48 research outputs found

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention

    User mobility prediction and management using machine learning

    Get PDF
    The next generation mobile networks (NGMNs) are envisioned to overcome current user mobility limitations while improving the network performance. Some of the limitations envisioned for mobility management in the future mobile networks are: addressing the massive traffic growth bottlenecks; providing better quality and experience to end users; supporting ultra high data rates; ensuring ultra low latency, seamless handover (HOs) from one base station (BS) to another, etc. Thus, in order for future networks to manage users mobility through all of the stringent limitations mentioned, artificial intelligence (AI) is deemed to play a key role automating end-to-end process through machine learning (ML). The objectives of this thesis are to explore user mobility predictions and management use-cases using ML. First, background and literature review is presented which covers, current mobile networks overview, and ML-driven applications to enable user’s mobility and management. Followed by the use-cases of mobility prediction in dense mobile networks are analysed and optimised with the use of ML algorithms. The overall framework test accuracy of 91.17% was obtained in comparison to all other mobility prediction algorithms through artificial neural network (ANN). Furthermore, a concept of mobility prediction-based energy consumption is discussed to automate and classify user’s mobility and reduce carbon emissions under smart city transportation achieving 98.82% with k-nearest neighbour (KNN) classifier as an optimal result along with 31.83% energy savings gain. Finally, context-aware handover (HO) skipping scenario is analysed in order to improve over all quality of service (QoS) as a framework of mobility management in next generation networks (NGNs). The framework relies on passenger mobility, trains trajectory, travelling time and frequency, network load and signal ratio data in cardinal directions i.e, North, East, West, and South (NEWS) achieving optimum result of 94.51% through support vector machine (SVM) classifier. These results were fed into HO skipping techniques to analyse, coverage probability, throughput, and HO cost. This work is extended by blockchain-enabled privacy preservation mechanism to provide end-to-end secure platform throughout train passengers mobility

    Trusted UAV Network Coverage using Blockchain, Machine Learning and Auction Mechanisms

    Get PDF
    The UAV is emerging as one of the greatest technology developments for rapid network coverage provisioning at affordable cost. The aim of this paper is to outsource network coverage of a specific area according to a desired quality of service requirement and to enable various entities in the network to have intelligence to make autonomous decisions using blockchain and auction mechanisms. In this regard, by considering a multiple-UAV network where each UAV is associated to its own controlling operator, this paper addresses two major challenges: the selection of the UAV for the desired quality of network coverage and the development of a distributed and autonomous real-time monitoring framework for the enforcement of service level agreement (SLA). For a suitable UAV selection, we employ a reputation-based auction mechanism to model the interaction between the business agent who is interested in outsourcing the network coverage and the UAV operators serving in closeby areas. In addition, theoretical analysis is performed to show that the proposed auction mechanism attains a dominant strategy equilibrium. For the SLA enforcement and trust model, we propose a permissioned blockchain architecture considering Support Vector Machine (SVM) for real-time autonomous and distributed monitoring of UAV service. In particular, smart contract features of the blockchain are invoked for enforcing the SLA terms of payment and penalty, and for quantifying the UAV service reputation. Simulation results confirm the accuracy of theoretical analysis and efficacy of the proposed model

    QoS-Aware 3D Coverage Deployment of UAVs for Internet of Vehicles in Intelligent Transportation

    Full text link
    It is a challenging problem to characterize the air-to-ground (A2G) channel and identify the best deployment location for 3D UAVs with the QoS awareness. To address this problem, we propose a QoS-aware UAV 3D coverage deployment algorithm, which simulates the three-dimensional urban road scenario, considers the UAV communication resource capacity and vehicle communication QoS requirements comprehensively, and then obtains the optimal UAV deployment position by improving the genetic algorithm. Specifically, the K-means clustering algorithm is used to cluster the vehicles, and the center locations of these clusters serve as the initial UAV positions to generate the initial population. Subsequently, we employ the K-means initialized grey wolf optimization (KIGWO) algorithm to achieve the UAV location with an optimal fitness value by performing an optimal search within the grey wolf population. To enhance the algorithm's diversity and global search capability, we randomly substitute this optimal location with one of the individual locations from the initial population. The fitness value is determined by the total number of vehicles covered by UAVs in the system, while the allocation scheme's feasibility is evaluated based on the corresponding QoS requirements. Competitive selection operations are conducted to retain individuals with higher fitness values, while crossover and mutation operations are employed to maintain the diversity of solutions. Finally, the individual with the highest fitness, which represents the UAV deployment position that covers the maximum number of vehicles in the entire system, is selected as the optimal solution. Extensive experimental results demonstrate that the proposed algorithm can effectively enhance the reliability and vehicle communication QoS

    A comprehensive survey on radio resource management in 5G HetNets: current solutions, future trends and open issues

    Get PDF
    The 5G network technologies are intended to accommodate innovative services with a large influx of data traffic with lower energy consumption and increased quality of service and user quality of experience levels. In order to meet 5G expectations, heterogeneous networks (HetNets) have been introduced. They involve deployment of additional low power nodes within the coverage area of conventional high power nodes and their placement closer to user underlay HetNets. Due to the increased density of small-cell networks and radio access technologies, radio resource management (RRM) for potential 5G HetNets has emerged as a critical avenue. It plays a pivotal role in enhancing spectrum utilization, load balancing, and network energy efficiency. In this paper, we summarize the key challenges i.e., cross-tier interference, co-tier interference, and user association-resource-power allocation (UA-RA-PA) emerging in 5G HetNets and highlight their significance. In addition, we present a comprehensive survey of RRM schemes based on interference management (IM), UA-RA-PA and combined approaches (UA-RA-PA + IM). We introduce a taxonomy for individual (IM, UA-RA-PA) and combined approaches as a framework for systematically studying the existing schemes. These schemes are also qualitatively analyzed and compared to each other. Finally, challenges and opportunities for RRM in 5G are outlined, and design guidelines along with possible solutions for advanced mechanisms are presented

    AI-based resource management in future mobile networks

    Get PDF
    Η υποστίριξη και ενίσχυση των δίκτυων 5ης γενιάς και πέρα από αλγόριθμους Τεχνητής Νοημοσύνης για την επίλυση προβλημάτων βελτιστοποίησης δικτύου, μελετάται πρόσφατα προκειμένου η νέα γενιά των δικτύων να ανταποκριθεί στις απαιτήσεις ποιότητας υπηρεσίας σχετικά με την κάλυψη, τη χωρητικότητα των χρηστών και το κόστος εγκατάστασης. Μία από τις βασικές ανάγκες είναι η βελτιστοποίηση στην διαδικασία της εγκατάστασης σταθμών βάσης δικτύου. Σε αυτή την εργασία προτείνεται μια μετα-ευριστική μέθοδος, με όνομα «Γενετικός Αλγόριθμός» (Genetic Algorithm) για την επίλυση προβλημάτων βελτιστοποίησης λαμβάνοντας υπόψη τους περιορισμούς ζήτησης. Ο κύριος στόχος είναι η παρουσίαση της εναλλακτικής αυτής λύσης, η οποία είναι η χρήση του Γενετικού Αλγόριθμου, για τη βελτιστοποίηση της διαδικασίας εγκατάστασης των σταθμών βάσης του δικτύου. Με την χρήση του αλγορίθμου για την εγκατάσταση σταθμών βάσης παρέχονται οι ίδιες υπηρεσίες με πριν και ελαχιστοποιείται την κατανάλωση ενέργειας της υποδομής του δικτύου, λαμβάνοντας υπόψιν ομοιογενή και ετερογενή σενάρια σταθμών βάσης. Οι προσομοιώσεις πραγματοποιήθηκαν σε γλώσσα προγραμματισμού Python και τα καλύτερα αποτελέσματα εγκατάστασης παρουσιάστηκαν και αποθηκεύτηκαν. Έγινε σύγκριση της εγκατάστασης αποκλειστικά μακρο-σταθμών βάσης με μικρότερου μεγέθους (σε κάλυψη) σταθμών βάσης πάνω από την υπάρχουσα. Με την χρήση των μικρότερων σταθμών βάσης, η εγκατάσταση του δικτύου θα επιτρέψει βελτιώσεις στην κάλυψη των χρηστών και θα μειώσει το κόστος, την κατανάλωση ενέργειας και τις παρεμβολές μεταξύ των κυψελών. Όλα τα σενάρια μελετήθηκαν σε 3 περιοχές με διαφορετική πυκνότητα χρηστών (A, B και C). Ως προς την ικανοποίηση των απαιτήσεων αναφορικά με την ποιότητα υπηρεσιών και των κινητών συσκευών, η ανάπτυξη μικρών σταθμών βάσης είναι επωφελής, συγκεκριμένα σε περιοχές hotspot.The 5G and beyond networks supported by Artificial Intelligence algorithms in solving network optimization problems are recently studied to meet the quality-of-service requirements regarding coverage, capacity, and cost. One of the essential necessities is the optimized deployment of network base stations. This work proposes the meta-heuristic algorithm Genetic Algorithm to solve optimization problems considering the demand constraints. The main goal is present the alternative solution, which is using the Genetic Algorithm to optimize BSs network deployment. This deployment provides the same services as existing deployments and minimizes the network infrastructure's energy consumption, including using homogenous and heterogenous scenarios of base stations. The simulations were performed in Python programming language, and the results as the best plans for each generation were presented and saved. A comparison of the macro base station deployment and small base station deployment was made on top of the existing one. By applying the small base stations, the network deployment will enable user coverage enhancements and reduce the deployment cost, energy consumption, and inter-cell interference. All the scenarios were assembled in user density area A, user density area B, and user density area C areas of interest. In meeting the requirements for QoS and UE, the small base station deployment is beneficial, namely in hotspot areas
    corecore