247 research outputs found

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    The feasibility of using feature-flow and label transfer system to segment medical images with deformed anatomy in orthopedic surgery

    Get PDF
    In computer-aided surgical systems, to obtain high fidelity three-dimensional models, we require accurate segmentation of medical images. State-of-art medical image segmentation methods have been used successfully in particular applications, but they have not been demonstrated to work well over a wide range of deformities. For this purpose, I studied and evaluated medical image segmentation using the feature-flow based Label Transfer System described by Liu and colleagues. This system has produced promising results in parsing images of natural scenes. Its ability to deal with variations in shapes of objects is desirable. In this paper, we altered this system and assessed its feasibility of automatic segmentation. Experiments showed that this system achieved better recognition rates than those in natural-scene parsing applications, but the high recognition rates were not consistent across different images. Although this system is not considered clinically practical, we may improve it and incorporate it with other medical segmentation tools

    Etkilesimli gezgin imge ve video bölütleme için çizge temelli etkin bir yaklaşım.

    Get PDF
    Over the past few years, processing of visual information by mobile devices getting more affordable due to the advances in mobile technologies. Efficient and accurate segmentation of objects from an image or video leads many interesting multimedia applications. In this study, we address interactive image and video segmentation on mobile devices. We first propose a novel interaction methodology leading better satisfaction based on subjective user evaluation. Due to small screens of the mobile devices, error tolerance is also a crucial factor. Hence, we also propose a novel user-stroke correction mechanism handling most of the interaction errors. Moreover, in order to satisfy the computational efficiency requirements of mobile devices, we propose a novel spatially and temporally dynamic graph-cut method. Conducted experiments suggest that the proposed efficiency improvements result in significant computation time decrease. As an extension to video sequences, a video segmentation system is proposed starting after an interaction on key-frames. As a novel approach, we redefine the video segmentation problem as propagation of Markov Random Field (MRF) energy obtained via interactive image segmentation tool on some key-frames along temporal domain. MRF propagation is performed by using a recently introduced bilateral filtering without using any global texture or color model. A novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs. In addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively; indeed, for many challenging examples, quite significant time efficiency is observed without loss of segmentation quality.M.S. - Master of Scienc

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Image-guided ToF depth upsampling: a survey

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of time-of-flight (ToF) depth cameras. Despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we review the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also briefly discussed. Finally, we provide an overview of performance evaluation tests presented in the related studies

    Scene understanding for interactive applications

    Get PDF
    Para interactuar con el entorno, es necesario entender que está ocurriendo en la escena donde se desarrolla la acción. Décadas de investigación en el campo de la visión por computador han contribuido a conseguir sistemas que permiten interpretar de manera automática el contenido en una escena a partir de información visual. Se podría decir el objetivo principal de estos sistemas es replicar la capacidad humana para extraer toda la información a partir solo de datos visuales. Por ejemplo, uno de sus objetivos es entender como percibimosel mundo en tres dimensiones o como podemos reconocer sitios y objetos a pesar de la gran variación en su apariencia. Una de las tareas básicas para entender una escena es asignar un significado semántico a cada elemento (píxel) de una imagen. Esta tarea se puede formular como un problema de etiquetado denso el cual especifica valores (etiquetas) a cada pixel o región de una imagen. Dependiendo de la aplicación, estas etiquetas puedenrepresentar conceptos muy diferentes, desde magnitudes físicas como la información de profundidad, hasta información semántica, como la categoría de un objeto. El objetivo general en esta tesis es investigar y desarrollar nuevas técnicas para incorporar automáticamente una retroalimentación por parte del usuario, o un conocimiento previo en sistemas inteligente para conseguir analizar automáticamente el contenido de una escena. en particular,esta tesis explora dos fuentes comunes de información previa proporcionado por los usuario: interacción humana y etiquetado manual de datos de ejemplo.La primera parte de esta tesis esta dedicada a aprendizaje de información de una escena a partir de información proporcionada de manera interactiva por un usuario. Las soluciones que involucran a un usuario imponen limitaciones en el rendimiento, ya que la respuesta que se le da al usuario debe obtenerse en un tiempo interactivo. Esta tesis presenta un paradigma eficiente que aproxima cualquier magnitud por píxel a partir de unos pocos trazos del usuario. Este sistema propaga los escasos datos de entrada proporcionados por el usuario a cada píxel de la imagen. El paradigma propuesto se ha validado a través detres aplicaciones interactivas para editar imágenes, las cuales requieren un conocimiento por píxel de una cierta magnitud, con el objetivo de simular distintos efectos.Otra estrategia común para aprender a partir de información de usuarios es diseñar sistemas supervisados de aprendizaje automático. En los últimos años, las redes neuronales convolucionales han superado el estado del arte de gran variedad de problemas de reconocimiento visual. Sin embargo, para nuevas tareas, los datos necesarios de entrenamiento pueden no estar disponibles y recopilar suficientes no es siempre posible. La segunda parte de esta tesis explora como mejorar los sistema que aprenden etiquetado denso semántico a partir de imágenes previamente etiquetadas por los usuarios. En particular, se presenta y validan estrategias, basadas en los dos principales enfoques para transferir modelos basados en deep learning, para segmentación semántica, con el objetivo de poder aprender nuevas clases cuando los datos de entrenamiento no son suficientes en cantidad o precisión.Estas estrategias se han validado en varios entornos realistas muy diferentes, incluyendo entornos urbanos, imágenes aereas y imágenes submarinas.In order to interact with the environment, it is necessary to understand what is happening on it, on the scene where the action is ocurring. Decades of research in the computer vision field have contributed towards automatically achieving this scene understanding from visual information. Scene understanding is a very broad area of research within the computer vision field. We could say that it tries to replicate the human capability of extracting plenty of information from visual data. For example, we would like to understand how the people perceive the world in three dimensions or can quickly recognize places or objects despite substantial appearance variation. One of the basic tasks in scene understanding from visual data is to assign a semantic meaning to every element of the image, i.e., assign a concept or object label to every pixel in the image. This problem can be formulated as a dense image labeling problem which assigns specific values (labels) to each pixel or region in the image. Depending on the application, the labels can represent very different concepts, from a physical magnitude, such as depth information, to high level semantic information, such as an object category. The general goal in this thesis is to investigate and develop new ways to automatically incorporate human feedback or prior knowledge in intelligent systems that require scene understanding capabilities. In particular, this thesis explores two common sources of prior information from users: human interactions and human labeling of sample data. The first part of this thesis is focused on learning complex scene information from interactive human knowledge. Interactive user solutions impose limitations on the performance where the feedback to the user must be at interactive rates. This thesis presents an efficient interaction paradigm that approximates any per-pixel magnitude from a few user strokes. It propagates the sparse user input to each pixel of the image. We demonstrate the suitability of the proposed paradigm through three interactive image editing applications which require per-pixel knowledge of certain magnitude: simulate the effect of depth of field, dehazing and HDR tone mapping. Other common strategy to learn from user prior knowledge is to design supervised machine-learning approaches. In the last years, Convolutional Neural Networks (CNNs) have pushed the state-of-the-art on a broad variety of visual recognition problems. However, for new tasks, enough training data is not always available and therefore, training from scratch is not always feasible. The second part of this thesis investigates how to improve systems that learn dense semantic labeling of images from user labeled examples. In particular, we present and validate strategies, based on common transfer learning approaches, for semantic segmentation. The goal of these strategies is to learn new specific classes when there is not enough labeled data to train from scratch. We evaluate these strategies across different environments, such as autonomous driving scenes, aerial images or underwater ones.<br /
    • …
    corecore