XATA2008

XML: Applications and Associated Technologies

XML: Aplicacoes e Tecnologias Associadas

6" National Conference

Editors:

José Carlos Ramalho
Jodo Correia Lopes
Salvador Abreu

February 14-15th, 2008

Design: Benedita Contente Henriques

Editors: J. C. Ramalho, J. C. Lopes and Salvador Abreu
Composition: J. C. Ramalho, J. C. Lopes and Salvador Abreu
Copies: 100

Edition: February 2008

ISBN: 978-972-99166-5-6

Preface:

This volume contains the papers presented at the Sixth Portuguese XML
Conference, called XATA (XML, Aplicagoes e Tecnologias Associadas), held in
Evora, Portugal, 14-15 February, 2008. The conference followed on from a suc-
cessful series held throughout Portugal in the last years: XATA2003 in Braga,
XATA2004 held in Porto, XATA2005 in Braga, XATA2006 in Portalegre and
XATA2007 in Lisboa.

Due to the research evaluation criteria that are being used to evaluate re-
searchers and research centers, national conferences are becoming deserted. Many
did not manage to gather enough submissions to proceed in this scenario. XATA
made it through, however, with a large decrease in the number of submissions.
In this edition a special meeting will join the steering committee with some
interested attendees to discuss XATA’s future: the internationalization, the con-
ference model, ...

We think XATA is important in the national context. It has succeeded in
gathering and identifying a community that shares the same research interests
and has promoted some collaborations. We want to keep “the wheel spinning”.

This edition has its program distributed by first day’s afternoon and next
day’s morning. This way we are facilitating travel arrangements and we will
have one night to meet.

I hope everyone finds these days interesting.

See you in Evora,

José Carlos Ramalho

II1

IV XATA2008 — XML: Applications and Associated Technologies

Organising Committee:

— Salvador Abreu — Departamento de Informética da Universidade de Evora
(chair)

— José Saias — Departamento de Informatica da Universidade de Evora

— Pedro Salgueiro — Departamento de Informética da Universidade de Evora

Vitor Nogueira — Departamento de Informatica da Universidade de Evora

— Jo#o Correia Lopes — INESC Porto/Faculdade de Engenharia da Universi-

dade do Porto

José Carlos Ramalho — Universidade do Minho

XATA2008 — XML: Applications and Associated Technologies v

Scientific Committee:

José Carlos Ramalho Universidade do Minho — Chair

Ademar Aguiar Universidade do Porto e INESC Porto
Alberto Brandao Simoes Universidade do Minho

Alberto Rodrigues da Silva Instituto Superior Técnico

Alda Lopes Gancarski Institut National des Télécommunications
Ana Paula Afonso Universidade de Lisboa

Andreia Malucelli Pontificia Universidade Catoélica do Paran4, Brasil
Benedita Malheiro Instituto Superior de Engenharia do Porto
Carlos Damasio Universidade Nova de Lisboa

Cristina Ribeiro Universidade do Porto e INESC Porto
Francisco Couto Universidade de Lisboa

Gabriel David Universidade do Porto e INESC Porto
Giovani Librelotto Centro Universitario Franciscano, Brasil
José Joao Almeida Universidade do Minho

José Luis Borbinha Instituto Superior Técnico

José Paulo Leal Universidade do Porto

Jodo Correia Lopes Universidade do Porto e INESC Porto
Joao Moura Pires Universidade Nova de Lisboa

Luis Carrigo Universidade de Lisboa

Luis Ferreira Instituto Politécnico do Céavado e do Ave

Luis Moura e Silva Universidade de Coimbra,

Marta Jacinto Instituto das Tecnologias de Informacao na Justica

Mario Gaspar da Silva
Miguel Ferreira

Nuno Horta

Pedro Almeida

Pedro Antunes

Pedro Henriques

Rui Lopes

Salvador Abreu
Stephane Gangarski

Universidade de Lisboa
Universidade do Minho

Instituto Superior Técnico

Universidade de Aveiro
Universidade de Lisboa
Universidade do Minho
Universidade de Lisboa
Universidade de Evora

LIP6, University P. & M. Curie Paris 6

Additional Reviewers:

Analia Lourengo
Hugo Manguinhas
Marcos Sunye
Nuno Freire

VI XATA2008 — XML: Applications and Associated Technologies

Acknowledgements:

The editors wish to thank all those who contributed with content to XATA2008
proceedings which is the sixth volume in this series.

Firstly we thank all the authors for the paper production that can be found
in this volume.

Secondly, we thank all reviewers for the excellent work they have done in
reviewing their assignments helping to increase the overall quality of the works
being published.

Moreover, the comments they made about the submitted works will con-
tribute to improve the research related to the application of XML technologies.

Finally, we finish with a word of appreciation to all participants who decided
to attend an event where the exchange and discussion of ideas is paramount.
Their presence will definitely enlarge the debate, generating new ideas, which
will trigger new works that may be reported in the next edition of this conference.

José Carlos Ramalho
Jodo Correia Lopes
Salvador Abreu

Sponsoring Organisations:

The Organising Commitee is very grateful to the following organisations for
their support:

— Departamento de Informatica da Universidade de Evora

— Departamento de Informatica da Universidade do Minho

— Departamento de Engenharialnformatica da Universidade do Porto

— Centro de Investigacao em Tecnologias de Informacgao da Universidade de
Evora,

— Delta cafés

— Microsoft Corporation Portugal

Contents

I Tutorial

A Tutorial on XProc: An XML Pipeline Language. ...

Rui Lopes

II Web Services and Architectures

Creating a National Federation of Archives using

OAI-PMH. ... i i i i it i ieieane

Luis Miguel Ferros, José Carlos Ramalho and Miguel
Ferreira

RADX - Rapid Development of Web Applications in

José Paulo Leal and Jorge Braz Gongalves

CGI::Auto - Automatic Web-Service Creation.........

Davide Sousa, Alberto Simoes and José Joao Almeida

IT1 Document Processing

XML-based Extraction of Terminological Information

from Corporac.oviiiiiiiiiiiiiii ittt

Ana Belén Crespo Bastos, Xosé Maria Gomez Clemente,
Xavier Gomez Guinovart and Susana Lopez Ferndndez

A Toolkit for an Oral History Digital Archive

Silvestre Lacerda, Norberto Lopes, Nelma Moreira and
Rogério Reis

NAVEGANTE: An Intrusive Browsing Framework

Nuno Carvalho, José Joao Almeida and Alberto Simoes

VII

52

VIII XATA2008 — XML: Applications and Associated Technologies

XCentric: Constraint based XML Processing 64
Jorge Coelho and Mdrio Florido

v Semantic Web and Ontologies

Using OWL to Specify and Build Different Views over the
Emigration Museum Resources..........ccovvvivuvnvnn. 76

Flavio Xavier Ferreira and Pedro Rangel Henriques

A SPARQL Query Engine over Web Ontologies using
Contextual Logic Programming...........ccvvvveuennn. 90
Nuno Lopes and Salvador Abreu

Generating Semantic Networks to the PubMed........ 94
Giovani Rubert Librelotto, Mirkos Ortiz Martins, Henrique
Tamiosso Machado, Juliana Kaizer Vizzotto, José Carlos
Ramalho and Pedro Rangel Henriques

SPARQL Back-end for Contextual Logic Agents...... 104
Claudio Fernandes and Salvador Abreu

\% Applications of XML

Workflow Aspects in Content Management Systems.. 109
Pedro Pico and Alberto Silva

Exploring and Visualizing the "alma" of XML

Documents......cooiiiiiiiiiiiiiiiiiinienreneenasnans 122
Daniela da Cruz, Pedro Rangel Henriques and Maria Jodo
Varanda Pereira

X-Spread - A Software Modeling Approach of Schema

Evolution Propagation to XML Documents........... 144
Vincent Nelson Kellers da Stlveira and Renata de Matos
Galante

XATA2008 — XML: Applications and Associated Technologies IX

VI Index

Author IndexX . ovve ittt ittt ittt tttteeeenneennns 156

A Tutorial on XProc: An XML Pipeline
Language

Rui Lopes

LaSIGE
University of Lisbon
rlopes@di.fc.ul.pt

Abstract. This tutorial will present the syntax and semantics of a new
XML processing language specification, XProc, which is being standard-
ised by the World Wide Web Consortium, for the description of sequences
of operations to be performed on XML documents.

An XProc pipeline specification processes a set of inputs through an
ordered set of operations, resulting on a set of outputs. Each operation
performs an atomic transformation on inputs, feeding its results to the
next operation. Such operations include well-known technologies, such
as XSLT and XInclude, as well as special purpose micro-operations, e.g.
insert and delete.

The purpose of this tutorial is the dissemination of this new XML tech-
nology, including step-by-step examples on how to create pipelines, and
how to leverage the language’s constructs and operations, easing the task
of building simple and complex XML processing applications.

1 Synopsis

XML processing languages have come a long way. With the increasing use of such
languages, including XSLT 2.0 [1], XQuery [2], building complex and full-fledged
XML applications entirely in XML is starting to become a necessity. Moreover,
background support through XML Schema [3] and other data validation tech-
nologies enforce the correctness of XML applications. However, a last piece has
still being missing, the glue for all of these technologies. Typically, developers
connected these self-contained technologies either through programming APIs,
or by hacking custom shells scripts or makefiles. XProc [4] is W3C’s answer
to the standardisation of XML pipeline processing technologies. With XProc,
XML developers can specify entire applications without leaving the XML syn-
tax, thus leveraging existing knowledge on already existing standards and tools
(e.g., XPath). This tutorial will provide an overview on how to build simple
XML processing pipelines, and dive into some more advanced concepts, showing
the expressive power of XProc.

1.1 Pipeline Concepts

The first part of the tutorial will present a short background on the different
concepts inherent of XML pipelines, namely pipelines, steps, inputs, outputs,
options, parameters, and XPath contexts.

2 XATA2008 — XML: Applications and Associated Technologies

1.2 Syntax Overview

After the brief introduction to the main concepts inherent of XProc, a syntax
overview will be presented. Small examples will build upon each others, in order
to leverage its core concepts, including the different namespaces of the language,
scoping, and binding.

1.3 Steps

The core of this tutorial will be spent by presenting the different core steps of
XProc, i.e., its main elements. These include p:pipeline, p:for-each, p:viewport,
p:choose, p:group, and p:try.

1.4 Other Pipeline Elements

Complementing steps, other pipeline elements provide additional value to the
language. Such examples include using inputs and parameters, debugging and
documentation helpers, declaring steps, as well as building complex XML appli-
cations with pipelines and libraries.

1.5 Standard Step Library

The last part of this tutorial will provide a flavour of the standard step library of
XProc. The concept of micro-operations will be introduced, as a practical way
to define simple procedures to be applied onto XML documents. Well-known
processors will be approached too, such as XSLT and XInclude.

References

1. Kay, M.: XSL Transformations (XSLT) Version 2.0. Technical report (2007)
http://www.w3.org/ TR /xslt20.
2. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon,

J.: XQuery 1.0: An XML query language. Technical report (2007)
http://www.w3.org/ TR /xquery.

3. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: Xml
schema part 1: Structures second edition. Technical report (2004)

http://www.w3.org/TR/xmlschema-1/.
4. Walsh, N., Milowski, A., Thompson, H.: XProc: An XML Pipeline Language. Tech-
nical report (2006) http://www.w3.org/TR/xproc.

Creating a National Federation of Archives using
OAI-PMH

Luis Miguel Ferros®, José Carlos Ramalho® and Miguel Ferreira?

'Departament of Informatics — University of Minho
Campus de Gualtar, 4710 Braga — Portugal
{Imferros, jer}@di.uminho.pt

%Department of Information Systems — University of Minho
Campus de Azurém, 4800 Guimaraes — Portugal
mferreira@dsi.uminho.pt

Abstract. This paper describes the planning stages of the creation of a national
level federation of archives. The Open Archives Initiative Protocol for Metadata
Harvesting will be used for collecting metadata being produced by local
archives using any compliant records management software. The first stage of
implementation will harvest metadata produced with the DigitArq [1-3]
platform in a pilot group of Portuguese Regional Archives. DigitArq relies on
Encoded Archival Description (EAD) metadata to describe its collections.
However, the overwhelming flexibility and complexity of EAD make the
harvesting operation more complex than usual. This paper addresses possible
ways of exchanging EAD records using OAI-PMH as the basis for a central
repository of metadata that will enable the creation of advanced information
services at the national level.

Keywords: Metadata, harvesting, data provider, service provider,
interoperability, repository, digital archives, OAI-PMH, EAD, XML, Dublin
Core

1 Introduction

The use of standards for describing items of information introduces one major benefit
in the globalised information society that we live on: it enables information systems to
be interoperable. The arrival of the Open Archives Initiative [1] enabled repositories
and other types of information systems to share and concentrate information, and
more often metadata, allowing a great deal of new information services to be
developed, such as centralised search engines as Google Scholar [4] or OAlster [5]
and global statistics such as the ones provided by the Registry of Open Access
Repositories (ROAR) [6].

The purpose of this paper is to discuss the major obstacles one will face while
attempting to centralize archival metadata coming from different regional

4 XATA2008 — XML: Applications and Associated Technologies

repositories. More specifically, we will address the problematic of using OAI-PMH to
transfer metadata encoded in EAD (Encoded Archival Description) [7]. Due to its
flexibility, hierarchical nature and complex structure, EAD presents several
challenges to anyone trying to exchange this type of information in an efficient way.

This paper is organized as follows: in the section 2 we provide a short description
of the EAD standard. Section 3 describes OAI-PMH and its common requests; in
section 4 we describe the architecture of the proposed system and problems we expect
to face during its implementation; and finally, in section 5 we draw some conclusions
and outline some points of future work.

2 EAD as the archival standard for descriptive metadata

EAD [2] is a non-proprietary standard for encoding archival of finding aids. The
purpose of EAD is to provide information about archival resources in standard syntax
and normalized language. An instance of an EAD document is composed of three
parts: a header, a front matter and the archival description of collections (a collection
of documents created by a single person, family or organization).

The header section contains information about the EAD document itself [2]. The
front matter embeds information convenient for publishing or rendering the finding
aid. The archival description contains the bulk of an EAD document instance, which
describes the content, context, and extent of a body of archival materials, including
administrative and complementary information that facilitates the use and the
discovery of the material.

Information in an EAD instance is organized in unfolding hierarchical levels that
account for an overview of the whole collection to be followed by a more detailed
view of its constituent parts, e.g. sections, classes, documents, etc [1] (Fig. 1). Each
level of description contains information that roughly follows the ISAD(g) model [8].
Examples of descriptors that are commonly found at one of these description levels
are: title, range of dates, biographic history, archival history, scope and content,
existence and location of originals and copies, physical characteristics, etc.

EAD can be used to describe all sorts of archival material, these being physical,
like books, reports and photographs, or digital, such as databases, Web pages or
spreadsheets.

Creating a National Federation of Archives using OAI-PMH

5

<eadheader>
<eadid />
<filedescx
<titlestmt>
<titleproper />
</ftitlestmt>
</filedescx
</ eadheader>
<archdesc level="otherlewvel" otherlevel="F":>
<did>
<ghstract/>
<unitid countrycode="PT" repositoryoode="ADPRT">EMP/EM</unitids
<physdesc:>

</ physdesc>
</ did>
<dsc>
<z level="otherlevel" otherlevel="3C">
<did>
<unitid countrycode="PT" repositoryoode="ADPRT">CR</unitids>
<physdescs
</physdesc>
</did>
<dscx>

<z level="otherlewvel" otherlevel="3R":>
<dids>

<unitid countryocode="PT" repositoryoode="ADPRT">001</unitids>

<physdesc>
;?physdesc>
;?did>
<xé;
</desos

</dse>
</archdescx

</ ead>

Fig. 1 - Extract of an EAD instance

3 OAI-PMH as the standard for metadata exchange

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [9] plays
the important role of enabling repositories to become interoperable. The main goal of
OAI-PMH is to allow geographically separated repositories to exchange metadata
thus allowing the creation of repository federations.

6 XATA2008 — XML: Applications and Associated Technologies

The OAI-PMH defines a communication protocol that defines how the transference
of metadata should be performed between two basic entities: data providers and
service providers.

Data providers support the OAI-PMH as way to publish their metadata. The
service providers send OAI-PMH requests to data providers and harvest their
metadata that will serve as the basis for the development of more advanced services.
The interaction between these two entities is depicted in the Fig. 1. As one can
observe, a service provider that wants to harvest metadata sends a HTTP request to a
data provider, which, according to the request, responds with a XML message.

2

. Metadata equests (based on HTTP)
4—Servi harvaster

Meiadata (encoded in XML}

Service Provider

Fig. 2 - Interaction between OAI-PMH entities

For data providers to be able to publish their metadata through OAI-PMH, they
must implement six types of requests (called the verbs in this context):

e GetRecord - This verb is used to retrieve an individual metadata record
from a repository. Required arguments specify the identifier of the item
from which the record is requested and the format of the metadata that
should be included in the record [10].

e ldentify - This verb is used to retrieve information about a repository.
Some of the information returned is required as part of the OAI-PMH.
Repositories may also employ the Identify verb to return additional
descriptive information [10].

e ListRecords - This verb is used to harvest records from a repository.
Optional arguments permit selective harvesting of records based on set
membership and/or datestamp [10].

e Listldentifiers - This verb is an abbreviated form of ListRecords,
retrieving only headers rather than records. Optional arguments permit
selective harvesting of headers based on set membership and/or datestamp
[10].

e ListMetadataFormats - This verb is used to retrieve the metadata formats
available from a repository. An optional argument restricts the request to
the formats available for a specific item [10].

e Listsets - This verb is used to retrieve the set structure of a repository,
useful for selective harvesting [10].

Creating a National Federation of Archives using OAI-PMH 7

Fig. 3 shows an request of an request that list the metadata formats that can be
disseminated from the repository http://www.perseus.tufts.edu/cgi-bin/pdataprov for
the item with unique identifier oai:perseus.tufts.edu:Perseus:text:1999.02.0119.

The response to this request (Fig. 4) shows that 3 metadata formats are supported
for the given identifier: oai_dc, olac and perseus. For each of the formats, the location
of an XML Schema describing the format, as well as the XML Namespace URI is
given.

h |
i http://www, perseus. tufts. edu/cgi-bin/ pdataprov? i
| |
| |
|

| |

verb=ListMetadataFormats&identifier=oai:perseus.tufts.edu:Perseus:text:1999.02.0119
I

E <7yl version="1.0" encoding="UTF-3"?>
| =O0APMH xmins="http: /A openarchives arg/OAIF2.00"
urnlns: xsi="http: MAevweee w3 orgf2001 SHMLS chema-instance”
B wsizschemalocation="http: A openarchives. org/OAL2.0/
i http:fAeewone openarchives. org/ QA2 0/0ARPMH. xsd">
=regponseDate=2002-02-08T14:27:192</responseDate=
i =request verb="ListMetadataFarmats"”
i identifie="oai:perseus.tufts. edu:Perseus:text:1893.02.0119">
E http: fhwannee perseus tufts. edufcai-binfpdataprov</request=
 =ListhetadataFormats>

i <metadataFormats

' <metadataPrefix=oai_dc</metadataPrefix=
i <schermazhttp: e openarchives. org/OAN2 Ofoai_dec xsd
</schema>

) <metadataMarmespacexhttp s openarchives. org/OAI2 . Dfoai_dc/
| </metadataMamespaces=
i <imetadataFormats

i\ <metadataFormat>

E <metadataPrefix=olac</metadataPrefix=

' <schemazhttp:wvew. language-archives. org/OLAC/olac-0.2. xsd</schema=
i <metadataflamespace=http: fuwne language-archives. org/OLACHD 21

E </metadataMamespace>

' «eimetadataFormat:=

o <metadataFormat>

<metadataPrefix=perseus</metadataPrefix=

) <schermaxhttp:Aaeew. perseus.tufts edu/persmeta xsd</schema=
<metadataMamespacexhttp s perseus tufts. edu/persmeta. dtd

' </metadatalamespace=

. </metadataFormat>

1 <ilistMetadataFormats»

v 2/OA-PhH=

Fig. 4 — OAI-PMH response

8 XATA2008 — XML: Applications and Associated Technologies

4 Architecture and system operation

In this section, we describe the architecture and operational characteristics of a system
that uses the OAI-PMH to offer two important services: centralization of metadata
and interoperability between repositories.

Metadata centralization

Fig. 2 shows a simplified diagram of the system’s architecture that uses the OAI-
PMH to harvest metadata from several EAD repositories [1-3].

The protocol provides, as shown in the diagram, two main types of participants: the
data providers and the service providers. In this particular example, the data providers
are the digital repositories that hold the archival metadata. To ensure interoperability,
the data providers must provide their metadata according to common descriptive
metadata standard. In this case, this should be the EAD. The service provider offers
builds additional added-value services from the metadata harvested and stored in its
central repository (CR).

The harvesting task is performed by the Metadata harvesting module by sending
OAI-PMH requests to data providers, which according to the type of request, will
receive appropriate XML responses. Some of those will deliver the EAD metadata
that is hosted in the data provider.

The metadata harvested by the previous module is transformed and adapted as
necessary to fit the central repository (CR). This process is carried out by the “XML
EAD to CR” component.

Creating a National Federation of Archives using OAI-PMH 9

Metadata Repository

EAD/XML to
Central Repository
metadata adaptor

i Metadata 3
: Harvester :

OAI-PMH OAI-PMH OAI-PMH

Service Provider "

— —

Data Providers

Fig. 5 - Overview of the system's architecture

EAD represents hierarchically the overall records that compose a collection. A
single collection may range from a few dozen nodes to a staggering size of millions.
This being said, a question may be raised: If the atomic unit in an EAD file is the
collection (with all its complexity and size), how does one harvest this type metadata
if only one of its nodes gets updated? Well, this problem can be addressed in three
different ways:

1. Harvest the complete collection that holds the updated record.

This solution is simple to implement, since the answer to the request consists in
sending the corresponding updated collection. The service provider must only
integrate the new version of the collection in its central repository by simply replacing
the old one by the new collection. Although easy to implement, it is an inefficient
solution, because a simple change or insertion of a new record in a previously

10 XATA2008 — XML: Applications and Associated Technologies

harvested collection will trigger a subsequent harvest of the complete set of nodes that
compose the collection. This strategy is very inefficient at the bandwidth usage level.

2. Harvest the whole branch that contains the updated record.

This method triggers a transfer of data much lower that previously described.
However, the operation of extracting the nodes from data providers and the
integration of these records with the service providers is much more complex. The
extraction involves selecting the nodes all the way up the branch of the collection’s
tree. Consequently, the integration will be achieved by the replacement of old records
by the received records on the corresponding collection in the central repository.

3. Harvest only the updated record.

This is certainly the most efficient approach, as only the new or changed records are
harvested independently of this position in the collection structure. The problem in
this approach is that an EAD file is not valid if whole collection is not present. Using
this strategy implies that the nodes are identified uniquely at the national level as so to
guarantee that they are integrated in the right collection in the correct position.
Analysing EAD one can verify the existence of a CountryCode (code of the country)
and a RepositoryCode (code of the repository) elements, which compose the complete
reference of a record. This way, the existence of these fields in the complete reference
of a record and the unique references inside a given repository, guarantee the
uniqueness references in the repositories universe that publish EAD. So, the task of
harvesting only a record (or a set of records), independently of the hierarchical
organization can be possible, as long as we assume to be exchanging incomplete
EADs that are not valid from the EAD Schema perspective.

Interoperability between repositories

To increase interoperability among repositories, these should disseminate their
metadata in formats other than EAD. For example, it is common practice for the
library community to disseminate its records in Dublin Core (DC) [11] independently
of the metadata schemas that are being used in their information systems. Having a
dissemination port for Dublin Core enables the EAD repositories to be compatible to
an assortment of pre-existing service providers, e.g. OAlster, ROAR and Google
Scholar.

Because the metadata schemas used in the archival repositories depicted in this
paper are based in EAD [2], one must implement a crosswalk from EAD to DC. This
issue has already been addressed by Prom and Habing in [12].

Creating o National Federation of Archives using OAI-PMH 11

5 Conclusions and Future Work

In this paper was described the simple architecture of an information system capable
of implementing the concept of a National Federation of Archives that is based on
EAD that uses the OAI-PMH for exchanging metadata.

The EAD structure, due to its hierarchical nature and overwhelming flexibility
makes the use of OAI-PMH a non-straightforward process. The paper identifies the
causes that make this type metadata be so hard to harvest and synchronize. To address
this issue, we have identified and described three possible solutions, that differ both in
complexity and efficiency. Instead of exchanging full blown EAD collections we
propose that solely the updated nodes are harvested and integrated in their
corresponding collections. However, one should note that the description of a record
outside of the context of a collection may not be sufficient to fully understand it, as
the ascending nodes of description are required to make it complete and structured.
However, for the sole purpose of transferring data and incrementally updating a
central repository this solution seems highly appropriate.

As future work we will address in more detail the EAD to Dublin Core crosswalk
strategy so that the national repositories may also disseminate their metadata and
integrate with existing service providers.

It may also be interesting, on the service provider side, to develop modules that
transform metadata in formats other than EAD so that one can provide services for
other types of repositories.

REFERENCES

[1] M. Ferreira and J. C. Ramalho, "DigitArq - Creating and Managing a Digital Archive,"
presented at ICCC/IFIP International Conference on Electronic Publishing, Brasilia,
Brazil, 2004.

[2] M. Ferreira and J. C. Ramalho, "DigitArqg: Creating a Historical Digital Archive,"
presented at 5% Conferéncia da Associacdo Portuguesa de Sistemas de Informacéo,
Lisboa, 2004.

[3] J. C. Ramalho, M. Ferreira, L. Ferros, M. J. P. Lima and A. Sousa, "Digitarg 2 - Nova
plataforma aplicacional para gestdo de Arquivos Definitivos," presented at 2nd
International Conference on Enterprise Archives (22 Conferéncia Internacional de
Arquivos Empresariais), Seixal, Portugal, 2006.

[4] Google, "Google Scholar.” [Online]. Available: http://scholar.google.com.

[5] University of Michigan, "OAlster." [Online]. Available: http://www.oaister.org/.

[6] University of Southampton, "Registry of Open Access Repositories (ROAR)." [Online].
Available: http://roar.eprints.org/.

[7] Library of Congress, "EAD - Encoded Archival Description,” in Library of Congress,
1998. [Online]. Available: http://www.loc.gov/ead/. [Accessed 2004]

[8] International Council on Archives, "ISAD(G): General International Standard Archival
Description, Second edition," International Council on Archives 0-9696035-6-8, 1999.

[9] Open Archives Initiative, "The Open Archives Initiative Protocol for Metadata
Harvesting." [Online]. Available: http://www.openarchives.org/pmh/.

12 XATA2008 — XML: Applications and Associated Technologies

[10] Open Archives Initiative, "The Open Archives Initiative Protocol for Metadata
Harvesting Version 20" [Online]. Available:
http://www.openarchives.org/OAIl/2.0/openarchivesprotocol.htm.

[11] Dublin Core Metadata Initiative, "Dublin Core Metadata Initiative." [Online]. Available:
http://dublincore.org/.

[12] C.J. Prom and T. G. Habing, "Using the open archives initiative protocols with EAD "
presented at 2nd ACM/IEEE-CS joint conference on Digital libraries, Portland, Oregon,
USA 2002.

RADX - Rapid development of web applicationsin
XML

José Paulo Leal and Jorge Braz Gongalves

DCC-FC, University of Porto
R. Campo Alegre, 823 — 4150 — 180 Porto, Portugal
zp@dcc.fc.up.pt, jgoncalves@ipg.pt

Abstract. This article presents an on-going project whosal ge the fast

development of web applications based on the RAD ahotihe system

resulting from this project - RADX - generates weipl&cations for XML data

management. RADX consists of two main componentsagpiication engine
to run web applications based on XML documents that configured using

XSLT transformations; a meta-application for getiagh and managing
applications that run with the application engifike main feature of the meta-
application is the ability to generate XSLT configiions from 2nd order
transformations, applied to data document typend&fns in XML Schema.

These configurations can be changed, allowing ouigetion of the

application. RADX intends to be a system rapid dewelent of small web

application and prototypes of larger systems.

Keywords: XML, RAD, web applications, framework, prototyping.

1 Motivation

The goal of this project is the implementation ofsystem for rapid and easy
development of web applications based on XML [l]cwtoents. These data
management applications, with a simple and inteithterface, are intended for small
data sets and/or applications prototypes. XMLnizéasingly used to transfer and
archive data since it enables the interoperabbigyween different platforms and
facilitates its future use.

By using XML for data representation, RADX enabld#® use of XML
technologies in all web application layers, avoidihe need for successive format
conversions. Web applications are usually compadethree layers, each with its
own data model: the presentation layer based on HGMXHTML trees, the logical
layer based on object graphs, and the data laysedban tables of a relational
databases management system. The use of diffevemtfs in each layer requires
several data conversions that have a significastt co

13

14 XATA2008 — XML: Applications and Associated Technologies

As RADX uses XML both in the data layer and thespraation layer, we decided to
explore the use of XML also in the logic layer @siXSLT [2] transformations on
XML documents.

2 An example

This section describes, through an example, theeldpment and use of a web
application with RADX. This system has two main gmmnents: theApplication
Manager and theApplication Engine. The former is a meta-application that allows the
creation, management, and elimination of applicetithat run in the latter.

N\ 1 /.

home | features | documentation | contacts

RADX Rapid Development of Web Applications in XML

New Application

Name

Model E“(.:-Dmpac.:i:" V New

My Application's

:“Al:ll:lrESS Book ~ 1 Manage
Books —_—
Book of recipes Execute

| Sempany vehicles | Delete

Fig. 1. A screen shot of the Application Manager

The initial screen of the Application Manager i®@h on Fig. 1. One of its main
features is the ability to generate an applicaffom a XML Schema [3] document.
This document describes the structure of the agipdin’s data. Usually, this
document will be produced in an IDE with specifipport for this standard, such as
XML Spy, Oxygen or Eclipse.

The upper part of the Application Manager's inisakeen is a form for generating
a new application. It requires entering the apfilices name, the location of the
XML Schema document and choosing a model for th@ieation’s GUI. As part of

RADX - Rapid Development of Web Applications in XML 15

the creation of a new application, several secomroXSLT transformations are
executed, producing documents of various typessdld@cuments will be needed by
the Application Engine to run this application.

Generated applications are listed on the form enlatver part of the screen (Fig.
1). The selected application can be managed, ee@aut eliminated. The manage
button gives access to a form for editing individdacuments generated for an
application. The delete button eliminates the aaibn from the system. The execute
button launches the selected application on thdiégion Engine.

Let us assume we want to generate an applicatiomattage a collection of music
CDs. Using a specialized XML Schema editor we helveady produced a document
type similar to the presented in Fig. 2:

— <schema targetNamespace="http://www example org/cds" elementFormDefault="qualifisd">
— <element name="cds">
— <complexType>
— <sequence>
— <element name="cd" maxQccurs="unbounded" minQccurs="0">
— <complexTvpe>
— <sequence>
<element name="title"/>
<element name="interpreter"/>
<element name="vear"/>
</sequence>
</complexType>
</element>
</sequence>
</complexTvpe>
</element>
</schema>

Fig. 2. An XML Schema for a CD management application

Using the Application Manager we create a new apfibn namedds with the
file containing the document on Fig. 2 and the caco@zUl model. In the resulting
application the user will have access to a rangeptibns: search CDs, create a new
CD entry, edit or delete existing CDs and navigeiagh them.

16 XATA2008 — XML: Applications and Associated Technologies

RADX

Rapid

Application

Development 5 N

Application Cds

Title |Sleep Through The Static
Interpreter Jack Johnson
o [

E][Search ”ENEWELﬁISave ” Delete]

Fig. 3. Application Engine screen shot

The GUI shown on Fig. 3. depends both on the datatsre, given by the XML
Schema document, and on the selected GUI model.clitrently available options
are the compact model, used in the example, anéxpanded model. The compact
model is based on a single form used for all opmmat create, modify, search,
display, navigate and remove elements. The expanuedel has other views for
some operations. For instance, the result of ackegperation is a list containing the
selected elements. Other GUI models are plannedfifture versions of the
Application Manager.

3 Reated work

James Martin presented, in 1991, a model of soéwimvelopment known as RAD
(Rapid Application Development) with the publicatiof a book [4] with the same
name. This model aims to shorten the software deweént cycle, producing faster
results and reducing costs without losing qualityalso intends to address to the
problem of excessive project duration felt in thtenglard development methodologies
commonly used before the 90, when the time to emtemany projects affected their
viability.

The RAD model became popular and has been usedotstargeted to different
database management systems and/or programmingalges) Some of these RAD
tools are used for development of web applicati@ss,is the case of Omnis [5],
Intraweb [6], RAD-Studio [7], Delphi-for-PHP [8], ®¥Snap [9], TurboGears [10].

RADX - Rapid Development of Web Applications in XML 17

However, most of these tools need a significantarhof programming to produce a
working application. The goal of RADX is the creatiof a working application
without any programming. To be sure, in order tetomize an application in RADX
the programmer may need to edit some configurdties but a working application
is created immediately after defining its data sche

The architecture of RADX is based on the standard#CM(Model-View-
Controller) architectural pattern. This patternnisrmally used in programs with
graphical interaction with the user [11]. This stard was proposed by Trygve
Reenskaug in 1978 as a design solution for Smial[te2]. Its main purpose is to
serve as a mediator between the human mental naodelthe digital model that
actually operates in the computer, facilitating thomtrol of large and complex data
structures [13]. In this pattern the model represéme knowledge of the program, the
view is a representation of the model in which ldghlighted some of their attributes
and controller serves as an intermediary betweerusier and the system, acting on
the model and providing views of the model in ademice with the user requests.

The MVC pattern is typically used in the design gfaphical applications
implemented in object oriented languages. The @patnts in this pattern are classes
of objects. Nevertheless, the MVC concepts of Mp¥@&w and Controller can also
be used to structure a graphical application withming used in its design. These
concepts have been successfully used to separdtstracture configuration files in
highly configurable web applications [15].

4 Architecture

As mentioned before, RADX integrates two distinadmponents: an application
engine for running web applications operation basekML, a meta-application for

managing applications running on the applicatiogim® This section describes the
architecture of each component.

4.1 Application engine

The application engine’s architecture is basedhenMVC pattern, a pattern often
used in programs with interaction with the user. dAglined in the section 1, we
pretend to use XML as the data format, and XSLhdafarmations as the corner
stones of RADX development. Therefore, we try tgebeach of the participants in
the MVC standard - Model, View and Controller inetlprocessing of XML
documents.

The model of the RADX applications — the set off@atures - is the management
of data persisted in XML documents. Therefore, thedel can be encoded as a
transformation on the data, generating an updait document as a result.

The graphical interface of RADX's applications detssof HTML pages that allow
the user to view or interact with the data. The3MH pages are the views and are
obtained by processing the XML data.

It should be noted that the changes implementeittier the model or view need a
set of variables associated with the interactioatestas parameters of the

18 XATA2008 — XML: Applications and Associated Technologies

transformation. For example, the navigation intareplies that the present view only
shows the element (the equivalent of a record)eatly selected. These XSLT
transformation parameters are specific to each arsgrchange during his interaction
with the application.

The controller, as the name suggests, is respensdl controlling the other
constituents of the application, namely the model aiew. As explained earlier,
these two participants in the MVC pattern are XStansformations controlled by a
set of parameters that constitute the state. Tihusrder to encode all logic as XSLT
files, the model is implemented as a transformatiwt produces a XML document
representing the state.

The application engine is a framework for runningbwapplications. It has three
extension points (usually called "hot spots") facle web applications it runs. Those
extension points are XSLT transformations and eeairesponds to one of the
participants of the MVC model.

Framework
jm——————— Data f--———————e ”
| i
:) :
[K i !
HTTP Controlléir Moieﬁ : . View : HTTP
Request] I Response
X 1
> 3 -l< i 1 > >
Variables | ’ ;. : _____ 1_ I HTML
| . . .4'
I
I .
U s s o i s
v TnTooTo | State

Fig. 4. Processing an HTTP request in the RADX applicatiogine

To better explain this architecture we presentign E. the processing of an HTTP
request received by the RADX application engine.hew an HTTP request is
received from a web browser it triggers three ti@msations in sequence, producing
an HTML document that is sent back to the browsethe HTTP response. In the
diagram we denote execution flow by solid arrowsanEformations are represented
by circles with a “T” label, connected by dashedoass to their input and output
documents and by dotted arrows to their parameters.

Two DOM objects — Data and State - have a centlal in this process and are
both represented by double-line rectangles in tlagrdm. The former reflects the
application data as persisted in a XML documes fihere is a Data object for each
application managed by the application engine. [&tter is the state of the interaction
with each user; there is a State object for eatiieaaser session of the application
engine. Both these objects are used in all thaaestormations: the Data object is the
transformation data source and the State objecttacmn the transformation
parameters.

RADX - Rapid Development of Web Applications in XML 19

In the beginning of this process the variableshef HTTP request are copied to
the State object for the current user. The firsindformation, representing the
controller, uses Data as the original document amhges the State. The second
transformation, representing the Model, transfotins Data into itself. The third
transformation, representing the View, transfornagalinto HTML and sends it in the
HTTP response.

4.2 Application M anager

The implementation of the application manager wased on “Model 2” that is the
MVC applied to Java web applications. Therefore, tontroller is composed by a
servlet that receives HTTP requests and accorditigeise requests acts on the model
and the view. The Model is a set of Java beansptatesses instructions from the
servlet. The View is composed of JSPs that usemtigel data to produce an HTML
output.

The application manager’s function is to manageagh@ications supported by the
application engine. To create the new applicatibrgenerates XSLT configuration
for the application engine using 2nd order tramsftions applied to XML Schema
type definitions.

5 Implementation

The RADX system was implemented as two independawa web applications: the
application engine and the application manageryere both implemented using
the Tomcat servlet container. In this section wghhght the main issues encountered
in the development of these two components.

5.1 Application engine

The application engine has a rather simple desigmas a single servlet that acts as
front controller to all applications requests; thégvlet instances the Application class
for each web application it manages.

The main function of the servlet is to apply theeth XSLT transformations
associated with the model, view and controllemygdained in the previous section. It
also manages the users’ state using the standsstisenechanism provided by the
servlet container.

Each Application instance contains a DOM object aad collection of
transformations. The main method of this class legoa transformation on the data
object that is outputted to different objects adony to its type: model
transformations are copied to the data objectfiesadl serialized in the file system;
controller transformations change the DOM objegbresenting the state; view
transformations produces HTML that is outputtethesHTTP response channel.

20 XATA2008 — XML: Applications and Associated Technologies

When the Application class is instanced the cowrdng data file is loaded to its
DOM object as well as all its transformations. libsld be noted that some HTTP
requests just change the current view and do rttaée model transformations. The
data object is serialized to its data file only whieactually changes. On the other
hand the Application class is thread-safe to englat integrity in concurrent
operations.

5.2 Application manager

The application manager is a standard model 2 J@a[15] application that allows
the creation, customization and deletion of web liapfions supported by the
application engine.

The main feature of the application manager iscfeation of a new application
when a XML Schema is uploaded. Several second ot&&T transformations are
applied to this document in order to create the K8les that configure the hot spots
of the application engine, as well as the initidMiXdata file.

The main issue in these transformations is the tifileation of definitions of
elements containing sets of elements of the sampe, tyhich would correspond to
entities in a relational model. For this purpose wge the XML schema sequence
indicator.

Element types in XML Schema can be either namednonymous. To simplify
the detection of type definition with sequence @atiors we start by normalizing
XML Schema documents. As would be expected, thisnabtization is also an XSLT
transformation that unfolds all named type refeeemto a XML Schema with only
anonymous type definitions.

The same procedure for identifying repeated elesnsntised for generating each
of the three XSLT transformations from the normedizschema. For each set of
repeated elements a corresponding set of tempiatgsroduced in the target
transformation.

Using the application manager the programmer cait #tk individual
transformations to customize its application. Insincases the XSLT encoding the
view will be the first candidate for customizationorder to change the application
graphical appearance. The controller transformatitimeed to be edited only to add
or remove access to model operations. We expechtue| transformation to be the
one to require less customization.

6 Conclusion

This article presents RADX, a system for developinoénveb applications prototypes
based on XML documents in a rapid and easy way.

The fact that in RADX data persistence and graphintarfaces are both based on
XML, led us to use XML transformations in the implentation of the logic layer.
The architecture of the Application Engine of RADX based on applying three
successive transformations corresponding to thestitoents of the MVC

RADX - Rapid Development of Web Applications in XML 21

architectural pattern. We also highlight the massuies encountered during the
development of the RADX system.

As it is an ongoing project is not yet possiblartake an assessment of the RADX
system efficiency. In any case, since it is a sysiesigned for prototyping, its main
advantage is the ease of applications creatioradaduacy of the user’s needs.

References

Extensible Markug.anguage (XML), http://www.w3.org/XML/

XSL Transformations (XSLT), http://www.w3.org/TR/xs|

XML Schema Definitions (XSD), http://www.w3.org/ XMEchema

Martin, J: Rapid Application Development. Macmill&oll Div, New York, (1991)

Omnis Studio - http://www.omnis.net;

Intraweb - http://www.atozedsoftware.com/intraWeb;

RAD-Studio - http://www.codegear.com/products/radiiy

Delphi-for - PHP - http://www.codegear.com/prodiaesphi/php;

WebSnap - http://dn.codegear.com/article/27404;

TurboGears - http://www.turbogears.org.nyud.net/;

Gamma, E., Helm, R., Johnson, R., Vlissides, J.:dbeBiatterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley Professliofi994)

Reenskaug, T.: Models-Views-Controllers, Xerox PARC hmécal note,

http://heim.ifi.uio.no/trygver/themes/mvc/mvc-indetml, (1979)

. Reenskaug, T..: The Model-View-Controller (MVC) - Itsad® and Present,

http://heim.ifi.uio.no/trygver/themes/mvc/mvc-indetml, (2003)

14. Leal, J., Domingues, M., Rapid development of webrfaces to heterogeneous systems,
SOFSEM 2007: Current Trends in Theory and Pracic@omputer, pp 716-725, Lecture
Notes in Computer Science, Springer-Verlag.

15. Singh, T., Sterns, B., Johnson, M., et al.: Desigiiinterprise Applications with the J2EE

Platform, Addison-Wesley, (2002)

RBOooNOA~AWDE

= o

[EEY
N

[EnY
w

CGI::Auto — Automatic Web-Service Creation

Davide Sousa, Alberto Simoes, and José Joao Almeida

Departamento de Informética
Universidade do Minho
kevorkyan@gmail.com, {ambs, jj}@di.uminho.pt

Abstract. The creation of a CGI or a WebService as an interface for
a command line tool is not as unusual as it may seem. It is extremely
usual and useful.

There are applications developed as command line tools that can be
useful for different purposes, and different kind of users. Some of these
users might not be able to run these tools directly. For instance, it is not
easy to install a bunch of Perl modules to have a small tool working. For
these situations, it is easier to make the tool available in the Web or as
a WebService.

The problem with making the tool available in these fashions, is that
programmers tend to rewrite the tools to incorporate the CGI or XML
specific layers.

We defend that these CGI or WebService interfaces should use the al-
ready available command line tool, without any change. This interface
should be able to read a simple textual specification of how the command
line tool works, and buid the CGI or XML specific layers automatically.
The CGI::Auto module aims this purpose: to encapsulate command line
tools in a CGI layer based on a textual specification, transforming the
command line tool in a web application.

1 Introduction

When solving a problem in a quick way, programmers tend to write small com-
mand line tools. These commands (or scrips) can do a lot of interesting things,
but their dissemination is not easy. People who want to run them have to install
(and probably compile) the command.

The process of making these tools available to other users can involve two
approaches:

— to prepare a standalone package, that can be downloaded over the Internet
for local installation;

— to prepare a WebService [1] or an interactive Web Application for final-user
usage.

While the first approach is preferred for most cases, it is not the easier way for all
kind of users. If the tool was developed using, for instance, a scripting language,
the final-user will need to install the scripting language interpreter to run it. If

22

CGI::Auto - Automatic Web-Service Creation 28

the programmer wants to distribute a binary it is needed to compile the tool for
each architecture and operating system. Other option might be the distribution
of the source-code. That is handy if the final-user is also a programmer, or else,
she will be lost when compiling the tool.

When the command line tool is to be used by a non technical user, most pro-
grammers tend to choose the second approach to release their tools. To prepare
a Web Application is quite easier, as the tool will run in the server computer,
and thus, no cross compiling is necessary.

The problem with this approach is that while it is not difficult to develop
a user-friendly web interface, it involves the modification of the original tool,
adding a Web layer.

We might argue that this process is performed just once. But it is not true.
When adding a new feature to the command line tool we will want to reflect it
in the Web application. In the same way, when changing the Web application,
we will want to reflect the changes in the command line tool.

We defend that the best approach is to develop a Web layer that uses the
command line tool directly. The programmer can change the command line tool,
and the new features will be available for the final-user automatically, with no
need to re-design the Web Application.

For this purpose we developed a Perl module, named CGI: : Auto. This module
provides means to write a CGI' [3] application that behaves accordingly with
a textual specification of how the command line tool is executed. CGI: :Auto
will not re-implement command line tools: it will run them directly on the host
operating system shell.

This module uses a textual specification that describes how to run a specific
command (or generically any pipeline of commands), and generates the Web
application on the fly. The textual specification just describes the accepted flags
and option for the command line tool, together with some strings to make the
Web application more user-friendly.

CGI: :Auto will be introduced, showing how to build a Web interface for two
well known Unix command line tools: word count (wc) and pattern searching

(grep).

2 CGI::Auto Approach

Before developing CGI: : Auto, we needed to study how command line tools work.
The main requirement for CGI::Auto is that it should be general enough to
produce interfaces for all kind of command line tools. Command line tools can
interact with the user in many different ways [2]:

— accept input through standard input;

— print errors to a standard error file handle;
— print results to the standard output;
create files;

! Future work intends to incorporate a WebService layer as option.

24 XATA2008 — XML: Applications and Associated Technologies

— read files;

— accept optional flags or required ones;
— accept optional or required arguments;
— can be compound using a pipeline;

All these kind of operations need to be treated by CGI: :Auto, and need to be
defined in some way in the specification file, in a simple an concise description.

The CGI: :Auto CGI have just one command: the invocation of the CGI: : Auto
main method with the textual specification of how the Web Application should
interact with the command line tool.

The CGI will act as an abstraction layer between the command line tool and
the Web Application. It will show a simple form to the user, where the command
line tool available options are shown as common HTML widgets: radio buttons,
combo boxes, text fields and text areas. When the user fills in the form and
submits it, a command line pattern is filled with the user information and run
on the host operating system. The output will then be presented to the user.

2.1 Example 1 — Word Count

A command line tool works with a number of specific parameters, and usually
operates on one or more files. As a first example, consider the word count com-
mand (wc) which, among other things, allows the user to count the number of
lines and the number of words in a given file. Its main usage is:

wc -1 -w file

Basically, it accepts two switches that specify what we want to count (lines or
words) and a filename. The two switches are shown to the user as HTML radio
button, where the user can select one, both or none.

Regarding the file to process, we need to make it available in the host op-
erating system. We can supply it to the Web application using three methods:
to upload the file using a common CGI upload field, to copy and paste the con-
tent of the file into a text area, or to specify an URL where the file should be
downloaded.

The specification to run this command under CGI: :Auto is as simple as:

my %wec= (
description => "Counting lines and words in a file.",
command => "wc [Jwords)] [%lines%] [%filexl",
args => {
words => {type => "flag",value => "-w",name => "Count words"},
lines => {type => "flag",value => "-1",name => "Count lines"},
file => {type => "upload",name => "File to process..."}
}
)3

The first argument on this specification is a string that describes the web ap-
plication. Follows the command line pattern with placeholders, delimited by [%

CGI::Auto - Automatic Web-Service Creation 25

and %]. These placeholders are then explained, one by one, in the arguments
list.

These arguments can have different types. On this example we have flags (for
command line switches), and upload fields (for supplying files to the command
line). Flags have a value (the value that is replaced in the command line pattern
if the user select it), and a name, that is shown to the user in the Web application.
File uploads just have a name, with a simple description of what will be done
with that file.

Figure 1 shows the CGI created with this configuration. The area A corre-
sponds to the user interface with the command line tool. After activating the
desired parameters and uploading the file to process, the command result is
presented (area B).

SINOPSYS: wc -w -1 fileO

DESCRIPTION:
Contagem de palavras e linhas num ficheiro.
Activate flags?

[~ -w : Contar palavras. A
[7-1: Contar linhas.

Uploads

Ficheiro a processar...

I Browse... |
Submit Query |

Command Executed:

wce -1 /tmp/passwd_tempWNeq
Results:

21 /tmp/passwd_tempWheq

Fig. 1. Word-Count (wc) with a web interface.

This interface is not the best for all kind of operations, but is fully config-
urable by the CGI: :Auto specification.

2.2 Example 2 — Pattern Search

The second example includes a third type of parameter: textual expressions to
be replaced directly in the command line pattern.

To demonstrate this kind of parameter we will build an interface to the grep
unix tool. Also, to explain how we can supply a pipeline of tools, we will tail the

26 XATA2008 — XML: Applications and Associated Technologies

result of the grep, showing just the final n results (being n a value specified by
the user).

my %grep= (
command => "grep [Jregexpk] [Vfilel] | tail -n [/nl%]",
description => "Pattern Search.",

args => {
regexp => {type => "textfield",name => "Pattern to Search"},
nl => {type => "textfield",name => "Maximum number of results"},
file => {type => "upload" ,name => "File to process.."}
}
)5

The specification is straightforward. The command is just another command
line pattern. It is written as if it was executed directly on your shell. Regarding
arguments, we have the third type: text fields. These arguments are fields where
the user can write anything, and their content will be replaced in the command
line pattern. Figure 2 shows the Web interface generated for this description.

SINOPSYS: grep regexp fileO | tail -n nl
DESCRIPTION:

Contagem de Padrées.

Texfields

Padrao a pesquisar.
Ihome

Niimero maximo de resultados.
[5

Uploads

Ficheiro a processar...

I}etc!passwd| Browse... |
Submit Query |

Command Executed:

grep ‘home’ ftmp/passwd_tempoG2] | tail -n '5'
Results:

gjc:x:1081:1061:: /home/gjc: /bin/bash

webpaper:x:1005:1005: : /home/webpaper: /bin/bash

Fig. 2. Pattern Search (grep) with a web interface.

CGI::Auto - Automatic Web-Service Creation 27

3 Conclusion and Future work

While this work is still in progress, it shown that the approach is viable. It is
quite easy to specify any command line behavior using a command line pattern
and a set of arguments description.

There are a lot of new features that are being currently implemented. They
include more flexibility in the user interface (for instance, to generate mime-type
rich documents, like PDF), incremental pipeline execution, and batch jobs. This
last feature is very important as some tools will make the web-server time-out
before a result is shown. For these kind of tools we are developing a deferred
approach. The user will fill in the form and supply an email. Later, when the
job is finished, the user will receive an email with the job results (or for some
jobs with big results, with a specific URL where the result can be downloaded).

At the moment we know that the interpolation of user input directly in the
command line patter is a big source of exploits. At the moment we want to
prepare the basic module, and later include a security layer to filter and validate
user input.

Currently, the integration with WebServices is not yet a reality. While its
implementation is not complicated, it requires the development of a WebService
client. Without this client we can not validate it. With web applications this
kind of validation is quite easier.

References

1. Carlos Jorge Lopes and José Carlos Ramalho. Web Services — Aplicagées Dis-
tribuidas sobre Protocolos Internet. FCA, 2005.

2. Eric Steven Raymond. The Art Of Unixz Programming. Addison-Wesley, 2003.

3. L.D. Stein. Official guide to programming with CGI. pm. Wiley New York, 1998.

XML-based Extraction of Terminological
Information from Corpora

Ana Belén Crespo Bastos, Xosé Maria Gémez Clemente,
Xavier Gomez Guinovart, and Susana Lépez Ferndndez

Grupo TALG
Tecnoloxias e Aplicaciéns da Lingua Galega
Universidade de Vigo
{acrespo, xgomez, xgg, susanalopez}Quvigo.es
http://sli.uvigo.es

Abstract. In this paper, we present a methodology for the extraction
of terminological information from textual corpora, showing the pro-
cesses we follow for identification of term candidates in corpora, and for
recognition in textual data of term definitions and conceptual relations.
Both the textual corpora that are used as the source for terminological
information, as well as the terminological database we build from this
information, are stored and maintained by linguists in XML format, and
converted to MySQL format for consultation through a PHP-based web
application.

Key words: Natural language processing, textual corpora, terminolog-
ical databases, ontologies, information extraction

1 Introduction

In this paper! we present a methodology developed at the University of Vigo by
the TALG Research Group (“Galician Language Technology and Applications”)
for the extraction of terminological information from textual corpora leading to
the creation of linguistic resources in the field of terminology for Galician. We
will explain the main characteristics of the CLUVI corpus and the CTG corpus
which constitute the source of this work, the process followed for the preparation
of the Terminological Databank of the University of Vigo (TUVI), as well as the
results obtained so far and the tasks we are undertaking and the ones we have
in prospect.

The Linguistic Corpus of the University of Vigo (CLUVI) is an open collec-
tion of textual corpora with translations in specific areas of the contemporary

! This work has been funded by the Ministerio de Educacién y Ciencia and the Fondo
Europeo de Desenvolvemento Rexional (FEDER) within the project “Diseno e imple-
mentacién de un servidor de recursos integrados para el desarrollo de tecnologias de
la lengua gallega (RILG)” (HUM2006-11125-C02-01/FILO), a coordinated project
between the University of Vigo (TALG Research Group) and the University of San-
tiago de Compostela (Instituto da Lingua Galega).

28

XML-based Extraction of Terminological Information from Corpora 29

Galician language, accessible in the web since September 2003 at http://sli.
uvigo.es/CLUVI. With a current total length exceeding the 20 million words,
the CLUVI comprises six main parallel corpora belonging to four specialized reg-
isters (from fiction, computing, popular science and legal-administrative fields)
and five different language combinations with Galician (Galician-Spanish bilin-
gual translation, English-Galician bilingual translation, French-Galician bilin-
gual translation, English-Galician-French-Spanish tetralingual translation and
Spanish-Galician-Catalan-Basque tetralingual translation) [4]. The format cho-
sen for storing the aligned parallel texts is an adaptation of the TMX format
(Translation Memory eXchange), as this is the XML encoding standard for trans-
lation memories and parallel corpora, regardless of the application used [9]. A
translation memory is a database which holds the original and translated ver-
sion for each of the sentences translated in the framework of a computer-aided
translation system, with the aim to reuse translations by the program. With
some differences, an aligned parallel corpus is equivalent to a translation mem-
ory and, in practice, there is a considerable number of TMX-encoded aligned
parallel corpora, with the added advantage that these corpora can be used as
translation memories for feeding computer-aided translation programs [10].

The Galician Technical Corpus (CTG), available since 2006 for free consul-
tation at http://sli.uvigo.es/CTG, is an open monolingual corpus of contem-
porary specialized Galician, in the fields of law, computing, economics, environ-
mental science, sociology and medicine, with a current extension of 12 million
words. The CTG is stored in the XML format, annotated with bibliographic
and thematic information, and segmented into sentences. The web application
developed in PHP for the searching and browsing of the CTG permits to query
words or groups of words, use wildcards looking for complex patterns (regular
expressions), and specify the subset of the corpus to which you want to limit
the search. At present, the CTG is being annotated with information about the
lemma and part-of-speech of words.

The Terminological Databank of the University of Vigo (TUVI) is a termi-
nological database based on the monolingual and parallel specialty texts col-
lected in the corpora of the University of Vigo, namely in the Linguistic Cor-
pus of the University of Vigo (CLUVI) and in the Galician Technical Cor-
pus (CTG). This terminological database is freely accessible on the web at
http://sli.uvigo.es/TUVI, and currently has 5,625 terms documented in the
CLUVI and CTG corpora belonging to the areas of law (1,411 bilingual and
monolingual entries), sociology (954 tetralingual and monolingual entries), econ-
omy (1,163 monolingual entries) and ecology (1,324 monolingual entries). All
terms in the TUVI are documented in the corpora, the terminological invento-
ries in the fields of computer science and medicine being in progress.

In the TUVI, terminological information is structured around concepts. Each
TUVI record includes all the information relating to a concept expressed with
a Galician term which can be recorded also with variants, both intralinguis-
tic (synonymic terms, spelling variants, or dialectal variants) and interlinguistic
(translations or, more properly, equivalences). The information collected for each

30 XATA2008 — XML: Applications and Associated Technologies

variant (including the common or unmarked variant) includes the lemma of the
term, its grammatical category, its definition, and a context of usage documented
in the corpus. Registers or concepts in the database are grouped according to
their thematic area within a branch of a hierarchical thematic tree of the matter.
Also, the concepts in the database form a navigateable lexical-semantic network
where conceptual nodes interact with each other according to the semantic re-
lations (antonymy, hiperonymy, holonymy, etc.) among them.

Both the textual corpora that are used as the source for terminological infor-
mation, as well as the terminological database we build from this information,
are stored and maintained by linguists in XML format, and converted to MySQL
format for consultation through a PHP-based web application, which allows for
significantly expedite processing. XML to MySQL conversion is done in two ways,
depending on the original XML document. For these textual corpora, which have
a relatively simple structure, we created an ad hoc database with two related
tables, one for the source texts and another for the sentences, and the data is
imported from two delimited texts generated through XSL. For the termbase,
which has a complex structure branching at various levels, we use Altova XML-
Spy in order to export XML as delimited text. Altova XMLSpy converts XML
input in ten interrelated tables which are imported from a MySQL database
created from the output of XMLSpy converter. Terminological information in
the TUVI database is structured according to the following DTD:

<!ELEMENT dic (cc+)> <!——a dictionary is a set of concepts——>
<!ELEMENT cc (ic, rs*, def*, ct+, lg+)>

<!ELEMENT ic (f PCDATA)> <!——ic: concept index——>
<!ELEMENT rs (f PCDATA)> <!——rs: semantic relations——>
<IATTLIST rs <!——tipo-rs: set of semantic relations——>

tipo-rs (hipo | hiper | ant | mero | holo | eant | epost | tant | tsim | tpost
| axente | prod | caus | efec | instr | fin) § REQUIRED >
<!ELEMENT def (texto_def, fonte_def?)> <!——def: definition——>
<IATTLIST def xml:lang (gl | es | en | fr | pt) §f REQUIRED >
<IELEMENT texto_def (§ PCDATA)>

<IELEMENT fonte_def (# PCDATA)>

<!ELEMENT ct (f PCDATA)> <!——ct: thematic field——>
<IATTLIST ct st CDATA § REQUIRED > <!——st: standard for classifi-
cation——>

<!ELEMENT lg (var+)> <!——lg: language-specific information——>
<IATTLIST lg

xml:lang (gl | es | en | fr | pt) § REQUIRED >

<!ELEMENT var (lema, pms?, cat, ex*, frec+)>

<IATTLIST var <!——var: linguistic variant——>

tipo (com | orto | morf | sigla | acro) §f REQUIRED

<IELEMENT lema (4 PCDATA)>

<IELEMENT cat EMPTY> <!——cat: grammatical category——>
<IATTLIST cat

valor (m | f| s | com | adx | lconx | lprep | ladx | Inom | lvb | ladv |

XML-based Extraction of Terminological Information from Corpora 31

ladvlat | vt | vi | mpl | fpl | spl | compl) § REQUIRED >
<!ELEMENT pms (f PCDATA)> <!——morphosyntactic pattern——>
<!ELEMENT ex (texto_ex, fonte_ex)> <!——ex: term in context——>
<!ELEMENT texto_ex (f PCDATA)>

<!ELEMENT fonte_ex (obra, num?)>

<!ELEMENT num ({ PCDATA)>

<IELEMENT obra (f PCDATA)>

<!ELEMENT frec (fab, vcorpus, palcorpus)> <!——frec: term relative
frequency in the corpus——>

<!ELEMENT fab (§ PCDATA)> <!——fab: absolute frequency——>
<!ELEMENT vcorpus (§ PCDATA)> <!——vcorpus: corpus version——>
<!ELEMENT palcorpus (f PCDATA)> <!——palcorpus: corpus size——>

2 Extraction of term candidates

Next, we will explain our methodology for the extraction of term candidates from
corpora, focusing on the AUGA corpus, a subset of CTG corpus devoted to lan-
guage of ecology and environmental sciences, consisting of 2,349,362 words of
journalistic, legislative, academic and informative texts. The texts in the AUGA
corpus, as a whole, are about different themes on relations between human be-
ings and nature, including the study of environmental problems and models for
sustainable development.

2.1 Wordgrams-based extraction

First, we extract the most frequent words of the corpus, as well as the most
frequent sequences of n-words (wordgrams), taking into account sequences until
4 words (bigrams, trigrams and tetragrams). Below we include some examples
of terms identified in this way, with the frequency with which they occur in the
corpus analyzed:

ambiental (5,216 times)

— ambiente (3,807 times)

— especies (2,464 times)

— contaminacién (1,658 times)

— impacto ambiental (903 times)

— educacion ambiental (527 times)

— augas residuais (516 times)

— avaliacién ambiental (508 times)

— residuos perigosos (499 times)

— xestion de residuos (455 times)

— calidade do aire (274 times)

— plan de xestién (223 times)

— organismos modificados xeneticamente (214 times)
— autorizacion ambiental integrada (213 times)

32 XATA2008 — XML: Applications and Associated Technologies

avaliacién de impacto ambiental (247 times)
— gases de efecto invernadoiro (220 times)

— estudo de impacto ambiental (166 times)
declaracion de impacto ambiental (160 times)

2.2 Extracting low frequency terms

The wordgrams-based terminology extraction is completed with the consultation
of authoritative literature on the subject, which allows us, among other things,
to identify key terms for the domain that have a low frequency in the corpus. In
the case of environmental terms, the reference work for the Galician language
was the Léxico do medio (http://www.linmiter.net/lexique/_index.html),
elaborated by the Unido Latina (http://www.unilat.org) in the European
project “Linmiter” (http://www.linmiter.net), a project created as a tool to
support the terminology of minority Latin languages. Thus, we have completed
our wordgrams-based inventory with the terms of the Léxico do medio which
are equally documented in our corpus but which were not included in our initial
list. These are new terms which, despite having a low presence and frequency in
the body, are important terms in the field.

2.3 Extracting morphosyntactic patterns

As we said earlier, the CTG corpus is being tagged with information about
lemma and part-of-speech of words. The tagset used in CTG is based on the
tagset proposed by the Eagles group [5] for the annotation of morphosyntactic
lexicons and corpora for all European languages. Here follows, by way of example,
a fragment extracted from the CTG corpus in its PoS-tagged version and in its
untagged version:?

<s>(@alicia é a primeira Comunidade Auténoma pesqueira do Estado
espafiol, o sector pesqueiro representa o 8% do PIB e o 5% da poboacién
activa, estas cifras a pesar de estar en consonancia coa importancia do
litoral a nivel mundial, o 40% da poboacién do mundo vive nas zonas
costeiras, presenta unhas cifras moi por enriba de calquera dos outros
paises comunitarios.</s>

<s><t w=*“Galicia” c=“NP00000” > Galicia< /t> <t w= “ser” c=“VIP3-
S007>é< /t> <t w=“0" c= “AFS”">a</t> <t w=“primeiro” ¢=“NOO-
FS”>primeira</t> <t w=“Comunidade” c¢=*“NCFS000”>Comunida-
de</t> <t w=“Auténomo” c=*“A0FS0”>Auténoma</t> <t w="“pes-
queira” ¢=“A0FS0”>pesqueira</t> <t w=*“de” ¢ =“SPS00”>do< /t>
<t w=“" c=“AMS">~</t> <t w =“Estado” c¢=“NCMS000”>Esta-
do< /t> <t w="“espanol” c=“A0MS0”>espanol</t> [...] </s>

2 Textual segment included in the CTG corpus belonging to the doctoral dissertation
of Alfredo Lépez Fernandez, Estatus dos pequenos cetdceos da plataforma de Galicia
(University of Santiago de Compostela, 2003), directed by Angel Guerra Sierra and
Graham J. Pierce.

XML-based Extraction of Terminological Information from Corpora 33

From this tagged corpus we can retrieve new term candidates based on the
morphosyntactic patterns most frequently found in the terminological database
built until that moment. Thus, we first determine which are the most common
tag combinations in the terminological inventory done so far, and afterwards we
observe the sequences of tokens in the corpus that correspond to these patterns.
For example, this is the list of morphosyntactic patterns most frequently found in
the inventory of 1,444 terms extracted from the AUGA corpus on environmental
sciences (we indicate the number of times the term occurs in the list with the
specific morphosyntactic pattern):

Singular feminine noun (216 times)

— Singular masculine noun (209 times)

— Singular feminine noun + singular feminine adjective (157 times)

— Singular masculine noun + singular masculine adjective (145 times)

— Singular feminine noun + singular common adjective (98 times)

— Singular masculine noun + singular common adjective (97 times)

— Singular masculine noun + preposition + singular feminine noun (66 times)
— Singular masculine adjective (52 times)

— Singular feminine noun + preposition + singular feminine noun (41 times)
— Singular common adjective (34 times)

— Singular masculine noun + preposition + singular masculine noun (33 times)
— Verb (21 times)

Comparing the results of the most common morphosyntactic patterns for
environmental terms with the patterns identified in the list of 1,768 legal terms
extracted from GALEX subcorpus of legal texts (2,516,846 words from CTG),
it can be seen that the frequency of patterns is similar. Thus, the most popular
patterns are, on the one hand, nouns and noun-+adjective combinations and, on
the other hand, noun+preposition+noun combinations.

We apply these results to the search for term candidates in the tagged section
of the CTG corpus, grouping subcategories such as gender and number of nouns,
adjectives and articles, and discarding monocategory patterns. Thus, we obtain
a comprehensive list of term candidates, with their frequency in the corpus, from
which we extract the valid terms after a thorough review. The resulting list of
candidates contains combinations from 2 to 6 elements, for example:

— noun + adjective: diversidade bioloxica, catastrofe ecoloxica, auditoria am-
biental, politica forestal, cambio climatico, augas residuais

— noun + preposition + noun: planta de tratamento, capa de ozono, diéxido
de carbono

— noun + preposition + article + noun: calidade da auga

— noun + preposition + article + noun + adjective: avaliacién do impacto
ambiental

— noun + adjective 4+ adjective: recursos naturais renovables, autorizacion am-
biental integrada

— noun + preposition + noun + conjunction 4+ noun: centro de recollida e
descontaminacion

84 XATA2008 — XML: Applications and Associated Technologies

— noun + preposition + article + noun + preposition + noun: saturacion do
proceso de cambio

We are currently working on the process of filtering the data automatically
extracted from the corpus to obtain term candidates based on morphosyntactic
patterns. For the moment, in this process of filtering we have applied two com-
plementary approaches: human testing of data, and verification of the terms in
a corpus other than the corpus which is used as source of the data.

Of course, the most reliable approach is the human revision of data by Gali-
cian terminologists and specialists in the field. However, due to limited resources
and the difficulty of finding experts willing to collaborate, we have to opt for
other less efficient methods.

A variant of the second approach is to verify the presence of the term candi-
dates in other subcorpora of CTG different from the subcorpus used as source.
For example, during the identification of environmental terms extracted from
the AUGA corpus, if a term candidate does not appear or has a very limited
presence in other subcorpora from other thematic areas, we believe it has a good
chance of being a significant and necessary word in the environmental sciences.
In the opposite case, the term candidate increases the likelihood of not being a
specific term of its field, because it would also have visibility in other fields like
law, sociology, medicine, economics, etc.

Another different variant of the second approach is to search the term candi-
dates in the internet. If its presence rate is not very high, it will be an index of
the specificity of the term and, therefore, an index of its terminological relevance.

3 Extraction of semantic relations and definitions

The work on corpora being done by our research group allows us, as we said,
both to extract lexical units with specialized value (terms) and their termino-
graphic treatment which focuses on the description of the name and concept.
With respect to that issue, the work undertaken so far has focused on two as-
pects: the identification of conceptual relations, and the linguistic expression of
concepts (definitions). These two aspects are the subject of much attention by
applied and theoretical terminology, because they point very clearly to the true
role of scientific terms in texts: transmission of knowledge.

The TUVI terminological database was created with an onomasiological ap-
proach where concepts are “the door” to enter the term. This approach leads
directly to focus our interest in the description of the conceptual relations and
definitions, without forgetting the necessary adscription of terms to a specific
branch of the conceptual tree.

Apart from the traditional and necessary identification of semantic relations
and the development of definitions (through the use of thesaurus and ontologies,
the systematic search in specialized dictionaries, and the consultation with spe-
cialists), we began the work of the automation process, focused on the search
for linguistic and typographical patterns that can be discovered in corpora, both

XML-based Extraction of Terminological Information from Corpora 35

for semantic relations [3] and definitions [6, 1]. We understand that the semantic
relations can be identified by textual segments that function as real anchors,
which are also segments that lead to retrieve textual information relevant to the
semantic explicitation of a term, and that when an author of a text defines a
term, she or he does so through definitory contexts, considering as definitory
context any textual fragment from a document which provides specialized infor-
mation useful to define a term [2]. All of this information can be automatically
retrieved from a PoS-tagged corpus (in a faster and clearer way) or from an
untagged corpus. The following data was extracted from the untagged version
of the AUGA corpus on ecology and environmental sciences.

3.1 Methodology for semantic information extraction

For the identification of semantic relations, we draw on [3], because in her paper
she describes the general framework of conceptual relations that we use in our
analysis and she also presents textual markers that identify them in a Catalan
corpus (textual markers adapted and supplemented by us for Galician). For
definitory contexts we draw on the work done in the Corpégrafo [8, 7], Alarcén
[1] and especially in the classic work of Pearson [6], which explains that when
an author, in a given text, wants to define a term, she or he may resort to
typographical elements to highlight this term, and to the definition and definitory
patterns to relate the term to its definition. In our research we also believe it is
interesting to take advantage of any relevant information which, even without
being a definition, can be related to semantic aspects of the term.

3.2 Patterns for semantic relations

In a pattern [X p Y] for the automatic extraction of semantic relations, both
X and Y are (inflected) terms well defined within a specific domain (and doc-
umented in our terminological database), and “p” is a linguistic pattern that
can be formed by verbs, verbal phrases, connectors and typographical elements.
Currently, the search pattern is based on [X p| to seek any textual segment in-

cluding Y. Here are a sample of the the linguistics patterns “p” we use to search
for semantic relations in the corpus expressed as regular expressions:

— Resemblance:
e Partial resemblance: (6 parecidfoa] a | son parecidfoa]s a)
e Antonymy: ((é|son) o contrario de | é contrario a | se opén a | oponse
a | se oponen a | opdnense a | distinguen?se de | diferéncian?se de | se
distinguen? de | se diferencian? de)
— Inclusion:
e Hyponym-hyperonym: ((é|son) un tipo de | é (un|unha) | considéran?se
| se consideran?)
e Hyperonym-hyponym: (agrupa a | como: | tal como:? | como [oa]s?)
— Sequentiality:

36 XATA2008 — XML: Applications and Associated Technologies

e General space: (aparecen? en | ocorren? en | realizan?se en | se realizan?
en | estdn? situadfoas? en | orixinan?se en | se orixinan? en | (ten|tenen)
lugar | localizan?se en | se localizan? en | d[da/n’se en | se d[dajn? en |
atépan?se en | se atopan? en | (estan? |)presentes? en)

e Front/posterior space: (‘estdn? (situadfoa]s? |)(antes de|despois de|detrds
de|diante de))

e Previous/simultaneous/posterior time: (‘seguen? | iniciase en | prodiicese
antes de | prodiicese despois de | prodicese durante | se Inicia en | se
produce antes de | se produce despois de | se produce durante| ten lugar
antes de)

— Instrumentality: (serven? (de|paralcomo) | dsan?se (de|en|paralcomo) | se
usan? (de|en|paralcomo) | emprégan?se (delen|paralcomo) | se empregan?
(de|en|para|como) | utilizan?se (en|paralcomo) se utilizan? (en|paralcomo)
| son empregadfoals (en|para|como) | son utilizad[oa]s (en|para|como) | é
empregad|oa] (en|paralcomo) | é utilizad[oa] (en|paralcomo) | realizan?se
(con|mediante|por medio de))

— Causality: (orixinan? | causan? | é causa de | son causa| é a causa de | son a
causa de | provocan? | contribien? a | d[ad[n? lugar a | implican? | producen?
| son provocad[oals por | é provocad[oa] por)

— Meronymy: (estdn? compostfoals? (por|de) | constan? de | estdn? cons-
tituidfoa]s? por | abranguen? | engloban? | estdn? formad[oa]s? por)

We can see some examples of these semantic relations identified in the AUGA
corpus:

— Resemblance:

e Quercus suber [...] O seu aspecto é parecido 6 da acifieira, ainda que se
diferencia dela pola sta grosa e esponxosa casca de mais de 15 cm de
grosor, chamada cortiza, e polas stas follas menos espinentas ca desta.

— Sequentiality:

e Ata a actualidade a avaliacion da calidade do aire realizase puntual-
mente nos lugares de medicion, sen que exista un conecemento preciso
da representatividade territorial das mediciéns obtidas.

— Causality:

e Nos solos non agricolas, a acidificacion da lugar & perda de vitalidade
das plantas producindo a perda e deterioracién de follas e en 1iltimo caso
a morte das especies vexetais acompanada de cambios nos organismos
do solo, ao favorecer a proliferacién de especies aciddfilas.

— Meronymy:

e O biogas esta constituido na stia meirande parte por diéxido de carbono
e metano, ademais tamén poste pequenas cantidades de hidréxeno e
sulfuro de hidréxeno.

3.3 Patterns for definitions

In a pattern [X = Y] for the extraction of term definitions, “X” is a term from the

[2

database, “=" is a definitory pattern based on verbs, linguistic or metalinguistic

XML-based Extraction of Terminological Information from Corpora 37

phrases (including reformulative markers) and typographical elements, and Y is
the definition or the relevant syntactic elements that can lead to the creation of
a definition. With regard to Y, it must be clear that it can also be a term that
is the superordinate in the sort of classic definition based on the gender and the
difference [X =Y [specific semantic features]]. Currently, the search pattern is
based on [X =] to seek any textual segment including Y. Here are a sample of
the patterns “p” we use to search for term definitions in the corpus expressed
as regular expressions:

Verbs: (é| son | (concibe|enténde|considéra)n?se | se (concibe|entende|consi-
dera)n?| poden? (concibir|entender|considerar)se | se poden? (concibir|enten-
der|considerar) | péden?se (concibir|entender|considerar) | poden? ser (conci-
bid|entendid|considerad)[oa]s?)

Reformulative markers: (, isto €|, é dicir)

Linguistic expressions: (,7 como:? |,? tal como)

Typographical elements: (:) // colon sign

Here follow some examples of definitory contexts identified in the AUGA

corpus:

A acuicultura definese como o conxunto de actividades encamifiadas ao cul-
tivo de especies acuaticas.

Aire ambiente: o aire tropostérico e exterior.

No Regulamento (CE) n° 2792/1999 do Consello, de 17 de decembro de
1999, polo que se definen as modalidades e condiciéns das intervenciéns
coa finalidade estrutural no sector da pesca, queda recollida a definiciéon de
acuicultura como: a cria ou cultivo de organismos acudticos con técnicas
encaminadas a aumentar, por encima das capacidades naturais do medio, a
producion dos organismos en cuestion; estes seran, ao longo de toda a fase
de cria ou de cultivo e ata o momento da sua recollida, propiedade dunha
persoa fisica ou xuridica.

O dioxido de carbono é o principal responsable da contribucién humana
ao efecto invernadoiro a través do uso de combustibles fésiles. [semantic
features|

A agricultura ecoléxica é unha manifestacion da recente preocupacion da
poboacion polo medio natural e o consumo de produtos saudables. [semantic
features|

A avaliacion de impacto ambiental é un proceso de analise mediante o que
se integra o medio ambiente e o proxecto desenado, oferecendo unha serie
de vantaxes a ambos ainda que en moitas ocasions estas s6 son evidentes a
longo prazo e que poden permitir aforros nos investimentos e os custos das
obras, desenos mais aperfeizoados e integrados no entorno e maior aceitacion
social dos mesmos.

3.4 Results and further work

Below we include some results on the accuracy of the patterns used in the extrac-
tion of definitions, where “DCIP” stands for “number of different definitory con-

38 XATA2008 — XML: Applications and Associated Technologies

texts identified by the pattern”; “precise” means “number of definitory contexts
identified by the pattern that presents a definition”; “relevant” means “number
of definitory contexts identified by the pattern that presents an information rel-
evant to a possible definition”; and “irrelevant”, “error in the identification of
the definitory context”.

term DCIP precise relevant irrelevant
acuicultura 6 3 3 0
aeroxerador 12 0 1 11
agricultura ecoldxica 4 0 4 0
aire 15 0 5 10
aire ambiente 4 2 0 2
aleta dorsal 4 0 4 0
ambiente 13 0 7 6
amianto 1 0 1 0
amoniaco 6 0 6 0
amonio 2 0 1 1
avaliacién de impacto ambiental 6 1 1 4
diéxido de carbono 5 0 3 2
emisién 7 3 1 3
medio acudatico 1 0 1 0

oo
(an)
[
w

medio natural

In short, in 94 DCIP, there are 9 (9.5%) precise definitions, 43 (45.7%) contexts
with relevant information, and 42 (44.6%) contexts with irrelevant information.
After reviewing the data, we can conclude that:

a) the typographical pattern (:) produces an especially large amount of noise
due to the peculiarities of use of this punctuation mark. However, it also identifies
precise specific information.

b) The number of precise definitions is low (9.5%, which leads us to redefine
and complete the patterns used in extraction.

c¢) Nevertheless, the relevant information (semantic features that contribute
to the understanding of the concept and allow the drafting of definitions) found
with the patterns used is high (45.7%), which shows that the automatic extrac-
tion is fully justified.

d) As a whole, the percentage of the retrieved semantic information is higher
than the noise.

From now on, we will work on a very important aspect in the identification
of semantic relations and definitions: the elimination of the “noise” that occurs
when linguistic patterns are applied to a corpus. In this regard,

a) we must develop rules for exceptions that can rely on the introduction of
linguistic elements that deny the validity of a pattern. The presence of adverbs
like “non”, “nunca” or phrases like “en ningin caso”, will serve to adjust the
searches.

b) For the extraction of semantic relations, we must create a specific sub-
corpus in which the two terms necessary for the establishment of the semantic

XML-based Extraction of Terminological Information from Corpora 39

relations (X and Y) are clearly identified. Currently, the search pattern is based
on X to seek any textual segment (including Y). If we limit the contexts to those
where X and Y occur, the noise level will necessarily lessen.

4 Conclusions

The CLUVI corpus and the CTG corpus allow retrieval of linguistic information
that facilitates studies on pragmatic aspects of the Galician language. With re-
gard to the terminological treatment of units drawn from the CTG, it must be
said that the TUVI terminological database allows a full approximation to the
term (usage, denominative information and conceptual information). Automated
extraction greatly facilitates identification of term candidates, of conceptual re-
lations and of definitions in large amounts of text, and helps the eventual manual
extraction. For the moment, the patterns that retrieve conceptual information
(as seen for definitions) reflect a fairly high level of irrelevant information, but
they are still very useful to describe the concept.

References

1. Alarcén, R.: Extraccién automadtica de contextos definitorios en corpus anota-
dos. Seminaris de 'PIUULATERM, Universitat Pompeu Fabra, Barcelona (2006).
<http://www.iula.upf.edu/materials/060526alarcon.pdf >

2. Alarcén, R., Sierra, G.: Reglas léxico-metalingiiisticas para la extraccién
automdtica de contextos definitorios. Encuentro Nacional de Computacién
(ENC 2006), San Luis Potosi, México (2006). <http://ccc.inacep.mx/~tec_
lenguaje06/articulos/TLHO6-paper3.pdf >

3. Feliu, J.: Relacions conceptuals i terminologia: analisi i proposta de deteccié semi-
automatica. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona (2004)

4. Goémez Guinovart, X., Sacau Fontenla, E.: Parallel corpora for the Galician lan-
guage: building and processing of the CLUVI (Linguistic Corpus of the University
of Vigo. In: Lino, T. et al. (eds.), Proceedings of the 4th International Conference
on Language Resources and Evaluation, LREC 2004, pp. 1179-1182. Lisboa (2004)

5. Leech, G., Wilson. A.: Recommendations for the Morphosyntactic Annotation
of Corpora. EAGLES Guidelines (1996). <http://www.ilc.cnr.it/EAGLES96/
annotate/annotate.html>

6. Pearson, J.: Terms in Context. John Benjamins, Amsterdam (1998)

7. Pinto, A.S.: Neurodemo: um exemplo de extracgdo semi-automética de defini¢bes e
relages semanticas usando o Corpdégrafo, Linguateca (2006). <http://poloclup.
linguateca.pt/Neurodemo.htm>

8. Pinto, A.S., Oliveira, D.: Extracgdo de definigdes no Corpégrafo, Linguateca (2004).
<http://www.linguateca.pt/documentos/0liveiraPintoOut2004.pdf>

9. Savourel, Y. (ed.): TMX 1.4b Specification. Localisation Industry Standards As-
sociation (2005). <http://www.lisa.org/standards/tmx/specification.html>

10. Simoes, A., Dias de Almeida, J.J., Gémez Guinovart, X.: Memdrias de Tradugao
Distribuidas. In: Ramalho, J.C., Simoes, A. (eds.), XATA2004 - XML, Aplicagoes
e Tecnologias Associadas, pp. 59-68. Universidade do Porto, Porto (2004).

A Toolkit for an Oral History Digital Archive *

Silvestre Lacerda'
lacerda@iantt.pt
Norberto Lopes?, Nelma Moreira?, Rogério Reis?
{nml,nam,rvr}@ncc.up.pt

! Diregao-Geral de Arquivos/ Arquivo Nacional da Torre do Tombo
2 DCC-FC& LIACC, Universidade do Porto

Abstract. In this work we propose an XML based toolkit for the con-
struction of an oral history digital archive that allows the filing, classifi-
cation and annotation of multimedia resources associated to a corpus of
interviews. We describe the general organization of the archive and focus
on content creation tools. In particular, we present a document editor for
the classification and annotation of interview transcriptions that allows
the definition of category hierarchies.

Keywords: XML languages, XML editors, oral history archives, multi-
modal resources, metadata, corpus

1 Introduction

In this work we propose an XML based toolkit for the construction of an oral
history digital archive that allows the filing, classification and annotation of text
and multimedia resources associated to a corpus of interviews.

The two basic objects used in this archive are interviews and persons. Each
interview (to a person) can have several audio and video files, photos and other
images attached, and several derived text documents that result from different
analysis of the interview’s data.

To ease the access, classification and search of the information, all text based
documents should be in a semi-structured (XML) format and all multimedia docu-
ments should have metadata information associated. To help the construction of
these documents, in particular by non computer specialists, dedicated software
applications must be built. We present a document editor for the classification
and annotation of interview transcriptions that allows the definition of category
hierarchies.

This paper is organized as follows. In the next section we present the moti-
vation and the scope of this work. Section 3 describes the general organization
for the interview’s archive. Section 4 presents a document editor for classifica-
tion and annotation. Some related work is discussed in Section 5 and Section 6
concludes with some ongoing and future work.

* Work partially funded by FCT through the grant MTCIO
(POCTI/CED/60786,/2004) and POSI Program.

40

A Toolkit for an Oral History Digital Archive 41

2 DMotivation

This work is part of the research work developed by the Documentation and
Information Center on Working Class and Popular Movement of Porto (CDI)
of Universidade Popular do Porto [16] . CDI’s goals are the preservation of the
social, cultural and political memory, and oral and social history of Porto, dur-
ing the 20th century, as well as its diffusion. Available since 2001, CDI’s Web
site contains information about several workers’ organizations, including doc-
umental inventories, archival descriptions and digitalized documents; abstracts
of workers’ interviews and a chronology of workers’ related events during the
20th century. Search in the site can be text based or using a special controlled
vocabulary.

In what the oral history is concerning, CDI has already collected a corpus
of about one hundred interviews with workers of different professions and with
different social experiences. All biographical narratives were recorded in audio
and video, and a transcription of the interview was produced. A small abstract
of each narrative is already available in CDI’s Web site.

The quantity, diversity and quality of the collected information by the CDI
inspires its study in a multidisciplinary approach. The research team of this
project involves different social sciences domains (Linguistics, Education Sci-
ences, History, Information Sciences), and Computer Science.

To ease the access, the search and the multi-disciplinary analysis of the bio-
graphical narratives, new software applications are being developed. In Silvestre
et. al [9] we presented the main aims for an oral history archive and described
some tools already implemented. We briefly review some of those tools in the
next section. We would like to emphasize our commitment in using and devel-
oping free software tools and documents with open specifications, as the only
way to ensure timeless accessibility, portability and easy updating. The choice
of XML for the format of text documents illustrates well our options.

3 A Digital Interviews Archive

As we pointed out in the introduction, the two basic objects used in an oral
history archive are interviews and persons. Each interview can have several as-
sociated resources. Here we will consider the following:

— audio and video recordings
— photos, digitalized documents, images
— text documents:
e transcriptions
abstracts
classifications associated with structural content analysis
other documents

All documents must have metadata information associated. For the analysis and
research the documents should have annotations that associate a concept to a

42 XATA2008 — XML: Applications and Associated Technologies

text segment. A text segment can have multiple annotations. For a more efficient
search, annotations should use controlled vocabularies, and specially thesauri.
The thesauri will allow a more fine-grained classification of documents that can
be of value for social scientists research.

In Silvestre et. al we presented a set of XML based software tools for the pro-
duction, annotation and search of multimedia documents. In particular we speci-
fied XML languages for : metadata based on the Dublin Core standard [7]; thesauri
based on the Zthes standard[19]; annotations based on a specific controlled vo-
cabulary; transcriptions of interviews based on the Transcriber schema [12, 1, 2];
and, for small abstracts of the interviews contents organized in sections, called
stories. We developed special purpose document editors for metadata and ab-
stracts. Both for the thesauri and the abstracts an Web site was implemented
that allows browsing and search. The XML schema used to define each language
is Relax NG [17]. Besides its expressive power it has a very elegant (compact)
syntax and a well-defined semantics based on regular tree languages that allows
efficient and clear implementations.

The annotations language was easily extended to deal with other vocabular-
ies. In the next section we will describe an extension of the abstract’s editor to
a new editor that allow general classification of transcriptions by the definition
of arbitrary category hierarchies.

3.1 Organizing the Resources Associated with an Interview

To organize the resources associated with an interview we used an approach
similar to the IMDI standard developed by ISLE (International Standard for
Language Engineering) Meta-data Initiative [6, 3] for linguistic multimedia re-
sources.

In the IMDI standard the main concept is session which bundles all infor-
mation about the circumstances and conditions of a linguistic event. Although
some of this information can be retrieved from the resources’ metadata, other
should be duplicated in each resource in order to be possible to group and collect
it. For example, every document should have information about which interview
it refers to and that would not be easy to infer without the notion of interview.
We consider the main metadata elements proposed by IMDI and we specified
the session XML element which the Relax NG schema is in Figure 1.

Note that we restricted the content model of many elements, as many lin-
guistic specifications were not meaningful to our goals. Almost all elements are
self-explanatory and similar to the ones defined in the Dublin Core standard.
In the content element, the attribute genre describes the discourse type of the
session contents. In our corpus the genre will be in general interview. The
attribute task can be used to describe the topic of the session (for instance,
biographical narrative).

The most relevant element for us is person. In Figure 2, the Relax NG schema
for that element is given.

A Toolkit for an Oral History Digital Archive 43

start = session
session = element session {
attribute name {text},
attribute title {text}?,
attribute description {text}?,
date+, place, project+, content,
contributor*, resource*
}
place = element place {text}
project = element project {
attribute name {text},
attribute title {text}?,
attribute description {text}?
attribute person-id {text}?,
contact?,
}
content = element content {
attribute genre {text},
attribute task {text}?,
attribute description {text}?,
subject*, languagex*
}
subject = element subject {text}
language = element language {text}
contributor = element contributor {
attribute person-id {text},
attribute resource {text},
attribute role {text}
}
resource = element resource {
attribute type {text},
attribute link {text},
attribute access {"private" | "owner" | "public"}

Fig. 1. Relax NG schema for interviews.

Note again that, in contrast with the IMDI schema, the element contributor
in a session has an attribute that refers to person and is not itself a person el-
ement. The value of the role attribute of the contributor element belongs to
a controlled vocabulary that includes names as interviewer, interviewee, tran-
scriptor, etc..

3.2 Building an Archive

An interviews’ archive is a set of sessions, a set of persons and a set of associated
resources. The organization of an archive can be specified as a tree of directories
in a file system. The basic structure is presented in Figure 3.

44 XATA2008 — XML: Applications and Associated Technologies

start = person
person = element person {
attribute id {text},
attribute name {text},
attribute fullname {text}?,
attribute gender { "male" | "female" 1}7,
birth? & situation? & language? & contact?,
(photo | place | education | activity | organization | observation)*
}
photo = element photo {text}
birth = element birth {date? & place?}
place = element place {text}
language = element language {text}
education = element education {text}
activity = element activity {
attribute type {text}
text }
situation = element situation {attribute type {text}},
element session {attribute id {text}}*}
institution = element institution {text}
observation = element observation {text}

}

Fig. 2. Relax NG schema for persons.

The file persons.xml in the directory _persondb contains information about
which persons are in the archive, each one described using a person element.
In the same way, the file sessions.xml contains information about each session
in the archive. These files will be manageable even if their size will reach some
megabytes. This conclusion is based of some performance tests with more than
50000 records (sessions or persons). In this way we can profit from XPath facilities
for querying and presenting the archive information.

There must exist a central archive. Each user can have a local archive which
imports/exports information from and to the central archive. When a user ex-
ports a new version of an existing document a new revision is added, and the
original document will not be modified.

4 Interviews Classification

For the data analysis of the biographical narratives corpus, the text annotations
provide a useful indexation of the data, but is not enough for a structural content
analysis. Some topics or categories can be defined globally driven by the research
goals, but each narrative motivates the introduction of new categories. Those
categories are then hierarchically organized into trees and several text segments
can be associated to each category.

A Toolkit for an Oral History Digital Archive 45

_archive/
/_persondb/
persons.xml
/_photo
photol.png
photo2.png

/_sessiondb/
sessions.xml
E01/
transl.xml
classl.xml
audiol.xml
videol.xml
E02/

Fig. 3. Archive basic structure.

This content analysis can produce one or several classifications of the original
transcription. Each classification can be used for several transcriptions and each
transcription can be associated with several classifications.

A classification is then a forest (set of trees) where each node is labelled by a
category and may have several text segments associated to. Currently, we only
accept the association of a transcript to a classification. Figure 4 presents the
Relax NG schema of a classification. The element node corresponds to a category.
The element content corresponds to a text segment of a transcription and can
be identified by a start char and an end char. This text segment (contained
in the value element) cannot be modified, although it can have independent
annotations in the classification and in the transcription. The attribute link
can be used for identifying the transcription that segment of text belongs to (in
the case that multiple transcripts are allowed).

In Figure 5 we present the new XML specification for annotations and for
vocabularies (that are not a thesaurus).

In future implementations, each content should also be marked with inser-
tions, deletions or substitutions. These would be useful for a printed version of
a classification where some minor modifications of the original transcript can be
allowed (for instance, for omitting punctuation or a private part of the discourse).

46 XATA2008 — XML: Applications and Associated Technologies

include "metadata.rnc"
start = classification
classification = element classification {
metadata,
name,
description?,
nodes?
}
nodes = element nodes { node+ }
node = element node {
ref?,
name,
description?,
comment?,
contents?,
nodes?
}
contents = element contents { content+ }
content = element content {
attribute startchar { text },
attribute endchar { text },
attribute link { text }7,
ref?,
description?,
comment?,
value
}
name = element name { text }
description = element description { text }
comment = element comment { text }
ref = attribute ref { text }
value = element value { text }

Fig. 4. The Relax NG schema for classifications.

4.1 The Classification Editor

The interviews’ transcriptions are XML documents with a specification based on
the Transcriber schema [12,1, 2], but supporting metadata and annotations. Its
Relax NG schema is presented in Figure 7. For now we do not have a transcriber
application, but only some converters from several formats into our transcription
format.

For the classification of transcriptions we developed an editor that allows the
dynamic definition of categories trees and builts new documents based on the
information in the transcriptions.

Figure 6 presents a screen-shot of the editor. The editor main frame is divided
into two panels. In the left panel, an hierarchy of categories can be built. A new
node can be created and attached anywhere. A node has a name (the category), a

A Toolkit for an Oral History Digital Archive 47

annotations = element annotations { vocabulary = element vocabulary {
attribute vocabulary {text}, attribute name { text },
attribute type {text}, attribute date { text 1},
attribute marks? { text 1}, attribute link { text}
annotation+ description?,
} entry+
annotation = element annotation { }
attribute startchar { text 1}, description= element description {
attribute endchar { text }, attribute lang {text}
attribute type { text }, text
attribute normtext { text }, ¥
text entry= element entry {
} attribute value {text}
text
}

Fig. 5. The Relax NG schemas for annotations and vocabularies, respectively.

description and a comment. There may exists several top nodes, so several trees
are allowed. It is also possible to change a node’s place or to edit its attributes.

The right panel, has two windows: the lower one for a transcription and the
upper one, will have the contents associated with a category. In the transcription,
the different speakers are identified by a number. The identity of each speaker
can be checked by selecting an option in the View menu.

To associate a text segment to a category, choose the category and just select
the text segment from the transcription. Then, the text segment will appear
in the upper window, and a small description will be also attached below it’s
category (in the left side). In Figure 6 the highlighted text is a description of the
content which is shown in the upper window on the right, and which category is
Primaria.

When a category is selected all its contents are listed in the upper window
on the right and each text segment is highlighted in the transcription (lower
window on the right).

The options in the Edit menu allow the edition of metadata and of some
preferences.

The options in the File menu allow to open/create an archive and choose a
transcription (we plan to allow choosing more than one transcription simultane-
ously). It is possible then to create a new classification or open an existing one.
A classification can be saved or exported to an HTML file. The category hierarchy
can be saved independently (what we call a schema) in order to reuse it for other
classification (and possibly for other transcriptions).

4.2 Implementation

The main programming language of this project is Python [18].

48 XATA2008 — XML: Applications and Associated Technologies

= Analyser [y
| File Edit View |
¥ topo |Q Search o|
~ Infancia
< Escola tu j& sabes mais ou menos aquilo de que gostaria de falar

< Primaria contigo, mas ndo sei como € que tu imaginaste isto, mas
— - - ache que de alguma forma poderias tentar dividir a nossa
tu ja sabes mais on menos aguilo de que CONVersa em trés partes — numa 12 parte que fosse u
< liceu
enorme, enorme, nio & e eu nio me esque|
estava a parte disto tudo, exactamente.
o havia reunifo era assim trazem algum s

1 Tu ja sabes mais ou menos aquilo de que gostaria de falar ¢
& que tu imaginaste isto, mas acho que de alguma forma pc
NOSsA CONVersa em trés partes — numa 12 parte que fosse un
achas que fol importante no teu processo de formacéo pars
intervencao politica e social que comecaste a ter, o teu proc
certa consciéncia social; depois uma outra parte mais sobre
sindical como uma escela, portanto porque € que isto, qual
isso e como € gue isso para ti foi importante; depois uma ot
gostaria também de abordar era um pouco as questées mai
préprio movimento sindical as questées da formacio tém si
como também tu vés essa formacio; era um pouco assim es

2 Esta

1 50 para ficar agora aqui registado para depois quando tran

| I [1<[da data, entioc entrevista a Manuel Freitas, no dia 26 de Jul

Analysis: freitas cl2.xml, Original: freitas.xml

Fig. 6. The classification editor.

The graphical interfaces are implemented with the wxWidgets API [15]. Text
editor objects are based in the wxStyledTextCrl class, that implements the
editing component Scintilla [5]. The category tree graphical interface uses the
CustomTreeCtrl class.

XML processing uses the 1xml [11] library that implements the elementtree
APT [10], but with greater support for XSLT and XPath. This API is Python based
and much faster and less space consuming than DOM or SAX Python implementa-
tions.

For the classification editor, the classification’s tree structure is built using
Python classes and it is saved as a document in the classification XML language.

5 Related Qualitative Data Analysis tools

There are several software tools available for the qualitative data analysis of a set
of documents, that can be used for the structural content analysis of our corpus
of interviews. From this set, we can refer the Ethnograph [14], the Atlas.ti
project [4,13], and the Nwvivo 7 [8]. All those tools are commercial proprietary
software products with very expensive licenses. Only the Atlas.ti project can use
XML files.

A Toolkit for an Oral History Digital Archive 49

start = transcript
transcript = element transcript {metadata, actor+, section*, annotations*}
section = element section {
attribute title { text },
attribute desc { text },
attribute starttime { text 1}7,
attribute endtime { text 1}7,
conversation+
¥
conversation = element conversation {
attribute title { text },
attribute actor-id { text },
attribute starttime { text }7,
attribute endtime { text }7,
(comment | event | sync | text)+
}
comment = element Comment {
attribute desc {text}
}
sync = element sync {
attribute time {text}
}
event = element event {
attribute desc {text}
attribute type {text}
attribute extend {text}

Fig. 7. Relax NG schema for transcriptions.

The Nvivo 7 is the most popular in the academic world. Its previous versions
were not very user friendly and it was difficult to be used by a non computer
specialist. Nvivo 7 allows to create a project with several documents (in the RTF
format). Arbitrary (free) nodes can be created and text segments associated to
those nodes. The nodes can then be organized in a tree. Search facilities includes
search for nodes or text, and proximity search of two items.

In comparison, our approach includes the basic features of this system (for
now, for a single document) with the advantages of being free software and of
using semi-structured documents with open formats.

6 Conclusion

In this paper we described ongoing work towards the construction of an oral
history digital archive based on a corpus of interviews. We also described an
editor that aims to help social scientists in the corpus structural content analysis.
The current version of the editor works only with one interview (transcription)

50 XATA2008 — XML: Applications and Associated Technologies

at a time. This is not a major drawnback as in most of the cases each interview
has its own set of category hierarchies. Although it is still in development, it
is already being used by some project team members. We are now extending
the editor to allow the classification of multiple interviews simultaneously and
improving its search facilities. For that it is essential to have a precise notion of
an archive. In this paper, we also described the basic structure for building an
oral history archive. This organization is also essential for an improved search
in the corpus. We plan to implement search mechanisms that will allow

— querying the archive using controlled vocabularies and in special thesauri,
or more complex ontologies;

— more complex queries, by the development of a specific query language fitted
to the archive contents and simple to use;

— save the query results in a file for future use.

In what dissemination is concerned we note that provision must be made in
order to restrict the access to several documents of the archive although general
sessions information and documents metadata should be in general accessible.

7 Acknowledgements

We thank several members of Universidade Popular do Porto and team members
of the project Memories of Work: Construction Processes of a Worker’s Identity
for their comments and suggestions. Specially we would like to thank Cristina
Nogueira and Teresa Medina for many discussions about the classification editor.
Thanks are also due to the referees whose comments and suggestions allowed to
improve a first version of this paper.

References

1. Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark Liberman. Transcriber:
a free tool for segmenting, labeling and transcribing speech. In First Interna-
tional Conference on Language Resources and Evaluation (LREC), pages 1373
1376, 1998.

2. Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark Liberman. Transcriber:
development and use of a tool for assisting speech corpora production. Speech
Communication, 33(1-2):5-2, 2001.

3. D. G. Broeder, H. Brugman, A. Russel, and P. Wittenburg. A browsable corpus:
accessing linguistic resources the easy way. In LREC 2000 Workshop, Athens,
2000.

4. ATLAS.ti Scientific Software Development. ATLAS.ti. http://www.atlasti.com/,
Date of Access: October 2007.

5. Scintilla Project Group. Scintilla. http://www.scintilla.org/, Date of Ac-
cess:2007.

6. IMDI Team. IMDI Metadata Elements for Session Descriptions. Technical report,
MPI Nijmegen, October 2003.

10.

11.
12.

13.

14.
15.
16.
17.

18.
19.

A Toolkit for an Oral History Digital Archive 51

The Dublin Core Metadata Initiative. Dublin Core Metadata Terms.
http://dublincore.org/, Date of Access: October 2007.

QSR International. Nvivo. http://www.qgsrinternational.com/, Date of Access:
November 2007.

Silvestre Lacerda, Norberto Lopes, Nelma Moreira, and Rogério Reis. Ferramen-
tas para a construgdo de arquivos digitais de histéria oral. In Luis Carrigo José
Carlos Ramalho, Joao Correia Lopes, editor, Actas XATA 2007, XML: aplicacoes
e tecnologias associadas, pages 139-150. Universidade de Lisboa, Fevereiro 2007.
Fredrik Lundh. ElementTree API. http://effbot.org/zone/element-index.html,
Date of Access:2007.

Ixml development team. Ixml. http://codespeak.net/1xml/, Date of Access:2007.
Sylvain Galliano Mathieu Manta, Fabien Antoine and Claude Barras. Transcriber.
http://trans.sourceforge.net/, Date of Access: October 2007.

Thomas Muhr. Increasing the reusability of qualitative data with xml. Forum
Qualitative Sozialforschung / Forum: Qualitative Social Research, Date of Access:
October 2007.

Qualis Research. The Ethnograph. http://www.QualisResearch.com, Date of
Access: October 2007.

Julian Smart, Robert Roebling, Vadim Zeitlin, and Robin Dunn. wzWidgets 2.6.3:
A portable C++ and Python GUI toolkit.

Universidade Popular do Porto. Centro de Documentagdo e Informacgao sobre o
Movimento Operario e Popular do Porto. http://cdi.upp.pt/.

Eric van der Vlist. RELAX NG. O’Reilly, 2003.

Guido van Rossum. Python Library Reference, 2.4.2 edition, 2005.

The Zthes working group. The Zthes specifications for thesaurus representation,
access and navigation. http://zthes.z3950.0rg/, Date of Access: October 2007.

Navegante — An Intrusive Browsing Framework

Nuno Carvalho, José Joao Almeida, and Alberto Manuel Simoes

Departamento de Informaética
Universidade do Minho
smash@cpan.org,{jjlambs}@di.uminho.pt

Abstract. Navegante is a generic framework to build superior order
proxies for intrusive browsing. This framework provides the means for
developing tools that behave as proxies, but perform some processing
task on the content that is being browsed. Parallel to this content pro-
cessing, applications can also run other user-defined functions with dif-
ferent purposes and interfaces, but we’ll explain those later. Currently,
Navegante only builds applications that run as CGls, but this is intended
to change in a near future. Applications are built writing programs in
Navegante’s Domain Specific Language (DSL).

Navegante is a work in progress. This article aims to describe the current
state of development. What applications can be built and how. Also, we
identify some implementation problems, and briefly discuss some future
improvements. Finally, we try to illustrate most of the concepts described
using a couple of case studies.

1 Introduction

A proxy|6] is, typically, a service that handles requests for a set of clients that are
using other services. Proxies are traditionally used for caching or authorization
purposes. On most of these cases the content served is kept unchanged. On some
cases the response can be blocked or redirected. Some set of tools can be designed
as proxies, but that in some way change the content in the response message.
By doing this they become intrusive on the content, but they still apply the
proxy concept — they indirectly serve information provided by other services.
On-line spell checking tools, language detection, accessibility improvers[5] are
some first glance examples of intrusive proxies. One way of seeing these tools is
as a generic processor (or a higher order function [4]) that given a processing
function, analysis the originally served content. So, this processor works as a
proxy but it also applies this processing function to the content before delivering
it to the final client.

Navegante [1] is a framework that can be used to build such applications. Ap-
plications that work as proxies for the Internet but that perform some additional
kind of task on the browsed content. These applications are capable of giving
feedback to the user about any processed data at any given time and in different
ways. Applications are also capable of keeping state information over sequential
requests and, have the ability to keep state information associated with browsed
content.

52

NAVEGANTE: An Intrusive Browsing Framework 53

This framework consists in a set of tools that are developed in Perl, taking ad-
vantage of well known Perl modules available on the Comprehensive Perl Archive
Network (CPAN). For content processing we chose to use XML::DT [2], because
it can be used to process XML or HTML exactly in the same way. Which means
that we can, without much effort, and without changing our defined functions
migrate our applications to feed on XML source files as well as HTML. We used
the Parser::YAPP[3] Module to build the language parsers.

In the following sections, we expect to objectively cover the necessary topics
to give the reader a basic understanding of the framework, and it’s various com-
ponents. We also illustrate the process of building applications and highlight the
advantages of using the framework instead of building them from scratch.

2 The Proxy Pattern

In a client-server paradigm|[8] the typical message flow can be described in three
simple steps:

Step 1: The client sends a message to the server specifying the request.

Step 2: The server processes the request and sends a response message to the
client.

Step 3: The client receives the response message from the server.

The diagram in Fig. 1 helps to illustrate this simple communication flow.
There are no middle-mans in this architecture, and the message is delivered to
the client exactly as it was sent by the server, content wise at least.

request

Client Server
response

Fig. 1. Simple client-server paradigm.

For our intrusive proxies we add a new layer to the previous architecture. We
add a new step in communications on both incoming and outgoing flows so we
can perform some task after the server sends the response but before the client
receives it. Ideally, we would like to add this extra step in the flow from the
server to the client only, but this is not possible since there is no way we can tell
the server that that specific response should go into our application before being
forwarded to the client, without heavy changes on the client side. The goal here
is to be intrusive but we don’t want to tamper with every application, we want
to keep things working the way they are. So, we upgrade our earlier description
to a five step communication architecture:

Step 1: The client sends a message to the proxy specifying the request.

54 XATA2008 — XML: Applications and Associated Technologies

Step 2: The proxy forwards the message to the server unchanged.

Step 3: The server processes the request and sends a response message to the
proxy.

Step 4: The proxy catches the response message, processes the content, and
forwards the processed content to the client.

Step 5: The client receives the response message from the proxy.

This way we can expect a response from the server, in a given context, and
perform some defined transformation on the content before delivering the pro-
cessed message to the client. The client can be aware of this transformation, or
not. The diagram in Fig. 2 helps to illustrate this new approach.

request request

Client Proxy Server
f(response) response

Fig. 2. Simple client-server paradigm with a middle-man.

The current implementation of Navegante only allows the generation of ap-
plications as CGIs[7]. So, our final application will be a form where we start by
making the initial request (supplying an URL to Navegante’s application) and
then browse the web as we normally would, but being aware that every request
is being processed by our intrusive proxy. At any time, we can tell Navegante to
call a previously defined function to display some kind of data compilation or
result (to show a state that is maintained while browsing the web).

3 Navegante’s Approach

To build an application using Navegante’s framework we need to feed the parser
a Navegante program file. This file is to be parsed by Navegante, that will use a
Perl skeleton file to create an application. This flow is illustrated in Fig. 3.

program || Navegante |——=+ application

)

skeleton

Fig. 3. Navegante’s application building flow.

Currently, the only skeleton defined builds a CGI. Therefore, we can only
build applications that behave as CGIs. Meaning that they work as standard

NAVEGANTE: An Intrusive Browsing Framework 55

HTML pages, and are used as an entry point for intrusive browsing. Once you
start browsing using the CGI, the application is already running. Every time
a request is made, some processing function defined previously processes the
content before delivering it to the client.

Another task being executed, and maybe a not so obvious one, is that every
time content is processed, all links are analyzed, so that links to other pages
are rewritten. Thus, when these links are followed, we are actually following
them using our application, so its resulting content will also be processed. Using
this method it is possible to have intrusive browsing without having to change
anything in the user or client behavior, since all browsing is done exactly as it
would be normally done. There are still some issues with the address rewriting
engine, but we will discuss them later.

The application also adds a banner on top of every processed page. This
banner provides some interesting features and is illustrated in Fig. 4.

E:I checked 104 words, 30% were not 2
TUPAY B APLEY § S = found in the dictionary. -

n An Intrusive Browsing Framework w®

E'""""""" B E RN RN R RN R R R MR M A EE AR EEEEEAEA RS A :."3:

Fig. 4. Sample application banner.

The red outline box is a link to the application’s feedback function, the func-
tion behavior is defined by the application. This is an optional feature, if the ap-
plication doesn’t define a feedback function this image it’s simply not a link. The
blue outline box is just Navegante’s logo with a link to Navegante’s homepage.
The green outline box is the direct result of the function defined as liveFeedback
that can exist in the application. This function can be used to deliver any kind
of data regarding the processed content, and is also optional. The orange outline
box is a form, defined in the application, that can be used to annotate pages.
This simply stores in the application’s state a correspondence between the URL
and the user data inserted using the form. Finally, in the black outline box, is
illustrated a quit button. This is a last call made to the application that executes
a final function when defined by the application. This can be used to provide
data summaries of present any other output to the user related to a browsing
session.

Another feature that should be pointed out here, is that data can be preserved
between requests (data can be made persistent). This means that we can build
applications that use data from previous requests and can forward that data
along to the following requests. Giving applications a sense of state even that it
does not normally exists in protocols like HTTP. This persistent data abstraction
is given using cookies, but other storage methods can be implemented.

As stated before, because we are using XML::DT, we can take advantage of
this module features, and rework our application to process XML structured files.

56 XATA2008 — XML: Applications and Associated Technologies

Without having to change anything on our defined functions because basically,
we are using the same processing engine.

3.1 Navegante Programs

Navegante programs are written in plain text files and have a well defined struc-
ture. The file should be divided in two major sections, as shown in Fig. 5. These
sections are divided by the ## symbols, which has a special meaning for the
parser.

{DSL definitions}
##
{generic definitions}

Fig. 5. Navegante program structure.

These distinct sections should be used in different ways and with different
purposes:

— the first section is used to specify application parameters using a well defined
DSL, detailed in the next section.

— the second section is used to define any kind of functions needed by our ap-
plication in Perl syntax. Everything in this section is almost directly inserted
in our final application.

Ideally, it should be possible to write the second section of a Navegante program
in any language that can be processed in the environment on which the applica-
tion is running. Currently Navegante is not other languages aware, so this section
of the program needs to be written in Perl.

3.2 Navegante’s Domain Specific Language

As stated before, Navegante programs are written using a DSL. Most applications
parameters are defined using this language. Although in a developing stage, it
already can be used to describe many applications behavior. Be aware that most
of these statements are CGI specific, because we are mainly building CGIs, but
can be used on other contexts as well.

Here is a set of example statements that can be used:

proc: the name of the processing function. It defines the function that is to be
called over the content that is being processed;

feedback: the name of the function that is called when feedback is requested,
feedback is requested by following the link illustrated in the previous section;

livefeedback: the name of the function that is called every time the banner is
generated, as illustrated in Fig. 4;

N oG A W N e

NAVEGANTE: An Intrusive Browsing Framework 57

cginame: the final application CGI name;

formtitle: the title of the newly generated form;

desc: the name of the function that prints a description about the application;

init: the name of the function that is first called when the application starts
(mainly used to initialize the application state).

annotate: the name of the function that processes the data submitted using
the banner form, and if needed changes the application state;

iform: describe the fields that are to be rendered in the banner form;

quit: defines the function that is going to be used when the application’s quit
button is clicked.

This directives are used to define the behavior of our application in such a way
that Navegante’s parser can understand.

3.3 Navegante’s Parser

Navegante’s parser is currently the main tool in the framework. This tool is
responsible for building an intrusive application given a program as described
earlier.

The parser is written using Parse:: YAPP. The parser uses a skeleton defini-
tion that can be seen as an application template. That is, the skeleton is defined
in such a way that the parser’s main job is to contextualize the skeleton using
the program’s DSL section. The grammar used is actually very simple and is
described in Fig. 6.

Start -> actions fop

fop —> ##’

actions -> actions ’init’ arg
| actions ’desc’ arg
| actions ’proc’ arg

Fig. 6. DSL grammar.

We have a starting rule that derives in a list of actions and in a terminating
symbol. The list of actions is our language specific statements, some of which
were described earlier in this section. These statements will precisely describe
how the skeleton is converted to a new application. The terminating symbol is
simply the ##, which splits the main sections of our program file.

The second section of our program is directly injected in the application,
in order to have access to all the needed functions and variables that will be
used during content analysis and/or transformation. Because of this, this section
needs to be written in Perl. An idea of improvement would be to allow the use of
other languages in this section, because this code is out of the framework scope.

=
H O ©®NOouR W N

=
w N

58 XATA2008 — XML: Applications and Associated Technologies

Although it still needs to interact with the framework itself, to access state data
for instance.

Currently, included in the parser is also the application skeleton. The appli-
cation skeleton is nothing more than the final application template and a set of
auxiliary functions used by it. The parser uses this template to build the final
application.

4 Case Studies

This section describes how to build a couple of very simple applications, using
Navegante, for illustration purposes. Keep in mind that the code described in this
section most of the times is simplified, and/or not complete, and may actually,
by itself, not be enough to implement the application’s described behavior.

4.1 reverse

The first application we are going to build does not make use of state or feedback
related concepts. It simply reverses the content being browsed. To create this
application using Navegante, we first need to write a program file describing our
application behavior. This example application can be written as show in Fig. 7.

cginame (. /reverse)
formtitle(Read Everything Backwards)
proc(reverseFunction)
desc(reverseDesc)
init(reverselnit)
##
sub reverseDesc {

return "This reverses every sentence in content.";
}
sub reverseFunction {

my $item = shift;

reverse($item);

Fig. 7. reverse program.

We can clearly see the symbol ## in line six splitting the file in our two major
sections. From line one to line five we are setting a wide range of values for our
application using the DSL. We can also see that most of these values are actually
callback functions that are going to be later defined in the program. Those are
the same exact functions what we are defining from line seven to line thirteen.
Our goal is to reverse the content being browsed, so let’s take a closer look at line
three, where we are using the DSL specific statement proc to define the function
that will be used to process content, this function name is reverseFuncion. We

NAVEGANTE: An Intrusive Browsing Framework 59

are defining this function behavior later in our program in line ten. Our function
is receiving the content being browsed and reversing it.

After writing the program we can build our application. For this task we only
need to run Navegante as shown in Fig. 8.

$ navegante examples/reverse

Fig. 8. Run Navegante.

After running this step a new file called reverse is created, as defined in
Fig. 7, line one. This new file behaves as a traditional CGI, so we will copy it
to a web server, and call it using a browser. The resulting page is illustrated in
Fig. 9. Also, we can positively establish that our programs options were used,
namely the CGI name, and the description function output.

Fle Edit View History Bookmarks Tools Help

@ @ [3 @ € http:/nre homelinux.org/egi-binfreverse -G~ Q

v NAVEGANITE
An Infrusive Browsing Framework

Read Everything Backwards
Url Iwww.cpan.urg I | submit query

This males every content reverse,

Done 4

Fig. 9. reverse application form.

We can now use this form to start browsing pages, having the content being
processed by our application, to be more specific, by the reverseFunction in our
example.

We can see in Fig. 10 an example of a CPAN visit, where everything that is
content was reversed by our intrusive application. Note that we are only ana-
lyzing content itself, and so the HTML code is kept unchanged, thus pages are
correctly rendered by the browser. This is of course the expected behavior, we
would not like to have all our HTML or CSS code reversed.

Also note, on both Fig. 9 and Fig. 10, the banner being inserted on the top of
the page. Since we didn’t define any of the feedbackLive, iform or quit functions
for our application, nothing much interesting there.

60 XATA2008 — XML: Applications and Associated Technologies

3 : T8 Firer [l
Ele Edit View History Bookmarks Inols Help

4. > |‘g @ @ httpinre.hemelinux.org/cgi-binjreverse -G~ Qa

“ NAVEGANIE
Anntusive Browsing Framework

krowteN evihcrA IreP

C PAN evisneherpmoC

62-01-5991 ecnis enino 61-21-7002
srorrim 352 BM 4324
seludom 80721 srohtua 3236
JIreP sgnihT A dnif liw uoy ereH INAPC ot emocleW

gnihcraeS L

- & noitatnemucod eroc IreP)nella noJ ;aro.Irep.codirep(
g NISWO rB « noitatnemucod seludom NAPC dna eroc IreP)sebok
ydnaR(
« srohtua dna ,snoitubirtsid ,seludom
NAPC)gro.napc.hcraes(

* seludom IreP
 stpircs IreP
&)'strop"(snoitubirtsid yranib

Irep cte QAF 3

prop Y

Done Y,

Fig. 10. reverse application being used.

Plus, remember that our processor is rewriting links to make followed content
be processed by our application. So, if we follow any link on the page we will
browsed the referenced page after being processed by our reverse application,
and thus all content will be reversed.

4.2 htspell

Let’s now take a glimpse at a simplified version of an application called htspell.
This application checks for existing words in a dictionary. In our example we are
using the GNU Aspell spell checker to check words, in parallel to this we are
also keeping track of not found words in our application’s state. We keep being
intrusive and changing the content being browsed, by underlining words we can’t
found in the dictionary. We are using the feedback function to summarize words
that aren’t found for the user and the feedbackLive function to present some
data to the user about the processed content, namely the number of processed
words and the percentage of words not found. We can see some important pieces
of this application being defined in Fig. 11.

Now let’s give our htspell application a try. We visit a simple test case that
prints a well know sentence with a couple of misspelled words. We can see the
resulting page in Fig. 12. Notice the banner at the top, we can see the output of
our feedbackLive function printing the processed number of words.

Our template uses a set of auxiliary functions to store state information in
browser’s cookies. Applications can take advantage of this feature by using the
estado special hash. That’s exactly what we are doing in line fifteen in Fig 11. We
are keeping track of not found words in this special variable estado. We can then

=
H O ©®NOo oA W

NONRNNNRNNNRE B 22 e e e
0O UAE WN O ©HNO O W N

NAVEGANTE: An Intrusive Browsing Framework

61

...
proc (htspellFunction)
feedback (htspellFeedback)
livefeedback (htspellLive)
##
...
sub htspellFunction {
...
foreach (@words) {
if ($speller->check($.)) {
$found++ and push @new, $_;
}
else {
$not_found++ and push @new, "<u>$_</u>";
$estado{$_}++
}
}
...
sub htspellFeedback {
h3("Words not found in the dictionary:").
small(ul(1li([map{"$_ - $estado{$_}"}
sort {$estado{$b} <=> $estado{$a}} keys ’estadol)));

}

sub htspelllive {
"I checked $processed words, ".int($not_found/$processed*100).
"% were not found in the dictionary.";

}

...

Fig. 11. htspell program.

MBZil S Terox = =nE

File Edit Wew History Bookmarks Tools Help

[Z] @ @ 3 httpyfnrc.homelinux.orgfegi-binfhtspell @~ |G

| checlked 9@ words, 22% were not
v !:".‘nﬁWEﬁﬂmNE found in the dictionary.

The quiclk bron fox jumps owver the lazi dog

Done

Fig. 12. htspell application.

later print this data to the user, using the function htspellFeedback as defined in
line nineteen. We can verify this by following the feedback link, the small sailing
boat, and verify the list of occurrences of not found words. This is illustrated
in Fig. 13. Remember that our processing functions are nothing more than Perl
code, so you can do whatever Perl allows you to do in your application, which

is pretty much about everything.

62 XATA2008 — XML: Applications and Associated Technologies

@

Fle Edit Wiew History Bookmarks TIools Help

E] E] @ 3 http:j/nrc.homelinux.org/cgi-binfhtspell -Gl Q

Words not found in the dictionary:

= =

* bron -1
* lazi- 1

Done 2

Fig. 13. htspell application feedback function.

5 Future Work

At the moment Navegante has some limitations:

— the address rewriting engine needs to be javascript aware. Nowadays many
links are built using javascript in many obscure ways. This is often hard
to detect, and rewriting those specific links can be almost impossible. But
some improvements can be made, on this particular area, in order to lessen
applications misbehavior.

— design and implement more skeleton templates, to be able to build different
types of applications, and not only CGIs. A standalone service, that works
like a traditional proxy, would be a nice addition.

— after adding new skeleton files, Navegante’s DSL should be refactored, to
allow the use of other contexts and options.

— allow the use of other programming languages in Navegante programs besides
Perl. Make it possible for applications to fire up other interpreters or com-
pilers to build or run the foreign code, in runtime or buildtime, depending
on the language being used.

— implement other options to store data between requests. Currently, data can
only be stored in browser’s cookies.

6 Conclusion

Navegante is a framework aimed to craft applications that behave as proxies,
but with an extra processing layer capability. This extra layer, allows to do
any kind of transformation, on the fly, over the browsed content before being
delivered to the client. We describe this approach, from the point of view of the
application, as intrusive browsing. Intrusive browsing can be a very solid solution
for many problems, since this approach can easily do complex processing, without
adding much entropy to an already working scenario. Another advantage of this
approach, in many situations, is that there is no need to change already working
solutions to add some extra functionality.

NAVEGANTE: An Intrusive Browsing Framework 63

Parallel to content processing, applications can be deployed with a diversified
set of functions that can perform many tasks using different interfaces. These
tasks can present new output by using the banner provided built-in with every
application. Or, use the same banner to ask for user input, and merge it with state
information. There’s also the feedback option, that can process state information
to display any kind of data at any given time. The subtlety of quitting the
application, is also built-in in your application if you need it, it’s just a way to
finish the browsing session if the application needs to deliver any final conclusion
regarding state or content information.

There are already some applications built based on this approach, which let
us defend the usability and utility of this framework. These applications include:

— an online spell checker [9] that underlines each unknown word, and accumu-
lates the list of unknown words for later reference;

— a terminology collector, that extracts from visited web pages words that are
not common, and thus, are probably terminology terms;

Most of the times, this kind of applications are not easy or quick to imple-
ment, but with the right tools to aid development, complex tasks can be solved
very easily. Also, some edge cases and common issues are already handled by
some feature in the framework, like HTTP flow control, address rewriting, or
being able to store state information. Navegante is still a work in progress but
has already demonstrated to be a valuable tool to develop this specific gender
of applications. Also, it is a very clean way to deploy applications that rely on
other services, and in many cases even without those services being aware that
their content is being used to feed other applications. In sum, there are unar-
guable facts that intrusive browsing is the natural solution for many complicated
problems, and Navegante will be the natural way to implement them.

References

1. José Jodo Almeida and Alberto Simdes. Navegante: um proxy de ordem superior
para navegacao intrusiva. In José Carlos Ramalho, Alberto Simoes, and Jodo Correia
Lopes, editors, XATA 2006, Aplicagoes e Tecnologias Associadas, pages 376-377,
Portalegre, Fev. 2006. ESTGP. poster.

2. José Jodo Almeida and Alberto Manuel Simdes. Xml::dt.
http://search.cpan.org/perldoc?XML::DT.

3. Francois Desarmenien. Parse::yapp. http://search.cpan.org/perldoc?Parse::Yapp.

4. Mark Jason Dominus. Higher-Order Perl: Transforming Programs with Programs.
Morgan Kaufmann, 2005.

5. Anténio R. Fernandes, Alexandre Carvalho, J. Jodo, and Alberto Simoes. Transcod-

ing for Web Accessibility for the Blind: Semantics from Structure. In ElPub 2006 —

Digital Spectrum: Integrating Technology and Culture, Bansko, Bulgaria, June 2006.

Hans Rohnert. The proxy design pattern revisited. pages 105-118, 1996.

L.D. Stein. Official guide to programming with CGI. pm. Wiley New York, 1998.

W.R. Stevens, B. Fenner, and A.M. Rudoff. UNIX Network Programming, Vol. 1.

Pearson Education, 2003.

9. Rui Vilela. Webjspell, an online morphological analyser and spell checker. In Proce-
samiento del Lenguaje Natural 89 - SEPLN, pages 291-292, 2007.

e

XCentric: Constraint based XML Processing

Jorge Coelho! and Mério Florido?

! Instituto Superior de Engenharia do Porto & LIACC
Porto, Portugal
2 University of Porto, DCC-FC & LIACC
Porto, Portugal
{jcoelho,amf }@ncc.up.pt

Abstract. Here we present the logic-programming language XCentric,
discuss design issues, and show its adequacy for XML processing. Distinc-
tive features of XCentric are a powerful unification algorithm for terms
with functors of arbitrary arity (which correspond closely to XML doc-
uments) and a rich type language that uses operators such as repetition
(*), alternation, etc, as types allowing a compact representation of terms
with functors with an arbitrary number of arguments (closely related to
standard type languages for XML). This new form of unification together
with an appropriate use of types yields a substantial degree of flexibility
in programming.

1 Introduction

XML is a powerful format for tree-structured data. A need for programming
language support for XML processing led to the definition of XML programming
languages, such as XSLT [28], XDuce [14], CDuce [1], Xtatic [29] and Xcerpt [2].

In this paper we present XCentric, a logic programming (LP) language based
on the unification of terms with flexible arity function symbols extended with
a new type system for dealing with sequences and new features for searching
sequences inside trees at arbitrary depth.

The main features of XCentric rely on the use of:

Regular expression types: regular expression types give us a compact rep-
resentation of sequences of arguments of functors with flexible arity. They also
add extra expressiveness to the unification process. Let us present an illustrating
example.

The following declaration introduces regular expression types describing terms
in a simple bibliographic database:

:—type bib ———> bib(book+).

:—type book ——> book(author+, name).
:—type author ——> author(string).
:—type name ——> name(string).

Type expressions of the form f(...) classify tree nodes with the label f (XML
structures of the form < f > ... < /f >). Type expressions of the form ¢ denote

64

XCentric: Constraint based XML Processing 65

a sequence of arbitrary many ts, and ¢+ denotes a sequence of arbitrary many
ts with at least one ¢t. Thus terms with type bib have bib as functor and their
arguments are a sequence of one or more books. Terms with type book have book
as functor and their arguments are a sequence consisting of one or more authors
followed by the name of the book.

The next type describes arbitrary sequences of authors with at least two
authors:

:—type type_a ——> (author(string),author(string)+).

A new form of unification: in the previous example, to get the names of all
the books with two or more authors in XCentric, one just needs the following
query (= * = stands for unification of terms with flexible arity functors and ¢ :: 7
means that term ¢ has type 7):

?7—bib (-, book(X::type_a ,name(N)),_)=+«+=BibDoc::bib.

This unifies two terms typed by bib. The type declaration in the first argument is
not needed because it can be easily reconstructed from the term. In this case we
bind the variable N to the content of the name element of the first book element
with at least two authors. Note how the type type_a in the first argument of the
unification is used to jump over an arbitrary number of arguments and extract
the name of the first book with at least two authors. All the results can then
be obtained, one by one, by backtracking. This goes far beyond standard Prolog
unification.

Sequence variables and unification of terms with functors of flexible arity gives
XCentric the power of partially specifying terms in breadth (i.e. within the sub-
terms of the same term). In XCentric one can also partially specify a term in
depth using the deep predicate. A query term of the form deep(ty,t2) matches
all subterms of ¢ that match the term ¢;. Consider the following example (in
XCentric we can explicitly refer to sequences of terms t1, ..., t, as < t1,...,t, >):
suppose we want to find sequences of two authors in a document to which the
variable XML is bound. We can use the query:

?—deep (<author (Al),author (A2)> ,XML).

The names of the two authors will bind variables A; and A,, and all solutions
can be found by backtracking.

The main contributions of XCentric to the logic programming paradigm, are
to give programmers a tool that makes it much easier and more declarative to
process XML, and to show the impact of a new form of unification (typed unifica-
tion of terms with functors of flexible arity) in programming. Note that subjects
such as databases, data-mining and Web programming, are quite relevant appli-
cation areas of logic programming, and in these areas XML is becoming more
and more a standard data format for information exchange.

In this paper we show the previous claim about XCentric, showing its con-
tribution with respect to:

66 XATA2008 — XML: Applications and Associated Technologies

Prior non-LP XML processing work: mainstream languages for XML pro-
cessing such as XSLT ([28]), XDuce ([14]), CDuce ([1]) and Xtatic ([29]) rely
on the notion of trees with an arbitrary number of leaf nodes to abstract XML
documents. However these languages are based on functional programming and
thus their key feature is pattern matching, not unification. Regular expression
patterns are often ambiguous and thus functional XML processing languages
presume a fixed matching strategy for making the matching deterministic. In
contrast, XCentric just leaves ambiguous matching non-deterministic and ex-
amines every possible matching case by backtracking. This makes it possible to
write complicated XML processing tasks in a quite declarative way. Although
pattern matching is desirable in many applications of XML processing, there are
situations where the use of unification is a gain. It is known that unification may
even improve efficiency in some cases (by careful use of the logical variable) and
it is on the basis of a truly relational programming, improving declarativeness
and modularity in many cases. In this paper we show examples where these sit-
uations also arise in XML processing. This, and the use of unification of terms
with functors of flexible arity, show that there are aspects of XML processing in
XCentric that do not have counterparts in other approaches to XML processing.

Prior LP work: some Prolog systems have libraries [23, 22] to deal with XML.
These libraries translate XML documents to a list of Prolog terms and use
standard Prolog for processing. XCentric uses recent results of unification the-
ory (unification of terms with functors of flexible arity [17,7]) and novel type
languages based on regular types [8,6], as the theoretical basis of a logic pro-
gramming language for XML processing where sequences of terms are first class
objects of the language. This leads to a much more declarative way of process-
ing XML when compared to the standard Prolog libraries for XML processing.
Xcerpt ([2]) is a logic programming query language for XML which also used
terms with flexible arity function symbols as an abstraction of XML documents.
It used a special notion of term (called query terms) as patterns specifying selec-
tion of XML terms much like Prolog goal atoms. The underlying mechanism of
the query process was simulation unification ([3]), used for solving inequations
of the form ¢ < ¢t where ¢ is a query term and ¢ a term representing XML data.
Concepts behind Xcerpt are more directed to query languages and technically
quite different from the typed unification of terms with functors of flexible arity
used in XCentric.

Regular expression matching was also used in [18, 19] to extend context sequence
matching with context and sequence variables. This work dealt with matching,
not unification, and it was not integrated in a programming language. Unification
of terms with functors of flexible arity generalizes previous work on word unifi-
cation ([15]), equations over lists of atoms with a concatenation operator ([10])
and equations over free semigroups ([21]), by enabling the use of as many flexi-
ble arity symbols as we wish and of arbitrarily nested terms. Recently, in [16], a
specific language was defined to denote relations between XML documents. This

XCentric: Constraint based XML Processing 67

language used its own new syntax, based on mainstream functional languages for
XML processing, and its definition stresses the usefulness of an approach based
on the truly relational programming paradigm: logic programming.

Monadic Datalog has also been successfully applied to XML querying in the
absence of data values [13].

Note that the work described in this paper was first presented in a previous
paper from the authors ([5]).

In the rest of the paper we assume that the reader is familiar with logic
programming [20] and XML [26]. We start in section 2 by presenting some ex-
amples of the language. In section 3 we present sequence variables and flexible
arity functions and in section 4 we present sequence types. In section 5 we ex-
plain the role of types in the unification process, and finally in section 6 we
conclude and outline the future work.

2 XCentric by example

Here we present several simple examples to familiarize the reader with the lan-
guage before presenting the details.

In XCentric, an XML document is translated to a term with flexible arity
function symbol. This term has a main functor (the root tag) and zero or more
arguments. Although our actual implementation translates attributes to a list of
pairs, since attributes do not play a relevant role in this work we will omit them
in the examples, for the sake of simplicity.

Ezample 1. Consider the simple XML file:

<addressbook>
<record>
<name>John</name>
<address>New York</address>
<email>john.ny@mail.com</email>
</record>

</addressbook>

Its corresponding term is:

addressbook (record (name(’John '), address (’New_York '),
email (’john.ny@mail.com’)) ,...)

Suppose that the previous XML file is valid with respect to the following DTD:

<IELEMENT addressbook (record)>

<!ELEMENT record (name,address ,phone?,email)>
<IELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

< |ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

This DTD can be described in XCentric by the type rule:

:—type type.addr ———> addressbook (record (name(string),address(string),
phone(string)?,email(string))x*)

From now on, whenever a variable is presented without any type information
it is implicitly associated with the universal type any (which types any term).
Through the following examples we will use the built-in predicates xmi2pro and

68 XATA2008 — XML: Applications and Associated Technologies

pro2xml which respectively convert XML files into terms and vice-versa. We will
also use the predicate newdoc(Root, Args, Doc) where Doc is a term with functor
Root and arguments Args.

Ezxample 2. Suppose we have an XML document with a catalog of books like
the following one:
<catalog>

<book number="500">
<author>Simon Thompson</author>
<name>
Haskell: The Craft of Functional Programming (2nd Edition)
</name>
<price>41</price>
<year>1999</year>
</book>

</catalog>

To get all the books with two or more authors using SWI-Prolog [23] (which has
a quite good library for processing XML in Prolog) we need the following code:

pbib ([element (-,-,L)]):—
pbib2(L).
pbib2 ([]).
pbib2 ([element (’book ’,_,Cont)|Books]) :—
authors (Cont) ,!,pbib2(Books).
pbib2 ([.| Books]) :—

pbib2 (Books).

authors ([element (’author’,.,_-),element(’author’,_,_)|R]):—
write_name (R).

write_name ([element (*name’ ,_,[N])]) :—
write (N),nl.
write_name ([-|R]) :—

write_name (R) .

To do the same in XCentric, assuming that the XML file is translated to a term
binding variable BibDoc, the following query is enough:

catalog (-, book (name(N),author(-),author(-),-),-) =+= BibDoc.

All the solutions can then be obtained, one by one, by backtracking. The sim-
plicity and declarativeness of the second solution speaks by itself when compared
to the first one.

If we want to verify the document consistency with respect to a given DTD, we
just have to replace in the previous query, the variable BibDoc, by the typed
variable BibDoc :: tc, where type tc is the translation of the DTD to its corre-
sponding XCentric type.

2.1 Incomplete terms in depth

XCentric also provides predicates that allow the programmer to find a sequence
of elements at arbitrary depth, to search for the nth occurrence of a sequence of
elements and to count the number of occurrences of a sequence. The predicates
are deep/2, deepp/3 and deepc/3, respectively.

Ezample 3. This example is based on a medical report using the HL7 Patient
Record Architecture and inspired by the XQuery use cases available at [27].
Given reportl.xml (figure 1), find what happened between the first incision and
the second incision and write the result in a file named critical.xml:

XCentric: Constraint based XML Processing 69

<report>
<section>

<section_title>Procedure</section_-title>

<section_-content>
The patient was taken to the operating room where she was placed ...
<anesthesia>induced under general anesthesia.</anesthesia>

<prep>
<action>A Foley catheter was placed to decompress </action>...

</prep>

<incision>
A curvilinear incision was made <geography> in the midline
immediately infraumbilical </geography> and the subcutaneous
tissue was divided <instrument> using electrocautery .
</instrument>

</incision>

The fascia was identified and <action> #2 0 Maxon stay sutures were
placed on each side of the... </action>

<incision>
The fascia was divided using <instrument> electrocautery
</instrument> and the peritoneum was entered. </incision>

<observation> The small bowel was identified. </observation>...

</section_content>

</section>
</report>

Fig. 1. reportl.xml

translate: —
xml2pro(’reportl.xml’ ,Rep),
deep (<incision(-),Critical ,incision (-)>,Rep),
newdoc (critical_sequence , Critical ,FL),
pro2xml(FL, critical .xml’).

The result is:

<critical_sequence>

The fascia was identified and <action> #2 0 Maxon stay
sutures were placed on each side of the...</action>
</critical_sequence>

2.2 Unification and XML Processing

Mainstream XML processing languages rely on pattern matching. In our ap-
proach we also use unification for XML processing. In this section we present
some examples where unification has advantages over pattern matching.

Example 4. In functional based languages for XML processing transformations
are unidirectional, enabling the use of a description of the structure of an XML
document and the use of pattern matching to extract some of its subparts.

Being a relational language, XCentric can easily describe the structures of
two documents and relate their subparts. For example, we can write the following
simple predicate in XCentric for converting between fragments of two kinds of
address books.

translate (<person (name(N),C1)> ,<card (person—name(N),C2)>):—
address_content (C1,C2).

address_content (<>,<>).
address_content (<A1, address (A),A2>,<L1,location (A),L2>):—
address-content (<Al,A2>,<L1,L2>).
This relates a person element and a card element, where the pattern of the first
argument of translate requires the person to contain a name element followed by

70 XATA2008 — XML: Applications and Associated Technologies

a sequence of address elements, and the second argument describes the structure
of the card containing a person-name element follower by a sequence o loca-
tion elements. Variable N, which appears in both arguments, specifies that its
corresponding subparts, the contents of name and person-name, are the same.
Predicate address_content relates address in a person element with location in
the corresponding card element. This is trivially expressed in an unification-based
relational language such as XCentric, but impossible to express in a functional
(thus unidirectional) language based on pattern matching. Note that variables
occurring in sequences, are interpreted in the domain of sequences, thus, in this
program, unification is not Prolog unification, but the non-standard unification
of XCentric. Also note the gain in modularity: this predicate can be used in
three different ways. 1) to transform an XML document with the format spec-
ified by the first argument of translate into the format specified by its second
argument, 2) to do the opposite transformation, or 3) to guarantee that two
different documents in the two different formats are related in the way specified
by the predicate (corresponding, respectively, to call it with the first, second or
both arguments ground). In a functional-based language these three different
behaviors have to be implemented by three different functions.

Ezample 5. Suppose we have an XML document that represents an article entry:

<text>

Mainstream languages for XMI processing such as XSLT <ref>W3C
</ref>, XDuce <ref>Hosoya </ref>, CDuce <ref>Frish Casagna and Benzaken
</ref> and Xtatic <ref>Pierce</ref> rely on the notion of trees with an
arbitrary number of leaf nodes to abstract XMI documents.
</text>

This document has references like <ref>W3C< /ref> which appear in a simple
bibliography database, where each ref element has a corresponding author:

<bibliography>
<bib>
<author>Coelho and Florido</author>
<name>Type—based XML Processing in Logic Programming</name>
</bib>
<bib>
<author>Hosoya</author>
<name>XDuce: A Typed XML processing language</name>
</bib>

</bibliography>

The idea is the following:

1. Create a new bibliography document only with references occurring in the
article but ordered by author name.

2. Create a new article were each reference is replaced by a number correspond-
ing to the author order in the bibliography.

As result we want the following:

<text>

Mainstream languages for XMI processing such as XSLT <i>4</i>,
XDuce <i>2</i>, CDuce <i>1</i> and Xtatic <i>3</i> rely on the notion
of trees with an arbitrary number of leaf nodes to abstract XMI
documents .

</text>

and the bibliography file as:

XCentric: Constraint based XML Processing 71

<bibliography>

<bib>

<index> 1 </index>

<author>Frish Casagna and Benzaken</author>

<name>CDuce an XML—centric general—purpose language</name>
</bib>

</bibliography>

To achieve this result using a similar method but based in pattern matching ap-
proach, note that, as we only know all the references after processing the entire
document, we must process the document, retrieve all the references found, order
the references and then process the document a second time to replace the refer-
ences with the corresponding indexes. Using unification it is possible to process
the document only once: the references are replaced by free variables which are
associated with the corresponding references (by means of an association list) cre-
ating an intermediate document which is not a ground term. We can then order
the association list by author and bind the corresponding variables with the cor-
rect index. The document now becomes a ground term (by the use of unification)
which is the desired output. Note that we only processed the document once (the
complete implementation can be found at http://www.ncc.up.pt/xcentric/).

3 Sequence Variables and Flexible Arity Functions

Here we briefly review the notions of sequence, sequence variable and functor
with flexible arity. A detailed description of this subject and of (untyped) uni-
fication of flexible arity terms can be found in [7]. We extend the domain of
discourse of Prolog (trees over uninterpreted functors) with finite sequences of
trees.

Definition 1. A sequence t, is defined as follows: € is the empty sequence and
t1,t is a sequence if t1 is a term and t is a sequence.

We now proceed with the syntactic formalization, by extending the standard
notion of Prolog term with flexible arity function symbols and sequence variables.

Consider an alphabet consisting of the following sets: the set of standard
variables, the set of sequence variables, the set of constants, the set of fixed arity
function symbols and the set of flexible arity function symbols.

Definition 2. The set of terms over the previous alphabet is the smallest set
that satisfies the following conditions:

1. Constants, standard variables and sequence variables are terms.

2. If f is a flexible arity function symbol and t1,...,t, (n > 0) are terms, then
flt1,...,tn) is a term.

3. If f is a fized arity function symbol with arity n, n > 0 and t1,...,t, are
terms such that for all 1 < i < n, t; does not contain sequence variables as
subterms, then f(t1,...,t,) is a term.

Remark 1. To avoid further formality, we assume that the domain of interpre-
tation of variables is predetermined by the context where they occur. Variables
occurring in a constraint of the form t; = % = ¢5 are interpreted in the domain
of sequences of trees, otherwise they are standard Prolog variables.

72 XATA2008 — XML: Applications and Associated Technologies

3.1 Sequences

We use a special kind of terms, here called sequence terms, for implementing
sequences.

Definition 3. A sequence term, ¢ is defined as follows:

— € is a sequence term that represents the empty sequence.
— seq(t,) is a sequence term if ¢ is a term and § is a sequence term.

Definition 4. A sequence term in normal form is defined as:
— € 18 in normal form
— seq(t1,ta) is in normal form if t1 is not of the form seq(ts,ts) and ts is in
normal form.
Sequence terms in normal form are the internal representation of sequences. For

example, seq(a, seq(b,€)) represents sequence a,b. Note that for simplification
purposes we drop the seq operators for sequences of just one element.

4 Types

In this section we present the type language starting with a description of Regular
Types [11] and then their extension to type sequences of terms.

4.1 Regular Types

Definition 5. Assuming an infinite set of type symbols, a type term is defined
as follows:

1. A constant symbol (we use a, b, ¢, ete.) is a type term.

2. A type symbol (we use a, (3, etc.) is a type term.

3. If f is a flexible arity function symbol and each 7; is a type term, f(11,...,Tn)
1S a type term.

Definition 6. A type rule is an expression of the form o« — T where « is a
type symbol and T is a finite set of type terms.

Sets of type rules correspond to regular term grammars [25].

Ezample 6. Let « and [be type symbols, a — {a,b} and § — {nil, tree(s,
a, B)} are type rules.

Definition 7. A type symbol « is defined by a set of type rules T if there exists
a type rule a — T € T.

Regular types are the class of types that can be defined by finite sets of type rules.
In XCentric a type rule & — {71, ..., 7.} is represented by the declaration:

-type « - - -> 71500 Ty

It is well known that regular types can be associated with unary logic programs
(see [31,30]). For every type symbol «, there is a predicate definition «, such
that «(t) is true if and only if t is a term with type a (note that we are using
the type symbol as the predicate symbol).

XCentric: Constraint based XML Processing 73

4.2 Regular Expression Types

We now define regular expression types, which describe sequences of values: a*
(sequence of zero or more a’s), a+ (sequence of one or more a’s), a? (zero or one
a), alb (a or b) and a,b (a followed by b). We translate regular expression types
to our internal sequence notation:

ax = a, — {¢,seq(a, o)}

a+ = ay — {a,seq(a,ai)}

a? = ar — {¢, seq(a,€)}

alb = a) — {a,b}

a,b = aseq — {seq(a, seq(b, €))}

Note that DTDs (Document Type Definition) [26] can be trivially translated
to regular expression types. XCentric also has some XML Schema [24] support,
basic types like string, integer, boolean and float, bounding the occurrences of
sequences and orderless sequences are supported.

5 Types in the unification process

In this section we explain the role of types in the unification process.

Definition 8. A type declaration for a term t with respect to a set of type rules
T is a pair t :: a where « is a type symbol defined in T .

Ezample 7. Consider the equation a(X,b,Y) :: g = * = a(a,b,b,b) :: u, where
Qq is defined by the type rules:

aq — {a(ag, b,ay)}

a; — {u}

ay — {b, (b, ay)}
then this unification gives only two results:

1. X=aand Y =0,b
2. X=a,band Y =10

Note that without the types the solution X = a,b,b and Y = ¢ would also be
valid.

Implementation: An equation of the form ¢; :: @ = % = {5 :: @y is translated
to the following query:

?- tl = % = t2,0[1(t1),042(t2).

and the respective predicate definitions for a; and s (as described in section
4). Correctness of ¢1 :: @1 = % = g :: g comes for free from the correctness of
the untyped version of = * = (presented in [7]) and noticing that if ? —¢; = % =
to, a1(t1), aa(ta) succeeds then t16 € [aq]r N [a2]r, where 6 is the substitution
resulting from t; = * = to.

74 XATA2008 — XML: Applications and Associated Technologies

6 Conclusions and Future Work

XCentric is an extension of Prolog with a richer form of unification and regular
types, designed specifically for XML processing in logic programming. It enables
a highly declarative style of XML-processing and it is based on a sound foun-
dation of a very small core of well studied key features, such as unification of
terms with flexible arity [7,17] and regular types for logic programming [31,12].
Also note that XCentric is now being used successfully in practice in some areas,
such as website auditing and verification [9,4]. Ongoing work is being done to
improve efficiency. We have benchmarks indicating that, compared with pattern
matching, XCentric is rather inefficient when applied to large files (more than
15 KB). This is, somehow, expected, since pattern matching itself is more ef-
ficient than unification, and pattern-matching based languages, such as XDuce
or CDuce, are compiled, highly optimized languages. Future and ongoing work
on this matter, includes the use of tabling in the unification algorithm and ex-
tending the WAM with new instructions for dealing directly with sequences.
We are also interested on applying XCentric to other application areas besides
XML. Bioinformatics, relying intensively on the notion of sequence, is a natural
candidate for new applications.

References

1. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: an XML-
centric general-purpose language. In Proceedings of the eighth ACM SIGPLAN
Int. Conference on Functional Programming, Uppsala, Sweden, 2003.

2. F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In 2nd Annual International Workshop Web and
Databases, volume 2593 of LNCS, 2002.

3. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In International
Conference on Logic Programming (ICLP), volume 2401 of LNCS, 2002.

4. Jorge Coelho and Mario Florido. Type-based static and dynamic website verifica-
tion (to appear). In ICIW’07. IEEE Computer Society, 2007.

5. Jorge Coelho and Mario Florido. Xcentric: Logic programming for xml processing.
In 9th ACM International Workshop on Web Information and Data Management.
ACM Press, 2007.

6. Jorge Coelho and Mario Florido. Type-based XML Processing in Logic Program-
ming. In Practical Aspects of Declarative Languages, volume 2562 of LNCS, 2003.

7. Jorge Coelho and Mério Florido. CLP(Flex): Constraint Logic Programming Ap-
plied to XML Processing. In Ontologies, Databases and Applications of SEmantics
(ODBASE), volume 3291 of LNCS. Springer Verlag, 2004.

8. Jorge Coelho and Maério Florido. Unification with flexible arity symbols: a typed
approach. In Informal proceedings of the 20th International Workshop on Unifica-
tion (UNIE’06), Seattle, USA, 2006.

9. Jorge Coelho and Maério Florido. VeriFLog: Constraint Logic Programming Ap-
plied to Verification of Website Content. In Int. Workshop XML Research and
Applications (XRA’06), volume 3842 of LNCS. Springer-Verlag, 2006.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.

31.

XCentric: Constraint based XML Processing 75

A. Colmerauer. An introduction to Prolog III. Communications of the ACM,
33(7):69-90, 1990.

P. Dart and J. Zobel. A regular type language for logic programs. In Frank
Pfenning, editor, Types in Logic Programming. The MIT Press, 1992.

Miério Florido and Luis Damas. Types as theories. In Proc. of post-conference
workshop on Proofs and Types, Joint International Conference and Symposium on
Logic Programming, 1992.

Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of
languages for web information extraction. J. ACM, 51(1):74-113, 2004.

Haruo Hosoya and Benjamin Pierce. XDuce: A typed XML processing language.
In Third Int. Workshop on the Web and Databases, volume 1997 of LNCS, 2000.
J. Jaffar. Minimal and complete word unification. Journal of the ACM, 37(1):47—
85, 1990.

Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectional transformation lan-
guage for XML. In John H. Reppy and Julia L. Lawall, editors, ICFP, pages
201-214. ACM, 2006.

Temur Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In Joint AISC’2002 - Calculemus’2002 confer-
ence, LNAI, 2002.

Temur Kutsia. Context sequence matching for xml. In Proceedings of the 1th Int.
Workshop on Automated Specification and Verification of Web Sites, 2005.
Temur Kutsia and Mircea Marin. Can context sequence matching be used for
querying xml? In Laurent Vigneron, editor, Proceedings of the 19th Int. Workshop
on Unification (UNIF’05), pages 77-92, Nara, Japan, 22 April 2005.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

G. S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik USSR, 103:147-236, 1977.

Pillow: Programming in (Constraint) Logic Languages on the Web.
http://clip.dia.fi.upm.es/Software/pillow /pillow.html, 2001.

SWI Prolog. http://www.swi-prolog.org/.

XML Schema. http://www.w3.org/XML/Schema/, 2000.

J.W. Thatcher. Tree automata: An informal survey. Prentice-Hall, 1973.
Extensible Markup Language (XML). http://www.w3.org/XML/, 2003.

XQuery Use Cases. http://www.w3.org/TR/xquery-use-cases/, 2005.

XSL Transformations (XSLT). http://www.w3.org/TR/xslt/, 1999.

Xtatic. http://www.cis.upenn.edu/~bcpierce/xtatic/, 2004.

E. Yardeni and E. Shapiro. A type system for logic programs. In The Journal of
Logic Programming, 1990.

Justin Zobel. Derivation of polymorphic types for prolog programs. In Proc. of
the 1987 International Conference on Logic Programming. MIT Press, 1987.

Using OWL to specify and build different views
over the Emigration Museum resources

Flavio Xavier Ferreira and Pedro Rangel Henriques

Departamento de Informética, CCTC
Universidade do Minho
{flavioxavier,prh }@di.uminho.pt

Abstract. This paper discusses the approach used to create the exhibi-
tion rooms of the virtual (Web-based) section of Portuguese Emigration
Museum (Museu da Emigracdo e das Comunidades, MEC) founded by the
Cultural Department (Casa da Cultura) of Fafe’s Town Hall (Camara Mu-
nicipal de Fafe). The museum’s assets are made up of documents (paper
or digital format) of more than 8 kinds, ranging from passport records
to photos/cards or building-drawings. Each room is no more than a view
over the information contained in those single or interrelated resources.
The information exhibited in each room is described by an ontology,
written in OWL. That ontology is used to specify the information that is
extracted from the resources and to provide a semantic-network naviga-
tor to the museum visitor. That approach can be automatised to allow
a very systematic way to deal with the huge and rich museum assets;
we will also discuss some technical details concerning its complete im-
plementation in the near future.

1 Introduction

Fafe, as many other Portuguese towns and villages, mainly at the north, has a
huge cultural heritage characterising the social phenomena of emigration (espe-
cially to Brazil) along the nineteenth and first half of twentieth centuries.

In this context Miguel Monteiro!, supported by the staff of Fafe’s Town Hall
(via Cultural Department), started some years ago collecting information from
passports’ governmental records into a database. But soon from this project arise
the the idea to gather all sorts of documentation and create a web-based virtual
museum that makes easily accessible this rich cultural heritage to emigrants and
theirs descendants as well as to all those researching in that area, and of course
the general public.

The Museum was born in 2001 with the designation of Museu da Emigracao e
das Comunidades (hereafter referred as MEC). Its material is inherited mainly
from official documents or personal writings reporting on the departure, travel,
and stay abroad, but there are also a large number of assets bearing witness

! An History professor, responsible for the MEC creation, and its current director.

76

Using OWL to Specify and Build Different Views over the Emigration. .. 7

to the less usual phenomena of emigrants’ return — besides the documents,
a large set of buildings (private or public, professional or philanthropic, and
other non-physical evidences) left by the emigrants around the country can
be also considered assets. The MEC is structured upon six Rooms (see http:
///www.museu-emigrantes.org/museu.htm), but at the moment these rooms
are handmade, difficult to maintain and to add new information, and most impor-
tant, they are lacking a systematic way to for information acquisition, treatment
and exhibition; inconsistencies are evident from room to room but even inside
the same room.

Some years ago the MEC, started a collaboration with University of Minho Lan-
guage Specification and Processing Group (GEPL), to develop a project aiming
at systematic approach for the acquisition, archiving, treatment and exploration
of the Museum’s documental resources. In our perspective, each room is seen
just as a specific view over a common information repository. The repository
should be a digital archive (in database format or as a collection of XML files)
of all the information resources referred above as museum’s assets. Each view
(the knowledge enclosed in the respective room) can be specified by an ontology,
as traditionally done by philosophers to organise the discourse over a certain
closed-world. The extraction process? can be automatise by resorting to a stan-
dard notation for the ontology description, and moreover, the browsers that will
implement the user-interface in each room (as a semantic network navigator)
can also be automatically built.

In the past, that approach was realised using Topic Maps[13], at the moment
we are experimenting with OWL. This paper describes our more recent research
work exploring RDF/OWL.

So, we start, in section 2, with a catalogue of the MEC information resources,
which constitute the Museum’s assets; as the basis for all the exhibition rooms,
it gives the motivation to our work and proposal. In section 3 we introduce
the ontology concept and present the main standards for ontology description;
Topic Maps are just briefly referred as they where explored in previous work;
RDF/OWL is studied in detail because it is going to be the main focus of this
work. Section 4, not the biggest but the central one, presents a detailed dis-
cussion of our methodological approach, briefly introduced above as the use of
ontologies to specify and construct each museum’s room. Section 5 is concerned
with MusVis, the extraction and navigation system we are developing; its archi-
tecture is defined and its technical implementation is briefly referred. The paper
ends at section 6 with the traditional remarks and future work.

2 Emigration Museum and its Information Resources

The MEC is a web-museum (although it also has physical headquarters and
some exhibitions), that gathers knowledge, and resources about the Portuguese
emigration.

2 The task of building up the ontology from the information resources data

78 XATA2008 — XML: Applications and Associated Technologies

The MEC wants to discover and show the effects of mixing people and cultures,
in the social, cultural and economical history of Portugal. It focus, mainly on the
past Portuguese emigration to Africa and the more recent emigration to Brazil
(19th and 1st half of 20th century) and to Europe (2nd half of the 20th century),
but it is by no means restricted to them [2].

The MEC assets are vast and multifaceted, this is supported by the fact that em-
igration documents and objects come from the most diversified sources, ranging
from official government records to old newspapers and photo albums. The doc-
ument types are themselves heterogeneous (from official travel reports to local
stories). Some documents where converted to an electronic format (plain ASCII
text, Ms-Word, Ms-Excel, Ms-Access, HTML, etc.), but many others are, still, in
paper format stored in Archives and Libraries.

Birth certificate contained in

its a contained in Passport's processes acquired in bistrict archives
Passport petition contained in acquired in
its a it's an
Criminal record District's passport record
contained in
it's a it's an
contained in
s a [EBE (e Municipal passport record acquired in
; . Municipal archives
Document it's a contained in it's an acquired in
contained in Municipal minutes
e e contained in
ts a contained in s an Official document
it's a contained in Contemporary photos
it's a
contained in it's an
) 0ld postcards)
contained in it's an
I i
Images and photos . it's an conographic source s a
contained in)
Family album
contained in Document type
it's a
(s @ contained in Local journals its a Media source
it's a
it's a
contained in J—
Biography
contained in
it's a
Publication
Local Monograph it's a

Fig. 1. Information sources and resources semantic web

This tremendous amount of resources and their variety gives the MEC an enor-
mous potentiality as a museum, but at the same time it is very difficult to
organise and display all this information in a straightforward way. To overcame
this problem the sources of information (the so-called museum’s assets) were
catalogued. The conceptual map (a graph of concepts) in Figure 1 shows the
organisation of the sources and the types of the documents (ellipses denote doc-

Using OWL to Specify and Build Different Views over the Emigration. .. 79

ument types). Based on that classification, we have defined (using XSD) an XML
format to enable the encoding of those documents to a structured (annotated)
digital format, adequate for archiving and subsequent processing (this will be ad-
dressed in section 5). We are also developing an editor to assist the acquisition
phase and the creation of the XML files.

3 Ontologies and their Notation

An ontology is originally a philosophic concept, concerned with the study of
being or existence and forms the basic subject matter of metaphysics. In com-
puter science an ontology represents a set of concepts and there relations in a
given domain; it can also be used to infer knowledge and information about the
domain’s objects[9].

Technically speaking an ontology is defined by a set of classes, individuals, at-
tributes, and relations. Classes or concepts, are abstract sets of objects, that can
contain other individuals and other classes (subclasses). Individuals or instances
are the actual objects we want to represent, they can be people, animals, num-
bers, web pages, etc.. The ontology objects can be described using attributes,
each attribute is a name/value pair. Relations are connections between the on-
tology objects, they allow the representation of concepts and the creation of
associations within the ontology objects. In the example seen in Figure 2, we

Place built in Vehicle
’WLT‘
instance of Car Truck

instance of

Opel Corsa
12-34-AA

China {—— builtin

Fig. 2. An ontology example

can identify the classes Vehicle, Car, Truck and Place; and the individuals
China and Opel Corsa; the licence plate 12-31-AA can be seen as an attribute;
and there are also the relations built-in, subclass-of and instance-of.

To use ontologies in the MEC we still need a specific notation to write them.
There are several ontology description languages available[6], but our attention
(in the next subsections) goes to: the International Organization for Standardiza-
tion (ISO) standard Topic Maps (TM)[11]; and the World Wide Web Consortium
(W3C) standards Resource Description Framework (RDF), RDF Schema (RDFS)
and Web Ontology Language (OWL)3.

3 All three are part of the W3C semantic web effort[5].

80 XATA2008 — XML: Applications and Associated Technologies

3.1 Topic Maps

Topic Maps can be seen as a way to share and represent knowledge, with focus on
information retrieval; this notation was created to allow knowledge description
that are equally processable by machines and humans[12]. TM is a standard
(ISO 13250:2003) for the representation and interchange of knowledge, with an
emphasis on the findability of information, it provides a standardised notation
for interchangeably representing information about the structure of information
resources used to define topics, and the relations between topics[11]. In a topic
map, information is represented using topics, associations and occurrences:

topic is the basic element of a topic map, representing some subject (ex. persons,
contries, organisations, software modules, etc.);

association connects two or more topics, definning a semantic relationship be-
tween the themes represented by those topics;

occurrence represents a relationship between topics and information resources
relevant to them.

There are several notations for TM. The most usual is the standard XML-based
interchange syntax called XML Topic Maps (XTM).

TM lacks a schema language, that defines the topics structure and constraints.
One of the possible solutions is the ISO standard Topic Maps Constraint Lan-
guage (TMCL)[1]; this proposition is still underdevelopment. XTche language,
developed by Giovani Librelotto[12], is a concrete proposed intended to comply
with the TMCL requirements.

Topic Maps proved in practise to be natural and easy to use, allowing the effec-
tive construction and the handling of semantic networks. However, the scientific
comunity is nowadays more inclined to use the W3C standards mainly on ac-
count of RDF.

3.2 RDF and OWL

OWL was chosen to represent the ontologies for the MEC, but OWL is not a
standalone technology, it benefits and uses many RDF and RDFS constructs,
and is considered an extention of these languages. As such, we will take a deeper
look into those three W3C recommendations.

RDF language was design as metadata model, but is largely used as a general
method for modeling information. RDF metadata model is based upon the idea
of making statements about resources in the form of subject-predicate-object
expressions, called triples in the RDF terminology.

A RDF resource is any data or information source we want to describe. It can
be anything from physical objects to web resources (ex. a city, a database, a
web page, etc.). A resource is allways represented using a Universal Resource
Identifier (URI) (the URI does not need to be on a web accessible path, nor
has any normalisation rules; it will just suffice that its meaning is known by the
reading application).

=

SO WO U WN -~

Using OWL to Specify and Build Different Views over the Emigration. .. 81

The subject, is the resource we are describing. The predicate or property denotes
a characteristic and expresses a relation between the subject and the object, it
is represented by a RDF resource. The value or object is represented either
by a literal string or a resource[12]. As an example, the sentence “Ana lives
in Portugal” in RDF, is the triple “Ana” (subject), “lives in” (predicate) and
“Portugal” (object). This example is shown in Figure 3 using RDF/XML[4].

<rdf:RDF
xmlns:rdf="http: //www.w3.0rg/1999/02/22 — rdf —syntax—ns#"
xmlns:pro="http://people.org/predicates#">

<rdf:Description rdf:about="http://people.org/Ana">
<pro:lives_in>
<rdf:Description rdf:about="http://countries.org/Portugal”/>
</pro:lives_in>
</rdf:Description>
</rdf:RDF>

Fig. 3. RDF/XML example

RDFS is a RDF extension, that allows the definition of classes of resources,
restrictions and properties over RDF, in a way that establishes the application
vocabulary. Figure 4 illustrates this new abstraction layer over RDF.

lives in
subclass

RDF | RDF Schema

lives in

Fig. 4. A RDF statement and its corresponding RDF Schema

RDFS adds some constructs to the RDF language like, rdfs:Class, rdfs:sub-
ClassOf, rdf :Property, they allow the creation of a class hierarchy. Figure 5
shows the RDFS description® for the sample sentence used above (Figure 3).
RDFS has some limitations as a standalone ontology language because: there is
no distinction between the language constructs and the ontology vocabulary; it
does not allow to define class and property restrictions; it is too week to describe
resources in detail[3,5,12].

4 This example is in the RDFS abbreviated format, the extended format its much
similar to the notation of RDF, both formats have however the same meaning

82 XATA2008 — XML: Applications and Associated Technologies

<rdf:RDF
xmlns:rdf= "http: //www.w3.0rg/1999/02/22 —rdf —syntax—ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf—schema#"
xml:base= "http://people.org/rdf#">

<rdfs:Class rdf:ID="Animal” />

<rdfs:Class rdf:ID="Person”">
<rdfs:subClassOf rdf:resource="#Animal” />

</rdfs:Class>

<rdfs:Class rdf:ID="Place” />

<rdf:Property rdf:ID="lives_in">
<rdfs:range rdf:resource="#Place” />
<rdfs:domain rdf:resource="#Person" />
</rdf:Property>
<rdf:Property ID="name">
<rdfs:range rdf:resource="rdfs:Literal”/>
<rdfs:domain rdf:resource="#Person” />
</rdf:Property>

<Person rdf:ID="Ana">
<name>Ana</name>
<lives_in>
<Place rdf:ID="Portugal”/>
</lives_in>
</Person>
</rdf:RDF>

Fig. 5. An RDFS example coded in RDF/XML

The OWL was built on top of RDF and RDFS as a language for the represention
of web ontologies[3]. This language was designed to be used by applications that
process the information content instead of just presenting it to humans[10,12]. An
OWL ontology includes class descriptions, along with there associated properties
and instances, as well as related restrictions.

An OWL file, as seen in Figure 6, is opened by a namespaces declarations,
followed by the owl:0Ontology element; this element contains the ontology URI
(line 10), generic information’s about the ontology (rdfs:comment - line 11),
version control (owl:priorVersion) and imported ontologies (owl:imports -
line 12).

OWL uses the constructs owl:Class (lines 15 and 16) and rdfs:subClass0f
(line 17) to represent classes and subclasses . Ontology relations are defined
in OWL by the owl:0bjectProperty element (lines 20 and 23). Ontology at-
tributes are defined by owl:DatatypeProperty (line 28); this element relates a
OWL class to an XML Schema (XSD) datatype. In OWL, the individuals are
created using the classes identifiers (lines 35 and 37).

The code presented in Figure 6 is a straitforward example, but there are some
things to notice:

— the usage of the elements rdfs:domain (lines 22 and 30) and rdfs:range
(lines 21 and 29) within owl:0ObjectProperty to define the domain and
range of a property;

Using OWL to Specify and Build Different Views over the Emigration. .. 83

<rdf:RDF
xmlns:="http://people.org/owl#"
xmlns:per="http://people.org/owl#"
xmlns:pla="http://places.org/places#"
xmlns:rdf="http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf —schema#">

<owl:Ontology rdf:about="http://people.org/owl">
<rdfs:comment>This document contains the class definition of people and
animals, there properties and some instances.</rdfs:comment>
<owl:imports rdf:resource="http://places.org/places”/>
</owl:Ontology>

<owl:Class rdf:ID="Animal” />

<owl:Class rdf:ID="Person”">
<owl:subClassOf rdf:resource="#Animal” />

</owl:Class>

<owl:ObjectProperty rdf:ID="1lives_in">
<rdfs:range rdf:resource=pla:#Place”/>
<rdfs:domain rdf:resource="#Person”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:I1D="address_of">
<owl:inverseOf rdf:resource="#lives_in"/>

</owl:ObjectProperty >

<owl:DatatypeProperty rdf:ID="name">
<rdfs:range rdf:resource="xsd:#string"”/>
<rdfs:domain>
<owl:Class rdf:about="#Person”/>
</rdfs:domain>
</owl:DatatypeProperty>

<Person rdf:1D="Ana">
<lives_in>
<pla:Place rdf:ID="Portugal”/>
</lives_in>
<name>Ana</name>
</Person>
</rdf:RDF>

Fig.6. An OWL example, using RDF/XML syntax

— the element owl:inverseOf (line 25) allows the definition of inverse proper-
ties;

— the declaration of the individual Portugal (line 37) is inside another indi-
vidual Ana (line 35), witch is completely valid and serves to show the OWL
syntax freedom;

— the individual Portugal (line 37) does not belong to a local class (Place),
in fact this individual belongs to the ontology http://places.org/places,
this happens because in OWL it is valid to extend existing ontologies in
other files.

OWTL also offers various other elements such as owl:Restriction, owl:cardi-
nality, owl:intersectionOf and owl:disjointWith, they allow restrictions,
cardinality, class intersection and disjoint classes respectively. They, along with

84 XATA2008 — XML: Applications and Associated Technologies

others improve the task of ontology modeling. Regarding properties there are
also the elements owl:TransitiveProperty, owl:SymmetricProperty, owl:-
FunctionalProperty and owl:FunctionalInverseProperty that are special-
ised types of owl:0bjectProperty.

It can also be noticed that in Figure 6 the address_of property is not present in
the individual Portugal, but it could be inferred from its inverse (the lives_in
property) by using a OWL reasoner. A reasoner is a tool that produces valid
logical conclusions about an ontology.

OWL has three sub-languages, OWL Lite, OWL DL, OWL Full. We used OWL
DL in our project. OWL lite is the most simple as it uses only a subset of
OWL constructs, therefore is very simple to implement. OWL Full is the full
language without any semantic restrictions, its very close to RDFS. OWL DL is
an intermediate solution, that is very expressive, but also maintains a computable
completeness and decidability; it includes all the language constructs but they
can only be used under certain conditions[10].

4 Using Ontologies to Create Museum Rooms

The MEC needs a simple and organised way to show its assets to the public.
For that purpose, we created theme oriented museum exhibition-rooms, or as
we call them, views. Those views are described in a rigorous way by means of
semantic networks, this is, concept maps. This is a new approach, that uses
related information gathered from the various information sources rather than
just showing each one of them (Figure 7). This approach allows the user to
browse in an interactive and differentiated way through the information, and also
allows to create more than one perspective over the same information. Views are

Ontology
% ﬁ % /
.
i \

Fig. 7. The ontology and resources planes interaction

represented by ontologies. So a OWL ontology® is defined for each view created.
Each view is intended to focus in a particular aspect or theme, for instance:

— Emigrants by date: view that shows, for an given time interval, all the known
emigrants and associated data.

5 For each view there is only one ontology, however many OWL files per view can exist
(the definition file, and many files with individuals).

Using OWL to Specify and Build Different Views over the Emigration. .. 85

— Event Surroundings: taking as input an event in the life of a given emigrant
(ex. departure), this view will show information about the physical and social
surrounding environment at the epoch and place where the event occurred.

— Emigrant's Places (V1): view that reports on the different places of emigration
cycle (birth, departure, arrival, etc.).

We will now take a closer look at this last view and its specification.

V1 shows the main events of the emigrant’s life and their location, along with
images of the events and places. That information is retrieved from passport
petitions, passport records, birth certificates, criminal records, events records,
and images, postal cards and photos, as can be seen in Figure 1.

Event

Subclass fsubclass

s s
Departure
escort / sponsor

s happening in father | godparents " mother participant escort takes part in

—
i

locate located portrayed by portrayed by

Fig. 8. V1 ontology

Figure 8 shows the ontology specification, i.e, its classes, its properties® and its
attributes. In a global analysis of the ontology, it is clear that the Emigrant
class is the centrepiece, followed by the Event, Place and Image classes. This
four classes represent V1 main idea: the emigrant, his life events, where those
events happened, and the images of the emigrant, the events and places.

5 MusVis - an ontology navigation system for the
museum visitors

In this section, a short description of our ontology navigation system (MusVis)
is presented. MusVis is more than a browser, will be a modular software system

S Inverse properties are not represented in the image

portrayed by

86 XATA2008 — XML: Applications and Associated Technologies

that allows one to gather MEC basic information from the various sources, build
an ontology with that information, and create an web-based navigator over the
ontology. MusVis architecture is presented in Figure 9; it is made up of four
modules, each with a specific data transformation task. Now we will take a closer
look into each module. As seen in section 2, the MEC assets are multifaceted so

Information sources h

D)u:l>

Burieyjen uoneuL

(washs oususn)

Information
Repository

</> — \|</>

OowL OowL
classes and individuals
properties

&

WEB

(oy0ads maI)
IA PUE [BASLIOY “IOjU|

@suens

‘ Other)

Fig. 9. The MusVis architecture

a common digital file format for the various documents presented in Figure 1
was needed—XML markup system was the principle adopted. As already told,
an XML-Scheme was defined for each type of document, setting up the XML tags
that can be used each time a new document has to be added to the Museum’s
digital repository. The Data Acquisition module assists in this task; it is similar
to a graphical text editor, and allows an historian to translate and markup
documents. The markup is done by means of colours and symbols, always hiding
the XML backend from the historian. ThisThese module is based upon previous
work developed inside our research group [8,7].

Using OWL to Specify and Build Different Views over the Emigration. .. 87

The Extractor module is responsible for indexing and organising in a common
repository all the information obtained from the XML files created in the pre-
vious module. The data model chosen for the information repository allows a
straightforward implementation of the next module, the Ontology Builder, as an
information retrieval system.

The Ontology Builder module is responsible, as said above, for the creation of
MEC ontologies that support each museum’s room. This module is view spe-
cific, which means that needs a different instantiation (although with a similar
behaviour) for each view. Taking into account the ontology definition (classes,
properties, etc.) and the view specific input, it extracts all the information rele-
vant to set up that view, and creates the ontology individuals with the informa-
tion repository data. These last three modules update the ontologies with new
data, every time a XML file is added to the system; this allows the new data
visualisation by the last module, without any configuration, since it retrieves the
information from the ontologies dynamically.

1=

Museu da Emigragdo e das Comunidades

MENU José Alves de Freitas

Inicio Dados Gerais
sala1

Data de Nascimento: 1850-12-20
Emigrante -
Género: masculino
Eventos
Altura: 1,67 m
Lu Naturalidade: Castro (luaar) - Fafe. Portugal

Imagens Pai: Vitorine Anténio de Freitas

Sala 2 Mie: Antdnia Alves

Sala 3

Sala 5

® Nascimento de José Alves de Freitas

® Partida de José Alves de Freitas

® Chegada de José Alves de Freitas

® Inauquragio da linha e da Estagdo do Caminho de Ferro de Fafe

Fig.10. A MusVis screenshot

Finally, the Visualisation module traverses the semantic network (corresponding
to the ontology), and exhibits its content (each ontology component) to the user.
It accomplishes this by using the ontology data and a set of standard and custom
(one for each ontology) presentation rules to generate a set of dynamic web pages
(JSP) for each ontology. Those pages are entity-oriented, and centred on each
individual attributes and connections. Figure 10, a screenshot of V1, illustrates
such a webpage; it is precisely the webpage generated by MusVis from the V1
ontology seen on figure 8.

The system modules are being implemented using Java. JAXP framework is
used for XML processing (Saxon implementation for XPath); and the Jena OWL

88 XATA2008 — XML: Applications and Associated Technologies

framework with Pellet as a reasoner, for RDF/OWL processing. Sqlite is used for
the database. Working environments are: Protégé for OWL editing; XMLSpy to
create XSD and XML documents; and Eclipse for Java programming.

6 Conclusion

Along this paper the idea that exhibition rooms of the virtual Emigration Mu-
seum, are no more then structured views over the the museum digital archive of
documents (its assets) was defended. Although it was assumed along the paper
that the repository is made up from XML documents, if a subset of them is sup-
ported in databases or whatever digital format, the approach can be the same.
OWL documents can be represented in it’s XML standard notation or we can
use a database”.

That perspective allows to systematically extract the information from data
sources and automatically build the OWL ontology that formally describes the
meaning of each view (by other words, the content of each room). An OWL
navigator, general purpose or a specific one, can then be used to implement the
visitor interface.

Future work goes in two directions. On one hand, more implementation work
should be done to finish the first and last modules, the Data Acquisition and
the Visualiser. Additionally, some extra analysis must be made to improve the
automatisation degree. After that, MusVis can be deployed and real tests carried
on to measure its performance, and effective impact and usability. On the other
hand, other views should be specified, in order to build the respective ontolo-
gies. At this moment (without a full implementation) a OWL vs TM, realistic
comparison can’t be achieved.

References

1. Document Description and Processing Languages. http://www.isotopicmaps.
org/tmcl/.

2. Museu da Emigragao - O que somos? http://www.museu-emigrantes.org/ficha_
tecnica.htm.

3. OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-guide/.

4. Resource Description Framework (RDF): Concepts and Abstract Syntax. http:
//www.w3.org/TR/rdf-concepts/.

5. W3C Semantic Web Activity. http://www.w3.org/2001/sw/.

6. O. Corcho and A. Gomez-Perez. A Roadmap to Ontology Specification Languages.
Knowledge Engineering and Knowledge Management: Methods, Models, and Tools:
12th International Conference, Fkaw 2000 Juan-Les-Pins, France, October 2-6,
2000 Proceedings, 2000.

7. Flavio Ferreira, Hugo Pacheco, and José Vilas Boas. Pda’s no levantamento de
informagao em arquivos histéricos. Technical report, Universidade do Minho, 2007.

7 With Jena we can access a OWL in a database with the same API as a OWL
serialised as RDF /XML

10.

11.
12.
13.

Using OWL to Specify and Build Different Views over the Emigration. .. 89

Rafael Félix. Sistemas de Digitalizagdo e Anotagdo de Documentos. Technical
report, Departamento de Informética, Universidade do Minho, 2002. Relatério de
Projecto (Opgao III).

T.R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199-220, 1993.

I. Horrocks and P.F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. Proc. of the 2003 International Semantic Web Conference
(ISWC 2003), pages 17-29, 2003.

ISO/IEC. ISO/IEC JTC1/5C3/4: Topic Maps Constraint Language .

Giovani Rubert Librelotto. [Topic maps: da sintaze ¢ semdntica. PhD thesis.
G.R. Librelotto, J.C. Ramalho, and P.R. Henriques. Topic maps aplicados ao
sistema de informagdo do Museu da Emigragao. 2006.

A SPARQL Query Engine over Web Ontologies
using Contextual Logic Programming

Nuno Lopes and Salvador Abreu

Universidade de Evora

Abstract. Querying is one of the key aspects in the Semantic Web.
SPARQL, a W3C recommendation, attempts to become the standard
Web query language. The XPTO system is capable of representing and
querying ontologies described in the OWL language using Contextual
Logic Programming. Here is presented a component of the XPTO system
that enables answering SPARQL queries.

1 Introduction

The XPTO! system, enables accessing OWL [DSBT04] (Web Ontology Lan-
guage) ontologies from within a Contextual Logic Programming environment,
namely GNU Prolog/CX. It also allows to integrate these ontologies in the run-
ning program enabling using them as a part of the computation. The XPTO
system is further detailed in [FLAO7,LFAQ7].

Here is described a component of the system that enables it to answer queries
formulated using the SPARQL query language and thus presenting the possibility
of making the system visible to the World Wide Web though a Web Service.

2 SPARQL Query Engine

The presented component is dedicated to SPARQL query resolution: it allows for
the possibility of querying the internal representation of the ontology using the
SPARQL query language. It is split into 3 parts: the parser, the query resolution
and the returning of the results as XML. The implemented SPARQL parser
follows the specifications of the language defined in [PS06] and the results are
returned in XML as specified in [BB06].

The SPARQL query is parsed to produce a GNU Prolog/CX context repre-
senting the query that is then activated to calculate the output and display the
resulting XML.

L XPTO is a recursive acronym that stands for XPTO Prolog Translation of Ontolo-
gies.

90

A SPARQL Query Engine over Web Ontologies using Contertual Logic P. .. 91

2.1 Representation of a SPARQL query

The query representation process consists of a SPARQL parser that converts a
query defined in the SPARQL syntax [PS06] into a GNU Prolog/CX context.
This context represents the entire query and can be used to return the results.
The execution of the generated context, triggered by a default message, that will
bind the variables present in the query and show the results.

Element representation The representation of query elements, such as SPARQL
variables and resources, is presented next.

Variables The SPARQL variables are represented as Prolog variables. Thus,
once the result is calculated, the query resolution system simply binds the cor-
responding variable to return the results.

There are some other structures needed to display the results: it is necessary
to store the name of the variable in the SPARQL query in order to return it in the
results. To achieve this, all the variables in the SPARQL query are stored in a list
that will be the argument of the unit vars/1. The elements of this list are in the
format SparqlVariableName = PrologVariable. SparqlVariableName corre-
sponds to the name of the variable in the SPARQL query and PrologVariable is
the Prolog variable assigned to represent it. PrologVariable will start unbound
and, as the context is resolved, will be instantiated with the solutions it may
have. SPARQL variables appear in the generated context for the query using
the PrologVariable representation, enabling a simple access to the value of the
variable or direct instantiation of an unbound variable. This representation can
be seen in the GNU Prolog/CX context shown in Figure 2.

Resources Resources are represented using Prolog terms or atoms. If the resource
is an absolute IRI (delimited by ’<’ and ’>’) it is represented as an atom
containing the entire IRI. If it corresponds to a prefixed name (a prefix label
and a local part separated by a colon ’:?) it is represented as Prolog compound
term of arity 2 with the functor ’:. The arguments of the term are the prefix
name and the local part respectively. If the prefix name is empty the atom ’°
will be used to represent it.

Query representation A SPARQL query is represented as GNU Prolog/CX
context whose structure is similar to the structure of the query. The elements of
the query can be clearly identified in the representation: select, where as well
as the Modifiers (if there are any present in the query).

The example query presented in Figure 1 is a select query containing two
basic graph patterns with a shared variable: 7t and the context produced by the
parser is shown in Figure 2.

A context is represented by a Prolog list containing unit names. The first
element of the list will be the unit that first tries to evaluate the goal upon
execution. The individuals and property values are gathered from the units in

@ o A w N e

o ok W N R

92 XATA2008 — XML: Applications and Associated Technologies

SELECT
?flavor 7color
WHERE {
7t :hasFlavor 7flavor
?t :hasColor ?color
}

Fig. 1. Query example (simple select)

[where([set([
triple(A,hasFlavor,B),
triple(A,hasColor,C) 1)

D,
select ([flavor=B,color=C]),
vars ([flavor=B,color=C,t=A])]

Fig. 2. Generated context (partial) for the query in Figure 1

a higher position in the context. This way in the final positions of the list are
found the units select/1 (in the case of a select query) and vars/1. These
units contain in their arguments a list of variables and will allow any unit in the
context to access either all the variables in the context or the selected variables.

2.2 SPARAQL resolution system

The core unit in the query resolution process is the triple/3 unit, which is
responsible for instantiating the variables in the query by accessing the data.

This unit can be redefined in order to access data available from different
sources. It generates one query to the XPTO system for each property that
appears in the SPARQL query. The pattern in line 2 of Figure 2 (page 3) will
generate the following query:

/> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual. The arguments of the unit property/2 are the name of the property
being queried and the value of that property for the returned individual. Using
the property unit to query the internal representation has the advantage of
being able to perform the query using a Prolog variable in the position of the
property name, thus enabling to return all the properties of the individual or
querying the property name based on the property value.

A SPARQL Query Engine over Web Ontologies using Contertual Logic P. .. 93

3 Conclusion

The developed component acts as a translator: mapping SPARQL queries to a
representation of the query that is based on CxLP units. In this representation
each operator and each part of the SPARQL query corresponds to a unit oc-
curring in the context and the complete query is represented by a context that
combines the available units.

There are still further improvements necessary such as:

Complete the SPARQL support: Currently not all of the SPARQL con-
structors are implemented

Adopt the latest SPARQL specifications: The SPARQL system was de-
veloped against the specifications of 6 April 2006 in which SPARQL was
considered W3C Candidate Recommendation.

References

[BB06] D. Beckett and J. Broekstra. = SPARQL Query Results XML For-
mat. W3C recommendation, W3C, April 2006. Available at:
http://www.w3.org/TR /2006 /CR-rdf-sparql-XMLres-20060406/ .

[DSB*04] M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb 2004.
http://www.w3.org/ TR /owl-ref/.

[FLAO7] Claudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontolo-
gies with contextual logic programming. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, OWL: Ezxperiences and Directions
2007, volume 258 of CEUR Workshop Proceedings ISSN 1613-0073, June
2007.

[LFA07] Nuno Lopes, Cldudio Fernandes, and Salvador Abreu. Contextual logic
programming for ontology representation and querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, 2nd Interna-
tional Workshop on Applications of Logic Programming to the Web, Seman-
tic Web and Semantic Web Services, September 2007.

[PS06] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. Technical report, W3C, 2006. Available at:
http://www.w3.org/TR /2006 /CR-rdf-sparqgl-query-20060406/ .

Generating Semantic Networks to the PubMed

Giovani Rubert Librelotto!, Mirkos Ortiz Martins', Henrique Tamiosso
Machado!, Juliana Kaizer Vizzotto!, José Carlos Ramalho?, and Pedro Rangel
Henriques?

! UNIFRA, Centro Universitario Franciscano, Santa Maria - RS, 97010-032, Brasil
{librelotto, mirkos, htmachado, juvizzotto}@gmail.com
2 Universidade do Minho, Departamento de Informética
4710-057, Braga, Portugal
{jecr, prh}@di.uminho.pt

Abstract. This paper presents a topic map approach to PubMed in
order to create a knowledge representation for this information system.
PubMed is a free search engine that gives very full coverage of the re-
lated biomedical sciences. With more than 17 millions of citations since
1865, PubMed users have several problems to find the papers desired.
So, it is necessary to organize these concepts in a semantic network. To
achieve this objective, we use the Metamorphosis system, choosing the
keywords from MeSH ontology. This way, we obtain an ontological index
for PubMed, making easier to find specific papers.

1 Introduction

Daily, a lot of data is stored into PubMed system. There is a problem that orga-
nization requires an integrated view of their heterogeneous information systems.
In this situation, there is a need for an approach that extracts the information
from their data sources and fuses it in a semantically network. Usually this is
achieved either by extracting data and loading it into a central repository that
does the integration before analysis, or by merging the information extracted
separately from each resource into a central knowledge base.

Topic maps are an ISO standard for the representation and interchange of knowl-
edge, with an emphasis on the findability of information. A topic map can rep-
resent information using topics (representing any concept), associations (which
represent the relationships between them), and occurrences (which represent re-
lationships between topics and information resources relevant to them). They
are thus similar to semantic networks and both concept and mind maps in many
respects. According to Topic Map Data Model (TMDM) [GMO05], Topic Maps are
abstract structures that can encode knowledge and connect this encoded knowl-
edge to relevant information resources. In order to cope with a broad range of
scenarios, a topic is a very wide concept. This makes Topic Maps a convenient
model for knowledge representation.

This paper described the integration of data from PubMed information system
using the ontology paradigm, in order to generate an homogeneous view of those

94

Generating Semantic Networks to the PubMed 95

resources. PubMed is introduced in section 2. This proposal uses an environment,
called Metamorphosis (section 3), for the automatic construction of Topic Maps
with data extracted from the various data sources, and a semantic browser to
navigate among the information resources — it is described in section 4. The
section 5) presents the concluding remarks.

2 PubMed

PubMed [oMO07] is a free search engine that provides very full coverage of the
related biomedical sciences, such as biochemistry and cell biology. It also of-
fers access to the MEDLINE database [oM06] with citations and abstracts of
biomedical research articles.

The PubMed core subject is medicine and its related fields. It is offered by the
United States National Library of Medicine as part of the Entrez information
retrieval system. The inclusion of an article in PubMed does not endorse the
article’s contents, as other indexes. Nevertheless, many PubMed citations contain
links to full text articles which are freely available, often in the PubMed Central
digital library.

MEDLINE database covers over 4.900 journals published around the world pri-
marily from 1966 to the present and is composed of more than 17 millions of
citations. Information about the journals indexed in PubMed is found in its
Journals Database, searchable by subject or journal title, Title Abbreviation, the
NLM ID (NLM’s unique journal identifier), the ISO abbreviation, and both the
print and electronic International Standard Serial Numbers (pISSN and eISSN).
The database includes all journals in all Entrez databases. A PubMed entry
includes among other information the following details: PubMed identifier, Au-
thors’ name, Title, Journal, Publication date, Language, and Mesh terms.

The PubMed database consists of three tiers of software. At the bottom is a
database management system (DBMS) that manages a collection of facts. At
the top is the web browser that transmits requests for data to the database
and renders the responses as web pages. In the middle is a software layer that
mediates between the DBMS and the web browser to turn data requests into
database queries, and to transform the query responses into hypertext mark-up
language (HTML).

The PubMed data structure is composed of citations metadata. Each citation
has the same structure. The main part of its schema can be formalized by the
following context free grammar:

MedlineCitation ==> PMID, DateCreated, DateCompleted, Article,
MedlineJournallInfo, Chemicallist,
CitationSubset, MeshHeadingList

Article ==> Journal, ArticleTitle, Pagination,
Abstract, Affiliation, Authorlist,
Language, PublicationTypeList

Journal ==> ISSN, JournalIlssue, Title

JournalIlssue ==> Volume, Issue, PubDate

PubDate ==> Year, Month, Day, Hour?, Minute?, Second?

MedlineJournalInfo ==> Country, MedlineTA, NlmUniqueID
ChemicalList ==> Chemical+

96 XATA2008 — XML: Applications and Associated Technologies

Chemical ==> RegistryNumber, NameOfSubstance
MeshHeadingList ==> MeshHeading+

MeshHeading ==> DescriptorName, QualifierName?
AuthorList ==> Author+

Author ==> LastName, ForeName, Initials

PublicationTypeList ==> PublicationType+

PubMed files are intended for automatic processing and therefore available in
XML format. Each set of 30.000 PubMed citations is stored as an XML instance
defined by a DTD. Notice that the context free grammar above was obtained
direct and systematically from the PubMed DTD.

For these reasons, it was defined an XML Schema to PubMed files. The view of
this structure is shown in figure 1.

3 Metamorphosis

The main idea behind Metamorphosis is close the gap between Topic Map tech-
nology and its users. Metamorphosis is being developed to become a Topic Map
workbench easy to use and accessible to a common user (we are not there yet).
Figure 2 shows the usage scenario proposed in this paper. It illustrates some
of the interaction between the system components, information resources and
users.

1. Metamorphosis Repository (MMRep) is the central component that takes
care of Topic Map storage and management. All the other components in-
teract with MMRep.

2. Topic Map Discovery (TMDiscovery) is a Topic Map driven browser that
allows users to navigate inside the Topic Maps stored in MMRep.

3. Topic Map Extractor (Oveia) automates the task of Topic Map harvesting;
it enables the user to specify the extraction task and generates a Topic Map
in XTM syntax that can be uploaded into MMRep. Oveia implements some
extraction mechanisms with which is possible to populate an ontology.

4. Information resources that we want to access.

5. Web interface driven by a topic map stored in MMRep that provides access
to information resources.

Metamorphosis can be used to prototype web interfaces or to expose information
systems on the web. To do this the user only needs to specify a topic map for each
view he wants. Information integration is accomplished by concept integration
in the topic map: to integrate two information systems we need to specify the
two sets of concepts in the same topic map and specify the associations that will
materialize that integration.

In the next sections we are going to discuss the main components of this work-
bench prototype: Metamorphosis Repository, Topic Map Discovery, Oveia and
XTche.

This way, Metamorphosis let us achieve the semantic interoperability among het-
erogeneous information systems because the relevant data, according to the de-
sired information specified through an ontology, is extracted and stored in a

MedlineCitationSet [—— |}

Generating Semantic Networks to the PubMed

r-4 MediineCitation [}

-+ Generalliote

Generated by XmlISpy

Fig. 1. PubMed’s XML Schema

ArticleTitle

-- DataBankList

PublicationTypeList

--FvernacularTitle |

--- ArticleDate

www .altova.com

97

98 XATA2008 — XML: Applications and Associated Technologies

=

Information Resources L

XTM |

™
Management

Oveia

Data Gateway

TM Discovery

3%

)‘J_' |\a’|l'u1Rep<D

HTML

TM Browsing

- ———

User

Fig. 2. Metamorphosis Functional Diagram

topic map. The environment validates this generated topic map against a set
of rules defined in a constraint language. That topic map provides information
fragments (the data itself) linked by specific relations to concepts at different
levels of abstraction. Note that not all data items need to be extracted from the
sources to the Topic Map. We only extract the necessary metadata to build the
intended ontology. This ontology will have links to enable a browser to access
all data items.

Thus the navigation over the topic map is led by a semantic network and provides
an homogeneous view over the resources — this justifies our decision of call it

semantic interoperability.

4 Topic Maps applied to PubMed

In order to obtain a semantic network from PubMed data, we divided this task
in a few parts, as shown Figure 3.

In the first one, we created a relational database to store all contents of XML
data obtained from PubMed data source. This database is generated according
to the PubMed DTD using the Exult tool. An SQL script processes the result
database to remove the redundant data and to erase several tables unnecessary.
The final PubMed local database has XX tables.

To extract data from this database we use Metamorphosis [LRH06]. Metamor-
phosis has mechanisms to query the PubMed local database (Oveia) according
to an ontology specification (XS4TM). Besides, there is a Web interface to make

Generating Semantic Networks to the PubMed 99

Metamorphos' —> ‘@.
?

Topic Maps

Q e
Omnigator —>
Ulisses
XL [Q@
PubMed XML Semantic
Files Web Site

Fig. 3. The system’s architecture

a query over the database. This interface has a text field to the user puts his
query. After the query submission, Metamorphosis processes this string finding
MeSH terms that describes the desired publications. These terms are structured
in a RDF file vAMMSO07].

Using these MeSH terms as keywords, Metamorphosis searches articles that
match with the user’s query. This search processes includes several fields, like
article’s title, abstract, keywords, chemical substances, and MeSH terms. When
an article satisfies the query, it will be mapped to a topic, as well its main fields,
creating associations between them.

When the system receives a request, the required data will be collected from the
selected databases at runtime. Then it will be further processed and converted
into semantically relevant data by Metamorphosis. The resulting data has the
standard XTM format. So, one of the advantages of this approach is that no
new database will be created and no redundant data will be produced.

After end of the process, Metamorphosis has all topics and associations stored
in its repository. The generated XTM documents can be then processed and dis-
played to the user by the presentation tier. This way, any topic maps navigator
tool is able to browse the semantic network composed by these concepts. For
instance, Ulisses [LRHO04] allows the topic maps navigation over Metamorphosis’
repository and XTM files (in last case, it is also possible to use Ontopia Omni-
gator [Ont02]). Information is interconnected within a huge knowledge network
navigable in any direction.

4.1 Defining the Topic Maps concepts to PubMed citations

In order to define the topic map extraction from PubMed instances, the first
task is to specify the main concepts (topic types). This way, the topic types in
this domain are:

Article : each article is stored in a tag called < MedlineCitation >;

100 XATA2008 — XML: Applications and Associated Technologies

Author : the article authors are declared in < Author >;
Keyword : the keywords are MeSH terms. They are defined in < MeshHeading >;
Publication year : this metadata is in //PubDate/Y ear path;
Journal : all journals are found in < Journal > tag;
Language : the paper’s language is define in < Language >;
Chemical substances : all chemical items cited in each paper are referenced
in < Chemical >;

After the topics choice, the next step is the topic characteristics definition. Below
we have the main ones:

Article : PMID (PubMed identifier), title, pagination, abstract, DOI, ...;
Author : initials, last name, middle name, and first name;

Keyword : descriptor and qualifier terms;

Journal : ISSN, title, abbreviation, volume, issue, and publication date;
Chemical substances : register number and substance name;

At this moment, all topics and its characteristics are defined. The final topic
map definition step is the specification of association type. The main association
types and some roles are described below:

— Author writes article;

— Keyword describes article;

— Article was published in an year;

— Article is published in a journal;

— Article is written in a language;

— Article refers to chemical substances;
— Author publishes in an year;

— Author writes paper in a language;
Journal refers to the keywords;

Looking at a TM we can think of it as having two distinct parts: an ontology and
an object catalog. The ontology is defined by what we have been designating as
topic type, association type, and association role. The catalog is composed by a
set of information objects that are present in information resources (one object
can have multiples occurrences in the information resource) and that are linked
to the ontology.

The PubMed’s topic map ontology defined above (topic types, roles, and associ-
ation types) and the topic characteristics are mapped to an XS4TM specification
as can be seen in next subsection.

The XS4TM specification describing the PubMed scenario was defined in a
XS4TM Web editor. Figure 4 shows a view of this specification, which defines
seven topic types, nine association types, and eighteen role types.

On the left side, XS4TM presents the XML tree extracted from PubMed’s XML
Schema. The topic types from this case study are shown in the center window.
To create a new topic type, the user just needs to make a simple drag and drop

Generating Semantic Networks to the PubMed 101

Arquive Meus Arquivos Ajuda Sair Arquivo atual: mediine xstm

(=) Mover Relacionar Remover AAssociar Subject Identify MedlineCitation

= MedlineCitationSet |+ - ok
Year v
¥ & MedlineCitation

Owner N
Status \denficador do opica: Tipo: | MedlineCitation-Year

NImDemsiD YT PHID add

PMID Label: | iblished in a Year
i InstanceOfs R
¥ = DateCreated Role: | was written on
Vesr Artcle
DescnpmrName
Month Ref: | Year -

Dal ihame [iz the pudlication yeal
y Lasf Role: |is the publicatio
Hour

Remaver Add
Minute . -
. Med\mecnatmn Ref; Year
Second Base Names
» (3 DateComplet J—— Salvar
» (1 DateRevised
¥ & Aticle
Juurna\
PubModel La"guaga
¥ & Journal
\san Remover | [Add
> 1 Jouma
Caden NameOfSubstance Ocorrencias
Title Absiract
1S0ADY .
> 8 Book MedlinePgn
ArticleTille
» (3 Paginatior T Verical
> (3 Abstract [, 3 " Horizontal

“« . “« > Remaver Add + Ambos

Fig. 4. PubMed’s XS4TM Specification

from the XML tree. The topic characteristics are defined in the first column and
the association characteristics are defined in the last column.

With the complete XS4TM specification, Oveia® can processes it. Its behavior
can be described in four steps: (1) reads the XS4TM specification, (2) extracts
the topics and associations from the query result set, (3) creates the topic map,
and (4) stores it in the repository.

4.2 Browsing the topic map

When it will be browsing the semantic network obtained from PubMed local
database, Ulisses gives the user an interface to navigate inside any of the stored
topic maps. It allows the following interfaces:

Topic Maps : is the browser entry point and shows a list of all stored topic
maps.

Ontology Index : gives you a structured view of a topic map showing the
abstract concepts: topic types, association types, occurrence types, and as-
sociation role types.

Individuals Index : lists all non-type topics in alphabetical order.

Full Index : lists all named topics.

Topic View : lists a subset of the available information about a topic; for the
moment: the basenames, its type, all the associations it participates in to-
gether with the other members and their roles, internal occurrences and
external occurrences.

3 Oveia is a Metamorphosis’ module

102 XATA2008 — XML: Applications and Associated Technologies

Association View : lists the names associated with the association and all its
descendants.

Figure 5 a view to the topic of type article called Mycobacterium leprae andde-
myelination. This page display every topic characteristics and its associations in
a Web way, as well in a graph view.

aiizar | Rl o

> Mycobacterium leprae and Tipo: Article

irticl
demyelination.

Mycobacterium leprae and Ocorréncias Internas (2
demyelination. + 12211241 Escopo: PMID

« 1475-6; author reply 1475-6 Escopo: Pagination

« Mycobacterium leprae and demyelination.

[Papéis de Atuacao (4! 2
+ is described by
o Bacterial Adhesion /

o Demyelinating Diseases
o Humans s descrbedby 12211241 L
o Leprosy
o Mycobacterium leprae
o Schwann Cells

+ was published in
o Science

» iswritten in
o eng

« is written by
o Ottenhoff

Done @ Intemet | Protected Mode: On ®10% v

Fig. 5. Ulisses topic view

Creating a virtual map of the information enables us to keep the information
systems in their original form, without changes. It is also possible to create as
many virtual maps as the user wants generating multiple semantic views for the
same sources.

5 Conclusion

This paper described the integration of data from PubMed information system
using the ontology paradigm, in order to generate an homogeneous view of this
resources. PubMed is a searchable compendium of biological literature that is
maintained by the National Center for Biotechnology Information (NCBI).
The proposal uses Metamorphosis for the automatic construction of Topic Maps
with data extracted from the various data sources, and a semantic browser to
navigate among the information resources.

Topic Maps are a good solution to organize concepts, and the relationships be-
tween those concepts, because they follow a standard notation — ISO/TEC 13250
— for interchangeable knowledge representation.

Generating Semantic Networks to the PubMed 103

In this paper we claimed that the semantic integration of PubMed documents
is possible to achieve with Metamorphosis. In order to achieve this we proposed
the following methodology:

1. Look at the information resources and decide how your conceptual view
should look like;

2. Choose what information bits must be extracted in order to produce that

conceptual view;

Specify the extraction task using Oveia;

Upload the generated Topic Map into MMRep;

5. Browse it with TMDiscovery and use this interface to access the information
resources.

=

With this methodology the original information resources are kept unchanged
and we can have as many different interfaces to access it as we want. We just
have to create/generate/specify a Topic Map for each one.

As a future work we aim the integration of Topic Maps and MeSH headings min-
imizing false hits and saving time in the searches. Another project is to identify
other useful — but frequently overlooked — features of the PubMed database.

References

[GMO5] Lars Marius Garshol and Graham Moore. Topic Maps — Data
Model. In ISO/IEC JTC 1/SC3/. http://wuw.isotopicmaps.org/sam/
sam-model/, January 2005.

[LRHO4] Giovani Rubert Librelotto, José Carlos Ramalho, and Pedro Rangel Hen-
riques. Ulisses: Um Navegador Conceptual para Topic Maps. In XXX/
Conferencia Latinoamericana de Informdtica, pages 783-794, 2004.

[LRHO06] Giovani Rubert Librelotto, José Carlos Ramalho, and Pedro Rangel Hen-
riques. Metamorphosis - A Topic Maps Based Environment to Handle
Heterogeneous Information Resources. In Lecture Notes in Computer Sci-
ence, volume 3873, pages 14—25. Springer-Verlag GmbH, 2006.

[oMO06] U.S. National Library of Medicine. MEDLINE - Fact Sheet.
http://www.nlm.nih.gov/pubs/factsheets/medline.html, 2006.

[oMO07] U.s. National Library of Medicine. PubMed.
http://www.ncbi.nlm.nih.gov /sites/entrez?db=PubMed, 2007.

[Ont02] Ontopia. The Ontopia Omnigator, 2002. http://www.ontopia.net/
omnigator/.

[VAMMSO07] Mark van Assem, Véronique Malaisé, Alistair Miles, and
Guus Schreiber. A Method to Convert Thesauri to SKOS.
http://thesauri.cs.vu.nl/eswc06/, 2007.

SPARQL Back-end for Contextual Logic Agents

Claudio Fernandes and Salvador Abreu

Universidade de Evora

Abstract. XPTO is a contextual logic system that can represent and
query OWL ontologies from a contextual logic programming point of
view. This paper presents a prototype of a SPARQL component for that
system which is capable of mapping Prolog/CX to SPARQL queries.

1 Introduction

We present a back-end that aims to transparently merge the reasoning of the
XPTO ! [FLAO7] [LFA07] internal knowledge base with external OWL [BvHH05]
ontologies, more exactly its Lite and DL sub languages, available from third par-
ties, by means of the SPARQL [PS06] query language. To achieve this, we devel-
oped a system that provides functions for communicating with Web SPARQL
agents for ontology querying purposes. It provides the system with the ability to
pass a SPARQL query to an arbitrary SPARQL Web agent and get the solution,
encapsulating the results as bindings for logic variables.

The presented back-end grants XPTO with capabilities for writing Pro-
log/CX [ADO3] programs to reason simultaneously over local and external Web
ontologies.

2 Mapping Prolog to SPARQL Queries

Although it can be viewed as a single independent component, the back-end
purpose is to allow the XPTO-using programmer to query external and internal
ontologies using the same query syntax and declarative context mechanics as
the XPTO internal system. This will allow to transparently query internal and
external ontologies and merge their results in the same program.

To achieve this level of functionality, we developed a Prolog/CX to SPARQL
engine that satisfies the following requirements:

— Translate a partially bound Prolog/CX goal into SPARQL;

— Send the SPARQL query to the specified Semantic Web SPARQL service;

— Fetch the XML result file, parse it and return the solutions as Prolog variable
bindings using the Prolog/CX backtrack mechanism to iterate over sets of
answers;

A SPARQL query in the back-end environment is a Prolog/CX context exe-
cution. Figure 1 illustrates a definition of a back-end query.

L XPTO is a recursive acronym that stands for XPTO Prolog Translation for Ontolo-
gies.

104

[

N

SPARQL Back-end for Conteztual Logic Agents 105

QUERY := sparql(URI) /> P1 ... Pn :> ITEM
URI = URL
P = property(VALUE) or where(PROP, VALUE)
ITEM := item(INDIVIDUAL)

Fig. 1. Back-End Query Definition

On the left side of the defined operator ’/>’ is specified the external agent
and on the right side are the goals and query restrictions. The right side of the
operator encodes the query that must be mapped to SPARQL. We translate that
information into RDF triples, much in the same way a database is translated
into triples, i.e, for each of the n stated properties about an individual, the back-
end must translate it to (n-1) triples. The triples are extracted by the union of
each property term of the right side and the item term, which represents the
subject of the triple.

3 Examples and Query solutions

We now present an example. We will use the XAK - XML Army knife [Dod06]
SPARQL service which implements the SPARQL Protocol for RDF and provides
a SPARQL query engine for RDF data available on the Internet.

The Wine OWL DL ontology ? is a sample ontology used in the OWL speci-
fication documents and will serve as the use case ontology in this paper. Among
others, the IceWine class present in the ontology defines two properties: hasBody
and hasColor.

Figure 2 shows an example of a back-end query that asks XAK to search the
Wine ontology for all the individuals that have both of these properties.

?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />
hasBody(A) :> hasColor(B) :> item(IND).

Fig. 2. Back-end Prolog/CX query to XAK

The Prolog/CX query in Figure 2 has no ground Prolog atoms besides the
url that identifies XA K. It includes two specified properties, thus originating two
RDF triples, one for each property. Figure 3 shows the correspondent SPARQL
generated code.

% The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf

106 XATA2008 — XML: Applications and Associated Technologies

SELECT 7id 7hasColor 7hasBody
WHERE {

?7id :hasColor 7hasColor.

?7id :hasBody 7hasBody.

}

-

Fig. 3. Generated SPARQL for the query in Figure 2

After the SPARQL generation, the code is sent to XAK. In order to success-
fully communicate with it, the back-end must first encode the query as specified
in the SPARQL Protocol for RDF [Cla06] and establish the values of a few pa-
rameters like the default graph to be queried. (Figure 4 shows the generated
string that is sent over to XAK).

GET http://xmlarmyknife.org/api/rdf/sparql/query?default-graph-uri
=http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine.owl&query=
PREFIX+:+<http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine%23>
+select+7id+7hasColor+7hasBody+where+{7id+:hasColor+?hasColor+.+
7id+:hasBody+7hasBody}

S R

Fig. 4. Back-end encoded query example

If a successful query response code is returned, a file with the solutions is
received. This file is in the SPARQL Query Results XML Format [BB06] and
includes one solution. This XML file is then parsed and the solution values are re-
turned as bindings for Prolog variables as illustrated by the last lines in Figure 5.

?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />
hasBody(A) :> hasColor(B) :> item(IND).

A =’http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine#Medium’

B =’http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine#White’

IND =’http://wuw.w3.0rg/2001/sw/WebOnt/guide-src/wine#SelaksIceWine’ 7 ;
(4 ms) no

- S

Fig. 5. Prolog/CX query to XAK and the returned solution

SPARQL Back-end for Conteztual Logic Agents 107

The solution presents only one individual, SelaksIceWine, and the values
Medium and White for properties hasBody and hasColor respectively. This
means the whole ontology only has one individual that has those two properties
defined.

4 Initial Assessment and Conclusions

The component presented in this paper is still work in progress. With the current
capabilities, one can use the expressiveness of Logic Programming to perform
basic queries to an ontology via a third party SPARQL Web Service. These ca-
pabilities can then be combined with other Prolog/CX data access forms for
reasoning over different data repositories. For example, an application can indif-
ferently use local data provided by the XPTO engine, external data through the
SPARQL back-end and data residing in a relational data base accessed using
ISCO [ANOG6].

Although no proper benchmarks were defined yet, the experimental work re-
vealed no particular performance issues on the back-end side, which means that
practically only the XAK connection will introduce some latencies. Note, how-
ever, that the generation of SPARQL is currently done in a per-query basis. One
important feature to be implemented as future work is to allow the generation
of SPARQL code for a composite (e.g. conjunction) of Prolog/CX queries.

References

[ADO3] Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In
Catuscia Palamidessi, editor, Logic Programming, 19th International Con-
ference, ICLP 2003, Mumbai, India, December 9-13, 2003, Proceedings, vol-
ume 2916 of Lecture Notes in Computer Science, pages 128-147. Springer-
Verlag, 2003. ISBN 3-540-20642-6.

[ANO6] Salvador Abreu and Vitor Nogueira. Using a Logic Programming Language
with Persistence and Contexts. In Masanobu Umeda and Armin Wolf, ed-
itors, Declarative Programming for Knowledge Management, volume 4369
of LNCS, Fukuoka, Japan, 2006. Springer.

[BBO6] Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format.
Candidate recommendation, World Wide Web Consortium, 25 December
2006. http://www.w3.org/TR/rdf-sparql-XMLres/.

[BVHH+05] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
Owl web ontology language reference. Recommendation, World Wide Web
Consortium, 19 October 2005. http://www.w3.org/TR/2004/REC-owl-
ref-20040210/.

[Cla06] Kendall Grant Clark. SPARQL Protocol For RDF. Candidate
recommendation, World Wide Web Consortium, 6 October 2006.
http://www.w3.org/TR /rdf-spargl-protocol/.

[Dod06] Leigh Dodds. XML Army Knife. http://xmlarmyknife.org/api/rdf/sparql/query,
5 December 2006.

108 XATA2008 — XML: Applications and Associated Technologies

[FLA07)

[LFAO7]

[PS06]

Claudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying ontolo-
gies with contextual logic programming. In Christine Golbreich, Aditya
Kalyanpur, and Bijan Parsia, editors, OWL: Experiences and Directions
2007, volume 258 of CEUR Workshop Proceedings ISSN 1613-0073, June
2007.

Nuno Lopes, Claudio Fernandes, and Salvador Abreu. Contextual logic
programming for ontology representation and querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, 2nd Interna-
tional Workshop on Applications of Logic Programming to the Web, Se-
mantic Web and Semantic Web Services, September 2007.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. Candidate recommendation, World Wide Web Consortium, 25 July
2006. http://www.w3.org/TR/2006/CR-rdf-sparqgl-query-20060406/.

A Survey on Workflow Aspects in Content Management
Systems

Pedro Pico, Alberto Rodrigues da Silva

pedro.coelho.pico@gmail.com, alberto.silva@acm.org

Instituto Superior Técnico / Universidade Técnica de Lisboa

Abstract. Content Management Systems (CMS) are software platforms that strongly
contribute to make organizations more agile, flexible and dynamic concerning the
management of their contents: business-oriented structured and no-structured
information. A CMS’s extra feature is Workflow support since it can allow task
automation, ultimately increasing organizations productivity. While there are different
kinds of Workflow platforms, this paper concentrates mostly in Content Management
Workflow, analyzing key features like: Workflow definition, representation, instance
management, content mapping and third-party application communication. Finally, it is
also analyzed and discussed the workflow support in existing CMS such as Alfresco,
Typo3, OpenADMS and Vignette.

Keywords: Content Management System, CMS, Workflow, Workflow Management
System, Business Process.

1. Introduction

Workflow is an important concept and technology that is relevant within Software
Engineering as well as Organizational Engineering. Nowadays, there are a relevant
number of organizations that are increasingly embracing it. Due to the richness and
abstraction of the concept, Workflow will only be mentioned in the Software Industry
endeavor, meaning that it will only be applied to Software Application issues. Bearing
that in mind, the Workflow Management Coalition, WFMC http://www.wfmc.org is a
reference organization responsible for the definition of standard specifications
regarding Workflow. The WFMC defines Workflow as “the computerized facilitation
or automation of a business process, in whole or part” [1]. On the other hand,
Marshak defines Workflow as “The automation of the processes we use every day to
make our business through. A Workflow Application does automatically the sequence
of actions, activities and tasks to run a process, including all the routing within the
stages of each instance of a process, as well as the tools to manage the process itself”
[2].

Automation and business processes are concepts that are mentioned on both
definitions, leading to a first definition of Workflow as a ‘“business process
automation”.

109

110 XATA2008 — XML: Applications and Associated Technologies

WEFMC still introduces the concept of a Workflow Management System, as being a
“system that completely defines, manages and executes the workflow through the
execution of software whose order of execution is driven by a computer
representation of the workflow logic” [1].

These definitions indicate the Workflow logic has to be represented in a formal
language, so that running software may be able to build, manage and execute that
workflow logic.

Workflow technologies may be applied with several purposes and application
contexts, such as (1) system’s integration support, (2) user interface and (3) content
workflow in CMS (Content Management Systems).

Workflow support in systems integration. Information system’s high-level
abstractions and business service’s interactions may be seen as a Workflow system
[13]. Currently, Service Oriented Architecture (SOA) [14] is an example of this
approach, in which technology is only a tool for orchestration of business processes
and services. According to the SOA approach there should be a Service repository
which agglomerates services — which according to the OASIS [32] organisation is
defined as "a mechanism to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description.". These services, in
their turn, communicate among them and with front and back-end applications,
through a communication channel. To accomplish this, each service application must
expose a programming or computing interface. Workflow plays the role of
orchestrating the interactions amongst all these services. Microsoft Biztalk [17] and
BEA WebLogic [31] are the leading application servers that support SOA in the
industry.

Workflow support in User Interface Software Applications. The Workflow
concept can also be applied to the end-user interface definitions for software
applications. The links between interaction spaces (e.g. web page, window screen) are
events that may be triggered by human or third-party applications. For example, the
submission of a web form is a human interaction, while the presentation of a RSS
(Really Simple Syndication) feed is a third-party application interaction.

To make the most out of this vision of software design and implementation, some
companies have been publishing Interface Workflow Managers. This functionality is
usually associated with the software developing process since the tools that support
these features are usually within the Integrated Developing Environments, IDE, of the
existing platforms. With Microsoft Visual Studio[18] the users have the ability to
visually edit and see their application’s interfaces as a tree of nodes, in which each
node is an interaction space and the connection among nodes define the hierarchy of
the nodes in the tree. On the other hand, Sun released in 2006 JAVA Web Studio
Creator[19], supporting the same functionality for J2EE applications.

Workflow support in CMSs. Content management environments are also a
relevant application for Workflows. These systems evolved from meta-applications
and frameworks which were used to produce other applications. The urge for
Documental Management Applications left only one step further what would later be
known as Content Management Applications. The difference between these two is the
object that is managed, while the former manage documents, the latter manage
contents, which is an abstraction in which documents can be included.

Workflow Aspects in Content Management Systems 111

In these environments a Workflow can be seen as the set of stages that content may
assume since its creation until it is made available. Consider the following example:
(1) a document is created and submitted to an application; (2) then it is approved in
chain by a set of users; (3) until it becomes visible for all convenient users.

In this example the stage transitions are mainly triggered by human interaction.
Users trigger stage transitions so that contents may evolve through the hierarchy
structure of the organization, being progressively approved by users with more and
more responsibilities. This type of Workflow systems has to make sure that if content
is not approved by a user, it must return to its previous stage. Stage transitions also
have to be able to trigger automatic actions. For instance, sending e-mails so users
may be notified of pending decisions they have to make. Stage transitions may not
only be triggered by human interaction, but also by third-party applications.

This paper analyzes and discusses the Workflow support that is required in
enterprise applications, designed on the top of CMS platforms. In particular it
identifies (1) Workflow concepts as well as their common use cases; (2) the way
Workflows can be implemented; and (3) functionalities available for their end-users.

After analyzing and comparing relevant CMS, we propose a generic reference
model, based on which we discuss them in what concerns their Workflow’s features.

2. Content Workflow in CMS

This section describes the Workflow mechanisms supported by Content Management
Systems: its background, its elements and its functionalities.

2.1. Technological Support Aspects

Content Management Systems (CMS)[20] promote the separation between contents
and services. The latter are responsible for content’s presentation, manipulation and
access, while the former are the artefacts that are passed throughout services.
Pictures, texts, links, news, videos, and documents are all examples of contents.

The main goal of Workflows in CMS is to provide a path for contents since their
creation, until they are made available for other users to see — often defined as
publication. The path can be described by a set of consecutive evaluations, usually
referred as stages, in which users, defined by a specific business role may, or may not,
approve contents. For example, in a newspaper, each article, after written by a
journalist, must be reviewed by the journalist’s supervisor. If the article is approved, it
will go on to the next evaluation, and an upper supervisor will have to evaluate the
article; otherwise it will return to the previous stage, and the journalist will have to
rewrite the article. The evaluations will go on in chain until eventually some
supervisor will approve the article’s publication. A Workflow in a CMS is exactly the
chain of evaluations that content undergoes since its creation until its publication. It is
now assumed a Workflow has several stages. While each stage is associated with one
role — set of users — who are responsible for evaluating the content — either approving
it, or declining it. When a supervisor declines content, the content will return to the

112 XATA2008 — XML: Applications and Associated Technologies

previous stage so it can be reviewed or rewritten again. If, on the other hand, the
content is approved it will move on to the next stage. If it achieves the last stage, the
content will be published. While in the physical world articles are printed in paper, in
the digital world contents may either be created or replace existing versions of the
content. As an example it can be considered any page available in the wikipedia web
site, http://wikipedia.org. In this web site each page may be replaced by a new
version, as well as new pages may be created. Pages are the contents in this example.

The multiplicity of instances of the same content that have to co-exist lead to the
need of content versioning. This happens since at least two versions of the same
content will be needed. One that is published, and thereby the one all users can see,
and another one which is evaluated by supervisors, and thereby available for
supervisors to see. The former will be referred as the published version, while the
latter will be referred as the draft version. This can lead us to the conclusion that
content is characterized by its version.

Finally, there is also another aspect to be added, the possible existence of
predefined actions that may occur every time a stage is achieved or departed from. A
simple notification to the author every time the content he submitted is approved by a
supervisor is an example of what a predefined action can be.

From the above observations it is concluded that in the CMS domain a Workflow
has several stages. While each stage has one responsible role and a set of predefined
actions that may be triggered either when the content arrives or leaves the stage.
Finally the content, which is the artefact that goes through the stages of the
Workflow, has to be identified by a version, since in the most simplistic scenario at
least two instances of the same content will have to co-exist.

2.2. Content Types

In general terms, content management workflows may manipulate two types of
contents: unitary and aggregators. The former are the basic cells manipulated by the
CMS, the ones which are processed as a single unit and thereby elementary operations
are made upon them. An image, a defined piece of html code, or a file, are examples
of unitary contents. On the other hand, aggregator contents are sets of other contents,.
The aggregators provide the “glue”, which connect its sub-contents. Examples of this
type of contents are a list of links, a list of documents, or a custom content which
aggregates one image, one link and one text.

The existence of aggregators brings up another issue: the hierarchy which is
formed from multi-level aggregator contents. This issue will have an important
impact in the Workflow implementation within the CMS, because, like it is
previously stated, contents are the artefacts which go through stages of a Workflow.
So far content was always assumed to be unitary, but if it is a set of contents, in a
several level hierarchy, a much more careful approach has to be done.

In order to escape from the abstraction of this issue, a scenario will be drawn to
materialize it, making it easier to understand.

Workflow Aspects in Content Management Systems 113

In a web CMS context it may be considered the following hierarchy of contents:
the web site, the page, and the unitary content, as illustrated in Figure 1. Each of these
types of Contents has their own characteristics as described below.

The web site is the highest granularity content and it aggregates page contents.
This type of content must be used in a limited way since a Web site should be stable
and any content under it should be updated without having to update the whole Web
site. Nevertheless the Website may be submitted to a Workflow when it is created, so
that the process may be monitorized by the organization’s website administrators.

The web page, or page for short, aggregate unitary contents. In spite of not being
the most used content type within the Workflow mechanism, it is fairly more used
than the portal, since creation, removal, edition and configuration of its attributes are
all operations that are made in the portal life cycle. It is also important to make a
distinction from Static to Dynamic pages because of the way their content is
processed. The former are built in compile time and do not require any level of
interaction, while the latter have contents that are created in runtime and that may
require some level of interaction. Therefore static pages may be seen a unitary content
which allows to edited a huge portion of html code; while dynamic pages can be seen
as an aggregator content, since they provide several outputs to the user according to
what was given as an input.

cd Wor kflow object relstion /

wizh Site

W bl e ChS's Object
manipulate Page

Contert

Figure 1: Workflow content relation

At last, the unitary content is the lowest granularity content in this type of
Workflow. This content have its own attributes, some of them are even common to all
contents — such as the name or page in which it is included. The attributes which vary
from content to content are the ones that identify the content itself (e.g. an image has
a filename, width and height, or a byte array; while an html element does only have
the html source code; in its turn a link is formed by the text and the url). The unitary

114 XATA2008 — XML: Applications and Associated Technologies

content is the most often processed content type by the Workflow Manager because of
its independence from content to content and from the pages in which they are
included.

Considering the above scenario it is clear that content has to be able to follow a
Workflow despite its type. It is also clear that content representation is definitely an
important issue that a concrete implementation of Workflow in a CMS has to address
since contents may vary on their building blocks, assuming complex hierarchies.
Finally it can be stated that despite content representation is a custom problem each
CMS has to address (and that is not the subject of this paper), all types of contents
which desirably will be able to follow Workflows in that CMS have to be understood
by its Workflow engine as contents, meaning they have to share the concept of
content which is accepted by the Workflows of that CMS.

2.3. Workflow Elements

This section lists and summarizes the concepts explored so far, as well as defines
other relevant elements. Figure 2 relates these concepts, forming a reference model,
with concrete CMS Workflow elements.

Workflow. A Workflow has several stages. The concrete number of stages should
be set when a Workflow definition is created. A CMS should allow managers to
create Workflow definitions, giving them the opportunity to choose then the number
of stages that that particular Workflow definition should have. In other words the
number of stages of a Workflow should be dynamic since it allows different number
of stages for different Workflow definitions. One tricky way of achieving the dynamic
number of stages is to not determine it when the Workflow definition is created. In
stead, each stage is responsible to determine the next stage, also determining when the
Workflow should end. This type of workflow definition will be referred as not having
a defined number of stages as in opposite of static and dynamic number of stages. The
drawback of such solution is that the path between stages is not memorized and if the
same stages are always used, they have to be defined every time a Workflow instance
executes. Finally a Workflow definition with a static number of stages has the
drawback of not allowing two different Workflow instances to run with different
number of stages.

Stage. Every stage, as previously stated, has a supervisor role, who can determine
if the content is accepted or declined. If the former is picked the next stage is reached,
while the previous stage is reached if the latter is chosen. There are two special
stages: the initial and the final. The initial stage is the one that starts the workflow,
and the final is the one that defines when the workflow execution comes to an end.
Every stage may have a set of associated operations that can fall into two categories:
entry and exit operations. The former are executed when the content gets to a stage,
while the latter are executed when the content leaves the stage.

Stage transitions. Empirically a transition is defined as a set of three elements:
event, condition and operation. The event is external to the transition and when it
happens it triggers the condition to be tested. The condition is the heart of the
transition since it determines if the transition is executed. The operations are usually

Workflow Aspects in Content Management Systems 115

performed if the condition is met. However events can also trigger Operations to be
performed. Having this definition in mind, in CMS Workflows the events are content
creation and edition, content approval (or disapproval), or messages from third-party
applications. As to the conditions they consist of checking if the input given by the
supervisor was an approving or disapproving instruction. When content is approved
the condition is met and for example an operation of notifying the next supervisors
may be executed.

Users. Users are responsible for approving or declining contents and so, firing
events. Since content management systems deal with several users, they usually group
users into roles, in which one role can have one or more users.

Content. The content, not regarding its type, is the object that runs through the
Workflow. The content is needed to have a version so several instances of one content
may co-exist, in order to supervisors and regular users may see different versions of
the content.

=d Domain kodel
Condition
Goes to
Worlitowr State “-d Teansition o
o
0.1 II
entry and exit
J . e
Operation
CM=
Message
arrival inan Us.er .
Irfor mation Authorization
System Ewent Ewert
Metifying
User(s) Hotifying
Operation Irfor mation
System
Operation

Figure 2: CMS’s Workflow Support — Domain Model

116 XATA2008 — XML: Applications and Associated Technologies

2.4. Functionalities

Figure 3 presents the use case model that reveals Workflow’s main functionalities in a
CMS. The actors present in the diagram are: (1) Registered User (URegistered), (2)
Workflow Manager (UWorkflowManager) and (3) External Information Systems (IS-
External). The UWorkflowManager can manipulate workflows, associate them to
contents, as well as manage workflow instances. URegistered edit contents, receive
notifications, authorize contents and monitor workflow instances. Finally, IS-External
can notify and be notified by the Workflow Management System.

cd Use Case Diagram

Chis

Manages

wiar kflowr Types receipt form

Wor kfl e
Systemn

S User
Wor kfl e

Wiar kfl oo
Rermonwal

Wor kfl o
Edition

Cortert

ior kflone Manzgel Edition

Cortert
wisualization

Instances
panage mernt

Raceives |—"
notification

External 51

Sends
notificstion

Figure 3: CMS’s Workflow Support — Use Case Model

We set the focus to the main functionalities a Workflow Manager must have in
order to support Content Workflow. The functionalities to be mention are only the
ones that directly relate to the Workflow Engine.

Workflow definition: When performing it the number of stages should be set, as
well as the responsible role for each stage.

Association between Workflow and content: With this functionality the user
assigns a content to the Workflow.

Workflow edition: Existing Workflow definitions may be able to change.

However one should be very careful on how to handle existing executing instances
of Workflows in order to avoid the loss of their contents.

Workflow Aspects in Content Management Systems 117

Workflow deletion: it should be possible to delete a Workflow definition. The
same situation happens as when Workflow definitions are edited, so the user must
explicitly choose what to do to existing workflow instances.

Workflow Instance Management: Allowing administrators to stop workflow
instances that didn’t come to an end and that may be in a dead lock or starvation
situation.

3. CMS with Content Workflow Support

Bearing in mind the concepts and functionalities discussed in section 2, four CMS
were chosen to be analyzed and discussed and, consequently, to give us a better
understanding of the problems in consideration. The criteria for choosing these CMS
systems are the following: (1) provide Workflow functionalities; 2) distinct among
them in which refers to being open-source or commercial; 3) distinct among them in
which concerns their main purpose;

It should be stressed that it was surprisingly hard to find CMSs supporting
Workflow technology.

3.1. Alfresco

Alfresco [22] is an open-source CMS focused on documental management. Its
highlight features are the version control, role support, content transformation, search
engine and navigation either in the file system or via Web.

The contents which are handled by Workflows are exclusively unitary contents,
meaning that it is not possible to apply workflows on aggregation contents. There
may be three predefined stages: draft, review and published. The supported actions
are authorization (approval or denial) by users and code actions (javascript). The latter
are executed as soon as a stage is reached. There are also discussion forums,
associated to each Workflow, so that the stakeholders may exchange opinions about
the evolution of the given content. The notification system is based on the e-mail as
well as through a module of pending actions that each user has access to, which
shows the actions the user may execute. There is an administration console in which it
is possible to see the stage, each Workflow is currently at. It is also possible to cancel
the workflow in this administration console.

3.2. Typo 3

Typo3 [23] is an open source PHP- based CMS. For Typo 3, a Workflow consists of a
name, a user, and a deadline. There is the possibility of notifying users when the
workflow starts. The only contents supported are also unitary contents. The user who
is responsible for one stage determines the next transition — not defined number of
stages - , whether accepting or declining the received content. The user may also
schedule the deadline of the next stage. When the final stage is reached and the user

118 XATA2008 — XML: Applications and Associated Technologies

associated with that stage accepts the changes, the workflow ends, and the content is
published.

Contents in intermediate stages are saved as drafts, while published contents are
saved as final content, so there are always two versions of a determinate content: draft
and final.

This Workflow model allows the existence of a variable number of stages. Despite
the stages are built in execution time, while contents go through the Workflow. The
disadvantage of this model is that equal Workflows have to be created every time
there is a need of a new instance. In fact this means there is no workflow definition
operation.

Bottom line is that this is a very simple and straightforward Workflow Managing
System, which provides the content flexibility to the evolution within the Workflow.
However it reveals a lack of automation, concerning stage definition, since stages are
defined by its instances at runtime.

3.3. Altimate OpenEDMS

Altimate OpenEDMS [24] is a CMS that allows Workflow definition and
management.

The Workflow definition process is supported by an activity diagram visual editor,
which enables the user to create stages and transitions. Each stage has a responsible
role, automatic actions and destination stages. When the Workflow definition is
completed there is a validation in which the system determines if the Workflow is, or
is not, valid. Afterwards the Workflow is saved.

The notification system may be done in two ways, e-mail or private message
(system internal messages), while it is possible any kind of combination of these types
of notification.

Terminated and pending Workflows are possible to inspect, as well as to start a
new Workflow. To perform this last one the user has to name the Workflow, insert a
comment, describing it, and a starting date. When a workflow finishes it is possible to
distribute its content to selected users.

The most relevant feature of this System is the Workflow definition process, since
it is completely visual and user friendly.

3.4. Vignette CMPortalSolution

Vignette’s [26] CMS is a commercial product and a reference among its peers in the
industry.

Workflow is a central concept within this CMS, and it uses both unitary and
aggregation contents. Workflow definition is achieved visually, via Microsoft Visio,
and stage transitions may be triggered whether by user authorization or external IS
actions. After edited, contents have to be approved, so they may be published. The
instance management is done in a console that allows its edition and cancellation.

Workflow Aspects in Content Management Systems 119

3.5. Comparative Analysis

The study of the referenced CMS leads to the conclusion that only one out of the four
actually allows the use of aggregation contents on Workflow. Also, out of the four
CMS, only Alfresco has a static number of stages. The Workflow definition process is
different among the CMS. Typo3 is the only one that does not allow determining the
number of stages at the Workflow definition, since the Workflow is defined in run
time by the user that is responsible for the current stage. V7CMS is the only that
allows external IS interaction, while all of them allow User interaction. Notifications

and deadlines are important concepts, although not supported by all the CMS.
Concerning the supported functionalities, the most important are the Workflow

definition, the content, Workflow association and Workflow deletion and
management.
Alfresco Typo 3 Altimate Vignette
OpenADMS
Concepts
Number of Static (3) Not defined Dynamic Dynamic
Stages
Supported Unitary Unitary Unitary Unitary &
Contents Contents Contents Contents Aggregation
Contents
User Yes Yes Yes Yes
interactions
IS interactions No No No Yes
User Yes (E-mail) Yes (E-mail) Yes (E-mail, Yes (E-mail)
Notification internal
Operations messaging
system)
WF Supported Operations
Definition No No Yes (Visual Yes (Microsoft
Interface) Visio)
Association Yes Yes Yes Yes
Edition No No Yes Yes
Removal Yes Yes Yes Yes

4. Conclusions

The adoption of Workflow technology into contemporary CMSs would allow the
automation of content’s production as well as its better integration according the
business interests. This will also lead to an optimization of the organisation’s business
processes.

Concerning CMS there are actually very few that support generically Workflow.
Those which do, only have partial support with still limited and inflexible features.

The generic reference model introduced in section 2, allow us to analyze any of the
given Workflow mechanisms, in section 3, defining additional concepts that may be
useful for future releases.

120 XATA2008 — XML: Applications and Associated Technologies

Aggregation contents have little support for Workflows, since only one out of the
four CMS supported it, which may lead to the conclusion that aggregation contents
are not as relevant as contents from the Workflow perspective. Nevertheless, given
the early stage that these classes of systems are, it may be plausible that such contents
would be better supported in the future.

Despite the lack of Workflow support by CMS, there are many requests by the
industry so that a standard solution of Workflow management for all content types
may be supported by these classes of systems. This can be a reasonable indicator that
this is an important topic for the software industry, which should emerge in the years
to come.

References

1. David Hollingsworth, The Workflow Management Coalition Specification reference model,
1995.

2. Ronni T. Marshak, Workflow: applying automation to group processes, Groupware:
technology and applications, Prentice Hall International (UK) Ltd., Hertfordshire, UK,
1995.

3. Tim Bray, Jean Paoli, Eve Maler, Frangois Yergeau Extensible Markup Language (XML)
1.0, 4th Edition, 2006 .

4. Dr. Michael Kay, Building Workflow Applications with XML and XQuery available at
http://www.stylusstudio.com/xml/Workflow.html# , last visited in 17-01-2007.

5. Robert Shapiro, Mike Marin, Roberta Norin, Workflow Management Coalition. XML

Process Definition Language, 03-10-2005 available at
http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf, last visited in 21-
07-2007.

6. Keith D. Swenson, Sameer Pradhan, Mike D. Gilger Wf-XML 2.0., Draft 08-10-2004,
available at http://www.wfmc.org/standards/docs/WfXML20-200410c.pdf, last visited in
21-01-2007.

7. Keith D Swenson, ASAP/Wf-XML 2.0 Cookbook—Updated in Workflow Handbook, Layna
Fischer, 2005.

8. Nilo Mitra, SOAP Version 1.2 Part 0: Primer. W3C Recommendation 24-06-2003.
Available at: http://www.w3.org/TR/2003/REC-soap12-part0-20030624/, last visited in 21-
01-2007.

9. Unified Modeling Language Resource Page 1997-2007, available at http://www.uml.org/,
last visited in 11-12-2006.

10. Marlon Dumas, Arthur H. M. ter Hosfstede, UML Activity Diagrams as a Workflow

Specification Language, 2001.
. Windows Workflow Foundation, 2006, available at http://wf.netfx3.com/, last visited in 04-
12-2006.

12. Paul C. Zikopoulos , A Beginner's Recipe for a Service-Oriented Architecture, available at
http://www.db2mag.com/story/showArticle.jhtml?articleID=193200616, last visited in 12-
12-2006.

13. Michael Rowell, Understanding EAI: Enterprise Application Integration, Sams,
Indianapolis, Indiana, 08-2001.

14. Dirk Krafzig, Karl Banke, Dirk Slama,. Enterprise SOA, Prentice Hall, 2005.

15. SAP Network: Standards and Enterprise SOA, available at
https://www.sdn.sap.com/irj/sdn/developerareas/esa/standards, last visited in 12-12-2006.

1

—_

16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.

31.

32.

Workflow Aspects in Content Management Systems 121

Balwinder Sodhi, Implement a customizable ESB with JAVA, 08-08-2005, available at
http://www.javaworld.com/javaworld/jw-08-2005/jw-0808-esb.html, last visited in 12-12-
2006.
What is Biztalk Server 2006?, 07-11-2005, available at
http://www.microsoft.com/biztalk/evaluation/what-is-biztalk-server.mspx, last visited in
21-12-2006.

Dino Esposito, Building Web Solutions with ASP.NET and ADO.NET, Microsoft Press,
2002.

Gail Anderson, Paul Anderson, Java Studio Creator Field Guide, Sun Microsystems Press,
2006.
James Robertson, How to evaluate a content management system, KM Column 2002.

How to Choose a Content Management System, WebSideStory WHITE PAPER, 2005.
Alfresco CMS, available at http://www.alfresco.com/, last visited in 29-01-2007.
Typo3 CMS,, available at http://typo3.com/, last visited in 29-01-2007.

Altimate OpenADMS CMS, documentacio available at
http://www.altimate.ca/Workflowdemo.html, last visited in 21-01-2007.
Adxstudio CMS, documentation available at http://www.adxstudio.com/cms-
product/features/Workflow, last visited in 21-01-2007.

Vignette Solutions, available at http://www.vignette.com/, last visited in 29-01-2007.
Daniel Rubio, Biztalk Server: Microsoft's SOA building block, 24-01-2006, available at
http://searchwebservices.techtarget.com/tip/1,289483,sid26_gcil 161311,00.html, last
visited in 12-12-2006.
Wil van der Aalst e Kees van Hee , Workflow Management, MIT Press, 2002.

Edward A. Stohr, J. Leon Zhao Workflow Automation: Overview and Research Issues,
Springer Netherlands, 2001.

Openflow: Open source Workflow management system, available at
http://www.openflow.it/EN/index_html, last visited in 18-12-2006.

BEA WebLogic, available at
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/, last
visited at 12-09-2007.

Organization for the Advancement of Structured Information Standards, OASIS, available
at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm, last visited at
20-01-2008.

Exploring and Visualizing the ”alma” of XML
Documents

Daniela da Cruz', Pedro Rangel Henriques', and Maria Jodo Varanda?

! Universidade do Minho
Departamento de Informética, Campus de Gualtar
Braga, Portugal
2 Instituto Politécnico de Braganca
Campus de Santa Apolénia
Braganca, Portugal

Abstract. In this paper we introduce eXVisXML, a visual tool to ex-
plore documents annotated with the mark-up language XML, in order
to easily perform over them tasks as knowledge extraction or document
engineering.

eXVisXML was designed mainly for two kind of users. Those who want to
analyze an annotated document to explore the information contained—
for them a visual inspection tool can be of great help, and a slicing
functionality can be an effective complement.

The other target group is composed by document engineers who might
be interested in assessing the quality of the annotation created. This
can be achieved through the measurements of some parameters that will
allow to compare the elements and attributes of the DTD/Schema against
those effectively used in the document instances.

Both functionalities and the way they were delineated and implemented
will be discussed along the paper.

1 Introduction

Our recent research on program comprehension using slicing and visual inspec-
tion, as well as the work on grammar metrics led us to investigate how those
approaches could be adapted to the field of document engineering. As a conse-
quence we have conceived a tool, denominated eXVisXML, to aid in the inspection
and analysis of XML documents.

By analogy with another tool (ALMA) we have developed in the past for program
visualization and comprehension, we say that eXVisXML allows us to capture
the “alma” (in English, the “soul”) of structured documents, i.e., the intrinsic
characteristics of XML documents. eXVisXML allows us to visualize the structure
of the document (the hierarchy of XML elements), and provides a set of quality
metrics, which enable us to reason out the document properties.

On one hand, our tool shows, in a graphical form, the document tree with the
content associated to the leaves, providing means to navigate over it; moreover

122

Ezploring and Visualizing the "alma" of XML Documents 123

it displays, in a tabular form, all the element occurrences associated with the
respective attribute/value pairs. Using forward slicing techniques, eXVisXML
allows the user to select parts of the document to focus his analysis just on some
aspect; namely one can regenerate the original document restricted to some
elements. These features are aimed at the comprehension of the document and
its exploration (in the sense of knowledge extraction). Inspired in ALMA system,
this functionality is displayed in two windows, one for the tree, and the other for
the table of elements. We argue that the graphical representation of the abstract
syntax tree complemented by the table of elements provides an easy to read and
effective way to grasp the sense of the document.

On the other hand, eXVisXML allows the document engineer to assess the quality
of his annotation schema (the DTD/XML-Schema he has designed) when applied
to real cases. eXVisXML computes automatically a set of syntactic and semantic
parameters (according to the standard metrics for XML documents) and shows
them in a separate window. Those parameters are evaluated over the actual
document and the respective schema in order to be possible, for instance, to
compare the total number of elements available against the actual number of
different elements used.

Before introducing our tool, eXVisXML, in section 5—describing its architecture
and discussing the implementation strategies—we will write about the visual-
ization of XML documents (section 2) and related work, i.e., other tools also
developed with a purpose similar to eXVisXML; then we discuss, in section 3,
the concept of document slicing and how it can complement the visualization
and navigation, making easier the comprehension of the document; at last, we
dedicate section 4 to the introduction of metrics to assess XML documents. The
paper ends in section 6 with concluding remarks

2 XML Documents Visualization

The ability to retrieve information from plain documents, in a simple and ef-
ficient way, is one of the objectives that has motivated the search for markup
languages. Concerning machine manipulation, the annotation systems like XML,
so far developed, were completely successful; XSL and other production-systems
can easily extract information from annotated documents and transform them.
However for human beings, this task is not as easy as desirable, mainly if the
annotation is complex or the document too big.

To help in finding the document fragments corresponding to some kind of el-
ement /attribute, or even located in some sub-document, document engineers
developed specific query languages. In the last few years, appeared among many
other, XPath [CD99,0MFB02] and XQuery [Cha02] languages specially designed
to query collections of XML data. XPath or XQuery stand for XML like SQL
for databases, making possible to find and extract elements and attributes from
structured documents.

124 XATA2008 — XML: Applications and Associated Technologies

Moreover, the research for tools to visualize XML documents, is not a new issue.
People recognized a long time ago that the existence of visual editors was crucial
to create or read structured documents.

Nowadays there are many tools which merge the XPath querying facilities with
the visualization of XML documents. Some of this tools are:

— XPath Analyzer by Altova [Alt07];

— XPath Visualizer [Top07];

— XPath Viewer by Microsoft [Mic07];

— XPath Query Editor by Stylus Studio [Stu07];

Although these tools offer a (textual) hierarchical view with highlighted syntax,
as illustrated in figure 1, and make easier the manipulation of documents, allow-
ing to expand and collapse sets of elements, they are not always powerful enough
for the exploration of the document’s constituents (elements and attributes) and
the relationships among them.

€ XPath Visualiser Ver.1.4 - Windows Internet Explorer o | &)
— o
T | @ XPath Visualiser Ver 4 [B - B - @ - [} Pagina v) Feramentas
C\Users\Daniela\Deskioplarg-son-EVO xml
XPath expression:
Jlarg/docffile | [SelectNodes
<6 4 D) 0 of 448/448 matches
B<ara> -

Fedocs
<prov>Alentejo</prov>
<local>Santa Vitéria, Beja </local>
<tit>Disse a laranja ao limao</tit>
<musico>Jorge Montes Caranova (viola campaniga) </musico>
<file t="MP3">d1/evo001.mp3 </file>
<duracao>1:02</duracac>
</doc>
Bedoc>
<prov=Alentejo</prov>
<local>Santa Vitéria, Beja </local>
<tit>Murianos é bom povo</tit>
<musico>Jorge Montes Caranova (viola campania) </musico>
~<obs>
Partitura, verséo curta
<file t="SWA’>audiocurswa/0403evo0.swa</file>
<file t="MP3">audiocurmp3/0403evo0.mp3</file>

<intxt>Viola campaniga</intxt>
<fobs>
<file t="MP3’ >d1/€v0002.mp3</file>
<duraca0>1:10</duracao>

</doc>

B<doc>
<prov>Alentejo</prov>
<local>Santa Vitéria, Beja</local>
<tit>Cantiga de despique</tit>
<musico>Jorge Montes Caranova (viola campanica) </musico>
<file t="MP3’ >d1/evo003.mp3 </file>

Concluido

{8 Computador | Modo Protegido: Desactivado H100% v

Fig. 1. Visualization of a XML document and selection of file nodes

The tool closest to our proposal is XML Schema Designer [Mic08]; however, that
tool just deals with XML schemas. XML Designer provides a visual representation
of the elements, attributes, types, and so on, that make up XML schemas. With
XML Designer we can: construct new or modify existing XML schemas; create
and edit relationships between tables; create and edit keys.

Actually, the kind of visualization that we propose is similar to the one provided
by XML Schema Designer, but also applicable to XML documents. This is, we

Ezploring and Visualizing the "alma" of XML Documents 125

propose a graphical representation of the internal abstract tree associated with
the XML document, where intermediate nodes are XML elements and the text
fragments (#PCDATA) are the leaves.

Edges describe the direct inclusion of document parts. So, we can distinguish
two kinds of nodes: text nodes and structure nodes. The labels of structure nodes
correspond to XML element types and text nodes (always leaves) are labeled
with #PCDATA components (the actual text of the document). The visual rep-
resentation used to show this information is lighter than the usual XML tag
representation. It is well known the advantage of the use of graphical features
to expose and explain structural and behavioral information.

3 XML Documents Slicing

A program slice consists of the parts of a program that (potentially) affect the
values computed at some point of interest. Such a point of interest is referred
to as a slicing criterion, and is typically specified by a pair (program point, set
of variables). The parts of a program that have a direct or indirect effect on
the values computed at a slicing criterion C' constitute the program slice with
respect to criterion C. The task of computing program slices is called program
slicing [Tip95].

As referred in [Sil05], the slicing technique can also be applied to XML docu-
ments. Essentially, given an XML document, it is produced a new XML document
(a slice) that contains the relevant information in the original XML document
according to some criterion (the slicing criterion). Furthermore, it is also pos-
sible to slice a DTD, where the output is a new DTD such that the computed
slice is valid according to the original DTD.

This technique was implemented in a Haskell prototype tool called XMLSlicer [Sil06],
using the HaXML library [Mer01]. In this approach, XML documents and DTD’s
are seen as trees; and the slicing criterion consist of a set of nodes in the tree.
In both types of slicing—DTD slicing and XML slicing—given a set of elements,
it will be extracted those elements which are strictly necessary to maintain the
tree structure, i.e., all the elements that are in the path from the root to any of
the elements in the slicing criterion. The difference between them is that while
a slicing criterion in a DTD selects a type of elements, a slicing criterion in an
XML document can select only some particular instances of this type.

Both slicing techniques produce valid XML and DTD slices with respect to the
slicing criterion, if both the original are valid.

As a conclusion, we can say that this slicing technique can be seen as an easier
way to query an XML document, simpler than an XPath/XQuery statement;
it does not require to write the complete path to locate some information (or
elements) in document.

126 XATA2008 — XML: Applications and Associated Technologies

4 XML Documents Metrics

Effective management of any process requires quantification, measurement, and
modeling. Software metrics provide a quantitative basis for the development and
validation of models of the software development process. Metrics can be used
to improve software productivity and quality.

In the last years, a wide set of software metrics was defined and can be classified
as follow: product metrics (to evaluate a software product); process metrics (to
evaluate the design process); and resources metrics (to appraise the required
resources).

In the field of XML, the quality assessment is also relevant because the approach
followed by engineers, or end-users, to design the annotation-schema (the type
of a family of documents), or even to markup existing texts, is many times
improvised and naif. Concepts like well-formedness or validity are not sufficient
to appraise XML documents; they are only prerequisites to achieve quality.
Some of the software metrics (briefly referred above) have been adopted to mea-
sure the quality of XML documents [KSHO02|, being applied both to DTDs and
XML-schemas (XSDs).

A tool dealing with XSD metrics is XsdMetz [Vis06,LKR05]. The tool was imple-
mented in the functional programming language Haskell, using functional graph
representations and algorithms. The tool is related with SdfMetz, which com-
putes metrics on SDF grammar representations [AV05]. XsdMetz tool exports
successor graphs in dot format so that they could be drawn by GraphViz [KN02].
However, in this paper we will only focus on the metrics defined over DTDs.

As a consequence of that research effort, a set of XML metrics was defined—
size, structure complezity, structure depth, fan-in and fan-out, instability, tree
impurity. Below and after our own contribution (attributes per element, non-
used components and text length), we introduce them, as they form the basis of
the quality measurement that will be implemented by the proposed tool.

Before presenting those metrics, we should define the notion of a sucessor graph
(SG), now applied to DTDs [Vis06,LKR05], in order to measure the dependence
between components. Given a DTD, we say that a new component (in this case,
an element or an attribute) is an immediate successor of the element under
definition, i.e., the component in the context of which the new one appears; then,
we introduce an arrow (an oriented edge) from the element to the component.
Based on this relation, the result is a graph representation of the structure of
the XSD/DTD.

Size

Size(DTD) =ngr, +na
where ngr — number of elements in the DTD, and n4 — number of attributes
in the DTD.

Ezploring and Visualizing the "alma" of XML Documents 127

Given a DTD, its size (i.e. the value for this metric) is the total number of nodes
in the SG, i.e., the number of DTD components.

Structure complexity

To determine the complexity of a DTD, the McCabe metrics, developed to eval-
uate the control flow of software, was adopted. There exist slight variations of
McCabe Complexity measure (MCC), but in essence MCC counts the number of
linearly independent paths through the control flow graph of a program module.
MCC for grammars may simply count all decisions in a grammar, this is, op-
erators for alternative, optional and iteration. Because DTDs are equivalent to
context-free grammars, Lammel et al, in [LKR05], argue that in the same way,
the MCC for DTDs correspond to the addition of edges to SG if quantifiers +
and * occur and if mixed content elements (but not #PCDATA) exist.

So, the formula to measure the complexity of a DTD is:

Compl(DTD) =e—n+1+ NIDREF,

where e is the number of edges in the SG, n is the number of nodes in the SG
and nyprer is the number of IDREF attributes. Note that actually the number
of references to other identifiers increases the complexity.

In fact, if the DTD corresponds to a pure tree (which always has n nodes and
n — 1 edges) without internal references, then we get as structural complexity
the value Compl(DT D) = 0. On the other side, every recursion, all iterators +
and %, and all IDRFEF attributes increase the complexity.

Structure Depth

This metric, which computes the depth of the SG, also provides information
about the complexity of the schema.

To compute the depth of the SG, we have to eliminate recursion, otherwise the
result would be infinite. Then, the depth of each node is computed as follows:

Depth(n) = 0 n is leaf
P ~ | maz(Depth(n;)) + 1 for each n; (child node of n)

According to [KSH02], an SG with a depth much higher than seven is complex
and reveals a bad DTD design.
Fan-in and Fan-out

These two new metrics are defined as follows:
Fan — in(n) = #{n;|n; is parent node of n}.
Fan — in gives the number of incoming edges in the node.

128 XATA2008 — XML: Applications and Associated Technologies

Fan — out(n) = #{n;|n; is child node of n}.

Fan — out gives the number of outgoing edges in the node.

Both metrics are directly applicable to the nodes of SG. For the graph as a
whole, the average and the maximum values for those parameters can be useful
to spot unusual nodes, which can be inspected to detect the anomaly and fix the
problem. Elements with a high Fan-in/Fan-out value are more complex than
other elements with a lower value.

Instability

Based on Fan-in/Fan-out metrics, a measure related with the instability of a
node can be computed as follows:

Instability(SG) = ——Lan=out . 100%

Fan—in+Fan—out
A node with a low instability allows us to conclude that it is less dependent
of other nodes, while many nodes are depend on it. This is, instability can be
interpreted as resistance to change, hence a node with low instability corresponds
to a situation where changes that occur over the node will affect relatively many
other nodes.

Tree Impurity
TI(SG) = fist)s + 100%
where n is the number of nodes in the SG and e is the number of edges.

This metric is clearly inspired in Fenton’s impurity concept used in the context
of software or grammar quality assessment.

A tree impurity of 0% means that a graph is a tree and a tree impurity of 100%
means that it is a fully connected graph.

Now we introduce the set of complementary new metrics, which we have defined.

Attributes per Element

To complement the Size metric, we define

AttrsEle(DTD) = 2 na

NEL
where ngr, — is the number of the elements in the DTD, and n4 — is the number

of attributes.

This metric allows us to figure out the average number of attributes defined per
element in the DTD.

A similar metric could be defined over the XML document.
AttrsEle(X ML) = 2

MNELu

Ezploring and Visualizing the "alma" of XML Documents 129

where ngr, — is the number of the elements used in the document, and n 4, —
is the number of attributes actually used.

This metric, applied directly to the XML document, allows us to figure out the
average number of attributes actually used per effective elements present in the
XML document.

Non-used Components

In order to detect the non-used components (elements and attributes) in an
actual XML document, we define:

NonAttr(XML) = Attr(DT D) — Attr(XML)
NonElem(XML) = Elem(DTD) — Elem(XML)

if Attr(DT D) represents the set of attributes defined in the DTD, and Attr(X ML)
represents the set of actual attributes (the attributes used in the XML document
instance), then NonAttr(X ML) is the set of non-used attributes.

The set of non-used elements, NonElem(X ML), is defined precisely in the same
way; once again, it gives an idea of the elements in the DTD that are not used
in XML instances (it is similar to the notion of dead-code in a class—this is, a
set of methods that are never called).

Then we define two metrics:

NAttr(XML) = #NonAttr(X ML)

NElem(XML) = #NonElem(XML)

that measure the size (number of elements) of those two sets.

Text Length

TatLen(X ML) = > lenT;qth(PCDATA)

PCDATA
where, length(PCDATA) computes the total length of the document’s text (the
sum of the length of all text fragments, i.e., text associated with element tags,
or untagged text), and npcpara is the number of text fragments (the number
of PCDAT A leaves that appear in the XML document tree).

In a similar way,

AttTwtLen(X ML) = Zle"g““;“f”[’f‘”)

measures the average attribute text length.

Usually, the choice between the use of an element or an attribute, in a XML doc-
ument type, is an ambiguous matter; in practice, some document engineers con-
sider some particularities as elements, while others consider them as attributes.
That metrics is precisely useful to study that phenomena; in fact, when we write
a XML instance that duality/ambiguity becomes clear. We have the percep-
tion that an attribute should be used when its content is not too large, while an
element should be used when we do not know how much large will be its content.

180 XATA2008 — XML: Applications and Associated Technologies

Over XML-schemas, the metrics applied are similar to the referred above, but
with a slight difference: usually, the successor graph is built in the same way but
the set of nodes that are strongly connected are grouped into the same node (a
module). However, as said previously, we will not consider them in this paper;
to learn more about the common metrics defined over XML-schemas, we suggest
the reading of [Vis06].

XML/DTD/Schema

<xml ..>

<eXVisXML> S

</eXVisXML> 5

-

[XML Parser (javax.xml)]
[DTD Parser (Matra)]

DOM Tree DTD Tree

[Slicing Algorithms J +[Prefuse]+ [Metrics Algorithms J

eXVisXML

Fig. 2. Architecture of eXVisXML

5 eXVisXML, XML Document Visualization and
Exploration

In this section, we concretize the ideas introduced along the previous sections,
concerned with visualization, slicing and measuring of XML and DTD documents,
discussing how they will be fully implemented in the proposed tool eXVisXML.
Nowadays, the development of a tool requires that the implementor searches for
existing programming resources (libraries, design-patterns or program-templates,
frameworks, generators, etc.), which can be used in his specific project.

Ezploring and Visualizing the "alma" of XML Documents 151

So, in order to get advantage from other tools to build up our own, Java language
and the Eclipse platform will be used as the programming environment.

The input for our tool are the the DTD and the XML document. From these 2
documents we can extract all the information needed. The information extraction
process will be done by parsing the documents.

In this context, we will use the Java API for XML Processing (JAXP), which can
be applied to parse and transform XML documents independent of a particular
XML processing implementation. This API provides 2 basic interfaces: the DOM
interface and the SAX interface.

The main difference between them arises from the fact that DOM interface builds
a complete in-memory representation of the XML document, while SAX interface
does not create an in-memory representation; instead, SAX parser informs clients
of the XML document structure by invoking callbacks, and so it is faster and uses
less memory.

For the purpose of our tool, we chose DOM because we need all the informa-
tion stored in memory for visualization, slicing and measurement. DOM parser is
called through the DocumentBuilder class, which creates an org.w3c.dom.Document
instance, an abstract tree representing the structure of the XML Document.

Concerning the parsing of DTDs, a search over the Web led us to a tool called
Matra, a Java-based XML/DTD parser utility, that parses the DTD and builds up
a tree representation. Other tools of this kind were found and studied; although
Matra proved to be the best, concerning its final representation.

Figure 2 depicts the architecture of eXVisXML, summarizing the technical deci-
sions described above.

We discuss in the following subsections how to visualize, slice and measure the
input documents. Those features will be illustrated by means of an working
example (see appendix A for the XML document and its DTD)—an excerpt of
the well-known screenplay by William Shakespeare, The Romeo and Juliet Love
Story [New(1], (RJIs)—previewing the output that it will produce. Moreover,
this will give a flavor of eXVisXML behavior.

5.1 Visualization

The role of the visualization technology, in fields like program comprehension and
software engineering, is strongly recognized by the computer science community
as a very fruitful one. The use of software visualization features allows us to get
a high quantity of information in a faster way. Graphical representations have
a positive impact in learning process because it engages the users in a more
efficient comprehension process.

There are several kinds of views that can be produced: they can show operational
data or behavioral data (more abstract view); they can be static or dynamic; they
can be more structural or they can be more quantitative (based on metrics or
other kind of statistical information).

182 XATA2008 — XML: Applications and Associated Technologies

These graphical or iconic representations must be carefully chosen because they
usually depend on the problem domain. In our case, we want to visualize XML
declarations or documents. Since structure/content visualization is used as a
vehicle to make easier the comprehension of a document, it is necessary to care
about the choice of visual paradigms/styles that will be used.

Taking this fact into account and inspired in ALMA, our visualization tool for
program animation, the eXVisXML interface for the visual inspection of XML
documents will be divided into 3 main parts:

— one window that displays the source document;

— one window exhibiting the tree associated with the source document — both
tree representations, the graphical one (see Fig. 3 and Fig. 4) and the hier-
archical textual view (like the one in Fig. 1), will be available;

— one window to show the Attribute Table (AT), formally a map: Name x
Value — for each element selected over the tree, the AT shows the set of
attributes of that element and the actual value of each one.

5.2 Slicing

According to a slicing criterion given by the end-user, the tool shall be able
to select and highlight the path from the root until the node satisfying the
criterion. If the slicing criterion matches an attribute, not only the node where
the attribute appears will be highlighted, but also the corresponding line in the
Attribute Table.

Considering again the working example, RJIs document globally shown in Fig. 3,
suppose that “Greg” was chosen as the slicing criterion value in order to find
all the screenplay components where actor Gregory appears.

The slicing algorithm, included in our tool, will traverse the tree looking for all
matches of “Greg” with the value of each attribute and each leaf (#PCDATA
value). The result of this slicing operation will be the enhancement of each path
from the root of the document tree until each node where a match happened, as
can be seen in Fig. 5.

As an additional feature, eXVisXML can generate a new XML document includ-
ing only the components along the pathes highlighted in the previous slicing
operation; the result is shown in Fig. 6. Notice that this new XML is also valid
according to the submitted DTD, hence the structure of the XML document is
not changed.

5.3 Metrics

Applying to the working example (the RJIs screenplay in appendix A), the set
of metrics defined in section 4, we obtain the measures listed below. To evaluate
part of those parameter values it was necessary to build first the sucessor graph
for the given DTD. Fig. 7 sketches that SG.

Ezploring and Visualizing the "alma" of XML Documents 133

— Size(DTD) =25+ 2 =27
- Compl(DTD):e—n+1+n1DREF:37—25+1+0=13

Depth(n) = 0 n is leaf
P ~ | maz(Depth(n;)) + 1 for each n; each child node of n

Taking n as the root, the Depth of the SG is 7, since the deepest branch has
depth 6.
For the Fan-in and Fan-out metrics, let us consider the node scene.

— Fan —in(n) = #{n;|n; is parent node of n} = 3.

— Fan — out(n) = #{n;|n; is child node of n} = 6.
Considering the node title, the value of Fan-in and Fan-out metrics are 6 and
0, respectively.
Using the metrics above, the result of Instability metric is computed:

— Instability(scene) = F2m=2u —— x 100% = 3,3%

Instability(title) = 0%

— TI(SG) = 25t +100% = 252250 4 100% = 58,9%

— AttrsEle(DTD) = Lra_ 2 0,08

NeErL 25 -

— AttrsEle(XML) = %LA =2 =0,027
— NonAttr(XML) = Attr(DTD) — Attr(XML) =0
— NonElem(XML) = Elem(DTD) — Elem(XML)=25—-24=1
The element stagedir under the context of the element line is never used.
> length(PCDATA)

— TatLen(XML) = = 2185 = 37,46
NPCDATA
— AMTwtLen(XML) = 2lngthAPCDATY) _ 3y

When the user selects the appropriate option from eXVisXML menu, our tool will
compute automatically the metrics above, and open a new window to display
the values obtained.

6 Conclusion

Along the paper, we defend the idea that an useful tool to explore XML doc-
uments can be setup merging principles from similar areas (like software and
grammar engineering, comprehension and quality assessment), as well as resort-
ing to technological solutions already implemented.

As a proof of concept, we conceived and partially built eXVisXML, as proposed
in section 5.

Basically we reuse visualization principles (section 2), slicing techniques (sec-
tion 3), and software/grammar metrics (section 4), aiming at an exploration
environment that allows us to comprehend by visual inspection the structure
and contents of XML documents, and provides quantitative information to rea-
son about the quality of the mark-up schema as well as the annotation itself.

184 XATA2008 — XML: Applications and Associated Technologies

The complete implementation of eXVisXML is the task we are working on, at
moment. This is crucial to test the tool and prove our ideas, as well as to carry
out performance, and usability measurements. After that we will apply the tool
to a vast suite of test-cases in order check the set of metrics here proposed;
maybe some of them are useless, and some others are missing. Of course, that
test suite will be useful to tune the visualization, as well as to verify the ef-
fective importance of the slicing functionality for document understanding and
re-engineering.

References

[A1t07] Altova. Xmlspy. http://www.altova.com/products/xmlspy, 2007.

[AVO05] Tiago Alves and Joost Visser. Metrication of sdf grammars. Research
report, Departamento de Informatica, Universidade do Minho, Maio 2005.

[CD99] James Clark and Steve DeRose. Xml path language (xpath) version 1.0.
Technical report, World Wide Web Consortium, 1999.

[Cha02] D. Chamberlin. Xquery: An xml query language. IBM Syst. J., 41(4):597—
615, 2002.

[KNO02] Eleftherios Koutsofios and Stephen North. Drawing graphs with dot, 2002.

[KSHO2] Meike Klettke, Lars Schneider, and Andreas Heuer. Metrics for xml docu-
ment collections. In EDBT ’02: Proceedings of the Worshops XMLDM,
MDDE, and YRWS on XML-Based Data Management and Multimedia
Engineering-Revised Papers, pages 15-28, London, UK, 2002. Springer-
Verlag.

[LKRO5] R. Ladmmel, Stan Kitsis, and D. Remy. Analysis of XML schema usage. In
Conference Proceedings XML 2005, Novembro 2005.

[Mer01] David Mertz. Transcending the limits of DOM, sax, and xslt: The haxml
functional programming model for xml. IBM developerWorks (XML Mat-
ters column), October 2001.

[Mic07] Microsoft. Xpath viewer. http://msdn2.microsoft.com/en-
us/library/aa302300.aspx, 2007.

[MicO8] Microsoft. ~ Xml schema designer. http://msdn2.microsoft.com/en-
us/library/ms171943(VS.80).aspx, 2008.

[New01] Greg Newby. Xml and project gutenberg.
http://www.ils.unc.edu/ bluec/gutenbergDTD/, 2001.

[OMFBO02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath: Looking forward,
2002.

[Sil05] Josep Silva. Slicing xml documents. In WWV, pages 121-125, 2005.

[Si106] Josep Silva. Xmlslicer. http://www.dsic.upv.es/ jsilva/xml/, 2006.

[Stu07] Stylus Studio. Xpath query editor. http://www.stylusstudio.com/xpath_evaluator.html#,
2007.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121-189, 1995.

[Top07] Xpath visualizer. http://www.topxml.com/xpathvisualizer/, 2007.

[Vis06] Joost Visser. Structure metrics for xml schema. In XATA - XML: Aplicacdes
e Tecnologias Associadas, Portalegre - Portugal, Fev 2006.

Ezploring and Visualizing the "alma" of XML Documents 185

A The Romeo and Juliet love story

In this appendix we list the two documents—a DTD and an XML text—used
as the eXVisXML input for the working example run along the subsections of
section 5.

A.1 The Screenplay DTD
The DTD specified to define an XML dialect to mark-up Shakespear screenplays.

<!ELEMENT guttext (markupmeta, play, endgutmeta)>
<!ELEMENT markupmeta (title, gutdate, textnum, para, gutfilename)>
<!ELEMENT play (frontmatter, playbody)>
<!ELEMENT endgutmeta (#PCDATA)>
<!ELEMENT stagedir (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT gutdate (#PCDATA)>
<!ELEMENT textnum (#PCDATA)>
<VELEMENT para (#PCDATA)>
<!ELEMENT gutfilename (#PCDATA)>
<!ELEMENT pgroup (#PCDATA | title | persona)*>
<!ELEMENT persona (#PCDATA)>
<!ELEMENT frontmatter (titlepage, personae)>
<!ELEMENT titlepage (pubinfo, title, author)>
<!ELEMENT personae (title, pgroup+)>
<!ELEMENT playbody (scene, act+)>
<!ELEMENT scene (scndesc | title | stagedir | speech | note)+>
<!ATTLIST scene

id NMTOKEN #IMPLIED
>
<IELEMENT act (title?, scene+)>
<IATTLIST act

id NMTOKEN #REQUIRED
>
<!ELEMENT scndesc (#PCDATA)>
<!ELEMENT speech (speaker | line | stagedir)=*>
<!ELEMENT note (#PCDATA)>
<!ELEMENT speaker (#PCDATA)>
<!ELEMENT line (#PCDATA | stagedir)*>
<!ELEMENT pubinfo (#PCDATA)>
<!ELEMENT author (#PCDATA)>

A.2 The XML document

An excerpt from RJls screenplay by William Shakespear, annotated according to
the mark-up language defined by the DTD in previous subsection.

<?xml version="1.0" encoding="UTF-8"7>

186 XATA2008 — XML: Applications and Associated Technologies

<guttext>
<markupmeta>
<title>The Complete Works of William Shakespeare
The Tragedy of Romeo and Juliet</title>
<gutdate>November, 1997</gutdate>
<textnum>1112</textnum>
<para>The Library of the Future Complete Works of William Shakespeare
Library of the Future is a TradeMark (TM) of World Library Inc.</para>
<gutfilename>
xx*x*This file should be named 1ws1610.txt or 1ws1610.zip*kx
Corrected EDITIONS of our etexts get a new NUMBER, 1lws1611.txt
VERSIONS based on separate sources get new NUMBER, 2ws1610.txt
</gutfilename>
</markupmeta>
<play>
<frontmatter>
<titlepage>
<pubinfo>1595</pubinfo>
<title>THE TRAGEDY OF ROMEO AND JULIET</title>
<author>by William Shakespeare</author>
</titlepage>
<personae>
<title>Dramatis Personae</title>
<pgroup>
<title>Chorus</title>
<persona>Escalus, Prince of Verona.</persona>
<persona>Paris, a young Count, kinsman to the Prince.</persona>
<persona>Capulet, heads of two houses at variance with each other.</persona>
<persona>An old Man, of the Capulet family.</persona>
<persona>Romeo, son to Montague.</persona>
<persona>Abram, servant to Montague.</persona>
<persona>Sampson, servant to Capulet.</persona>
<persona>Gregory, servant to Capulet.</persona>
<persona>Lady Montague, wife to Montague.</persona>
<persona>Lady Capulet, wife to Capulet.</persona>
<persona>Juliet, daughter to Capulet.</persona>
</pgroup>
<pgroup>Citizens of Verona; Gentlemen and Gentlewomen of both houses;
Maskers, Torchbearers, Pages, Guards, Watchmen, Servants, and
Attendants.
</pgroup>
</personae>
</frontmatter>
<playbody>
<scene>
<scndesc>SCENE.--Verona; Mantua.</scndesc>
<title>THE PROLOGUE</title>
<stagedir>Enter Chorus.</stagedir>
<speech>
<speaker>Chor.</speaker>

Ezploring and Visualizing the "alma" of XML Documents 187

<line>Two households, both alike in dignity,</line>
<line>In fair Verona, where we lay our scene,</line>
<line>From ancient grudge break to new mutiny,</line>
<line>Where civil blood makes civil hands unclean.</line>
<line>From forth the fatal loins of these two foes</line>
<line>A pair of star-cross’d lovers take their life;</line>
<line>Whose misadventur’d piteous overthrows</line>
<line>Doth with their death bury their parents’ strife.</line>
<line>The fearful passage of their death-mark’d love,</line>
<line>And the continuance of their parents’ rage,</line>
<line>Which, but their children’s end, naught could remove,</line>
<line>Is now the two hours’ traffic of our stage;</line>
<line>The which if you with patient ears attend,</line>
<line>What here shall miss, our toil shall strive to mend.</line>
<stagedir>[Exit.]</stagedir>
</speech>
</scene>
<act id="1">
<scene id="1">
<scndesc>Scene I. Verona. A public place.</scndesc>
<stagedir>Enter Sampson and Gregory (with swords and bucklers) of the house
of Capulet.</stagedir>
<speech>
<speaker>Samp.</speaker>
<line> Gregory, on my word, we’ll not carry coals.</line>
</speech>
<speech>
<speaker>Greg.</speaker>
<line> No, for then we should be colliers.</line>
</speech>
<speech>
<speaker>Samp.</speaker>
<line> I mean, an we be in choler, we’ll draw.</line>
</speech>
<speech>
<speaker>Greg.</speaker>
<line> Ay, while you live, draw your neck out of collar.</line>
</speech>
<speech>
<speaker>Samp.</speaker>
<line> I strike quickly, being moved.</line>
</speech>
<speech>
<speaker>Greg.</speaker>
<line> But thou art not quickly moved to strike.</line>
</speech>
<note>THE END</note>
</scene>
</act>
</playbody>

188 XATA2008 — XML: Applications and Associated Technologies

</play>
<endgutmeta>
End of this Etext of The Complete Works of William Shakespeare
The Tragedy of Romeo and Juliet
</endgutmeta>
</guttext>

139

Ezploring and Visualizing the "alma" of XML Documents

™ -
o 1 e s smay et - .
an -
o g g g A e o g L -
L i L] B AL TN) 1 B S s
e ‘e e =) By e ampme S L = —
e saan
7o g] e sy) S e 9 s v gL - i
man -
g 2 pres o s e o g .
1 1 TR T e R e T 1 B —
P o
eawn un s o o a3 ‘wgase -
Ty W e = @ e ey e) - peah
wan -
e SRR o sy ey e B Y -
pr peak o Ll
L o) P Gt R Le el T -
] B] R
T g s aan 1 -
e B] R
D 0 T NR AR ' R e -
B - R
AL L R e U e | -
e . R
e = v -
B Joan iy
D A v e S Seden - f— R — .
] s A LTEW [BEW ST B4 R R R R
e o J—
B (LT DU DA RN AR P U e
ey w7 mn
e .
T 1 R PR P R ey N =
T e e g o L L -
‘et oty vy e g e g -
e P BT TR AR B T -
et g sy o E) -
" BRI YT Beg) 2 e) L -y
A e s G Y S g g i W
weasiarees e ppe -
“an 31wy iy e en o -
v oy s 3w ey g g -
s s s e P P -
S e g yRan s uE Ly -
" g Ty - =
Xy o 41 Yoy L -
o fpinnd
e
Ao -
B
Rt aiid g
U Cp e s T g Wameg L W
D E 2 U e Ui SRR 2 R
Jopate oy supoven o i
ey e e o e
e m A e P
Topedeg o g Scflay e
P —— v
U — — p——
e o ey P
)y mg g ooy R
4z e s e e pay) 2 ey i P
g s g e v B g f—
B mmiad
g -
g wy -
areeern LRV G Rl
L O SR 4D AL L = e
s
VTR AR A e mre apnde U0 D SMOTRM
FVTITIN] NN S ¥ 88 apag 0 0 SEELUET PRpaLET
s TR 3 1 AT DL] DR) L e
2 S L 0 (LT AL ¥ 8 AR o S
A LT 2 B ST AT =4 0 S
Tt
LR]

Y oy o S L

Fig. 3. Tree representation for RJIs Doc. — global view

XATA2008 — XML: Applications and Associated Technologies

140

aleadsatieys Welin, Ag
131770 ANV OFWOY 40 AJEDYEL IHL
=i

dno.iBd
dnoubd
Eli
Jopne
=p0
ojuignd

10E
U208

seuos.ad

abedapn

18N pue ooy Jo Apabel] sy
aleadsareys WEA JO S:op S32)dwioD 8y L Jo 31¥=13 Sip Jo pug

Apogheld

A=ieLnuol)

aueuznt
eled
wnLgxay
=3epnt
]

SENgl/eliE]

Aed

E1aLudrew

Jx=mnB

Fig. 4. Tree representation for RJIs Doc. — partial view (some nodes collapsed)

141

Ezploring and Visualizing the "alma" of XML Documents

CEENS

AT 1 e e e e o
] g

Ty e Nprh T L

s gt

e e e g ~
] g

W L AL U8 1] o L e | L]

i g

S S Y

] g

S A 0) w.
sy gty

il

oyl el Ty, e
=2l
TR T2 BT IS D D S T

‘O P AT TR U S0 I R
‘b R R AT M Y

o g g bt gy
T e]
s e g R,

T AR o e R e
g S T
T S| g
AL v m e s s uny
TS T e R A,) 1

A 1 T R R

5

AR R AR

EAE) P ARV 7 ST T)) PR
T g o R e
e,y e

man

HIB11111;

gt
nnp me

ELa e

T R

il

AR I AR, ST b SR | S
S| R) RSAMOARRED (AR (FETRET) AR,) ST

e

e

meaed

e

e

e

e

e

e

e

meaed

L]

g

e e

LV GV DN 0 AL L

S PY

e

et

o

vl

sty

PTTII YERH e ras ek 5 o SR
111 YA Ve o SR)9 SR P
v R VST)BT PN 5] VAT) Lo

g A Y 0 (L) L) 0T 0 e
URTSITFLE U B S48 TR MR 0 0 MRS L

amn
e e

P e o e, L
e g, N AR T

i LT
L W SR TRFWET) ML B 0P RS

e

ko

Fig. 5. Result of the slicing criterion “Greg”

Applications and Associated Technologies

XATA2008 — XML

142

AN IHL

*2l138 03 P2AOL ApaINb J0U 12 oy Ing auy

‘Baig Jmjeads

“IE[03 JO IN0 HIZU INDA MEIP ‘Bal NOA SYM ‘A auy
*Baig Ianjeads

*S13)|03 20 PINOLYS 3M UL 104 “oN auy

‘Baig Jmjeads

‘Ended Jo
3sn0L| a3 Jo (S12pRng pue spaoms L) Aiobaug pue uosdwes Jajuz

+2oejd Jgnd v ‘eualap, T 2U235

[aea]

*PUBL 0 3ALIS [|EYS (107 N0 ‘SSIL ||EYS 23U JELM
‘puaiie siea Juaped L NoA Ji y2iym By

abels INo Jo J14Je1] SINOY OM) S MOU ST

‘aola) pnod JyBneu ‘pua sUSUpILa IS NG LI
‘abe) sjuz.ed NisL Jo SOUENUIRUOI SUY Py

‘ano| paEULIESp N1BYY Jo sbessed nyeay ay)
*aJ135 s3u=ed 1BU1 AIng LIesp 2yl Laiv 43og
SMOUL1IBAD SN02Yd P, INJUSAPESIL SSOLIA

BLj] S{2] SI2A0| P,5S0.3-1E]S JO NEd i
530 OM] 352L)1 J0 SUI0] [E12] BU) LI0J wo.d
sabjew poojq |
“AUINW MBL 07 }ea.q aBpnIG JuanUe wo.d

*LES|ILIN SPLEL|

13 U2y

‘auUa0s o AB| aM 2J3UM ‘BUOIIA B U]

AuBip u 300 ‘sployasnol om L
Q= s)

‘JBNdeD 0] Jueales ‘Alobaig

snioLD

ajou

Yamads

Yraads

Yamads

ipabe)s

J52pUds

=begs

Jeeads

*sMoyD J2jug
ANDOI0Hd 3HL

*EMUE TBUIBA-- 3NIDS

PUE "SIUBAISS “USWLDIEA, ‘SpIEnD ‘sabed Sialesquplo) ‘siEsel
1535101 100 JO UBLWOMS|IUSS PUE USWS|ILSD) TEL0IaA O SUSZRD

euosiad
ahn
seUosiad snewe.g

aueadsaseys wem Aq

auads

Yazeds

=11

J53pUls

dno.Bd

dno.bd

=11
1oUne

Fig. 6. New XML generated according to the slicing criterion

Ezploring and Visualizing the "alma" of XML Documents 143

entfilename

Fig. 7. Sucessor Graph for RJIs DTD

X-Spread - A software modeling approach of
schema evolution propagation to XML
documents

Vincent Nelson Kellers da Silveira and Renata de Matos Galante

Instituto de Informaética - Universidade Federal do Rio Grande do Sul
{vincent, galante}@inf.ufrgs.br

Abstract. This paper presents X-Spread, a software modeling approach
to propagation of XML schemata evolution to XML documents referring
the modified schemata. This mechanism focuses on modifications of XML
schemata on different distribution scenarios considering the possible dis-
tribution scenarios of schemata and documents as well, allowing for soft-
ware engineers to focus on application design and not in the issue of XML
documents adaptation. This mechanism is composed by change detection
algorithms, responsible by the detection of differences between schemata,
by storage of the different schema versions, by a revalidation process of
existing documents, considering only modifications performed on parts
of the schemata and by an adaptation process of documents considered
invalid due to schema modifications, with the mechanism execution as
a whole demanding no participation of the end user. This mechanism
addresses semistructured artifacts distribution scenarios usually not ad-
dressed by papers about propagation of XML schema modifications to
documents.

Key words: XML, schema, evolution, adaptation

1 Introduction

The disjoint nature of XML documents and schemata, associated to the po-
tential distributed nature of semistructured database enabled applications are
factors that increase the complexity of XML schema evolution process, adding
to the software modeling complexity of current large software systems. Given
that modifications performed on schemata are not automatically reflected on
documents, that may imply on invalidation of documents until the documents
or schemata themselves are fixed.

Applications based on exchange of schemata and XML messages are ex-
amples of applications that may be subject to a schema evolution process. A
distributed book database, updated and queried over a network could use the
schema depicted on Figure la. In a new version of the application responsible
for the distributed data management such schema could be changed in order

144

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 145

to address new attributes not modeled by the first application implementation,
with the addition of elements to the database, as depicted on Figure 1b.

Considering the distributed nature of this database, the entirety of documents
stored by the database may not be accessible on a given time instant, since a
given network node may not be operational. Other than the physical distribution
of documents referring to a schema, the schema itself may be found in only
one network node or replicated on different nodes, referred over the network
by applications performing document validations. An alternative scenario for
schema distribution is observed when a given schema version is encapsulated in
an application performing user-based generation of new database records.

. Root
D Element
library A Attribute library

A ﬁ ; ﬁ ﬁ A ﬁ i ﬁ ﬁ ﬁ
year it £aumor&’oubuahev price yesr fite auhor publsher price ISEN

lastName ~ firstName

original nationaiity

(@ ®)

Fig. 1. XML schema evolution

Usually the impact of schemata evolution on XML documents is not ad-
dressed by recently proposed mechanisms of schema evolution such as [1], [2]
and [3]. When this feature is specifically addressed, some XML artifacts usage
scenarios were not considered, for instance, XML documents automatically gen-
erated by applications or documents found on unreachable network nodes at the
moment of schema evolution [4], what renders these solutions as incomplete.

This work aims to provide a mechanism that stands as a common platform
for detection, storage, document revalidation and propagation of modifications
performed on schemata to XML documents referring to schemata subjected to an
evolution process, considering the different distribution scenarios of the involved
artifacts, with minimization of user input during the documents adaptation pro-
cess.

The contribution of this work is based on the approach of different distri-
bution scenarios of semistructured artifacts usually not addressed by studies on
propagation of modifications on XML schemata to documents. Such scenarios
encompass XML documents found on unreachable network nodes at the moment
the schema is modified or documents that can be deemed as invalid when sent
to other network nodes.

The proposed mechanism stands as a common platform for XML documents
adaptation leveraged by a whole set of different semistructured data enabled
applications, which allows engineers to focus on the design of these application

146 XATA2008 — XML: Applications and Associated Technologies

themselves, leaving the XML documents adaptation to be handled by the pro-
posed mechanism.

The rest of the paper is structured as follows: Section 2 briefly exposes the
proposed mechanism to later describe the differences detection algorithm ap-
plied to XML documents, the logical data model adopted for storage of different
schema versions and associated information, the approaches to document reval-
idation after schema modification and the adaptation process of invalid XML
documents. Section 3 discusses related work and Section 4 concludes the paper
with final remarks and comments on future work.

2 X-Spread Overview

The mechanism proposed in this paper is based on four main components:

Diff - Difference detection between different XML schema versions.

— Store - Storage of XML schema versions and related information.
Revalidation - Revalidation of XML documents referring to modified schemata.
— Adaptation - Adaptation of XML documents considered invalid after schema
modifications.

Figure 2 depicts the X-Spread components and the relationship between
them.

L |
‘ Diff H Store }——{Revalidation}——{ Adaptation ‘

Fig. 2. X-Spread components

The first X-Spread component, Diff, performs difference detection on versions
of a given XML schema. Differences found between versions of a schema are
named deltas, and form the scripts on which transformation from the original
schema version to newer versions is based on.

Diff’s generated deltas and XML schema versions themselves are stored by
Store component, in order to build the historical record on schema evolution.
Since XML documents referring to considerably older versions of the schema may
become part of the database at any given moment, the history of modifications
performed on a schema must be ensured to exist, in case these documents have
to be adapted to newer versions of the schema.

Component Revalidation takes as input a set of XML documents, a set of
schema versions and a set of deltas referring to these versions, and performs
validations on portions of the XML documents, restricting the validations to
portions potentially affected by the schema evolution process.

Component Adaptation receives as input a set of XML documents identified
as invalid by the Revalidation component, a set of deltas and a XML schema,

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 147

and proceeds with the documents adaptation. The component task is to make a
set of XML documents valid again with respect to the schema specification. In
the following sections we describe each X-Spread component in details.

2.1 Diff - Difference Detection Algorithms for XML Schemata

The Diff component is based on difference detection algorithms for XML docu-
ments. This component receives as input two XML documents and it generates
the specification of the differences found as output. This component works with
configurations set by the X-Spread administrator, allowing the specification of
XML schema locations, whose evolution process must be observed.

As described on [5], many factors must be taken into account when study-
ing XML documents comparison algorithms, for instance, their time and space
complexity, output quality, the number of supported operations and distinction
between ordered and unordered documents.

Even though usually schemata do not constitute large documents, the time
complexity of some algorithms for XML documents comparison may generate
results on unacceptable time frames on scenarios where the schemata must be
compared with high performance, such as applications in a web environment.

Since the algorithm output will lead to the generation of documents adapta-
tion scripts, the output quality of the algorithm is quite relevant. Thus, the algo-
rithm must generate only correct, relevant and preferably compact outputs, with
the concatenation of several primitive operations for representation of complex
update operations. Outputs featuring these characteristics will cause improved
performance when the adaptation scripts are applied to invalid XML documents.

Existence of an open source implementation of the difference detection al-
gorithm for XML documents is relevant for this work given that definition and
implementation of a whole new diff algorithm is not on the scope of this work.

Considering the information gathered on differences detection algorithms for
XML documents, the performance and the output quality of algorithms with an
available open source implementation, the chosen algorithm was XyDiff! [6].

X-Spread mechanism abstracts the implementation of schemata comparison
algorithm, allowing for future algorithm substitution, in case a new, better suited
algorithm is developed to this task, with no impact on other X-Spread compo-
nents and on the stored set of schema versions and deltas.

2.2 Store - Schema and Deltas Storage

Store component is responsible by storage of XML schema versions and Diff
component outputs. Store, as pictured in Figure 3, has three different modules:
DeltaPointer, responsible by translation of deltas generated by the Diff compo-
nent, in order to guarantee an homogeneous delta storage even if the difference
detection algorithm is changed; Persist, responsible by delta and schema versions
storage itself and Retrieve, responsible by queries to stored artifacts.

! Open source implementation available at http://potiron.loria.fr/projects/jxydiff

148 XATA2008 — XML: Applications and Associated Technologies

Store N
‘DeltaPointer}—'{ Persist ‘

Fig. 3. Store component modules

DeltaPointer module is responsible by translation of Diff output and gen-
eration of XPath references, in order to ensure the storage of deltas generated
by Diff component in a standard format, indifferently of the adopted difference
detection algorithm.

Most of the XML schema modifications detected by the Diff component will
lead to the generation of two XPath references, each associated to an opera-
tion identifier. Operations such as element or attribute deletion will lead to the
generation of a single XPath reference.

Persist module is responsible by storage of DeltaPointer output and the input
schemata submitted to the component. These artifacts persistence is needed since
they may be queried in order to start the adaptation process of an invalid XML
document generated by an application based on an older version of a schema.

In order to perform schemata and deltas persistence, the set of approaches
proposed for the storage of XML documents addressing time [7] [8] and version
aspects [9] [10] [11], or approaches using the parametric data model are not
suitable, since they do not hold to one premise used on the Persist module
regarding XML schemata: all stored versions must be valid. Inclusion of new
attributes on XML schema artifacts will lead the artifact to an invalid state.

For instance, versioning and temporality related attributes are not part of the
original format definition [12], and modeling of such attributes on XML schema
would demand development and usage of new schema parsers and document
validators, which should be attached to these schemata in all environments using
them.

Discarded the inclusion of new XML schema elements and attributes, XML
schema versioning attributes were discarded for versioning control as well. Ver-
sion attribute defined in [12] has no associated semantics, which renders the
attribute ignored by XML documents validators.

Usage of different namespaces for each different schema version was also
discarded since it implies on explicit modification of XML documents referring to
the schema, what breaks the second premise used on the Store component: XML
documents must not be changed due to X-Spread’s schemata storage model.

With that in mind, the logical data model depicted on Figure 4 was devel-
oped for schema versions and deltas storage. Physical implementation of this
data model can be done through a relational database or even through storage
of schema versions and deltas on the file system, with storage of additional in-
formation, such as validity dates, version identifiers, references to other versions

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 149

and identification of operations in a XML document developed specifically for
this purpose.

Delta
SchemaVersion _DeltalD int
-versionlD :int - Qriginalversion | Schemaversion
- Schema : ¥MLDocument - Finalversion : Schemaversion
- CreationDate : Date - Operation ; String
- Location : String - OriginalPointer : xPointer
- EndPainter : KPointer

Fig. 4. Store component modules

Retrieve module is responsible for supplying querying tools to deltas and
schema versions persisted by Store component. Independently of the DBMS
or the storage device used for persistence of XML artifacts, queries performed
against this repository will always be performed through the same interfaces.

2.3 Revalidation - XML Documents Revalidation

The Revalidation component is responsible by validation of a set of XML docu-
ments, finding out, after the schema evolution process, whether the documents
are still valid.

This component has as premise the high performance, given that the num-
ber of documents to revalidate is unknown, and ability to abstract the XML
documents location, applying the same algorithms both to documents stored at
the file system where the schema is found and to documents exchanged over a
network.

The Revalidation component has settings specified by the X-Spread admin-
istrator, allowing for specification of locations both on local and remote file
systems whose contents are subject to revalidation when a XML schema modifi-
cation is recorded by Store component. Changing these settings will lead to the
start of a document revalidation process, considering that the newly included
locations on the component settings may contain invalid XML documents.

Input given to the Revalidation component is based on a set of deltas gener-
ated by the Diff component, a set of XML documents and a set of XML schema
versions. Based on the set of deltas, a minimum set of XML documents sections
is defined, where this minimum set of sections corresponds only to parts of the
XML schema affected by modifications. The minimum set of sections is used in
a revalidation process quite similar to that described in [13].

This revalidation takes into account only sections of the XML documents in
order to improve the revalidation process performance, given that a full revali-
dation of the XML documents could imply in low performance of the X-Spread
mechanism.

150 XATA2008 — XML: Applications and Associated Technologies

Several approaches to XML documents incremental validation were recently
described. However, some of them, such as [14] are not suitable to some scenar-
ios addressed by the X-Spread mechanism, since they demand a pre-processing
phase of the XML documents.

On X-Spread in particular, the full set of XML documents referencing a
given schema is not known by the time the schema is modified. Given that the
documents may be located at other network nodes, with their inclusion on the
set of documents to revalidate only after the schema evolution has already taken
place, or the documents may be automatically generated by user applications
that necessarily implies no pre-processing can be performed.

Validation of XML documents generated by applications is achieved through
the specification of communication ports that must be watched by a proxy and
reverse proxy tool like WebScarab?.

This tool must have not only the ability to intercept requests and responses
exchanged over a network, where these requests or responses are originated from
or sent to a node hosting X-Spread, but also it must have abilities to manipulate
these requests contents and execute the very same validations performed by
X-Spread on XML documents located on a file system.

The distinct feature of the revalidation process applied to XML documents
exchanged over a network and on the scenario of inclusion of different and new
file system locations whose contents must be revalidated on the components
configurations is based on the fact that one of the parameters accepted by the
Revalidation component, the schema version referred to by the XML documents,
can be unknown: prior to identifying the document validity with respect to newer
schema versions, the application has to identify to what schema version the XML
document is referring to, in order to start the adaptation process in case the
document is deemed as invalid.

A first approach to schema identification on XML messages is based on
schema extraction from the message, followed by comparison of the extracted
schema with versions recorded by the Store component.

A second approach is based on validation of the document with respect to
the current version of the schema and, if the document turns out to be invalid,
a validation of the document with respect to previous schema versions follows,
until a schema where the document is deemed as valid is found.

A third approach is based on finding out if the deltas generated by the Diff
component have any reference to the element set that caused the invalidation of
the document with respect to the current schema version. In case these deltas
are found, the document will be adapted by applying on the document a chain
of reverse deltas, until the document is in a state where it can be validated with
respect to the schema version that features modifications on elements that first
caused the document invalidation. In case the document is once again deemed
as invalid, the process will be repeated until the whole chain of schema deltas
is applied to the document or until the applications finds out that the elements
causing the document invalidation are subject of no delta, what would halt the

2 Implementation available at http://www.owasp.org/software/webscarab.html

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 151

revalidation and adaptation process of the document. In case the schema version
referred to by the document is found, the remaining processes can take place.

In order to avoid full execution of the schema detection process whenever a
XML message with no schema associated is exchanged over a network, a cache
can be created, associating a given network address or file system location to a
given schema version, improving the performance of the schema detection process
on future validations originated from or executed on a file of a cached location.

Considering the designed functionality of the Revalidation component, a pos-
sible execution scenario is based on unfeasibility of identification of the schema
used by a XML document, what can happen when the Diff component was not
able to identify partial versions of a XML schema, what means that no delta
and versions storage process was executed. When this scenario is detected, the
Revalidation component will sign to X-Spread’s administrator such occurrence
and the revalidation and adaptation process of the document will be halted.

XML documents stored on a file system or exchanged over a network and
deemed as invalid with respect to a schema by the end of the revalidation process,
along with the referred schema itself and a set of deltas will be taken as inputs
by the Adaptation component, which will have the document contents modified,
S0 it can regain validity with respect to a schema. The Adaptation component
is described in details in the next section.

2.4 Adaptation - Invalid XML Documents Adaptation

The Adaptation component is responsible by adaptation of XML documents
deemed as invalid by the Revalidation component due to an evolution process
that took place on a XML schema. This component takes as inputs a set of
XML documents to adapt, a set of deltas and a XML schema referred to by the
document.

The XML document adaptation takes place based on operations described by
deltas generated by the Diff component and taken as inputs, thus, these deltas
are associated to the schema version taken as a parameter on this component
as well. The Adaptation component will issue a query to the Store component,
in order to identify whether the given schema has child versions. When child
versions are found, successive deltas will be applied to the XML document, until
the current schema version deltas are reached and applied.

The difference detection algorithms subject to usage by the Diff component
can generate many XML document modification operations other than the basic
inclusion and deletion of elements and attributes, such as move and copy of
complex elements. Even though not all operations are used on a given moment
by the algorithm applied by the Diff component, the Adaptation component
must have the ability to understand and deal with all update operations that
can be generated by the Diff component.

The move and copy of elements in a XML schema has trivial impact and im-
plementation on XML documents taken as input by the Adaptation component.
The adaptation process basically consists on moving an element inside a XML
document, or copying an element from one location to another.

152 XATA2008 — XML: Applications and Associated Technologies

Deletion of attributes and elements also has a trivial implementation, based
on removal of the corresponding artifact from the XML document. The exception
to this trivial implementation is verified when exclusion of control artifacts of the
XML Schema takes place, such as exclusion of use, minOccurs and maxQOccurs
attributes.

In case of exclusion of XML Schema control attributes, the semantics of each
attribute must be subject to analysis in order to identify what is the impact on
XML documents. Control attributes semantics must also be taken into account
by the Revalidation component when validation of sections of documents takes
place.

The inclusion operation has some particular and non trivial cases: inclusion of
XML Schema control attributes and elements, inclusion of application attributes,
inclusion of optional elements and inclusion of required elements. Among these
cases, inclusion of optional elements only has trivial implementation on the doc-
uments adaptation process, which demands no adaptation action at all. Inclusion
of XML schema control elements must be subject of detailed analysis, in order
to identify what is the impact on XML documents.

A possible approach to the problem of specification of new values for new
elements and attributes of a XML schema is based on end user input. The
application user could supply the missing values during the adaptation process
of the documents.

Even though this approach will generate valid documents whose content is
valid from an application standpoint, some scenarios such as those where XML
messages are adapted and exchanged over a network, may prove this approach as
unfit due to many aspects. On these scenarios, where the user input is needed on
the adaptation process of XML messages exchanged by distributed applications,
a request timeout can occur, other than the need of X-Spread installation not
only on the network node where the application is executed, but also on client
machines, or at least, the modification of client source code would be needed, in
order to enable them to interpret some kind of messaging from X-Spread, which
would sign the need for user input on the adaptation process of XML messages.

A possible approach to this problem is creation of new structurally valid
elements, even though potentially invalid from an application standpoint, given
that the values used on attributes and on primitive data types would be default
values of each data type, i.e., an empty array of characters, the zero value for
integers, and so on.

In order to adopt an homogeneous approach to all possible XML documents
adaptation scenarios, both when documents are located at a file system reach-
able by X-Spread and when XML messages are exchanged over a network, the
mechanism can use settings specified by the X-Spread administrator, where a
default value is associated to operations described by deltas persisted by the
Store component. The mechanism would first perform a detailed analysis of the
stored deltas, finding out those that require user input, present them to the X-
Spread and ask for specification of values that should be applied to documents
whenever these deltas are invoked by the documents adaptation process.

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 153

These approaches to the document adaptation process can be configured by
the X-Spread administrator in order to achieve the best results considering the
different usage scenarios addressed by the mechanism.

3 Related Work

Researches on semistructured database evolution usually address the document
evolution, in other words, only part of the database evolution process is modeled.
Documents evolution usually is addressed by implementation of temporality [7]
[8], versioning [10] [11] or by a mix of these concepts [15].

Schema evolution is addressed in [1] however the impact of schema evolution
on existing XML documents is not taken into account. On the other hand, [4]
describes a document evolution and adaptation proposal, with an implementa-
tion description on [3]. However, this proposal is based on particular schema
update tools, what interferes on one of the main XML format features, which is
the ease of update of each artifact, which can be performed with simple tools
such as text editors with no outstanding features.

Other than that, the proposal described in [4] may demand user input during
documents adaptation to a new schema version. This may render this proposal
as unfit for scenarios where XML documents are automatically generated by
distributed applications.

A DTD-based evolution mechanism is described on [2], where schema evo-
lution is triggered by patterns detected on documents through usage of data
mining techniques. However, when a modification on a schema is performed due
to patterns discovered on a given number of documents, documents referring to
the schema remain unchanged even after schema evolution. Considering that the
schema evolution is not propagated to the XML documents and that patterns
that led to the schema evolution may not be found on the entirety of XML doc-
uments that form the semistructured database, some formerly valid documents
can be deemed as invalid after the schema evolution.

A new approach to XML documents adaptation, based on object oriented
databases is described in [16]. In this approach DTDs are converted to user data
types and the XML documents are inserted into the database. Modifications
to the DTD schema are mapped to database modification operations. These
database modifications are subject to validations that may accept or reject the
modification if the database consistency is not guaranteed after the modification
execution.

Another approach where an object oriented database is used to control XML
schemata evolution is described in [17]. In this approach, XML documents are
loaded into the database only after the DTD is registered into the database
management system. Valid schema modifications supported by XEM are auto-
matically propagated into XML documents, while modifications that lead the
database into an inconsistent state are rejected.

As these approaches are very similar to traditional databases approach to
schema evolution, these mechanisms may not be suitable for all semistructured

154 XATA2008 — XML: Applications and Associated Technologies

data enabled applications. For instance, applications that use XML message to
communicate over a network may not count on this mechanism due to per-
formance issues or plain unfeasibility of the attachment of an object oriented
database to the current system implementation.

Evolution of semistructured schemata and documents usually is addressed on
the literature as different problems, when in fact they are strongly linked. The
proposed mechanism aims to combine different techniques in order to approach
in an homogeneous and as non-intrusive manner as possible from the end user
and semistructured database enabled application standpoints, all the phases that
take place during the evolution process of a XML schema.

The unique feature of this work is the approach to different semistructured
database distribution scenarios, featuring flexibility on the revalidation and adap-
tation processes of documents spread over different parts of local and remote file
systems and of XML messages generated by applications commnicating over a
network.

4 Concluding Remarks

This paper presented X-Spread, a mechanism to propagate XML schema modi-
fications to documents referring to modified schemata. X-Spread has as premises
the high performance, ability to abstract the XML documents location subject
to revalidation and adaptation and ability to adapt documents without input
from the application user nor from X-Spread’s administrator.

Acting as an observant system, as described in [18], the X-Spread architec-
ture offers choice flexibility on the algorithm responsible by difference detection
between schema versions and on schema versions and deltas physical storage.

Featuring observation of modifications executed on XML schemata, semantic
analysis of the executed modifications, abstraction of XML documents location
during revalidation and adaptation processes, the X-Spread differences in com-
parison with existing work such as [1], [4], [2] and [3] are based on the combina-
tion of a wide array of different techniques and the approach of different phases
of the schema evolution process.

X-Spread takes into account parts of the process usually addressed separately
in the literature, allowing for a schema modification followed by propagation of
this modification to documents referring to the schema without use of specific
tools. With that feature, X-Spread holds on to one of the features of the XML
format, which is the ease of artifacts update.

As of right now, the mechanism components are defined and these definitions
are subject to improvements, in order to encompass a greater set of possible
evolution scenarios of a XML schema. In parallel, after implementation of the
Diff component, a study on XML diff algorithms performance and quality is
being executed, in order to validate XyDiff choice.

X-Spread - A Software Modeling Approach of Schema Evolution Propag. . . 155

References

1.

ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

Coox, S.V.: Axiomatization of the evolution of xml database schema. Program.
Comput. Softw. 29(3) (2003) 140-146

. Bertino, E., Guerrini, G., Mesiti, M., Tosetto, L.: Evolving a set of dtds accord-

ing to a dynamic set of xml documents. In: EDBT ’02: Proc. of the Worshops
XMLDM, MDDE, and YRWS on XML-Based Data Management and Multimedia
Engineering-Revised Papers, London, UK, Springer-Verlag (2002) 45-66

Mesiti, M., Celle, R., Sorrenti, M.A., Guerrini, G.: X-evolution: A system for
xml schema evolution and document adaptation. In loannidis, Y.E., Scholl, M.H.,
Schmidt, J.W., Matthes, F., Hatzopoulos, M., Bohm, K., Kemper, A., Grust, T.,
Boéhm, C., eds.: EDBT. Volume 3896 of LNCS., Springer (2006) 1143-1146
Guerrini, G., Mesiti, M., Rossi, D.: Impact of xml schema evolution on valid
documents. In: WIDM ’05: Proc. of the 7th annual ACM Intl. workshop on Web
information and data management, New York, NY, USA, ACM Press (2005) 39-44
Peters, L.: Change detection in xml trees: a survey (2004)

Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. In:
ICDE, IEEE Computer Society (2002) 41-52

Amagasa, T., Yoshikawa, M., Uemura, S.: A data model for temporal xml doc-
uments. In Ibrahim, M.T., Kiing, J., Revell, N., eds.: DEXA. Volume 1873 of
LNCS., Springer (2000) 334-344

Wang, F., Zaniolo, C.: Temporal queries in xml document archives and web ware-
houses. In: TIME, IEEE Computer Society (2003) 47-55

Wong, R.K., Lam, N.: Managing and querying multi-version xml data with update
logging. In: ACM Symposium on Document Engineering, ACM (2002) 74-81
Iwaihara, M., Chatvichienchai, S., Anutariya, C., Wuwongse, V.: Relevancy based
access control of versioned xml documents. In Ferrari, E., Ahn, G.J., eds.: SAC-
MAT, ACM (2005) 85-94

Wuwongse, V., Yoshikawa, M., Amagasa, T.: Temporal versioning of xml docu-
ments. In Chen, Z., Chen, H., Miao, Q., Fu, Y., Fox, E.A., Lim, E.P., eds.: ICADL.
Volume 3334 of LNCS., Springer (2004) 419-428

W3C: W3c xml schema (2004) Available at:
<http://www.w3.org/XML/Schema>. Last accessed: September 2006.
Raghavachari, M., Shmueli, O.: Efficient schema-based revalidation of xml. In
Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Bohm, K., Ferrari, E., eds.: EDBT. Volume 2992 of LNCS., Springer (2004)
639-657

Barbosa, D., Mendelzon, A.O., Libkin, L., Mignet, L., Arenas, M.: Efficient incre-
mental validation of xml documents. In: ICDE, IEEE Computer Society (2004)
671-682

Santos, R.G.: Evolucao de documentos xml com tempo e versoes. Master’s thesis,
UFRGS, Porto Alegre (2005)

Al-Jadir, L., El-Moukaddem, F.: F2/xml: Managing xml document schema evolu-
tion. In: ICEIS (1). (2004) 251-258

Su, H., Kramer, D., Chen, L., Claypool, K.T., Rundensteiner, E.A.: Xem: Manag-
ing the evolution of xml documents. In Aberer, K., Liu, L., eds.: RIDE-DM, IEEE
Computer Society (2001) 103-110

Dyreson, C.E.: Observing transaction-time semantics with ttxpath. In: WISE
’01: Proc. of the Second Intl. Conf. on Web Information Systems Engineering
(WISE’01) Vol.1, Washington, DC, USA, IEEE Computer Society (2001) 193

Author Index:

ATberto Silva ... 109
AlDerto STmMOES ..t 22, 52
Ana Belén Crespo Bastos ... 28
Claudio Fernandes ... e 104
Daniela da Cruz 122
Davide Sousa 22
Flavio Xavier Ferreira 76
Giovani Rubert Librelottoc..oiiiii i 94
Henrique Tamiosso Machadoo 94
Jorge Braz Goncalves ... e 13
Jorge Coelho e 64
José Carlos Ramalho 3, 94
José Jodo Almeida ... 22, 52
José Paulo Leal ... e 13
Juliana Kaizer Vizzotto e 94
Lufs Miguel Ferroso.oiuiii e e e e 3
Maria Joao Varanda Pereirao i e 122
Miguel Ferreiraooneimi i e 3
Mirkos Ortiz Martingouuutiiiii e e e 94
Mario FIorido e e e 64
JANLEY B oY o) Y ' 40
Norberto Lopes e 40
Nuno Carvalho 52
NUNO Lopes .o 90
Pedro Pico ... e 109
Pedro Rangel Henriqueso i, 76, 94, 122
Renata de Matos Galante 144
Rogerio Reis 40
Rl Lopes e e 1
Salvador ADIeuc.oiuii e 90, 104
Silvestre Lacerdaooiiiinioe i e e 40
Susana Lopez Ferndndez e 28
Vincent Nelson Kellers da Silveiraccciiiiiiiiiiiii ... 144
Xavier GOmez GUINOVATT 28
Xosé Maria Gomez Clementeoiiiirtt ittt 28

156

