519,945 research outputs found

    A Fourth Party Energy Provider for the Construction Value Chain: Identifying Needs and Establishing Requirements

    Full text link
    Today’s building and energy management market is heterogeneous and complex. Most of the players in the construction market are not in possession of the managerial capability to fully control the dynamics that affect their energy costs in terms of energy sourcing and energy management. Moreover, construction industry needs to rely on a stronger technical and commercial expertise. On one hand, there is a need of an in-depth and extensive level of technical know-how that most of facility managers, property developers and building owners at private and public level scarcely hold. On the other hand, this industry is characterized by a fragmentation within the single tiers of the value chain. In this context, the paper aims at proposing a new vision of the building value chain towards a collaborative network led by a new player, namely the Fourth Party Energy Provider, acting as the “one-stop contracting and managing” operator, integrating resources, capabilities, best available technologies and practices for providing energy-efficient building solutions

    Coordinated Demand Response and Distributed Generation Management in Residential Smart Microgrids

    Get PDF
    Nowadays with the emerging of small-scale integrated energy systems (IESs) in form of residential smart microgrids (SMGs), a large portion of energy can be saved through coordinated scheduling of smart household devices and management of distributed energy resources (DERs). There are significant potentials to increase the functionality of a typical demand-side management (DSM) strategy, and typical implementation of building-level DERs by integrating them into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and an integrated communications architecture to efficiently manage energy and comfort at the end-use location. By the aid of such technologies, residential consumers have also the capability to mitigate their energy costs and satisfy their own requirements paying less attention to the configuration of the energy supply system. Regarding these points, this chapter initially defines an efficient framework for coordinated DSM and DERs management in an integrated building and SMG system. Then a working energy management system (EMS) for applications in residential IESs is described and mathematically modeled. Finally, the effectiveness and applicability of the proposed model is tested and validated in different operating modes compared to the existing models. The findings of this chapter show that by the use of an expert EMS that coordinates supply and demand sides simultaneously, it is very possible not only to reduce energy costs of a residential IES, but also to provide comfortable lifestyle for occupants

    Emerging Technologies In Building Energy Efficiency

    Get PDF
    The U.S. building stock are under continuous aging and deterioration with deferred maintenance that hinders their operation. Existing buildings account for more than 86% of the annual construction cost in the U.S. and often suffer from lack of acceptable level of thermal comfort, indoor air quality (IAQ) as well as high energy use and costs. Considering future energy constraints (e.g. global warming and energy resources) and cost (e.g. capital cost and operational cost) suggest a need for a paradigm shift in our current understanding of energy efficiency and indoor environmental quality (IEQ) of the older existing building stock. Major technological advances beyond our current knowledge are much needed to design energy efficient buildings and retrofit large numbers of buildings at scale. Our technologies advances should be converged on high performance building enclosure materials, advanced building controls, intelligent building mechanical systems, efficient building lighting fixtures, and smart building plug-load management. For example, currently, majority of the residential buildings and a significant number of commercial buildings in the U.S. do not have any building automation systems, suggesting an emerging need to develop low-cost building automation systems specifically for residential buildings. This presentation covers a wide range of much needed technological advances on different building components and systems in order to design energy efficient buildings or retrofit large numbers of buildings. The aim of this presentation is not only to provide opportunities to reduce energy consumption in older existing buildings but also to shed light on new solutions to harvest energy through buildings

    Creating sustainable cities one building at a time: towards an integrated urban design framework

    Get PDF
    One of the tenets of urban sustainability is that more compact urban forms that are more densely occupied are more efficient in their overall use of space and of energy. In many designs this has been translates into high-rise buildings with a focus on energy management at their outer envelopes. However, pursuing this building focused approach alone means that buildings are treated as stand-alone entities with minimal consideration to their impact on the surrounding urban landscape and vice versa. Where urban density is high, individual buildings interact with each other, reducing access to sunshine and daylight, obstructing airflow and raising outdoor air temperature. If/when each building pursues its own sustainability agenda without regard to its urban context, the result will diminish the natural energy resources available to nearby buildings and worsen the outdoor environment generally. This paper examines some of these urban impacts using examples from the City of London where rapid transformation is taking place as very tall buildings with exceptional energy credentials are being inserted into a low-rise city without a plan for the overall impact of urban form. The focus of the paper is on access to sunshine and wind and the wider implications of sustainable strategies that that focuses on individual buildings to the exclusion of the surrounding urban landscape. The work highlights the need for a framework that accounts for the synergistic outcomes that result from the mutual interactions of buildings in urban spaces

    Multi-Energy Management of Buildings in Smart Grids

    Get PDF
    The ongoing energy transition from centralized, fossil fuel power plants towards distributed, low-carbon generation resources implies fundamental changes in the energy infrastructures and their management. In the multidisciplinary domain of the energy sector and its transformation, this work tackles the challenge of rethinking the engineering and operation of energy systems to make them more efficient, more sustainable, and smarter. Taking an interdisciplinary approach between Power and Energy Engineering and Information and Communication Technologies, the research presented herein is part of the field of Energy Informatics and aims at contributing to the development of energy systems that promote energy efficiency and sustainability beyond what pure, traditional engineering solutions can do. In particular, we focus on the challenges of the energy management with increasing penetration of renewable sources at three levels of the energy system, namely, buildings, local energy communities, and transmission grids. The contribution of the present research to the field of Energy Informatics and smart energy systems is threefold. First, it lays the foundation for future smart home automation systems that can effectively contribute to building decarbonization. Second, it proposes a framework to mimic the dynamics of energy markets of the future, thereby giving more insights into the role of distributed resources in energy communities. Lastly, it provides the foundations for a new generation of planning tools for the transmission infrastructure that will rely both on robust and efficient networks allowing for high penetration of renewables

    Environmental evaluation of energy efficiency refurbishment in New Zealand's commercial office buildings : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Science in Life Cycle Management at Massey University, Manawatū, New Zealand

    Get PDF
    In New Zealand, 80 % of existing commercial office buildings are more than 20 years old and consume approximately 40 % more energy than newer counterparts. Moreover, nearly 38 % of the energy-related emissions in New Zealand’s cities are due to the heating and cooling requirements of commercial office buildings. Therefore, energy efficiency measures in office buildings are recommended to reduce operational energy related costs, provide better working conditions, and enhance business value. An energy efficiency refurbishment which involves adoption of multiple energy saving measures such as thermal insulation, improved glazing, air conditioning and lighting systems, can reduce the energy consumption of existing buildings by nearly 60 %. However, such a refurbishment also involves substantial construction work associated with the demolition and replacement of several building components, and this is associated with additional environmental impacts. It is therefore important to evaluate if the environmental benefits associated with reductions in energy demand can outweigh the environmental impacts of refurbishment. This research investigated the comprehensive environmental impacts of energy efficiency refurbishments in New Zealand’s office buildings using Life Cycle Assessment (LCA). The research used existing data collected for Building Energy End-use Study (BEES) by the Building Research Association of New Zealand (BRANZ). In particular, this research used the information on building design and annual energy consumption of existing and refurbished building prototypes. These building prototypes provided - construction details adopted in buildings of different sizes; and the operational energy performance based on typical climatic conditions found in New Zealand. The environmental performance of the buildings was calculated for Global Warming Potential (GWP), Ozone Depletion Potential (ODP), Photo-chemical Oxidation Potential (PCOP), Acidification Potential (AP), Eutrophication Potential (EP), Abiotic Depletion of resources (ADr), Abiotic Depletion of fossil fuels (ADff), Human toxicity carcinogenic (HT-carc), Human toxicity non-carcinogenic (HT-non carc), Eco-toxicity freshwater (ETfreshwater), Particulate Matter Formation (PMF), and Ionizing Radiation (IR). A series of studies were performed to: (i) assess the environmental impacts and identify the environmental hot-spots of energy efficiency refurbishment, (ii) assess the influence of building’s service life, energy, resource and waste management on the environmental performance of energy efficiency refurbishment, (iii) assess the influence of building size, design and location on the environmental performance of energy efficiency refurbishment, and (iv) to evaluate the contribution of energy efficiency refurbishment to New Zealand’s 2050 climate change mitigation target compared to the environmental performance of existing office building stock. The results showed that at energy efficiency refurbishments can reduce emissions for environmental impact categories affected by energy demand particularly for global warming, acidification and photochemical oxidation. However, the refurbishment is also associated with increase in environmental impacts affected by resource demand such ozone depletion potential, abiotic depletion of resources, human toxicity (carcinogenic) and ionizing radiation. Service life of over 25 years is required to compensate the embodied environmental impacts of refurbishment for most of the impact categories, particularly if the electricity is sourced from renewable energy sources. Refurbished components such as- on-site photovoltaic (PV), aluminium framed windows, façade components and heat pumps were identified as the major environmental hot-spots for most impact categories. The embodied environmental impacts to most categories could be reduced by 20 - 40 % if the waste recovery and recycling at construction site is improved. However, the overall environmental impacts of refurbished office buildings are highly sensitive to the choice of energy supply. Energy supply from grid electricity generated from renewable resources should be prioritised over the use of on- site PV. Benefits from on-site PV is limited if the grid electricity supply is mainly from renewable sources; moreover, the production of photovoltaic panels is energy and resource intensive. It can increase nearly 50 - 100 % of the embodied environmental associated with building refurbishment. If on- site photovoltaic is installed, it should be prioritised in buildings with large roof area located in regions with long sunshine hours. The results also show that in large buildings- efficient heating, ventilation and lighting equipment; and smaller wall to window ratios should be prioritised to reduce environmental impacts. In small buildings, the choice of façade materials with low embodied impacts should be prioritised to reduce environmental impacts. With respect to New Zealand’s 2050 target for the existing office building sector 60 - 90 % greenhouse gas emissions reductions is possible only if the office building stock refurbishment is combined with a renewable energy supply. Nearly 60 – 70 % of the greenhouse gas emissions can be reduced if the refurbishment of the existing office building stock is limited to existing large office building stock (>3500 m2) or to buildings in Auckland and Wellington. The main conclusions based on the results of this research are to prioritise better resource and waste management, to prioritise strategies for maintenance of refurbished buildings to promote longer service life, to support national level policies on increased use of renewable sources for grid electricity generation, and to prioritise refurbishment for a share of the building stock based on size and location which contributes to maximum energy reduction and minimal environmental impacts. The outcomes of this research can support national policy makers and independent building stakeholders (e.g. architects, owners, and engineers) who are keen on promoting energy efficiency refurbishments in New Zealand’s office buildings

    Study the thermal impact of massive waste material to building construction

    Get PDF
    This study focuses on the recycling of massive waste materials and their thermal impact to buildings, which then adapt the indoor thermal environment. It is observed that the role of construction materials modify the building interior and consequently regulates the indoor thermal environment and focus on the reduction of energy consumption at large. The rapid growth of energy consumption has raised concerns in worldwide. This has caused mainly the exhaustion of energy resources. Efficient employs of energy play a vital role in minimizing the energy usage. Having in mind the aim to seek for contextual alternative building material from waste to obtain continuing improvement in building energy performance, then this study has been designed to do experiments on locally available massive waste material (end-of-life tires, or ELTs) and investigate its thermal impact on indoor energy management strategy.For that reason, it is needed to set up an experiment to observe the role of ELT for thermal comfort in a tropical climate as compared to conventional construction materials and other waste. This contribution mainly focuses on the literature and a proposed methodology

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    IMPROVING ENERGY EFFICIENT OPERATION OF BUILDINGS WITH WIRELESS IT SYSTEMS

    Get PDF
    Reducing energy consumption is one of the major challenges for present day and will continue for future generations. The emerging EU directives relating to energy (EU EPBD and the EU Directive on Emissions Trading) now place demands on building owners to rate the energy performance of their buildings for efficient energy management. Moreover European Legislation (Directive 2006/32/EC) requires Facility Managers to reduce building energy consumption and operational costs. Currently sophisticated building services systems are available integrating off-the-shelf building management components. However this ad-hoc combination presents many difficulties to building owners in the management and upgrade of these systems. This paper addresses the need for integration concepts, holistic monitoring and analysis methodologies, life-cycle oriented decision support and sophisticated control strategies through the seamless integration of people, ICT-devices and computational resources via introducing the newly developed integrated system architecture. The first concept was applied to a residential building and the results were elaborated to improve current building conditions

    Design of ensemble forecasting models for home energy management systems

    Get PDF
    The increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption; as such, efficient Home or Building Management Systems are an important topic of research. This study discusses the use of ensemble techniques in order to improve the performance of artificial neural networks models used for energy forecasting in residential houses. The case study is a residential house, located in Portugal, that is equipped with PV generation and battery storage and controlled by a Home Energy Management System (HEMS). It has been shown that the ensemble forecasting results are superior to single selected models, which were already excellent. A simple procedure was proposed for selecting the models to be used in the ensemble, together with a heuristic to determine the number of models.info:eu-repo/semantics/publishedVersio
    • …
    corecore