT where only the
first column (subject column) is the primary key, and (ii) creation of a multi-value
predicate table where both columns build a combined primary key. Due to the data
quality there are some tables with the same string only differing in upper and lower
case at key positions. In order to not loose any data both entries should be preserved.
This is achieved by setting the default coalition to 1latinl general cs which enables
case-sensitive keys. After the table is created, the data is loaded into it using the
LOAD DATA INFILE method of MySQL. One row is ignored since the header does
not contain data but metadata. The relational schemas generated that way are not
necessarily in 3NF. The tables needed for the queries of the benchmark are analyzed
using the algorithm described in [8] to find functional dependencies. Indexes for
candidate keys are added by hand to the SQL scripts generated previously. Some
tables have to be split up in order to fulfill the requirements of 3NF. This splitting
is done by hand in the SQL scripts and the RML mappings.

6.3 Experimental Setup

The RDF version of Ontario is compared to the state-of-the-art query engines FedX [41],
ANAPSID, [2] and MULDER [13]. The results of the RDB and the RDF+RDB ver-
sion of Ontario are also evaluated against Ontario-RDF. Each query is run ten times
per engine and the best run is reported. Where the best run is the run with the
shortest query execution time while obtaining maximal answer completeness, i.e.,
fast runs due to the unavailability of a source are not reported.

Benchmark: For the experimental evaluation the ten simple queries of the
LSLOD benchmark are used. These queries can be evaluated by eight of the ten
data sets, shows the data sets needed for the queries as well as the used
format when heterogeneity is considered. The data sets were distributed in a way
that ensures that every query contacts at least one RDF and one RDB source.

48

6.3. Experimental Setup

Source Format
ChEBI RDF
Dailymed RDF
Diseasome RDF
DrugBank RDB
KEGG RDF
LinkedCT RDB
SIDER RDB

Table 6.3: Data Source Formats

Metrics: The following metrics are reported and analyzed in the reminder of this
chapter: (i) Ezecution Time: The time elapsed between the submission of a query
and the retrieval of all results produced by the engine. The reported time corresponds
to absolute wall-clock system time as returned by the Python time.time () function.
The timeout for each query is set to 300 seconds (five minutes). (ii) Cardinality: The
number of results produced by the engine for a given query, i.e., the cardinality of
the result set. (iii) Completeness: The percentage of the query results with respect
to the answers produced by the unified SPARQL endpoint, i.e., an endpoint with the
data of all ten data sets. The result cardinality of the unified endpoint is referred to
as ground truth. (iv) dief@t: A measure of continuous efficiency of an engine in the
first ¢ time units of query execution (cf. [Subsection 2.4.2)).

Implementations: Ontario and the proposed optimizations are implemented in
Python 3.6. For the SPARQL endpoints Virtuoso 6.01.3127 is used. The relational
databases are realized in MySQL 5.7. Every component of the experiment runs in a
dedicated Docker container, i.e., one container per query processing engine, and one
container per data set and format. In total the experiment uses 24 Docker contain-
ers, i.e., four engine containers, ten RDF containers, and ten RDB containers. The
RDF containers are limited to 16 GB of memory and eight threads each. All Docker
containers run on the same server and, therefore, network cost can be neglected. The
experiments are executed on an Ubuntu 16.04.6 LTS 64 bit machine with two Intel(R)
Xeon(R) Platinum 8160 2.10 GHz CPUs (total: 48 physical cores, 96 threads), and
755 GiB DDR4 RAM. Three version of Ontario are compared: (i) Ontario the base-
line implementation of Ontario, i.e., without the proposed heuristics, (ii) Ontario-GH

makes use of the general heuristics from |[Section 4.3 and (iii) Ontario-SSH using
the source specific heuristics described in [Section 4.4]

49

Chapter 6. Experimental Evaluation

102-

o - . I | ‘ Il
v v 0 v ' g
[T} ©
o o
[0} 0

<
o
]

=
)

Execution Time [s]
-
<

SQ1
SQ2 +
SQ3
SQ10 -

~
o
@

SQ8
SQ9

Query

Il FedX ANAPSID BNl MULDER WM Ontario-RDF

Figure 6.2: Query Execution Time per RDF Engine

6.4 Empirical Evaluation

In the following the results obtained in the experiments are analyzed regarding the
metrics used and the research questions. First, Ontario is compared to the state-
of-the-art RDF engines FedX , ANAPSID , and MULDER . Afterwards,
the different heuristics implemented in this thesis are evaluated against the baseline
implementation of Ontario. Every implementation is examined over three different
settings of the data sources: (i) RDF a federation of RDF graphs accessible via
SPARQL endpoints, (ii) RDB all data sets represented as RDB tables stored in
MySQL, and (iii) SDL a Semantic Data Lake composed of RDF graphs accessible
via SPARQL endpoints and RDB tables stored in MySQL, distributed as shown
in Throughout the empirical evaluation Ontario is annotated with the
data formats used, i.e., Ontario-GH-RDF denotes Ontario with general heuristics
over RDF. Since Ontario is meant to be run over a Semantic Data Lake, execut-
ing the source specific heuristics over the SDL is called Ontario-SSH. The baseline
implementation is referred to as Ontario.

6.4.1 Experiment I: RDF Engines

In this experiment, the state-of-the-art RDF engines FedX, ANAPSID, and MUL-
DER are compared to the baseline implementation of Ontario, i.e., Ontario without
the proposed heuristics. This experiment investigates RQ1.

50

6.4. Empirical Evaluation

T
i |
Sﬂ U % ?chebiDrug
2drug ?chebiDrug ?ké%%z'r;g ?kégkgelgrgug g eggDrug
(a) MULDER Plan (b) Ontario Plan

Figure 6.3: Query Plans for SQ3. An arrow over the join indicates a nested
loop join. (a) MULDER plan with union over ChEBI and KEGG. (b) Ontario plan
without union.

Execution Time shows the execution time for every query and baseline
RDF engine. ANAPSID outperforms the other query engines in SQ1, SQ6, SQ8, and
SQ9. Ontario generates the same plans as ANAPSID for those queries apart from
the ordering of SSQs for the first three queries. The operators with changed order
of left and right operand are UNION and GJoin [2]. Since the order of operands does
not matter for these operators, this does not explain the difference in execution time.
Because Ontario uses the operators of ANAPSID this behavior is unexpected. It is
possible that there are changes made to the ANAPSID operators used by Ontario
that reduce the efficiency, but this is subject of further research. MULDER does
perform better than Ontario in some queries where both engines generate the same
plan, i.e., SQ2, SQ4, SQ5, and SQ7. For the other queries with the same plans gen-
erated by MULDER and Ontario, the latter performs better. For SQ3 Ontario finds
an even better plan than MULDER does. Ontario achieves this by pruning ChEBI
as source for the triple pattern 7keggDrug bio2RDF:url 7keggUrl which can be
answered by ChEBI and KEGG. However, contacting ChEBI is unnecessary since
the triple pattern ?drug drugbank:keggCompoundId ?keggDrug binds the variable
7keggDrug to an RDF-MT in KEGG. The different query plans are shown in
lure 6.3l Additionally, Ontario performs better in SQ9 and SQ10 because it omits
the projection operator which is not needed for those queries. Thus, RQ1 can be
answered by the findings in this experiment. It can be suggested that considering
heterogeneity does not have an impact on query performance.

Continuous Behavior [Figure 6.4]reports the performance of state-of-the-art RDF
query engines in producing answers continuously. FedX does not produce results con-
tinuously, but returns all results at the same time. Therefore, its continuous behavior

o1

Chapter 6. Experimental Evaluation

a5 sas sato
ANAPSID (TFFF)"1 ANAPSID (TFFF)™ ANAPSID (TFFF)™
© MULDER ® MULDER © MULDER
Ontario-RDF Ontario-RDF Ontario-RDF
(ET)™ dief@t (ET)™1 /\ dief@t (ET)™ dief@t
Comp T Comp T Comp

(a) Continuous Efficiency Measures for Queries SQ5, SQ9, and SQ10

sas sQo sato

ANAPSID
MULDER
1500° & Ontarlo-RDF

7500+

ANAPSID ANAPSID
5e+05- ¢ MULDER ® MULDER
* Ontarlo-RDF . OnlarlnRDy

05 10 15 20 0 20 40 60 3 6] 12
Time Time Time

(b) Answer Traces for Queries SQ5, SQ9, and SQ10

Figure 6.4: Continuous Performance of RDF Engines. (a) Continuous ef-
ficiency measures, where TFFF~ — inverse time for first result, ET~! — inverse
execution time, Comp — completeness, T — throughput, and dief@t¢ continuous effi-
ciency at time t. (b) Traces showing the incremental answer generation; a steeper
angle correlates with a higher diefficiency

is not measured. The continuous efficiency at time ¢, i.e., dief@t, inverse of time for
the first tuple (TFFF1), inverse of total query execution time (TE~!), percent-
age of answers produced (Comp), and throughput (T) are presented in
using radar plots. The interpretation of these measures is ‘higher is better’ in each
axis. For all queries, the completeness (Comp) is 100%. The throughput T varies
because it correlates with the total execution time of the query. As clearly shown,
the continuous efficiency of Ontario-RDF and MULDER is better for SQ5 and SQ10.
Additionally, MULDER performs better on SQ5 and Ontario-RDF performs better
on SQ10. As opposed to that, the continuous efficiency of ANAPSID is better for
SQ9, even though MULDER and Ontario-RDF are able to produce the first answer
faster than ANAPSID. presents the incremental answer generation of

52

6.4. Empirical Evaluation

Engine SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9 SQlo0
FedX 5,146 1 393 24 1620 8,120 27 8201 — 8,708
ANAPSID 5,146 0 28 1,620 8,120 27 8201 524,694 9,174
MULDER 5,146 393 28 1,620 8,120 27 8,201 524,694 9,174
Ontario-RDF 5,146 393 28 1,620 8,120 27 8,201 524,694 9,174
GNDT 5,146 393 28 1,620 8,120 27 8,201 524,694 9,174

WlW W W

Table 6.4: Number of Results per Query over RDF, where GNDT - ground
truth and a dash representing timed out queries.

the RDF query engines. It can be seen that Ontario-RDF and MULDER produce
the results faster than ANAPSID for SQ5. However, ANAPSID generates the re-
sults of SQ9 at a faster rate. For SQ10 Ontario-RDF retrieves all answers first, but
the answer generation of ANAPSID is smoother, i.e., there are no gaps between the
generation of two answers.

Answer Completeness The number of answers returned by the RDF engines
is reported in [Table 6.4 Except for the following exceptions all engines return all
results. FedX times out during the execution of query SQ9. Since FedX is producing
all results at once, no results are returned. Also the results for SQ2, SQ4, and SQ10
produced by FedX are not complete. FedX only returns one of the three answers
to SQ2, 24 of 28 answers of SQ4, and 8,708 of 9,174 answers of SQ10. ANAPSID
retrieves no answer for SQ3 even though it finds the same plan as MULDER. The
number of answers collected from the endpoints and the result of the union operator
are correct, but ANAPSID fails to use the result of the union as input of a nested
loop join. Thus, this join returns no result.

6.4.2 Experiment II: Ontario with Different Heuristics

The second experiment aims at evaluating the proposed heuristics compared to the
baseline implementation of Ontario. All versions of Ontario are analyzed over RDF,
RDB, and RDF+RDB. This allows examining the source specific heuristics as well
as the performance in a SDL. The experiment is guided by RQ2, RQ3, and RQA4.

Execution Time reports the query execution of the baseline imple-
mentation over the different data formats. Ontario finds the answers for SQ1 faster
when using RDB. Using RDF the results for SQ2 are created much faster while SQ5
benefits from being executed over the SDL. The results suggest that none of the data

53

Chapter 6. Experimental Evaluation

formats clearly outperforms the others using the baseline implementation. However,
executing SSQs over the data format with the highest performance for this SSQ
increases the performance.

shows the performance of the different heuristics implemented in this
thesis executed over a federation of RDF graphs. The difference in execution time of
SQ2 proves that Heuristic 8| is able to improve query performance and thus provides
an answer to RQ4. The results of SQ6 and SQ8 suggest that further conditions
should be checked when Heuristic [4] can be applied. The only difference in the plan
for those queries is that according to the source specific heuristic a nested loop join is
used. The GJoin used by the other approaches performs better for queries SQ6 and
SQS8. Both operands of the join have low selectivity. Therefore, applying Heuristic
as it is seems to be inefficient when dealing with two sub-queries with low selectivity
which answers RQ4 as well.

presents the execution time of the queries from the benchmark exe-
cuted over RDB with different heuristics. There are no differences in the execution
times of the queries because the LSLOD queries do not match the conditions of the
RDB heuristics. Therefore, these heuristics are evaluated using additional queries
designed for them. The additional queries are listed in [Appendix B] They contain
joins that can be pushed down to MySQL, a constant object or a filter expression on
an object variable. The constant objects and filter expressions are over unindexed
columns in the relational table. The results of the additional queries for the RDB

heuristics are discussed in [Subsection 6.4.3l

reports the query performance of the proposed heuristics compared
to the baseline implementation when executed over the SDL. Despite the fact that

all versions of Ontario produce the same plan for SQ1 and SQ4, the general heuristic
approach performs better for those queries. This might be due to normal variation
within query execution time of the sources. Similar to the RDF case the performance
of SQ2 is increased by pushing down the join of two SSQs evaluated over RDF.
However, the difference is smaller in the case of a SDL. This is due to a different join
order and implementation. The baseline implementation of Ontario performs better
in executing SQ3. This difference in performance is caused by a change in the order
of a nested loop join. Due to the data source score, the baseline implementation
changes the order of the SSQs. The score is based on experience and re-orders the
list of SSQs in a way such that SSQs over more expansive data sources are evaluated
as late as possible. But the implementation of this heuristic may ignore the order of
two SSQs based on the selectivity if they have the same data source score. In this
case the described behavior improves the query execution plan not because of any
choices made by a heuristic but because of the implementation only.

54

6.4. Empirical Evaluation

10%- 10%-

10°- 100-

o~ o~ [5a) < [a) © ~ © =) o~ o~) <) © ~ @ =)
[og o o (o4 o o o (o4 o (o4 o o (o4 (o4 (o4 o [og o
[} @ @) @ @ @ a a @ a a a a a a @ @

Execution Time [s]
Execution Time [s]

SQ10
SQ10

Query Query
I Ontario-RDF Ontario-RDB M Ontario I Ontario-RDF Ontario-GH-RDF Il Ontario-SSH-RDF
(a) Baseline over RDF, RDB, and SDL (b) Different heuristics over RDF

=
o

Execution Time [s]
Execution Time [s]

100 -
ul_l" s " | " i o KEmEERERRRNNRRRRER
o~ o~ [a) < T} © ~ © =) o~ o~ oM < [a) © ~ [} =)
o o o o o o (o4 o o o o o o o o o o o
]]]] a] a a [0}]] a]]] [0} [0}]

SQ10
SQ10

Query Query
I Ontario-RDB Ontario-GH-RDB Il Ontario-SSH-RDB I Ontario Ontario-GH I Ontario-SSH
(c) Different heuristics over RDB (d) Different heuristics over SDL

Figure 6.5: Query Execution Time for Ontario in seconds with different heuris-
tics over varying data formats. A shorter bar means shorter execution time and,
therefore, better query performance. (a) No data format clearly outperforms the
others. (b) For some queries general heuristics over RDF are not sufficient. (c¢) The
benchmark queries are not suitable for evaluating the RDB heuristics. (d) Source
specific heuristics have no impact on query performance in the setup of the SDL.

95

Chapter 6. Experimental Evaluation

SQs5 SQ9 sQ10
Ontario (TFFF)"1 Ontario (TFFF)™ Ontario (TFFF)"1
® Ontario-RDB ® Ontario-RDB ® Ontario-RDB
Ontario-RDF Ontario-RDF Ontario-RDF
(ET)™-1 j dief@t (ETy~1 i 7duaf@t (ET)™1 dief@t
Gomp Comp GComp T

(a) Continuous Efficiency Measures for Queries SQ5, SQ9, and SQ10

sas sQo sato

Ontarigl
® Ontario-RDB 5e+05- @ Ontario-RDB ® Ontario-RDB

Ontarlo Ontario
© Ontarig-RDF * Ontarlo-RDF © Ontario-RDF
7500- /
4e+05
o
S

1500

1 2 0 20 40 60 2 4 6
Time Time Time

(b) Answer Traces for Queries SQ5, SQ9, and SQ10

Figure 6.6: Continuous Performance of Baseline Ontario. (a) Continuous ef-
ficiency measures, where TFFF~ — inverse time for first result, ET~! — inverse
execution time, Comp — completeness, T — throughput, and dief@t¢ continuous effi-
ciency at time t. (b) Traces showing the incremental answer generation; a steeper
angle correlates with a higher diefficiency

Continuous Behavior shows the continuous performance of the base-
line implementation of Ontario over the different data models. The continuous effi-
ciency measures are presented in As clearly shown, SQ5 benefits from
being executed over the Semantic Data Lake. However, Ontario executed over the
SDL retrieves the first answer the fastest, but overall Ontario-RDB performs better
on query SQ9. For SQ10 Ontario performs similarly when executed over the SDL or
RDB. The traces of the continuously generated results are visualized in
and aligned with the previously discussed behavior. Hence, Ontario is able to find
effective and efficient plans for heterogeneous data sources. In addition, RDF-MT
based source descriptions can be applied efficiently for query processing over non-
RDF sources. These findings allow for answering RQ2 and RQ3.

o6

6.4. Empirical Evaluation

sQ2 sQ4 sQ6

(TFFF)A-1 Ontario (TFFF)A-1 Ontario (TFFF)A-1
® Ontario-GH
Ontario-SSH

Ontario
® Ontario-GH ® Ontario-GH
Ontario-SSH Ontario-SSH

(ET)™1 dief@t (ET-1 dief@t (ET)™1 dief@t

Comp T Comp T Comp T
(a) Continuous Efficiency Measures for Queries SQ2, SQ4, and SQ6

saz sa4 sas

3.0 ‘Ontafio . Ontario d 8000- © Ontario
® Ontario-GH ® Ontario-GH ¥ ® Ontarlo-GH
Ontario-SSH OnlaviurSSE Ontario-SSH

6000~

n
S
®*eesa,

4000

»

0 0

Answers Produced
Answers Produced
Answers Produced

0

.
.
.
.
.
.
.
.
| . |
15 J 2000
.
.
.
.
.
.

o - - +
0.124 0.128 0.132 0.136 0.130 0.135 0.140 0.2 0.3 04 0.5 0.6 0.7
Time Time Time

(b) Answer Traces for Queries SQ2, SQ4, and SQ6

Figure 6.7: Continuous Performance of Ontario over SDL. (a) Continuous
efficiency measures, where TFFF~! — inverse time for first result, ET~! — inverse
execution time, Comp — completeness, T — throughput, and dief@t¢ continuous effi-
ciency at time t. (b) Traces showing the incremental answer generation; a steeper
angle correlates with a higher diefficiency

Figure 6.7|reports the continuous performance of the different heuristics evaluated
over the SDL. The measures of continuous efficiency presented in suggest
that the new heuristics have an impact on the continuous behavior. While the
difference in execution time is quite small, the diefficiency at time t varies a lot.
This can best be observed in SQ6. The baseline implementation is able to find the
first answer way faster than the other heuristics, but the execution time is almost
similar. Those findings are aligned with the answer traces presented in [Figure 6.7b]
The baseline implementation produces the results for SQ6 faster in the beginning,
but in the end all approaches are more or less equal. Ontario is able to find effective
and efficient plans for query processing over the SDL which answers RQ3.

57

Chapter 6. Experimental Evaluation

2x10°
10°-

- I I

ax107 I I
O 0 0 - O
— o~) <
o o] o o4
< < < <

Query

Execution Time [s]

I Ontario-RDB Ontario-GH-RDB Il Ontario-SSH-RDB

Figure 6.8: Query Execution Time for Additional Queries in seconds. Source
specific heuristics are increasing the query execution time.

Answer Completeness FEach version of Ontario produces the same number of re-
sults despite the data format. shows that Ontario-RDF returns all answers.
Ontario retrieves all answers for the additional queries as well. Hence, the optimiza-
tion techniques used are able to generate effective query plans for heterogeneous data
sources. This partially answers RQ2 and RQ3.

6.4.3 Experiment III: Additional Queries

The simple queries from the LSLOD benchmark do not meet the conditions for
the RDB specific heuristics proposed in [Section 4.4, Hence, these heuristics are
evaluated using additional queries tailored for them. The additional queries are
listed in [Appendix Bl They contain joins that can be pushed down to MySQL, a
constant object or a filter expression on an object variable. These filters are executed
over unindexed columns. In the following only the execution time of these queries
regarding the heuristics is discussed since the evaluation of the additional queries
does not change the prior findings on continuous behavior and answer completeness.

presents the query execution time of the additional queries executed
with different heuristics over RDB. Ontario-RDB outperforms the other approaches
but for AQ2 where Ontario-GH-RDB performs slightly better. Ontario-SSH-RDB
increases the query execution time for every query compared to the baseline. Even
though Ontario-RDB and Ontario-GH-RDB produce the exact same plans for all
four queries, the query execution time varies. For AQ2 - AQ4 the difference might

58

6.4. Empirical Evaluation

be within the normal range of query execution time at the data sources, but the
difference in AQ1 is not. However, during the execution of AQ1 a string comparison of
an unindexed column has to be evaluated. Ontario-SSH-RDB is pushing this filter up
to Ontario level. On one hand, the execution time of AQ1 indicates that even though
the filtered column is unindexed it might be faster to evaluate the expression in
MySQL. On the other hand, Ontario-GH-RDB takes longer than Ontario-SSH-RDB.
The results of AQ2 and AQ3 clearly suggest to not push down simple joins to MySQL,
at least not in the current manner. Ontario translates both star-shaped sub-queries
and joins the results of the execution of both queries. Following this approach no
index can be used for the join and, therefore, the execution time increases. However,
the execution time might be reduced when translating the query into one single SQL
query containing the join. AQ4 modifies AQ3 into using a constant object. As the
filter expression is evaluated first, Ontario-SSH-RDB is not pushing down the join in
this case. This results in a smaller difference to the other approaches. The difference
can be explained as in the discussion of AQI.

The previously discussed results of executing the additional queries over RDB
suggest that heuristics to improve query performance over RDB in a SDL have to
be further researched and depend on the implementation of the wrapper. Heuristic
[6] is decreasing query performance even though it is intended to perform better than
evaluating the filter expression on an unindexed column in MySQL. Heuristic [7] aims
to increase query performance by pushing down simple joins over indexes attributes
to MySQL. This might reduce query execution time and allow other operations to
be run in parallel, but the current implementation of query translation does not
allow the use of the index over the join attribute, hence the query execution time is
increasing. Therefore, the answer to RQ4 is negative for the RDB heuristics.

The results of the experiments show that Ontario and the proposed heuristics im-
prove query performance. Experiment I shows that considering heterogeneity during
query processing does not add significant overhead. For some queries Ontario is even
able to find better execution plans than state-of-the-art RDF query engines. Exper-
iment II proves that RDF-MT based source descriptions can be used effectively and
efficiently for non-RDF sources as well. As also shown in this experiment, Ontario
generates effective and efficient plans for heterogeneous sources. The RDF heuris-
tics are likely to improve the query performance. The heuristics for RDB sources are
studied in experiment III since the queries from the benchmark do not match the con-
ditions of the heuristics. The RDB heuristics are good in theory, but decrease query
performance with the current implementation. Ontario and the proposed heuris-
tics overcome some limitations of state-of-the-art query engines, but source specific
heuristics can be improved.

59

Chapter 7

Conclusions and Future Work

This thesis presents basic heuristics to improve query performance over Semantic
Data Lakes by finding efficient and effective query plans, considering not only the
data descriptions of the data sources, but also their query processing capabilities. The
approach is based on the query processing engine Ontario, an engine that is able to
execute queries over Semantic Data Lakes composed of data sources in different data
formats. The query processing of Ontario uses RDF-MT based source descriptions,
i.e., an abstract description of the properties belonging to the entities in the unified
schema of the data in the Data Lake. The proposed heuristics were tested over the
LSLOD benchmark and compared to the baseline implementation of Ontario which
was compared to state-of-the-art RDF query engines. This chapter concludes the
work of this master’s thesis by summarizing the answers of the research questions
presented in [chapter 6 discussing problems and limitations of the approach as well
as its implementation. Finally, an overview of ideas for future research work is given.

7.1 Conclusions

As discussed in the empirical evaluation of RDF query engines (Subsection 6.4.1)), it
can be suggested that considering heterogeneity during federated query processing
does not have an impact on query performance. This conclusion can be drawn since
Ontario has similar query execution times as MULDER does. If both query engines
generate the same plan, either Ontario or MULDER may perform slightly better, but
neither of these two query engines is always performing better when generating the
same query execution plan. The answer to RQ1 is: 'Considering heterogeneity during
federated query processing does not significantly impact on the query performance.’

60

7.1. Conclusions

The analysis of the continuous behavior and answer completeness of Ontario in
[Subsection 6.4.2] answers the second research question which investigates the effec-
tiveness and efficiency of RDF Molecule Template based source descriptions for non-
RDF sources. Since some queries can be answered faster when executing them over
RDB compared to RDF while sustaining complete results, RDF-MT based source
descriptions can be effectively and efficiently applied for non-RDF sources as well.
Hence, the answer to RQ2 is: 'RDF-MT based source descriptions can be applied
effectively and efficiently during query processing over non-RDF data sources.’

The effectiveness and efficiency of the optimization techniques of Ontario are
evaluated in [Subsection 6.4.2 The findings of the experiment analysis show that
Ontario produces effective and efficient query plans for heterogeneous data sources.
The effectiveness is proven by examining the number of returned results which shows
an answer completeness of 100% for all queries executed by any version of Ontario.
Hence, the generated query plans are effective. The efficiency can be proven by
studying the continuous behavior of Ontario. The query plans generated for queries
over the Semantic Data Lake are not only compatible with query plans over RDF
sources, but for some queries Ontario is able to increase query performance when
executing the query over heterogeneous data sources compared to the execution of
the same query over RDF sources only. This clearly shows the efficiency of the
optimization techniques used. Therefore, the answer to RQ3 is: 'The optimization
techniques of Ontario are able to generate effective and efficient query execution plans
for heterogeneous data sources.’

As shown in [Figure 6.5b] the general heuristics approach does not improve query
performance but decreases it for queries SQ2 and SQ7. The performance of the
RDF based heuristics is discussed in [Subsection 6.4.2] Pushing down a SPARQL
join improves query performance for SQ2 and, therefore, Heuristic 8| proves to be of
help in optimizing queries for RDF data sets. However, the results of the experiment
suggest that strictly following Heuristic {4] is likely to decrease query performance.
This is the case for SQ6 and SQ8 where both operands of the join have low selectivity.
As clearly shown in [Subsection 6.4.3] the RDB based heuristics failed to improve the
query performance. On the contrary, applying the RDB specific heuristics leads
to increased query execution times. This suggests that the filter implementation
of MySQL over unindexed attributes is faster than the implementation of filters in
Ontario which also includes the increased intermediate result that has to be received.
Hence, the answer to RQ4 is: "Most of the proposed heuristics do not improve query
performance or on the contrary increase query execution time. Further analysis on
source specific heuristics and how to implement them efficiently is needed.’

61

Chapter 7. Conclusions and Future Work

7.2 Limitations

Not all of the proposed heuristics work as intended. Heuristic (4] is likely to increase
query execution time if both operands of the join have low selectivity. Heuristic [0]
decreases query performance, suggesting that retrieving a larger intermediate result
and evaluating simple string comparison at Ontario level is significantly less efficient
than evaluating the filter over an unindexed attribute in MySQL. Functions like str
occurring in a SPARQL filter expression can not be pushed down to RDB sources
using this approach. The functions are dropped and the source tries to find the
answer without evaluating the function. Hence, filters containing functions should
be executed at Ontario level or in RDF sources. Heuristic [7]is not improving query
execution due to the implementation of the query translation. Since both sub-queries
are translated on their own and used as FROM sub-queries in the join the index can
not be used. Therefore, the query performance is decreasing when pushing down the
join. Next, the query translation is discussed in more detail.

The current implementation of the query translation from SPARQL to SQL has
limitations. Semantifying the projections considers single column templates only.
Therefore, templates like <http://example.org/{start} {end}> can not be trans-
lated correctly. [Algorithm 5.1]is implemented for queries with at most two RDF-MTs.
Hence, queries with three or more RDF-MTs can be only partially translated. Fur-
thermore, only two of the three possible cases when dealing with queries containing
several RDF-MTs are implemented at the time of writing. Queries containing a join
and also a union over a subset of the attributes can not be translated using the cur-
rent implementation. Therefore, the query translation works for queries containing a
join or fully unified query results only. Another limitation of the current translation
process is that the intersection of predicates answerable by the different RDF-MTs
is checked and not the annotations of the triples.

7.3 Future Work

The results of this thesis suggest that federated query processing over Semantic Data
Lakes might be subject of further research for the next years or even decades. Based
on the findings concerning the proposed heuristics, more sophisticated heuristics
for RDB and even RDF are needed in order to increase the query performance.
Real world applications might not be limited to data from RDF and RDB and,
therefore, heuristics for other data models could be defined and integrated along
with appropriate wrappers. The query translation of Ontario does not cover all
possible cases for semantification. Additionally, the translation from SPARQL to

62

7.3. Future Work

SQL queries is not efficient for joining star-shaped sub-queries at the relational data
source. Hence, the query translator can be improved which eventually leads to
better query performance. In order to understand the generated query plans and
improve them, the performance difference of Ontario and ANAPSID when both
engines generate the same plan should be investigated. This investigation is out of
the scope of this thesis since it takes time to analyze the implementations of both
query engines. As Ontario uses the same operators as ANAPSID does, the query
performance should be similar if the same plan is executed. The relevant indexes for
the queries from the benchmark were defined in a JSON file by hand. In the future,
finding indexes in RDB sources could be integrated into the extraction of RDF-MTs
from the sources. Hence, the indexes would be a part of the RDF-MT based source
description of RDB sources like the user information for the database connection.
The results of the empirical evaluation suggest that there is an optimal data model
for each sub-query. In a real world application several different data models might
be used. Machine learning techniques might be able to predict the best data model
for a sub-query. These predictions could be used for query planning. If a sub-query
would benefit from being executed over RDF, the actual data could be lifted to RDF
in order to improve the query execution time.

Ontario and the proposed heuristics effectively and efficiently deal with the main
challenges in query processing over Data Lakes, i.e., source selection, query execution
plan generation, and combining partial results from the sources in the Data Lake. As
shown in the evaluation, Ontario does not add a significant overhead by considering
heterogeneity during query processing. Therefore, it is not necessary to lift all data
sets to RDF because they can be queried efficiently in their native format. Further
research should focus on improving source specific heuristics for RDF and RDB as
well as defining source specific heuristics for other frequently used data models.

63

Appendix A

LSLOD Simple Queries

The queries are taken from [21] and can also be found online at the project page ac-
cessible via http://srvgal78.deri.ie/BioFed /queries.html. Some of the queries where
slightly changed in order to correct typos and other errors in the published queries.

Listing A.1: Prefixes

PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX

bio2RDF: <http://www.bio2rdf.org/ns/bio2rdf#>

dailymed: <http://wwwd.wiwiss.fu—berlin.de/dailymed/resource/dailymed/>
diseasome: <http://www4. wiwiss.fu—berlin.de/diseasome/resource/diseasome>
drugbank: <http://www4.wiwiss.fu—berlin.de/drugbank/resource/drugbank/>
drugcategory: <http://wwwd.wiwiss.fu—berlin.de/drugbank/resource/drugcategory>
kegg: <http://bio2rdf.org/ns/kegg#>

linkedCT: <http://data.linkedct.org/resource/linkedct/>

owl: <http://www.w3.0rg/2002/07/owl#>

purl: <http://purl.org/dc/elements/1.1/>

rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>

rdfs: <http://www.w3.0rg/2000/01/rdf —schema#>

sider: <http://www4. wiwiss.fu—berlin/sider /resource/sider/>

Listing A.2: SQ1: Find all the drugs along with their indications

SELECT ?genericName ?indication WHERE {

?7dn drugbank:genericName ?genericName ;
drugbank:indication ?7indication

}
UNION
?dn dailymed :name 7genericName ;
dailymed:indication ?indication
}

64

http://srvgal78.deri.ie/BioFed/queries.html

Listing A.3: SQ2: Find all the drug descriptions and chemical equations of reactions
related to drugs from category Cathartics

SELECT ?drugDesc ?cpd ?equation WHERE {
?7drug drugbank:drugCategory durgcategory:cathartics
?7drug drugbank:keggCoumpoundId ?cpd
?drug drugbank:description ?drugDesc
?enzyme kegg:xSubstrate 7cpd
7enzyme rdf:type kegg:Enzyme
?reaction kegg:xEnzyme ?7enzyme
7reaction kegg:equation 7equation

Listing A.4: SQ3: Find all drugs, together with the URL of the corresponding
web-pages as well as images if available

SELECT ?drug ?keggUrl ?chebilmage WHERE {
?drug rdf:type drugbank:drugs
?drug drugbank:keggCompoundld 7keggDrug
?keggDrug bio2RDF: url 7keggUrl
?7drug drugbank:genericName ?7drugBankName
?chebiDrug purl:title ?durgBankName
?chebiDrug bio2RDF:image ?chebilmage

Listing A.5: SQ4: Find KEGG drug names of all drugs in DrugBank belonging to
category Micronutrient

SELECT ?drug ?title WHERE {
?drug drugbank:drugCategory drugcategory: micronutrient
?durg drugbank:casRegistryNumber 7id
?keggDrug rdf:type kegg:Drug
7keggDrug bio2RDF:xRef ?7id
7keggDrug purl:title 7title

65

Appendix A. LSLOD Simple Queries

Listing A.6: SQ5: Find all drugs and their mass that affect humans and mammals.
For those having a description of their biotransformation, also return this description

SELECT ?drug ?transform ?mass WHERE {
?7drug drugbank: affectedOrganism ’Humans and other mammals’
?drug drugbank:casRegistryNumber ?cas
?keggDrug bio2RDF :xRef ?cas
7keggDrug bio2RDF : mass ?mass
OPTIONAL {
?drug durgbank:biotransformation ?transform
}

Listing A.7: SQ6: Find diseases and corresponding drugs that target those diseases

SELECT ?drug ?disease ?name WHERE {
?drug drugbank:molecularWeightAverage ?weight
?drug drugbank:possibleDiseaseTarget 7disease
?7disease diseasome:name ?name

Listing A.8: SQ7: Find drugs and their side effects with labels for the drug name
”Sodium Phosphate” in dailymed

SELECT ?drug ?sideeffect ?label WHERE {
?drug dailymed :name ’Sodium Phosphates’
?drug owl:sameAs ?drugAlt .

?7drugAlt sider:sideEffect 7sideeffect
?sideeffect rdfs:label ?label

Listing A.9: SQ8: Find diseases and corresponding drugs that target those diseases
along with their labels
SELECT ?drug ?disease ?label WHERE {

?disease diseasome:name 7diseasename
?disease drugbank:possibleDiseaseTarget ?drug
?drug rdfs:label 7label

66

Listing A.10: SQ9: Find intervention names and ids for the drugs in dailymed with
drug dose, description, inactive ingredients as well as possible disease targets

SELECT DISTINCT + WHERE {
?intervention a linkedCT:intervention ;
linkedCT :intervention_name ?intervention_name ;
linkedCT:intervention_id 7intervention_id ;
rdfs:seeAlso ?dailymedDrug
?7dailymedDrug dailymed:dosage ?7dosage ;
dailymed: description ?description ;
dailymed:inactivelngredient 7inactivelngredient ;
dailymed : possibleDiseaseTarget 7possibleDiseaseTarget

Listing A.11: SQ10: Find intervention names and types for the drugs in Drug-
Bank with drug chemical structure, drug state, its protein binding and smiles string
canonical

SELECT DISTINCT + WHERE {
?intervention a linkedCT:intervention ;
linkedCT :intervention_name ?intervention_name ;
linkedCT :intervention_type ?intervention_type ;
rdfs:seeAlso ?drugbankDrug
?drugbankDrug drugbank:structure ?structure ;
drugbank:state ?7state ;
drugbank: proteinBinding ?proteinBinding ;
drugbank:smilesStringCanonical ?smilesStringCanonical

67

Appendix B

Additional Queries

The additional queries were designed for the evaluation of the RDB heuristics pre-
sented in [Section 4.4l Since those queries are run over the LSLOD data sets, they

use the same prefixes as presented in [Listing A.1|

Listing B.1: AQ1: Find all drugs in DrugBank and their title in KEGG with the
chemical formula C8H10N402

SELECT ?drug ?title ?cf WHERE {
?drug drugbank:casRegistryNumber 7id .
?keggDrug rdf:type kegg:Drug .
?7keggDrug bio2RDF : xRef 7id .
?keggDrug purl:title ?7title .
?drug drugbank:chemicalFormula 7cf .
FILTER(? cf = ”C8H10N402”)

Listing B.2: AQ2: Find all DrugBank drugs along with their target’s label and
chromosome location

SELECT DISTINCT ?drug ?label ?loc WHERE {
?drug drugbank:target 7target .
7target rdfs:label 7label .
7target drugbank:chromosomeLocation 7loc .

68

Listing B.3: AQ3: Find all Dailymed drugs along with their active ingredient and

route of administration

SELECT DISTINCT ?drugLabel ?ingredientLabel ?route WHERE {
?drug dailymed:fullName ?drugLabel
?drug dailymed:routeOfAdministration ?route
?drug dailymed:activelngredient 7ingredient
?7ingredient rdfs:label ?7ingredientLabel

Listing B.4: AQ4: Find all Dailymed drugs along with their active ingredient for
which the route of administration is oral

PREFIX route:
<http://wwwd. wiwiss.fu—berlin.de/dailymed/resource/routeOfAdministration/>

SELECT DISTINCT ?drugLabel ?ingredientLabel WHERE {
?drug rdfs:label ?drugLabel
?drug dailymed:routeOfAdministration route:Oral
?drug dailymed:activelngredient 7ingredient
7ingredient a dailymed:ingredients
?7ingredient rdfs:label ?7ingredientLabel

69

Appendix C

Experiment Results

Some experiment results could not be visualized within the result analysis. [lable C.1
presents the query execution time of the different query engines on the simple queries
from the LSLOD benchmark. The execution times are rounded to the fourth decimal

place. reports this results using bar charts. [Table C.2|presents the number

of results obtained by each engine for every query. This table was replaced by a
smaller version due to the complete answers of all versions of Ontario
despite the data format. [Table C.3| and [Table C.4] show the number of retrieved
results and query execution time of the additional queries, respectively.

70

‘PoIoMSURUN 10 JNO oW SUNUaseIdol Ysep © ‘Spuodos Ul WL, UOIINIaXy Areng) 1) o[qe],

Ga8y'¢c GLSTLG 0T¢L'0 0€6c°¢ 6L0L°0 L9¥PS°0 <¢WPI'0 29960 T¥P¢T'0 €LTG0 HSS-OLRIUQ
Ir19°c €90G°¢h TIBI9'0 GRILT €9.9°0 L80L°C L9¥¢'T 97980 GOEV'0 ¢G9¢'0 dAY-HSS-OLRIUQ
¢leG’L T80T'8G 6TS99'T 09500 €8G9'T 0¢GL0 O0TL00 0F9G°0 8PS0°0 LPIS°0 AdY-HSS-OLRIUQ
9eva'c 98¢E8G FOVL'0 €¥0c¢ <¢¥0L0 67960 TCET'0 LEKG'0 9LET'0 ¢90G°0 HO-OURIUQ
TLEV'C €889'Cr 8L89'0 PCELT V0890 <¢I€9c 097¢'T LLGR'O GISP'0 €9G€°0 ddd-HD-OoLeuQ
6€€9°L TECL'8G ¥8I¥0 Tg800 LySGL0 €9¢2°0 0T200 62990 09GT'T €E0S°0 AdY-HD-OLEIUQ
9GI¥°'C¢ 84GL6'9¢ GGEL0 00T€C 91890 T.L¥S0 I9IFT'0 6VIS0 94¢T'0 €099°0 OurjuQp

6877'¢c 088L¢h LE69°0 6L60°C 89990 €V0LC ¢6ECT P698°0 €9GF°0 98GE°0 dAY-OLERIUQ
0.6¢°L 6005'8G ¥998°0 2LLG0°0 T69.°0 €60L°0 Tcl00 #299°0 T¥S0°0 €€0S°0 AdY-OLRIUQ
LeSL°L GILC6S 66L6'0 90S0°0 09880 €¥.9°0 G€90°0 GI8CT 6L¥0°0 60€5°0 HHATNIN

6999°TT 0961°8€ LEVL'0 GIL00 T€g9°0 1¢v0'¢ GI96°1 - 66L€C 61170 dISdVNV

GI7¢ 6L - 9I¢1'S LE¢L0 VI6E'G LCe89 <CI9EE€IT 0GE8'T 614690 F¥.9L°0 XPed

01OS 60S s8OS LOS 90Ss sOS vOS €0Ss g0s 10s PuiSuy A1en

71

Appendix C. Experiment Results

Query Engine SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9 SQl0
FedX 5,146 1 393 24 1,620 8,120 27 8,201 - 8,708

ANAPSID 5,146 3 0 28 1,620 8,120 27 8201 524,694 9,174
MULDER 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
OntarioRDF 5,146 3 393 28 1,620 8,120 27 8,201 524,694 9,174
OntarioRDB 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
Ontario 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
OntarioGH-RDF 5,146 3 393 28 1,620 8,120 27 8,201 524,694 9,174
Ontario-GH-RDB 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
Ontario-GH 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
Ontario-SSH-RDF 5,146 3 393 28 1,620 8,120 27 8,201 524,694 9,174
Ontario-SSH-RDB 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
Ontario-SSH 5,146 3 393 28 1,620 8,120 27 8201 524,694 9,174
ground truth 5,146 3 393 28 1,620 8,120 27 8,201 524,694 9,174

Table C.2: Query Answer Cardinality, a dash represents timed out queries.

72

Query Engine A
Ontario-RDB
Ontario-GH-RDB
Ontario-SSH-RDB
ground truth

1 AQ2 AQ3 AQ4
5304 2,340 1,187
5304 2,340 1,187
5304 2,340 1,187
5304 2,340 1,187

MI\DMI\D@

Table C.3: Cardinality of Additional Queries

Query Engine AQ1 AQ2 AQ3 AQ4
Ontario-RDB 0.8316 0.7290 0.5250 0.3942
Ontario-GH-RDB 1.1573 0.7164 0.5208 0.4133
Ontario-SSH-RDB 1.0833 2.3282 2.1544 0.4887

Table C.4: Query Execution Time of Additional Queries in seconds

73

Bibliography

Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. “Diefficiency Metrics: Measuring
the Continuous Efficiency of Query Processing Approaches”. In: The Semantic Web — ISWC
2017 ISWC 2017. Lecture Notes in Computer Science. Ed. by C. d’Amato et. al. Vol. 10588.
Springer, Oct. 2017, pp. 3-19.

Maribel Acosta et al. “ANAPSID: An Adaptive Query Processing Engine for SPARQL End-
points”. In: International Semantic Web Conference (2011).

Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. “Foundations of RDF databases”. In:
Reasoning Web. Semantic Technologies for Information Systems. Reasoning Web 2009. Lec-
ture Notes in Computer Science. Ed. by S. Tessaris et al. Vol. 5689. Springer, June 2008.

Soren Auer et al. “The BigDataEurope Platform — Supporting the Variety Dimension of Big
Data”. In: Web Engineering. ICWE 2017. Lecture Notes in Computer Science. Ed. by J.
Cabot, R. De Virgilio, and R. Torlone. Vol. 10360. Springer, June 2017.

Francgois Belleau et al. “Bio2RDF: Towards a Mashup to Build Bioinformatics Knowledge
Systems”. In: Journal of Biomedical Informatics 41.5 (Oct. 2008), pp. 706-716. 1SSN: 1532-
0464. poI: 110.1016/j.jbi.2008.03.004.

Philip A. Bernstein. “Synthesizing Third Normal Form Relations from Functional Dependen-
cies”. In: ACM Transactions on Database Systems 1.4 (Dec. 1976), pp. 277-298.

Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Recommendation. Feb. 2014. URL:
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

Matt Buranosky et al. “FDTool: a Python application to mine for functional dependencies
and candidate keys in tabular data”. In: F1000Research 7.1667 (2018).

Gavin Carothers and Andy Seaborn. RDF 1.1 N-Triples. A line-based syntax for an RDF
graph. W3C Recommendation. Feb. 2014. URL: https://www.w3.org/TR/2014/REC-n-
triples-20140225/.

C. J. Date. SQL and Relational Theory: How to Write Accurate SQL Code. O'Reilly Media,
2015.

Anastasia Dimou et al. “RML: A Generic Language for Integrated RDF Mappings of Het-
erogeneous Data”. In: Proceedings of the 7th Workshop on Linked Data on the Web. Apr.
2014.

74

https://doi.org/10.1016/j.jbi.2008.03.004
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Kemele M. Endris et al. “Ontario: Federated Query Processing against a Semantic Data
Lake”. In: Database and Ezpert Systems Applications. Lecture Notes in Computer Science.
Springer, Cham, 2019.

Kemele M. Endris et al. “Querying Interlinked Data by Bridging RDF Molecule Templates”.
In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX. Lecture
Notes in Computer Science. Ed. by Abdelkader Hameurlain et al. Vol. 11310. Springer, Berlin,
Heidelberg, Nov. 2018, pp. 1-42.

Jonas C. Ericsson. “Mediaton systems. An approach to retrieve data homogeneously from
multiple heterogeneous data sources”. Bachelor’s Thesis. University of Gothenburg, 2009.

Fabien Gandon and Guus Schreiber. RDF 1.1 XML Syntaz. W3C Recommendation. Feb.
2014. URL: https://www.w3.o0org/TR/2014/REC-rdf-syntax-grammar-20140225/|

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Com-
plete Book. New Jersey, Upper Saddle River: Prentice Hall, 2001.

Behzad Golshan et al. “Data Integration: After the Teenage Years”. In: Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. PODS
"17. Chicago, Illinois, USA: ACM, 2017, pp. 101-106.

Olaf Gorlitz and Steffen Staab. “SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions”. In: Proceedings of the Second International Conference on Consum-
ing Linked Data - Volume 782. COLD’11. Bonn, Germany: CEUR-WS.org, 2011, pp. 13—
24.

Rihan Hai, Sandra Geisler, and Christoph Quix. “Constance: An Intelligent Data Lake Sys-
tem”. In: Proceedings of the 2016 International Conference on Management of Data. SIG-
MOD ’16. San Francisco, California, USA: ACM, 2016, pp. 2097-2100.

Alon Y. Halevy. “Answering Queries Using Views: A Survey”. In: The VLDB Journal 10.4
(Dec. 2001), pp. 270-294.

Ali Hasnain et al. “BioFed: Federated Query Processing over Life Sciences Linked Open
Data”. In: Journal of Biomedical Semantics 8 (Mar. 2017).

Ali Hasnain et al. BioFed Query. SPARQL Endpoint. URL: http://vmurq09.deri.ie:8007.

Yasar Khan et al. “One Size Does Not Fit All: Querying Web Polystores”. In: IEEE Access
7 (2019), pp. 9598-9617.

Donald Kossmann. “The State of the Art in Distributed Query Processing”. In: ACM Com-
puting Surveys 32.4 (Dec. 2000), pp. 422-469.

Donald Kossmann and Konrad Stocker. “Iterative dynamic programming: a new class of query
optimization algorithms”. In: ACM Transactions on Database Systems 25 (2000), pp. 43-82.

Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation. Feb. 1999. URL: https://www.w3.org/TR/1999/REC-
rdf-syntax-19990222/.

Maurizio Lenzerini. “Data Integration: A Theoretical Perspective”. In: Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, June 3-5, Madison, Wisconsin, USA. PODS '02. ACM, 2002, pp. 233-246.

75

https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://vmurq09.deri.ie:8007
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Bibliography

[28]

[29]

[30]

Mohamed Nadjib Mami et al. “Towards Semantification of Big Data Technology”. In: Big
Data Analytics and Knowledge Discovery. Ed. by Sanjay Madria and Takahiro Hara. Cham:
Springer International Publishing, 2016, pp. 376-390.

John P. McCrae et al. The Linked Open Data Cloud. LOD Website. Mar. 2019. URL: https:
//lod-cloud.net/|

Gabriela Montoya, Maria-Esther Vidal, and Maribel Acosta. “A Heuristic-Based Approach
for Planning Federated SPARQL Queries”. In: Proceedings of the International Workshop on
Consuming Linked Data (COLD) (2012).

Gabriela Montoya, Maria-Esther Vidal, and Maribel Acosta. “Optimal SPARQL 1.1 Queries
for Federations of Endpoints”.

Gabriela Montoya et al. “Decomposing Federated Queries in Presence of Replicated Frag-
ments”. In: Web Semantics: Science, Services and Agents on the World Wide Web 42.C
(Jan. 2017), pp. 1-18.

Gabriela Montoya et al. “Fedra: Query Processing for SPARQL Federations with Divergence”.
In: CoRR abs/1407.2899 (2014).

Gabriela Montoya et al. “SemLAV: Local-As-View Mediation for SPARQL Queries”. In:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XIII. Lecture Notes
in Computer Science. Ed. by Abdelkader Hameurlain, Josef Kiing, and Roland Wagner.
Vol. 8420. Springer, Berlin, Heidelberg, Mar. 2014, pp. 33-58.

M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database systems. 3rd ed.
New York Dordrecht Heidelberg London: Springer, Feb. 2011.

Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle. Terse RDF Triple Language.
W3C Recommendation. Feb. 2014. URL: https://www.w3.org/TR/2014/REC-turtle-
20140225/.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C Rec-
ommendation. Jan. 2008. URL: https://www.w3.org/TR/2008/REC-rdf - sparql-query-
20080115/.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. 3rd ed. New
York, NY, USA: McGraw-Hill, Inc., 2003.

Matthias Samwald et al. “Linked open drug data for pharmaceutical research and develop-
ment”. In: Journal of Cheminformatics 3.1 (2011). 1SSN: 1758-2946. DOI: [10.1186/1758~
2946-3-19.

Francois Scharffe et al. “Enabling linked data publication with the Datalift platform”. In:
AAAI 2012, 26th Conference on Artificial Intelligence, W10:Semantic Cities. Toronto, Canada,
July 2012.

Andreas Schwarte et al. “FedX: Optimization Techniques for Federated Query Processing on
Linked Data”. In: ISWC 2011, Part 1. LNCS. Ed. by L. Aroyo et al. Vol. 7031. Heidelberg;:
Springer, 2011, pp. 601-616.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. “Heuristic and Randomized Op-
timization for the Join Ordering Problem”. In: The VLDB Journal 6.3 (Aug. 1997), pp. 191—
208.

76

https://lod-cloud.net/
https://lod-cloud.net/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://doi.org/10.1186/1758-2946-3-19
https://doi.org/10.1186/1758-2946-3-19

Bibliography

Petros Tsialiamanis et al. “Heuristics-based query optimisation for SPARQL”. In: Proceedings
of the 15th International Conference on Extending Database Technology (2012), pp. 324-335.

Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Vol. I. New York,
NY, USA: Computer Science Press, Inc., 1988.

Maria-Esther Vidal et al. “Efficiently Joining Group Patterns in SPARQL Queries”. In:
ESWC (2010).

Maria-Esther Vidal et al. “On the Selection of SPARQL Endpoints to Efficiently Execute
Federated SPARQL Queries”. In: Transactions on Large-Scale Data- and Knowledge-Centered
Systems XXV. Ed. by Abdelkader Hameurlain, Josef Kiing, and Roland Wagner. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 109-149.

Gio Wiederhold. “Mediators, concepts and practice”. In: Studies Information Reuse and
Integration In Academia And Industry. Ed. by Tansel Ozyer et al. Springer Verlag Wien,
2012, pp. 1-27.

Gio Wiederhold. “Mediators in the architecture of future information systems”. In: IEEE
Computer 25.3 (Mar. 1992), pp. 38—49.

7

	Introduction
	Motivating Example
	Contributions
	Chapters

	Background
	Semantic Web Technologies
	Resource Description Framework
	RDF Schema
	SPARQL
	RML Mappings
	RDF Molecule Templates

	Data Integration Systems
	Mediator/Wrapper Architecture
	Schema Mapping Approaches
	Data Warehouse
	Semantic Data Lake

	Physical Database Design
	Indexing
	Normalization

	Federated Query Processing
	Query Optimization
	Performance Measures

	Related Work
	Federated Query Processing over RDF Data
	Polystores

	Approach
	Problem Statement
	Bushy Tree Generation
	General Heuristics
	Source Specific Heuristics

	Implementation
	Query Processing
	Query Decomposition
	Query Optimizer
	Remarks

	SQL Wrapper

	Experimental Evaluation
	LSLOD Benchmark
	LSLOD Data Sets
	Benchmarking Queries

	Data Preparation
	Converting RDF to TSV
	Implementation of the Relational Schema

	Experimental Setup
	Empirical Evaluation
	Experiment I: RDF Engines
	Experiment II: Ontario with Different Heuristics
	Experiment III: Additional Queries

	Conclusions and Future Work
	Conclusions
	Limitations
	Future Work

	LSLOD Simple Queries
	Additional Queries
	Experiment Results
	Bibliography

