
Sustainable Computing: Informatics and Systems 37 (2023) 100834

Available online 26 November 2022
2210-5379/© 2022 Elsevier Inc. All rights reserved.

IKH-EFT: An improved method of workflow scheduling using the krill herd
algorithm in the fog-cloud environment

Navid Khaledian a, Keyhan Khamforoosh *,a, Sadoon Azizi b, Vafa Maihami a

a Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
b Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran

A R T I C L E I N F O

Keywords:
Workflow scheduling
Cloud-fog computing
DVFS
Makespan
Krill Herd algorithm

A B S T R A C T

Given the increase diversity of smart devices and objectives of the application management such as energy
consumption, makespan users expect their requests to be responded to in an appropriate computation envi-
ronment as properly as possible. In this paper, a method of workflow scheduling based on the fog-cloud archi-
tecture has been designed given the high processing capability of the cloud and the close communication
between the user and the fog computing node, which reduces delay in response. We also seek to minimize
consumption and reduce energy use and monetary cost in order to maximize customer satisfaction with proper
scheduling. Given the large number of variables that are used in workflow scheduling and the optimization of
contradictory objectives, the problem is NP-hard, and the multi-objective metaheuristic krill herd algorithm is
used to solve it. The initial population is generated in a smart fashion to allow fast convergence of the algorithm.
For allocation of tasks to the available fog-cloud resources, the EFT (earliest finish time) technique is used, and
resource voltage and frequency are assumed to be dynamic to reduce energy use. A comprehensive simulation
has been made for assessment of the proposed method in different scenarios with various values of CCR. The
simulation results indicate that makespan exhibits improvements by 9.9, 8.7% and 6.7% on average compared
with respect to the methods of IHEFT, HEFT and IWO-CA, respectively. Moreover, the monetary cost of the
method and energy use have simultaneously decreased in the fog-cloud environment.

1. Introduction

It is unavoidable to use the Internet of Things (IoT) in life today.
Given the ever-increasing development of IoT in the fields of health and
industry, a very large number of applications have been produced in
these areas [1,2]. Since users tend to use cellphones or tablet PCs to
employ these applications, there are a large number of smart devices and
applications, leading to the generation of big data and consequent
complex analyses [3]. The complex analysis and massive processing of
data causes small processing devices such as smart phones to encounter
limitations in processing and resource allocation. Therefore, these de-
vices have to outsource their processes, i.e. to leave the tasks of resource
allocation and data processing to more powerful resources [4].
Currently, organizations need a dynamic information technology infra-
structure to be able to have this increase in data and their analysis
carried out within the framework of cloud computing. In a cloud data
center, there are large computing resources that make it possible to run,

store, and analyze different applications using virtual machines or
containers [5]. However, the billions of data generated in sensors as big
data cannot be transferred or processed in the cloud, since transfer
bandwidth is limited, and IoT devices are far away from cloud data
centers. Transfer of a huge amount of data and requests to the cloud may
result in underapplication of network resources, extreme transfer delay,
excessive processing costs, and network congestion. Moreover, some
applications need to be run very rapidly or in real time [6]. All this has
caused cloud computing to encounter challenges. In a smart health
application, for instance, which monitors a patient’s conditions, belated
responses may jeopardize human life. This becomes even more impor-
tant when a large amount of data generated by IoT devices is considered
[7]. Therefore, an appropriate computing scheme is required to manage
the diversity, speed, and amount of data generated by IoT devices. Fog
computing is recommended to eliminate the limitations of the cloud [8].
The architecture of fog computing provides services similar to those of
the cloud near the network edge. Fog computing is performed by a large

* Corresponding author.
E-mail addresses: Navid.khaledian@iausdj.ac.ir (N. Khaledian), k.khamforoosh@iausdj.ac.ir (K. Khamforoosh), s.azizi@uok.ac.ir (S. Azizi), Maihami@iausdj.ac.ir

(V. Maihami).

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

https://doi.org/10.1016/j.suscom.2022.100834
Received 29 July 2022; Received in revised form 12 November 2022; Accepted 21 November 2022

mailto:Navid.khaledian@iausdj.ac.ir
mailto:k.khamforoosh@iausdj.ac.ir
mailto:s.azizi@uok.ac.ir
mailto:Maihami@iausdj.ac.ir
www.sciencedirect.com/science/journal/22105379
https://www.elsevier.com/locate/suscom
https://doi.org/10.1016/j.suscom.2022.100834
https://doi.org/10.1016/j.suscom.2022.100834
https://doi.org/10.1016/j.suscom.2022.100834
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2022.100834&domain=pdf

Sustainable Computing: Informatics and Systems 37 (2023) 100834

2

number of nodes located in a layer close to the network edge. These
nodes include routers, switches, access points, and workstations [9,10].
Fog computing can establish network communication among the de-
vices within a short time [11]. For example, users can access fog nodes to
receive services at universities, bus stations, and shopping centers that
are time-sensitive. The fog architecture reduces bandwidth and required
financial costs with respect to where the data need to be sent to a data
center or a cloud for processing [12,13]. The fog layer gets connected to
the cloud data centers for complex computaion and storage. In fact, fog
computing supplements cloud computing, and their integration forms an
inspiring computing environment known as the fog-cloud. The sched-
uling problem has been investigated widely for cloud environments,
both as a unique objective and as a multi-objective optimization prob-
lem. Despite the large number of studies recently conducted in the field,
the issue is known as one of the hottest areas of research due to its
various applications. In practice, IoT applications execute requests or
tasks, which appear as dependent or independent. Independent tasks are
parallel applications that are considered independently, and are applied
in problems such as data mining [14]. However, this type of scheduling
is not applicable to artificial intelligence and big data applications that
involve complex analyses, and cannot be regarded as pairs of indepen-
dent applications. Therefore, workflow scheduling is used in such cases
[15].

A workflow considers applications as a series of tasks that are
interdependent, and need to be run in a certain order and with specific
priorities, where a weighted, directed graph known as the Directed
Acyclic Graph (DAG) is used for that purpose [16]. Given the above
discussion, the problem of workflow scheduling is an important one in
distributed systems, which are composed of large numbers of hetero-
geneous computing resources[17]. The purpose of a workflow sched-
uling problem is to execute a number of parallel tasks on several
fog-cloud resources in order to minimize parameters such as make-
span, energy consumption, monetary cost, and delay and use the re-
sources efficiently. These problems have been considered in a large
number of works [18–23].

Energy consumption is a significant issue in fog-cloud computing,
which raises financial costs and environmental problems. Energy de-
pends on a large number of parameters such as throughput, processing
time, and system power on and off times[24]. The computing nodes in a
fog use batteries or restricted resources for energy consumption,
reduction of which in the fog-cloud architecture has thus been turned
into an important issue [25]. Energy consumption can be improved by
better workflow scheduling, i.e. allocation of tasks to appropriate virtual
machine (VMs) and specification of the order in which they are executed
in each resource[26]. Therefore, reduction of energy consumption along
with a proper (short) execution time provides an optimal choice for use
in a resource. A new technology has recently been introduced as Dy-
namic Voltage and Frequency Scaling (DVFS) to reduce energy con-
sumption [27]. The major function of DVFS is to alter the voltage and
frequency of the available VMs dynamically. In fact, it seeks to select
voltage and frequency for the VMs that provide less energy consumption
while an application is being run. Resources will consume less energy if
run over less voltage and frequency, a technique recently appealing to
and widely used by researchers in workflow scheduling[22,24,25].
There aren’t many DVFS-based articles for cloud-fog computing systems
in the literature. And it usually applies to a distinct fog or cloud envi-
ronment. As a result, there is a need for greater study on energy-efficient
scheduling in cloud-fog computing settings.

Besides makespan and energy consumption, monetary cost is an
important issue in application scheduling and running[19,26,27], since
a short makespan and low energy consumption interfere with high
financial costs, and can reduce the efficiency and utility of an algorithm.
The cost of application of a processer to execute tasks is a significant
parameter, which needs to be reduced based on task execution time and
the monetary cost for each unit of task performance. Therefore, it is very
important to calculate financial cost and reduce it while ensuring low

energy consumption and earlier workflow termination. Recent efforts
have not taken into account simultaneously decreasing these three
conflicting factors in the combined cloud-fog environment. There are n
× pn different possibilities for scheduling a DAG with n nodes on a
system with p VMs. This value is valid for totally independent tasks. If
graph interdependency is considered, the number of possibilities for
scheduling will be approximately n! This is regarded as an NP-hard
problem as it cannot be solved within polynomial time. Different algo-
rithms and methods have been presented in recent years for optimiza-
tion of these problems [28,29]. This becomes more challenging when
several contradictory objectives need to be met at the same time. The
overall objective is to obtain an appropriate tradeoff between the
application completion time and the energy consumed and monetary
cost incurred during the workflow. Our investigations demonstrate that
the best optimal points can be specified through solution of the problem
using meta-heuristic algorithms as compared to other methods.
Meta-heuristic solution methods make it possible to present
near-optimal solutions within reasonable times [30]. Meta-heuristics
exhibit many advantages particularly in the area of dependent tasks,
which facilitates the processing of a workflow. The Krill herd method,
one of the meta-heuristic algorithms, is popular because to its success in
resolving multi-objective issues. Due to shrimp behavior, it supports
both global and local optimality well, making it one of the newest and
fastest meta-heuristic solution approaches. This program uses a
constructive approach to produce better outcomes because our chal-
lenge has multiple criteria[31]. Using a novel way of searching in depth
and two methods of searching at the level of the DAG, this article pro-
duces intelligent primary population and intelligent solutions, in
contrast to other algorithms. Better outcomes and faster convergence are
the effects of this. After that, we use the EFT technique to more effec-
tively and economically assign tasks to available resources. Finally, the
proposed method uses the DVFS technique to consume less energy. The
suggested method is effective, as shown by several tests based on various
CCR (communication-to-computation cost ratio), the volume of tasks
and virtual machines, and comparisons with strong algorithms. The
innovations of the paper include the following.

1. Three different operators are used in the proposed method for
discovery of new solutions. Moreover, the krill herd algorithm uses three
operators: movement toward food, movement toward the krill popula-
tion, and stochastic movement. Large Code Distance and Short Code
Distance strategy, which schedule the tasks available at each level of the
DAG, are implemented using movement toward food and movement
toward the krill population, respectively. Deep search (Deep Code Dis-
tance strategy) schedules tasks that are available at different levels but
are independent of each other. This operator replaces stochastic search
in the improved krill herd algorithm.

2. The dependency between tasks in a workflow is represented by a
DAG. An acceptable solution is one that considers these dependencies
and imposes less makespan, cost, and energy on the system. We have
generated the initial solutions in a smart fashion in order to allow the
algorithm to converge faster. Moreover, efficient searches in depth and
at the surface are used to map the task sequence to a krill and provide the
new krill generation in a smart fashion.

3. The objective function is defined based on the three criteria of
energy, makespan, and monetary cost in the fog-cloud environment and
is normalized so that all the three parameters can be minimized at the
same time. Furthermore, DVFS is used to reduce energy use.

The remainder of the paper is organized as follows. In Section 2, a
review of the literature is provided. Section 3 presents the proposed
algorithm, referred to as IKH-EFT, a combination of Improved Krill Herd
and Earliest Finish Time. Section 4 involves the results and an evaluation
of IKH-EFT. A conclusion is made in Section 5. Also, Table 1 shows the
abbreviations in this article.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

3

2. Related works

Extensive research has been conducted in recent years on the issue
introduced in the previous section, with each study optimizing a
different parameter. An overview of the literature demonstrates that a
single constraint or a maximum of two paradigms have been addressed
in workflow scheduling rather than a larger number of constraints.
Given the tradeoff nature of these problems, a single parameter fails to
provide favorable results in some cases. It is also very important to select
these parameters based on their degrees of significance for efficient task
scheduling and proper solution of the algorithms. Moreover, some pa-
pers have considered tasks independently, which makes scheduling easy
and free of the complexity involved in a workflow. To solve the problem
of workflow scheduling, authors have used heuristic, meta-heuristic
[32], machine learning[33], and hybrid algorithms [30]. Among these,
exact algorithms are capable of finding optimal solutions accurately, but
are inadequately efficient in the case of NP-hard problems, where it is
impossible to find the solutions within a reasonable time. A large
number of heuristic algorithms have been proposed in many papers that
seek to solve the problems within reasonable times.

Chai [34] introduced an improved swarm intelligence algorithm in
task queues, which modified the core scheduler for each task, and
enhanced the configuration of the task scheduling strategy. The algo-
rithm minimized mean makespan through optimal allocation of tasks at
each node. Sharma and Garg [35] allocated the best computing re-
sources to the received requests using neural networks through identi-
fication and reception of the environmental conditions such as the
numbers of servers and virtual machines. This algorithm performed
better than ones such as genetic and linear regression in terms of criteria
such as energy consumption, makespan, and resource productivity. Cost
was not considered in this paper as an objective, where the runtime of
the algorithm was longer than those of heuristic and meta-heuristic
ones. A hybrid algorithm named GSAGA is presented by the authors in
[36] as a solution to the Task Scheduling Problem (TSP) in cloud
computing. The Genetic Algorithm (GA), despite having a strong ability
to search the issue space, performs poorly in terms of stability and local
search. By combining the generic search capabilities of the GA with the
Gravitational Search Algorithm, authors demonstrated that it is possible
to develop a stable algorithm (GSA). Using a multi-objective genetic
algorithm (MOGA), process scheduling issues are optimized in[37]. This
study presented an initialization scheduling sequence technique, where
each task’s data size is taken into account when initializing its VM
instance, to improve the search efficiency. The makespan and the energy
consumption, which are two optimization goals in this work, can be
properly traded off based on the original scheduling sequence. Potential
trade-offs between the makespan and the price of virtual machine usage
were discussed by the authors in [20]. They suggested a HEFT-ACO
technique to minimize them, based on the ant colony algorithm (ACO)
and the HEFT, but they did not take energy into account. Chhabra et al.
[38] used the search features of two powerful meta-heuristic algorithms,
namely Cuckoo Search (CS) and Particle Swarm Optimization (PSO), for
the problem of task scheduling to overcome slow convergence and lack

of diversity in the initial population. The algorithm was presented to
reduce energy consumption and makespan in the cloud computing
environment.

In [39], Jamil et al. proposed a novel multi-objective algorithm for
delay-sensitive task scheduling in the fog computing environment,
which optimized energy consumption, and minimized delay and
network use. In [40], Zhang et al. presented an approach to
multi-objective task scheduling in cloud computing, which was referred
to as Enhanced Heterogeneous Earliest Finish Time based on rules
(EHEFT-R) and used for optimization of performance, service quality,
and energy consumption. Zhou et al. [41] presented a task scheduling
algorithm, referred to as MGGS, by combining the modified genetic al-
gorithm and the greedy strategy, where the greedy strategy was applied
to the successors generated by the modified genetic algorithm and
caused faster convergence. The algorithm obtained one optimal solution
in smaller numbers of iterations. It considered load balancing, service
quality maximization, and minimization of makespan, average response
time, and monetary cost.

In [42] they proposed a method, named HDECO used in workflow
scheduling in the cloud environment. They introduced an intelligent
threshold detector to reduce the number of switch-on and off physical
machines in the cloud datacenter. By classifying input tasks in work-
flows, they manage to optimize energy and cost respectively. The au-
thors of [43] suggest combining heuristic and metaheuristic strategies
for work scheduling. HEFT is a heuristic method, and fireworks algo-
rithm (FWA) is a metaheuristic algorithm. The approach of bi-objective
optimization is proposed to reduce the cost and makespan factors. The
authors of [44] presented an improved algorithm, referred to as PGWO,1

based on critical paths for workflow scheduling, which improved
makespan, cost, and resource use. The authors of [45] proposed a heu-
ristic method observing task priority and using the method of task
duplication for the problem of dependent task scheduling in a hetero-
geneous cloud computing system, and assessed the criteria of speed,
efficiency, and makespan. They obtained better results than those of
algorithms such as earliest finish time, while they disregarded energy.

Moreover, a large number of meta-heuristic algorithms have been
presented that are capable of finding proper (near-optimal) solutions
within short times. Many of them have also been improved in recently-
conducted works, and their drawbacks concerning the solution of this
problem have been eliminated. In [21], the authors presented a hybrid
meta-heuristic algorithm, referred to as HDPSO,2 by combining the
DPSO algorithm and the Hill Climbing technique for workflow sched-
uling and provision of global optima to avoid entrapment in local ones,
which was focused on makespan, and obtained proper results. In [46],
Hosseinioun et al. reduced energy consumption using the method of
dynamic frequency and voltage scaling and low-voltage resource ac-
tivity, and combined Invasive Weed Optimization (IWO) and Culture
Algorithm (CA) to provide a valid sequence of tasks in order to reduce
makespan. Abualigah and Diabat [47] proposed the antlion optimiza-
tion algorithm (ALO) for the cloud computing environment by utilizing
differential evolution as a local search technique to improve operation
capacity and avoid entrapment in local optima in order to solve the task
scheduling problem to optimize makespan and make maximal use of the
resources. In [48], the authors presented an advanced antlion optimi-
zation algorithm that was combined with the PSO algorithm to optimize
a workflow schedule particular to the cloud. Moreover, they adopted a
security approach, referred to as Data Encryption Standard (DES), to
encrypt cloud information while scheduling. They focused on cost, load,
and makespan. In [49] they unveiled the DMFO-DE, an opposition-based
hybrid discrete optimization method. To do this, the Differential Evo-
lution (DE) algorithm is paired with a discrete and Opposition-Based
Learning (OBL) version of the Moth-Flame Optimization (MFO)

Table 1
Abbreviations.

EFT
DVFS
CCR
IOT
DAG
VM
DCD
LCD
SCD
IWO-CA
HEFT
IKH

Earliest Finish Time
Dynamic Voltage and Frequency Scaling
Communication-to-Computation cost Ratio
Internet of Things
Directed Acyclic Graph
Virtual Machine
Deep Code Distance strategy
Large Code Distance strategy
Short Code Distance strategy
Invasive Weed Optimization and Culture Algorithm
Heterogenous Earliest Finish Time
Improved Krill Herd algorithm

1 Pareto-based grey wolf optimizer
2 Hybrid Discrete Particle Swarm Optimization

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

4

approach to increase convergence speed and avoid local optima issues.
Natesan and Chokkalingam [50] presented a novel hybrid algorithm,
referred to as the whale genetic optimization algorithm, by combining
the Whale Optimization Algorithm (WOA) and the genetic algorithm to
optimize cost and reduce makespan. The results of comparison to the
standard genetic and whale algorithms demonstrated the better effi-
ciency of the proposed algorithm. Nebojsa et. al. performed simulations
for a workflow scheduling problem with two objectives cost and
makespan and proposed an improved firefly algorithm in [51] that is
tailored for overcoming workflow scheduling difficulties in a cloud-edge
environment. The unique hybrid MBA approach is developed by Man-
ikandan et al. in [52] for resolving multi-objective task scheduling issues
in cloud computing environments. The multi-objective behavior reduces
the makespan in the hybrid WOA based MBA algorithm by maximizing
resource utilization. To ensure task distribution on fog and cloud nodes
under time limitations, they suggest the multi-objective simulated
annealing (MOSA) approach. Authors in [53], To optimize total deadline
violation time for jobs and energy consumption, a system model is
presented in the article for the job scheduling problem in fog-cloud
computing. For efficient solution of the job scheduling problem in the
fog-cloud environment, two nature-inspired optimization techniques are
proposed besides grey wolf and grasshopper optimization algorithms.
An architecture is considered in [54] that is composed of multiple fog
computing providers, and a Hidden Markov Model (HMM) is presented
to predict whether each fog computing provider is available with respect
to the tasks offloaded from the fogs to the cloud computing, workflows
with missed deadlines, number of requests incoming to each fog, and
similar factors. The unsupervised Baum-Welch algorithm is used to train
the model, along with the Viterbi algorithm, used to compute the
probability that each fog is available. A fog computing provider is then
selected using the probability that the fog provider is available, on
which IoT workflows are scheduled.

Since the process of running a learning algorithm is time-consuming,
it is not appropriate for scheduling delay-sensitive tasks and IoT device
requests. Heuristic algorithms are usually difficult to design, and fail to
obtain accurate solutions for optimal points in NP-hard problems. Meta-
heuristic algorithms can partially resolve the above problems, if they are
not trapped in local optima, and their problem of premature conver-
gence is eliminated. In fact, a meta-heuristic algorithm is a type of
approximate optimization algorithm, which may get out of local optima
to obtain other optimum points due to the large space available for
search in the solution of problems. Various algorithms of this type have
been developed in recent decades. The comparison made between the
available methods demonstrates that meta-heuristics are one of the most
efficient methods of solving the scheduling problem. In this paper, the
proposed meta-heuristic algorithm (improved krill herd involving
movement in three directions for krill) is used for workflow scheduling,
since DAG search enables movement in depth and at the surface in
practice, providing population diversity that is missing in other papers.
Moreover, the initial population is generated in a smart fashion to
eliminate the drawbacks, the EFT technique is implemented for task
allocation, and the three contradictory objectives are optimized in the
fog-cloud environment, whereas population has been generated sto-
chastically in other papers, and no investigation has been made of
optimization of the three objectives of the workflows in the above
environment.

3. Proposed method

Different architectures are used for workflow scheduling in fog-cloud
computing. Given the significance of the problem, this section first ad-
dresses the architecture and the model used for representation of the
relevant schedule. Then, the IKH-EFT algorithm is presented in detail.

3.1. Three-tier architecture

Fig. 1 shows the architecture of the IKH-EFT method, involving three
layers: the terminal layer, the fog layer, and the cloud layer [55,56]. The
terminal layer includes smart devices (IoT devices such as home appli-
ances, sensors, smartphones, and smart automobiles). These devices
submit requests, and send data to the higher-level layers to be processed
by the applications [6]. The applications are considered as series of
interdependent tasks that need to be executed in a particular order and
with a specific priority. The fog layer is the middle one, located between
the IoT devices and cloud data centers, close to the terminal layer de-
vices. There is also a particular node, referred to as fog broker, in this
layer that functions as the central manager and task scheduler. This node
is in charge of user request collection and resource management over
fog-cloud nodes. It also provides the best scheduling for workflows. The
highest layer in this architecture is the cloud layer, which contains
powerful servers for large amounts of complex processing and storage,
and exhibits high efficiency. This layer provides computing services for
intensive computing and workload and efficient, reliable data storage
facilities. Given the long distances between the layer servers and data
resources, there may be delays in processing, so delay-insensitive tasks
with high complexity and no deadlines had better be performed in this
layer [7].

This paper aims to allocate tasks to machines in order to minimize
energy, makespan, and monetary cost in the fog-cloud architecture. The
parameters used in the paper are listed in Table 2. The fog-cloud system
used in this paper involves heterogeneous computing nodes. The fog
nodes exhibit less computing capability, and are closer to data resources
(where data are generated). The cloud nodes have greater computing
capability, but are farther away from data generation resources. In this
problem, the set of VM nodes, N = {n1,n2,…np}, involves all nodes that
are divided between the fog and cloud sets from the beginning, as rep-
resented by Eq. (1) [25]. Each node in N may be one in the cloud Nc or in
the fog Nf.

N = Nc ∪ Nf,Q(Nf) < Q(Nc)∀N. (1)

The lower computing capability of fog nodes Q(Nf) than that of cloud
nodes Q(Nc) results from the physical limitation of fog devices [25]. As
shown in Fig. 2, the relationships between tasks are represented using a
directed acyclic graph G = (V, E), which is weighted as well as directed
[57]. Fig. 2 shows a simple example of a DAG, representing ten tasks and
the workflows between them. The graph indicates that t1 is an input task
and t10 is an output task. Moreover, transfer cost (the time required for
transfer) will be zero if t1 and t2 are executed on the same host, and it will
be 15 if they are executed on separate hosts.

Each node is a member of v = {t1,t2,…tn}, and indicates a task, and
the node weight, shown as w, is a nonnegative number that specifies
execution time or computation cost. w is an m × n computation cost
matrix, where m is the number of tasks, and n is the number of system
VMs. wi,j is the computation cost of task ti on VM pj, measured in mil-
liseconds. The graph also involves a set of edges, namely E, indicating
the prerequisite relationships between tasks. Each edge ei,j ∈ E is of
nonnegative weight ci,j, which denotes the amount of data transferred
from task ti to task tj, i.e. the cost of communication between the two
tasks. This cost is there when the tasks are executed on different VMs,
and communication cost will be zero for tasks executed on the same VM.
Prioritization is the most important step in a scheduling algorithm, as
efficiency depends mainly on this step. In this paper, prioritization is
calculated based on the cost, energy consumption, and makespan pa-
rameters, and is used in evaluations as a measure for algorithm
efficiency.

3.1.1. Makespan
Makespan is an important factor in workflow scheduling, and is

minimized in applications. The shorter this time, the higher the effi-

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

5

ciency of the system. To obtain the value of this measure, the earliest
start time (EST) of task ti on VM pj needs to be calculated. Eq. (2) is used
for that purpose for the input task with no predecessors and Eq. (3) for
other tasks [58].

EST
(
tenter, pj

)
= 0 (2)

EST
(
ti, pj

)
= max

tj∈pred(ti)

(
AFT

(
tj
)
+C

(
tj, ti

))
(3)

where tenter is the input task with no predecessors, pj is the jth VM, ti is the
ith task in DAG, pred(ti) is the set of essential predecessors of task ti, and
C
(
tj, ti

)
is the closeness of communication between tasks ti and tj.

Moreover, the actual start time of task ti on VM pj is calculated by Eq. (4)
[58].

AST
(
ti, pj

)
= max

(
EST

(
ti, pj

)
,Avail

(
pkj

))
(4)

where Avail
(

pj

)
is the time when VM pj is still and ready to calculate a

task from the queue. Eq. (5) [58] shows the earliest finish time of task ti
on VM pj.

EFT
(
ti, pj

)
= tij +AST

(
ti, pkj

)
(5)

The actual finish time of task ti is a function that finds VM pj for this
task from among the VMs to reduce execution time, and is obtained
using Eq. (6) [58]:

AFT
(
ti, pj

)
= min

1≤l≤P
EFT(ti, pj) (6)

3.1.2. Monetary cost
The execution cost of a specific task is calculated through multipli-

cation of the total time spent for its execution at the selected node by the
price of the node. Table 3 involves an example of monetary cost for each
unit of task execution in cents. For instance, 2 cents is calculated in VM 1
for each millisecond (unit of execution), 3 cents in VM 2, and 4 cents in
VM 3. Then, the monetary cost of the relevant task is obtained given its
EFT value and cost of execution on the VM. Communication cost is not
considered directly in the calculations, since it is considered indirectly in
the calculation of EFT. Eq. (7) shows the monetary costs incurred in the
fog and in the cloud. The total cost of the workflow is the sum of the
execution costs of all the tasks [20].

Fig. 1. Fog – Cloud architecture.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

6

Cost =

⎧
⎨

⎩

∑ (EFT(ti, pk) ∗ Dll(ti, pk)) ∗ c11 ≤ l ≤ P, c1forNc

+

∑
(EFT(ti, pk) ∗ Dll(ti, pk)) ∗ c21 ≤ l ≤ P, c2forNf

⎫
⎬

⎭
(7)

Dll(ti, pk) is the monetary cost of execution of task ti on VM pk, c1 is
the constant cost of transition to the cloud, and c2 is the constant cost of
transition to the fog.

3.1.3. DVFS
The DVFS approach often lowers the CPU’s operational frequency

and voltage to lessen the energy consumption of processors during task
execution. All computing systems can use the DVFS approach. However,
decreasing the CPU frequency slows things down, thus the workflow
deadline can unintentionally be missed. Therefore, the primary re-
sponsibility of DVFS-based scheduling frameworks is to establish the
minimal operational frequency for the VMs that execute the workflow
and adhere to the workflow deadline[49]. Different allocations of tasks
to VMs create time gaps between the tasks once completed. If VM
pkworks at a specific frequency, it can reduce speed at the gaps since it is
idle there to consume less energy. Eq. (8) shows how a gap is calculated
[59].

Gap = max
∑

j∈p
.
∑

i∈t
ESTi − EFTi − 1 (8)

Reduced CPU processing speed (frequency) is not problematic as
long as it lies within the limits of the gap and does not interfere with the
subsequent task. We seek to reduce energy consumption using voltage,
frequency, and the DVFS technique. The main function of DVFS is to
alter the voltage and frequency of the available VMs dynamically. In
fact, DVFS seeks to select appropriate voltage and frequency for the VMs
as an application is run [60].

In this study, we use energy consumption, which includes static and
dynamic use. Since dynamic energy consumption is more time-
consuming and expensive, static energy consumption is typically dis-
regarded in our scheduling strategy [49].

EN = ENstatic +ENdynamic (9)

When the system is turned on ENstatic represents the amount of power
used while ENdynamic compute as follows [49]:

ENdynamic = Z.V2
js.f (10)

Where Z is the dynamic power consumption constant, which depends
on the device capacity. Additionally, V2

JSis represents the voltage of the
sth level, the jth VM and f represents the jth VM frequency. The following
equation can be used to calculate the energy consumption of the VMs
[49]:

ENbusy =
∑n

i=1
Z × V2

js × fjs × ETij =
∑n

j=1
ENdynamic × ETij (11)

Where Vjs denotes that the ith is task is used on the jth VM, with the sth

voltage level and ETij represents the execution time of the ith task on the
jth VM. Additionally, fjs is the of processor’s jth VM frequency at the sth

voltage level. Additionally, to save the maximum energy, the voltage of
VMs must be adjusted to the lowest setting while they are idle. The
following definition applies to all available CPUs’ idle energy con-
sumption [49]:

ENidle =
∑p

j=1
Z × v2

jmin × fjmin × ITj =
∑p

j=1
ENide × ITij (12)

Where ITj is regarded as the jth VM’s idle time vjminand fjmin are its the
minimum voltage and frequency of the jth VM. These equations allow us
to calculate the total energy consumption needed for DAG scheduling in
a cloud-fog computing environment as follows:

ENtotal = ENbusy +ENidle (13)

Table 2
Parameters used in the paper.

ti ith task in DAG

tij Computation Cost of task ti on VM pj

pj jth VM in the system
QN Node computing capability
E Set of edges
V Set of tasks
N Set of VMs
Fj Frequency level for node j
Dll(ti,pj) Monetary execution cost of task ti on VM pj

tentry Input task with no predecessors
texit Output task with no successors
Succ(ti) Set of essential successors of task ti
Pred(ti) Set of essential predecessors of task ti
Wi,j Computation cost of task ti on VM pj

C
(
ti, tj

)
Communication between tasks ti and tj

EST
(

ti, pj

)
Earliest start time of task ti on VM pj

EFT
(

ti, pj

)
Earliest finish time of task ti on VM pj

AST
(

ti, pj

)
Actual start time of task ti on VM pj

AFT(tk) Actual finish time of task ti on best VM pj

LFT(ti) Last finish time of task ti
avail{k} Earliest time VM pj is available for execution

Fig. 2. Example DAG with ten nodes and communication cost.

Table 3
Computation and monetary costs.

Task VM3 VM2 VM1

Cent Computation Cent Computation Cent Computation

t1 32 8 39 13 20 10
t2 28 7 24 8 18 9
t3 48 12 39 13 22 11
t4 60 15 33 11 16 8
t5 44 11 27 9 24 12
t6 36 9 21 7 30 15
t7 24 6 15 5 16 8
t8 64 16 45 15 14 7
t9 40 10 24 14 32 16
t10 52 13 18 6 18 9

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

7

The method used to calculate the energy consumption function for
the full workflow application is:

ENconsumtionDAG =
∑

n
ENtotal(n) (14)

where n can be a fog or a cloud VM.
Table 4 shows an example of the voltage and frequency values for the

computing resources. Resources consume less energy when run over
lower voltage and frequency values [46].

3.1.4. Objective function
The purpose of our optimization problem is to minimize makespan,

energy consumption, and monetary cost at the same time. In this paper,
the problem of multi-objective optimization turns into a problem of
single-objective optimization through application of the impact factor to
each of the parameters with a weighted sum approach. Therefore, the
objective function of the optimization problem can be expressed as Eq.
(15) and Constraints (16) and (17).

Min(z) = ą × makespan+ β × cost+Ω × energy (15)

0 ≤ ą, β,Ω ≤ 1 (16)

ą + β+Ω > 0, ą = 0.5, β = 0.25,Ω = 0.25 (17)

Constraint (16) states that each of the impact factors must be a
number between zero and one, and Constraint (17) states that the sum of
all the three coefficients is larger than zero. The relevant values are set
given the importance of makespan in the problem and the tradeoff be-
tween energy and monetary cost. Finally, the values concerning the
objectives need to be normalized, since they are not of the same type.
For that purpose, we use the method of lower bound for each variable.

3.2. Proposed algorithm

The IKH-EFT algorithm involves two different phases: smart gener-
ation of the initial population considering the dependencies and adop-
tion of a VM equipped with the DVFS technology in accordance with the
objective function. A DAG, as in Fig. 2, is generated stochastically with
values for execution cost and communication cost. VMs are also gener-
ated with specific frequencies and voltages, as in Table 4, and a mone-
tary cost, as in Table 3. The given DAG is traversed top down, and the
tasks are sorted independently at each level, so that they can be executed
in parallel. Population is stochastically initialized to make it possible to
solve the problem meta-heuristically using the improved krill herd al-
gorithm for generation of different layouts. The EFT technique is used in
accordance with the objective function for selection of a VM and its
allocation to the task. The objective function aims to reduce three pa-
rameters at the same time: energy, makespan, and monetary cost.

i. Generation of the initial population

A solution is composed of n nodes, and must be valid given the
precedence constraints. In the IKH-EFT method, the population involves

300 valid solutions that are generated in a smart fashion. Generation of
the initial population is the first step in the krill herd algorithm, which
considerably affects the algorithm performance. In a DAG-based work-
flow, the order of tasks in the population solutions must meet the pre-
cedence constraint. To spread tasks through one solution, the method of
height distribution [46] and in-depth search is used.

First, minimum height L(ti) is calculated for each task using Eq. (18).
Then, maximum height H(ti) in DAG is obtained by Eq. (19).

L(ti) =

{
0pred(ti) = ∅

1 + max
tj∈pred(ti)

(
L
(
tj
))

pred(ti) ∕= ∅

}

(18)

H(ti) =

{
L(texit)succ(ti) = ∅

min
tj∈succ(ti)

(
H
(
tj
))

− 1succ(ti) ∕= ∅

}

(19)

The results of height distribution for the DAG in Fig. 3 are shown in
Table 5. The initial population is generated in our algorithm based on
the height values, where the height of the task selected in a solution
must not be greater than those of the predecessors or less than those of
the successors.Table 6.

i. Krill movement

In the krill herd algorithm, three behaviors cause the creatures to
move toward optimal regions: attraction, foraging, and stochastic
movements. Every krill can have three types of movement in the sea, as
follows. Induced movement Ni. In this movement, each krill is influ-
enced by the neighboring krill, and makes movements according to in-
formation obtained from the neighbors. Foraging activity Fi. To find
food, each krill makes movements toward food sources. Stochastic
diffusion Di. Each krill can exhibit stochastic behavior in its movements.
The krill objective function has been stated as in Eq. (20).

dXi

dt
= Ni +Fi +Di (20)

For a successor to differ from its predecessor in order to realize global
optimization, the Strategy for Large Code Distance (LCD) is adopted to
spread successors over a discrete solution space, where an action node is
stochastically selected from a solution. Then, the nearest two tasks that
ensure the precedence constraints are found among the predecessors and
successors of the node. Therefore, the movement can be made within the
interval between specific tasks. Moreover, an array of labels is con-
structed to record the states of task movement. Solution modification is
terminated when a specific code distance is obtained, or all tasks are
selected. Alternatively, short code distances are used for global

Table 4
Relative frequency and voltage [46].

Level VM 3 VM 2 VM 1

Relative
frequency

Voltage Relative
frequency

Voltage Relative
frequency

Voltage

0 1 85/1 1 6/1 1 90/1
1 85/. 70/1 85/. 4/1 9/. 75/1
2 65/. 45/1 60/. 15/1 8/. 60/1
3 45/. 20/1 50/. 9/. 7/. 45/1
4 30/. 95/. 40/. 8/. 6/. 30/1
5 – – – – 5/. 15/1
6 – – – – 4/. 00/1

Fig. 3. Example of in-depth search.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

8

optimization [46]. In SFSCD,3 tasks at the same height are of equal
priority. Therefore, this strategy is capable of moving tasks at the same
level with no violation of the precedence constraints. Besides these two,
we present a novel method in this paper for provision of diversity in
smart generation of the initial population. The proposed method in-
volves a type of in-depth search, which we refer to as the Strategy for
Deep Code Distance (DCD).

3.2.1. Strategy for deep code distance
This strategy aims to provide diversity in the initial population ac-

cording to in-depth search, and seeks to obtain sensitive paths from
important nodes. The Dynamic Frequency Scaling (DFS) search method
functions in a smart fashion here. Maintaining dependency, the strategy
moves in depth between tasks beginning from the predecessor and
continuing until the last successor that has not visited its predecessor.
Processing is resumed from the beginning after completion. In equal
conditions, the subsequent nodes are selected stochastically. As can be
observed in Fig. 3, the search for t3 continues in the Strategy for Large
Code Distance until the node depth is completed. In the Strategy for
Deep Code Distance, however, we can proceed in the depth of a node
when all its predecessors have been visited. For instance, node t6 is
visited in the Strategy for Large Code Distance before node t2, as in-
depth search for t3 is allowed, whereas t6 follows t2 in the Strategy for
Deep Code Distance, since the successors of t3 are visited when all its
predecessors, including t2, have been visited.

i. Task-to-VM mapping

Tasks must be allocated to the available VMs after the step of pop-
ulation initialization in the system. In IKH-EFT, the krill herd algorithm
is used with the objective function in Eq. (15), where the optimal value is

found through simultaneous reduction of three parameters: energy,
makespan, and monetary cost, and the obtained optimal tasks are
mapped to VMs using the EFT technique. The krill herd algorithm is used
for global optima, and EFT is used for local optima. It should be noted
that we do not apply crossover and mutation, which are there in the krill
herd algorithm, given the different layouts generated via DCD, LCD, and
SCD and the dependency between tasks in terms of precedence.

4. Evaluation

In this section, the performance of IKH-EFT is compared to that of
IWO-CA [46], HEFT [58], and IHEFT [61] for investigation of its su-
periority. The reason for using these algorithms is to compare their

Table 5
Height distribution.

Tasks 1 2 3 4 5 6 7 8 9 10

L(ti) 0 1 1 1 1 1 2 2 2 3
H(ti) 0 1 1 1 1 1 2 2 2 3

Table 6
Example for the Strategies for Long and Short Code Distance.

Table 7
Dataset properties.

Number of Tasks [10, 25, 50, 100, 200, 400]

Number of VM [3,5,7,10]
Number of Edges 1.5 * Number of Tasks

5

Minimum Computation Cost 15

Maximum Computation Cost
10

Minimum Communication Cost 30

Maximum Communication Cost
1 Cent

Minimum Monetary Cost 10 Cent

Maximum Monetary Cost
[0.2, 1, 5, 10]

CCR Fat

Shape

3 Strategy for Short Code Distance

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

9

strength in the field of makespan reduction and energy consumption
with DVFS technique. All the above methods are implemented over the
same dataset, in equal conditions, with a Core i7 VM and 8 gigabytes of
memory, and in MATLAB 2020 on Windows 10.

4.1. Dataset

The stochastic graph generator is used to generate a wide range of
graphs. In this method, a DAG is stochastically generated based on the
numbers of task and VMs and given the order in which the tasks are
executed, providing different combinations. The properties of the
generated graph can be observed in Table 7. Since stochastic graphs and
real-world datasets are different in shape, and there is no balanced
relationship between computation and communication costs, perfor-
mance is evaluated given the value of CCR, a parameter that stands for
the communication-to-computation cost ratio. The CCR value concern-
ing each diagram is obtained through the ratio of total edge weight to
total node weight. Graph type is computation-intensive if graph CCR is
less than one, communication-intensive if it is greater than one, and
moderate if it is equal to one. In this paper, graphs are generated and
evaluated for different values of CCR. As can be observed in Table 7, the
total number of tasks in the graph assumes the 10, 25, 50, 100, 200, and
400 values. The number of edges is 1.5 times greater than that of tasks,
and there are one or two edges from the node at level s to that at level
s + 1. Moreover, links are generated between vertices with a uniform
distribution. Three, five, seven, and ten virtual machines are considered
in this paper.

4.2. Parameters used for evaluation and analysis of efficiency

Accurate evaluation requires an application of appropriate parame-
ters. IKH-EFT is compared to the other methods in terms of different
measures, including makespan, implementation cost, energy consump-
tion, efficiency, speedup and SLR. For investigation of the performance
of IKH-EFT in different conditions, stochastic datasets with different
values are generated, each considered as input to the compared algo-
rithms in one of three different scenarios, suggested in this paper for
further investigation. Different experiments are conducted with the
same numbers of tasks and virtual machines and different CCR values.
For further experimentation, another parameter is changed each time,
while the other two are kept constant. The number of iterations is 100,
and the number of implementations for each scenario is 10. The mean
values of the measures are finally obtained.

4.2.1. Makespan
Makespan is regarded as one of the most frequent parameters used

for comparison in the scheduling problem, and is defined as the total
length of the schedule. As stated in Section 3.2, makespan is obtained

from Eq. (21).

makespan = Min{max(AFT(ti))} = min {AFT(texit)} (21)

The values of each of the above parameters were detailed in Section
3.2. In Fig. 4, the value of makespan is obtained for different numbers of
tasks. Since this is the most important measure, based on which the
others are obtained, the method aims to calculate the minimum value of
this one first. As can be observed, IKH-EFT exhibits better results (lower
values) than the other methods in all the cases. This is because a heu-
ristic algorithm cannot search a large space efficiently. The IWO-CA is
the second-best method after ours. An important point to be noted is that
IWO-CA generates diverse but low-quality solutions in some cases, since
it generates initial populations only at the graph surface, and is rather
focused on energy consumption. In the subsequent experiments, shown
in Figs. 5 and 6, makespan is obtained based on the number of virtual
machines and the value of CCR, respectively. The great power of IKH-
EFT is demonstrated by its superiority in different scenarios, which is
maintained as the value of CCR and the number of virtual machines
increase.

The issue of energy consumption involves the entire energy
consumed by computing resources that execute all workflow schedule
tasks. The next experiment concerns the energy consumed for different
algorithms, which are conducted in three different scenarios, as for
makespan. The DVFS technique is used to reduce energy consumption.
Figs. 7, 8, and 9 show the energy consumed by IKH-EFT and the
compared methods. It is observed in Fig. 7 with an accurate calculation
of gaps that it exhibits considerable superiority as the number of tasks
increases. IKH-EFT efficiently utilizes the gaps between tasks, which
reduces energy consumption with respect to that in the other methods.
As can be observed for less than 100 tasks, the proposed method and
IWO-CA exhibit superiority over the other methods in terms of energy
consumption. All the methods perform similarly even for 25 tasks, since
very small gaps take shape between tasks. Similarly, IKH-EFT is
considerably superior in the reduction of energy consumption for five
and seven virtual machines, as observed in Fig. 7. In Fig. 9, where energy
consumption is calculated with respect to CCR, IKH-EFT performs
almost the same as IWO-CA and slightly differently from HEFT and
IHEFT for CCR = 0.2 and CCR = 1. Given the small number of tasks for
these values, very small gaps take shape, which can hardly be used in
IKH-EFT, hence the close values.

The next experiment aims to obtain and compare the monetary cost
of implementation of an entire workflow in different scenarios. User
satisfaction can be achieved with low values for the monetary cost of
running the application along with the other measures. IKH-EFT is
compared to IWO-CA, HEFT, and IHEFT in Figs. 10, 11, and 12. Fig. 10
shows the superiority of IHEFT with 10 tasks, where IKH-EFT is the
second best. The HEFT algorithm exhibits better performance than the
other methods with 25 tasks. With larger numbers of tasks, however, the

Fig. 4. Aerage makespan for the different task set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

10

proposed method outperforms the others. When DVFS is used to reduce
energy consumption, greater use is made of virtual machines, since
smaller gaps take shape between tasks, which establishes a tradeoff
between energy consumption and monetary value. The same impact
factor is considered in this paper for the two measures to provide a
balance between them. Along the same lines, IKH-EFT and IHEFT
exhibit considerable superiority over the other methods with five and
seven virtual machines, as observed in Fig. 11. Fig. 12 shows that the
proposed method performs better than all the others for CCR = 0.2, and

there is less difference in monetary value between them for the other
values of CCR.

4.2.2. Schedule length ratio (SLR)
Schedule length ratio (SLR) is a major measure used for evaluation of

the performance of the scheduling algorithm over the graph. This
measure is obtained based on the makespan and critical path parame-
ters. The critical path is the longest path from the input node to the
output node of the given DAG in the fastest VM. Since different large

Fig. 5. Average makespan for the different VM set.

Fig. 6. Average makespan for the different value of CCR.

Fig. 7. Evaluation of energy consumption for the different task set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

11

graphs are used, the value of makespan needs to be normalized to a
lower bound. If the scheduler runs the nodes on the critical path using
the fastest virtual machine, the value of the makespan parameter cannot
be lower than the critical path length. Therefore, the length ratio of any
schedule is more than one. Since the denominator is the lower bound,
SLR cannot be less than one. A scheduling algorithm with the lowest SLR
is the best. If the value is close to one, the scheduler can be said to
function highly properly. In other words, a lower SLR is favorable. The
SLR of an algorithm over a graph is defined by the following equation.

SLR =
Makespan

∑

ni∈CPmin
Minpj∈Q{Wi,j}

(22)

In this equation, the denominator is the sum of the minimum
computation costs of the tasks on the critical path. For an unscheduled
DAG, the critical path will be based on the minimum computation costs,
represented as CPMIN, if the computation cost of each node ni is set to the
minimum value. The average SLRs from the task graphs are used in
several experiments in the paper. The mean SLRs in Fig. 13 are obtained
based on the numbers of different tasks on t virtual machines and the

Fig. 8. Evaluation of energy consumption for the different VM set.

Fig. 9. Evaluation of energy consumption for the different value of CCR.

Fig. 10. Evaluation of cost consumption for the different task set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

12

constant value of CCR. With fewer than 100 tasks, IKH-EFT exhibits
considerable superiority over the other methods. With 200 tasks, there is
very little difference. With 400, IKH-EFT and HEFT assume the same
SLR. Different numbers of virtual machines along with constant values
for CCR and the number of tasks are investigated in Fig. 14. As can be
observed, IKH-EFT exhibits lower SLRs than the other methods in all the
scenarios, and the difference is still there as the number of virtual ma-
chines increases. The IHEFT algorithm assumes the highest SLRs in this
experiment. A similar experiment is conducted based on CCR, as shown

in Fig. 15, where IKH-EFT, IWO-CA, and HEFT obtain close results. With
an examination of the experiments as different scenarios, it can be stated
that IKH-EFT is superior to the IWO-CA, HEFT, and IHEFT algorithms in
most cases. This results from its lower makespan and better performance
in the surface and in-depth search for the critical path.Fig. 16.

4.2.3. Speedup
The increase in speed, known as speedup, for a specific graph is

obtained through division of sequential runtime to parallel runtime

Fig. 11. Evaluation of cost consumption for the different VM set.

Fig. 12. Evaluation of cost consumption for the different CCR value.

Fig. 13. Average schedule lengths ratio for the different task set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

13

(makespan). Sequential runtime is the time required for allocation of all
tasks to a single VM, which minimizes the sum of computation costs. The
probable runtime in the above conditions is calculated in Eq. (23).

Speedup =

minpj∈Q{
∑

ni∈N
{Wi,j}}

makespan
(23)

If the sum of computation costs is maximized, speed will increase
further, but the scheduling algorithms will eventually end with the same
ranking. Figs. 17, 18, and 19 show speedup for the compared algorithms
in different scenarios. According to Fig. 17, the speedup in IKH-EFT gets
farther apart from the values in the other methods as the number of tasks
increases. The same finding is observed with changes in the number of

virtual machines and the CCR value. IKH-EFT outperforms the other
methods in most cases.

4.2.4. Efficiency
The effective scheduling approach improves linearly in proportion to

the number of virtual machines used. In other words, runtime will be
divided by two if the scheduler uses one virtual machine instead of two.
The efficiency parameter involves the ratio of speedup to the number of
virtual machines. Eq. (24) is used to obtain the value of this parameter.

Efficiency =
Speedup

number of used VM
× 100% (24)

As can be observed in Figs. 19, 20, and 21, IKH-EFT improves

Fig. 14. Average schedule lengths ratio for the different VM set.

Fig. 15. Average schedule lengths ratio for the different CCR value.

Fig. 16. Speedup comparison of the four algorithms for the different task set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

14

Fig. 17. Speedup comparison of the four algorithms for the different VM set.

Fig. 18. Speedup comparison of the four algorithms for the different CCR value.

Fig. 19. Comparison of efficiency metric for the different task set.

Fig. 20. Comparison of efficiency metric for the different VM set.

N. Khaledian et al.

Sustainable Computing: Informatics and Systems 37 (2023) 100834

15

efficiency with respect to that in the other algorithms over all the
datasets, which demonstrates that it convergences faster than them, as a
result of the great power of the krill herd algorithm in terms of global
and local optima. The superiority is clear in Fig. 19 as the number of
tasks increases and in Fig. 21 as CCR equals 0.2.

5. Conclusion

In the implementation of a workflow to provide services to users and
organizations, it is of great significance to reduce makespan in order to
perform tasks faster, to reduce monetary cost in order to execute tasks or
run applications economically, and to reduce energy consumption in
order to observe environmental issues including low node battery life.
Given the interdependency of tasks and NP-hard nature of the sched-
uling problem, simultaneous reduction of the parameters examined in
this paper in the fog-cloud environment has not been investigated in
previous research. A workflow scheduling algorithm, referred to as IKH-
EFT, is proposed here using the improved krill herd algorithm and the
EFT technique in the fog-cloud environment for scheduling different
DAGs. The algorithm first generates different workflows, and then pro-
vides lists of interdependent task execution observing precedence and
priority in a smart rather than stochastic fashion based on the krill herd
algorithm and movement at the surface and in the depth of the graph. It
then isolates the superior lists using the EFT technique (i.e. objective
function) that involve the lowest makespan and monetary cost. Next, the
algorithm reduces energy consumption where gaps exist using the DVFS
technique. Use of the krill herd algorithm has obtained proper results in
NP-hard problems with large numbers of measures, and near-optimal
solutions can be obtained in both global and local scales through com-
bination with the EFT technique. Based on the conducted experiments,
the three parameters of makespan, monetary cost, and energy con-
sumption are simultaneously reduced in the fog-cloud environment in
IKH-EFT using complex graphs with different values for CCR, number of
tasks, and number of virtual machines. The challenge of using task
deadline as a measure can provide research topic prospects. Moreover,
solutions adopted in machine learning methods and their combination
with meta-heuristic methods in multicloud environment can be
considered in future studies.

Funding

The authors declare that they have no funding.

CRediT authorship contribution statement

Conceptualization: Navid Khaledian, Keyhan Khamforoosh,
Sadoon Azizi. Data curation: Navid Khaledian, Keyhan Khamforoosh,
Vafa Maihami. Formal analysis: Navid Khaledian, Vafa Maihami
Methodology: Keyhan Khamforoosh, Sadoon Azizi. Project adminis-
tration: Keyhan Khamforoosh. Resources: Keyhan Khamforoosh,

Sadoon Azizi Validation: Navid Khaledian, Keyhan Khamforoosh,
Sadoon Azizi Visualization: Navid Khaledian, Vafa Maihami, Sadoon
Azizi Writing – original draft: Navid Khaledian, Sadoon Azizi. Writing
– review & editing: Vafa Maihami, Sadoon Azizi.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

Not applicable.

Declaration

none.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

The specific contributions made by each author is as follows: NK:
Conceptualization, methodology, implementation, writing-original
draft, KK: writing—review & Editing, formal analysis. SA & VM: vali-
dation, review & editing, all authors read and approved the final
manuscript.

References

[1] Z.N. Aghdam, A.M. Rahmani, M. Hosseinzadeh, The role of the internet of things in
healthcare: future trends and challenges, Comput. Methods Prog. Biomed. 199
(2021), 105903.

[2] Wa Kassab, K.A. Darabkh, A–Z survey of internet of things: architectures, protocols,
applications, recent advances, future directions and recommendations, J. Netw.
Comput. Appl. 163 (2020), 102663.

[3] Luo, Q., et al., Resource scheduling in edge computing: A survey. IEEE
Communications Surveys & Tutorials, 2021.

[4] A. Islam, et al., A survey on task offloading in multi-access edge computing, J. Syst.
Archit. 118 (2021), 102225.

[5] A. Belgacem, et al., Efficient dynamic resource allocation method for cloud
computing environment. Clust. Comput. 23 (4) (2020) 2871–2889.

Fig. 21. Comparison of efficiency metric for the different CCR value.

N. Khaledian et al.

http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref1
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref1
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref1
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref2
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref2
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref2
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref3
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref3
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref4
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref4

Sustainable Computing: Informatics and Systems 37 (2023) 100834

16

[6] M. Laroui, et al., Edge and fog computing for IoT: A survey on current research
activities & future directions, Comput. Commun. 180 (2021) 210–231.

[7] J.C. Guevara, N.L. da Fonseca, Task scheduling in cloud-fog computing systems,
Peer to Peer Netw. Appl. 14 (2) (2021) 962–977.

[8] Bonomi, F., et al. Fog computing and its role in the internet of things. in
Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
2012.

[9] N. Kaur, A. Kumar, R. Kumar, A systematic review on task scheduling in Fog
computing: taxonomy, tools, challenges, and future directions, Concurr. Comput.:
Pract. Exp. 33 (21) (2021), e6432.

[10] S. Azizi, et al., Deadline-aware and energy-efficient IoT task scheduling in fog
computing systems: a semi-greedy approach, J. Netw. Comput. Appl. (2022),
103333.

[11] P. Hosseinioun, et al., aTask scheduling approaches in fog computing: a survey,
Trans. Emerg. Telecommun. Technol. (2020), e3792.

[12] W.Z. Khan, et al., Edge computing: a survey, Future Gener. Comput. Syst. 97
(2019) 219–235.

[13] S. Javanmardi, et al., FUPE: A security driven task scheduling approach for SDN-
based IoT–Fog networks, J. Inf. Secur. Appl. 60 (2021), 102853.

[14] D. Tychalas, H. Karatza, A scheduling algorithm for a fog computing system with
bag-of-tasks jobs: simulation and performance evaluation, Simul. Model. Pract.
Theory 98 (2020), 101982.

[15] M. Hussain, et al., Deadline-constrained energy-aware workflow scheduling in
geographically distributed cloud data centers, Future Gener. Comput. Syst. (2022).

[16] L. Versluis, A. Iosup, A survey of domains in workflow scheduling in computing
infrastructures: Community and keyword analysis, emerging trends, and
taxonomies, Future Gener. Comput. Syst. 123 (2021) 156–177.

[17] Z. Ahmad, et al., Scientific workflows management and scheduling in cloud
computing: taxonomy, prospects, and challenges, IEEE Access 9 (2021)
53491–53508.

[18] M. Abdel-Basset, et al., Energy-aware metaheuristic algorithm for industrial-
Internet-of-Things task scheduling problems in fog computing applications, IEEE
Inter. Things J. 8 (16) (2020) 12638–12649.

[19] M. Tanha, M. Hosseini Shirvani, A.M. Rahmani, A hybrid meta-heuristic task
scheduling algorithm based on genetic and thermodynamic simulated annealing
algorithms in cloud computing environments, Neural Comput. Appl. 33 (24)
(2021) 16951–16984.

[20] A. Belgacem, K. Beghdad-Bey, Multi-objective workflow scheduling in cloud
computing: trade-off between makespan and cost, Clust. Comput. 25 (1) (2022)
579–595.

[21] M.H. Shirvani, A hybrid meta-heuristic algorithm for scientific workflow
scheduling in heterogeneous distributed computing systems, Eng. Appl. Artif.
Intell. 90 (2020), 103501.

[22] N. Arora, R.K. Banyal, A particle grey wolf hybrid algorithm for workflow
scheduling in cloud computing, Wirel. Pers. Commun. 122 (4) (2022) 3313–3345.

[23] A. Taghinezhad-Niar, S. Pashazadeh, J. Taheri, QoS-aware online scheduling of
multiple workflows under task execution time uncertainty in clouds, Clust.
Comput. (2022) 1–18.

[24] R. Ghafari, F.H. Kabutarkhani, N. Mansouri, Task scheduling algorithms for energy
optimization in cloud environment: a comprehensive review, Clust. Comput.
(2022) 1–59.

[25] S. Ijaz, et al., Energy-makespan optimization of workflow scheduling in fog–cloud
computing, Computing 103 (9) (2021) 2033–2059.

[26] A. Choudhary, et al., Energy-aware scientific workflow scheduling in cloud
environment. Clust. Comput. (2022) 1–30.

[27] A. Taghinezhad-Niar, S. Pashazadeh, J. Taheri, Energy-efficient workflow
scheduling with budget-deadline constraints for cloud, Computing 104 (3) (2022)
601–625.

[28] Hoseiny, F., et al. PGA: A Priority-aware Genetic Algorithm for Task Scheduling in
Heterogeneous Fog-Cloud Computing. in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 2021. IEEE.

[29] P. Hosseinioun, et al., aTask scheduling approaches in fog computing: a survey,
Trans. Emerg. Telecommun. Technol. 33 (3) (2022), e3792.

[30] E.H. Houssein, et al., Task scheduling in cloud computing based on meta-heuristics:
review, taxonomy, open challenges, and future trends, Swarm Evolut. Comput. 62
(2021), 100841.

[31] A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm,
Commun. Nonlinear Sci. Numer. Simul. 17 (12) (2012) 4831–4845.

[32] C. Guerrero, I. Lera, C. Juiz, Genetic-based optimization in fog computing: current
trends and research opportunities, Swarm Evolut. Comput. (2022), 101094.

[33] F. Cheng, et al., Cost-aware job scheduling for cloud instances using deep
reinforcement learning, Clust. Comput. 25 (1) (2022) 619–631.

[34] X. Chai, Task scheduling based on swarm intelligence algorithms in high
performance computing environment, J. Ambient Intell. Humaniz. Comput. (2020)
1–9.

[35] M. Sharma, R. Garg, An artificial neural network based approach for energy
efficient task scheduling in cloud data centers, Sustain. Comput. Inform. Syst. 26
(2020), 100373.

[36] P. Pirozmand, et al., GSAGA: A hybrid algorithm for task scheduling in cloud
infrastructure, J. Supercomput. (2022) 1–27.

[37] X. Xia, et al., Multi-objective workflow scheduling based on genetic algorithm in
cloud environment, Inf. Sci. (2022).

[38] A. Chhabra, G. Singh, K.S. Kahlon, QoS-Aware energy-efficient task scheduling on
HPC cloud infrastructures using swarm-intelligence meta-heuristics, CMC Comput.
Mater. Contin. 64 (2) (2020) 813–834.

[39] B. Jamil, et al., A job scheduling algorithm for delay and performance optimization
in fog computing, Concurr. Comput. Pract. Exp. 32 (7) (2020), e5581.

[40] H. Zhang, Y. Wu, Z. Sun, EHEFT-R: multi-objective task scheduling scheme in cloud
computing, Complex Intell. Syst. (2021) 1–8.

[41] Z. Zhou, et al., An improved genetic algorithm using greedy strategy toward task
scheduling optimization in cloud environments, Neural Comput. Appl. 32 (6)
(2020) 1531–1541.

[42] A.G. Delavar, R. Akraminejad, S. Mozafari, HDECO: a method for decreasing
energy and cost by using virtual machine migration by considering hybrid
parameters, Comput. Commun. 195 (2022) 49–60.

[43] A.M. Yadav, K.N. Tripathi, S.C. Sharma, A bi-objective task scheduling approach in
fog computing using hybrid fireworks algorithm, J. Supercomput. 78 (3) (2022)
4236–4260.

[44] S. Doostali, S.M. Babamir, M. Eini, CP-PGWO: multi-objective workflow scheduling
for cloud computing using critical path, Clust. Comput. 24 (4) (2021) 3607–3627.

[45] NoorianTalouki, R., M.H. Shirvani, H. Motameni, A heuristic-based task scheduling
algorithm for scientific workflows in heterogeneous cloud computing platforms.
Journal of King Saud University-Computer and Information Sciences, 2021.

[46] P. Hosseinioun, et al., A new energy-aware tasks scheduling approach in fog
computing using hybrid meta-heuristic algorithm, J. Parallel Distrib. Comput. 143
(2020) 88–96.

[47] L. Abualigah, A. Diabat, A novel hybrid antlion optimization algorithm for multi-
objective task scheduling problems in cloud computing environments, Clust.
Comput. 24 (1) (2021) 205–223.

[48] J. Kakkottakath Valappil Thekkepuryil, D.P. Suseelan, P.M. Keerikkattil, An
effective meta-heuristic based multi-objective hybrid optimization method for
workflow scheduling in cloud computing environment, Clust. Comput. 24 (3)
(2021) 2367–2384.

[49] O.H. Ahmed, et al., Using differential evolution and Moth–Flame optimization for
scientific workflow scheduling in fog computing, Appl. Soft Comput. 112 (2021),
107744.

[50] G. Natesan, A. Chokkalingam, Multi-objective task scheduling using hybrid whale
genetic optimization algorithm in heterogeneous computing environment, Wirel.
Pers. Commun. 110 (4) (2020) 1887–1913.

[51] N. Bacanin, et al., Modified firefly algorithm for workflow scheduling in cloud-edge
environment, Neural Comput. Appl. 34 (11) (2022) 9043–9068.

[52] N. Manikandan, N. Gobalakrishnan, K. Pradeep, Bee optimization based random
double adaptive whale optimization model for task scheduling in cloud computing
environment, Comput. Commun. 187 (2022) 35–44.

[53] S. Dabiri, S. Azizi, A. Abdollahpouri, Optimizing deadline violation time and
energy consumption of IoT jobs in fog–cloud computing, Neural Comput. Appl.
(2022) 1–17.

[54] D. Javaheri, et al., An improved discrete harris hawk optimization algorithm for
efficient workflow scheduling in multi-fog computing, Sustain. Comput. Inform.
Syst. 36 (2022), 100787.

[55] L. Peng, A.R. Dhaini, P.-H. Ho, Toward integrated Cloud–Fog networks for efficient
IoT provisioning: key challenges and solutions, Future Gener. Comput. Syst. 88
(2018) 606–613.

[56] Nazari, A., et al., An Intelligent SDN-Based Clustering Approach for Optimizing IoT
Power Consumption in Smart Homes. Wireless Communications and Mobile
Computing, 2022. 2022.

[57] L.F. Bittencourt, et al., Scheduling in distributed systems: a cloud computing
perspective. Comput. Sci. Rev. 30 (2018) 31–54.

[58] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13 (3)
(2002) 260–274.

[59] Z. Tang, et al., An energy-efficient task scheduling algorithm in DVFS-enabled
cloud environment, J. Grid Comput. 14 (1) (2016) 55–74.

[60] C. Jiang, et al., Energy aware edge computing: a survey, Comput. Commun. 151
(2020) 556–580.

[61] S. AlEbrahim, I. Ahmad, Task scheduling for heterogeneous computing systems,
J. Supercomput. 73 (6) (2017) 2313–2338.

N. Khaledian et al.

http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref5
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref5
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref6
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref6
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref7
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref7
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref7
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref8
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref8
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref8
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref9
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref9
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref10
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref10
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref11
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref11
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref12
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref12
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref12
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref13
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref13
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref14
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref14
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref14
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref15
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref15
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref15
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref16
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref16
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref16
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref17
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref17
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref17
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref17
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref18
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref18
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref18
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref19
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref19
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref19
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref20
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref20
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref21
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref21
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref21
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref22
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref22
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref22
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref23
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref23
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref24
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref24
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref25
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref25
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref25
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref26
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref26
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref27
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref27
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref27
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref28
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref28
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref29
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref29
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref30
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref30
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref31
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref31
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref31
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref32
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref32
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref32
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref33
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref33
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref34
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref34
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref35
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref35
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref35
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref36
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref36
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref37
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref37
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref38
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref38
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref38
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref39
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref39
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref39
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref40
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref40
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref40
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref41
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref41
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref42
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref42
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref42
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref43
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref43
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref43
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref44
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref44
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref44
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref44
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref45
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref45
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref45
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref46
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref46
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref46
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref47
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref47
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref48
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref48
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref48
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref49
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref49
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref49
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref50
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref50
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref50
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref51
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref51
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref51
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref52
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref52
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref53
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref53
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref53
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref54
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref54
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref55
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref55
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref56
http://refhub.elsevier.com/S2210-5379(22)00165-2/sbref56

	IKH-EFT: An improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment
	1 Introduction
	2 Related works
	3 Proposed method
	3.1 Three-tier architecture
	3.1.1 Makespan
	3.1.2 Monetary cost
	3.1.3 DVFS
	3.1.4 Objective function

	3.2 Proposed algorithm
	3.2.1 Strategy for deep code distance

	4 Evaluation
	4.1 Dataset
	4.2 Parameters used for evaluation and analysis of efficiency
	4.2.1 Makespan
	4.2.2 Schedule length ratio (SLR)
	4.2.3 Speedup
	4.2.4 Efficiency

	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	Declaration
	Ethics approval and consent to participate
	Competing interests
	Authors’ contribution
	References

