448 research outputs found

    A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies

    Get PDF
    Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG). DSM programs help customers save money by reducing their electricity bills, minimizing the utility’s peak demand, and improving load factor. To achieve these goals, this paper proposes a new load shifting-based optimal DSM model for scheduling residential users’ appliances. The proposed system effectively handles the challenges raised in the literature regarding the absence of using recent, easy, and more robust optimization techniques, a comparison procedure with well-established ones, using Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort. This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes into account user preferences, timing factors for each appliance, and a pricing signal for relocating shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB simulation environment, we have made effectiveness-based comparisons of the adopted optimization algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm (GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves 73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.publishedVersio

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Reinforced Demand Side Management for Educational Institution with incorporation of User’s Comfort

    Get PDF
    Soaring energy demand and the establishment of various trends in the energy market have paved the way for developing demand-side management (DSM) from the consumer side. This paper proposes a reinforced DSM (RDSM) approach that uses an enhanced binary gray wolf optimization algorithm (EBGWO) that benefits the consumer premises with load scheduling, and peak demand reduction. To date, DSM research has been carried out for residential, commercial and industrial loads, whereas DSM approaches for educational loads have been less studied. The institution load also consumes much utility energy during peak hours, making institutional consumers pay a high amount of cost for energy consumption during peak hours. The proposed objective is to reduce the total electricity cost and to improve the operating efficiency of the entire load profile at an educational institution. The proposed architecture integrates the solar PV (SPV) generation that supplies the user-comfort loads during peak operating hours. User comfort is determined with a metric termed the user comfort index (UCI). The novelty of the proposed work is highlighted by modeling a separate class of loads for temperature-controlled air conditioners (AC), supplying the user comfort loads from SPV generation and determining user comfort with percentage UCI. The improved transfer function used in the proposed EBGWO algorithm performs faster in optimizing nonlinear objective problems. The electricity price in the peak hours is high compared to the offpeak hours. The proposed EBGWO algorithm shift and schedules the loads from the peak hours to off-peak hours, and incorporating SPV in satisfying the user comfort loads aids in reducing the power consumption from the utility during peak hours. Thus, the proposed EBGWO algorithm greatly helps the consumer side decrease the peak-to-average ratio (PAR), improve user comfort significantly, reduce the peak demand, and save the institution’s electricity cost by USD 653.046.publishedVersio

    Recent techniques used in home energy management systems: a review

    Get PDF
    Power systems are going through a transition period. Consumers want more active participation in electric system management, namely assuming the role of producers–consumers, prosumers in short. The prosumers’ energy production is heavily based on renewable energy sources, which, besides recognized environmental benefits, entails energy management challenges. For instance, energy consumption of appliances in a home can lead to misleading patterns. Another challenge is related to energy costs since inefficient systems or unbalanced energy control may represent economic loss to the prosumer. The so-called home energy management systems (HEMS) emerge as a solution. When well-designed HEMS allow prosumers to reach higher levels of energy management, this ensures optimal management of assets and appliances. This paper aims to present a comprehensive systematic review of the literature on optimization techniques recently used in the development of HEMS, also taking into account the key factors that can influence the development of HEMS at a technical and computational level. The systematic review covers the period 2018–2021. As a result of the review, the major developments in the field of HEMS in recent years are presented in an integrated manner. In addition, the techniques are divided into four broad categories: traditional techniques, model predictive control, heuristics and metaheuristics, and other techniques.info:eu-repo/semantics/publishedVersio

    IKH-EFT: An improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment

    Get PDF
    peer reviewedGiven the increase diversity of smart devices and objectives of the application management such as energy consumption, makespan users expect their requests to be responded to in an appropriate computation environment as properly as possible. In this paper, a method of workflow scheduling based on the fog-cloud architecture has been designed given the high processing capability of the cloud and the close communication between the user and the fog computing node, which reduces delay in response. We also seek to minimize consumption and reduce energy use and monetary cost in order to maximize customer satisfaction with proper scheduling. Given the large number of variables that are used in workflow scheduling and the optimization of contradictory objectives, the problem is NP-hard, and the multi-objective metaheuristic krill herd algorithm is used to solve it. The initial population is generated in a smart fashion to allow fast convergence of the algorithm. For allocation of tasks to the available fog-cloud resources, the EFT (earliest finish time) technique is used, and resource voltage and frequency are assumed to be dynamic to reduce energy use. A comprehensive simulation has been made for assessment of the proposed method in different scenarios with various values of CCR. The simulation results indicate that makespan exhibits improvements by 9.9, 8.7% and 6.7% on average compared with respect to the methods of IHEFT, HEFT and IWO-CA, respectively. Moreover, the monetary cost of the method and energy use have simultaneously decreased in the fog-cloud environment

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    An effective solution to the optimal power flow problem using meta-heuristic algorithms

    Get PDF
    Financial loss in power systems is an emerging problem that needs to be resolved. To tackle the mentioned problem, energy generated from various generation sources in the power network needs proper scheduling. In order to determine the best settings for the control variables, this study formulates and solves an optimal power flow (OPF) problem. In the proposed work, the bird swarm algorithm (BSA), JAYA, and a hybrid of both algorithms, termed as HJBSA, are used for obtaining the settings of optimum variables. We perform simulations by considering the constraints of voltage stability and line capacity, and generated reactive and active power. In addition, the used algorithms solve the problem of OPF and minimize carbon emission generated from thermal systems, fuel cost, voltage deviations, and losses in generation of active power. The suggested approach is evaluated by putting it into use on two separate IEEE testing systems, one with 30 buses and the other with 57 buses. The simulation results show that for the 30-bus system, the minimization in cost by HJBSA, JAYA, and BSA is 860.54 /h,862.31,/h, 862.31, /h and 900.01 /h,respectively,whileforthe57−bussystem,itis5506.9/h, respectively, while for the 57-bus system, it is 5506.9 /h, 6237.4, /hand7245.6/h and 7245.6 /h for HJBSA, JAYA, and BSA, respectively. Similarly, for the 30-bus system, the power loss by HJBSA, JAYA, and BSA is 9.542 MW, 10.102 MW, and 11.427 MW, respectively, while for the 57-bus system, the value of power loss is 13.473 MW, 20.552, MW and 18.638 MW for HJBSA, JAYA, and BSA, respectively. Moreover, HJBSA, JAYA, and BSA cause reduction in carbon emissions by 4.394 ton/h, 4.524, ton/h and 4.401 ton/h, respectively, with the 30-bus system. With the 57-bus system, HJBSA, JAYA, and BSA cause reduction in carbon emissions by 26.429 ton/h, 27.014, ton/h and 28.568 ton/h, respectively. The results show the outperformance of HJBSA

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented
    • …
    corecore