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A B S T R A C T   

Given the increase diversity of smart devices and objectives of the application management such as energy 
consumption, makespan users expect their requests to be responded to in an appropriate computation envi-
ronment as properly as possible. In this paper, a method of workflow scheduling based on the fog-cloud archi-
tecture has been designed given the high processing capability of the cloud and the close communication 
between the user and the fog computing node, which reduces delay in response. We also seek to minimize 
consumption and reduce energy use and monetary cost in order to maximize customer satisfaction with proper 
scheduling. Given the large number of variables that are used in workflow scheduling and the optimization of 
contradictory objectives, the problem is NP-hard, and the multi-objective metaheuristic krill herd algorithm is 
used to solve it. The initial population is generated in a smart fashion to allow fast convergence of the algorithm. 
For allocation of tasks to the available fog-cloud resources, the EFT (earliest finish time) technique is used, and 
resource voltage and frequency are assumed to be dynamic to reduce energy use. A comprehensive simulation 
has been made for assessment of the proposed method in different scenarios with various values of CCR. The 
simulation results indicate that makespan exhibits improvements by 9.9, 8.7% and 6.7% on average compared 
with respect to the methods of IHEFT, HEFT and IWO-CA, respectively. Moreover, the monetary cost of the 
method and energy use have simultaneously decreased in the fog-cloud environment.   

1. Introduction 

It is unavoidable to use the Internet of Things (IoT) in life today. 
Given the ever-increasing development of IoT in the fields of health and 
industry, a very large number of applications have been produced in 
these areas [1,2]. Since users tend to use cellphones or tablet PCs to 
employ these applications, there are a large number of smart devices and 
applications, leading to the generation of big data and consequent 
complex analyses [3]. The complex analysis and massive processing of 
data causes small processing devices such as smart phones to encounter 
limitations in processing and resource allocation. Therefore, these de-
vices have to outsource their processes, i.e. to leave the tasks of resource 
allocation and data processing to more powerful resources [4]. 
Currently, organizations need a dynamic information technology infra-
structure to be able to have this increase in data and their analysis 
carried out within the framework of cloud computing. In a cloud data 
center, there are large computing resources that make it possible to run, 

store, and analyze different applications using virtual machines or 
containers [5]. However, the billions of data generated in sensors as big 
data cannot be transferred or processed in the cloud, since transfer 
bandwidth is limited, and IoT devices are far away from cloud data 
centers. Transfer of a huge amount of data and requests to the cloud may 
result in underapplication of network resources, extreme transfer delay, 
excessive processing costs, and network congestion. Moreover, some 
applications need to be run very rapidly or in real time [6]. All this has 
caused cloud computing to encounter challenges. In a smart health 
application, for instance, which monitors a patient’s conditions, belated 
responses may jeopardize human life. This becomes even more impor-
tant when a large amount of data generated by IoT devices is considered 
[7]. Therefore, an appropriate computing scheme is required to manage 
the diversity, speed, and amount of data generated by IoT devices. Fog 
computing is recommended to eliminate the limitations of the cloud [8]. 
The architecture of fog computing provides services similar to those of 
the cloud near the network edge. Fog computing is performed by a large 
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number of nodes located in a layer close to the network edge. These 
nodes include routers, switches, access points, and workstations [9,10]. 
Fog computing can establish network communication among the de-
vices within a short time [11]. For example, users can access fog nodes to 
receive services at universities, bus stations, and shopping centers that 
are time-sensitive. The fog architecture reduces bandwidth and required 
financial costs with respect to where the data need to be sent to a data 
center or a cloud for processing [12,13]. The fog layer gets connected to 
the cloud data centers for complex computaion and storage. In fact, fog 
computing supplements cloud computing, and their integration forms an 
inspiring computing environment known as the fog-cloud. The sched-
uling problem has been investigated widely for cloud environments, 
both as a unique objective and as a multi-objective optimization prob-
lem. Despite the large number of studies recently conducted in the field, 
the issue is known as one of the hottest areas of research due to its 
various applications. In practice, IoT applications execute requests or 
tasks, which appear as dependent or independent. Independent tasks are 
parallel applications that are considered independently, and are applied 
in problems such as data mining [14]. However, this type of scheduling 
is not applicable to artificial intelligence and big data applications that 
involve complex analyses, and cannot be regarded as pairs of indepen-
dent applications. Therefore, workflow scheduling is used in such cases 
[15]. 

A workflow considers applications as a series of tasks that are 
interdependent, and need to be run in a certain order and with specific 
priorities, where a weighted, directed graph known as the Directed 
Acyclic Graph (DAG) is used for that purpose [16]. Given the above 
discussion, the problem of workflow scheduling is an important one in 
distributed systems, which are composed of large numbers of hetero-
geneous computing resources[17]. The purpose of a workflow sched-
uling problem is to execute a number of parallel tasks on several 
fog-cloud resources in order to minimize parameters such as make-
span, energy consumption, monetary cost, and delay and use the re-
sources efficiently. These problems have been considered in a large 
number of works [18–23]. 

Energy consumption is a significant issue in fog-cloud computing, 
which raises financial costs and environmental problems. Energy de-
pends on a large number of parameters such as throughput, processing 
time, and system power on and off times[24]. The computing nodes in a 
fog use batteries or restricted resources for energy consumption, 
reduction of which in the fog-cloud architecture has thus been turned 
into an important issue [25]. Energy consumption can be improved by 
better workflow scheduling, i.e. allocation of tasks to appropriate virtual 
machine (VMs) and specification of the order in which they are executed 
in each resource[26]. Therefore, reduction of energy consumption along 
with a proper (short) execution time provides an optimal choice for use 
in a resource. A new technology has recently been introduced as Dy-
namic Voltage and Frequency Scaling (DVFS) to reduce energy con-
sumption [27]. The major function of DVFS is to alter the voltage and 
frequency of the available VMs dynamically. In fact, it seeks to select 
voltage and frequency for the VMs that provide less energy consumption 
while an application is being run. Resources will consume less energy if 
run over less voltage and frequency, a technique recently appealing to 
and widely used by researchers in workflow scheduling[22,24,25]. 
There aren’t many DVFS-based articles for cloud-fog computing systems 
in the literature. And it usually applies to a distinct fog or cloud envi-
ronment. As a result, there is a need for greater study on energy-efficient 
scheduling in cloud-fog computing settings. 

Besides makespan and energy consumption, monetary cost is an 
important issue in application scheduling and running[19,26,27], since 
a short makespan and low energy consumption interfere with high 
financial costs, and can reduce the efficiency and utility of an algorithm. 
The cost of application of a processer to execute tasks is a significant 
parameter, which needs to be reduced based on task execution time and 
the monetary cost for each unit of task performance. Therefore, it is very 
important to calculate financial cost and reduce it while ensuring low 

energy consumption and earlier workflow termination. Recent efforts 
have not taken into account simultaneously decreasing these three 
conflicting factors in the combined cloud-fog environment. There are n 
× pn different possibilities for scheduling a DAG with n nodes on a 
system with p VMs. This value is valid for totally independent tasks. If 
graph interdependency is considered, the number of possibilities for 
scheduling will be approximately n! This is regarded as an NP-hard 
problem as it cannot be solved within polynomial time. Different algo-
rithms and methods have been presented in recent years for optimiza-
tion of these problems [28,29]. This becomes more challenging when 
several contradictory objectives need to be met at the same time. The 
overall objective is to obtain an appropriate tradeoff between the 
application completion time and the energy consumed and monetary 
cost incurred during the workflow. Our investigations demonstrate that 
the best optimal points can be specified through solution of the problem 
using meta-heuristic algorithms as compared to other methods. 
Meta-heuristic solution methods make it possible to present 
near-optimal solutions within reasonable times [30]. Meta-heuristics 
exhibit many advantages particularly in the area of dependent tasks, 
which facilitates the processing of a workflow. The Krill herd method, 
one of the meta-heuristic algorithms, is popular because to its success in 
resolving multi-objective issues. Due to shrimp behavior, it supports 
both global and local optimality well, making it one of the newest and 
fastest meta-heuristic solution approaches. This program uses a 
constructive approach to produce better outcomes because our chal-
lenge has multiple criteria[31]. Using a novel way of searching in depth 
and two methods of searching at the level of the DAG, this article pro-
duces intelligent primary population and intelligent solutions, in 
contrast to other algorithms. Better outcomes and faster convergence are 
the effects of this. After that, we use the EFT technique to more effec-
tively and economically assign tasks to available resources. Finally, the 
proposed method uses the DVFS technique to consume less energy. The 
suggested method is effective, as shown by several tests based on various 
CCR (communication-to-computation cost ratio), the volume of tasks 
and virtual machines, and comparisons with strong algorithms. The 
innovations of the paper include the following. 

1. Three different operators are used in the proposed method for 
discovery of new solutions. Moreover, the krill herd algorithm uses three 
operators: movement toward food, movement toward the krill popula-
tion, and stochastic movement. Large Code Distance and Short Code 
Distance strategy, which schedule the tasks available at each level of the 
DAG, are implemented using movement toward food and movement 
toward the krill population, respectively. Deep search (Deep Code Dis-
tance strategy) schedules tasks that are available at different levels but 
are independent of each other. This operator replaces stochastic search 
in the improved krill herd algorithm. 

2. The dependency between tasks in a workflow is represented by a 
DAG. An acceptable solution is one that considers these dependencies 
and imposes less makespan, cost, and energy on the system. We have 
generated the initial solutions in a smart fashion in order to allow the 
algorithm to converge faster. Moreover, efficient searches in depth and 
at the surface are used to map the task sequence to a krill and provide the 
new krill generation in a smart fashion. 

3. The objective function is defined based on the three criteria of 
energy, makespan, and monetary cost in the fog-cloud environment and 
is normalized so that all the three parameters can be minimized at the 
same time. Furthermore, DVFS is used to reduce energy use. 

The remainder of the paper is organized as follows. In Section 2, a 
review of the literature is provided. Section 3 presents the proposed 
algorithm, referred to as IKH-EFT, a combination of Improved Krill Herd 
and Earliest Finish Time. Section 4 involves the results and an evaluation 
of IKH-EFT. A conclusion is made in Section 5. Also, Table 1 shows the 
abbreviations in this article. 
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2. Related works 

Extensive research has been conducted in recent years on the issue 
introduced in the previous section, with each study optimizing a 
different parameter. An overview of the literature demonstrates that a 
single constraint or a maximum of two paradigms have been addressed 
in workflow scheduling rather than a larger number of constraints. 
Given the tradeoff nature of these problems, a single parameter fails to 
provide favorable results in some cases. It is also very important to select 
these parameters based on their degrees of significance for efficient task 
scheduling and proper solution of the algorithms. Moreover, some pa-
pers have considered tasks independently, which makes scheduling easy 
and free of the complexity involved in a workflow. To solve the problem 
of workflow scheduling, authors have used heuristic, meta-heuristic 
[32], machine learning[33], and hybrid algorithms [30]. Among these, 
exact algorithms are capable of finding optimal solutions accurately, but 
are inadequately efficient in the case of NP-hard problems, where it is 
impossible to find the solutions within a reasonable time. A large 
number of heuristic algorithms have been proposed in many papers that 
seek to solve the problems within reasonable times. 

Chai [34] introduced an improved swarm intelligence algorithm in 
task queues, which modified the core scheduler for each task, and 
enhanced the configuration of the task scheduling strategy. The algo-
rithm minimized mean makespan through optimal allocation of tasks at 
each node. Sharma and Garg [35] allocated the best computing re-
sources to the received requests using neural networks through identi-
fication and reception of the environmental conditions such as the 
numbers of servers and virtual machines. This algorithm performed 
better than ones such as genetic and linear regression in terms of criteria 
such as energy consumption, makespan, and resource productivity. Cost 
was not considered in this paper as an objective, where the runtime of 
the algorithm was longer than those of heuristic and meta-heuristic 
ones. A hybrid algorithm named GSAGA is presented by the authors in 
[36] as a solution to the Task Scheduling Problem (TSP) in cloud 
computing. The Genetic Algorithm (GA), despite having a strong ability 
to search the issue space, performs poorly in terms of stability and local 
search. By combining the generic search capabilities of the GA with the 
Gravitational Search Algorithm, authors demonstrated that it is possible 
to develop a stable algorithm (GSA). Using a multi-objective genetic 
algorithm (MOGA), process scheduling issues are optimized in[37]. This 
study presented an initialization scheduling sequence technique, where 
each task’s data size is taken into account when initializing its VM 
instance, to improve the search efficiency. The makespan and the energy 
consumption, which are two optimization goals in this work, can be 
properly traded off based on the original scheduling sequence. Potential 
trade-offs between the makespan and the price of virtual machine usage 
were discussed by the authors in [20]. They suggested a HEFT-ACO 
technique to minimize them, based on the ant colony algorithm (ACO) 
and the HEFT, but they did not take energy into account. Chhabra et al. 
[38] used the search features of two powerful meta-heuristic algorithms, 
namely Cuckoo Search (CS) and Particle Swarm Optimization (PSO), for 
the problem of task scheduling to overcome slow convergence and lack 

of diversity in the initial population. The algorithm was presented to 
reduce energy consumption and makespan in the cloud computing 
environment. 

In [39], Jamil et al. proposed a novel multi-objective algorithm for 
delay-sensitive task scheduling in the fog computing environment, 
which optimized energy consumption, and minimized delay and 
network use. In [40], Zhang et al. presented an approach to 
multi-objective task scheduling in cloud computing, which was referred 
to as Enhanced Heterogeneous Earliest Finish Time based on rules 
(EHEFT-R) and used for optimization of performance, service quality, 
and energy consumption. Zhou et al. [41] presented a task scheduling 
algorithm, referred to as MGGS, by combining the modified genetic al-
gorithm and the greedy strategy, where the greedy strategy was applied 
to the successors generated by the modified genetic algorithm and 
caused faster convergence. The algorithm obtained one optimal solution 
in smaller numbers of iterations. It considered load balancing, service 
quality maximization, and minimization of makespan, average response 
time, and monetary cost. 

In [42] they proposed a method, named HDECO used in workflow 
scheduling in the cloud environment. They introduced an intelligent 
threshold detector to reduce the number of switch-on and off physical 
machines in the cloud datacenter. By classifying input tasks in work-
flows, they manage to optimize energy and cost respectively. The au-
thors of [43] suggest combining heuristic and metaheuristic strategies 
for work scheduling. HEFT is a heuristic method, and fireworks algo-
rithm (FWA) is a metaheuristic algorithm. The approach of bi-objective 
optimization is proposed to reduce the cost and makespan factors. The 
authors of [44] presented an improved algorithm, referred to as PGWO,1 

based on critical paths for workflow scheduling, which improved 
makespan, cost, and resource use. The authors of [45] proposed a heu-
ristic method observing task priority and using the method of task 
duplication for the problem of dependent task scheduling in a hetero-
geneous cloud computing system, and assessed the criteria of speed, 
efficiency, and makespan. They obtained better results than those of 
algorithms such as earliest finish time, while they disregarded energy. 

Moreover, a large number of meta-heuristic algorithms have been 
presented that are capable of finding proper (near-optimal) solutions 
within short times. Many of them have also been improved in recently- 
conducted works, and their drawbacks concerning the solution of this 
problem have been eliminated. In [21], the authors presented a hybrid 
meta-heuristic algorithm, referred to as HDPSO,2 by combining the 
DPSO algorithm and the Hill Climbing technique for workflow sched-
uling and provision of global optima to avoid entrapment in local ones, 
which was focused on makespan, and obtained proper results. In [46], 
Hosseinioun et al. reduced energy consumption using the method of 
dynamic frequency and voltage scaling and low-voltage resource ac-
tivity, and combined Invasive Weed Optimization (IWO) and Culture 
Algorithm (CA) to provide a valid sequence of tasks in order to reduce 
makespan. Abualigah and Diabat [47] proposed the antlion optimiza-
tion algorithm (ALO) for the cloud computing environment by utilizing 
differential evolution as a local search technique to improve operation 
capacity and avoid entrapment in local optima in order to solve the task 
scheduling problem to optimize makespan and make maximal use of the 
resources. In [48], the authors presented an advanced antlion optimi-
zation algorithm that was combined with the PSO algorithm to optimize 
a workflow schedule particular to the cloud. Moreover, they adopted a 
security approach, referred to as Data Encryption Standard (DES), to 
encrypt cloud information while scheduling. They focused on cost, load, 
and makespan. In [49] they unveiled the DMFO-DE, an opposition-based 
hybrid discrete optimization method. To do this, the Differential Evo-
lution (DE) algorithm is paired with a discrete and Opposition-Based 
Learning (OBL) version of the Moth-Flame Optimization (MFO) 

Table 1 
Abbreviations.  

EFT 
DVFS 
CCR 
IOT 
DAG 
VM 
DCD 
LCD 
SCD 
IWO-CA 
HEFT 
IKH 

Earliest Finish Time 
Dynamic Voltage and Frequency Scaling 
Communication-to-Computation cost Ratio 
Internet of Things 
Directed Acyclic Graph 
Virtual Machine 
Deep Code Distance strategy 
Large Code Distance strategy 
Short Code Distance strategy 
Invasive Weed Optimization and Culture Algorithm 
Heterogenous Earliest Finish Time 
Improved Krill Herd algorithm  

1 Pareto-based grey wolf optimizer  
2 Hybrid Discrete Particle Swarm Optimization 
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approach to increase convergence speed and avoid local optima issues. 
Natesan and Chokkalingam [50] presented a novel hybrid algorithm, 
referred to as the whale genetic optimization algorithm, by combining 
the Whale Optimization Algorithm (WOA) and the genetic algorithm to 
optimize cost and reduce makespan. The results of comparison to the 
standard genetic and whale algorithms demonstrated the better effi-
ciency of the proposed algorithm. Nebojsa et. al. performed simulations 
for a workflow scheduling problem with two objectives cost and 
makespan and proposed an improved firefly algorithm in [51] that is 
tailored for overcoming workflow scheduling difficulties in a cloud-edge 
environment. The unique hybrid MBA approach is developed by Man-
ikandan et al. in [52] for resolving multi-objective task scheduling issues 
in cloud computing environments. The multi-objective behavior reduces 
the makespan in the hybrid WOA based MBA algorithm by maximizing 
resource utilization. To ensure task distribution on fog and cloud nodes 
under time limitations, they suggest the multi-objective simulated 
annealing (MOSA) approach. Authors in [53], To optimize total deadline 
violation time for jobs and energy consumption, a system model is 
presented in the article for the job scheduling problem in fog-cloud 
computing. For efficient solution of the job scheduling problem in the 
fog-cloud environment, two nature-inspired optimization techniques are 
proposed besides grey wolf and grasshopper optimization algorithms. 
An architecture is considered in [54] that is composed of multiple fog 
computing providers, and a Hidden Markov Model (HMM) is presented 
to predict whether each fog computing provider is available with respect 
to the tasks offloaded from the fogs to the cloud computing, workflows 
with missed deadlines, number of requests incoming to each fog, and 
similar factors. The unsupervised Baum-Welch algorithm is used to train 
the model, along with the Viterbi algorithm, used to compute the 
probability that each fog is available. A fog computing provider is then 
selected using the probability that the fog provider is available, on 
which IoT workflows are scheduled. 

Since the process of running a learning algorithm is time-consuming, 
it is not appropriate for scheduling delay-sensitive tasks and IoT device 
requests. Heuristic algorithms are usually difficult to design, and fail to 
obtain accurate solutions for optimal points in NP-hard problems. Meta- 
heuristic algorithms can partially resolve the above problems, if they are 
not trapped in local optima, and their problem of premature conver-
gence is eliminated. In fact, a meta-heuristic algorithm is a type of 
approximate optimization algorithm, which may get out of local optima 
to obtain other optimum points due to the large space available for 
search in the solution of problems. Various algorithms of this type have 
been developed in recent decades. The comparison made between the 
available methods demonstrates that meta-heuristics are one of the most 
efficient methods of solving the scheduling problem. In this paper, the 
proposed meta-heuristic algorithm (improved krill herd involving 
movement in three directions for krill) is used for workflow scheduling, 
since DAG search enables movement in depth and at the surface in 
practice, providing population diversity that is missing in other papers. 
Moreover, the initial population is generated in a smart fashion to 
eliminate the drawbacks, the EFT technique is implemented for task 
allocation, and the three contradictory objectives are optimized in the 
fog-cloud environment, whereas population has been generated sto-
chastically in other papers, and no investigation has been made of 
optimization of the three objectives of the workflows in the above 
environment. 

3. Proposed method 

Different architectures are used for workflow scheduling in fog-cloud 
computing. Given the significance of the problem, this section first ad-
dresses the architecture and the model used for representation of the 
relevant schedule. Then, the IKH-EFT algorithm is presented in detail. 

3.1. Three-tier architecture 

Fig. 1 shows the architecture of the IKH-EFT method, involving three 
layers: the terminal layer, the fog layer, and the cloud layer [55,56]. The 
terminal layer includes smart devices (IoT devices such as home appli-
ances, sensors, smartphones, and smart automobiles). These devices 
submit requests, and send data to the higher-level layers to be processed 
by the applications [6]. The applications are considered as series of 
interdependent tasks that need to be executed in a particular order and 
with a specific priority. The fog layer is the middle one, located between 
the IoT devices and cloud data centers, close to the terminal layer de-
vices. There is also a particular node, referred to as fog broker, in this 
layer that functions as the central manager and task scheduler. This node 
is in charge of user request collection and resource management over 
fog-cloud nodes. It also provides the best scheduling for workflows. The 
highest layer in this architecture is the cloud layer, which contains 
powerful servers for large amounts of complex processing and storage, 
and exhibits high efficiency. This layer provides computing services for 
intensive computing and workload and efficient, reliable data storage 
facilities. Given the long distances between the layer servers and data 
resources, there may be delays in processing, so delay-insensitive tasks 
with high complexity and no deadlines had better be performed in this 
layer [7]. 

This paper aims to allocate tasks to machines in order to minimize 
energy, makespan, and monetary cost in the fog-cloud architecture. The 
parameters used in the paper are listed in Table 2. The fog-cloud system 
used in this paper involves heterogeneous computing nodes. The fog 
nodes exhibit less computing capability, and are closer to data resources 
(where data are generated). The cloud nodes have greater computing 
capability, but are farther away from data generation resources. In this 
problem, the set of VM nodes, N = {n1,n2,…np}, involves all nodes that 
are divided between the fog and cloud sets from the beginning, as rep-
resented by Eq. (1) [25]. Each node in N may be one in the cloud Nc or in 
the fog Nf. 

N = Nc ∪ Nf,Q(Nf) < Q(Nc)∀N. (1) 

The lower computing capability of fog nodes Q(Nf) than that of cloud 
nodes Q(Nc) results from the physical limitation of fog devices [25]. As 
shown in Fig. 2, the relationships between tasks are represented using a 
directed acyclic graph G = (V, E), which is weighted as well as directed 
[57]. Fig. 2 shows a simple example of a DAG, representing ten tasks and 
the workflows between them. The graph indicates that t1 is an input task 
and t10 is an output task. Moreover, transfer cost (the time required for 
transfer) will be zero if t1 and t2 are executed on the same host, and it will 
be 15 if they are executed on separate hosts. 

Each node is a member of v = {t1,t2,…tn}, and indicates a task, and 
the node weight, shown as w, is a nonnegative number that specifies 
execution time or computation cost. w is an m × n computation cost 
matrix, where m is the number of tasks, and n is the number of system 
VMs. wi,j is the computation cost of task ti on VM pj, measured in mil-
liseconds. The graph also involves a set of edges, namely E, indicating 
the prerequisite relationships between tasks. Each edge ei,j ∈ E is of 
nonnegative weight ci,j, which denotes the amount of data transferred 
from task ti to task tj, i.e. the cost of communication between the two 
tasks. This cost is there when the tasks are executed on different VMs, 
and communication cost will be zero for tasks executed on the same VM. 
Prioritization is the most important step in a scheduling algorithm, as 
efficiency depends mainly on this step. In this paper, prioritization is 
calculated based on the cost, energy consumption, and makespan pa-
rameters, and is used in evaluations as a measure for algorithm 
efficiency. 

3.1.1. Makespan 
Makespan is an important factor in workflow scheduling, and is 

minimized in applications. The shorter this time, the higher the effi-
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ciency of the system. To obtain the value of this measure, the earliest 
start time (EST) of task ti on VM pj needs to be calculated. Eq. (2) is used 
for that purpose for the input task with no predecessors and Eq. (3) for 
other tasks [58]. 

EST
(
tenter, pj

)
= 0 (2)  

EST
(
ti, pj

)
= max

tj∈pred(ti)

(
AFT

(
tj
)
+C

(
tj, ti

) )
(3)  

where tenter is the input task with no predecessors, pj is the jth VM, ti is the 
ith task in DAG, pred(ti) is the set of essential predecessors of task ti, and 
C
(
tj, ti

)
is the closeness of communication between tasks ti and tj. 

Moreover, the actual start time of task ti on VM pj is calculated by Eq. (4) 
[58]. 

AST
(
ti, pj

)
= max

(
EST

(
ti, pj

)
,Avail

(
pkj

) )
(4)  

where Avail
(

pj

)
is the time when VM pj is still and ready to calculate a 

task from the queue. Eq. (5) [58] shows the earliest finish time of task ti 
on VM pj. 

EFT
(
ti, pj

)
= tij +AST

(
ti, pkj

)
(5) 

The actual finish time of task ti is a function that finds VM pj for this 
task from among the VMs to reduce execution time, and is obtained 
using Eq. (6) [58]: 

AFT
(
ti, pj

)
= min

1≤l≤P
EFT(ti, pj) (6)  

3.1.2. Monetary cost 
The execution cost of a specific task is calculated through multipli-

cation of the total time spent for its execution at the selected node by the 
price of the node. Table 3 involves an example of monetary cost for each 
unit of task execution in cents. For instance, 2 cents is calculated in VM 1 
for each millisecond (unit of execution), 3 cents in VM 2, and 4 cents in 
VM 3. Then, the monetary cost of the relevant task is obtained given its 
EFT value and cost of execution on the VM. Communication cost is not 
considered directly in the calculations, since it is considered indirectly in 
the calculation of EFT. Eq. (7) shows the monetary costs incurred in the 
fog and in the cloud. The total cost of the workflow is the sum of the 
execution costs of all the tasks [20]. 

Fig. 1. Fog – Cloud architecture.  
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Cost =

⎧
⎨

⎩

∑ (EFT(ti, pk) ∗ Dll(ti, pk) ) ∗ c11 ≤ l ≤ P, c1forNc

+

∑
(EFT(ti, pk) ∗ Dll(ti, pk) ) ∗ c21 ≤ l ≤ P, c2forNf

⎫
⎬

⎭
(7) 

Dll(ti, pk) is the monetary cost of execution of task ti on VM pk, c1 is 
the constant cost of transition to the cloud, and c2 is the constant cost of 
transition to the fog. 

3.1.3. DVFS 
The DVFS approach often lowers the CPU’s operational frequency 

and voltage to lessen the energy consumption of processors during task 
execution. All computing systems can use the DVFS approach. However, 
decreasing the CPU frequency slows things down, thus the workflow 
deadline can unintentionally be missed. Therefore, the primary re-
sponsibility of DVFS-based scheduling frameworks is to establish the 
minimal operational frequency for the VMs that execute the workflow 
and adhere to the workflow deadline[49]. Different allocations of tasks 
to VMs create time gaps between the tasks once completed. If VM 
pkworks at a specific frequency, it can reduce speed at the gaps since it is 
idle there to consume less energy. Eq. (8) shows how a gap is calculated 
[59]. 

Gap = max
∑

j∈p
.
∑

i∈t
ESTi − EFTi − 1 (8) 

Reduced CPU processing speed (frequency) is not problematic as 
long as it lies within the limits of the gap and does not interfere with the 
subsequent task. We seek to reduce energy consumption using voltage, 
frequency, and the DVFS technique. The main function of DVFS is to 
alter the voltage and frequency of the available VMs dynamically. In 
fact, DVFS seeks to select appropriate voltage and frequency for the VMs 
as an application is run [60]. 

In this study, we use energy consumption, which includes static and 
dynamic use. Since dynamic energy consumption is more time- 
consuming and expensive, static energy consumption is typically dis-
regarded in our scheduling strategy [49]. 

EN = ENstatic +ENdynamic (9) 

When the system is turned on ENstatic represents the amount of power 
used while ENdynamic compute as follows [49]: 

ENdynamic = Z.V2
js.f (10) 

Where Z is the dynamic power consumption constant, which depends 
on the device capacity. Additionally, V2

JSis represents the voltage of the 
sth level, the jth VM and f represents the jth VM frequency. The following 
equation can be used to calculate the energy consumption of the VMs 
[49]: 

ENbusy =
∑n

i=1
Z × V2

js × fjs × ETij =
∑n

j=1
ENdynamic × ETij (11) 

Where Vjs denotes that the ith is task is used on the jth VM, with the sth 

voltage level and ETij represents the execution time of the ith task on the 
jth VM. Additionally, fjs is the of processor’s jth VM frequency at the sth 

voltage level. Additionally, to save the maximum energy, the voltage of 
VMs must be adjusted to the lowest setting while they are idle. The 
following definition applies to all available CPUs’ idle energy con-
sumption [49]: 

ENidle =
∑p

j=1
Z × v2

jmin × fjmin × ITj =
∑p

j=1
ENide × ITij (12) 

Where ITj is regarded as the jth VM’s idle time vjminand fjmin are its the 
minimum voltage and frequency of the jth VM. These equations allow us 
to calculate the total energy consumption needed for DAG scheduling in 
a cloud-fog computing environment as follows: 

ENtotal = ENbusy +ENidle (13) 

Table 2 
Parameters used in the paper.  

ti ith task in DAG 

tij Computation Cost of task ti on VM pj 

pj jth VM in the system 
QN Node computing capability 
E Set of edges 
V Set of tasks 
N Set of VMs 
Fj Frequency level for node j 
Dll(ti,pj) Monetary execution cost of task ti on VM pj 

tentry Input task with no predecessors 
texit Output task with no successors 
Succ(ti) Set of essential successors of task ti 
Pred(ti) Set of essential predecessors of task ti 
Wi,j Computation cost of task ti on VM pj 

C
(
ti, tj

)
Communication between tasks ti and tj 

EST
(

ti, pj

)
Earliest start time of task ti on VM pj 

EFT
(

ti, pj

)
Earliest finish time of task ti on VM pj 

AST
(

ti, pj

)
Actual start time of task ti on VM pj 

AFT(tk) Actual finish time of task ti on best VM pj 

LFT(ti) Last finish time of task ti 
avail{k} Earliest time VM pj is available for execution  

Fig. 2. Example DAG with ten nodes and communication cost.  

Table 3 
Computation and monetary costs.  

Task VM3 VM2 VM1  

Cent Computation Cent Computation Cent Computation 

t1  32  8  39  13  20  10 
t2  28  7  24  8  18  9 
t3  48  12  39  13  22  11 
t4  60  15  33  11  16  8 
t5  44  11  27  9  24  12 
t6  36  9  21  7  30  15 
t7  24  6  15  5  16  8 
t8  64  16  45  15  14  7 
t9  40  10  24  14  32  16 
t10  52  13  18  6  18  9  
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The method used to calculate the energy consumption function for 
the full workflow application is: 

ENconsumtionDAG =
∑

n
ENtotal(n) (14) 

where n can be a fog or a cloud VM. 
Table 4 shows an example of the voltage and frequency values for the 

computing resources. Resources consume less energy when run over 
lower voltage and frequency values [46]. 

3.1.4. Objective function 
The purpose of our optimization problem is to minimize makespan, 

energy consumption, and monetary cost at the same time. In this paper, 
the problem of multi-objective optimization turns into a problem of 
single-objective optimization through application of the impact factor to 
each of the parameters with a weighted sum approach. Therefore, the 
objective function of the optimization problem can be expressed as Eq. 
(15) and Constraints (16) and (17). 

Min(z) = ą × makespan+ β × cost+Ω × energy (15)  

0 ≤ ą, β,Ω ≤ 1 (16)  

ą + β+Ω > 0, ą = 0.5, β = 0.25,Ω = 0.25 (17) 

Constraint (16) states that each of the impact factors must be a 
number between zero and one, and Constraint (17) states that the sum of 
all the three coefficients is larger than zero. The relevant values are set 
given the importance of makespan in the problem and the tradeoff be-
tween energy and monetary cost. Finally, the values concerning the 
objectives need to be normalized, since they are not of the same type. 
For that purpose, we use the method of lower bound for each variable. 

3.2. Proposed algorithm 

The IKH-EFT algorithm involves two different phases: smart gener-
ation of the initial population considering the dependencies and adop-
tion of a VM equipped with the DVFS technology in accordance with the 
objective function. A DAG, as in Fig. 2, is generated stochastically with 
values for execution cost and communication cost. VMs are also gener-
ated with specific frequencies and voltages, as in Table 4, and a mone-
tary cost, as in Table 3. The given DAG is traversed top down, and the 
tasks are sorted independently at each level, so that they can be executed 
in parallel. Population is stochastically initialized to make it possible to 
solve the problem meta-heuristically using the improved krill herd al-
gorithm for generation of different layouts. The EFT technique is used in 
accordance with the objective function for selection of a VM and its 
allocation to the task. The objective function aims to reduce three pa-
rameters at the same time: energy, makespan, and monetary cost.  

i. Generation of the initial population 

A solution is composed of n nodes, and must be valid given the 
precedence constraints. In the IKH-EFT method, the population involves 

300 valid solutions that are generated in a smart fashion. Generation of 
the initial population is the first step in the krill herd algorithm, which 
considerably affects the algorithm performance. In a DAG-based work-
flow, the order of tasks in the population solutions must meet the pre-
cedence constraint. To spread tasks through one solution, the method of 
height distribution [46] and in-depth search is used. 

First, minimum height L(ti) is calculated for each task using Eq. (18). 
Then, maximum height H(ti) in DAG is obtained by Eq. (19). 

L(ti) =

{
0pred(ti) = ∅

1 + max
tj∈pred(ti)

(
L
(
tj
) )

pred(ti) ∕= ∅

}

(18)  

H(ti) =

{
L(texit)succ(ti) = ∅

min
tj∈succ(ti)

(
H
(
tj
) )

− 1succ(ti) ∕= ∅

}

(19) 

The results of height distribution for the DAG in Fig. 3 are shown in  
Table 5. The initial population is generated in our algorithm based on 
the height values, where the height of the task selected in a solution 
must not be greater than those of the predecessors or less than those of 
the successors.Table 6.  

i. Krill movement 

In the krill herd algorithm, three behaviors cause the creatures to 
move toward optimal regions: attraction, foraging, and stochastic 
movements. Every krill can have three types of movement in the sea, as 
follows. Induced movement Ni. In this movement, each krill is influ-
enced by the neighboring krill, and makes movements according to in-
formation obtained from the neighbors. Foraging activity Fi. To find 
food, each krill makes movements toward food sources. Stochastic 
diffusion Di. Each krill can exhibit stochastic behavior in its movements. 
The krill objective function has been stated as in Eq. (20). 

dXi

dt
= Ni +Fi +Di (20) 

For a successor to differ from its predecessor in order to realize global 
optimization, the Strategy for Large Code Distance (LCD) is adopted to 
spread successors over a discrete solution space, where an action node is 
stochastically selected from a solution. Then, the nearest two tasks that 
ensure the precedence constraints are found among the predecessors and 
successors of the node. Therefore, the movement can be made within the 
interval between specific tasks. Moreover, an array of labels is con-
structed to record the states of task movement. Solution modification is 
terminated when a specific code distance is obtained, or all tasks are 
selected. Alternatively, short code distances are used for global 

Table 4 
Relative frequency and voltage [46].  

Level VM 3 VM 2 VM 1  

Relative 
frequency 

Voltage Relative 
frequency 

Voltage Relative 
frequency 

Voltage 

0 1 85/1 1 6/1 1 90/1 
1 85/. 70/1 85/. 4/1 9/. 75/1 
2 65/. 45/1 60/. 15/1 8/. 60/1 
3 45/. 20/1 50/. 9/. 7/. 45/1 
4 30/. 95/. 40/. 8/. 6/. 30/1 
5 – – – – 5/. 15/1 
6 – – – – 4/. 00/1  

Fig. 3. Example of in-depth search.  
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optimization [46]. In SFSCD,3 tasks at the same height are of equal 
priority. Therefore, this strategy is capable of moving tasks at the same 
level with no violation of the precedence constraints. Besides these two, 
we present a novel method in this paper for provision of diversity in 
smart generation of the initial population. The proposed method in-
volves a type of in-depth search, which we refer to as the Strategy for 
Deep Code Distance (DCD). 

3.2.1. Strategy for deep code distance 
This strategy aims to provide diversity in the initial population ac-

cording to in-depth search, and seeks to obtain sensitive paths from 
important nodes. The Dynamic Frequency Scaling (DFS) search method 
functions in a smart fashion here. Maintaining dependency, the strategy 
moves in depth between tasks beginning from the predecessor and 
continuing until the last successor that has not visited its predecessor. 
Processing is resumed from the beginning after completion. In equal 
conditions, the subsequent nodes are selected stochastically. As can be 
observed in Fig. 3, the search for t3 continues in the Strategy for Large 
Code Distance until the node depth is completed. In the Strategy for 
Deep Code Distance, however, we can proceed in the depth of a node 
when all its predecessors have been visited. For instance, node t6 is 
visited in the Strategy for Large Code Distance before node t2, as in- 
depth search for t3 is allowed, whereas t6 follows t2 in the Strategy for 
Deep Code Distance, since the successors of t3 are visited when all its 
predecessors, including t2, have been visited.  

i. Task-to-VM mapping 

Tasks must be allocated to the available VMs after the step of pop-
ulation initialization in the system. In IKH-EFT, the krill herd algorithm 
is used with the objective function in Eq. (15), where the optimal value is 

found through simultaneous reduction of three parameters: energy, 
makespan, and monetary cost, and the obtained optimal tasks are 
mapped to VMs using the EFT technique. The krill herd algorithm is used 
for global optima, and EFT is used for local optima. It should be noted 
that we do not apply crossover and mutation, which are there in the krill 
herd algorithm, given the different layouts generated via DCD, LCD, and 
SCD and the dependency between tasks in terms of precedence. 

4. Evaluation 

In this section, the performance of IKH-EFT is compared to that of 
IWO-CA [46], HEFT [58], and IHEFT [61] for investigation of its su-
periority. The reason for using these algorithms is to compare their 

Table 5 
Height distribution.  

Tasks 1 2 3 4 5 6 7 8 9 10 

L(ti) 0  1  1  1  1  1  2  2  2  3 
H(ti) 0  1  1  1  1  1  2  2  2  3  

Table 6 
Example for the Strategies for Long and Short Code Distance.  

Table 7 
Dataset properties.  

Number of Tasks [10, 25, 50, 100, 200, 400] 

Number of VM [3,5,7,10] 
Number of Edges 1.5 * Number of Tasks  

5  

Minimum Computation Cost  15  

Maximum Computation Cost  
10  

Minimum Communication Cost  30  

Maximum Communication Cost  
1 Cent  

Minimum Monetary Cost  10 Cent  

Maximum Monetary Cost  
[0.2, 1, 5, 10]  

CCR  Fat  

Shape  

3 Strategy for Short Code Distance 
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strength in the field of makespan reduction and energy consumption 
with DVFS technique. All the above methods are implemented over the 
same dataset, in equal conditions, with a Core i7 VM and 8 gigabytes of 
memory, and in MATLAB 2020 on Windows 10. 

4.1. Dataset 

The stochastic graph generator is used to generate a wide range of 
graphs. In this method, a DAG is stochastically generated based on the 
numbers of task and VMs and given the order in which the tasks are 
executed, providing different combinations. The properties of the 
generated graph can be observed in Table 7. Since stochastic graphs and 
real-world datasets are different in shape, and there is no balanced 
relationship between computation and communication costs, perfor-
mance is evaluated given the value of CCR, a parameter that stands for 
the communication-to-computation cost ratio. The CCR value concern-
ing each diagram is obtained through the ratio of total edge weight to 
total node weight. Graph type is computation-intensive if graph CCR is 
less than one, communication-intensive if it is greater than one, and 
moderate if it is equal to one. In this paper, graphs are generated and 
evaluated for different values of CCR. As can be observed in Table 7, the 
total number of tasks in the graph assumes the 10, 25, 50, 100, 200, and 
400 values. The number of edges is 1.5 times greater than that of tasks, 
and there are one or two edges from the node at level s to that at level 
s + 1. Moreover, links are generated between vertices with a uniform 
distribution. Three, five, seven, and ten virtual machines are considered 
in this paper. 

4.2. Parameters used for evaluation and analysis of efficiency 

Accurate evaluation requires an application of appropriate parame-
ters. IKH-EFT is compared to the other methods in terms of different 
measures, including makespan, implementation cost, energy consump-
tion, efficiency, speedup and SLR. For investigation of the performance 
of IKH-EFT in different conditions, stochastic datasets with different 
values are generated, each considered as input to the compared algo-
rithms in one of three different scenarios, suggested in this paper for 
further investigation. Different experiments are conducted with the 
same numbers of tasks and virtual machines and different CCR values. 
For further experimentation, another parameter is changed each time, 
while the other two are kept constant. The number of iterations is 100, 
and the number of implementations for each scenario is 10. The mean 
values of the measures are finally obtained. 

4.2.1. Makespan 
Makespan is regarded as one of the most frequent parameters used 

for comparison in the scheduling problem, and is defined as the total 
length of the schedule. As stated in Section 3.2, makespan is obtained 

from Eq. (21). 

makespan = Min{max(AFT(ti))} = min {AFT(texit)} (21) 

The values of each of the above parameters were detailed in Section 
3.2. In Fig. 4, the value of makespan is obtained for different numbers of 
tasks. Since this is the most important measure, based on which the 
others are obtained, the method aims to calculate the minimum value of 
this one first. As can be observed, IKH-EFT exhibits better results (lower 
values) than the other methods in all the cases. This is because a heu-
ristic algorithm cannot search a large space efficiently. The IWO-CA is 
the second-best method after ours. An important point to be noted is that 
IWO-CA generates diverse but low-quality solutions in some cases, since 
it generates initial populations only at the graph surface, and is rather 
focused on energy consumption. In the subsequent experiments, shown 
in Figs. 5 and 6, makespan is obtained based on the number of virtual 
machines and the value of CCR, respectively. The great power of IKH- 
EFT is demonstrated by its superiority in different scenarios, which is 
maintained as the value of CCR and the number of virtual machines 
increase. 

The issue of energy consumption involves the entire energy 
consumed by computing resources that execute all workflow schedule 
tasks. The next experiment concerns the energy consumed for different 
algorithms, which are conducted in three different scenarios, as for 
makespan. The DVFS technique is used to reduce energy consumption.  
Figs. 7, 8, and 9 show the energy consumed by IKH-EFT and the 
compared methods. It is observed in Fig. 7 with an accurate calculation 
of gaps that it exhibits considerable superiority as the number of tasks 
increases. IKH-EFT efficiently utilizes the gaps between tasks, which 
reduces energy consumption with respect to that in the other methods. 
As can be observed for less than 100 tasks, the proposed method and 
IWO-CA exhibit superiority over the other methods in terms of energy 
consumption. All the methods perform similarly even for 25 tasks, since 
very small gaps take shape between tasks. Similarly, IKH-EFT is 
considerably superior in the reduction of energy consumption for five 
and seven virtual machines, as observed in Fig. 7. In Fig. 9, where energy 
consumption is calculated with respect to CCR, IKH-EFT performs 
almost the same as IWO-CA and slightly differently from HEFT and 
IHEFT for CCR = 0.2 and CCR = 1. Given the small number of tasks for 
these values, very small gaps take shape, which can hardly be used in 
IKH-EFT, hence the close values. 

The next experiment aims to obtain and compare the monetary cost 
of implementation of an entire workflow in different scenarios. User 
satisfaction can be achieved with low values for the monetary cost of 
running the application along with the other measures. IKH-EFT is 
compared to IWO-CA, HEFT, and IHEFT in Figs. 10, 11, and 12. Fig. 10 
shows the superiority of IHEFT with 10 tasks, where IKH-EFT is the 
second best. The HEFT algorithm exhibits better performance than the 
other methods with 25 tasks. With larger numbers of tasks, however, the 

Fig. 4. Aerage makespan for the different task set.  
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proposed method outperforms the others. When DVFS is used to reduce 
energy consumption, greater use is made of virtual machines, since 
smaller gaps take shape between tasks, which establishes a tradeoff 
between energy consumption and monetary value. The same impact 
factor is considered in this paper for the two measures to provide a 
balance between them. Along the same lines, IKH-EFT and IHEFT 
exhibit considerable superiority over the other methods with five and 
seven virtual machines, as observed in Fig. 11. Fig. 12 shows that the 
proposed method performs better than all the others for CCR = 0.2, and 

there is less difference in monetary value between them for the other 
values of CCR. 

4.2.2. Schedule length ratio (SLR) 
Schedule length ratio (SLR) is a major measure used for evaluation of 

the performance of the scheduling algorithm over the graph. This 
measure is obtained based on the makespan and critical path parame-
ters. The critical path is the longest path from the input node to the 
output node of the given DAG in the fastest VM. Since different large 

Fig. 5. Average makespan for the different VM set.  

Fig. 6. Average makespan for the different value of CCR.  

Fig. 7. Evaluation of energy consumption for the different task set.  
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graphs are used, the value of makespan needs to be normalized to a 
lower bound. If the scheduler runs the nodes on the critical path using 
the fastest virtual machine, the value of the makespan parameter cannot 
be lower than the critical path length. Therefore, the length ratio of any 
schedule is more than one. Since the denominator is the lower bound, 
SLR cannot be less than one. A scheduling algorithm with the lowest SLR 
is the best. If the value is close to one, the scheduler can be said to 
function highly properly. In other words, a lower SLR is favorable. The 
SLR of an algorithm over a graph is defined by the following equation. 

SLR =
Makespan

∑

ni∈CPmin
Minpj∈Q{Wi,j}

(22) 

In this equation, the denominator is the sum of the minimum 
computation costs of the tasks on the critical path. For an unscheduled 
DAG, the critical path will be based on the minimum computation costs, 
represented as CPMIN, if the computation cost of each node ni is set to the 
minimum value. The average SLRs from the task graphs are used in 
several experiments in the paper. The mean SLRs in Fig. 13 are obtained 
based on the numbers of different tasks on t virtual machines and the 

Fig. 8. Evaluation of energy consumption for the different VM set.  

Fig. 9. Evaluation of energy consumption for the different value of CCR.  

Fig. 10. Evaluation of cost consumption for the different task set.  
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constant value of CCR. With fewer than 100 tasks, IKH-EFT exhibits 
considerable superiority over the other methods. With 200 tasks, there is 
very little difference. With 400, IKH-EFT and HEFT assume the same 
SLR. Different numbers of virtual machines along with constant values 
for CCR and the number of tasks are investigated in Fig. 14. As can be 
observed, IKH-EFT exhibits lower SLRs than the other methods in all the 
scenarios, and the difference is still there as the number of virtual ma-
chines increases. The IHEFT algorithm assumes the highest SLRs in this 
experiment. A similar experiment is conducted based on CCR, as shown 

in Fig. 15, where IKH-EFT, IWO-CA, and HEFT obtain close results. With 
an examination of the experiments as different scenarios, it can be stated 
that IKH-EFT is superior to the IWO-CA, HEFT, and IHEFT algorithms in 
most cases. This results from its lower makespan and better performance 
in the surface and in-depth search for the critical path.Fig. 16. 

4.2.3. Speedup 
The increase in speed, known as speedup, for a specific graph is 

obtained through division of sequential runtime to parallel runtime 

Fig. 11. Evaluation of cost consumption for the different VM set.  

Fig. 12. Evaluation of cost consumption for the different CCR value.  

Fig. 13. Average schedule lengths ratio for the different task set.  
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(makespan). Sequential runtime is the time required for allocation of all 
tasks to a single VM, which minimizes the sum of computation costs. The 
probable runtime in the above conditions is calculated in Eq. (23). 

Speedup =

minpj∈Q{
∑

ni∈N
{Wi,j}}

makespan
(23) 

If the sum of computation costs is maximized, speed will increase 
further, but the scheduling algorithms will eventually end with the same 
ranking. Figs. 17, 18, and 19 show speedup for the compared algorithms 
in different scenarios. According to Fig. 17, the speedup in IKH-EFT gets 
farther apart from the values in the other methods as the number of tasks 
increases. The same finding is observed with changes in the number of 

virtual machines and the CCR value. IKH-EFT outperforms the other 
methods in most cases. 

4.2.4. Efficiency 
The effective scheduling approach improves linearly in proportion to 

the number of virtual machines used. In other words, runtime will be 
divided by two if the scheduler uses one virtual machine instead of two. 
The efficiency parameter involves the ratio of speedup to the number of 
virtual machines. Eq. (24) is used to obtain the value of this parameter. 

Efficiency =
Speedup

number of used VM
× 100% (24) 

As can be observed in Figs. 19, 20, and 21, IKH-EFT improves 

Fig. 14. Average schedule lengths ratio for the different VM set.  

Fig. 15. Average schedule lengths ratio for the different CCR value.  

Fig. 16. Speedup comparison of the four algorithms for the different task set.  
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Fig. 17. Speedup comparison of the four algorithms for the different VM set.  

Fig. 18. Speedup comparison of the four algorithms for the different CCR value.  

Fig. 19. Comparison of efficiency metric for the different task set.  

Fig. 20. Comparison of efficiency metric for the different VM set.  
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efficiency with respect to that in the other algorithms over all the 
datasets, which demonstrates that it convergences faster than them, as a 
result of the great power of the krill herd algorithm in terms of global 
and local optima. The superiority is clear in Fig. 19 as the number of 
tasks increases and in Fig. 21 as CCR equals 0.2. 

5. Conclusion 

In the implementation of a workflow to provide services to users and 
organizations, it is of great significance to reduce makespan in order to 
perform tasks faster, to reduce monetary cost in order to execute tasks or 
run applications economically, and to reduce energy consumption in 
order to observe environmental issues including low node battery life. 
Given the interdependency of tasks and NP-hard nature of the sched-
uling problem, simultaneous reduction of the parameters examined in 
this paper in the fog-cloud environment has not been investigated in 
previous research. A workflow scheduling algorithm, referred to as IKH- 
EFT, is proposed here using the improved krill herd algorithm and the 
EFT technique in the fog-cloud environment for scheduling different 
DAGs. The algorithm first generates different workflows, and then pro-
vides lists of interdependent task execution observing precedence and 
priority in a smart rather than stochastic fashion based on the krill herd 
algorithm and movement at the surface and in the depth of the graph. It 
then isolates the superior lists using the EFT technique (i.e. objective 
function) that involve the lowest makespan and monetary cost. Next, the 
algorithm reduces energy consumption where gaps exist using the DVFS 
technique. Use of the krill herd algorithm has obtained proper results in 
NP-hard problems with large numbers of measures, and near-optimal 
solutions can be obtained in both global and local scales through com-
bination with the EFT technique. Based on the conducted experiments, 
the three parameters of makespan, monetary cost, and energy con-
sumption are simultaneously reduced in the fog-cloud environment in 
IKH-EFT using complex graphs with different values for CCR, number of 
tasks, and number of virtual machines. The challenge of using task 
deadline as a measure can provide research topic prospects. Moreover, 
solutions adopted in machine learning methods and their combination 
with meta-heuristic methods in multicloud environment can be 
considered in future studies. 
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