
Received: 29 December 2018 Revised: 30 May 2019 Accepted: 5 June 2019

DOI: 10.1002/cpe.5448

S P E C I A L I S S U E P A P E R

JPEG steganography with particle swarm optimization
accelerated by AVX

Vaclav Snasel1 Pavel Kromer1 Jakub Safarik2 Jan Platos1

1Department of Computer Science, FEECS,

VSB-Technical University of Ostrava, Ostrava,

Czech Republic
2Laboratory of Big Data Analysis,

IT4Innovations, VSB-Technical University of

Ostrava, Ostrava, Czech Republic

Correspondence

Jan Platos, Department of Computer Science,

FEECS, 17. listopadu 2172/15, 708 00

Ostrava, Czech Republic.

Email: jan.platos@vsb.cz

Funding information

European Regional Development Fund,

Grant/Award Number: Project AI&Reasoning

(reg. no. CZ.02.1.01/0.0/0.0/15_003/

0000466); Vysoká Škola Báňská - Technická

Univerzita Ostrava, Grant/Award Number:

Student Grant Agency SP2019/135

Summary

Digital steganography aims at hiding secret messages in digital data transmitted over insecure

channels. The JPEG format is prevalent in digital communication, and images are often used

as cover objects in digital steganography. Optimization methods can improve the properties

of images with embedded secret but introduce additional computational complexity to their

processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data

parallel operations that are part of image steganography with advanced optimizations.

KEYWORDS

acceleration, AVX, particle swarm optimization, permutation, steganography

1 INTRODUCTION

Steganography is the art of information covering. In contrast to cryptography, which hides information by scrambling and reversible modifications

of the secret but leaves the encrypted data visible, steganography seeks ways for concealing the very existence of the secret information.1 It

has a long history that can be traced to the ancient civilizations of Egypt, Greece, and China, among others.1-3 Herodotus reported how secret

messages on wooden tablets were covered by a layer of wax during wartime. In another case, the hidden information was tattooed on skin, later

covered by hair, or engraved on female earrings.2,4 In ancient China, information were sometimes hidden on thin sheets of silk and paper or baked

in pastry.3 Besides technical steganography, its linguistic variants (eg, acrostic) hide the secret into a specific pattern of letters of a cover text.2,4

Digital steganography refers to information hiding in digital media.3 It aims at hiding secret messages in digital data transmitted over digital

communication channels. The goal of digital steganography is to conceal both, the secret itself and the mere fact that it was sent. It facilitates

covert communication by two major types of methods: data insertion, which adds additional information to the original content, and data

substitution, which changes the bytes of the cover data so that it is not extended but unnoticeably modified to hold the secret.2

Although the primary purpose of steganography is private communication over insecure channels required by, for example, military, dissidents

or criminal groups,2 it has many other applications.2,3,5 Digital steganography can be used for watermarking (by including hidden information

about, eg, the license of data), authentication (hidden information proves the authenticity of data), tracking (hidden information identifies the true

owner/author of data), and enhancement of data (including new information that could break the software directly in data),5 fingerprinting and

copy control (hiding unique identifier in each authorized copy of data),2 and device protection (hidden information identifies authorized client of

a device and/or service).3

Steganography and especially steganalysis, ie, the art of discovering the existence of covert information,3 introduce additional layers of data

processing and increase its overall computational costs.2,4,6 An efficient implementation of steganographic and steganalytic algorithms is therefore

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2019 The Authors Concurrency and Computation: Practice and Experience Published by John Wiley & Sons Ltd

Concurrency Computat Pract Exper. 2020;32:e5448. wileyonlinelibrary.com/journal/cpe 1 of 11

https://doi.org/10.1002/cpe.5448

https://doi.org/10.1002/cpe.5448
https://orcid.org/0000-0002-9600-8319
https://orcid.org/0000-0001-8428-3332
https://orcid.org/0000-0002-3360-2302
https://orcid.org/0000-0002-8481-0136
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.5448&domain=pdf&date_stamp=2019-07-05

2 of 11 SNASEL ET AL.

crucial for their practical applications. Parallel and distributed computation have been successfully used to accelerate steganography7,8 and

steganalysis.6,9,10 The acceleration aims at the computationally most expensive operations, including statistical image analysis,10 image feature

extraction,6,9,10 classifier training,7,10 and error correction.8 It takes advantage of the fact that steganographic primitives such as convolution9 are,

to a large extent, data parallel and suitable for an efficient execution on data-parallel devices, including accelerators and graphic processing units

(GPUs). Their high-performance parallel implementations have been shown to yield a speedup of one to three orders of magnitude.9,10

Advanced vector extensions (AVXs) are a set of instructions for single instruction multiple data (SIMD) operations on modern CPUs.11 It

extends previous SIMD instruction sets (MMX, SSE) by introducing 256-bit–wide SIMD registers and vector units, implementation of three-

and four-operand operations, relaxed memory alignment requirements, and other improvements. The use of AVX has a positive impact on the

performance of implemented algorithms. Suitable data parallel operations such as vector and matrix operations can be accelerated by the factor

of two and more.12 It can be also used to speed up stochastic methods such as Monte Carlo simulations,13 image processing tasks,14 etc. The

use of AVX can also improve the power costs and energy efficiency of various computations.14,15 It represents a CPU-based alternative to GPU

parallelization that is implemented in modern CPUs and is, in many cases, able to outperform GPU-based solutions.13

In this work, the acceleration of an advanced image steganographic algorithm by the use of AVX instructions is proposed, implemented, and

experimentally evaluated. The steganographic algorithm, first introduced by Li and Wang,16 is data-driven and seeks for each cover image and

each block of bits to be hidden an optimum permutation to ensure that the substitution alters only the minimum number of bits in the cover.

That guarantees that the visual appearance of the cover image is affected only minimally. The search for an optimum permutation is realized

by a nature-inspired optimization algorithm, particle swarm optimization (PSO). PSO is a data-parallel method, working with vectors, and can

be efficiently sped-up by data-parallel hardware such as SIMD instructions available in modern processors. The proposed acceleration strategy

implements all feasible operations of the PSO for image steganography in AVX and demonstrates that a careful vectorization can reduce the

execution time of the algorithm on the test data on average by a factor of 5.3. This is an important result indicating that properly implemented

PSO-based image steganography can be on an appropriate hardware used for practical applications.

The remainder of this article is organized as follows. Section 2 outlines the basic principles of steganography, image steganography, and

optimization in steganographic applications. Section 3 briefly summarizes the basic principles of particle swarm optimization, the nature-inspired

optimization algorithm used in this work. Section 4 discusses the AVX instruction set and the way it is used to accelerate the execution of the

image steganographic algorithm. An experimental evaluation of the proposed method is described in Section 5. Finally, major conclusions are

drawn and future work outlined in Section 6.

2 STEGANOGRAPHY

Steganography deals with information hiding1,3,4 and concealed communication.2,4 It is a set of techniques related to watermarking,3 information

hiding, and cryptography.1,2 There are two major families of steganographic methods. Technical steganography uses various scientific and

technical methods to cover the hidden information.3,4 It includes the use of false surfaces (wooden tablets with layers of wax), invisible inks,

micro dots and micro prints, etc. Linguistic steganography, on the other hand, hides information in (written) natural language.3 Semagrams use

text properties, special visual symbols, or special signs to hide secret information. Anomalies in font size, spacing, and indentation all fall into

this category as well. Open codes3 (acrostics4) hide information in specific patterns of letters (eg, the second letter of each word) not apparent

to unauthorized readers. Another way to hide information in text is the use of intentional errors or specific stylistic features that determine the

location where is the secret information embedded.4

Digital steganography, with the goal to hide information in digital data, is an important area of modern computer security.1-4 The complementary

field of digital steganalysis is concerned with detecting the evidence of hidden data and its recovery1-4 or destruction.4 Different types of data

can be used as cover objects in which the secret message is embedded for transmission over public channels.3 The cover data is not related to

the embedded content and serves only as a decoy to hide the existence of the communication.2 Although different media can be used as cover

in digital steganography, digital images17,18 are used most frequently. Besides still images, video19 and audio files,20 text,21 network protocols,22

and properties of specific digital document formats23 have all been successfully used to hide information in digital communications. Advanced

methods such as spread-spectrum steganography24 and DNA–based steganography25 can be used to enhance the traditional steganography

techniques and improve their properties (eg, capacity to hide content). The type of cover and the character of the secret content are crucial

for the selection of suitable information embedding and recovery algorithms. However, the majority of steganographic systems share the same

fundamental structure, as shown in Figure 1.

2.1 JPEG-based image steganography

Image steganography is the best-known and the most used type of digital steganography. The embedding of secret message into digital images

can be achieved by several high-level strategies.17 Cover selection steganography is based on a shared database of predefined images that

contain the information to be transmitted encoded in a visual symbol (eg, the presence of a particular object in the scene) or hash of the image.

The information embedding and recovery algorithm is associated with the knowledge of the meaning of the symbols or the hash function. A

similar image steganography strategy is based on cover construction (synthesis).17 In this case, the cover is for every message synthesized so

SNASEL ET AL. 3 of 11

Embedder

Cover data

Hidden message

Cover with

hidden data
Public channel

Stego algorithm

(key)

FIGURE 1 A generic steganography
system2,17

that it contains the required symbols and no database of existing images is required. However, the shared knowledge of the visual encoding is

still expected and cover synthesis additionally relies on a convincing appearance of the constructed message (in visual or at least feature space).

The most frequently used type of image steganography is based on cover modification.17 It embeds the secret information into the cover image

by subtle (visually negligible) modifications of its data. In practice, methods based on cover modification take advantage of different digital image

formats (raster or vector) and exploit the properties of the image representation they use. Methods to embed hidden content into bitmap (BMP),

Graphics Interchange (GIF), Portable Network Graphics (PNG), and Joint Photographic Experts Group (JPEG) formats were proposed18 in the past

and are still actively developed.26

The JPEG format is one of the most frequently used image formats in digital communication and on the Internet. It is based on a lossy

compression algorithm that efficiently reduces the size of images with smooth changes of tone and color. Due to the ability to capture realistic

images (scans, digital photography), it can be found on the majority of Web pages. The fundamental principles of the compression algorithm and

the prevalence of JPEG images in digital media make them an ideal target for image steganography. The basic steps of the JPEG compression

algorithm are shown in Figure 2. The compression causes information loss at several stages of the algorithm. The first loss is due to the color

subsampling at the beginning of the process. Color information is in JPEG reduced by factor 4 or 2, while the brightness part is left untouched. This

is done because the human eye is more sensitive to brightness than color. A minor loss of information is introduced by rounding the coefficient

of the discrete cosine transform (DCT). However, the main loss of information happens during the quantization of the DCT coefficients using a

quantization table. The quantization table has in the JPEG format a recommended content, but alternative quantization strategies can be used

by different compression utilities. The data after the quantization is encoded using a lossless entropic coding, and therefore, any changes, ie, the

addition of a hidden message, will not modify it. The standard JPEG quantization table is shown in Figure 3.

The main purpose of steganography is information hiding. Cover modification–based steganographic algorithms strive to find information

embedding approaches that yield the modification of the least number of bits in the cover. The Least-Significant-Bit (LSB) embedding is the most

common steganographic algorithm in this domain. It is a general and simple data embedding strategy that can be applied to any type of digital

cover.17 LSB replaces k least significant bits in selected parts of the cover by bits from the secret message. The modification of the least significant

bits in the cover introduce only small changes to cover data. The capacity of an image cover in a LSB-like information embedding scheme depends

on its size, the number of least significant bits that are changed, and other properties of cover media format. For example, embedding into zero

DCT coefficients significantly reduces the compression ratio and, potentially, introduces visible JPEG artifacts.

Most JPEG steganographic methods change only DCT coefficients that are greater than zero. According to Li and Wang,16 the steganographic

capacity of a JPEG file can be increased by modifications of the quantization table. A modified quantization table, described in the aforementioned

work,16 is shown in Figure 4. The modified table has in the upper left triangle above the secondary diagonal coefficients with a reduced value. It

Image

data transformation

Macroblock

decomposition

Color

reduction

DCT

transformation
Quantization

Lossless

coding

Compressed

data

FIGURE 2 JPEG compression algorithm;
dashed rectangles highlight main data loss in
the algorithm

FIGURE 3 Standard quantization table of JPEG compression

4 of 11 SNASEL ET AL.

FIGURE 4 Modified quantization table of JPEG compression

FIGURE 5 A workflow of the embedding
procedure16

Secret

message
Substitution

Substitution matrix M

selected by PSO

Substituted

secret data

Cover image
8x8 blocks

DCT
Quantizer Embedding

Entropy

coding
JPEG file

Quantization

Table

leads to a JPEG compression with larger number of nonzero DCT coefficients and increased steganographic capacity. However, the compression

ratio of the image is reduced.

Another aspect of image steganography that can be optimized is the number of bits altered by the embedding procedure in the cover image.

An optimization-based method that looks for an optimum ordering of the bits in the input message was proposed in the work of Li and Wang.16

It extends the steganographic procedure by a combinatorial optimization step that consists in the search for an optimum permutation of a set of

objects. The workflow of the optimization is depicted in Figure 5.

A general combinatorial optimization problem, Π = {I, sol(i)}{i ∈ I},m}, can be defined as a minimization or maximization problem that

consists of a set of problem instances, I, a set of feasible problem solutions, sol(i), for every problem instance, i ∈ I, and a function,

m ∶ {(i, q)|i ∈ I, q ∈ sol(i)} → ℚ+, where ℚ+ is the set of positive rational numbers and m(i, q) is the value of solution, q, of problem instance, i.27

An optimal solution to an instance of a combinatorial optimization problem is such solution that has a maximum (or minimum) value among all

other solutions. Famous combinatorial optimization problems include, for example, the traveling salesman problem, the knapsack problem, and

the linear ordering problem.27

Combinatorial optimization problems can be addressed by different types of algorithms. Bio-inspired metaheuristics are often successful in

situations where exact methods are infeasible due to too high computational complexity and heuristic approaches are unknown or fail to find

optimal problem solutions. On the other hand, the choice of an appropriate nature-inspired algorithm and suitable solution representation is

not trivial and affects the performance and results of the optimization procedure. Particle swarm optimization28-30 is a popular nature-inspired

metaheuristic method that has shown an excellent ability to solve complex high-dimensional optimization problems. It was also successfully

applied in the area of JPEG steganography.16 Although many variants of PSO exist, the traditional PSO with inertia weight31 is, in this work, used

to solve the combinatorial optimization problem arising in JPEG steganography. The choice of the algorithm is motivated by several reasons. It is

data parallel, works with candidate solutions in the form of real-valued vectors, and is, therefore, suitable for acceleration by SIMD instructions

such as AVX. At the same time, it is simple and has lower overhead than more sophisticated PSO variants.32 PSO with inertia weight is also

exactly the same algorithm that was used in the steganographic system of Li and Wang.16 Finally, the main objective of this work is the study of

AVX-based vectorization strategies for image steganography utilizing the PSO rather than evaluation of different optimization methods. However,

it can be noted that the proposed vectorization strategy can be easily applied steganographic systems using similar real-valued optimizers such as

differential evolution,33 self-organizing migrating algorithm,34 artificial bee colony algorithm,35 and the grey wolf optimizer36 to name just a few.

3 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a global, population-based search and optimization algorithm based on the simulation of swarming behavior

of bird flocks, fish schools, and even human social groups.28-30 PSO uses a population of motile candidate particles characterized by their position,

xi, and velocity, vi, inside an n-dimensional search space that they collectively explore. Each particle remembers the best position (in terms of

SNASEL ET AL. 5 of 11

fitness function value) it visited, yi, and is aware of the best position discovered so far by the entire swarm, ŷ. In each iteration, the velocity, vi, of

a particle, i, is updated28 according to

vt+1
i = c0vt

i + c1rt
1

(
yi − xt

i

)
+ c2rt

2

(
ŷt − xt

i

)
, (1)

where c0 is inertia weight and c1 and c2 are positive acceleration constants that influence the tradeoff between exploration and exploitation.

Vectors r1 and r2 contain random values sampled from a uniform distribution. The position of particle i is updated given its velocity28 as follows:

xt+1
i = xt

i + vt+1
i . (2)

PSO is useful for dealing with problems whose solution can be represented as a point or surface in the n-dimensional search space. Candidate

solutions (particles) are placed in this space and provided with a random initial velocity. The particles then move through the search space and

are periodically evaluated using a fitness function. Over time, particles are accelerated toward those locations in the problem space that have

relatively better fitness values. In addition to the basic model, there is a number of alternative versions of the PSO algorithm, including self-tuning

PSO, niching PSO, and multiple-swarm PSO. These variants have been developed to improve the convergent properties of the algorithm or to

solve other specific problems.28,29 Successful PSO applications can be found in a many diverse domains ranging from, eg, practical control of

wireless sensor networks37 to the search of optimum parameters of mathematical models.38

Combinatorial optimization problems that require well-structured discrete solutions, on the other hand, represent a challenge for algorithms

with real-valued candidate solutions such as PSO. The position and velocity updates of particles are in PSO performed in each dimension

independently, whereas the elements of permutations are not independent on each other.39 Nevertheless, several methods for representation

of permutations for PSO have been proposed in the past.39-41

Hu et al39 proposed a PSO with a modified particle velocity for permutation problems. The velocity is in the algorithm normalized to the range

[0,1], and the velocity in each dimension corresponds to the probability that the position in a particle, xi, is exchanged with the corresponding

position in the best particle, ŷ. To avoid trapping in local optima, the algorithm applies a mutation operator that randomly swaps the positions

in a particle. Another work proposed a different permutation encoding strategy for PSO.40 It applied a principle called the smallest position

value (SPV) rule to associate particles with permutations. The principle is identical to the random keys encoding known from the area of genetic

algorithms.42 Under the SPV rule, particle coordinates in each dimension in xi are ordered from smallest to largest, and the changes in their

position are associated with the changes of permutation indices. An example of the SPV rule is shown in Equation (3)

𝜋5 =
(

0.2 0.3 0.1 0.5 0.4
2 3 1 5 4

)
. (3)

More recently, Eddaly et al41 developed a combinatorial PSO to solve the blocking flowshop scheduling problem. The authors proposed a

system of particle updates that generates only feasible solutions (valid permutations) and showed that the combinatorial PSO is able to find good

flowshop schedules.

In this work, the SPV-based permutation representation is employed to find optimum permutations of input symbols in a vectorized JPEG-based

steganographic method.

4 AVX INSTRUCTIONS AND THE ACCELERATION OF JPEG STEGANOGRAPHY

Intel's advanced vector extensions is a set of processor instructions introduced in the second generation of the Intel Core processor family, the

Sandy Bridge microarchitecture. Since the Jaguar microarchitecture, it is also supported by AMD processors. AVX is a single instruction multiple

data 256-bit instruction set for data level parallelism allowing the processing of multiple data elements simultaneously. It was designed to simplify

the implementation of software with various degrees of thread parallelism and different lengths of processed data vectors. Nowadays, several

generations of the AVX instruction set exist. AVX2 has sixteen 256-bit-wide registers able to operate in both 32-bit and 64-bit modes. AVX-512

expands the total number of registers to 32 and extends their width to 512 bits.

AVX instructions provide various functions: numeric, arithmetic, cryptographic, convert, etc. They can operate with single or double-precision

floating-point variables and data types. The AVX supports fused multiply-add (FMA) operations on vector registers as well.12,43 This SIMD

approach can improve the performance of arbitrary applications through their data-parallel execution, but the selection of suitable algorithm,

programming model, and compiler is crucial for the success of AVX-based vectorization.

In this work, an AVX vectorization of a JPEG steganography optimized by PSO is developed and evaluated. The steganographic algorithm

uses PSO as an optimization procedure to search for permutations of blocks of input bits to minimize the number of modifications to the cover

image. The permutation is represented by PSO particles and decoded using the smallest position value rule. The parallelization of this algorithm

requires vectorization of the core PSO operations, the decoding process, and the fitness function evaluation. The PSO operations, summarized

in equation (1) and equation (2), are applied to real-valued vectors (particles). They are embarrassingly parallel, and their vectorization by AVX is

straightforward. The decoding process, associated with the SPV rule, requires sorting of the values in each particle, xi. The proposed vectorization

6 of 11 SNASEL ET AL.

FIGURE 6 Bitonic sorting network for 8 values

strategy implements Bitonic sort (Bitonic mergesort) as an efficient parallel sorting algorithm. The fitness function evaluation requires the

computation of the Hamming distance between the permuted pairs of input bits and the DCT coefficients of the cover image.

Bitonic sort (BiS)44 is an efficient parallel sorting algorithm. It is a sorting network with a steady delay of O(n log n2), where n is the length of

the input sequence. The number of element comparisons performed by BiS is higher than that of the traditional (sequential) Mergesort, but the

algorithm is more suitable for parallel execution. It compares the elements of the input data set in a predefined sequence (called sorting network)

independent on their values. The sorting network, illustrated in Figure 6, is able to mutually compare all values in the input data set and sort

them in the increasing (or decreasing) order. In each step, BiS performs n∕2 element comparisons and creates n∕2 partially sorted sequences. The

sequences are, in the following steps, further sorted until a full ordering of the data set is achieved.

In the performed experiments, the PSO is used to find a permutation of 32 pairs of bits that are supposed to be hidden in the cover image (ie,

the dimension of the solution space is 32). The core PSO operations, velocity and position updates, are data parallel, and their AVX implementation

is straightforward. In order to maximize the efficiency of the vectorization, the crucial parts of the code have been implemented using Intel's

AVX Intrinsics. The use of AVX2 instructions can, for PSO in a 32-dimensional search space, provide a theoretical speedup by the factor of 8.

However, the overhead (eg, register loads and stores) and data dependencies reduce the real effect of the AVX-based vectorization to a lower

factor (on average, 5.3 in this work).

The sequential, nonoptimized, version of the steganographic algorithm uses a sequential implementation of the bubble sort algorithm to

decode the permutations and the XOR operation together with bit shifts to evaluate the fitness function, ie, the Hamming distance between DCT

coefficients of the cover image and the permuted input data.

The vectorized version of the algorithm works with single precision floating point data types whenever possible. Following this approach, the

complete permutation of 32 values can fit up to only four AVX registers without any loss of accuracy. Then, an AVX implementation of Bitonic

sort is used to decode the permutation, ie, to find the indices of the corresponding permutation. There is also an inline assembly code responsible

for a fast conversion of the AVX register to a vector of integers. The performance effects of each of the optimization step, described above,

are analyzed in the experimental part of this work. The final, most optimized, parallel version of the algorithm also benefits from a number of

other small optimizations, improving its performance that are beyond the scope of this article. Most of them improve the efficiency of memory

accesses and data manipulations.

5 EXPERIMENTS

A series of computational experiments was carried out in order to evaluate the proposed vectorization strategies. The experiments consisted in

the search for an optimum permutation of pairs of input bits (from the hidden message) by PSO.

Three hidden messages were used in the experiment. They contain grayscale images of parts of street plan of the campus of VSB-Technical

University of Ostrava. The hidden images are shown in Figure 7 The famous Lena image was used as a cover image in which the hidden messages

were embedded.

The first series of experiments focused on the ability of PSO to find an optimum permutation of pairs of input bits from the hidden message.

The cover image was divided into 1024 8x8 blocks, and each block was represented by 36 discrete cosine transform (DCT) coefficients. The

input message was embedded into the first 32 DCT coefficients. The pairs of input bits were encoded into two least significant bits of the DCT

coefficients in each block, and the PSO looked for a permutation of the sequence of input bits, 𝜋32, so that the Hamming distance between the

sequence of LSBs and the permuted input bits was minimized. The permutation was sought for each block of input data independently, and the

experiments were, due to the stochastic nature of PSO, repeated 50 times independently.

The algorithm, used in this experiment, was a global best PSO with SPV-based permutation representation and Hamming distance between

permuted input sequence and LSB sequence as fitness function. The average Hamming distance between DCT coefficients and input bit sequence

SNASEL ET AL. 7 of 11

FIGURE 7 Hidden images. A, Hidden image H1 (9137 bytes); B, Hidden image H2 (9139 bytes); C, Hidden image H3 (8679 bytes)

Hidden image Average Hamming distance Average

Without optimization With optimization improvement [%]

H1 24.253 11.104 54.217

H2 24.624 12.335 49.906

H3 24.647 12.485 49.344

TABLE 1 JPEG-based steganography optimized by PSO

Hidden image Improvement [%]

Min. Mean (𝝈) Max.

H1 53.715 54.217 (0.237) 54.821

H2 49.503 49.906 (0.175) 50.304

H3 49.037 49.344 (0.130) 49.643

TABLE 2 Results of the PSO evolution

with and without optimization of PSO is summarized in Table 1. The table clearly illustrates that PSO is able to find permutations that reduce the

Hamming distance between DCT coefficients and bits in the input sequence by around 50 percent on average. The analysis of the 50 independent

PSO runs for all test images is shown in Table 2. It shows that the PSO was, for each test image, able to obtain an improvement of at least

49%. The best reduction in the Hamming distance, 54.8%, was achieved for the test image H1. The standard deviation of the Hamming distance

reduction was for each test hidden image lower than 0.25%. That indicates that the proposed optimization approach is robust, and independent

PSO runs are able to find permutations with similar quality.

5.1 AVX optimization of the algorithm

In the second set of experiments, five implementations of the algorithm with different level of optimization were compared to evaluate the

potential of vectorization to accelerate JPEG steganography with PSO optimization. The computational experiments were executed on a server

with Intel(R) Core(TM) i7-4770K Haswell CPU running at 3.5 GHz with 4 x 32 KB L1 cache, 4 x 256 KB L2 cache, and 8 MB L3 cache.

All experiments were limited to single-core execution, using GNU compiler collection g++ version 6.3.0 with aggressive optimization -O3. All

compiler parameters are shown in Listing 1. The GCC compiler achieved the best performance among the C++ compilers available at the time

of the evaluation. For a further investigation of the performance of the algorithm, we use the Intel(R) Parallel Studio tools. The whole code

was limited to execute strictly on a single core to measure and tune the maximal potential of the execution. The further speedup is possible by

multithreaded execution, depending on the number of cores used.

The optimization of the PSO algorithm consists of several parts. First, there is the PSO part responsible for finding the best possible

permutation. We had the experience of boosting the performance of PSO from the previous research. The research confirmed that there is a

significant speedup in algorithm performance compared to its scalar version.

For the optimization of steganography code, several versions of the code with different level of optimization were prepared. All versions

(labeled A - E) have the same PSO parameters (see Table 3) and share these properties: they were all optimized by the compiler for speed (O3)

and use auto-vectorization wherever possible. The code is a single-threaded implementation of the algorithm written in C++.

The PSO was executed with a variable number of particles (100, 200, 400, 800, and 1600) and terminated after 1000 iterations. All remaining

PSO parameters remained fixed during all experiments to provide consistent results. For each configuration, 50 experimental runs were observed.

Each experiment was repeated in similar conditions to acquire independent results. During experiments, we try to mitigate all potential distortion

from the OS and other software. The results are stable with a low standard deviation (ie, 8.56e-04 for experiments with version A).

Listing 1 G++ compiler options

8 of 11 SNASEL ET AL.

TABLE 3 PSO parameters involved in all experiments Param Value

PSO iterations 1000

Particles in swarm 100, 200, 400, 800, 1600

Number of dimensions 32

Inertia weight (c0) 0.729

Local weight (c1) 1.49445

Global weight (c2) 1.49445

Figure 8 Execution time of the investigated
code versions with various level of
optimization

100 200 400 800 1600

Particles

0

0.5

1

1.5

2

2.5

3

3.5

R
un

tim
e

[s
]

A - No optimizations
B - Optimized PSO
C - Optimized sort
D - Parallel sort
E - Code tweaks

TABLE 4 Execution time (in seconds) of all code versions for PSO with 400 particles Min Mean (𝝈) Max

A 0.8560 0.8574 (0.0013) 0.8610

B 0.5290 0.5311 (0.0029) 0.5390

C 0.4610 0.4619 (0.0009) 0.4640

D 0.3550 0.3558 (0.0009) 0.3580

E 0.1630 0.1630 (0.0000) 0.1630

The performance of all code versions is illustrated in Figure 8. A detailed comparison of all versions for PSO with 400 particles is then

summarized in Table 4. An ANOVA test confirms that there is a statistically significant difference in the performance of the code with different

levels of optimization at significance level 𝛼 = 0.05 (details are shown in Table 5).

The first version, A, has no manual optimizations whatsoever. It is an auto-vectorized version of the scalar PSO. The fitness function relies on

naïve implementation of the bubble sort algorithm (Listing 2) for a simple decoding of the PSO particle to the permutation form. The fitness is

TABLE 5 Runtime of ANOVA for PSO version with various number of PSO particles Particles F F crit P-value

100 97858,7357 2,5787 5,3993E-88

200 154705,1932 2,5787 1,8088E-92

400 54993,7941 2,5787 2,3059E-82

800 183251,9332 2,5787 4,0067E-94

1600 19307,4788 2,5787 3,8658E-72

Listing 2 Bubble sort

SNASEL ET AL. 9 of 11

Listing 3 Bit counter - naive

evaluated by a bit counter comparing the last two bits (Listing 3) of source picture and hidden message. This version sets the baseline performance

to which all manually vectorized versions are compared.

The second version, named B, uses AVX optimized PSO algorithm without optimizations in the fitness function. The rest of the code is

auto-vectorized like in the previous version, A. The third version, C, uses an optimized PSO and standard library sort instead of the naïve bubble

sort implementation. The efficiency of the bit counter was optimized as well using popcnt function, see Listing 4. Version C outperforms A and

B in all experimental configurations. However, the sorting procedure can be further enhanced by the use of a special parallel sorting algorithm

(Listing 5). Bramas 45 showed that parallel bitonic sort can be implemented very efficiently in AVX.

Version D adopts bitonic sort as the algorithm to decode PSO particles to permutations. This version also uses all other previous manual

optimizations. In fact, it corresponds to A but applies SIMD optimizations to all parts of the code that manipulate permutation data. Nevertheless,

the results show more than two times faster execution time than that of A. If we compare it with naïve serial bubble sort function in version A,

the overall speedup is of factor 11.5 (just for the function itself).

In the last version, E, the whole codebase of D was revised, and all remaining potential bottlenecks were reimplemented for maximum

performance. The bit counter was rewritten to use precomputed values (see Listing 6), permutation indexing rely on AVX instructions and

assembly code. Several other minor small performance tweaks were used. The resulting code is more than five times faster than the initial

auto-vectorized version A.

Table 6 compares the performance of the least and most optimized version (A and E) with respect to the number of particles. The final

optimized version is in average 5.3 times faster (81.15% improvement) than the nonoptimized version.

Listing 4 Bit counter - popcnt

Listing 5 Bitonic sort - part of sorting network

Listing 6 Bit counter - precomputed array

Particles A E

Min Mean (𝝈) Max Min Mean (𝝈) Max

100 0.2200 0.2205 (0.0005) 0.2210 0.0410 0.0410 (0.0000) 0.0410

200 0.4250 0.4258 (0.0004) 0.4260 0.0810 0.0816 (0.0009) 0.0840

400 0.8560 0.8574 (0.0013) 0.8610 0.1630 0.1630 (0.0000) 0.1630

800 1.7560 1.7572 (0.0006) 1.7580 0.3270 0.3271 (0.0003) 0.3280

1600 3.4360 3.4386 (0.0013) 3.4410 0.6530 0.6531 (0.0003) 0.6540

TABLE 6 Execution time (in seconds) of the least (A)
and the most (E) optimized code version

10 of 11 SNASEL ET AL.

6 CONCLUSIONS

Image steganography is a popular data hiding strategy that can be used to conceal private communication in unsecure digital channels.

Optimization-based methods improve various properties of steganographic algorithms. They can be employed to, eg, increase the capacity of

the cover or to minimize the number of modifications of the cover object. The latter is especially crucial for digital image steganography, which

can be compromised by an automated or manual visual analysis of the cover. Efficient data embedding and recovery are essential for practical

applications of digital steganography, especially when optimization takes place during the data embedding procedure. AVX instructions form a

family of instruction sets for efficient data parallel (SIMD) operations introduced by Intel and available in many modern CPUs. In this work, AVX

was used to achieve a vectorized implementation of a PSO-based JPEG steganographic algorithm.

Instead of PSO, we could use any optimization algorithm to achieve similar results for finding the best possible combination of steganography

permutations. However, with the parallel computation in mind, we choose to use the PSO because of its high potential for parallelization.

Computational experiments show that different levels of code optimizations (auto-vectorization vs hand-tuned optimizations) improve the

performance of the code, and careful manual optimization can accelerate the execution of the algorithm in average 5.3 times. Even if the full

performance impact on single execution time is low and saves just a few seconds, we need to remember that the steganographic algorithm

executes the PSO several times and thus gains significant performance boost.

ACKNOWLEDGMENTS

This work was supported by the European Regional Development Fund under the project AI & Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15

003/0000466) and by the project SP2019/135 of the Student Grant System, VSB – Technical University of Ostrava.

ORCID

Vaclav Snasel https://orcid.org/0000-0002-9600-8319

Pavel Kromer https://orcid.org/0000-0001-8428-3332

Jakub Safarik https://orcid.org/0000-0002-3360-2302

Jan Platos https://orcid.org/0000-0002-8481-0136

REFERENCES

1. Raggo M, Hosmer C. Data Hiding: Exposing Concealed Data in Multimedia, Operating Systems, Mobile Devices and Network Protocols. Waltham, MA:

Elsevier Science; 2012.

2. Cox I, Miller M, Bloom J, Fridrich J, Kalker T. Digital Watermarking and Steganography. Burlington, MA: Elsevier Science; 2007.

3. Shih F. Digital watermarking and Steganography: Fundamentals and Techniques. Boca Raton, FL: CRC Press; 2017.

4. Katzenbeisser S, Petitcolas F. Information Hiding. Norwood, MA: Artech House Publishers; 2016.

5. Wayner P. Disappearing Cryptography: Information hiding: Steganography & watermarking. 3rd ed. San Francisco, CA : Morgan Kaufmann Publishers Inc;

2009.

6. Xia C, Guan Q, Zhao X, Zhao C. Highly accurate real-time image steganalysis based on GPU. J Real-Time Image Proc. 2018;14(1):223-236.

7. Hu D, Wang L, Jiang W, Zheng S, Li B. A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access.

2018;6:38303-38314.

8. Bhattacharjee S, Chakkaravarthy M, Midhun Chakkaravarthy D. GPU-based integrated security system for minimizing data loss in big data transmission.

In: Balas VE, Sharma Na, Chakrabarti A, eds. Data Management, Analytics and Innovation. Singapore: Springer Singapore; 2019:421-435.

9. Ker AD. Implementing the projected spatial rich features on a GPU. Paper presented at: Media Watermarking, Security, and Forensics; 2014;

San Francisco, CA.

10. Tiwary M, Priyadarshini R, Misra R. A faster and intelligent steganography detection using graphics processing unit in cloud. Paper presented at:

International Conference on High Performance Computing and Applications; 2014; Bologna, Italy.

11. Lomont C. Introduction to Intel Advanced Vector Extensions. Intel White Paper. 2011.

12. Hassan SA, Hemeida A, Mahmoud MMM. Performance evaluation of matrix-matrix multiplications using Intel's advanced vector extensions (AVX).

Microprocess Microsyst 2016;47(PB):369-374. https://doi.org/10.1016/j.micpro.2016.10.002

13. Liyanage D, Fernando P, Mampitiya Arachchi D, Karunathilaka R, Perera A. Utilizing Intel advanced vector extensions for Monte Carlo simulation

based value at risk computation. Procedia Comput Sci. 2017;108:626-634.

14. Mitra G, Johnston B, Rendell AP, McCreath E, Zhou J. Use of SIMD vector operations to accelerate application code performance on low-powered

arm and Intel platforms. Paper presented at: IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum; 2013;

Cambridge, MA.

15. Cebrián JM, Natvig L, Meyer JC. Improving energy efficiency through parallelization and vectorization on Intel core i5 and i7 processors.

Paper presented at: International Conference for High Performance Computing, Networking, Storage and Analysis; 2012; Salt Lake City, UT.

16. Li X, Wang J. A steganographic method based upon JPEG and particle swarm optimization algorithm. Inf Sci. 2007;177(15):3099-3109. https://doi.

org/10.1016/j.ins.2007.02.008

17. Fridrich J. Steganography in Digital Media: Principles, Algorithms, and Applications. 1st ed. New York, NY: Cambridge University Press; 2009.

https://orcid.org/0000-0002-9600-8319
https://orcid.org/0000-0002-9600-8319
https://orcid.org/0000-0001-8428-3332
https://orcid.org/0000-0001-8428-3332
https://orcid.org/0000-0002-3360-2302
https://orcid.org/0000-0002-3360-2302
https://orcid.org/0000-0002-8481-0136
https://orcid.org/0000-0002-8481-0136
https://doi.org/10.1016/j.micpro.2016.10.002
https://doi.org/10.1016/j.ins.2007.02.008
https://doi.org/10.1016/j.ins.2007.02.008

SNASEL ET AL. 11 of 11

18. Cheddad A, Condell J, Curran K, Kevitt PM. Digital image steganography: survey and analysis of current methods. Signal Process. 2010;90(3):727-752.

https://doi.org/10.1016/j.sigpro.2009.08.010

19. Sadek MM, Khalifa AS, Mostafa MGM. Video steganography: a comprehensive review. Multimed Tools Appl. 2015;74(17):7063-7094. https://doi.org/

10.1007/s11042-014-1952-z

20. Gopalan K. Audio steganography using bit modification. Paper presented at: IEEE International Conference on Acoustics, Speech, and Signal

Processing; 2003; Hong Kong, China.

21. Chapman M, Davida G, Rennhard M. A practical and effective approach to large-scale automated linguistic steganography. Paper presented at:

International Conference on Information Security; 2001; Málaga, Spain.

22. Zander S, Armitage G, Branch P. A survey of covert channels and countermeasures in computer network protocols. IEEE Commun Surv Tutor.

2007;9(3):44-57. https://doi.org/10.1109/COMST.2007.4317620

23. Bhaya W, Rahma A, Al-Nasrawi D. Text steganography based on font type in MS-word documents. J Comput Sci. 2013;9(7):898-904. https://doi.org/

10.3844/jcssp.2013.898.904.

24. Marvel LM, Boncelet CG, Retter CT. Spread spectrum image steganography. IEEE Trans Image Process. 1999;8(8):1075-1083.

25. Leier A, Richter C, Banzhaf W, Rauhe H. Cryptography with DNA binary strands. Biosyst. 2000;57(1):13-22. https://doi.org/10.1016/S0303-

2647(00)00083-6

26. Bao Z, Luo X, Zhang Y, Yang C, Liu F. A robust image steganography on resisting JPEG compression with no side information. IETE Tech Rev.

2018;35:1-10.

27. Jongen HT, Meer K, Triesch E. Optimization Theory. Berlin, Germany: Springer Science & Business Media; 2004.

28. Engelbrecht A. Computational Intelligence: An Introduction. 2nd ed. New York, NY: Wiley; 2007.

29. Clerc M. Particle Swarm Optimization. London, UK: ISTE; 2010.

30. Kennedy J, Eberhart RC. Particle swarm optimization. Paper presented at: IEEE International Conference on Neural Networks; 1995; Perth, Australia.

31. Shi Y, Eberhart R. A modified particle swarm optimizer. Paper presented at: IEEE World Congress on Computational Intelligence; 1998; Anchorage, AK.

32. van den Bergh F, Engelbrecht AP. A convergence proof for the particle swarm optimiser. Fundam Inf . 2010;105(4):341-374.

33. Price KV, Storn RM, Lampinen JA. Differential Evolution: A Practical Approach to Global Optimization. Berlin, Germany: Springer-Verlag; 2005.

34. Zelinka I. Soma — self-organizing migrating algorithm. In: New Optimization Techniques in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg;

2004.

35. Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput. 2009;214(1):108-132. https://doi.org/10.1016/j.amc.

2009.03.090

36. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007

37. Krömer P, Musilek P. Bio-inspired routing strategies for wireless sensor networks. In: Krömer P, Fay D, Gabryś B, eds. Propagation Phenomena in Real

World Networks. Cham: Springer International Publishing; 2015:155-181.

38. Heckenbergerova J, Musilek P, Krömer P. Optimization of wind direction distribution parameters using particle swarm optimization. Paper presented

at: Afro-European Conference for Industrial Advancement; 2015; Addis Ababa, Ethiopia.

39. Hu X, Eberhart RC, Shi Y. Swarm intelligence for permutation optimization: a case study of n-queens problem. Paper presented at: IEEE Swarm

Intelligence Symposium; 2003; Indianapolis, IN.

40. Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G. A particle swarm optimization algorithm for makespan and total flowtime minimization in the

permutation flowshop sequencing problem. Eur J Oper Res. 2007;177(3):1930-1947.

41. Eddaly M, Jarboui B, Siarry P. Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem. J Comput Design Eng.

2016;3(4):295-311.

42. Snyder LV, Daskin MS. A random-key genetic algorithm for the generalized traveling salesman problem. Eur J Oper Res. 2006;174(1):38-53.

43. Gepner P. Using AVX2 instruction set to increase performance of high performance computing code. Comput Infor. 2017;36(5):1001-1018.

44. Batcher KE. Sorting networks and their applications. Paper presented at: AFIPS '68 Fall Joint Computer Conference; 1968; Washington, DC.

45. Bramas B. A novel hybrid quicksort algorithm vectorized using AVX-512 on Intel Skylake. Int J Adv Comput Sci Appl. 2017;8(10):337-344. https://doi.

org/10.14569/IJACSA.2017.081044

How to cite this article: Snasel V, Kromer P, Safarik J, Platos J. JPEG steganography with particle swarm optimization accelerated by

AVX. Concurrency Computat Pract Exper. 2020;32:e5448. https://doi.org/10.1002/cpe.5448

https://doi.org/10.1016/j.sigpro.2009.08.010
https://doi.org/10.1007/s11042-014-1952-z
https://doi.org/10.1007/s11042-014-1952-z
https://doi.org/10.1109/COMST.2007.4317620
https://doi.org/10.3844/jcssp.2013.898.904
https://doi.org/10.3844/jcssp.2013.898.904
https://doi.org/10.1016/S0303-2647(00)00083-6
https://doi.org/10.1016/S0303-2647(00)00083-6
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.14569/IJACSA.2017.081044
https://doi.org/10.14569/IJACSA.2017.081044
https://doi.org/10.1002/cpe.5448

	JPEG steganography with particle swarm optimization accelerated by AVX
	Abstract
	INTRODUCTION
	STEGANOGRAPHY
	JPEG-based image steganography

	PARTICLE SWARM OPTIMIZATION
	AVX instructions andxmltex	?> the acceleration ofxmltex	?> JPEG steganography
	Experiments
	AVX optimization ofxmltex	?> the algorithm

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENG (Modified PDFX1a settings for Blackwell publications)
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

