
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2015

Power And Hotspot Modeling For Modern Gpus Power And Hotspot Modeling For Modern Gpus

Md Mainul Hassan
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hassan, Md Mainul, "Power And Hotspot Modeling For Modern Gpus" (2015). Electronic Theses and
Dissertations. 449.
https://egrove.olemiss.edu/etd/449

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F449&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=egrove.olemiss.edu%2Fetd%2F449&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/449?utm_source=egrove.olemiss.edu%2Fetd%2F449&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

POWER AND HOTSPOT MODELING FOR MODERN GPUS

A Thesis
presented in partial fulfillment of requirements

for the degree of Masters of Science
in the Department of Computer and Information Science

The University of Mississippi

by

Md Mainul Hassan

May 2015

Copyright Md Mainul Hassan 2015
ALL RIGHTS RESERVED

ABSTRACT

As General Purpose GPUs (GPGPU) are increasingly becoming a prominent compo-

nent of high performance computing platforms, power and thermal dissipation are getting

more attention. The trade-offs among performance, power, and heat must be well modeled

and evaluated from the early stage of GPU design. This necessitates a tool that allows

GPU architects to quickly and accurately evaluate their design. There are a few models for

GPU power but most of them estimate power at a higher level than architecture, which are

therefore missing hardware reconfigurability. In this thesis, we propose a framework that

models power and heat dissipation at the hardware architecture level, which allows for con-

figuring and investigating individual hardware components. Our framework is also capable

of visualizing the heat map of the processor over different clock cycles. To the best of our

knowledge, this is the first comprehensive framework that integrates and visualizes power

consumption and heat dissipation of GPUs.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude and sincere appreci-

ation to my advisor Dr. Byunghyun Jang for unprecedented support, relentless encourage-

ment, and providing me with an outstanding atmosphere for doing research. I have been

blessed with his excellent guidance, caring, patience, availability and immense knowledge

of computer architecture and GPU computing that helped me at all points of my graduate

study and research.

I would like to thank Dr. Wilkins for her continuous support not only in academic

problems but also in non academic problems. I also thank Dr. Rhodes for being kind enough

to be in my committee. I am fortunate to have such professors whose knowledge in algorithm,

data structure, image processing, graphics and architecture helped me to shape up my young

scientist mind.

I thank my department chair, Dr. Conrad Cunningham and the rest of our amazing

faculties and staffs. Thank you for your support and the wonderful job for the department. I

thank all my fellow HEROES at the Heterogeneous Systems Research Lab: David Troendle,

Kyoshin Choo, Mengshen Zhao, Tuan Ta, Michael Ginn, Zhaohua Yi, Esra, Orevaoghene

Addoh, Stephen Adams for your assistance with my research and stimulating discussions

during our meetings. This work is supported by National Science Foundation (NSF) grant

CCF-1337138.

Finally, to my wonderful parents and younger sister, thank you for all your advice,

sacrifice, encouragement, patience and support throughout my life. I am fortunate and I

could not ask for a better family.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

INTRODUCTION . 1

BACKGROUND . 4

2.1 GPU and GPGPU . 4

2.2 GPU Hardware Architecture . 7

2.3 Related Work . 9

GPU POWER MODEL . 12

3.1 Overview . 12

3.2 Power Modeling Framework . 14

3.3 Power Modeling of Architectural Components 18

3.4 Hotspot and HeatMap . 30

VISUALIZATION . 35

4.1 Excel . 35

4.2 OpenCV . 36

4.3 Qt Framework . 39

EXPERIMENTS AND RESULTS . 41

5.1 Benchmark Programs . 41

iv

5.2 Results . 42

CONCLUSION . 50

BIBLIOGRAPHY . 52

VITA . 56

v

LIST OF FIGURES

2.1 CPU cores vs GPU cores. 6
2.2 A simplified look of Southern Island Architecture. 8
3.1 Power modeling framework. 14
3.2 Multi2Sim architecture. 16
3.3 A 2-way set associative cache architecture. 20
3.4 A physical cache architecture. 21
3.5 Local memory model. 24
3.6 Crossbar switch. 25
3.7 Register file architecture. 26
3.8 HotSpot RC model for a floor plan with three architectural units [23]. 32
3.9 Flowchart for generating heat map. 33
4.1 Power data gradient. 37
4.2 Power data visualization using OpenCV. 38
4.3 Graphical display of power for a single component. 40
4.4 Graphical display of heat consumption of each component for a program. . . 40
5.1 Average power consumption of different units. 43
5.2 Power consumption of compute units across cycle intervals. 44
5.3 Power consumption distribution. 44
5.4 Temperature of compute units across cycle intervals. 44
5.5 Heat map for Matrix Multiplication operation. 45
5.6 Power consumption of compute units across cycle intervals(Bitonic Sort). . . 45
5.7 Average power consumption of different units(Bitonic Sort). 46
5.8 Temperature of compute units across cycle intervals (Bitonic Sort). 46
5.9 Heat map for Bitonic Sort process. 47
5.10 Power consumption of compute units across cycle intervals(Reduction). . . . 48
5.11 Temperature of compute units across cycle intervals (Reduction). 48
5.12 Heat map for Reduction process. 49

vi

CHAPTER 1

INTRODUCTION

GPGPU is getting more widely adopted across different platforms such as mobile

devices, desktops, and servers as well as supercomputers as a mean to achieving high per-

formance. As more and more parties are striving to drive GPU performance up, more

transistors are put inside a GPU device. At architecture level, they are built upon several

billions of transistors which consume more than 200 watt. The direct consequence of their

high power consumption is growing heat dissipation and more expensive cooling solutions.

The widespread adoption of GPGPU in almost all devices makes analyzing and modeling

the power consumption of GPUs a priority.

DVFS (Dynamic Voltage and Frequency Scaling) and specialized circuit techniques

have been main strategies in low-power design for several decades. Unfortunately, these

techniques alone are not enough; higher level strategies for reducing power consumption are

increasingly crucial. As a result, a robust power model is necessary for processor archi-

tects to build power efficient computer systems. A robust power model must satisfy three

requirements to be useful for computer architecture research. It must be (1) configurable,

(2) cycle level, and (3) strongly validated against existing processor architectures using a

rigorous methodology [14]. In the past couple of decades, a great deal of effort has been put

1

into developing such robust CPU power models (e,g., Wattch [7] and McPAT [15]), which

brought a surge of power-related research in computer architecture community. However,

relatively few works are found regarding GPU power modeling and analysis. They are based

on statistical estimation and empirical measurement from specific GPU architectures. These

models are inadequate for generic design space exploration.

The difficulty of developing a GPU power model is due to insufficient information

available to the research community about GPU micro-architecture and implementation.

Moreover, GPU micro-architecture is somewhat different from CPU’s as GPUs include new

components such as local memory and thread scheduler. GPUs also specialize some com-

ponents such as register files. Even though there exist several cycle-accurate architecture

simulators which are currently used by architects to analyze performance and make design

decisions, these tools do not provide power and heat consumption data for GPU.

In this thesis, we develop a GPU power model framework for contemporary GPGPU

architectures which satisfies all the aforementioned criteria using a cycle accurate archi-

tectural simulator called Multi2Sim [25], a low-level power modeling framework called Mc-

PAT [15] and a heat estimation tool called HotSpot [23]. Our framework is able to estimate

multiple characteristics of a GPU architecture such as chip area, peak dynamic power, as well

as simulate the power consumed during the execution of GPGPU workloads. This frame-

work also predicts heat consumption of GPU components as well as heat dissipation over

time across space. With this framework, computer architects can evaluate the power and

heat characteristics of their design early, and GPGPU programmers gain an effective way to

investigate their GPGPU code to optimize power consumption from a software perspective.

In summary, this thesis makes the following contribution:

• To the best of our knowledge, this is the first work that uses a cycle accurate ar-

chitectural simulator, Multi2Sim, for GPU power modeling. We implement necessary

modifications to this simulator to generate necessary data needed for power simulation.

2

• We update a well known CPU power modeling framework, McPAT, to model multiple

GPU components (e.g., L1 cache, L2 cache, local memory, register files, functional units

etc). Specifically, we model AMD’s latest GPU architecture code-named Southern

Island.

• With the integration of HotSpot, our model also estimates heat consumption as well

as heat dissipation. It helps to identify hot spots in the device.

• We develop a graphical interface that displays power data and graphs for different

GPU components at different cycles. This interface also visualizes the heat dissipation

over time across different components.

3

CHAPTER 2

BACKGROUND

‘

In this chapter, we provide the technical background on GPU. Section 2.1 discusses

GPU and GPU computing and Section 2.2 gives an overview of GPU hardware architecture.

We describe previous work on GPU power model in Section 2.3

2.1 GPU and GPGPU

GPU (Graphics Processor Unit) is a specialized electronic circuit designed to rapidly ma-

nipulate and alter memory to accelerate the creation of images in a frame buffer intended

for output to screen [27]. The principal motivation behind building GPU was to efficiently

and quickly perform mathematically- and computationally intensive computer graphics and

image processing tasks. GPU’s highly parallel structure makes them more effective than

general-purpose CPUs for algorithms that process large blocks of data in parallel. Graphics

chips have been developed by several manufacturers since the 1970s. But the term GPU

was popularized by NVIDIA, who, in 1999, marketed their GeForce 256 as “the world’s first

GPU.” Their GPU at that time could process 10 million polygons per second and it had

over 22 million transistors. GPUs are used in embedded systems, mobile phones, personal

4

computers, workstations, and game consoles. In personal computers, GPU can be present

on discrete video card, or it can be embedded on the motherboard. Nowadays it is popular

that GPU and CPUs are fabricated on a single die sharing a memory subsystem. It is known

as heterogeneous architecture.

The primary motivation behind graphic processing units was, and still is, to efficiently

render the graphical components desired by the computer application and related software

which requires thousands of simultaneous calculations to produce the accurate image frame

according to the demands of the software (e.g., graphics pipeline). This highly parallel

computing architecture eventually brings forth the idea of using GPU for other non-graphics

tasks. This computing paradigm is known as GPGPU computing. GPGPU (General Purpose

computing on GPU) refers to using graphics processing units to accelerate non-graphics

problems. GPGPU computing offers unprecedented application performance by offloading

compute-intensive portions of an application to the GPU. A simple way to understand how

GPU accelerates a compute intensive application more than a CPU is to compare how they

process tasks. CPU consists of a few cores optimized for sequential serial processing while

GPU has a massively parallel architecture consisting of thousands of smaller, more efficient

cores designed for handling multiple tasks simultaneously.

Figure 2.1 shows the comparison between CPU cores and GPU cores. It is evident

from the figure that with a thousand of cores, GPUs can perform more computations in

parallel which in turn gives a performance boost over CPU. GPU not only increases perfor-

mance, but also improves power efficiency. They are inherently more energy efficient than

other ways of computation because they are optimized for throughput and performance per

watt and not absolute performance. Even though GPGPU computing provides unmatched

benefits in performance and energy consumption, it comes with a grain of salt. To offload

compute-intensive tasks to GPU, we need to transfer data to GPU memory. This data copy-

ing is done through a slow PCI bus. This can be a performance bottleneck for GPGPU.

Moreover, GPU computing cannot be used to improve performance of all irregular applica-

5

Figure 2.1. CPU cores vs GPU cores.

tions. To benefit from GPU computing an application has to have certain characteristics

such as.

• It must have a large computational requirement so that it can hide the memory transfer

latency. GPU is built to do a large number of computations in less time thanks to its

thousands of cores. But the data required for the computations have to be transferred

to GPU memory. This operation takes considerable amount of time. If computations

are not much, then GPU cannot hide this memory latency and the total execution

time would be slow.

• The algorithm should be parallel or parallelizable. This means there should not be any

data dependency between multiple tasks. A simple example of this type of computation

is vector addition. In vector addition, we sum up one element of an array with an

element at the same index in another array and put the result in a third array at

the same index position. There is no data dependency between different addition

operations. We can add elements at index position 3 without waiting for the result of

the addition operation at index position 2. On the contrary, there are algorithms where

6

a task is dependent on the result of another task. In such cases, a sequential execution

is necessary for correctness. These types of algorithms are not data independent and

cannot be used in GPGPU. There is ongoing research to accelerate such irregular

applications using GPU [8]. Irregular applications are those where the control flow and

memory access patterns are data-dependent and statically unpredictable (e.g., binary-

search-tree implementation). In a binary-search-tree implementation, the values and

the order in which they are processed affect the control flow and memory references.

Processing the values in sorted order will generate a tree with only right children

whereas the reverse order will generate a tree with only left children, thus exercising a

different control flow path. Graph-based applications in particular tend to be irregular

and hence are not suitable at all for GPU computing.

To fully utilize the GPU’s parallel architecture, we need a different programming

model. Open Computing Language (OpenCL) is an industry standard programming model

for GPU computing [19]. It is a heterogeneous computing framework for writing portable

programs that run on different platforms including CPU, GPU or FPGA etc.

2.2 GPU Hardware Architecture

Over the last 15 years, GPUs have continually evolved and are on the cusp of becoming an

integral part of the computing landscape. The first designs employed special purpose hard-

ware with little flexibility. Later designs introduced limited programmability through shader

programs, and eventually became highly programmable throughput computing devices that

still maintained many graphics-specific capabilities. As we use AMD’s Southern Island GPU

architecture in this thesis, we shall have a brief discussion of its architecture.

Southern Island Architecture is based on AMD’s new Graphics Core Next (GCN)

architecture. GCN represents a fundamental shift for GPU hardware and is the architecture

for future programmable heterogeneous systems. GCN is carefully optimized for power

7

Figure 2.2. A simplified look of Southern Island Architecture.

and area efficiency at the 28nm node and will scale to future process technologies in the

coming years. Compute Units (CU) are the basic computational building block of the GCN

architecture. These CUs implement an entirely new instruction set that is much simpler

for compilers and software developers to use and delivers more consistent performance than

previous designs [2]. Previously, AMD GPUs consist of a number of SIMD engines which

comprised 16 ALUs. Each ALU could run a bundle of five to six instructions in a VLIW

(Very Long Instruction Word) format. This architecture is not suitable for general purpose

computing. This is because in general purpose computing the underlying data format is not

uniform and sometimes unpredictable which makes it difficult to consistently finding four

to five independent instructions to execute in parallel in each cycle. GCN introduces vector

processing in SIMD units. Each of these units can run a single operation on multiple threads

simultaneously.

Figure 2.2 displays a simplified architecture of the Southern Island (SI) GPU ar-

chitecture. At top level, the device consists of 32 compute units, a thread dispatcher and

global memory. The thread dispatcher schedules the work groups to CUs whenever they are

available. In OpenCL programming model, work groups are a collection of work items or

threads. Each CU runs one or more work groups at a time. 64 work items of the same work

group is called a wavefront. All work items in a wavefront execute the same instruction at

a time. Global memory is accessible to all threads being executed on all CUs. Each CU has

8

a wavefront scheduler that schedules wavefront from running work groups to SIMD units.

Each SIMD unit consists of 16 light-weight cores. Each core includes integer and floating

point functional units. Low latency, high bandwidth local memory is an on-chip memory

that resides in each CU. All work items inside a work group can access and share data

through local memory. L1 cache is private to each CU whereas L2 cache is shared across

all CUs. Coherency amongst these caches is crucial for GCN performance. The cache co-

herency protocol shares data through L2 cache, which is significantly faster and more power

efficient than using off-chip graphics memory. We shall discuss more on L1 cache and L2

cache structure in Section 3.3

2.3 Related Work

Power modeling of CPU has been widely studied and documented. Wattch [7] was the first

seminal work on architecture level power model for CPU. An advanced and integrated power,

area, and timing modeling framework named McPAT [15] was developed in HP Labs later.

McPAT has certain benefits over Wattch. For example, McPAT models not only dynamic

power but also static and short-circuit power. McPAT supports multicore or manycore

processors. It handles technologies that can no longer be modeled by the linear scaling

assumptions used by Wattch. Other than these two architecture level modeling frameworks,

there are a few statistical models. Joseph and Martonosi [12] and Isci and Martonosi [11]

used performance counters to examine power-relevant events and to present per-unit power

estimates, respectively. Wu et al. [29] searches the component unit power of a processor by

using a K-means-based method to correct inaccuracy resulting from manual tuning using

empirical data.

While the literatures is rich enough for modeling CPU power consumption, power

modeling for GPU has received little attention due to the scarcity of documented informa-

tion for GPU hardware architecture. There are few GPU power models proposed based

9

on statistical estimation and empirical measurement from specific GPU architectures. GPU

power modeling works can be divided into two approaches: statistical approach and architec-

ture approach. Initial works on GPU power model framework was inspired by the statistical

modeling methodologies of CPU power. Ma et. al [18] present a scheme to statistically ana-

lyze and model the power consumption of a mainstream GPU (NVIDIA GeForce 8800GT)

by exploiting the innate coupling among power consumption characteristics, runtime perfor-

mance, and dynamic workloads. Based on the recorded runtime GPU workload signals, their

trained statistical model is capable of robustly and accurately predicting power consumption

of the target GPU. Hong and Kim [10] propose an integrated power and performance model

for GPU. Their model predicts execution times to calculate dynamic power events. Then

they uses the outcome of their model to control the number of running cores. They also

model the increases in power consumption that resulted from the increases in temperature.

Song et al [24] propose a power model based on performance counter. They use the hardware

performance counter and physically measured power data as input to an Artificial Neural

Network (ANN) to train the model. This model is then used to predict power consumption.

Zhang et al. [9] utilized random forest model for ATI GPUs and analyzed the power con-

sumption along with performance. Nagasaka et al. [20] used the linear regression method by

collecting the information about the application from performance counters.

Most of the work on GPU power modeling is based on statistical modeling. The

fundamental drawback of these models is that they are not configurable. That serves as

the motivation behind our modeling a power estimation framework at the architecture level.

Very few works have been done at the architecture level and all of them model power based

on NIVIDIA GPU architecture, mostly Fermi architecture. PowerRed [21] is one of the

architecture level power estimation framework. It combines both analytical and empirical

models. They used Wattch to build various components of GPU. Similar work was done by

Li [16]. Leng et. al [14] proposed a robust power model for GPU using McPAT as the power

estimation tool and GPGPUSim [6] as performance simulator. This model is configurable

10

and capable of cycle-level calculations. A bottom-up methodology and abstract parameters

from the micro architectural components are used as the model’s inputs. A rigorous suite

of 80 micro benchmarks are used to bound any modeling uncertainties and inaccuracies.

Another architecture level power model is proposed by Lim et. al [17]. Their work is similar

to GPUWattch. They use McPAT for power modeling. But instead of GPGPUSim, they use

MacSim to acquire performance statistics as inputs to McPAT. The major difference with

their work and GPUWattch is that GPUWattch only measures power but Lim et. al include

Hotspot [23] to detect hot spots.

11

CHAPTER 3

GPU POWER MODEL

This chapter describes our modeling methodologies of GPU power consumption. Sec-

tion 3.1 gives an overview of generic power calculation and an overview of our power model.

We describe our modeled interface framework between McPAT and Multi2Sim in Section 3.2.

Section 3.3 describes the modeling of different GPU components using McPAT.

3.1 Overview

Power is one of the key design constraints for computing systems, and processors (i.e., CPUs,

GPUs, and other processing units). With an increasing number of transistors in GPU,

power consumption has become a major concern. A power model that estimates power

consumption at architecture level can help design architects to explore different designs and

measure power and also help them make design decisions. In this thesis, we build a power

model for AMD’s Southern Island (SI) GPU architecture. In this process, we model several

SI GPU components using basic architectural blocks available in McPAT.

Power consumption in transistor devices can be divided into two parts: dynamic

power and static power as shown in Equation 3.1.

12

Power = Dynamicpower + Staticpower (3.1)

Dynamic power is from switching of transistors, so it is determined by runtime events.

Static power is mainly determined by circuit technology, chip layout and operating temper-

ature. Total dynamic power of a GPU device can be computed as Equation 3.2

Powertotal =
n∑

i=1

Poweri (3.2)

where i represents each component. The dynamic power of each component is calculated in

a bottom up fashion. This means that McPAT calculates the power at a basic circuit level

and sums it up to get the component’s power. Dynamic power dissipation of CMOS circuits

is computed by:

Power = αCVdd∆V fclk (3.3)

where C is the total load capacitance, Vdd is the supply voltage, ∆V is the voltage swing

during switching, and fclk is the clock frequency. C depends on the circuit design and layout

of each IC component; McPAT calculates it using analytic models for regular structures

such as memory arrays and wires, along with empirical models for random logic structures

such as ALUs. The activity factor α indicates the fraction of total circuit capacitance being

charged during a clock cycle. McPAT calculates α using access statistics from architectural

simulation together with circuit properties. This depends on access count of a component,

total hamming distance and cycle count for a particular simulation period. The Hamming

distance is the total number of flipped bits for two consecutive accesses. McPAT assumes

that all bits are flipped per cycle. McPAT also has the ability to reason about activity factors

for components as long as the basic statistics information is provided by the performance

simulator.

13

Figure 3.1. Power modeling framework.

3.2 Power Modeling Framework

Our proposed power modeling framework consists of two main parts, as visualized in Fig-

ure 3.1. First, a cycle-accurate GPGPU simulator simulates the given kernel and thereby

generates utilization information and activity factors for modeled components of the GPU

architecture. Second, a chip representation with a power model for each component uses

the activity information from the simulator to produce power numbers for a particular ker-

nel. From the chip representation, statistics about area and peak, leakage, and short-circuit

power are inferred as well. For the cycle-accurate GPGPU simulator, we employ a modified

version of Multi2Sim [25] that has been altered to produce access counts and other hardware

activity information for all parts of the simulated architecture which are required for the

next steps. Multi2Sim has been developed to simulate several different architectures. In our

thesis, we focus on the Southern Island Architecture.

The chip representation and power model are provided by a heavily modified variant

of McPAT [15]. McPAT integrates three different modeling tiers hierarchically to provide a

flexible and highly accurate power model for CPUs: The architectural tier, where a proces-

sor is broken down into major components such as cores, caches, and memory controllers,

the circuit tier, where the architectural components are mapped to basic circuit structures

such as arrays or clocking networks, and the technology tier, which provides the physical

14

parameters, such as current densities and capacitances, of the circuits. Besides this hier-

archy, a unique advantage of McPAT is its combination of analytical and empirical models

for individual components. We embrace the hierarchical nature of McPAT and develop a

McPAT-based model for GPU components. On one hand, this requires many modifications

to McPAT, as multiple components that are present in the CPU architecture model cannot

be reused for GPUs, and various core components of GPU architectures, such as local mem-

ory, are not present in CPUs. On the other hand, using McPAT enables us to utilize all

the integrated low-level technological information, e.g. to scale the GPU power model for a

specific manufacturing process node.

To build the power model framework, we considered multiple approaches. Our first

approach was to integrate McPAT into Multi2Sim. This approach enables Multi2Sim to

call McPAT at each cycle with performance statistics to generate power results. We found

a major problem in this approach. The problem resides in the platform incompatibility of

the latest release of Multi2Sim (version 4.2) and McPAT. To be able to continue with this

approach, we later used the latest build of Multi2Sim instead of latest release. The latest

build of Multi2Sim is built with a combination of two different programming platforms. We

tried to integrate this and McPAT by modifying the building process of Mult2Sim. This

solves one problem of compilation but generated several others. The dependency of several

files was broken.

This motivates us go for our second approach. In this strategy, we keep Multi2Sim

and McPAT completely separated. This enables modularity between the two systems. We

can modify both systems without hampering the other one. Simulation speed is important

for this kind of framework. Having both tools being separated, we can run simulation using

both tools in parallel or at different times. This gives the user an added level of flexibility.

To pass information between the two systems we use XML files. Our modified Multi2Sim

provides required performance statistics in multiple XML files which are then passed to

McPAT to compute energy.

15

Figure 3.2. Multi2Sim architecture.

3.2.1 Generating Cycle Level Data

Multi2Sim is a layered system. The upper layer has a pointer to functions in the lower

layer where different architectural components are simulated. Each component has three

modules: a disassembler, a functional simulator and a detailed (or timing) simulator (Fig-

ure 3.2). Based on the arguments passed, functions of any module of any component can be

called from the upper layer. As we are interested in the performance statistics of Southern

Island structure, functions from the timing simulator for Southern Island micro architecture

are called in the simulation process. Multi2Sim gives performance data for the entire execu-

tion of a program. In our thesis, we need performance statistics at the cycle level to compute

power in a time domain.

The GPU simulation in Multi2Sim starts in function SIGpuRun() in gpu.c file. This

function assigns work groups to available compute units and calls si compute unit run()

for each compute unit. si compute unit run() simulates the work of a compute unit for

each cycle until all the work groups are simulated. All compute units(CU) are called sequen-

tially one by one in each cycle. We introduce necessary methods at this level to generate

performance statistics of several components of a compute unit. Then we added another

method to dump performance data into an XML file for all compute units. We decided to

dump data at every 925 cycles. We chose this number because this is the clock frequency

16

of Southern Island architecture. In this way, we can collect data at nanosecond scale. This

can help us analyze the power consumption of each GPU component over time domain. An-

other point to be noted is that the number of compute units used in each cycle varies which

depends on available work groups. This makes it difficult to format the XML correctly at

this stage. We overcome the problem by adding another method to restructure the XML at

an upper stage in the simulation process.

Other than compute unit statistics, we also need memory statistics. Memory infor-

mation is not available from inside compute unit simulation stage in Multi2Sim. Multi2Sim

simulates memory in a separate subsystem called mem-system. Memory is accessed as a

module using the function mod access(). Memory handlers are simulated in this subsys-

tem. Different cache control protocols are also simulated in this system and are defined in

mod handler nmoesi load(). We modified Multi2Sim and wrote wrapper methods that in-

clude the complete memory subsystem inside GPU simulation process. Using these wrapper

methods, we can easily access the memory modules from inside GPU simulation and pro-

duce performance statistics of each memory components at cycle the level. We also added a

process to output these statistics in an XML format.

3.2.2 Initialization and Parsing

To successfully generate power data for an architecture using McPAT, it shoud be configured

for that architecture first. The way to do that is to provide all the necessary architectural

configuration information in an XML file. We maintain a master XML file that contains

all necessary information for the initial configuration of McPAT for the Southern Island

architecture. This file is loaded at the initialization phase of McPAT and all hardware

configurations are set at this phase.

As we model GPU hardware components in McPAT, we need to pass their configu-

ration information, too. We also do this using an XML file. It is also mandatory to update

the performance statistics of the corresponding GPU hardware blocks inside McPAT. We

17

collect these performance statistics from Multi2Sim. We modified McPAT in a way that

it reads all statistics from XML data files for each sampled cycle and computes power of

individual components. We must read and store all performance statistics across different

sampled cycles in order by their cycle numbers. This is necessary because Multi2Sim gener-

ated cumulative statistics and not statistics specific to a range of cycles e.g., data for cycle

1850 consists of performance statistics for cycle range from 0 to 1850 and not for cycle range

from 925 to 1850. We implemented a separate class to keep track of the previous cycle data

and we subtract this value while loading the data into McPAT hardware blocks. We cannot

produce information for particular cycle range from inside Multi2Sim because there is no

way we can keep track of the previous cycle values in Multi2Sim.

3.3 Power Modeling of Architectural Components

This section explains the process of building the GPU power model using McPAT. In this

process, we model several GPU components inside McPAT. The major difficulty of modeling

GPU power is lack of detailed information about GPU hardware architecture. We model

our components based on Southern Island GPU architecture. We use publicly available

resources that describe the microarchitecture of GPU and rely on McPAT to model the

micro-architectural blocks. Table 3.1 showcases our modeled components and the basic

structure used to model these components.

The configurable input parameters to McPAT are largely composed of general technol-

ogy parameters (i.e., technology node, clock frequency, etc.) and component-level values such

as cache-line size, decoder width etc. These parameters are adjustable through Multi2Sim

and McPAT interface. Table 3.2 lists some input technology parameters used by McPAT to

define device-level characteristics of the chip and the GPU specific values assigned to these

parameters in this thesis.

18

Table 3.1. Modeled components.

Description
Microarchitectural

Components
Basic

Structures

Register Files
Register file banks,
Operand collectors,
Collection network

SRAM,
Cross bar

Local Memory Local memory banks, local memory network Array, Cross bar
Caches L1 cache, L2 cache Array
Execution Units ALU, FPU Base functional units

Table 3.2. Technology parameters.

Parameter Available Options GPU

Clock frequency in unit of Hz 925MHz
Feature size 16nm to 180nm 28nm
Core type Out-of-Order, in-order In-order
Embedded True, false False
Interconnect projection Aggressive, conservative Aggressive
Component type Core, uncore Core

Device type
High-performance type,
low standby power type,
low operating power type

High-performance type

Homogeneous cores
1 means all cores are the same,
0 means heterogeneous

0

Number of cache levels Number of cache levels 2
Number of cores Number of cores 32

3.3.1 L1 Cache

Southern Island architecture has two kinds of L1 data caches. One cache (L1D1) is shared

across four compute units and another cache (L1D2) is private to each compute unit. The

L1 cache is 16KB and 4-way set associative with 64B lines. It follows the LRU replacement

policy. The L1 cache has a write-through, write-allocate design with a dirty byte mask. Both

caches are implemented as array structure in the McPAT. Both scalar and vector caches have

the same structure except that they work on single data and multiple data respectively. We

modeled both of them as data cache in McPAT.

Before describing the modeling process of cache, we discuss the cache structure. Cache

19

Figure 3.3. A 2-way set associative cache architecture.

is a fast on chip memory. It is on the top of the memory hierarchy. Figure 3.3 shows a 2-way

set associative cache architecture. As we can see, a cache includes two major components:

tag array and data array. Whenever data is needed, information is read from the tag array

first. It is then compared to the tag bits of the address. In an N-way set-associative cache, N

comparators are required for this. The results of the N comparisons are used to drive a valid

(hit/miss) output as well as to drive the output multiplexers. These output multiplexers

select the proper data from the data array and drive the selected data out of the cache. The

tag and data arrays are large enough that it is inefficient to implement them as single large

structures. So they are partitioned horizontally and vertically [26].

We model the cache using basic SRAM component from CACTI [28]. CACTI is a

power and timing estimation tool for memory architectures. It models the basic circuit block

that can be used to model cache architectures. CACTI is also integrated inside McPAT. This

SRAM includes both tag array and data array. Multiple arrays are used to build a cache.

Each of these is called a bank. The advantage of using banks is that they can be accessed

simultaneously. A data or tag array is divided into a number of sub-arrays to reduce the

delay. A collection of four sub-arrays are called a Mat. A cache block is scattered across a

rows of Mats. The row number corresponding to a particular block is determined based on

the block address. Each row (of mats) in an array is referred to as a sub-bank. Figure 3.4

20

Figure 3.4. A physical cache architecture.

displays the physical structure of a cache.

Once we have modeled the cache, we also need to model the cache controller. The

cache controller module consists of three components:

• Miss buffer: Cache stores the missed memory requests into the miss buffer and continue

working on later requests while waiting for memory to supply previous misses.

• Fill buffer: Fill buffer accumulates parts of the cache line while they are coming from

other levels of memory hierarchy.

• Prefetch buffer: This holds the prefetched data.

• Write back buffer: WBB is used to store the evicted dirty cache lines. The evicted

lines are streamed out to the lower level memory opportunistically.

The write back buffer is only needed if the cache has write back policy. All of these compo-

nents are modeled with Array or SRAM structure component from CACTI [28].

21

Once we have the cache architecture modeled, we can implement the method to

compute the power for the cache components. Power is computed in two stages. In the

first stage we compute the peak power for the cache component based on architectural

configurations. The second stage computes the runtime dynamic power. In both cases,

to get total energy consumption of the L1 cache we need to sum the individual energy

consumption of each cache component.

The runtime energy consumption depends on the cache access statistics which includes

cache read hit and miss as well as cache write hit and miss. We get this information from our

performance simulator. We update the data cache statistics directly from the performance

simulator output. To update cache controller’s statistics we need to consider the cache policy

and data cache statistics. Table 3.3 describes the different statistics of the cache controllers

based on cache policy.

Table 3.3. Cache controller statistics.

Cache controllers Parameters

Write back Cache write miss
Write through Cache read miss

3.3.2 L2 Cache

L2 cache is the central point of coherency in the GPU. L2 cache is shared across all 32

compute units. The L2 cache is 16 way associative, with 64B cache lines. It has the LRU

replacement policy. In Southern Island architecture, it is 768KB in size. It is a write-back

and write allocate design, so it absorbs all the write misses from the L1 data cache. The L2

cache is physically partitioned into slices that are coupled to each memory channel.

To model L2 cache we use the Array structure of McPAT. As this cache is shared

across all compute units, we add a L2 cache component object at the device class. At

the initialization of the device class we initialize the L2 cache structure. This is done in two

steps. At the first step, we create a set of input parameters for the cache structure. The input

22

parameters are passed in an XML configuration file. We need the following configuration to

set the structure of L2 cache.

Table 3.4. L2 cache configuration.

Configurations SI value

Capacity 768
Block width 64
Associativity 16

Cache policy
1 (write-back with
write-allocate)

Once we have the shared cache configured, we need to pass the performance statistics

from Multi2Sim to calculate runtime energy. The runtime energy is computed using the

formula in Eq 3.4.

Powerl2cache = ReadHit ∗ per access read energy +ReadMiss ∗ tagarray read energy+

WriteMiss ∗ tagarray read energy +WriteAccess ∗ per access write energy

(3.4)

3.3.3 Local Memory

Local memory is scratch-pad memory specific to a work-group; accessible only by work-

items belonging to that work-group. Using local memory (known as local data store, or

LDS) typically is an order of magnitude faster than accessing host memory through global

memory. The LDS is a heavily banked design that supports intensive parallel accesses.

AMD Southern Island architecture (a.k.a GCN architecture) has 64KB of on chip local

memory with 16 or 32 banks for each computing unit [2]. In our McPAT implementation of

local memory we used 32 banks. Each bank contains 512 entries which are 32-bit wide. A

bank can read and write a 32-bit value across an all-to-all crossbar. Typically, the LDS will

coalesce 16 lanes from two different SIMDs each cycle, so two wavefronts complete every 4

cycles. An instruction which accesses different elements in the same bank takes additional

cycles to finish.

23

Figure 3.5. Local memory model.

McPAT does not have local memory component. We added this GPU specific com-

ponent to mimic GPU hardware architecture. To implement local memory we need on chip

memory structure and and interconnect module. Our implemented model is displayed in

Figure 3.5.

We leveraged array structure component of McPAT along with a 64×32 crossbar. As

with other components, first, we need to configure the local memory and then we need to add

compute methods. The process starts from adding elements in the McPAT configuration files

and adding methods to parse this. Local memory is an on chip memory and it has similar

architecture as data cache. We are using Array structure to build the local memory structure.

In the initialization phase, we set the parameters as we have done with data cache. The main

difference with data cache and local memory is that local memory communicates with the

execution unit through an interconnection network. To build this interconnection network

we use a basic module from CACTI called crossbar.

A crossbar has every node of the network connected to every other node (Figure 3.6).

Because any node can send simultaneous messages to every other node in the system without

conflicts, this network topology is nonblocking. Before the initialization of the local memory,

we build a new crossbar network. To build a cross bar we need four configuration parameters.

Table 3.5 shows the configurations needed to build a cross bar network.

After local memory and crossbar are configured and initialized, we write the method

to compute the energy consumed by these components. The computation is done in two

24

Figure 3.6. Crossbar switch.

Table 3.5. Crossbar configurations.

Configurations SI value

Number of input
Number of
functional units

Number of output
Number of
functional units

Bandwidth 32

steps. First, based on the performance statistics, we compute the power consumption of

local memory. The formula we use here is tantamount to that of L1 cache. Second, we

calculate the power consumption of crossbar. There is no separate performance statistics for

crossbar because its statistics completely depend on the statistics of local memory. Crossbar

is accessed every time local memory is accessed. So, to compute the power of a crossbar we

need to compute the total access of local memory and multiply it with the per access energy

for crossbar. The formula is shown in Eq 3.5.

Powercrossbar = BasePowercrossbar ∗ (ReadHitlocalmemory +WriteHitlocalmemory) (3.5)

25

Figure 3.7. Register file architecture.

3.3.4 Register file

The next component modeled is the register file. A register file is an array of processor

registers. It is used to stage data between memory and the functional units on the chip.

Register files are multi-banked which allows multiple access simultaneously. The register

files in GPU are different from that of CPU in that there are tens of thousands of registers

to hold the register state of all the threads running on an compute unit. Moreover, the

register file has to support many concurrent accesses. GPUs have a multi-banked register

file architecture to avoid the area and power overhead of a multi ported register file. Crossbar

networks and operand collectors are used to transport operands from different banks to the

appropriate SIMD execution lane. Arbiter is responsible for serializing the register file access,

and the operand collectors are used to buffer the data already read from the register file. The

register files bandwidth and size determines the number and size of banks. Each compute

unit contains 65536 32-bit registers [25], which are shared by all threads executed on the

same compute unit. We model the register file as 32 dual-ported (one read and one write

port) banks (Figure 3.7).

26

We estimate the power consumption for these memory arrays using CACTI. We model

a crossbar interconnection network. This is used to transfer operands from register file banks

to operand collectors. The crossbar interconnection network model is used while computing

the power of our register-file power. The crossbar network’s parameters are determined by

the number of register-file banks. Each wavefront operand accesses the crossbar and arbiter

once. So, we divide the total register access by 64 to get the access count of the crossbar and

arbiter. For the Southern Island architecture, we model a crossbar network with 32-input

× 32-output. The operands read from a register file bank are routed to the proper operand

collector. We model each operand collector as an Array structure and initialize in a similar

way as cross bar. Operand collector statistics is equal to register file access statistics.

3.3.5 Functional Units

Each compute unit consists of an execution unit. The execution unit consists of two units:

scalar unit and vector unit. The major difference between these two execution units is the

the number of values they work on. The Scalar unit works on a single value while vector or

SIMD units work on multiple values [2]. Another difference is their instruction formats and

encodings [3].

• Scalar Unit: The Scalar unit consists of an ALU(functional unit) that is responsible

for executing scalar arithmetic-logic operations. The full integer ALU acts as an ad-

dress generation unit (AGU) to read from the data cache. The operations performed

on this unit consist of 32-bit integer arithmetic. This ALU can also perform operations

on the Program Counter. AMD has defined 17 instructions to be executed on this ALU

including signed and unsigned integer operations.

• Vector Unit: A Vector unit consists of two functional units ALU and FPU. ALU is

responsible for integer operations whereas FPU is allocated to perform double precision

floating point operations with full speed denormals and all rounding modes. The

27

functional units can execute a single precision multiply-add or integer operation. The

integer multiply-add is particularly useful for calculating addresses within a work-

group [2].

Both scalar and vector units consist of only two different types of functional units:

ALU and FPU. To model these components in McPAT, we leverage McPAT’s provided

logical units [15]. We model two functional units inside McPAT to mimic Southern Island

execution units. They are : ALU and FPU.

The first challenge to model the functional units in McPAT is to get the proper statis-

tics from our performance simulator that are required to generate power from McPAT. We

require certain performance statistics to compute power of our modeled functional units us-

ing McPAT. Table 3.6 describes the statistics required.

Table 3.6. Performance statistics for functional unit.

Parameter Definition
ialu accesses Number of instruction issued to the ALU
fpu accesses Number of instruction issued to the FPU

As our performance simulator Multi2Sim [25] does not provide these statistics, we

need to modify the source code as necessary to generate statistics that comply with McPAT.

Multi2Sim gives the total number of scalar unit instructions and the total number of vector

unit instructions. In the initial implementation, we used scalar instructions as ialu access as

the scalar unit only works with integers. Then we modeled vector instruction as fpu access.

But this was not an effective implementation as in this way, some integer instructions are

using FPU in McPAT. This motivates us for further modification of Multi2Sim. Our mod-

ifications comprise two steps- implementing a mechanism to generate required statistics for

each functional unit and output them for each compute unit at cycle level.

To generate functional unit specific instructions and count their numbers we need

to identify each instruction at the microcode level. Multi2Sim implements any structure in

28

three segments: timing segment, emulator segment and assembly segment. The first segment

defines the architecture and collects performance statistics, the second level emulates the

operation of the architecture and the last segment holds the instruction set and the format

of different instructions. We need to modify the first two levels. First, we modified the

compute unit component and added required statistics. To update the statistics counter

we modified the emulator segment as well as the timing segment. In the timing segment,

Multi2Sim works sequentially for each cycle and for each compute unit. At each cycle, for

each compute unit, we modified the issue stage of the compute units. In this stage, the micro

instructions are decoded. We check each microinstruction’s type and format. We compare

the microcode instruction type with instruction type defined in assembly segment. Based

on the result of our comparison, we update corresponding statistics of the compute unit.

Multi2Sim increases the vector instruction count once for each wavefront. This does not give

us the total number of instructions. We changed the wavefront emulation method and added

statistics for the wavefronts. For each compute unit, while counting the vector instruction

count we check the work item count of the assigned wavefront and multiply our instruction

count with the work item count. This way, we get the total number of instructions. One

point should be noted here, we differentiate the scalar ALU integer operations and vector

ALU instructions. We do this because they have different latency and power depends on the

latency. At each cycle in the fetch state, Multi2Sim emulates the instructions. We modified

the emulator component. At each cycle of the emulator execution phase, based on the

micro instruction type, name and format we update the emulator statistics. Once we have

the statistics update mechanism implemented, we put that information in our previously

implemented method to dump this information in a XML file format for each compute unit.

The next step is to model the functional units inside McPAT. We have added three

type of functional units to our compute unit’s execution unit. In the initialization phase of

the functional units, we specify the type of the functional unit: ALU or FPU. We also need to

pass the number of functional units for each compute unit, compute unit id, operating volt-

29

age and latency. Based on the technology node and operating voltage, McPAT gives us a per

access energy of the logical unit. We use this to calculate the energy for each functional unit.

runtime power = access count ∗ per access energy ∗ coefficient ∗ latency (3.6)

Equation 3.6 describes how the power is calculated for functional units. Coefficient

depends on the technology node. McPAT has fixed coefficients for each technology node from

ITRS road map [5]. That coefficient is then multiplied by a scaling factor if the technology

node is not implemented in McPAT. The latency information is fixed and we get this from

the Southern Island architecture configuration file of Multi2Sim.

3.4 Hotspot and HeatMap

Power dissipation is spatially non-uniform across the chip which leads to hot spots and

spatial gradients that can cause timing errors or even physical damage. Heat map or heat

distribution over time to identify hotter segments in an architecture is an important segment

of this thesis and its future improvement. We need a thermal model to accurately characterize

current and future thermal stress, temporal and spatial non-uniformities, and application-

dependent behavior. To evaluate architectural techniques for managing thermal effects a

model of temperature is needed. Developing a new thermal model is out of the scope of this

thesis. Fortunately, there exists a well established thermal model and hot spot detection

tool named HotSpot [23].

HotSpot works by converting a power model to equivalent RC circuit model. This is

based on the duality [13] principal between heat transfer and electrical phenomena. Heat flow

can be described as a current passing through a thermal resistance, leading to a temperature

difference analogous to a voltage. The rationale behind this duality is that current and

heat flow are described by exactly the same differential equations for a potential difference.

Thermal capacitance is also necessary for modeling transient behavior, to capture the delay

30

before a change in power results in the temperature reaching steady state. Lumped values

of thermal R and C can be computed to represent the heat flow among units and from each

unit to the thermal package.

R =
t

k.A
(3.7)

where t is the thickness of the block, A is the area and k is the thermal conductivity of the

material per unit volume.

C = c.t.A (3.8)

where c is the thermal capacitance per unit volume of an element.

The thermal Rs and Cs together lead to exponential rise and fall times characterized

by thermal RC time constants analogous to the electrical RC time constants. In the thermal-

design community, these equivalent circuits are called compact models, and dynamic compact

models if they include thermal capacitors. This duality provides a convenient basis for an

architecture-level thermal model. For a micro-architectural unit, heat conduction to the

thermal package and to neighboring units are the dominant mechanisms that determine the

temperature.

Hotspot assumes a package as a three layer die: Silicon Die, Heat Spreader and

Heatsink. The silicon die layer holds the block design. Hotspot tool assumes to have registers

and capacitance between each block and each layer.

Figure 3.8 shows a sample HotSpot RC model. The RC model consists of a vertical

model and a lateral model. The vertical model captures heat flow from one layer to the

next, moving from the die through the package and eventually into the air. For example,

Rv2 accounts for heat flow from Block 2 into the heat spreader. The lateral model captures

heat diffusion between adjacent blocks within a layer, and from the edge of one layer into

the periphery of the next area e.g.,R1 accounts for heat spread from the edge of Block 1 into

the spreader, while R2 accounts for heat spread from the edge of Block 1 into the rest of the

31

Figure 3.8. HotSpot RC model for a floor plan with three architectural units [23].

chip. At each time step in the dynamic simulation, the power dissipated in each unit of the

die is modeled as a current source at the node in the center of that block.

Adding HotSpot to our power-performance framework consists of two steps. First,

initialization information is passed to HotSpot. This consists of configuration information

and an adjacency matrix describing the floor plan and an array giving the initial temperatures

for each architectural block. Then at runtime, the power dissipated in each block is averaged

over a user-specified interval and passed to HotSpots RC solver, which returns the newly

computed temperatures. Figure 3.9 demonstrates the steps involved in generating the heat

map.

• Configuration and floor plan: We configure the HotSpot tool with our our device’s

frequency. We also set the ambient temperature. Other configurations include the

thermal conductivity and resistance of chip and heat sink. Next we generate a floor

plan using floor plan generator. Floor plan is the die design of the GPU HW. This

includes all the components of a GPU HW. We pass it to the HotSpot tool. A floor

plan description file holds all the information needed to be used by the HotSpot tool.

32

Figure 3.9. Flowchart for generating heat map.

The file follows the following format:

Table 3.7. Floor plan file structure.

Unit-name Width Height Left-x Bottom-y

All the units are in meters. One thing has to be noted is that the (x,y) value is relative

to the lower left most corner of the die. This means the (0,0) point is on the left-bottom

corner of a die. We modified the base floor plan generator methods to produce a floor

plan for our GPU HW. Throughout all the benchmark tests, we consider this floor

plan fixed. HotSpot provides a tool to convert the floor plan file (.flp) file into a visual

design and writes it into a .pdf file.

• Power Data: To get thermal data and heat map, we need to pass power data for each

individual component of the GPU HW. We get the data from our power-performance

framework. We have developed a tool to convert the power data from our power-

performance framework to HotSpot in an acceptable format.

Once HotSpot has the floor plan and power data component it computes the R and

33

Table 3.8. Power trace file format.

Cycle Component 1 Component 2 Component N

C value and then generates a RC circuit. The differential equation to solve a RC circuit is

as follows:

I = C.
dV

dT
+
V

R
(3.9)

∆V =
I

C
.∆t+

V

RC
.∆t (3.10)

Based on the duality [13], equation 3.10 can be written as follows [22]:

∆Ti =
Pi

Ci

.∆t+
Ti
RiCi

.∆t (3.11)

RC circuit of equation 3.11 is then solved based on fourth order Runge-Kutta (RK4) method.

34

CHAPTER 4

VISUALIZATION

It is important to display the data we get from our power model. Our power model

framework thus includes a graphical user interface with multiple options that display the

energy consumption we get from our power model. We display power consumption not only

in a time domain at nanosecond level but also in the space domain. This shows the heat

dissipation across different architectural components over time due to the power consump-

tion of different components. This chapter describes several techniques that we followed to

visualize and display power data in a space time domain.

4.1 Excel

At the beginning, we thought of having an interactive excel sheet to display data and graph.

The benefits of using excel is:

• Portable. It can be transferable to any platform.

• Easy to manipulate. If someone wants different type of graph, one can easily do that

as Excel provides lots of different graph options.

35

We can use macro or C++ Excel interface to program interactive Excel sheets to

parse and display data.

The first approach requires using of open Excel development interface for C++. We

installed libreoffice-dev. This holds all the necessary libraries needed to build a libre-

office application using C++. The main challenge of developing an application with open

office is the lack of enough documentation on open office library.

The next approach was to use Excel macro (written in Visual Basic) to make Excel

sheets interactive as an application. We did this in two steps. First, we counted the number

of cycles present in the output data and drew multiple GPU blocks equal to the total number

of cycles using macro code. Each GPU block contains all the components modeled using

McPAT. Second, for each cycle, power consumption data is parsed from the output files and

values for different components of a GPU block are collected and stored in a data structure.

These values are then compared against a predefined threshold and the corresponding com-

ponent of each GPU block in the excel is colored based on the difference between the actual

value and the threshold value.

A major challenge of this approach is writing the macro to parse input data and

format excel cells. This approach has several disadvantages and is not suitable for our

framework.

• Excel cells do not have a good visualization. It is hard to have a proper gradient color

values for the cells to demonstrate heat.

• Excel is not scalable as there are limitations on the number of columns and we have

less control over the cells.

4.2 OpenCV

We also developed a tool to display our data using OpenCV [1]. OpenCV is a cross platform

library of programming functions mainly aimed at real-time computer vision. It has built in

36

Figure 4.1. Power data gradient.

functionalities to display and manipulate images. The advantage of using OpenCV is that

we can draw geometric shapes and write text on a image using OpenCV.

Our display tool includes a class for PowerData. This class includes the all modeled

GPU components. Each component consists of three items: area, peak dynamic and run

time dynamic power. The system starts with counting the number of cycles in the output.

Then we parse and store data into an array of PowerData objects. We create a large image

matrix of size 725×210 pixels using OpenCV. The size was carefully taken so that all GPU

components can be drawn in a single matrix. All GPU components are drawn on this image

matrix. Our initial design includes 32 cores of size 40×30 pixels, 8 L1 cache of size 180×30

pixels and one L2 cache of size 715×30 pixels. After drawing the individual components, we

color them based on their power data. At first, we normalized the power data into a range

from 0 to 255 to use it in RGB color space. We want to have a gradient look (Figure 4.1) to

have a better understanding of power transitions.

In Figure 4.1, green means no power is consumed and red means highest possible

amount of power is consumed. We convert power data into RGB values using the following

formula.

B = 0

if 0<power≤ 127 then

green← 255

red← 2 ∗ power

else

red← 255

green← 255− 2 ∗ (power − 128)

end if

37

Figure 4.2. Power data visualization using OpenCV.

We apply this formula to each component to get their color based on the power

consumed by that component. A region of interest (ROI) is selected with appropriate pixel

positions and height and width. The color of ROI is set to the color we get from the above

formula. It has to be noted that every time an object or text is drawn on an image matrix,

it overwrites the previous image matrix values. As a result text has to be written again on

ROI after coloring the ROI.

A movable track bar is added to the tool. It can move from zero to maximum number

of cycles. This gives the facility to observe power data at different times of program execution.

All GPU blocks are redrawn every time the cycle value is changed using the track bar with

power data acquired from that cycle. Figure 4.2 displays the current GUI for power data

visualization.

This solution still has some potential problems.

• We cannot pass user input to the application.

• It is not scalable and we cannot add elements to it.

• We cannot draw graphs using OpenCV.

38

To overcome the problems with the previous two tools, we developed our final tool

using Qt framework.

4.3 Qt Framework

Qt is a cross-platform application and UI framework used for device creation and application

development supporting deployment to over a dozen leading platforms. The Qt framework

comprises of modular cross-platform C++ class Qt libraries and an Integrated Development

Environment with Qt Creator IDE. The visualization segment consists of two segments:

settings and display. In the settings segment, the user can pass input data and select any of

the three visualization options: Power Consumption, Heat Map and Graph.

We have modularized the visualization part so it is not dependent on the power

performance tool. It is an stand alone application that only needs a text file including the

power information. As it is based on Qt, it is portable, too.

The PowerData class works with the power data. It reads data from a text file and

holds the data to show using the UI class.

Qt does not provide graph drawing facilities in the base package. We have integrated

another package named QCustomPlot which provides a facility to draw different kinds of

graphs. With the graph option selected, the user can have the option of selecting any HW

component from a drop down list which will then show the power graph for that component

over time. The heat map option shows the heat distribution over time across different

components of the GPU HW. The power consumption option gives the user an option to see

consumed power at a certain cycle. The user can move a slider to see power consumption of

different components at different cycles. Figure 4.3 and Figure 4.4 displays screen shots of

our graphical interface.

39

Figure 4.3. Graphical display of power for a single component.

Figure 4.4. Graphical display of heat consumption of each component for a program.

40

CHAPTER 5

EXPERIMENTS AND RESULTS

This chapter presents our experiments and their results. We also describe the bench-

marks used and include the hot spot visualization. All experiments were simulated using

our modified Multi2Sim for performance statistics, modified McPAT for power statistics and

configured HotSpot for heat profiling. All power data is in watt (W) and temperature data

is in Celsius for the graphs and Kelvin for the heat map.

5.1 Benchmark Programs

We use the following benchmark programs in our experiments to cover different power con-

sumptions across different hardware components.

• Matrix Multiplication: This is the most widely used benchmark program for any

GPU experiment. The algorithm is highly parallel and possesses interesting memory

access pattern. The program simply takes two matrices as input and multiplies them.

The result is stored in another matrix.

• Bitonic Sort: As the name suggests, this is a sorting algorithm. It was chosen

because Bitonic Sort is well-known parallel algorithm. It works by creating bitonic

41

sub-sequences in original array, starting with sequences of size 4 and continuously

merging sub-sequences to generate bigger bitonic subsequences. Finally, when the size

of this subsequence is the size of the array, it means the entire array is a bitonic

sequence. Repeating the steps makes the array a part of a bitonic subsequence that

is twice the size of the array. Thus, this part of the sub-sequence, the full array, is

monotonic (sorted) [4].

• Reduction: It is another widely used parallel algorithm that highly leverages the

parallel computation power of GPU. In this program, an array is divided into multiple

blocks. Each block invocation of the kernel reduces the input array block to a single

value; it then writes this value to output and reduces the block sums to a final result,

which is sent to the host program.

5.2 Results

• Matrix Multiplication: The program takes two matrices as input and multiplies

them. The result is stored in another matrix. We took two matrices of height 128 and

width 128. The program takes 40594 cycles to complete on Multi2Sim. The program

has total 16 work groups which is scheduled to 16 compute units of the GPU. This

resulted in a power consumption only by the 16 compute units. Figure 5.1 shows the

average power consumption across compute units. As 16 work groups are scheduled

to only 16 compute units, other 16 compute units are idle and do not consume power.

We can also see that the average power consumption of all these 16 compute units are

similar. This is because the work group scheduler evenly distributes the works across

all compute units. Thus all compute units have similar work loads and they consume

similar amount of power. Figure 5.2 describes the power consumption of compute units

across all cycle intervals. As expected, they have similar pattern. Figure 5.3 describes

the average power distribution of each component in GPU hardware. Functional units

42

CU

Vector

L2

Scalar
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
o
re
1

C
o
re
2

C
o
re
3

C
o
re
4

C
o
re
5

C
o
re
6

C
o
re
7

C
o
re
8

C
o
re
9

C
o
re
1
0

C
o
re
1
1

C
o
re
1
2

C
o
re
1
3

C
o
re
1
4

C
o
re
1
5

C
o
re
1
6

C
o
re
1
7

C
o
re
1
8

C
o
re
1
9

C
o
re
2
0

C
o
re
2
1

C
o
re
2
2

C
o
re
2
3

C
o
re
2
4

C
o
re
2
5

C
o
re
2
6

C
o
re
2
7

C
o
re
2
8

C
o
re
2
9

C
o
re
3
0

C
o
re
3
1

C
o
re
3
2

A
ve

ra
ge

 P
o

w
er

 in
 W

at
t

Compute Unit

Figure 5.1. Average power consumption of different units.

and register files consume the most power (85%). Figure 5.4 demonstrates the temper-

ature of the compute units over the total execution time period. HotSpot assumes the

initial chip temperature is 45◦C. 16 idle compute units have temperature close to this.

Small temperature rise shown in Figure 5.4 is caused by the heat transfer from the

active 16 compute units. Figure 5.5 shows the heat map for the matrix multiplication

application. HotSpot uses localized heat information to color. If an area is colored

red that means that area is relatively hotter than its surroundings. As the first 16

compute units and their vector caches are used in the simulation, they consume power

and eventually dissipate heat to surroundings. This results in more temperature at the

center of the compute units.

• Bitonic Sort: The next application tested is Bitonic Sort. We used 1000 elements

to sort. This program runs in 67195 cycles and has a total 28160 work groups. All

compute units are evenly distributed to compute units and as total work group number

is more than 32, all compute units are used. We show the power consumption across

cycle intervals in Figure 5.6. The temperature consumption is shown in Figure 5.8.

43

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

P
o

w
e

r
in

 w
at

t

Cycle Interval

Core1 Core2

Core3 Core4

Core5 Core6

Core7 Core8

Core9 Core10

Core11 Core12

Core13 Core14

Core15 Core16

Core17 Core18

Core19 Core20

Core21 Core22

Core23 Core24

Core25 Core26

Core27 Core28

Core29 Core30

Core31 Core32

Figure 5.2. Power consumption of compute units across cycle intervals.

85%

14%

1% 0%

Execution Units and
Register Files

Vector

L2

Scalar

Figure 5.3. Power consumption distribution.

44

46

48

50

52

54

56

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Te
m

p
e

ra
tu

re
 in

 C
e

ls
iu

s

Cycle Interval

Core1 Core2

Core3 Core4

Core5 Core6

Core7 Core8

Core9 Core10

Core11 Core12

Core13 Core14

Core15 Core16

Core17 Core18

Core19 Core20

Core21 Core22

Core23 Core24

Core25 Core26

Core27 Core28

Core29 Core30

Core31 Core32

Figure 5.4. Temperature of compute units across cycle intervals.

44

Figure 5.5. Heat map for Matrix Multiplication operation.

We can see that all 32 compute units are heated.

Figure 5.9 shows the heat map of the process. All compute units are marked red as

they are most power consuming segment. We see that compute units in the middle are

marked more red than the compute units on either side. There are caches in between

the compute units on either side which consume less power and produce less heat. As

a result they absorb some heat from the compute units. But for compute units in the

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

P
o

w
er

 in
 W

at
t

Cycle Interval

Core1 Core2
Core3 Core4
Core5 Core6
Core7 Core8
Core9 Core10
Core11 Core12
Core13 Core14
Core15 Core16
Core17 Core18
Core19 Core20
Core21 Core22
Core23 Core24
Core25 Core26
Core27 Core28
Core29 Core30
Core31 Core32

Figure 5.6. Power consumption of compute units across cycle intervals(Bitonic Sort).

45

83%

16%

0%
1%

0%

Execution Unit and Register
File

Vector Cache

Local Memory

Scalar Cache

L2 Cache

Figure 5.7. Average power consumption of different units(Bitonic Sort).

88

90

92

94

96

98

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Te
m

p
e

ra
tu

re
 in

 C
e

ls
iu

s

Cycle Interval

Core1 Core2

Core3 Core4

Core5 Core6

Core7 Core8

Core9 Core10

Core11 Core12

Core13 Core14

Core15 Core16

Core17 Core18

Core19 Core20

Core21 Core22

Core23 Core24

Core25 Core26

Core27 Core28

Core29 Core30

Core31 Core32

Figure 5.8. Temperature of compute units across cycle intervals (Bitonic Sort).

46

Figure 5.9. Heat map for Bitonic Sort process.

middle, there is no segment with less power consumption between the compute units

in the middle which can work as a heat sink to absorb heat. So, heat from compute

units in the middle make them more heated compared to the other compute units.

• Reduction: This small application takes 1000 elements as input. In this case, we only

have one work group and the program takes 7720 cycles to complete. Only one work

group is scheduled to one compute unit. As a result only one compute unit will be

used for execution and only that compute unit consumes power. This behavior is shown

in Figure 5.10. We can see only one line which represents one active compute unit.

Temperature graph (Figure 5.11) also demonstrates the similar pattern where only

one compute unit is hot and the other compute units are in initial chip temperature.

Figure 5.12 shows the heat map. Only one compute unit is marked red as that is the

only compute unit that has been used during entire program execution.

47

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

P
o

w
e

r
in

 W
at

t

Cycle Interval

Core1 Core2

Core3 Core4

Core5 Core6

Core7 Core8

Core9 Core10

Core11 Core12

Core13 Core14

Core15 Core16

Core17 Core18

Core19 Core20

Core21 Core22

Core23 Core24

Core25 Core26

Core27 Core28

Core29 Core30

Core31 Core32

Figure 5.10. Power consumption of compute units across cycle intervals(Reduction).

43.5

44

44.5

45

45.5

46

46.5

47

47.5

48

48.5

49

1 2 3 4 5 6 7 8

Te
m

p
e

ra
tu

re
 in

 C
el

si
u

s

Cycle Interval

Core1 Core2

Core3 Core4

Core5 Core6

Core7 Core8

Core9 Core10

Core11 Core12

Core13 Core14

Core15 Core16

Core17 Core18

Core19 Core20

Core21 Core22

Core23 Core24

Core25 Core26

Core27 Core28

Core29 Core30

Core31 Core32

Figure 5.11. Temperature of compute units across cycle intervals (Reduction).

48

Figure 5.12. Heat map for Reduction process.

49

CHAPTER 6

CONCLUSION

The architecture community needs a GPU power model. Though there have been

works on NVIDIA’s Fermi GPU architecture, no work has been done on AMD Southern

Island GPU architecture. In this thesis, we develop a framework for power model and hot

spot detection targeting AMD Southern Island GPU architecture. Our model is configurable

and provides power and temperature data at a cycle level. In this thesis, we developed a

power model based on McPAT. We also presented methodologies to model different com-

ponents of GPU hardware using McPAT. Our model estimates the power consumption of

different GPU components by using performance statistics from Multi2Sim. Our framework

integrates HotSpot and detects hot spots in the GPU hardware floor plan. We also devel-

oped a graphical user interface that brings everything under one umbrella. Our framework

is robust and can be extended to model future 3-D chip power and heat. Future work of this

thesis includes refinements and validation. This is an important task providing that there

might be many modeling uncertainties.

GPU hardware architecture is not well documented and very little information is

available due to proprietary reasons. We had to rely on the limited information that vendors

provide. Because of this, we had to make some assumptions regarding hardware microar-

50

chitecture in our model. We need the refinement and validation process to adjust these

assumptions. We need to verify the data generated from our model against actual physical

power data. It is not possible to get physical power values for each component of a GPU

device. We can follow micro-benchmarking process to do this. In this case, each micro-

benchmark is designed in such a way to isolate a specific component’s power consumption,

the error in total power for the micro-benchmarks would help to improve the modeling pa-

rameters of the exercised component during refinement process. We could not perform this

step due to time constraint and lack of hardware equipment to physically measure the power

of a GPU device. This is left as a future work. Notwithstanding its limitations, our model

may offer some insight on power and heat dissipation of different GPU hardware components

over time during the execution of a program.

51

BIBLIOGRAPHY

52

BIBLIOGRAPHY

[1] Opencv (open computer vision). http://opencv.org/,.

[2] AMD. Amd graphics cores next (gcn) architecture. http://www.amd.com/Documents/
GCN_Architecture_whitepaper.pdf, 2012. Accessed: 2014-04.

[3] AMD. Southern islands series instruction set architecture. http://developer.

amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_

Architecture.pdf, 2012.

[4] AMD. Amd sdk sample browser. http://developer.amd.com/app-sdk/codelisting.
php?q=Accelerated%20Parallel%20Processing, 2014. Accessed: 2014-04.

[5] Semiconductor Industries Association. Model for assessment of cmos technologies and
roadmaps (mastar). http://www.itrs.net/models.html, 2007.

[6] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on, pages
163–174. IEEE, 2009.

[7] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations, volume 28. ACM, 2000.

[8] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of irregular
programs on gpus. In Workload Characterization (IISWC), 2012 IEEE International
Symposium on, pages 141–151. IEEE, 2012.

[9] Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. Tree structured anal-
ysis on gpu power study. In Computer Design (ICCD), 2011 IEEE 29th International
Conference on, pages 57–64. IEEE, 2011.

[10] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model. In
ACM SIGARCH Computer Architecture News, volume 38, pages 280–289. ACM, 2010.

[11] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end proces-
sors: Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 93. IEEE Computer Society, 2003.

[12] Russ Joseph and Margaret Martonosi. Run-time power estimation in high performance
microprocessors. In Proceedings of the 2001 international symposium on Low power
electronics and design, pages 135–140. ACM, 2001.

53

[13] Al Krum. Thermal Management in The CRC Handbook of Thermal Engineering. 2000.

[14] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy optimizations
in gpgpus. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, pages 487–498. ACM, 2013.

[15] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on, pages 469–480. IEEE, 2009.

[16] Zhi Li. Power Modeling and Optimization for GPGPUs. PhD thesis, University of
Kansas, 2013.

[17] Jieun Lim, N Lakshminarayana, Hyesoon Kim, William Song, Sudhakar Yalamanchili,
and Wonyong Sung. Power modeling for gpu architecture using mcpat. Georgia Institute
of Technology, Tech. Rep, 2013.

[18] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Statistical power consumption
analysis and modeling for gpu-based computing. In Proceeding of ACM SOSP Workshop
on Power Aware Computing and Systems (HotPower), 2009.

[19] Aaftab Munshi. The opencl specification, 2012.

[20] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and Satoshi Mat-
suoka. Statistical power modeling of gpu kernels using performance counters. In Green
Computing Conference, 2010 International, pages 115–122. IEEE, 2010.

[21] Karthik Ramani, Ali Ibrahim, and Dan Shimizu. Powerred: A flexible modeling frame-
work for power efficiency exploration in gpus. Worskshop on GPGPU, 2007.

[22] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan. Control-theoretic techniques
and thermal-rc modeling for accurate and localized dynamic thermal management. In
Proceedings of the 8th International Symposium on High-Performance Computer Archi-
tecture, HPCA ’02, pages 17–, Washington, DC, USA, 2002. IEEE Computer Society.

[23] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar
Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. ACM Trans. Archit. Code Optim., 1(1):94–125, March 2004.

[24] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A simplified and
accurate model of power-performance efficiency on emergent gpu architectures. In Par-
allel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on,
pages 673–686. IEEE, 2013.

54

[25] Rafael Ubal, Julio Sahuquillo, Salvador Petit, and Pedro Lopez. Multi2sim: A simu-
lation framework to evaluate multicore-multithreaded processors. In Computer Archi-
tecture and High Performance Computing, 2007. SBAC-PAD 2007. 19th International
Symposium on, pages 62–68, 2007.

[26] Tomohisa Wada, Suresh Rajan, and Steven A Przybylski. An analytical access time
model for on-chip cache memories. Solid-State Circuits, IEEE Journal of, 27(8):1147–
1156, 1992.

[27] Wikipedia. Graphics processing unit. http://en.wikipedia.org/wiki/Graphics_

processing_unit, 2012. Accessed: 2014-04.

[28] Steven JE Wilton and Norman P Jouppi. Cacti: An enhanced cache access and cycle
time model. Solid-State Circuits, IEEE Journal of, 31(5):677–688, 1996.

[29] Wei Wu, Lingling Jin, Jun Yang, Pu Liu, and Sheldon X-D Tan. A systematic method
for functional unit power estimation in microprocessors. In Proceedings of the 43rd
annual Design Automation Conference, pages 554–557. ACM, 2006.

55

VITA

MD MAINUL HASSAN

EDUCATION

• M.Sc., Computer and Information Science,

University of Mississippi, to be awarded May 2015.

Thesis: Power and HotSpot Modeling for Modern GPUs.

• B.Sc., Computer Science and Engineering,

Bangladesh University of Engineering and Technology, October 2009.

RESEARCH EXPERIENCE

• Research Assistant, Aug 2013 - May 2015

Heterogeneous Systems Research (HEROES) Lab,

University of Mississippi.

HONORS and FELLOWSHIPS

• Upsilon Pi Epsilon Honor Society, 2015

University of Mississippi Gamma Chapter.

PUBLICATIONS and PRESENTATIONS

• A Low Power and High Performance Face Detection on Mobile GPU. International

Conference on Energy Aware Computing Systems & Applications, 2015.

JOB EXPERIENCE

• Software Engineer (Level 6), starting from Jun 2015

IMS Health (USA) Ltd., Seattle, WA.

56

• Senior Software Engineer, Mar 2010 - Aug 2013

IMS Health (BD) Ltd., Dhaka, Bangladesh.

• Member, R&D, Jan 2010 - Mar 2010

Commlink Infotech Ltd., Dhaka, Bangladesh.

• Junior Assistant Vice President, IT, Oct 2009 - Jan 2010

Delta Life Insurance Company Ltd., Dhaka, Bangladesh.

57

	Power And Hotspot Modeling For Modern Gpus
	Recommended Citation

	tmp.1561118358.pdf.zGVAm

