10,180 research outputs found

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Edge adaptive filtering of depth maps for mobile devices

    Get PDF
    Abstract. Mobile phone cameras have an almost unlimited depth of field, and therefore the images captured with them have wide areas in focus. When the depth of field is digitally manipulated through image processing, accurate perception of depth in a captured scene is important. Capturing depth data requires advanced imaging methods. In case a stereo lens system is used, depth information is calculated from the disparities between stereo frames. The resulting depth map is often noisy or doesn’t have information for every pixel. Therefore it has to be filtered before it is used for emphasizing depth. Edges must be taken into account in this process to create natural-looking shallow depth of field images. In this study five filtering methods are compared with each other. The main focus is the Fast Bilateral Solver, because of its novelty and high reported quality. Mobile imaging requires fast filtering in uncontrolled environments, so optimizing the processing time of the filters is essential. In the evaluations the depth maps are filtered, and the quality and the speed is determined for every method. The results show that the Fast Bilateral Solver filters the depth maps well, and can handle noisy depth maps better than the other evaluated methods. However, in mobile imaging it is slow and needs further optimization.Reunatietoinen syvyyskarttojen suodatus mobiililaitteilla. Tiivistelmä. Matkapuhelimien kameroissa on lähes rajoittamaton syväterävyysalue, ja siksi niillä otetuissa kuvissa laajat alueet näkyvät tarkennettuina. Digitaalisessa syvyysterävyysalueen muokkauksessa tarvitaan luotettava syvyystieto. Syvyysdatan hankinta vaatii edistyneitä kuvausmenetelmiä. Käytettäessä stereokameroita syvyystieto lasketaan kuvien välisistä dispariteeteista. Tuloksena syntyvä syvyyskartta on usein kohinainen, tai se ei sisällä syvyystietoa joka pikselille. Tästä syystä se on suodatettava ennen käyttöä syvyyden korostamiseen. Tässä prosessissa reunat ovat otettava huomioon, jotta saadaan luotua luonnollisen näköisiä kapean syväterävyysalueen kuvia. Tässä tutkimuksessa verrataan viittä suodatusmenetelmää keskenään. Eniten keskitytään nopeaan bilateraaliseen ratkaisijaan, johtuen sen uutuudesta ja korkeasta tuloksen laadusta. Mobiililaitteella kuvantamisen vaatimuksena on nopea suodatus hallitsemattomissa olosuhteissa, joten suodattimien prosessointiajan optimointi on erittäin tärkeää. Vertailuissa syvyyskuvat suodatetaan ja suodatuksen laatu ja nopeus mitataan jokaiselle menetelmälle. Tulokset osoittavat, että nopea bilateraalinen ratkaisija suodattaa syvyyskarttoja hyvin ja osaa käsitellä kohinaisia syvyyskarttoja paremmin kuin muut tarkastellut menetelmät. Mobiilikuvantamiseen se on kuitenkin hidas ja tarvitsee pidemmälle menevää optimointia

    Power And Hotspot Modeling For Modern GPUs

    Get PDF
    As General Purpose GPUs (GPGPU) are increasingly becoming a prominent component of high performance computing platforms, power and thermal dissipation are getting more attention. The trade-offs among performance, power, and heat must be well modeled and evaluated from the early stage of GPU design. This necessitates a tool that allows GPU architects to quickly and accurately evaluate their design. There are a few models for GPU power but most of them estimate power at a higher level than architecture, which are therefore missing hardware reconfigurability. In this thesis, we propose a framework that models power and heat dissipation at the hardware architecture level, which allows for configuring and investigating individual hardware components. Our framework is also capable of visualizing the heat map of the processor over different clock cycles. To the best of our knowledge, this is the first comprehensive framework that integrates and visualizes power consumption and heat dissipation of GPUs

    A Mobile App Illustrating Sensory Neural Coding Through an Efficient Coding of Collected Images and Sounds

    Get PDF
    Sensory neuroscience in the early auditory and visual systems appears distinct not only to outside observers, but to many trained neuroscientists as well. However, to a computational neuroscientist, both sensory systems represent an efficient neural coding of information. In fact, on a computational level it appears the brain is using the same processing strategy for both senses - the same algorithm with just a change in inputs. Insights like this can greatly simplify our understanding of the brain, but require a significant computational background to fully appreciate. How can such illuminating results of computational neuroscience be made more accessible to the entire neuroscience community? We built an Android mobile app that simulates the neural coding process in the early visual and auditory system. The app demonstrates the type of visual or auditory codes that would develop depending on the images or sounds that an evolving species would be exposed to over evolutionary time. This is done by visually displaying the derived image and sound filters based on an optimal encoding that information, and comparing them to visual representations of neural receptive fields in the brain. Image patches (or equivalently, sound clips) are efficiently encoded using Independent Components Analysis (ICA) as a proxy for the coding objective of the early visual system. As has been observed for the past two decades, the resulting code from natural images resembles the 2D Gabor filter receptive fields measured from neurons in primary visual cortex (V1). Similarly, this efficient encoding demonstration has been done for a mixture of natural sounds to create linear filters resembling the gammatone filters of the spiral ganglia from the cochlea. The app demonstrates the relationship between efficient codes of images and sounds and related sensory neural coding in an intuitive, accessible way. This enables budding neuroscientists, and even the general public, to appreciate how an understanding of computational tools (like ICA or sparse coding) can bridge research across seemingly distinct areas of the brain. This enables a more parsimonious view of how the brain processes information, and may encourage early-program neuroscientists to consider improving their computational skills
    corecore