TESIS DE LA UNIVERSIDAD

| AONRS
DE ZARAGOZA

Ana Belén Cambra Linés

Scene understanding for
Interactive applications

Informatica e Ingenieria de Sistemas

Mufoz Orbafanos, Adolfo
Murillo Arnal, Ana Cristina

155N 2254-T606

Pransas de la Universidad
Universidad Zaragoza

@O0

Reconocimiento — NoComercial —
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generacién de obras
derivadas.

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

s Universidad
10t Zaragoza

Tesis Doctoral

SCENE UNDERSTANDING FOR
INTERACTIVE APPLICATIONS

Autor

Ana Belén Cambra Linés

Director/es

Mufoz Orbafanos, Adolfo
Murillo Arnal, Ana Cristina

UNIVERSIDAD DE ZARAGOZA
Informatica e Ingenieria de Sistemas

2018

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Snnn Departamento de

Informatica e Ingenieria Escuela de .
de Sistemas Ingenieria y Arquitectura
Universidad Zaragoza Universidad Zaragoza

Scene understanding
for interactive applications

Ana Belén Cambra Linés

Ph.D. Dissertation

Supervisors: Adolfo Mufioz Orbafianos and Ana Cristina Murillo Arnal

Departamento de Informética e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza
October 2017

Resumen

Para interactuar con el entorno, es necesario entender que estd ocurriendo en la escena don-
de se desarrolla la accién. Décadas de investigacion en el campo de la vision por compu-
tador han contribuido a conseguir sistemas que permiten interpretar de manera automética
el contenido en una escena a partir de informacién visual. Se podria decir el objetivo prin-
cipal de estos sistemas es replicar la capacidad humana para extraer toda la informacion a
partir solo de datos visuales. Por ejemplo, uno de sus objetivos es entender como percibi-
mos el mundo en tres dimensiones 0 como podemos reconocer sitios y objetos a pesar de
la gran variacién en su apariencia. Una de las tareas bésicas para entender una escena es
asignar un significado seméantico a cada elemento (pixel) de una imagen. Esta tarea se pue-
de formular como un problema de etiquetado denso el cual especifica valores (etiquetas)
a cada pixel o region de una imagen. Dependiendo de la aplicacién, estas etiquetas pue-
den representar conceptos muy diferentes, desde magnitudes fisicas como la informacion
de profundidad, hasta informacién seméntica, como la categoria de un objeto. El objetivo
general en esta tesis es investigar y desarrollar nuevas técnicas para incorporar automaética-
mente una retroalimentacién por parte del usuario, o un conocimiento previo en sistemas
inteligente para conseguir analizar automdticamente el contenido de una escena. en parti-
cular, esta tesis explora dos fuentes comunes de informacién previa proporcionado por los
usuario: interacciéon humana y etiquetado manual de datos de ejemplo.

La primera parte de esta tesis esta dedicada a aprendizaje de informacion de una escena
a partir de informacién proporcionada de manera interactiva por un usuario. Las soluciones
que involucran a un usuario imponen limitaciones en el rendimiento, ya que la respuesta
que se le da al usuario debe obtenerse en un tiempo interactivo. Esta tesis presenta un
paradigma eficiente que aproxima cualquier magnitud por pixel a partir de unos pocos
trazos del usuario. Este sistema propaga los escasos datos de entrada proporcionados por
el usuario a cada pixel de la imagen. El paradigma propuesto se ha validado a través de
tres aplicaciones interactivas para editar imdgenes, la cuales requieren un conocimiento
por pixel de una cierta magnitud, con el objetivo de simular distintos efectos.

Otra estrategia comun para aprender a partir de informacién de usuarios es disefiar sis-
temas supervisados de aprendizaje automadtico. En los tltimos afios, las redes neuronales
convolucionales han superado el estado del arte de gran variedad de problemas de recono-
cimiento visual. Sin embargo, para nuevas tareas, los datos necesarios de entrenamiento
pueden no estar disponibles y recopilar suficientes no es siempre posible. La segunda parte
de esta tesis explora como mejorar los sistema que aprenden etiquetado denso semantico
a partir de imdgenes previamente etiquetadas por los usuarios. En particular, se presenta
y validan estrategias, basadas en los dos principales enfoques para transferir modelos ba-
sados en deep learning, para segmentacién semantica, con el objetivo de poder aprender
nuevas clases cuando los datos de entrenamiento no son suficientes en cantidad o precision.
Estas estrategias se han validado en varios entornos realistas muy diferentes, incluyendo
entornos urbanos, imigenes aereas y imagenes submarinas.

Abstract

In order to interact with the environment, it is necessary to understand what is happen-
ing on it, on the scene where the action is ocurring. Decades of research in the computer
vision field have contributed towards automatically achieving this scene understanding
from visual information. Scene understanding is a very broad area of research within the
computer vision field. We could say that it tries to replicate the human capability of ex-
tracting plenty of information from visual data. For example, we would like to understand
how the people perceive the world in three dimensions or can quickly recognize places or
objects despite substantial appearance variation.

One of the basic tasks in scene understanding from visual data is to assign a semantic
meaning to every element of the image, i.e., assign a concept or object label to every pixel
in the image. This problem can be formulated as a dense image labeling problem which
assigns specific values (labels) to each pixel or region in the image. Depending on the
application, the labels can represent very different concepts, from a physical magnitude,
such as depth information, to high level semantic information, such as an object category.
The general goal in this thesis is to investigate and develop new ways to automatically
incorporate human feedback or prior knowledge in intelligent systems that require scene
understanding capabilities. In particular, this thesis explores two common sources of prior
information from users: human interactions and human labeling of sample data.

The first part of this thesis is focused on learning complex scene information from
interactive human knowledge. Interactive user solutions impose limitations on the perfor-
mance where the feedback to the user must be at interactive rates. This thesis presents an
efficient interaction paradigm that approximates any per-pixel magnitude from a few user
strokes. It propagates the sparse user input to each pixel of the image. We demonstrate the
suitability of the proposed paradigm through three interactive image editing applications
which require per-pixel knowledge of certain magnitude: simulate the effect of depth of
field, dehazing and HDR tone mapping.

Other common strategy to learn from user prior knowledge is to design supervised
machine-learning approaches. In the last years, Convolutional Neural Networks (CNN5s)
have pushed the state-of-the-art on a broad variety of visual recognition problems. Howe-
ver, for new tasks, enough training data is not always available and therefore, training from
scratch is not always feasible. The second part of this thesis investigates how to improve
systems that learn dense semantic labeling of images from user labeled examples. In par-
ticular, we present and validate strategies, based on common transfer learning approaches,
for semantic segmentation. The goal of these strategies is to learn new specific classes
when there is not enough labeled data to train from scratch. We evaluate these strategies
across different environments, such as autonomous driving scenes, aerial images or under-
water ones.

Contents

1 Introduction

1.1 Motivationand Context
1.2 Sceneunderstanding Lo oL
1.2.1 Dense labeling from interactive user-labeling propagation
1.2.2 Dense labeling from semantic segmentation models
1.3 Goals and contributions

1.4 Outline . .

Interactive labeling propagation

2.1 Introduction and Related work,
2.1.1 Contributions

2.2 A novel interactive dense labeling approach
2.2.1 Problem formulation,

2.2.2 Initialization
2.2.2.1 Superpixel segmentation.

2.2.2.2 Binary equation construction

2.2.3 Imteractive propagation
2.2.3.1 Equations to model user interactiondata

2.2.3.2 Linearsystemsolving

2.3 Quantitative analysis of the label propagation obtained
23.1 Executiontime.

2.3.2 Interactive dense labeling evaluation
2.3.2.1 Reference labeled dataused

2.3.2.2 State-of-art approaches considered

2323 Errormeasure.

2324 Results

2.4 Analysis of parameters influence on the approach performance.

2.5 Conclusions

ii Contents
3 Applications of interactive labeling propagation XXXi
3.1 Introduction and Related work XXXil
3.1.1 Contributions XXXiii
32 Applications XXXiii
33 Depthoffield XXXV
34 Dehazing XXXVi
35 Tonemapping o v v e e XXXVil
3.6 Results. e XXXiX
3.6.1 Executiontime XXXiX
362 Limitations x1
3.6.3 Comparison with previouswork xlii
377 Conclusions xliv
4 Semantic segmentation models: transfer to other domains xlv
4.1 Introduction and Related work xlvi
4.1.1 Contributions oo xlvii
4.2 Semantic Segmentation pipelines xlvii
4.2.1 Superpixel classification for semantic segmentation xlviii
4.2.1.1 Superpixel segmentation. xlix
4.2.1.2 Superpixel appearance description. xlix
4.2.1.3 Superpixel contextual description. 1
4.2.1.4 Superpixel classification. lii
4.2.2 Semantic segmentation with fine-tuned CNN models liii
4.3 Experimental setup.o e e e liii
43.1 Datasets liii
432 Trainingdetails oo Lo Iv
433 Evaluationmetric. lv
4.4 Experiments Superpixel classification Iv
4.4.1 Superpixel appearance representation Iv
4.4.2 Superpixel context representation lvi
4.5 Performance of transfer learning pipelines Ivii
4.5.1 Different CNN based superpixel representations lix
4.5.2 Superpixel-based classifiers vs end-to-end segmentation. 1x
4.6 Additional improvements to semantic segmentation models Ixii
4.6.1 Pre-processinginputdata Ixii
4.6.1.1 Augmentation of sparse trainingdata Ixiii
46.12 Results Ixiv
4.6.2 Post-processing semantic segmentation Ixvi
4.6.2.1 Combining geometric info with CNN-segmentation outputlxvi
4622 Resultso Ixvii
47 Conclusions e Ixix

Contents

iii

5 Conclusions and Future Work
5.1 Dense labeling from interactive user-labeling propagation
5.2 Dense labeling from semantic segmentation models

I Appendix

A Additional results of our interactive editing applications
B Additional results of transfer learning pipelines.

C Additional results of our post-proccesing segmentation.

Bibliography

Ixxi
Ixxi
Ixxii
Ixxv
Ixxvii
Ixxxi
Ixxxv

xcvii

v

Contents

Chapter 1

Introduction

The computer vision field is receiving increasing interest from plenty of emerging techno-
logies, such as autonomous driving or augmented reality, as well as more mature techno-
logies, such as social networks or automated surveillance systems, partly thanks to recent
advances both in the related hardware technologies and algorithmic solutions. One of the
most challenging topics in the field is to achieve automatic scene understanding. In other
words, to interact with the environment, with the scenarios where the actions and activities
are happening, it is necessary to understand what components are placed on those scenes,
as well as what actions or events are happening there.

For humans, the sense of sight is essential and is one of the most complex systems in
our body. While humans use their eyes and brain to sense the world around them, computer
vision is the scientific field that aims to enable machines with a similar capability. Decades
of research in computer vision field have already shown great achievements on enabling
intelligent systems with high-level semantic understanding of the content from digital im-
ages or videos. Nowadays, we can automate some tasks that the human visual system can
do, such as detecting and recognizing faces, with impressive levels of accuracy, reaching
human levels [1]. However, human perception can perform tasks that automated systems
are still far from achieving, such as recognizing and locating all objects in an image [2] or
predicting the trajectory of a pedestrian based on the previous seen positions [3].

Furthermore, not only humans can still recognize and understand more information
from visual data than machines, but they also do it extremely efficiently (almost instantly).
However, complex computer vision algorithms frequently need a longer response time and
a large amount of resources to yield a solution. Therefore, an even more demanding cha-
llenge is not only to replicate the human capabilities for visual scene understanding, but to
target also the time lapse that a person requires to do it. This efficiency and speed require-
ment would allow us to apply scene understanding algorithms for applications that actually
interact with humans in real scenarios, and therefore have restrictions on the response time
that is acceptable.

2 1. Introduction

1.1 Motivation and Context

Scene understanding is an essential functionality of the human vision system and also a
major goal of computer vision research. The goal of scene understanding is to obtain as
much knowledge of the given visual data as possible.

We can consider object recognition and detection a relevant and well studied sub-
topic of scene understanding. Classification and visual categorization of elements in a
given image are some of the most investigated topics in computer vision. In the past,
object recognition research has had a lot of focus on recognizing single objects [4], and
understanding the scene as a whole [5]. More recently, research goals have shifted to
more complex tasks, towards figuring out, for example, the relationship between multiple
objects in a single image.

In this respect, towards the goal of analyzing all the parts or components of the image
and their co-ocurrence, we can define the problem of dense image labeling, that we can
consider another sub-topic of scene understanding. This problem aims to automatically la-
bel every pixel in the image with certain concept or category. The dense labeling task can
target to make use from somehow physical properties, such as depth or 3D information,
to higher level semantic concepts, such as recognizing objects or identifying materials.
Approaches working towards this latter case are often referred to as semantic labeling or
semantic parsing of images.

Plenty of technologies and applications have started to include computer vision com-
ponents, thanks to a combination of multiple reasons, such as recent advances in com-
puters, GPU, cloud connectivity, better and cheaper sensors... These advances could be
somehow summarized in better performance of vision based automated tasks. Many of
these applications, such as the examples shown in Fig. 1.1, actually require to perform
different tasks related to automated scene understanding. Next we describe just a few of
these application areas which benefit from automated visual scene understanding. The
large variety of applications which benefit from advances on this topic emphasizes the sig-
nificance of the problem studied and the impact of new contributions related to it and its
applicability to real world use cases.

Image annotation. Automatically recognizing objects in the scene helps tasks such as
automatic annotation of visual media content. This directly enables to automatically or-
ganize and index large amounts of data, in this case visual data. We find several web search
engines, such as the Search By Image ' search provided by Google, which let us perform
a search providing an image as input. After you supply a photo, the system automatically
analyzes the image to identify the content on it and return similar results.

3D modeling of the scene. Advanced image processing techniques rely on specific per-
pixel information about certain magnitudes, for instance augmented reality applications

Ihttps://images.google.com/

https://images.google.com/

1.1. Motivation and Context 3

Scene Understanding tasks Applications
Obiject recognition/ Automated image
Image annotation - indexing/search
Google
| a
=
3D modelling e _Augmented reality
\‘?‘ﬁ e ¥ o
AN 1
= :’é"':mp o ‘:-’
EeC PR

Figure 1.1: Sample applications that benefit from automatic scene understanding al-
gorithms.

need depth information. Augmented reality allows us to insert virtual objects in an image
or video, combining both real and virtual worlds. In order to accomplish this goal, it is
important a good alignment between the real and virtual elements, which requires accurate
knowledge of the 3D information of the scene elements. This information can be obtained
applying different techniques to obtain a depth estimation in order to build the 3D model
of the scene.

Semantic segmentation. Scene understanding is crucial for autonomous systems to ope-
rate in real-world scenarios. Applications such as autonomous driving have already shown
to benefit from an initial semantic segmentation of the scene, which provides essential in-
formation such as drivable regions of the scene, or location of pedestrian or other obstacles.
Visual based scene understanding is an important scientific problem that has to be ad-
dressed in order to provide the information about the environment needed to be able to
automate numerous tasks in different application fields. This topic is one of the main
problems studied in this thesis, as detailed in the following sections.

4 1. Introduction

1.2 Scene understanding

Scene understanding is a very broad challenge, which can be seen as the goal of building
machines that can see like humans, i.e., to infer or recognize general principles, situations
or concepts from visual information.

In scene understanding, one relevant sub-task is focused on describe the scene in terms
of labeled regions and objects. This sub-task of scene understanding can be formulated as a
dense (per pixel) image labeling problem. Dense labeling estimation is a common problem
which assigns specific values (labels) to each pixel or regions in the image. Depending on
the application, the labels can represent different values, from adding extra magnitude per
pixel (such as depth information) to semantic information (such as the object category).

Prior knowledge

I[Le])

User interaction Image labeling

by users

Scene understanding
solutions

Figure 1.2: Different strategies to acquire user knowledge information used in the scene
understanding tasks presented in this thesis.

Tackling scene understanding as a common and general task for any domain is unfea-
sible. Therefore, there are usually specific techniques and algorithms limit themselves to
specific subdomains. Even in the case of limited subdomains, understanding a scene from
scratch is really daunting. However, with the human perception as inspiration, we learn
that humans do not start from scratch, but they rather start from a specific prior knowledge
and learn more complex models from it. This thesis follows such approach: learning com-
plex scene information from pieces of user prior knowledge. In particular, this thesis deals
with two sources of prior information: interactive human input and pre-existing examples
of semantically labeled data (Fig. 1.2). These two sources of information are directly re-
lated to the following two challenges, which motivate the different lines of work along this
thesis.

1.2. Scene understanding 5

1.2.1 Dense labeling from interactive user-labeling propagation

As previously mentioned, the prior information required for dense labeling may come from
different sources. A common strategy is to design human-in-the-loop approaches [6-8],
which get prior information from user interaction.

Many complex problems in computer vision and advanced image editing techniques
often rely on specific per-pixel information, i.e., require labeling each pixel as a prelimin-
ary step. There are plenty of algorithms that provide good semantic segmentation estima-
tions, for example for autonomous driving domains [9] or for medical segmentation [10].
However, in many cases, these solutions provide incomplete or noisy segmentation maps
which are not accurate enough for many applications such as reilumination or augmented
reality.

For the particular case of advanced image editing, techniques often require to include
scene knowledge into the editing pipeline, in which such advanced per-pixel information
enables more sophisticated edits.

This scene information may come from heuristic computer vision approaches but more
complete results can be obtained with hybrid approaches in which both human interaction
and computer vision interactively refine the required knowledge. There is previous re-
search on interaction to propagate complex magnitudes such as color for black and white
images [11], light field edits [12] or shading and reflectance in images [13]. The challenge
in such cases is to keep the computational part of the process within a short time frame in
order to interactively give feedback to the user interaction.

1.2.2 Dense labeling from semantic segmentation models

Other common strategy to learn from user prior knowledge is to design supervised machine-
learning approaches. Standard algorithms in machine-learning require numerous training
examples to yield similar results to the recognition capabilities of a person.. In the last
years, techniques based in deep learning have been pushed the state of the art in many com-
puter vision related applications [9, 14, 15]. These techniques get to solve very complex
problems, that years ago seemed unsolvable, partly thanks to the availability of extremely
large amounts of examples. In particular, we have witnessed significant improvements to-
wards solving multiple tasks related to scene understanding. This thesis explores how to
improve existing techniques to learn new semantic labeling models.

Semantic image labeling is crucial for autonomous systems to operate in real-world
scenarios. Applications such as autonomous driving have already shown to benefit from
an initial semantic segmentation of the scene, for instance, to locate drivable regions or
identify obstacles and avoid collisions [16, 17]. Semantic segmentation algorithms assign
one of the preset class labels to every pixel in an image. Each algorithm is often tar-
geted to a particular task and in consequence, the set of pre-defined classes is specific and
significant for such task.

Convolutional Neural Networks (CNNs) have demonstrated excellent performance on
semantic image segmentation. Although successful CNN models are typically shared with

6 1. Introduction

the research community, not every concept or object that we need to identify for different
applications is already represented in those pre-trained models. Due to a lack of resources
or data, training new CNN models from scratch it is not always feasible. Thus, reusing
the existing models by adapting them to the new target domain is worth to pursue and has
been shown very successful in the computer vision community [18, 19].

1.3 Goals and contributions

The most relevant contributions of this thesis can be summarized in the following two
groups, each of them related to one of the previously mentioned challenges considered
in this work: incorporating user knowledge directly from interactions and incorporating
user knowledge through learning systems which use supervised techniques built from user
labeled examples.

User-labeling propagation

The first block of contributions of this thesis is related to how to integrate information
from user interaction inputs into a dense labeling system. The proposed system facilitates
plenty of applications that require dense labeling solutions with strict response time re-
quirements. Plenty of complex image editing techniques require certain per-pixel property
or magnitude to be known, e.g., simulating depth of field effects requires a depth map.

Taking advantage of user interaction, this thesis presents an efficient interaction para-
digm that approximates any per-pixel magnitude from a few user strokes by propagating
the sparse user input to each pixel of the image. The propagation scheme is based on a lin-
ear least squares system of equations which represents local and neighbouring restrictions
over superpixels. After each user input, the system responds immediately, propagating the
values and applying the corresponding filter. The interaction paradigm is generic, enabling
image editing applications to run at interactive rates by changing just the image processing
algorithm, but keeping our proposed propagation scheme.

We illustrate the benefits of the proposed system by implementing and integrating it
on three interactive applications: depth of field simulation, dehazing and tone mapping.
These contributions are described in Chapter 2 and Chapter 3.

Associated publications and results:

e [20] Cambra, A. B., Murillo, A. C., and Muiioz, A. (2017). A generic tool for
interactive complex image editing. The Visual Computer, 1-13.

e [21] Cambra, A. B., Muiioz, A., Guerrero, J. J., and Murillo, A. C. (2016). Dense
Labeling with User Interaction: an Example for Depth-Of-Field Simulation. In
British Machine Vision Conference.

1.3. Goals and contributions 7

e [22] Cambra, A. B., Muiioz, A., Murillo, A. C., Guerrero, J. J. and Gutierrez, D.
(2014). Improving Depth Estimation Using Superpixels. CEIG, 49-58

e Besides the technical publications, the code of the proposed framework is available
online ? and also there are multiple multimedia files demonstrating these contribu-
tions to facilitate their dissemination 3.

Semantic segmentation

Semantic scene understanding is an important task for robots operating autonomously in
real-world applications. Recent deep convolutional neural networks (CNNs) have demons-
trated to be an effective approach for semantic image segmentation, especially for tasks
where plenty of labeled data is available. However, many applications need to learn new
specific classes but do not have a lot of labeled training data.

The second part of this thesis addresses the problem of transferring the knowledge from
existing CNN models, e.g., from autonomous driving applications, to different classes and
domains, e.g., different robotic platforms. This work explores the two common transfer
learning approaches for the particular problem of semantic segmentation: 1) fine-tuning
existing models with the new training data, following a standard pipeline; 2) training a
superpixel classifier using our proposed superpixel representation, which combines local
and context information.

We evaluate the two proposed approaches on three varied binary segmentation use
cases from different domains. Besides, we propose further improvements to this kind of
pipelines, by adding pre-processing or post-processing modules to deal with noisy inputs
or outputs. These contributions are described in Chapter 4.

Associated publications and results:

e [23] Cambra, A. B., and Murillo, A. C. (2011) Towards robust and efficient text sign
reading from a mobile phone. IEEE International Conference on Computer Vision
Workshops (ICCV Workshops).

e [24] Cambra, A. B., Muiioz, A. , and Murillo, A. C. How to transfer an autonomous
driving model for semantic segmentation to other domains? In Robot 2017: Third
Iberian Robotics Conference. (In Press)

e [25] Alonso, 1., Cambra, A. B, Muiloz, A., Treibitz, T., and Murillo, A. C. (In
Press). Coral-Segmentation: Training Dense Labeling Models with Sparse Ground
Truth. In First Workshop on Visual Wildlife Monitoring, held with ICCV 2017.

e Besides the technical publications, the trained models and multimedia files demon-
strating these contributions are available online *.

2https://github.com/anacambra/app_lensblur/tree/TVCJ
3https://www.youtube.com/watch?v=Fps5SasG9v4
‘http://webdiis.unizar.es/-acambra/

https://github.com/anacambra/app_lensblur/tree/TVCJ
https://www.youtube.com/watch?v=Fps5SasG9v4
http://webdiis.unizar.es/~acambra/

8 1. Introduction

e Additionally, I have collaborated in the supervision of a Master Thesis project:

Semantic segmentation with deep learning models and sparse or weak labels (stu-
dent: Alonso, I.), which resulted in the previously mentioned publication [25].

1.4 Outline

The thesis is organized in two parts: the first part presents an efficient interaction paradigm
to learn new scene information from user interaction; while the second part is focused on
how to learn new scene information from pre-existing semantic segmentation models.

Chapter 2 proposes a new pipeline to achieve dense labeling in a very simple and effi-
cient way, faster and with more flexibility than related approaches. Chapter 3 demonstrates
how our pipeline is suitable for interactive applications developing three interactive applic-
ation for simulated effects from a single image; in particular depth of field, dehazing and
HDR tone mapping.

Chapter 4 proposes solutions to learn new specific classes from pre-existing semantic
segmentations models. The solutions are based on transferring the knowledge from ex-
isting CNN models to different classes and domains using two common strategies: fine-
tuning a previous model; using model to obtain image features and use them to group
related image regions.

Chapter 2

Interactive labeling propagation

Many complex problems in computer vision require labeling each pixel in the image.
When dense labeling is required in interactive settings, an efficient formulation is es-
sential. This chapter proposes a method to achieve dense labeling in a very simple
and efficient way, faster and with more flexibility than related approaches. An initial
superpixel graph is used and its constraints are reformulated as a sparse linear system
of equations, which is efficiently solved as a linear least squares problem. The experi-
ments show that this method obtains comparable results for a dense depth estimation
against related approaches, while providing a more generic and powerful represent-
ation of the problem. The proposed dense labeling system opens new opportunities
to design interactive applications that require dense labeling estimation of any other
image property.

Interactive application

Defocused
image

dense-depth
estimation

+ ol

Superpixel User :
‘segmentation interaction !

N

Figure 2.1: Summary of an interactive application for depth-of-field simulation on a single image.
A depth map is built automatically with the proposed dense labeling approach. This depth map is
used to blur the input image simulating a depth-of-field effect. The user can refine depth, focus point
and aperture, and see the changes at interactive rates.

10 2. Interactive labeling propagation

2.1 Introduction and Related work

Plenty of problems in computer vision and image processing applications rely on labeling
techniques. These techniques consist of the following: given a set of initial values (la-
bels) for a few pixels, an estimation process assigns the best value for every image pixel.
There are plenty of applications in the literature that can be formulated in this form, and
solved applying this kind of techniques, such as obtaining depth information in panoramic
images [26], semantic labeling of RGB-D images [27], assigning semantic and geometric
labels in conventional images [28] or interactive tools to assist the user in manual image
filtering and editing [11,29]. The work presented in this chapter is focused on this latter
group of interactive applications.

One of the main challenges in this type of application comes from the fact that common
dense labeling techniques present too high computational cost for interactive applications,
where the feedback to the user must be at interactive rates. Therefore, specially relevant to
our work are other image editing applications which, using different techniques, attempt to
provide an interactive feedback to facilitate intuitive editing, e.g., to manipulate the mater-
ial appearance of objects [30,31] or to separate a video into its reflectance and illumination
intrinsic images [32]. Next, we briefly discuss the rest of related topics and concepts for
the work presented in this chapter.

Superpixel segmentation. Many related works take advantage of the use of superpixels
to help with different labeling problems, such as estimating dense depth information in
multiple panoramic images [26] or assigning semantic and geometric labels in conven-
tional images [28]. Assigning the labels according to superpixels, rather than individual
pixels, allows us to reduce the complexity of the dense labeling optimization although
implicitly introduces an accuracy penalty.

Dense labeling. Markov Random Fields (MRF) are a common ingredient on solutions
for dense labeling problems [33] but they still present too high computational cost to
achieve results at interactive rates. As the proposed approach, MRF superpixel-based ap-
proaches [26—28] or other proposed approaches to improve efficiency [34], aim to improve
the execution time. Differently, our formulation is less restrictive and our experiments
prove that we achieve a faster response. Another important group of dense labeling solu-
tions is inspired by the Random Walker (RW) algorithm [35-37]. The RW algorithm can
be used in an an interactive segmentation tool [38] where the user marks a few pixels with
an arbitrary number of labels. This technique computes the probability of each label for
each pixel as the probability of a random walk starting at the pixel that first reaches a
seed with that label. All probabilities may be computed analytically by solving a system
of linear equations and therefore, it can be slow for user interaction when a high num-
ber of labels is used. We find multiple works towards efficient solutions, based on offline
pre-computation [39], or on the use of superpixels [40].

2.2. A novel interactive dense labeling approach 11

User interaction. Human-in-the-loop approaches have been shown very successful in a
large variety of computer vision problems. We find incremental learning systems from the
user input, for tasks such as fine grained categorization of conventional image content [41]
or activity recognition [42], and crowdsourcing based applications, such as medical ap-
plications built from crowdsourced human knowledge [43]. In both cases, as well as in
our work, each user input is a very small piece of information that is not enough on its
own to solve the problem, but integrated in an automatic system facilitates an efficient and
high quality solution.

2.1.1 Contributions

As previously mentioned, the main contribution presented in this chapter is a novel pipeline
for interactive dense labeling, which provides a framework that can be applied in any ap-
plication that involves dense labeling and user interaction. The main and distinctive prop-
erties of the presented approach are summarized next:

e We propose an efficient dense labeling estimation which is particularly well suited
for the use of continuous magnitudes.

e The dense labeling is formulated as a linear system of equations over superpixels
and then solved as a linear least squares problem.

e The suitability of this approach is demonstrated with several interactive editing im-
age applications, which are detailed next, in Sec. 3.

2.2 A novel interactive dense labeling approach

This section explains the proposed interactive dense labeling system, which is used to
propagate per-pixel user information. Figure 2.2 summarizes its main steps. This diagram
shows how the different steps are divided into initialization, if they can be computed just
once when the input image is loaded, and inferactive, if they are re-calculated every time
the user performs an interaction with the system.

2.2.1 Problem formulation

We model the image as a graph, where the set of nodes N are the superpixels and the
edges E represent the established relationships between superpixels. Given a set of labels
L, a dense-labeling problem consists in assigning a label, [€ L, to each superpixel in
the image. Assigning a label to a superpixel is equivalent to assigning the same label to
all pixels inside the superpixel. Given this representation, we define a linear system of
equations that can be solved at interactive rates, leading to the desired dense labeling from
a sparse input.

12 2. Interactive labeling propagation

Input: image

System

—— Initialization —

1. Superpixel segmentation)

equations

2. Generate precomputed
(binary, ternary...) J

Interactive —
3. Generate interactive ‘ 0. Initial
FLEEDIE solution
(unary, equality...)

5.U
intersa?::ion 8

4. Solve linear system j

- Output: dense solution

Figure 2.2: Interactive propagation system. Steps 2 and 3 build the equations and step 4
solves the system to get the best propagation given the input image and the user interaction.
Each user edition (user input) creates new interactive equations, and the output is updated,
i.e., steps 3 to 5 are run, in less than 1 second.

While standard labeling formulation forces to choose a discrete set of labels, our for-
mulation considers continuous label sets, e.g., we use real numbers in [0,1]. Our proposed
solution to this labeling problem is based on a linear system of equations where the un-
knowns are the labels. Each equation contributes to the label value of one or more super-
pixels.

We generate all the equations to compose a linear system:
Ax=D> 2.1)

where A and b contain coefficients and independent terms respectively from all linear
equations and x is the labeling solution. Since the number of equations and unknown is
usually different,we find solution with a common least squares method, minimizing the
error as:

rr§n|\Ax—b\|. (2.2)

Then, the system of Eq (2.1) is turned into:
(ATA)x = ATb. (2.3)

2.2. A novel interactive dense labeling approach 13

The presented minimization formulation has the advantage of being linear. This allows
us to split the system Ax = b, from Eq. ((2.1)) in the equivalent:

() += () =

The proposed pipeline (Fig. 2.2) enables a relatively expensive initialization step, but
helps to minimize the calculations that depend on each user interaction, reaching interact-
ive rates.

The initialization step first obtains superpixels and generates A, and b,. A, and b,
contain the equations that are independent of the user interaction and therefore are com-
puted only once. The included equations are just dependent on pixel positions and values,
in particular, they correspond to the binary equations described in next Section2.2.2.2.

The interactive step generates the rest of the system, matrix A; and vector b;, which
contains the equations related to user interactions (the unary and equality equations de-
tailed later in Section 2.2.3.1).

2.2.2 Initialization

When the input image is loaded, we initialize the propagation system. As summarized in
the previous Fig. 2.2, this involves two steps, superpixel segmentation and binary equation
construction, detailed next. Even if this initialization involves some pre-computation, it
is not computationally very expensive. It takes a few seconds at most (depending on pro-
cessor speed and image resolution), which is within a reasonable time for the initialization
of an interactive application.

2.2.2.1 Superpixel segmentation

We consider that each superpixel gets a single label value. The segmentation used is in-
dependent to our pipeline and any other implementation could be used. For superpixel
segmentation we use the standard SLIC algorithm [44] with its single configuration para-
meter, number of superpixels, which depends on the image size. We estimate a superpixel
size around 10 x 10 but the number of superpixels is limited to 1000. This algorithm is
reasonably fast, although our propagation technique could use any other segmentation al-
gorithm. This segmentation helps us to control the efficiency of the solver independently
of image resolution.

2.2.2.2 Binary equation construction

In this step, we generate the matrix A, and b, from Eq. (2.4), which contain the equations
that are independent of the user interaction and therefore are only once. The dimension of
the square matrix and the vector is NV, where N is the number of superpixels. By calculating
and storing both the matrix and the vector during initialization, we avoid doing the matrix
product (potentially time consuming) during user interaction.

14 2. Interactive labeling propagation

Figure 2.3: The preconditioning factor w, in binary equations prioritizes connections
whose border pixels are similar in the CIE-Lab color space. Those that exceed the Dysax
threshold are marked as red. It can be observed how those preserve object boundaries.

These equations establish binary relationship between values of connected superpixels.
We consider that two superpixels are connected following 8-neighbors connectivity. Given
two connected superpixels p and g, their binary relationship is represented as

wp(xp —x4) =0, (2.5)

where x,, and x, are the unknown values of superpixels p and g respectively.
The preconditioning factor wy, prioritizes the connections whose border is similar in
the CIE-Lab color space and is defined as:

_ We if dpq < Dumax

Wo = {1 —We otherwise, (2.6)
where w, € [0, 1], and Dyayx is and fixed experimentally in 0.05 (dp, € [0, 1]). Figure 2.3
shows that this limit respects the object boundaries. The boundaries that exceed this limit
are painted in red. d,, represents the color similarity between the boundary pixels of both
superpixels p and g. It is defined as:

dpa =\ By~ By)2+ (B, — B 2+ (B, — Bl)2, @)
where BlL,q is the mean of the luminance L channel of the pixels inside superpixel p which
are in the 8-neighbor boundary with superpixel g. Egp represents the opposite: pixels in-
side superpixel ¢ which are in the boundary with p. The definitions for the chrominance
channels a and b are analogous. All channels are normalized between 0 and 1. w, modu-
lates the effect of the CIE-Lab color similarity over the labeling propagation. Lower values
of w, tend to ignore color boundaries and therefore blur the whole dense labeling, while

higher values (close to 1) may isolate certain superpixels. We experimentally set this value
to we = 0.99.

2.2. A novel interactive dense labeling approach 15

2.2.3 Interactive propagation

Once the initialization is finished, the system starts to run the interactive part in a loop,
until the user considers the interaction is finished. This interactive part is in charge of
propagating of the currently available information, and consists of two steps: the addi-
tion of equations that correspond to user interaction and the value propagation itself, i.e.,
solving the linear system.

2.2.3.1 Equations to model user interaction data

Unary equations. The unary equations link user input with superpixel values and are
built during the interactive steps. The user chooses a brush that corresponds to a specific
value of the magnitude of interest v. For each pixel affected by the stroke inside superpixel
p, we include the following equation into the system:

Wy = Wa, 2.8)

where x), is the (still) unknown magnitude value of superpixel p and w, = #—lu (where #u
is the number of unary equations) is a preconditioning factor that ensures stability on the
behavior of the system, no matter the number or length of user strokes. We interactively
add (2.8) both into the pre-computed matrix A; and the vector b;, as only one of the cells
of the matrix and the vector is affected by the equation. Therefore, there is no need to
recalculate the matrix product.

Depending on the user strokes, the user may include contradictory equations for the
same superpixel. This is expected and supported by the approach, because the solver
is a linear least squares minimization that will find the optimal x, that minimizes the
contradiction. Furthermore, larger strokes may include many equal unary equations that
affect the same superpixel, which in practice increases the overall weight of the equation
in the minimization. This is expected and desired as well.

Equality equations. While unary equations set specific superpixel values, equality equa-
tions establish similarity relationships between superpixels through user strokes. Those
superpixels are not necessarily contiguous. Such equations are set during the interactive
step. Given two superpixels p and g, their binary relationship is represented as

We(xp —x4) =0, (2.9)

where x,, and x, are the unknown values of superpixels p and g respectively and w, = ﬁ
(where #e is the number of equality equations) is the preconditioning factor. Such equa-
tions are useful where specific superpixel values are rather unintuitive (rendering unary
equations useless) but similarity can intuitively be spotted.

16 2. Interactive labeling propagation

2.2.3.2 Linear system solving

After the unary and/or equality equations are stored we solve the equation system in (2.3).
The (ATA) matrix is symmetric by definition and positive semi-definite. Therefore, the
system can be solved applying Cholesky decomposition, specifically LDLT decomposi-
tion, with the advantage of being fast and numerically stable. Note that all preconditioning
factors (wp, w, and w,) are global parameters which help to control the effect of each
equation type. In order to keep such global weights constant, each preconditioning factor
is related with the number of equations, so each new equation gradually reduces the in-
fluence of all the equations of the same type. This is intended and helps to preserve the
stability of the global effect of each user stroke.

2.3 Quantitative analysis of the label propagation obtained

This section evaluates the proposed interactive propagation system with a quantitative and
exhaustive analysis of the performance of our approach.

2.3.1 Execution time.

An essential goal of the presented labeling approach is to guarantee the response time re-
quirements for applications that interact with a user. Table 2.1 shows the execution time
of each pipeline step in a typical execution measured in a desktop computer (Intel Core i5
2,5 GHz) with a sample image.

Table 2.1: Typical execution time per step with an image of 2008x1340.

Step Time
(seconds)

Initialization

1. Superpixel segmentation 2.39
(950)

2. Add binary equations 0.08
(2725)

Interactive propagation

3. Add all user equations 0.015
(819)

4. Solve linear system 0.20

The initialization steps are executed only once at the beginning, while the image is
being loaded to the application. The superpixel segmentation is the most expensive step
from this stage, although the segmentation used is independent from our pipeline and any

2.3. Quantitative analysis of the label propagation obtained 17

other implementation could be used. The number of superpixels defines the number of
unknowns in the linear system and as consequence, it determines the propagation speed.
We can adjust the number of superpixels depending on the image resolution in order to
keep the interactive execution time.

The interactive loop steps (building new unary equations according to new user input,
solving the system and re-estimating the depth map) are executed after each user interac-
tion. For example, in a typical image of 2000 x 1340 (with 950 superpixels), our system
can propagate the user information in 0.20 seconds. This time includes the time for gen-
erating the user equations, solving the system and building the dense map solution.

2.3.2 Interactive dense labeling evaluation

This section presents a numerical validation of our interactive dense labeling system. We
focus the validation measurements on the part of the pipeline that estimates the labeling
(step 4 from Fig. 2.2), since it is the only common part in all the approaches compared.

We compare our results with state-of-art dense labeling approaches in two different
settings, each of them using very different types of input, as detailed in Fig. 2.4. The first
one is a dense but unreliable input labeling obtained automatically from two stereo images
and the second one is a sparse but more reliable input labeling obtained from a few user
strokes.

We should note that our work is focused and targeted on the second setting, and it
aims to generate a good estimation using just a few pieces of information from the user
(input detailed in Fig. 2.4(b)). However, MRF-based methods are focused on obtaining
an accurate solution using an available initial estimation, typically distributed all over the
image (as detailed in Fig. 2.4(a)). Therefore, they are suboptimal when a very sparse input
is used, as we confirmed with the results in this section. For a more complete evaluation,
next experiments present results for both cases for the considered approaches.

2.3.2.1 Reference labeled data used

For these labeling experiments we use well known public data [45] [46] designed to eva-
luate stereo algorithms. In this dataset the ground truth labels represent the disparity
between corresponding pixels from two images. We chose this dataset because it had
public results for recent dense labeling related methods.

2.3.2.2 State-of-art approaches considered

We compare our algorithm to the following state-of-the-art algorithms described in a well
known comparative of MRF-based dense labeling approaches [33]: iterated conditional
modes (ICM) [47]; Graph Cut (GC) with a-expansion moves (Expansion) and of3-swap
moves (swap) [48]; two implementations (BP-S and BP-M) of loopy belief propaga-
tion [49], and Sequential three-re-weighted message passing (TRW-S) [50]. Besides, since

18 2. Interactive labeling propagation

our focus is on speed and interactive properties, we include the recently presented block
coordinate descent algorithm (BCD) [34], which was developed with an emphasis on
speed, and a Random Walk based approach, the implementation provided by [38], which
was designed as an interactive segmentation tool. This formulation is very close to ours
and it is also based on a linear equation system. Note that both MRF and RW implement-
ations are based on pixel-wise formulations, while our work is superpixel-based, therefore
it has a disadvantage over pixel-wise techniques in terms of accuracy but presents higher
efficiency without much penalization in accuracy, as we can see in the following experi-
ments.

We also include a superpixel based version of GC, which is the only related method
whose available implementation can be directly adjusted to support a superpixel formula-
tion. We adapt its MRF-graph edges to use superpixels as nodes, as our approach does,
and adapt its MRF unary and binary cost functions to include the same constraints as our
unary and binary equations.

2.3.2.3 Error measure.

To compare the quality of the different algorithms solutions, we measure the error obtained
in each solution as the mean of the differences (or mean error) between each pixel in the
solution and the same pixel in the ground truth, as follows:

Ly |y = 1|

2.10
Y, (2.10)

By =
where lg denotes the labeling in the ground truth and 1117 the obtained labeling proposed.

2.3.2.4 Results

We run the experiments with two very different inputs (Fig. 2.4): a dense but unreliable
(noisy) input labeling obtained automatically from two stereo images, and a sparse (but
reliable) input labeling obtained from a few user strokes

Dense labeling input. As we mentioned, the MRF based methods use all the initia-
lization information they can extract from two stereo images, by running an automatic
disparity estimation algorithm for stereo. In order to evaluate our pipeline and the RW
approach in similar settings than the other MRF studied approaches we need an initial dis-
parity estimation. As initial disparity map, we use the same initial map utilized in the ICM
algorithm [33], Fig. 2.4 (a). Note that this noisy and unreliable input is not the target case
for our method.

2.3. Quantitative analysis of the label propagation obtained

19

(a) Dense - automatic input

Right

Left

Sparse user input.
pixels initialized from user strokes, Fig. 2.4 (b). As the user associates each pixel stroke
with a depth value, we can create a sparse initial depth map to initialize all the methods
compared here. In this experiment, the user input consists on 5 different levels of depth
assigned to different user strokes. Note that the input image in Fig. 2.4 (b) highlights the
whole superpixels affected by user strokes, but actually we are only including one unary
equation per pixel affected.

(b) Sparse - interactive input
User strokes

Figure 2.4: Types of labeling initialization used in our experiments.

In this test, the input for all methods evaluated is the same set of

Table 2.2: Execution time (seconds) and mean error (err) for dense labeling obtained for 3
test images (name and resolution in each column) with automatic input (a) and user input
(b) initialization. #Labels: number of disparity levels considered on each test.

(a) AUTOMATIC DENSE INPUT

(b) SPARSE USER INPUT

Tsukuba Venus Teddy Tsukuba Venus Teddy

384x288 434x383 450x375 384x288 434x383 450x375

Method #(Lahe]s=])6 #(Lube]<=2)() #(Lubek:(y)() Method LLubeIs:S) LLubels:S) LLz\bels:S)
time | err time | err time | err time | err time | err time | err

Pixel-based Pixel-based
TCM [47] 0.520 0.12 0.460 0.10 1.900 0.13 TCM [47] N/A N/A N/A N/A N/A N/A
E ion [48] 2.220 0.02 6.940 0.02 19.90 0.05 E ion [48] N/A N/A N/A N/A N/A N/A
Swap [48] 2250 0.02 7.010 0.02 12.60 0.05 Swap [48] N/A N/A N/A N/A N/A N/A
TRW-S [50] 3.840 0.02 115.0 0.02 158.0 0.05 TRW-S [50] N/A N/A N/A N/A N/A N/A
BP-S [49] 1.370 0.02 8.690 0.03 21.20 0.05 BP-S [49] N/A N/A N/A N/A N/A N/A
BP-M [49] 13.30 0.02 — — 193.0 0.05 BP-M [49] 24.40 0.14 3420 0.09 35.10 0.18
BCD [34] 0.920 0.09 1.500 0.17 2.760 0.08 BCD [34] — — — — — —
RW [38] 0.200¥] 0.12 0.400¥] 0.20 0.600¥] " 0.16 RW [38] 0.500%] 0.13 0.600%] 0.20 0.700¥] 0.09
Superpixel-based Superpixel-based

[(E i [3090] 006 | 6320 | 010 | 6210 | 008 | E i [4170] 006 | 6370 | 014] 7960 | 0.09
[Ours | 0002 [006 [0.005 | 010 | 0.005 [009 | Ours | 0002 [006 [0.005 | 015 | 0.005 [006

—: the method did not converge to a solution

*: execution time is measured in Matlab.

—: can’t provide to available implementation.
*: execution time is measured in Matlab.

20 2. Interactive labeling propagation

Input ICM Expansion

Expansion SP Ours

e

Figure 2.5: Tsukuba-test. Final disparity estimation obtained by each of the evaluated
methods using a common dense automatic input. Our method is not as accurate as the
best state-of-art MRF solver, better suited for dense inputs, but obtains significantly faster
solution which is essential for the targeted interactive applications.

Discussion of the results. Table 2.2 shows error and execution time (measured on a
standard desktop machine Intel Core i5 2,5 GHz) for the dense labeling estimation in three
of the tests run. Figures 2.5 and 2.6 show the final disparity estimation obtained by each
of the evaluated methods for the Tsukuba-test.

As previously mentioned, MRF-based methods are focused on obtaining an accurate

2.3. Quantitative analysis of the label propagation obtained 21

Input Expansion

Expansion SP

Figure 2.6: Tsukuba-test. Final disparity estimation obtained by each of the evaluated
methods using a common sparse user input. Many of the studied approaches are not de-
signed to handle such a sparse initialization, typical in the targeted interactive applications.

solution using an dense initial estimation and, as we can see in Table 2.2 (a), these meth-
ods obtain the best estimation in terms of accuracy. However, our algorithm is faster than
any of the other algorithms in this comparative, while keeping comparable accuracy than
the fastest ones (which still are one order of magnitude slower). Note that the direct com-
parison with RW implementation is somehow unfair as the available code is implemented
in Matlab, while the rest use C++, so we could expect the speed up of around one or-
der of magnitude typically observed between these two environments. Theoretically, the

22 2. Interactive labeling propagation

RW [38] requires solving a linear system per label in the solution, while our approach
only solves one, independently of the number of labels. For example, in tests of Table 2.2
(b) where we use five labels, the RW solver would be around five times slower than our
approach.

Table 2.2 (b) shows our approach obtains also the best estimation in terms of accur-
acy, although we could say that the three best approaches obtained results of comparable
quality. We could say that by definition, superpixel based approaches are typically less
accurate than pixel-based methods but faster to compute. Our work is superpixel based
and therefore has advantage in terms of time cost over pixel-wise techniques. However,
this time advantage is achieved at a small sacrifice on accuracy, as it can be seen from the
quality of final estimations obtained in the Table 2.2.

An important advantage of our method is the flexibility. First, as we use a continuous
label set, we do not need to choose the number of possible final labels a priori. Second,
only MRF-based methods can include in the final solution intermediate label values like us
(but at much higher cost), but RW can only assign a choice among the input labels, i.e., if
five depth values are given as input, only those five values will compose the final solution.
Another interesting advantage of our method is that the execution time does not fluctuate
a lot with image dimensions or number of labels, since is not directly depending on any of
those magnitudes, but on the number of superpixels.

2.4 Analysis of parameters influence on the approach per-
formance.

This section analyzes the influence of the main parameters of our approach on its per-
formance. As described in previous Section 2.2, our formulation includes some control
parameters which have been set experimentally to provide the best trade-off for our ap-
plication. The following results analyze the influence of these parameters value on the
labeling errors and present the justification for the recommended values. Note that these
recommended values correspond to our particular case of dense depth estimation. If the
pipeline is used for estimating a different real magnitude, they would probably change.

Figures 2.7 and 2.8 show how the estimated depth map and the error varies, respect-
ively, as these parameters change. We measure the error obtained in each solution with
regard to its ground truth. We utilized the same images used in the exhaustive evaluation
of our pipeline described in following Sec. 2.3.2. Each sub-plot analyzes the effect of
one isolated parameter with a fixed value for the rest. The parameters considered are: w,,
which represents the weight of unary over binary equations, Dys4x, the threshold for color
similarity between neighbouring superpixel boundaries, and w_c, weight of binary equa-
tions that pass this color threshold over the rest of binary equations. The most suitable
values are w,=0.4, Dy;4x=0.04 and w.=0.99.

2.4. Analysis of parameters influence on the approach performance. 23

wy =0.1 wy =1
Diypax = 0.01 m_03
we =0.1 we=1

Figure 2.7: Labeling obtained with different values of the system parameters: w,, Dyax
and w_c.

Unary equation weight. Figure 2.8 (a) shows the variation in the error obtained depend-
ing on the unary weight (w,,). This weight somehow determines how reliable the user input
is, since we give more or less importance to the unary constraints, directly obtained from
the user input. We can observe that the error is pretty similar in intermediate values, what
implies that the system is not very sensitive to this value, as long as it does not become 0
or 1, i.e., using only binary or only unary constraints. Here we set the value of w, to 0.5,
since this makes all binary equations equally important regardless of their color similarity.
Dyax is not relevant in this case since we treat equally all binary equations.

Color similarity threshold. Figure 2.8 (b) shows the error variations depending on the
Dyax parameter. In this test, we set w, = 0.9 to highlight the influence of the color binary
equations, since the Dyax parameter establishes which binary equations are considered
color binary equations, i.e., have a low color distance. If Dys4x is too high (above 0.1), the
effect of w, is dramatically reduced since almost all binary equations pass the threshold.
We set the default value way below 0.1 to make sure propagation across boundaries is only
encouraged if boundary color is very similar.

Binary equation weight. Figure 2.8 (c) shows the effect of w., which weights the im-
portance of color binary equations over the rest. If we only connect superpixels with binary
equations when their boundary color is very similar (w.=1), the error increases because too
many neighboring relationships are completely ignored. The best behaviour is observed
with very high values. The default value is set to 0.99.

24 2. Interactive labeling propagation

(a) Error varying the unary equations weight (w,,)
0,6

05 —

0,4

err 0,3

0,2

- v

0,1 1
[S—-

O o> o} o> ok oP of o' oP o2
wu

“®-tsu <®-ven ted

(b) Error varying boundaries difference threshold (D,;4x)

0,2

err 0,1

N » o
o ofF o o9 of o oF! o o o o} o?
D

'max

“®-tsu <®-ven ted

(c) Error varying the color binary equations weight (w.)
0,3

0,2 —

“®-tsu “@-ven “*~ted

Figure 2.8: Error obtained with different values of the system parameters: wy, (a), Dyax
(b) and w_c (¢).

2.5. Conclusions 25

2.5 Conclusions

In this chapter, we have developed an efficient approach for dense labeling based on a su-
perpixel linear least squares formulation. Our formulation has the advantage of providing
an interactive solver, which is key to interactive post-processing applications, such as the
ones we present in the next chapter.

Our accuracy is limited by the number of superpixels and by the accuracy of the input,
which is probably rather approximate because it is coming from the user interaction. Still,
we have shown that we yield results which are accurate enough for many applications and
often comparable to other slower state of the art methods. Besides, since we target an
interactive technique the user can always refine and improve the input iteratively.

We believe that our approach will inspire future research for interactive editing applic-
ations based on dense labeling. The interactivity rates of our approach, together with the
aforementioned expanded flexibility, provide great potential for other applications dealing
with tasks such as semantic labeling, image restoration, intrinsic imaging or inpainting.

26

2. Interactive labeling propagation

Chapter 3

Applications of interactive
labeling propagation

Plenty of complex image editing techniques require certain per-pixel property or mag-
nitude to be known, e.g., simulating depth of field effects requires a depth map. This
chapter shows that our propagation system (presented in previous chapter) is generic,
enabling image editing applications to run at interactive rates by changing just the
image processing algorithm. We illustrate this through three interactive applications:
depth of field simulation, dehazing and tone mapping.

Input Edited Input Edited Input Edited

(a) Depth of field (b) Dehazing (c) Tone mapping

Figure 3.1: Image editing examples using the proposed generic interaction paradigm.
From a few user strokes our approach estimates a per-pixel magnitude that enables the
advanced editing of (a) depth for a depth of field effect (focus point is at the middle scene
elements); (b) transmittance for a dehazing effect; (c) luminance and brightness for tone
mapping.

28 3. Applications of interactive labeling propagation

3.1 Introduction and Related work

Advanced image editing techniques often rely on specific per-pixel information about cer-
tain magnitudes, in addition to each pixel intrinsic RGB coordinates. This extra per-pixel
information may come from additional knowledge or control over the capture process.
For instance, depth can be estimated from sensor motion, either intended [51] or acci-
dental [52]. Alternatively, advanced heuristics and priors may lead to a plausible (but
not necessarily accurate) additional information that can be used for filtering purposes.
Examples of these include heuristics to obtain depth from a single image [53], or transmit-
tance priors for dehazing [54]. These heuristics and priors typically involve assumptions
that work very well in situations that meet them. However, we typically find specific cases
when they are broken, which leads to poor performance on the editing results.

Taking advantage of user interaction is another option for gathering additional per-
pixel information, which does not impose any restriction regarding control of the image
capture or advanced heuristics that could not be generic enough. On one hand, traditional
generic user interaction paradigms (such as geometric primitives, lassos or color-aware
magic wands) are not practical for complex information editing. On the other hand, other
specialized editing tools define interaction paradigms that are very practical but tailored to
specific applications, such as light field editing [55], intrinsic image decomposition [13] or
intrinsic video decomposition [32]. Our paradigm is modeled as a propagation problem,
in which the user sets some seed values and/or restrictions, with one or more strokes,
which are propagated throughout all the pixels. This propagation results on a per-pixel
estimation of the target continuous magnitude (continuous in value, not in image space).
The propagation is formally represented as a least-squares linear system of equations over
a set of superpixels. This provides us a great control over the accuracy vs. propagation
time trade-off.

Image editing techniques. In this chapter we illustrate how our interaction paradigm
(Chapter 2) works through three real applications: depth of field effects [52, 56], dehaz-
ing [54, 57] and tone mapping [58, 59]. Related to our work, there is previous research
on interaction to propagate complex magnitudes: color for black and white images or
video [11,29, 60], light field edits [12], image segmentation [61], shading and reflectance
in images [13] or video [32] and depth [62-64]. However, the interaction at each of these
techniques is tailored to the specific application itself, and in some cases it does not reach
interactive rates. In contrast, our work presents a global propagation technique that is
oblivious to the underlying filter, is more flexible and works at interactive speeds.

Interactive editing. Examples of interactive image editing applications include trans-
ferring edits between different views through affine transform estimation [65], multiview
depth transfer through shortest path algorithm [66], appearance transfer using simplex op-
timization for reducing parameter space [67], or material editing on a linear space using a
GPU [68].

3.2. Applications 29

Our propagation paradigm is closely related to other image editing techniques which
propagate continuous magnitudes. Lischinski et al. approach [69] solves systems at
different image resolutions to show a progressive result (which otherwise would not be
interactive). Chen et al. [60] propose a linear system over feature space. SteroBrush [70]
also uses a linear system for propagating stereo disparities while preserving pleasantness,
which becomes interactive by taking advantage of the GPU. Such linear optimizations are
per-pixel, while our approach works at superpixel level, therefore becoming more efficient.
The AppProp approach [71] propagates exposures through a per-pixel linear system, but
it is done faster by identifying a subset of representative columns in the matrix. Instead
of column sampling, previous work [72] has reduced the parameter space by clustering
it into a KD tree. Still, in both cases matrix operations (inversions, products) are needed
before solving the system. Our approach is inspired by such approaches, reducing the
linear system by working in superpixel space, but improves over them by building the
linear system matrix on the fly.

Tizuka et al. [63] propose propagation through optimization based on geodesic dis-
tances over superpixels (with some additional filtering), with a propagation speed that
matches our work. However, their edits are limited to such distances, while our formula-
tion is more flexible and enables more global edits.

3.1.1 Contributions

We work towards a more general approach for advanced user interaction paradigms. Whe-
never certain filter needs additional per-pixel information, it is densely generated by our
approach from very sparse and intuitive user interaction. Previous chapter has illustrated
this user interaction by means of simple user strokes for the specific case of depth es-
timation. Built on top of that, we elaborate it into a very simple and intuitive interaction
paradigm, inspired and distilled from previous specific image editing applications, which
is generic and oblivious to the underlying image operator. Other contributions are sev-
eral interactive applications, extensions of several state-of-the-art image filters, that now
benefit from our interaction scheme.

3.2 Applications

In this chapter, we illustrate the versatility of our interactive propagation (Chapter 2)
scheme through several applications described next. Figures 3.2, 3.3 and 3.4 show the
behavior of each application: depth of field, dehazing and HDR tone mapping, respect-
ively. The available on-line video ! demonstrates the real time execution and the behavior
of each application. Appendix A includes more additional examples obtained with our
three interactive applications.

Thttps://www.youtube.com/watch?v=Fps5SasGov4

https://www.youtube.com/watch?v=Fps5SasG9v4

30 3. Applications of interactive labeling propagation

Interactive User Input
Sample user strokes

By default, the foreground is in focus Refocused image
Depth of field simulation output

Figure 3.2: Left: the user marks a few strokes (different colors for different depths) to represent object
positions. Each new edition interactively propagates depth estimation and applies a depth of field effect. Right:
the user changes the focus point.

Interactive User Input
Sample user strokes Input image

By default, a medium level of transmittance is selected Transmittance level changed
Dehazing simulation output

Figure 3.3: Left: the user marks a few strokes (different colors for different transmittance levels) to represent
the level of fog. Each new edition interactively re-estimates transmittance values and applies the dehazing effect.
Right: the user can adjust the level of the dehazing effect.

Interactive User Input
Sample user strokes

Global brightness The local brightness and local contrast can be selected by the user.

and contrast

HDR Tone mapping simulation output

Figure 3.4: Left: the user can adjust global parameters. Right: the user marks with strokes that regions need
to be darken or illuminated and how the contrast of the regions should increase or reduce. Each color represents

a different action.

3.3. Depth of field 31

Interactive propagation. As we mentioned, our proposed system is built upon prior
work, presented in previous chapter, and which is summarized in Figure 2.2. In the inter-
active propagation, we have included an extra step, which is the application of the image
filter that uses the corresponding propagated magnitude. Due to superpixel segmentation,
the final propagated values could be locally coarse and cause artifacts in processed image
when the corresponding image filter is applied. To avoid this possible artifacts (similarly
to related work [63]), we apply a bilateral filter to the propagated values. Fig. 3.5 shows
the effect of applying such bilateral filter in our dehazing application.

-;“

Figure 3.5: Effect of applying a bilateral filter to the transmittance map (a) used in our in-
teractive dehazing application (b). Bilateral filter avoids artifacts caused by the superpixel
segmentation in the processed image.

AN

3.3 Depth of field

(b) (c)

Figure 3.6: Interactive depth of field application. (a) Input image. (b) Processed image
after applying the depth of field effect. (c) Depth map used to apply the effect (estimated
by our application from user interactions).

32 3. Applications of interactive labeling propagation

In photography, control over in-focus and out-of-focus elements is an important artistic
and expressive tool. Depth of field effect consists of the blurring of out-of-focus objects on
a single image from a depth map as software post-processing. This depth can be estimated
from camera motion, either accidental [52] or fixed to capture two images (stereo) and
then estimate depth from them [51]. Figure 3.6 shows an example of the interactive depth
of field application.

In our work, depth is obtained from the user by means of our propagation approach,
as simple user strokes (using four different brushes associated with different depths in the
range [0, 1]). Then, we obtain the depth of field effect by applying a set of convolutions
(blurs) of different radius according to the difference between depth at each pixel and
focal distance, following previous work [56]. The blurs are applied up to a maximum
radius defined by the user. The focal distance is set by the user.

Figure 3.6 shows an example of this application, where the focal distance is fixed at
the front scene elements. Therefore, elements from the back of the scene (according to
the estimated depth map) become blurred after the processing. Figure 3.2 includes several
intermediate outputs while processing another example image. The output is automatically
refined as additional sample depth strokes are provided by the user. The user can also
change the desired focal distance by clicking on the desired focus point.

3.4 Dehazing

() (b) (©

Figure 3.7: Interactive dehazing application. (a) Input image. (b) Processed image after
applying the dehazing effect. (c) Transmittance map used to apply the effect (estimated by
our application from user interactions).

As light interacts with small particles suspended in air (or water), fog, smoke or the aer-
osols in the atmosphere become visible. Repeated interactions across such media reduce
the visibility by creating a translucent layer of ambient light. Dehazing consists on re-
moving such ambient light from a single image. For that purpose, algorithms estimate the
medium’s transmittance (visibility) through heuristics and priors such as interpreting al-
bedo as locally constant (color lines) and transmittance as smooth [54] or globally identify

3.5. Tone mapping 33

the haze-free colors along haze lines [57]. This previous work models haze as:
I(x)=t(x)J(x)+ (1 —1(x))A, 3.1

where x are the 2D pixel coordinates, /(x) is the input hazy image, J(x) is the dehazed
image (what we want to obtain), 7(x) is a scalar transmittance map (unknown, 0 < #(x) <
1) and A is the ambient light (a RGB vector, unknown).

In our case, the transmittance map #(xX) is propagated from user strokes using our tech-
nique, and A is approximated as the average of all pixels x where #(x) > 0.9 (the most
occluded pixels). Then the image is easily obtained from (3.1) as

J(X):I(x—l—(;((:))—l)A.

Figure 3.7 shows an example of this application, where the fog is removed from the
scene according to the estimated transmittance map. Figure 3.3 illustrates incremental
output results, which are refined interactively as the user provides additional strokes to
mark the level of fog in different parts of the image.

(3.2)

3.5 Tone mapping

® © @

Figure 3.8: Interactive HDR tone mapping application. (a) Input HDR image. (b) Output
LDR image after applying the tone mapping using the estimated local brightness map (c)
and local contrast map (d).

The potential range of luminance in the real world is rather large, while devices can
only capture or reproduce two orders of magnitude within that range. However, High Dy-
namic Range image formats can represent (with floating point representation) all potential
luminance values, and can be composed from several images or generated synthetically.
Tone mapping is the process of converting a High Dynamic Range (HDR) image into Low

34 3. Applications of interactive labeling propagation

Dynamic Range (LDR), representable by any device. Their effect can be either global
(equal to every pixel) or local (often adapting global algorithms with convolution ker-
nels) [58]. For our tone mapper we follow the following tone curve [59] that compresses
the luminance of the HDR image Lypg into the luminance of the LDR image L;pg:

L' =1log(Lypr) — b
0 lfL/ S _dl
St e
—\“Ta
Lipr = £L7/1+l if0<L' <d, Y
2 l+(cfdli>y . B
1 lfL/ > dh

where d; and d;, are the lower and higher midtone ranges (set up to the recommended
values of 2 and 1, respectively) and b (brightness) and ¢ (contrast) are the tone mapper
parameters of the tone curve. In our case, for the sake of simplicity, we do not apply color
correction. Also, we apply this curve per-pixel, where brightness and contrast are obtained
from propagation: the user can set, in the image local values for brightness and contrast,
that are propagated through the whole image in two magnitudes (as opposed to previous
applications, that propagated just one).

Figure 3.8 shows an example of this application, where the input HDR image is con-
verted to a LDR output image. Figure 3.4 illustrates incremental output results. The user
can adjust the global image levels of brightness and contrast, but the user strokes define
local values of brightness and contrast for different regions in the image.

(b)

Figure 3.9: Superpixel segmentation of (a) HDR image and (b) LDR image.

Note that the algorithm we use for superpixel segmentation is not particularly well
suited to work with HDR images. It does generate a superpixel segmentation, but as
shown in the example from Fig. 3.9(a), the superpixel boundaries do not correspond well
with scene objects. This limitation is accentuated in regions with very few or contradictory
user input values. Then, the propagated magnitude suffers strong transitions between close

3.6. Results 35

superpixels creating artificial visual boundary artifacts. This could sometimes be solved
with additional user input. However, a simpler solution is to apply this filter in two steps.
First we get an initial (noisy) superpixel segmentation on the HDR image, used to apply an
initial tone-mapping filter that generates an intermediate LDR image. Then, we propose
to re-compute the superpixel segmentation over this intermediate LDR image, where we
obtain a better superpixel segmentation that can be used to obtain a better final result
without artifacts (see Fig. 3.9(b)).

3.6 Results

In previous Section 2.3, we have formally validated that our scheme can propagate in-
teractively a few sparse sample values of a continuous magnitude to all image pixels. It
is efficient while obtaining comparable quality with respect to related approaches. This
section presents a set of representative results obtained using the three interactive applica-
tions presented before, in order to analyze different situations, limitations and advantages
on real applications.

3.6.1 Execution time

Efficiency is a key contribution of the proposed interaction paradigm, as it guarantees
response time requirements for applications that interact with a user. Note that, with each
user stroke, the propagation is calculated and the filter is applied. The cost of our three
filter algorithms is linear with respect to the number of pixels. In typical images of 2000 x
1340 (with 950 superpixels), the interactive steps can be applied in around a second. The
three implemented applications are available online > and work at interactive rates in a
regular desktop computer (Intel Core i5 2,5 GHz).

Input image Processed Images
with Artifacts

Using too few Using more
superpixels (130) superpixels (693)

Figure 3.10: Example where superpixel segmentation issues produces artifacts in the pro-
cessed images of our interactive depth of field application. Artifacts are caused when the
superpixel boundaries do not correspond with the object boundaries. When superpixel
segmentation is improved, these artifacts are not visible in the processed image.

2https://github.com/anacambra/app_lensblur/tree/filters

https://github.com/anacambra/app_lensblur/tree/filters

36 3. Applications of interactive labeling propagation

3.6.2 Limitations

Superpixel based approaches are faster to compute but typically less accurate than pixel
based methods. Efficiency is achieved at a small sacrifice on accuracy of the final propaga-
tion and therefore, it affects the result obtained when the filter is applied to specific images.
Figure 3.10 shows an example of the depth of field application. The focused object is the
red can. As we can see, in the processed image with artifacts, part of the box is incorrectly
focused (the box is behind the red can and therefore should be defocused). This artifact is
produced by insufficient or incorrect superpixel segmentation, i.e., there is a misalignment
between superpixel and actual object boundaries. These artifacts can be easily eliminated
increasing the number of superpixels used.

Input & Strokes Processed Depth
Image Map
Yu et al. [52]

,4

“,’%’_’%

Figure 3.11: Comparison of our results and a well known algorithm for depth of field
effect. Depth map estimated and final processed image are similar, but our method works
with a single image and very simple input (strokes), as opposed to Yu et al. work, which
requires a sequence of images.

3.6. Results 37

Input & Strokes Processed Transmittance
Image Map
Fattal [54]

Figure 3.12: Comparison of our results and state-of-the-art single image dehazing meth-
ods. Our approach obtains a less fine-grained transmittance estimation but similar dehaz-
ing visual results.

38 3. Applications of interactive labeling propagation

3.6.3 Comparison with previous work

An important advantage of our system is that the proposed paradigm is generic, i.e., the
same system works for different applications. In this chapter, we have presented three
interactive image processing applications that use our proposed system.

This section presents a set of representative visual results from all of them, comparing
our solution with well known ad-hoc methods for each application. The following results
validate that our generic system can achieve comparable quality in the visual effects than
specific ad-hoc methods for each of the applications.

Input & Processed Luminance &
Strokes Image Brightness Maps
Global operator - Constant maps

Global operator - Constant maps

Our approach

Figure 3.13: Comparison of our HDR tone mapping application results. We can see that,
with a few user strokes, the brightness and contrast adjusted locally work better than global
operators.

3.6. Results 39

Figure 3.11 shows two examples from the results of our depth of field application side
by side with the results obtained with a well known approach from Yu et al. [52]. Both
the depth map and output images are similar, but our approach works with a single image
instead of a sequence.

Figure 3.12 compares our results for dehazing against state-of-the-art single image de-
hazing methods [54,57]. Note that our transmission maps may look less fine-grained than
the other methods, because our propagation system is a superpixel based approach. Ho-
wever, the final visual effect in the dehazed images are of similar quality.

Figure 3.13 compares our results for tone mapping against a global tone mapping op-
erator to adjust the luminance and contrast in the image. Our local tone mapping operators
allow the user to obtain better solution than global operators. With a few strokes, the user
can point which regions need to be illuminated or darken and adjust each region contrast.

Figure 3.14 shows an example of the results of our HDR tone mapping application and
the interactive tool proposed by Lischinski et al. [69]. Both provide the user an intuitive
and local control of the region brightness but our method is faster and also provides the
adjustment of the image contrast.

|

=

(b)

Figure 3.14: Tone mapping produced by (a) Lischinski et al. approach [69] and by (b) our
interactive application.

40 3. Applications of interactive labeling propagation

3.7 Conclusions

To demonstrate the suitability of our approach, we have implemented three interactive ap-
plications to apply complex well-known filters and effects: depth of field, dehazing and
tone mapping. The three applications use the same propagation scheme presented in pre-
vious chapter, and their results demonstrate that our generic propagation system achieves
comparable image effects than related methods which are ad-hoc for a single specific prob-
lem. Besides, thanks our paradigm, these applications can run as interactive tools, with
very low computational requirements. This opens the opportunity to bring this type of
editing tools to mobile and embedded devices.

We believe our work can inspire both new interactive editing applications, as well as fu-
ture research on interactive editing tools. Potential lines of future work that can be inspired
from the combination of the presented work and previous work are multiview approaches
for transferring edits between views [65] or for depth editing and navigation [66]. Besides,
instead of plain images, our approach could be extended for material appearance [68] or
even material transfer [67] applications, given the adequate adaptation and identification
of the involved magnitudes to material space.

Chapter 4

Semantic segmentation models:
transfer to other domains

Semantic scene understanding is crucial for autonomous systems to operate in real-
world scenarios. Recent deep convolutional neural networks (CNNs) have demons-
trated to be an effective approach for semantic image segmentation, especially for
tasks where plenty of labeled data is available. However, many applications need to
learn new specific classes but do not have a lot of labeled training data. This chapter
presents solutions to this problem based on transferring the knowledge from existing
CNN models to different classes and domains using two common strategies: 1) fine-
tuning a previous model for semantic segmentation; 2) using existing models to obtain
image features and use them to represent and classify image regions.

Original domain : Other domains

PG
X

g

AV
Text

Figure 4.1: Given an existing model, how can we use it to learn new classes, not included initially,
which are required for different domains? Many available pre-trained models provide semantic
segmentation for images from common scenes such as urban ones (left), however to adapt this to
new and more specific tasks (e.g., detect water areas from aerial images), we need to build on top of
those models.

42 4. Semantic segmentation models: transfer to other domains

4.1 Introduction and Related work

As previously discussed, this thesis contributes on different ways of building systems that
use prior human knowledge to obtain a dense labeling of an image. The work in this
chapter is focused on supervised learning approaches for semantic segmentation. i.e., dif-
ferently from the previous chapters, the prior knowledge is not received interactively and
incrementally but on a whole set of training labeled data. In particular, we focus on the
state-of-the art learning approaches for semantic segmentation, based on deep learning,
and situations where the available training data is not enough to train one of those mod-
els from scratch. These cases are typically solved through transfer learning and domain
adaptation strategies.

Semantic segmentation and deep learning. Semantic image segmentation, or dense
image labeling, assigns a category label to each image pixel. This problem has been widely
studied in the past and, as many other applications, it has achieved extraordinary results
with deep learning based approaches [14,73-75].

CNNs have become a popular choice because of their effective feature generation and
end-to-end training. In order to train a new CNN model from scratch, or to adapt an exist-
ing CNN to new applications or inputs, it is required to have large amounts of annotated
training data. In many cases, obtaining this training data may be not feasible, so we find
many recent works focused on how to deal with this lack of ground truth data, for example
by generating photo-realistic imagery as ground truth [76].

Transfer learning strategies. Although successful CNN models are typically shared
with the research community, not every concept or object that we need to identify for di-
fferent applications is already represented in those pre-trained models. Many applications
typically need to operate in very specific environments and often happens that the amount
of training data for the required visual recognition tasks is insufficient to train a CNN
model from scratch. Thus, reusing the existing models by adapting them to the new tar-
get domain is worth to pursue and has been shown very successful in the computer vision
community. Two major CNN-based strategies for transfer learning are:

1. to fine-tune a pre-trained model with additional data from the new domain [77].

2. to consider intermediate outputs of a pre-trained model as features and train a new
classifier with those features extracted on the new domain data [78].

End-to-end semantic segmentation approaches. On one hand, acommon approach
to adapt pre-trained models is fine-tuning. It consists of training a neural network with the
new data and target classes, but initializing part of the network with parameters previously
learned for other tasks. Fine-tuning a pre-trained model is a direct way to transfer know-
ledge learned in one domain to another. For example we find works to learn to transfer

4.2. Semantic Segmentation pipelines 43

image style [79] or to adapt to medical imagery tasks [80]. This approach is effective but
not very flexible since it requires data and infrastructure to re-train the CNN model. Al-
though fine-tuning requires much less data than training from scratch, acquiring enough
data could still be challenging and the process requires certain infrastructure with GPU
computation available.

Superpixel segmentation and classification. On the other hand, CNNs have equipped
computer vision systems with the capacity to automatically learn more complex features,
compared to typical hand-crafted features used. This approach consists on using an ex-
isting model as a feature extractor where the intermediate layers have been observed to
correspond to representative features.

Until the success of convolutional neural networks, most object detectors and recogni-
tion tasks were based on sophisticated classifiers that relied on hand-crafted features [81].
Local features have been extensively investigated over the last few decades with the aim
of designing descriptors which are distinctive and robust. Convolutional neural networks
work like learnable local filters and the outputs of intermediate layers have been observed
to correspond to representative features [82]. Recent works demonstrate the features
learned when training on ImageNet data for object recognition [83] have been directly
applied successfully on other problems such as activity recognition [84], in face recogni-
tion [85]. These approaches based on [18], generate region proposals and calculate CNN
features there to classified separately each proposal. More recent works, as [86], proposes
generate and classify region proposals simultaneously, in order to eliminate the bottleneck
of region proposal computation and achieve real-time rates. There are other works which
extract features from CNN models and combine them with superpixel segmentation to de-
tect change between pair of images [87] or build a rich superpixel representation features
calculating features in different scopes [88].

4.1.1 Contributions

This chapter shows how to apply these two common transfer learning strategies on situ-
ations where the amount of data and resources is limited. First, it proposes how to integrate
CNN based classification with a superpixel representation considering local and context
information. Secondly, it builds and evaluates three different transfer learning pipelines
using varied, complementary and realistic scenarios using different public data-sets for
different segmentation problems. Finally, it includes two extensions to deal with some of
the weaknesses of the end-to-end semantic segmentation approaches.

4.2 Semantic Segmentation pipelines

This section describes in detail the two approaches followed to achieved semantic segment-
ation: 1) image segmentation into superpixels and classification of these superpixels us-

44 4. Semantic segmentation models: transfer to other domains

Input Output

1) Superpixel 2) Superpixel 3) Superpixel
Segmentation Representation classifier

- Local &
Context |
=P | regions | *

- Features from image classification CNN

m

- Features from image segmentation CNN|

]
1 1) Superpixel 2) Superpixel classifier
] Segmentation using fine-tuned VGG16
]

: —_— VGG16

1 N N\

]

Input Output

1) Fine-tuned SegNet

(c) Fine-tuned CNN for image segmentation

Figure 4.2: Transfer learning strategies for semantic segmentation CNN model. (a) Super-
pixel segmentation and classification using CNN features. (b) End-to-end CNN pipeline
for superpixel classification. (c) End-to-end CNN pipeline for per pixel semantic labeling.

ing different features, including hand-crafted or CNN-based features or direct superpixel-
patch classification with CNN classification models ; 2) end-to-end system based on fine-
tuned CNN segmentation models. The main focus of the pipelines developed and eval-
uated is to analyze the best way to adapt or re-use information from a existing semantic
segmentation models.

4.2.1 Superpixel classification for semantic segmentation

A typical alternative to obtain semantic segmentation of an image is to segment the image
in smaller regions and classify each of them. A superpixel classifier based on different
superpixel features and descriptors is illustrated in Fig. 4.2 a. Another approach is to

4.2. Semantic Segmentation pipelines 45

design a CNN classification model that directly classifies the patch around each superpixel,
such as the pipeline illustrated in Fig. 4.2 b.

4.2.1.1 Superpixel segmentation.

Superpixel segmentation provides a convenient form to compute local image features and
it reduces the complexity of image processing tasks. In typical semantic segmentation
systems, instead of operating at the pixel level, superpixels are used as the basic unit of a
class segmentation. Superpixels are the result of perceptual grouping of pixels, carry more
information than pixels and also tend to preserve object boundaries. Superpixels adapt
their shape to image content and contours, while typical sliding windows or patches from
a regular grid do not (Fig. 4.3). In this pipeline, the superpixels are obtained using the
SLIC algorithm [44], but other superpixel approaches could be similarly applied.

Regular Grid Superpixels

Figure 4.3: Text region classification considering regular grid or superpixel segmentation.
As superpixels adapt their shape to object boundaries, they produce better segmentation.

4.2.1.2 Superpixel appearance description.

Given the initial superpixel segmentation, the described superpixel classification pipelines
need to represent each superpixel, by computing different descriptors over the pixel values
in each superpixel.

Hand-crafted features. Until the success of convolutional neural networks, most object
detectors and recognition tasks were based on sophisticated classifiers that relied on hand-
crafted features [81]. Some common hand-crafted descriptors used in this work are:

e Color features. Low-level features, such as the color, are a common simple choice
to represent the superpixel content. Color descriptor can be represented by a 7-bin
histogram for the three bands of the LAB color space (21 dimensions).

o Gradient based features. Another common way to describe the content of a su-
perpixel is to analyze the distribution of gradient or edge detectors response values
over the region. This descriptor can be built using the Structured Edge Detection
Toolbox [89]. To obtain the edge probability distribution on a set of pixels, it can

46 4. Semantic segmentation models: transfer to other domains

combine the mean, the standard deviation and the Skewness and Kurtosis of the
edge probability distribution as an edge descriptor. Histogram of oriented gradi-
ents (HOG) descriptor [90] is also a typical edge descriptor which usually is built
from a 9 bins for each cell, with a cell size of 8x8 and a block size of 16x16 (2916
dimensions).

¢ Semantic features. The amount of contextual information present in a superpixel
can be estimated by examining the average number of object categories and in-
stances per superpixel. A semantic description could be built from any automatic
and dense semantic segmentation result of an image as a histogram of the distribu-
tion of the pre-trained semantic labels within certain pixel region.

CNN based features. Recent works shows that CNN based features learned at inter-
mediate layers from CNN models are very discriminative for many recognition tasks.
Sec. 4.4.1 evaluates the semantic segmentation results achieved with CNN based features
compared to more traditional hand-crafted features.

We group the CNN based superpixel descriptors studied according to the actual goal
of the original CNN model:

e (lassification CNN models. This kind of CNN have been directly applied suc-
cessfully on other vision problems, including image segmentation [91]. The three
well known image classification models consider are: Alexnet [83] and Hybrid-
CNN [92], which share the architecture but use different set of training data and
classes, and VGG model [93], which is a larger architecture. The descriptor selec-
ted is the weights from last fully connected layer (fc7), resulting in 4096 descriptor
dimensions, from each of the models studied.

e Segmentation CNN models. The output of this kind of CNN is trained to directly
perform image segmentation, i.e. classify each pixel with a semantic label. The
pixel-wise segmentation obtained is often noisy and imprecise in the object bound-
aries, but provides a valuable coarse segmentation of the main elements of the scene.
The output of segmentation models can be used to build a semantic descriptor as a
histogram of the distribution of semantic pixel labels within the superpixel region
(a bin for every semantic label). The semantic labels considered have been obtained
with the public SegNet model [9] but this description could be built from any auto-
matic and dense semantic segmentation result of an image.

4.2.1.3 Superpixel contextual description.

The previous appearance descriptors can be computed in two superpixel scopes, as are
illustrated in Fig. 4.4. While Local scope corresponds to information of pixels within
each superpixel; Context scope corresponds to information from the pixels of neighboring.
Section 4.4.2 includes a more detailed analysis of the effects of representing the contextual
information around a superpixel.

4.2. Semantic Segmentation pipelines 47

Local

Lol Yon Context_1

Context_2

Figure 4.4: Superpixel scopes

However, thinking of common configurations for most of semantic classes in a natural
scene, the objects are usually related with their surrounded objects. Road regions occur
often at the bottom part of an image, typically touching building regions at the left or
right sides. Building regions are often surrounded by sky regions on the upper part, and
car regions are often surrounded by road regions. This motivates a simple and compact
semantic context superpixel descriptor, which considers the semantic labels of all pixels
from its adjacent superpixels (considering 8 pixel neighborhoods).The adjacent pixels are
distributed in four separate sets, attending to their position with respect to the centroid of
the superpixel: top, bottom, left and right. The distribution of pixel semantic labels in each
of those sets, is combined in four histograms. Fig. 4.5 represents how this process works
for one superpixel. then, this proposed superpixel context descriptor consist of a 48 bins
histograms.

top-neighboring pixels

superpixel

II IIIII I_I .~ Described

left-neighboring pixels right-neighboring pixels

, .
’ 0
S

. .
. .
. .

. .

. .
. .
= I II (M |

bottom-neighboring pixels

Figure 4.5: Semantic context feature. The distribution of semantic labels of surrounding
superpixels is used to build four histograms.

48 4. Semantic segmentation models: transfer to other domains

4.2.1.4 Superpixel classification.

Superpixel descriptor based classification. The goal of a superpixel classifier is to
identify superpixels from the target class given a set of superpixel descriptors, i.e. to
separate superpixels from the new target class from the rest. The classifier learns from
positives and negatives examples. Each training superpixel feature vector is stored as a
row of training matrix X, and each superpixel ground truth label, is stored in the column
matrix Y:

[features(sp;) label (sp;)

Xnp) = : Y1) = : 4.1)

eatures(spy) label(spy)

This section proposes using a standard Support Vector Machine (SVM) [94], which
solves the classification problem as:

min %aTQOt—eTOt
o
subject to yla=0, (4.2)
0<>C,i=1,...,n

where e is a vector with ones, Q is an Ix/ positive semidefinite matrix, and Q; ; = yiy ;K (xi, x;),
and K (x;,x;) = ¢(x;)T ¢(x;) are the kernel functions where ¢ (x;) maps x; into a higher-
dimensional space.

Therefore, we have n training examples:

{-xhyi}ai S (1,}’1),

where n is the number of labeled superpixels, x; is a vector in the feature space and y;
denotes the class index, taking a value € {1,—1}. Our superpixel training set consists
of positive and negative superpixel examples of the new class. Figure 4.6 shows some
examples of superpixels used to train one a text region segmentation algorithm.

a) Text superpixels b) Doors superpixels c) Water superpixels

i

Figure 4.6: Sample superpixels from the datasets used in each of use cases studied.

Superpixel patch classification. A common solution to adapt deep learning models to a
new domain is to fine-tune an existing model. This pipeline is illustrated in Fig. 4.2 b, and
it can be understand as an end-to-end patch classification. In this pipeline, we fine-tune
the publicly available VGG-16 model [93], which was originally trained to classify images
into the 1000 ImageNet object categories [95]. Following a similar idea than R-CNN
framework [18], we classify each superpixel separately and build the final image semantic

4.3. Experimental setup. 49

segmentation concatenating the fine-tuned network outputs. Note that, this pipeline is
similar than previous superpixel pipeline, where each superpixel is classified individually
into a class.

4.2.2 Semantic segmentation with fine-tuned CNN models

As previously mentioned, a common solution to adapt deep learning models to a new do-
main is to fine-tune an existing model. In this section, we propose how to adapt existing
CNN models for end-to-end semantic segmentation. We follow a common procedure to
fine-tune a CNN model [79, 80]. First, we replace the last CNN classification layer with a
new classification layer. The output of this new layer corresponds with the desired number
of outputs for our binary segmentation task. Next, we train the adapted network struc-
ture with labeled data from the new target class, initializing this process with the original
network parameters. The back-propagation algorithm run during training optimizes the
network parameters using Stochastic Gradient Descent algorithm (SGD). The two diffe-
rent pipelines we have built based on fine-tuned existing CNN models are detailed next.

This work considers fine-tuning recent CNN-based semantic segmentation models,
such as SegNet [9] or DenseNet [96]. Note that these models are an end-to-end pipeline,
where the input is a whole image and the output is the final per-pixel labeling. As illus-
trated in Fig. 4.2 c), we fine-tune this model to perform a binary segmentation of a new
target class. Following standard fine-tuning ideas, we slightly modify the network design
to achieve the desired output.

4.3 Experimental setup.

To compare the two common transfer learning approaches (described in previous section),
for the particular problem of semantic segmentation, both approaches are evaluated on
three varied binary segmentation use cases using public datasets. The experiments consist
of training and evaluating a new binary classifier for a new target semantic class when the
new target dataset availability is not large enough to train new models completely.

4.3.1 Datasets

This section runs three different experiments to learn a new semantic class. These three
new target classes were chosen among classes where we could find enough labeled data
and were not already included on the reference semantic segmentation models. Besides,
they cover a variety of use cases, since they span different levels of man-made character-
istics and different levels of difficulty due to the variety of samples.

50 4. Semantic segmentation models: transfer to other domains

a) Text dataset b) Doors dataset c) Water dataset

Lt.-_ AR = =
R M |

Figure 4.7: Sample images from the datasets used in each of use cases studied.

Text segmentation

Text regions in natural images present a huge variability in appearance and layout, but they
possess distinguishable and discriminative properties. The data used in this experiment is
from the Street View Text dataset [97], where most of the images come from business
signage and exhibit a high degree of variability in appearance and resolution. Figure 4.7
a) shows a few representative images from this dataset. The provided training set contains
100 images, while the testing set contains 249 images. In average 3.38% pixels per image
are labeled as Text.

Doors segmentation

Doors are important landmarks indoors, and automatic visual door recognition has major
difficulties due to the variety and diversity of appearance and shapes of door regions. The
RGB data used in this experiment is from the NYU v2 dataset [98] (Figure 4.7 b). In
this experiment, only the images which have pixels labeled as door are considered. The
resultant training and testing sets contain 239 and 165 images respectively. In average
7.63% pixels per image are labeled as Door.

Water segmentation

Detection of image regions containing water is a challenging problem, since they do not
have a defined shape and the appearance suffers strong changes do to lighting, reflection,
etc. The data used in this experiment is from the LabelME dataset [99] (Figure 4.7 ¢). As
positive Water class examples, regions from all labels related to it are used: sea, water,
lake, pond and ocean; and the rest of labels are considered as no-water. The training and
testing sets contain 100 and 194 images randomly picked from these collections: static
waterfront boston outdoor july 2005, web static park garden outdoor, static web outdoor
spain, static coast palafrugel outdoor spain. In average 28.16% of the image pixels from
the images used from these collections are labeled as Water.

4.4. Experiments Superpixel classification 51

4.3.2 Training details

A standard SVM implementation in OpenCV, which is based on LibSVM library [100],
is used as the superpixel classifier. In all the experiments, positive training samples the
superpixels contain more than 50% of their pixels labeled as the target class. Note that su-
perpixel segmentation solution can often provide superpixels where not all pixels belong
to the same class. Then, the number of positive training samples for each classification
task is different: 570, 1066 and 5766 positive examples to Text, Door and Water segment-
ation respectively. As negative examples, superpixels are randomly chosen from images
in the training set with zero pixels labeled as the target class.

For both the extraction of CNN features and the fine-tuning of CNN models, the open
source Deep Learning library Caffe [101] is used. All fine-tuning of the modified version
of the networks have run around 60,000 iterations, using a NVIDIA GeForce GTX TITAN
X GPU with 12GB RAM.

4.3.3 Evaluation metric.

For all the experiment results, the evaluation metrics are calculated per pixel. The average
Precision and Recall from pixel classification are computed using the training/testing set
splits provided in the corresponding public datasets. The average Precision P and Recall
R for all images are computed as:

_ _TP _ _TP

P=1prp R=1pirn (4.3)
where True Positives TP are pixels correctly classified as target class, False positive FP
are pixels misclassified as target class and False Negatives F'N are pixels misclassified as
No-target class.

4.4 Experiments Superpixel classification

This section compares the effectiveness of the different ways to describe superpixels,
presented in Sec. 4.2.1.2 and Sec. 4.2.1.3 , to classify them into new semantic classes.

4.4.1 Superpixel appearance representation

These first experiments are focused on the problem of text segmentation in natural im-
ages which compare typical hand-crafted and CNN-based superpixel features. It evaluates
the performance obtained with a superpixel classifier trained separately with each of the
superpixel descriptors considered using the train/test split provided in the SVT dataset.
The average results for all test images are shown in the Table 4.1 and Fig. 4.8 shows an
text segmentation example. Common simple superpixel representations, such as color C
or information about edges within the region (E or Ho), do not provide any discriminative

52 4. Semantic segmentation models: transfer to other domains

b ©) (d) O)

Figure 4.8: Text region segmentation (in red) using different features. (a) Original image.
(b) Hand-crafted features. (c) CNN-based features. (d) Semantic features. (e) Previous
features (b,c,d). (f) Ground truth.

power for this task. The same occurs with the semantic-local descriptor. The performance
of the CNN features (A and H) are similar, possibly due to they share the network archi-
tecture. They obtain the highest amount of text in the dataset, around the 0.55. Combining
descriptors (Lowl, A and S), the Recall of CNN features is not improved. It is due to the
hand-crafted features are already encapsulated in the CNN descriptor. Then, this results
shows how CNN models capture reasonably well superpixel information, independently
of use CNN model.

Table 4.1: Text/No-text classification results. Precision P and Recall R are calculated per

pixel and %T is the percentage of the image detected as Text.
Local Superpixel

features Local

P R %T

Hand-crafted

Color (C) 0.17 0.07 195
Edges (E) 035 0.01 0.05
Hog (Ho) 0.30 0.01 0.06

Lowl (C+E) 026 0.13 140
Low2 (C+E+Ho) | 030 0.01 0.06

CNN features
AlexNet (A) 031 055 5.76
HybridCNN (H) 033 056 5.61
Semantic
Semantic (S) 0.28 0.03 3.14

Lowl+S+A 032 057 549

4.4.2 Superpixel context representation

Superpixel feature representation is calculated in two different scopes: from the super-
pixel itself to a region around it. Each representation is analyzed training various super-
pixel classifiers using the same CNN based features but varying the region in which these

4.5. Performance of transfer learning pipelines 53

features have been calculated. This experiment is focused on different ways to represent
the contextual information around a superpixel. Given a superpixel, the context region is
defined as the region encloses all pixels from its adjacent superpixels. The CNN features
are computed into the context region excluding or not the superpixel itself, i.e., context,
and context, regions respectively (Fig. 4.4).

uInput " (b)) (c)) (d)) (e)) ®) (2) Ground truth

5 E

Figure 4.9: Different superpixel context representation (Text classification task): (b) local,
(c) contexty, (d) contexty, (€) local + contexty, (f) local + contextr, (g) local + context| +

contexty.

Each superpixel classifier has been tested in the Text classification problem. The res-
ults are summarized in Fig. 4.2 and Fig. 4.9. Based on these results, including context
features (context); or contexty) help to detect more Text regions (Recall) and with less
false-positives regions (Precision), independently that context region considered. Both
context descriptors obtain similar results, then, they could be used indistinctively. In next
experiments, context; is used to represent the superpixel context.

Table 4.2: Superpixel context representation in Text classification.

Scopes Precision | Recall
local 0.34 0.70
contexty 0.23 0.59
context 0.27 0.68
local + contexty 0.35 0.76
local + contexty 0.34 0.77
local + context| + context 0.37 0.74

4.5 Performance of transfer learning pipelines

This section evaluates the two studied transfer learning strategies to achieve the semantic
segmentation of a new target class in the three different applications described: Text, Doors
and Water region segmentation.

Fig. 4.10 shows examples of each applications, which achieve different performance.
Appendix B shows additional examples. As it could be expected, Door classification is a

54 4. Semantic segmentation models: transfer to other domains

Figure 4.10: Representative examples of pixel segmentation (in red or blue) using different
transfer learning pipelines. (a) Original image. (b) CNN-based features. (c) Semantic fea-
tures. (d) Fine-tuned CNN model for image classification and (e) for image segmentation.
(f) Ground truth.

more challenging tasks, due to large variations on appearance and shape of door regions, as
well as being hard to discriminate from other common indoor surfaces, such as furniture.
As we can observe in Fig. 4.7 the set of training data available is not enough to cover all the
variability of this class, while the other experiments intra-class variation (water and text)
seems to be better captured by the training set, even though we have similar amount of
images for each of them. Note that the ground truth images contain some errors as shown
in Fig 4.10, e.g., the second row shows ground truth with actual text regions unlabeled.

Table 4.3 shows the average Precision and Recall obtained for each of the three ex-

4.5. Performance of transfer learning pipelines 55

Table 4.3: Precision P and Recall R of semantic pixel segmentation for each applica-
tion (Text, Door, Water) using different transfer learning pipelines. Figure 4.10 shows
examples of the best ones.

Pipelines Text Door Water
P R P R P R
CNN based SUPERPIXEL FEATURES + SVM superpixel classifier
Feature size

AlexNet_fc7 (A) 8192 || 033 0.65 0.13 044 || 090 0.85
HybridCNN_fc7 (H) 8192 || 0.34 0.70 || 0.12 0.40 || 0.87 0.86

Fig 4.10(b) VGG_fc7 (V) 8192 || 035 0.76 || 0.12 044 || 0.88 0.85
Fig 4.10(c) SegNet_hist (S) 60 0.19 043 || 0.11 030 || 0.66 0.81
Combined
V+Ss 8252 [032 0.67 [[0.11 044 [[090 0.69 |

Superpixel segmentation + FINE-TUNING of CNN for image classification
| Fig 4.10(d) fine-tuned_VGG H 020 0.77 H 020 0.44 H 0.88 0.87 |
FINE-TUNING of CNN for image segmentation
| Fig4.10(e) fine-tuned_SegNet [053 058] 028 0.10 [| 0.58 0.27 |

periments (Text, Doors, Water). Each row corresponds to a different configuration of
the semantic segmentation approach (Sec. 4.2). All descriptors are calculated on the two
scopes: Local and Context (in particular using context;) which has been demonstrated in
previous section 4.4.2 that using both scopes significantly improves performance.

While recall is always higher on the superpixel based pipelines (i.e., we were able to
correctly label more image pixels from the target semantic class), the accuracy results point
to two different conclusions. On one hand, in 7ext classification, the fine-tuned_SegNet
end-to-end classifier, achieved the best precision. This can be explained because the Text
classification problem is the closest domain to the type of images that were used to train
SegNet model (urban scenes, including a class for signs, which often contained text-like
areas). On the other hand, in Water and Text classification, the superpixel-based classifiers
obtain significantly higher recall (and comparable precision) than the fine-tuned model for
image segmentation.

4.5.1 Different CNN based superpixel representations

The first five rows in Table 4.3 show Precision and Recall of the semantic classification
of pixels using different CNN superpixel representations and SVM classifier. Given a
superpixel patch, rows A, H and V show results using features extracted from layers of
different CNN models for image classification, while S descriptor is obtained as the histo-
gram of the output within the superpixel patch from a CNN model for image segmentation.
There are several common points for all these experiments: combining the two types of
CNN based descriptors (V +.5) does not improve the Recall of the best of them separately.
This confirms the amount of information enclosed on S is definitely more compressed but

56 4. Semantic segmentation models: transfer to other domains

less detailed, something that could be expected from the very different size of descriptors
(column size in the table).

If we compare both types of superpixel based classification pipelines (the best SVM
based superpixel classifier, row V, and the fine-tuned model for image classification, fine-
tuned_VGG), is not surprising that they get to similar quality on the results. They both
take into account superpixel restrictions and use features learned in previous CNN trained
for image classification. The difference is how they train given this information. The first
case trains an SVM with this information, while the second fine-tunes the existing CNN,
i.e., trains the last layers to adapt them to the new domain.

Therefore, using CNN features extracted by last CNN layer is equivalent to fine-tune
the CNN model in terms of accuracy of the results (only in Text experiment, the fine-
tuned model fine-tuned_VGG obtains worse results). The main difference between these
pipelines is during the training stage. While a simple SVM can be trained on the CPU of a
common desktop computer and it just takes the order of minutes, fine-tuning a CNN model
in the same conditions can take several days. At the end of this section, we present a more
detailed analysis of which pipelines are more suitable when we have time or resources
restrictions.

4.5.2 Superpixel-based classifiers vs end-to-end segmentation.

As previously mentioned, if we compare the results obtained by superpixel-based clas-
sifiers (V and fine-tuned_VGG) and the end-to-end pipeline obtained with the fine-tuned
model for image segmentation (fine-tuned_SegNet), we can observe more significant differ-
ences in the performance obtained, which highlight the influence of the following aspects,
which should be taken into account when targeting a new semantic class segmentation:

Different domains. As previously mentioned, the different behavior of the Text ex-
periment (achieving the best precision using the fine-tuned SegNet to directly obtain the
binary image segmentation) is due to the fact that this target class is closer to the domain
considered in the original label set. So in general, we could suggest to use a superpixel-
based classifier for the transfer learning pipeline when the new target class is from a very
different domain than the data from the existing CNN model.

Amount of training data. Our use cases are motivated by not having enough labeled
data to train a model from scratch. A benefit we have observed in the superpixel based
approaches is that with the same amount of labeled training images, we actually have a
larger set of training samples for superpixel based approaches. This provides better mod-
els and results with limited amount of training data.

Limited resources. Another important aspect to study when choosing the most con-
venient way to implement a new classifier based on existing models is the type of resources
we have available (time restriction or availability of GPU), and how they affect our target

4.5. Performance of transfer learning pipelines 57

application or platform, during training or prediction stages.

Regarding the training stage, we should note that the SVM based superpixel classi-
fier has much lower computational requirement to train a new binary segmentation model,
because we only run CNNs forward steps to obtain the features, which is relatively fast,
even without using GPU (around 5s to get features for a 50 image batch on a CPU). Then,
the SVM training is a fast step, e.g., training a superpixel classifier with 15766 examples
using a 4096-dimensional descriptor for each sample, takes around 4 minutes in a com-
mon desktop computer. However, we estimate that fine-tuning a CNN model could take
around 30 hours executing 60.000 iterations in similar conditions (CPU). For this option
to become more affordable (as we have done in our experiments) we should fine-tune the
models using a GPU. Therefore, the SVM based pipeline is the best option without a GPU
available for the training stage, since using a CNN only to extract features is not very de-
manding operation that can be run without a GPU.

Regarding the prediction stage, i.e., to achieve the semantic segmentation of a new
image, we should note that there are smaller execution time differences among the diffe-
rent pipelines. This is due mainly because we always use a CNN model, either to extract
the features or to directly predict the final segmentation. The execution time in the diffe-
rent pipelines is summarized in (4.4), where 7, is the time for a superpixel based SVM
classifier, 7}, is a superpixel based CNN image classifier, and 7, is an end-to-end CNN
image segmentation pipeline:

1, = Tvp + |SP\ : (Tcnn + Toom + Tout)
I, = Ty+ |SP\ : (Tcnn+Tout)
T. = T (44)

Ty, is the time to segment an image into |sp| superpixels, 7., is the time to run the a
forward pass of an image through a CNN, Tj,,, is the time to classify an superpixel with
an SVM and T, is the time to build the output image combining individual superpixel
classification. Note that, T,,, and T, can be ignored, since their times are despicable
compared to the other steps. Besides, |sp|- Teny is almost equivalent to T, if we process
the superpixel patches in batches (note that CNN evaluation can process batches of images
in a parallel manner), so the main difference between T, T, and T is the superpixel extrac-
tion time (6s per image in the algorithm we use). An important aspect to consider about
the requirements during prediction stage is that often the deployment of trained models
for the final applications (e.g., deploy the learned model on a robot on-board computer),
has stronger time and resources limitations. Therefore, the end-to-end pipeline is the best
option for a resource limited platform for the prediction stage, since as we have seen, the
training is performed beforehand, and the only step needed for prediction is a task that can
be performed reasonably fast without a GPU.

58 4. Semantic segmentation models: transfer to other domains

4.6 Additional improvements to semantic segmentation
models

Looking into the results from previous section, we observe how the different presented
semantic segmentation pipelines provide good results for certain applications, such as the
Text and Water segmentation examples, while other tasks, such as Doors segmentation, do
not achieve acceptable results. This section explores additional steps to improve semantic
segmentation results in such tasks. Usually, this kind of poor results are due to poor
training data, e.g., there are few training examples, which do not cover the variability of
the modelled class, or the quality or detail of the available examples is not good enough.
We explore two strategies to improve semantic segmentation pipelines from two different
points of view, as summarized in Fig. 4.11:

e Data pre-processing: augmentation of sparse training data into dense training data.
Sometimes the available training data is not detailed enough to train certain types
of models, for example to train semantic segmentation models, we typically need
dense labeling of the training data. We show how to automatically augment sparse
labeled data in order to enable the training of a semantic segmentation model as
those studied in previous sections. This is detailed in Section 4.6.1.

e Data post-processing: we combine semantic segmentation results with geometry-
based information. Given a semantic segmentation, the goal is to refine the obtained
predictions near the object boundaries where usually the predictions are wrong. This
is detailed in Section 4.6.2.

Pre-processing Post-processing

Semantic

segmentation
pipeline

Figure 4.11: Standard semantic segmentation pipelines can be improved with additional
modules to pre-process the input data or post-process the output to refine the results.

4.6.1 Pre-processing input data

One of the biggest issues to train or fine-tune existing CNN semantic segmentation models
is that they require example training data. However, there are many domains where obtain-
ing large amounts of good quality dense labeled segmentation data, which is required to

4.6. Additional improvements to semantic segmentation models 59

train such approaches, is highly costly and tedious to obtain. For example, tasks to mon-
itor different aspects of wildlife can highly benefit of automatic semantic segmentation
approaches, from animal recognition in videos [102] to coral identification in underwater
survey imagery [103]. Unfortunately, datasets of this kind often only provide a weakly
labeled ground truth. In this section we propose how to augment the ground truth for such
cases. In particular, we present an approach for a coral segmentation application, a use
case that would highly benefit from automated monitoring, but that lacks large amounts of
quality and accurately labeled data. Our system presents promising results, and is able to
effectively learn coral segmentation and provides a flexible end-to-end pipeline.

4.6.1.1 Augmentation of sparse training data

Original-GT Segmentation Augmented-GT
Patches Patches-GT

Figure 4.12: Ground truth augmentation methods that we considered. (a) small patches
around original-GT labeled pixels; (b) SLIC and (c) SEEDS superpixels, computed on
RGB or fluorescence images, used to expand the original-GT. SLIC and SEEDs can be
augmented using either RGB or fluorescence image superpixels but fluorescence yields a
much better segmentation.

The main challenge considered in this section is how to learn a good semantic image
segmentation given a very sparse ground truth to learn the model. Typically to train a CNN
for semantic segmentation dense ground truth is needed. We evaluate three strategies to
obtain this dense labeling, as shown in Fig. 4.12.

60 4. Semantic segmentation models: transfer to other domains

Patches-GT. This strategy is the more straightforward. We expand the labeled ground
truth pixels into labeled patches around those pixels. This strategy assumes that the sur-
rounding pixels of a labeled one are the same kind. Several patch sizes were tested and
25x25 pixel patches gave the best results (using 1078 x 976 images) providing 125000
labeled pixels per image instead of 200.

Superpixels (SLIC-GT, SEEDS-GT). We apply these superpixel segmentation meth-
ods to the images. This allows us to match the original labeled pixels to each segmenta-
tion. This method gives a better and more accurate solution. The outcome augmentations
of SLIC [44] and SEEDS [104] superpixels are similar. Visually, SEEDS-GT fits better
to the shape of the coral. These methods can fail specially when the corals are too small
or the have holes. Nevertheless, these approaches seem pretty similar to the RGB im-
ages. This superpixel augmentation can be obtained from any of the multi-modal images
(see Fig. 4.12), and is independent from the image channel used in the final segmentation
step. The experimental results, from the next section, analyze the differences of using with
different augmented ground truths in our pipeline.

4.6.1.2 Results

The final step consists of training the model with the augmented-GT. The state-of-the-
art image segmentation systems use CNN based models, which offer excellent accuracy.
Our goal is to adapt existing semantic segmentation models to our target classes. The
following experiments analyze different aspects and variations of our approach for coral
segmentation and compare the results obtained with prior work on the same data.

Data-set. All the following experiments are run on the Eilat Fluorescence Corals data-
set [103]. The dataset consists of 212 coral annotated multimodal image-pairs: RGB and
fluorescence images. There are 200 labeled pixels per image, assigning to each of them a
label from coral and non-coral classes'. Note that this ground truth is very sparse, since
images have 1078 x 976 resolution. The data is split into a training-set of 142 randomly
selected image-pairs, and a test-set with the remaining 70 image-pairs.

Evaluation. We use standard accuracy, recall and precision scores for the evaluation of
the results computed according to different strategies:

Original-GT based sparse scores. The scores computed based on the original ground
truth (Original-GT) are not fully representative, as it will be shown next. Intuitively, 200
pixels labeled out of around a million per image are not a dense ground truth for dense
image labeling.

Superpixel-GT and Manual-GT based dense scores. The augmented ground truth we
generate based on superpixels (Superpixel-GT) is an approximated but dense labeling,
which as shown next gives a reliable evaluation. The fact of having very sparse ground

Uhttp://datadryad.org/resource/doi: 10.506 1/dryad.t4362

4.6. Additional improvements to semantic segmentation models 61

Table 4.4: Coral segmentation (average pixel classification accuracy). Training and evalu-
ation with different ground truth (GT).

Evaluation: Original-GT Patches-GT SLIC-GT SEEDS-GT
Training: (sparse) (dense) (dense)
Original-GT 0.56 0.53 0.43 0.42
Patches-GT 0.77 0.80 0.67 0.67
SLIC-GT 0.81 0.80 0.89 0.90
SEEDS-GT 0.78 0.77 0.85 0.86

Augmented-GT Manual-GT Intersection

Figure 4.13: Examples of Augmented-GT and Manual-GT. The intersection of both shows
green/red/yellow pixels when labeled as coral in both/only manual-GT/only augmented-
GT respectively.

truth is a challenge not only to train but also to evaluate in a meaningful way the dense
labeling results. The representativity of this augmented ground truth can be seen in mul-
tiple visual results. Besides, we include comparisons using a few (7% of the testing data)
detailed manual segmentations (Manual-GT) performed by an expert. This helps to further
validate the Augmented-GT and the segmentation results. The average accuracy of the val-
ues in the augmented-GT with respect to the Manual-GT is of 93% (for the 5 images with
Manual-GT available). Fig. 4.13 shows examples comparing these two segmentations.

62 4. Semantic segmentation models: transfer to other domains

4.6.2 Post-processing semantic segmentation

As mentioned before, other possible path to improve semantic segmentation algorithms is
to refine the final output. Automatic dense semantic estimations are usually noisy in the
the object boundaries. We consider some simple image post-processing techniques which
may be suitable to improve the results. Depending on the application domain, it is possible
to make geometric assumptions, which help us refine the final segmentation results.

In this section we describe an strategy to eliminate false positive and improve the
robustness of a CNN-based semantic segmentation approach by integrating simple prior
knowledge about geometric information with the CNN output.

4.6.2.1 Combining geometric info with CNN-segmentation output

For example, problems as Door classification, it is possible adding a light geometry based
post-processing step which helps detecting regions of interest in the image. In particular, a
sign detector based on generic rectangular hypothesis generation, presented in [23], can be
used to create rectangular hypotheses over all the image. Then, each rectangular sign can-
didate is filtered and classified into Door or No-Door according of the previous semantic
segmentation obtained.

The process to create rectangular hypotheses starts with a search for possible rectan-
gular in the image. Since there no restrictions on the image to be processed, this approach
detects straight segments and cros points (corners) between them all over the image. Ac-
cording to the relative position of the components of each cross point, we find four different
types of corners, as shown in Fig. 4.14.

S~ l >
S Te li_z

| /_

(a) (b) (c) (d) (e)

Figure 4.14: Types of corners detected: (a) Top-left, (b) Top-right, (c) Bottom-left ,(d)
Bottom-right. (e) Multiple-type corner: TL+TR.

To generate the rectangular regions, corners are grouped with each other trying to get
sets made of as many compatible corners as possible. Then, we obtain compatible sets
made out of one, two, three or four image corners. All of these sets, except the four-corner
ones, need a post-processing to estimate the complete shape of the rectangular region, as
shown in Fig. 4.15.

4.6. Additional improvements to semantic segmentation models 63

I

(a)

\

Figure 4.15: Rectangular hypothesis generated from singles corners (a) and from sets of
four (b), three (c¢) and (d) corners

(c)

4.6.2.2 Results

Fig.C.3 shows examples of the improved Door segmentation. Appendix C includes ad-
ditional results. Table 4.5 summarizes the results obtained with a subset of the previous
Door detection problem described in previous Section 4.3. In particular, we only select a
sub-set of the provided dataset.

Table 4.5: Precision and Recall (per pixel) for door segmentation, combining a rectangle
detector and a previous dense segmentation trained to detect door regions.

pipeline Precision | Recall
Fine-tuned CNN 0.47 0.15
Fine-tuned CNN + [23] 043 0.74
Superpixel classifier 0.19 0.51
Superpixel classifier + [23] 0.21 0.47

These results provide preliminary results on how the segmentation from either a fine-
tuned end-to-end CNN model (Fig. 4.2 ¢) or a superpixel classifier (Fig. 4.2 a) could
be improved. When the dense semantic segmentation is very sparse (fine-tuned CNN
pipeline), the recall R is very low but the precision P is high, combining the segmentation
with the rectangular hypotheses helps to improve the R while the precision is maintained.
Besides, when the semantic segmentation seems randoms, the R is high but the P is too

64 4. Semantic segmentation models: transfer to other domains

(b)

Figure 4.16: Improving Doors detection combining a sign rectangular detector and a dense
Door segmentation. (a) Rectangular hypotheses. (b) Doors ground truth. (c) Fine-tunned
CNN Door segmentation (pipeline described in Section 4.2.2). (d) Improved previous
Door segmentation. (e) Superpixel Door Classifier (pipeline described in Section 4.2.1).
(f) Improved previous Door segmentation.

4.7. Conclusions 65

low, using the proposed combination helps to remove the false positive, i.e improve the
precision P while the R is similar.

4.7 Conclusions

Many applications require semantic segmentation of specific classes for which there is not
many labeled training data. Recent CNN approaches have proven useful for transfer know-
ledge from existing models to new tasks. This chapter evaluates the two major CNN-based
transfer learning strategies: fine-tuning existing models and CNN based features for clas-
sification. Besides, this chapter has proposed how to integrate a superpixel representation
with these strategies and combining effectively local and context superpixel description.

The presented three experiments have covered a wide range of semantic segmentation
problems. The results with different real scenarios have demonstrated the benefits of the
proposed pipelines to learn how to segment new classes with limited data and resources.
Although fine-tuning existing model seems the most direct way to transfer information
learned on those models, the experiments have shown that using the proposed CNN-based
representation and superpixels provides a more effective transfer learning pipeline than
fine-tuning a model.

However, there are situations where the segmentation does not provide acceptable res-
ults, e.g in the presented Door segmentation. This chapter has presented that easy image
processing techniques may be suitable for improving the segmentation results.

66

4. Semantic segmentation models: transfer to other domains

Chapter 5

Conclusions and Future Work

This thesis contributes towards vision based systems for automatic understanding of envir-
onment and their applications. The general goal of this thesis was to learn complex scene
information from pieces of user prior knowledge. In particular, the work on this thesis
proposes and demonstrates novel approaches to learn information of interest for specific
applications from two different sources of prior information: interactive human input and
existing examples of semantically labeled data.

5.1 Dense labeling from interactive user-labeling propaga-
tion

Frequently, computer vision algorithms need to operate in interactive applications, such
as smart image editing environments. Many image post-processing applications require a
dense per-pixel value of certain magnitude, which may be easily initialized in a few pixels
taking advantage of user interaction. This is a natural application where the user interact-
ively provides prior knowledge to the system, and the system needs to be able to produce
a satisfactory final result requiring as little interaction from the user as possible.

Chapter 2 describes one of the main contributions in this thesis, a newly developed
efficient approach to propagate confident but sparse user information to all pixels in an
image. The presented implementation has the advantage with respect to previous similar
solutions of running at interactive rates. This means our paradigm enables the development
of interactive applications that apply any image post processing technique that requires the
estimation of continuous magnitudes per pixel.

The interactivity of our approach is guaranteed because it is formulated as a linear
system of equations over superpixels. Although our accuracy is limited by the number
of superpixels, we have shown that we yield results which are accurate enough for many

68 5. Conclusions and Future Work

applications and often comparable to other slower state of the art methods. Besides, since
we target an interactive technique, the user can always continue to iteratively refining the
input, therefore automatically improving the output, until it achieves the desired level of
accuracy.

The interactivity rates of our approach, together with the aforementioned expanded
flexibility, provide great potential for image editing applications. To demonstrate the suit-
ability of our approach, we have implemented three interactive applications, detailed in
Chapter 3, that apply complex well-known image filters and effects: depth of field, de-
hazing and tone mapping. These three applications use the same proposed propagation
scheme, and their results demonstrate that our generic propagation system achieves com-
parable image effects than related methods which are ad-hoc for a single specific problem.
Besides, thanks to our paradigm, these applications can run as interactive tools, with very
low computational requirements. This opens the opportunity to bring this type of editing
tools to mobile and embedded devices.

We believe our work can inspire both new interactive editing applications, as well as fu-
ture research on interactive editing tools. Potential lines of future work that can be inspired
from the combination of the presented work and previous work are multi-view approaches
for transferring edits between views [65] or for depth editing and navigation [66]. Besides,
instead of plain images, our approach could be extended for material appearance [68] or
even material transfer [67] applications, given the adequate adaptation and identification
of the involved magnitudes to material space.

5.2 Dense labeling from semantic segmentation models

We have seen that semantic image parsing, an important task to the broader scene un-
derstanding problem, can be formulated as a dense labeling problem, where the labels
corresponds to different concepts depending on the application. Many applications re-
quire semantic segmentation of specific classes for which there is not enough labeled data
to train a state-of-the-art model from scratch. Recent CNN approaches have proven useful
to transfer knowledge from existing models to new tasks.

In this thesis, we have worked with the two major CNN-based transfer learning strategies:
fine-tuning existing models and CNN based features for classification. The contributions
along this topic include new strategies on how to integrate a superpixel representation with
these strategies and combining effectively local and context superpixel description. These
strategies are detailed and evaluated in Chapter 4.

The presented experiments to validate the proposed strategies cover a wide range of se-
mantic segmentation problems and application areas. In particular, present how to transfer
information from models learned from ground-level images, such as autonomous driving
scenarios, to a different image domain, such as aerial images or underwater image data.

5.2. Dense labeling from semantic segmentation models 69

These results with data from different real scenarios have demonstrated the benefits
of the proposed pipelines to learn how to segment new classes with limited data and re-
sources. Although fine-tuning an existing model seems the most direct way to transfer
information learned on those models, the experiments have shown that using the proposed
CNN-based representation and superpixels can yield a more effective transfer learning
pipeline than fine-tuning a model when resources are limited.

Future works on optimizing and enabling this kind of visual recognition systems on
embedded platforms are a challenging problem that would enable autonomous systems to
have richer real time perception modules.

Our experimentation also shows use cases where the proposed strategies to learn new
classes semantic segmentation are not sophisticated enough for the targeted problem, and
therefore does not provide acceptable results. In this respect, this thesis introduces two
additional contributions that are complementary to the previous approach, and present
promising improvements in the segmentation results of these more complex use cases.

For example, in the presented Door class segmentation problem, the target class door
has too large variability of appearances for the limited amount of data used for training.
In this kind of problems, where appearance is very heterogeneous and the object is of-
ten strongly occluded, we have presented how simple geometry based image processing
techniques improve the segmentation results.

On other use cases, the problem encountered is that the available labels for training are
not accurate or dense enough to train the desired model. In our case of study, available
sparse labels on underwater imagery are not enough to train a common dense labeling
model to detect coral regions in those images. In this case, we have presented a simple
strategy to augment incomplete input data. Our results show that although this augmenta-
tion is approximated and somehow noisy, it still yields better dense segmentation models
than prior work on the same data.

The promising results obtained, together with recent related work exploring related
ideas, encourage future lines of work along similar strategies, i.e., to refine either the
input data or the output results of deep learning based models. In particular, next steps to
improve these systems will consider how to deal with incomplete or noisy image labels
for training, and strategies to combine existing geometric information obtained from well-
known approaches to refine less precise predictions of generic models.

70

5. Conclusions and Future Work

Part I

Appendix

Appendix A

Additional results of our
interactive editing applications

As previously described in Chapter 2, one of the main contributions of this thesis is an
interactive paradigm for label propagation from user interactions. This Appendix includes
additional results for the three presented real use cases applying this paradigm: tone map-
ping, depth of field and dehazing effects simulation, as detailed in Chapter 3.

74 A. Additional results of our interactive editing applications

(a) Input (b) User
Image Strokes image map map

Figure A.1: Additional examples of our interactive HDR tone mapping application where
an input HDR image is converted to a LDR output image. Given an input image (a), the
user provides a few strokes (b) to adjust the brightness and contrast in different regions in
the final processed image (c). The estimated brightness (d) and contrast (e) maps are inter-
actively updated after each user edition and are used for generating the processed image.
Blue, green and red strokes mark regions need to be darken, illuminated and unmodified
respectively; while pink and orange strokes mark regions where reduce or increase the
contrast respectively.

9

|

S

(a) Input Image (b) User Strokes (c) Processed image (d) Depth
estimation

Figure A.2: Additional examples of our interactive depth of field application. Given an
input image (a), the user provides a few strokes (b) to add depth of field effects in the
processed image (c). The user also can change the focus point . The estimated depth map
(d) is interactively updated after each user edition and is used for generating a depth of
field effect. Orange strokes mark foreground objects; pink, blue and green strokes mark
background objects at different depths.

76 A. Additional results of our interactive editing applications

R

b

(c) Processed images (d) Transmittance
estimation

A

(a) Input Image (b) User Strokes

Figure A.3: Additional examples of our interactive dehazing application. Given an input
image (a), the user provides a few strokes (b) to remove the fog effects in the processed
image (c). The transmittance map (d) is interactively updated after each user edition and
is used for applying the dehazing effect. Orange strokes mark regions without fog; pink,
blue and green strokes mark regions with different levels of fog.

Appendix B

Additional results of transfer
learning pipelines.

As previously described in Chapter 4, the second part of this thesis investigates how to
improve systems that learn dense semantic labeling of images from user labeled examples.
This Appendix includes additional results for the three presented region segmentation
(Text, Door and Water), obtained with two major CNN-based strategies for transfer learn-
ing.

Image

Intersection Superpixel Intersection
i with classifier L with
classifier E it y S it

Intersection Fine-tuned
with model
GT

Fine-tuned
model

Figure B.1: Doors region segmentation results. It is a more challenging problem, as we
can see, there are objects with similar appearance.

78

B. Additional results of transfer learning pipelines.

Figure B.2: Doors region segmentation results. Superpixel classifier detects more doors

egions

GT

Superpixel Intersection

classifier with
GT

Fine-tuned Intersection

model

Image

Superpixel Intersection

classifier § with
GT

Intersection
with
GT

Fine-tuned
model

region than Fine-tuned pipeline.

Figure B.3: Water region segmentation results. Superpixel classifier detects more water

Image

Superpixe! [o Intersection

classifier with
GT

[
Fine-tuned ntersection

model

Superpixel Intersection

classifier with
GT

Intersection
with
GT

Fine-tuned

region than Fine-tuned pipeline.

Superpixel Intersection
classifier witt
GT

Fine-tuned Intersection

Superpivel [MU Intersection

classifier with
GT

Intersection
with
GT

Fine-tuned
model

Superpixel . Intersection

classifier e wit
GT

Fine-tuned Intersection

Superpixel i Intersection

classifier e . with
GT

Intersection
witt
GT

Fine-tuned Js
model

79

Intersection
with
GT

classifier

,
Fine-tuned JEES
model

\

gions
Image GT
Superpixel Intersection
classifier with
GT
Fine-tuned \meﬁ;uon
model yal

Intersection

Figure B.4: Text region segmentation results.

cision
Image GT
Superpixel Intersection
classifier with
GT
Fine-tuned \merjiﬁtlon
model

Superpixel Intersection
classifier with
GT

Fine-tuned
model

Figure B.5: Text region segmentation results.

higher precision.

classifier

Fine-tuned
model

Image

Superpixel R rtersection

classifier -, with
GT

Intersection
with
GT

Fine-tuned
model

Some example where superpixel classifier
detects more text regions than fine-tuned model.

Intersection

classifier — with
GT

Fine-tuned
model

Image

Superpixel Intersection

classifier with
GT

Fine-tuned R [J ntersection

with

model GT

Fine-tuned pipeline detects text regions with

80

B. Additional results of transfer learning pipelines.

Appendix C

Additional results of our
post-proccesing segmentation.

This Appendix includes additional results of Door segmentation problem. As we men-
tioned before, we propose to add a light geometry based post-processing step, in order
to improve the segmentation. We include intermediate segmentation results, in order to
describe how the rectangular regions are combined with the original segmentation.

82 C. Additional results of our post-proccesing segmentation.

(a) _ (b)

(e) ®

Figure C.1: Improving Doors detection combining a sign rectangular detector and a dense
Door segmentation. (a) Rectangular hypotheses. (b) Doors ground truth. (c) Fine-tunned
CNN Door segmentation (pipeline described in Section 4.2.2). (d) Improved previous
Door segmentation. (e) Superpixel Door Classifier (pipeline described in Section 4.2.1).
(f) Improved previous Door segmentation.

83

() (b)

(e) ®

Figure C.2: Improving Doors detection combining a sign rectangular detector and a dense
Door segmentation. (a) Rectangular hypotheses. (b) Doors ground truth. (c) Fine-tunned
CNN Door segmentation (pipeline described in Section 4.2.2). (d) Improved previous
Door segmentation. (e) Superpixel Door Classifier (pipeline described in Section 4.2.1).
(f) Improved previous Door segmentation.

84 C. Additional results of our post-proccesing segmentation.

(a) (b) (c) (d) (e)

Figure C.3: Intermediate step to improve Doors detection combining a sign rectangular
detector and a dense Door segmentation. (a) A rectangular hypothesis. (b) Doors ground
truth. (c) The rectangular segmentation hypothesis. (d) Intersection between Fine-tunned
CNN Door segmentation and the rectangular hypothesis. (e) Intersection between Super-
pixel Door Classifier and the rectagular segmentation hyphothesis.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2014.

S. Gupta, P. Arbelédez, R. Girshick, and J. Malik, “Indoor scene understanding with
rgb-d images: Bottom-up segmentation, object detection and semantic segment-
ation,” International Journal of Computer Vision, vol. 112, no. 2, pp. 133-149,
2015.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “So-
cial Istm: Human trajectory prediction in crowded spaces,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 961-971, 2016.

H. S. Parekh, D. G. Thakore, and U. K. Jaliya, “A survey on object detection and
tracking methods,” International Journal of Innovative Research in Computer and
Communication Engineering, vol. 2, no. 2, pp. 2970-2979, 2014.

P. Kamavisdar, S. Saluja, and S. Agrawal, “A survey on image classification ap-
proaches and techniques,” International Journal of Advanced Research in Computer
and Communication Engineering, vol. 2, no. 1, pp. 1005-1009, 2013.

J. Deng, J. Krause, and L. Fei-Fei, “Fine-grained crowdsourcing for fine-grained
recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 580-587, 2013.

O. Russakovsky, L.-J. Li, and L. Fei-Fei, “Best of both worlds: human-machine
collaboration for object annotation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2121-2131, 2015.

H. Wang, S. Gong, X. Zhu, and T. Xiang, “Human-in-the-loop person re-
identification,” in European Conference on Computer Vision, pp. 405422,
Springer, 2016.

86 Bibliography

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convo-
Iutional encoder-decoder architecture for image segmentation,” arXiv preprint
arXiv:1511.00561, 2015.

[10] N. Sharma and L. M. Aggarwal, “Automated medical image segmentation tech-
niques,” Journal of medical physics/Association of Medical Physicists of India,
vol. 35, no. 1, p. 3, 2010.

[11] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” in ACM
Transactions on Graphics, vol. 23, pp. 689—-694, ACM, 2004.

[12] H. Ao, Y. Zhang, A. Jarabo, B. Masia, Y. Liu, D. Gutierrez, and Q. Dai, “Light field
editing based on reparameterization,” in Pacific Rim Conference on Multimedia,
2015.

[13] A.Bousseau, S. Paris, and F. Durand, “User assisted intrinsic images,” ACM Trans-
actions on Graphics (SIGGRAPH Asia 2009), vol. 28, no. 5, 2009.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in CVPR, pp. 3431-3440, 2015.

[15] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one hundred
layers tiramisu: Fully convolutional densenets for semantic segmentation,” in Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference
on, pp. 1175-1183, IEEE, 2017.

[16] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler, U. Franke,
M. Pollefeys, and S. Roth, “Semantic stixels: Depth is not enough,” in Intelligent
Vehicles Symposium, pp. 110-117, IEEE, 2016.

[17] D. Kochanov, A. Osep, J. Stiickler, and B. Leibe, “Scene flow propagation for se-
mantic mapping and object discovery in dynamic street scenes,” in IROS, pp. 1785—
1792, IEEE, 2016.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in IEEE Conf. on CVPR,
pp- 580-587, 2014.

[19] L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese, “Knowledge transfer
for scene-specific motion prediction,” in European Conference on Computer Vision,
pp. 697-713, Springer, 2016.

[20] A.B.Cambra, A. C. Murillo, and A. Mufioz, “A generic tool for interactive complex
image editing,” The Visual Computer, Aug 2017.

[21] A. B. Cambra, A. Muioz, J. J. Guerrero, and A. C. Murillo, “Dense labeling with
user interaction: an example for depth-of-field simulation,” in British Machine Vis-
ion Conference, September 2016.

Bibliography 87

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

A. B. Cambra, A. Muiloz, A. Murillo, J. Guerrero, and D. Gutierrez, “Improving
depth estimation using superpixels,” in Spanish Computer Graphics Conf., pp. 49—
58, The Eurographics Assoc., 2014.

A. B. Cambra and A. Murillo, “Towards robust and efficient text sign reading from
a mobile phone,” in Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on, pp. 64-71, IEEE, 2011.

A. B. Cambra, A. Muiioz, and A. C. Murillo, “How to transfer an autonomous driv-
ing model for semantic segmentation to other domains?,” in Third Iberian Robotics
Conference, 2017.

I. Alonso, A. B. Cambra, T. Muiioz, Adolfo andTreibitz, and A. Murillo, “Coral-
segmentation: Training dense labeling models with sparse ground truth. towards ro-
bust and efficient text sign reading from a mobile phone,” in Computer Vision Work-
shops (ICCV Workshops), 2017 IEEE International Conference on, IEEE, 2017.

B. Micusik and J. Koseckd, “Multi-view superpixel stereo in urban environments,”
International Journal of Computer Vision, vol. 89, no. 1, pp. 106-119, 2010.

X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features and algorithms,” in
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2759-2766, IEEE,
2012.

J. Tighe and S. Lazebnik, “Superparsing,” International Journal of Computer Vis-
ion, vol. 101, no. 2, pp. 329-349, 2013.

Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y. Shum, “Natural image
colorization,” in Proceedings of the 18th Eurographics conference on Rendering
Techniques, pp. 309-320, Eurographics Association, 2007.

S. Bergmann, T. Ritschel, and C. Dachsbacher, “Interactive appearance editing in
RGB-D images,” in 19th International Workshop on Vision, Modeling and Visual-
ization, pp. 1-8, Eurographics Association, 2014.

F. Di Renzo, C. Calabrese, and F. Pellacini, “Appim: linear spaces for image-based
appearance editing,” ACM Transactions on Graphics, vol. 33, no. 6, p. 194, 2014.

N. Bonneel, K. Sunkavalli, J. Tompkin, D. Sun, S. Paris, and H. Pfister, “Interactive
intrinsic video editing,” ACM Transactions on Graphics, vol. 33, no. 6, p. 197, 2014.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,
M. Tappen, and C. Rother, “A comparative study of energy minimization meth-
ods for markov random fields with smoothness-based priors,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 1068—1080, 2008.

88 Bibliography

[34] Q. Chen and V. Koltun, “Fast MRF optimization with application to depth recon-
struction,” in IEEE Conf. on Computer Vision and Pattern Recognition, pp. 3914—
3921, 2014.

[35] R. Shen, I. Cheng, X. Li, and A. Basu, “Stereo matching using random walks,” in
International Conference on Pattern Recognition, pp. 1-4, 2008.

[36] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios, “Segmentation of building
facades using procedural shape priors,” in IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 3105-3112, IEEE, 2010.

[37] A.Fabijanska and J. Goclawski, “The segmentation of 3d images using the random
walking technique on a randomly created image adjacency graph.,” IEEE Transac-
tions Image Processing, vol. 24, no. 2, p. 524, 2015.

[38] L. Grady, “Random walks for image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1768-1783, 2006.

[39] S. Andrews, G. Hamarneh, and A. Saad, “Fast random walker with priors using pre-
computation for interactive medical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention, pp. 9-16, Springer, 2010.

[40] D.Freedman, “Animproved image graph for semi-automatic segmentation,” Signal,
Image and Video Processing, vol. 6, no. 4, pp. 533-545, 2012.

[41] C. Wah, S. Branson, P. Perona, and S. Belongie, “Multiclass recognition and part
localization with humans in the loop,” in IEEE Int. Conf. on Computer Vision,
pp- 2524-2531, Nov 2011.

[42] C.-H. Lu, Y.-C. Ho, Y.-H. Chen, and L.-C. Fu, “Hybrid user-assisted incremental
model adaptation for activity recognition in a dynamic smart-home environment,”
IEEE Transactions on Human-Machine Systems, vol. 43, pp. 421-436, Sept 2013.

[43] O. Razeghi, G. Qiu, H. Williams, K. Thomas, and I. VIPLAB, “Skin lesion image
recognition with computer vision and human in the loop,” Medical Image Under-
standing and Analysis (MIUA), pp. 167-172, 2012.

[44] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “SLIC su-
perpixels compared to state-of-the-art superpixel methods,” IEEE Trans. on PAMI,
vol. 34, no. 11, pp. 2274-2282, 2012.

[45] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame ste-
reo correspondence algorithms,” International Journal of Computer Vision, vol. 47,
no. 1-3, pp. 7-42, 2002.

[46] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured
light,” in IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. I-
195, 2003.

Bibliography 89

[47] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal Statist-
ical Society. Series B (Methodological), pp. 259-302, 1986.

[48] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via
graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 11, pp. 12221239, 2001.

[49] M. F. Tappen and W. T. Freeman, “Comparison of graph cuts with belief propaga-
tion for stereo, using identical MRF parameters,” in IEEE International Conference
on Computer Vision, pp. 900-906, IEEE, 2003.

[50] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimiz-
ation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 10, pp. 1568-1583, 2006.

[51] D. Weinshall, “Qualitative depth from stereo, with applications,” in Computer Vis-
ion, Graphics, and Image Processing, pp. 222-241, 1990.

[52] F. Yu and D. Gallup, “3d reconstruction from accidental motion,” in I[EEE Conf. on
Computer Vision and Pattern Recognition, pp. 3986-3993, 2014.

[53] M. Liu, M. Salzmann, and X. He, “Discrete-continuous depth estimation from a
single image,” in IEEE Conf. on Computer Vision and Pattern Recognition, pp. 716—
723, IEEE, 2014.

[54] R. Fattal, “Dehazing using color-lines,” ACM Transaction on Graphics, vol. 34,
no. 13, 2014.

[55] A. Jarabo, B. Masia, A. Bousseau, F. Pellacini, and D. Gutierrez, “How do people
edit light fields?,” ACM Transactions on Graphics (SIGGRAPH 2014), vol. 33,
no. 4, 2014.

[56] M. Kraus and M. Strengert, “Depth-of-field rendering by pyramidal image pro-
cessing,” Computer Graphics Forum, vol. 26, no. 3, pp. 645-654, 2007.

[57] D. Berman, T. Treibitz, and S. Avidan, “Non-local image dehazing,” in IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 1674—1682, June 2016.

[58] E.Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction
for digital images,” ACM Transactions on Graphics, vol. 21, pp. 267-276, July
2002.

[59] R. Mantiuk and H.-P. Seidel, “Modeling a generic tone-mapping operator,” in Com-
puter Graphics Forum, vol. 27, pp. 699—708, Wiley Online Library, 2008.

[60] X. Chen, D. Zou, Q. Zhao, and P. Tan, “Manifold preserving edit propagation,”
ACM Transactions on Graphics (TOG), vol. 31, no. 6, p. 132, 2012.

90

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Ning, L. Zhang, D. Zhang, and C. Wu, “Interactive image segmentation by max-
imal similarity based region merging,” Pattern Recognition, vol. 43, no. 2, pp. 445—
456, 2010.

A. Lopez, E. Garces, and D. Gutierrez, “Depth from a Single Image Through User
Interaction,” in Spanish Computer Graphics Conf., pp. 11-20, The Eurographics
Assoc., 2014.

S. lizuka, Y. Endo, Y. Kanamori, J. Mitani, and Y. Fukui, “Efficient depth propaga-
tion for constructing a layered depth image from a single image,” Computer Graph-
ics Forum (Proc. of Pacific Graphics 2014), vol. 33, no. 7, pp. 279-288, 2014.

K. Yiicer, A. Sorkine-Hornung, and O. Sorkine-Hornung, “Transfusive weights for
content-aware image manipulation,” in Proceedings of the Symposium on Vision,
Modeling and Visualization (VMV), Eurographics Association, 2013.

K. Yiicer, A. Jacobson, A. Hornung, and O. Sorkine, “Transfusive image manipu-
lation,” ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA),
vol. 31, no. 6, pp. 176:1-176:9, 2012.

G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis, “Depth syn-
thesis and local warps for plausible image-based navigation,” ACM Transactions
on Graphics, vol. 32, no. 3, p. 30, 2013.

X. An, X. Tong, J. D. Denning, and F. Pellacini, “AppWarp: Retargeting measured
materials by appearance-space warping,” ACM Trans. Graph., vol. 30, pp. 147:1—
147:10, Dec. 2011.

F. Di Renzo, C. Calabrese, and F. Pellacini, “AppIm: Linear spaces for image-based
appearance editing,” ACM Trans. Graph., vol. 33, pp. 194:1-194:9, Nov. 2014.

D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski, “Interactive local ad-
justment of tonal values,” ACM Transactions on Graphics (TOG), vol. 25, no. 3,
pp. 646-653, 2006.

O. Wang, M. Lang, M. Frei, A. Hornung, A. Smolic, and M. Gross, “StereoBrush:
interactive 2d to 3d conversion using discontinuous warps,” in Proceedings of the
Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling, pp. 47—
54, ACM, 2011.

X. An and F. Pellacini, “AppProp: all-pairs appearance-space edit propagation,” in
ACM Transactions on Graphics (TOG), vol. 27, p. 40, ACM, 2008.

K. Xu, Y. Li, T. Ju, S.-M. Hu, and T.-Q. Liu, “Efficient affinity-based edit propaga-
tion using k-d tree,” ACM Trans. Graph., vol. 28, pp. 118:1-118:6, Dec. 2009.

Bibliography 91

[73] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected ctfs,” in In-
ternational Conference on Learning Representations, 2015.

[74] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-
mentation,” in IEEE International Conf. on Computer Vision, 2015.

[75] G.-J.Qi, “Hierarchically gated deep networks for semantic segmentation,” in CVPR,
pp. 2267-2275, 2016.

[76] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-
object tracking analysis,” in CVPR, pp. 4340-4349, 2016.

[77] P.O. Pinheiro, R. Collobert, and P. Dollar, “Learning to segment object candidates,”
in NIPS, pp. 1990-1998, 2015.

[78] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside net: Detect-
ing objects in context with skip pooling and recurrent neural networks,” in CVPR,
pp. 2874-2883, 2016.

[79] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional
neural networks,” in CVPR, pp. 2414-2423, 2016.

[80] H. C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided detec-
tion: CNN architectures, dataset characteristics and transfer learning,” IEEE T. on
Medical Imaging, vol. PP, no. 99, pp. 1-1, 2016.

[81] J. Tighe and S. Lazebnik, “Superparsing: Scalable nonparametric image parsing
with superpixels,” IJCV, vol. 101, no. 2, pp. 329-349, 2013.

[82] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,
“DeCAF: A deep convolutional activation feature for generic visual recognition,”
in Proc. of the 31st Int. Conf. on Machine Learning, pp. 647-655, 2014.

[83] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in NIPS, pp. 1097-1105, 2012.

[84] G. Chéron, I. Laptev, and C. Schmid, “P-cnn: Pose-based cnn features for action re-
cognition,” in Proc. of the IEEE International Conf. on Computer Vision, pp. 3218—
3226, 2015.

[85] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for
face recognition and clustering,” in IEEE Conf. on CVPR, pp. 815-823, 2015.

[86] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in NIPS, 2015.

92 Bibliography

[87] K. Sakurada and T. Okatani, “Change detection from a street image pair using cnn
features and superpixel segmentation,” British Machine Vision Conference (BMVC),
2015.

[88] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedforward semantic seg-
mentation with zoom-out features,” in Proc. of the IEEE Conf. on CVPR, pp. 3376—
3385, 2015.

[89] C.L.Zitnick and P. Dolldr, “Edge boxes: Locating object proposals from edges,” in
European Conf. on Computer Vision, 2014.

[90] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, pp. 886-893, IEEE, 2005.

[91] S. Dutt Jain and K. Grauman, “Active image segmentation propagation,” in Proc. of
the IEEE Conf. on CVPR, pp. 2864-2873, 2016.

[92] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep features
for scene recognition using places database,” in NIPS, pp. 487—495, 2014.

[93] K. Simonyan and A. Zisserman, ‘“Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[94] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the fifth annual workshop on Computational
learning theory, pp. 144-152, ACM, 1992.

[95] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in CVPR, pp. 248-255, IEEE, 2009.

[96] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks,” arXiv preprint arXiv:1608.06993, 2016.

[97] K. Wang and S. Belongie, “Word spotting in the wild,” in ECCV, pp. 591-604,
2010.

[98] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation and
support inference from rgbd images,” in ECCV, 2012.

[99] B.C.Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme: a database
and web-based tool for image annotation,” IJCV, vol. 77, no. 1-3, pp. 157-173,
2008.

[100] C.-C. Chang and C.-J. Lin, “LIBSVM.: a library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27,
2011.

Bibliography 93

[101] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proc. of the 22Nd ACM International Conference on Multimedia, MM ’ 14, pp. 675—
678, ACM, 2014.

[102] A. N. Venkitasubramanian, T. Tuytelaars, and M.-F. Moens, “Wildlife recognition
in nature documentaries with weak supervision from subtitles and external data,”
Pattern Recogn. Lett., vol. 81, pp. 63-70, Oct. 2016.

[103] O. Beijbom, T. Treibitz, D. I. Kline, G. Eyal, A. Khen, B. Neal, Y. Loya, B. G.
Mitchell, and D. Kriegman, “Improving automated annotation of benthic survey
images using wide-band fluorescence,” Scientific reports, vol. 6, 2016.

[104] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool, “Seeds: Su-
perpixels extracted via energy-driven sampling,” in Computer Vision—-ECCV 2012,
pp- 13-26, Springer, 2012.

	acambra.pdf
	Introduction
	Motivation and Context
	Scene understanding
	Dense labeling from interactive user-labeling propagation
	Dense labeling from semantic segmentation models

	Goals and contributions
	Outline

	Interactive labeling propagation
	Introduction and Related work
	Contributions

	A novel interactive dense labeling approach
	Problem formulation
	Initialization
	Superpixel segmentation
	Binary equation construction

	Interactive propagation
	Equations to model user interaction data
	Linear system solving

	Quantitative analysis of the label propagation obtained
	Execution time.
	Interactive dense labeling evaluation
	Reference labeled data used
	State-of-art approaches considered
	Error measure.
	Results

	Analysis of parameters influence on the approach performance.
	Conclusions

	Applications of interactive labeling propagation
	Introduction and Related work
	Contributions

	Applications
	Depth of field
	Dehazing
	Tone mapping
	Results
	Execution time
	Limitations
	Comparison with previous work

	Conclusions

	Semantic segmentation models: transfer to other domains
	Introduction and Related work
	Contributions

	Semantic Segmentation pipelines
	Superpixel classification for semantic segmentation
	Superpixel segmentation.
	Superpixel appearance description.
	Superpixel contextual description.
	Superpixel classification.

	Semantic segmentation with fine-tuned CNN models

	Experimental setup.
	Datasets
	Training details
	Evaluation metric.

	Experiments Superpixel classification
	Superpixel appearance representation
	Superpixel context representation

	Performance of transfer learning pipelines
	Different CNN based superpixel representations
	Superpixel-based classifiers vs end-to-end segmentation.

	Additional improvements to semantic segmentation models
	Pre-processing input data
	Augmentation of sparse training data
	Results

	Post-processing semantic segmentation
	Combining geometric info with CNN-segmentation output
	Results

	Conclusions

	Conclusions and Future Work
	Dense labeling from interactive user-labeling propagation
	Dense labeling from semantic segmentation models

	I Appendix
	Additional results of our interactive editing applications
	Additional results of transfer learning pipelines.
	Additional results of our post-proccesing segmentation.
	Bibliography

