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ABSTRACT 

In computer-aided surgical systems, to obtain high fidelity three-dimensional models, we 

require accurate segmentation of medical images. State-of-art medical image 

segmentation methods have been used successfully in particular applications, but they 

have not been demonstrated to work well over a wide range of deformities. For this 

purpose, I studied and evaluated medical image segmentation using the feature-flow 

based Label Transfer System described by Liu and colleagues. This system has produced 

promising results in parsing images of natural scenes. Its ability to deal with variations in 

shapes of objects is desirable. In this paper, we altered this system and assessed its 

feasibility of automatic segmentation. Experiments showed that this system achieved 

better recognition rates than those in natural-scene parsing applications, but the high 

recognition rates were not consistent across different images. Although this system is not 

considered clinically practical, we may improve it and incorporate it with other medical 

segmentation tools. 
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Chapter One: Introduction 

1.1 Computer-aided surgical systems 

There are many kinds of computer-aided surgical systems. Two kinds that make use of 

segmentation of medical images are image-guided surgical systems and patient-specific 

guides. 

1.1.1 Image-guided surgical systems 

I 

Perhaps the most common form of computer-aided surgery is the use of an image-guided 

surgical system which provides real-time virtual visualization for surgical procedures. In 

such a system, surgeons can observe the virtual view of tools relative to patient anatomy 

on a computer screen even when the direct physical view is obscured. Computer image­

guided surgery may result in improved patient care, shortened surgery time, and easy 

access for medical education. 

Image guided surgical systems consist of four components: anatomical models, real-time 

position measurement, a registration method, and visualization means. Additionally, pre­

surgical planners may be included [20]. 



• Anatomical models are typically 3D computer models derived from a series of 

2D images acquired by computed tomography (CT) or magnetic resonance 

imaging (MRI). These images are segmented and a 3D anatomical model is 

constructed using the segmentation data. The segmentation procedures usually 

require human interactions as achieving accurate segmentation automatically is 

difficult. Hence, it is an active research area. 

• Pre-surgical planning allows the surgeon to plan or simulate the surgical 

procedures. Surgeons can navigate or rotate the 3D volume or 3D anatomical 

model to gain better understanding of the patient anatomy than merely observing 

stacks of 2D CT or MRI images. Moreover, based on the 3D constructs, a pre­

surgical planner can simulate the results of a proposed plan. Fig. 1.1 shows pre­

operative planning of one kind of wrist surgery using planning software. 

2 

• Real-time position measurement is the means to measure an object's position 

and orientation in real-time. Examples of real-time positioning systems include 

articulated mechanical arms, ultrasonic acoustic trackers, electroµiagnetic trackers, 

and optical trackers. Fig. 1.2 shows a surgery procedure aided by a real-time 

position measurement system. 

• A registration method is required to superimpose the moving tool on the 

computer model. The procedure to find the mathematical transformation between 
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the patient coordinate frame and the computer model coordinate frame is called 

registration. Commonly used registration methods can be marker-based, 

landmark-based, surface-based, or voxel property-based [21]. Because of the 

invasive nature of marker-based methods, low accuracy of landmark-based 

methods, and the computational high cost of voxel property-based methods, 

surface-based registration methods are the most common methods used in modern 

image-guidance systems. In surface-based registration, the surface of the anatomy 

of interest is digitized (with the use of a real-time position measurement system) 

and then the transformation that best maps the digitized points to the computer 

model of the anatomy is computed. Fig. 1.3 illustrates a surface-based registration 

that transforms digitized patient anatomy points to pre-operative computer model. 

• Visualization means often involves high graphic-performance computer 

workstations. These workstations may be used to provide pre-surgical navigation 

of patient anatomy, simulate post-surgical results, or even render virtual tool and 

anatomic models in real-time during surgical operations. 
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Fig. 1.1 Planning of distal radius osteotomy 

This figure illustrates pre-operative planning of a bone deformity procedure called distal radius 
osteotomy. This particular planner supports operations such as cutting the virtual bone and 
moving the separate fragments to restore normal anatomical alignment. After restoring the 
alignment of the bone fragments, a virtual fixation plate can be positioned on the fragments. The 
planner also generates a synthetic x-ray visualization of the bone fragments. 
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Fig. 1.2 Intraoperative real-time position measurement 

(Left) A three camera optical tracking system that measures real time 3D position is shown. The 
tracking system measures the location of infrared light emitting diodes. (Right) Two targets 
containing infrared light emitting diodes are shown. One target is attached to the patient to track 
the motion of the patient. Another target is attached to a surgical tool to track the motion of the 
tool; this particular tool is a pointing stylus used to digitize points from the surface of the 
anatomy. 

..,-~ .,,.~-·. ' 

f . 

model 

+ 
-· • • 

• • 

'· • 
• • 

data 

Fig. 1.3 Surface-based registration 

....~~ 
·~~ 
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result 

In surface-based registration, points digitized from the surface of the patient's anatomy are used 
to find the transformation that aligns the patient to pre-operative computer model [20]. 
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1.1.2 Patient-specific guides 

A second type of computer-aided surgery uses patient-specific guides that are designed to 

match the anatomy of the patient. Such guides are most commonly used in dentistry and 

orthopedics where rigid bony surfaces are available on which to mount the guides. 

Instead of providing virtual navigational guidance using a computer display, patient­

specific guides provide mechanical navigational guidance using physical structures 

incorporated into the body of the guide. An example of a patient-specific guide for wrist 

surgery is shown in Fig. 1.4 and Fig. 1.5. 

Similar to image-guided surgery, the construction of a patient-specific guide requires 

anatomic models computed from medical images. These models are used in pre-surgical 

planning to design the guide so that the guide will mount accurately on the patient's 

anatomy and provide suitable navigational guidance. The guides are then fabricated using 

computer numerical control machining or three-dimensional printing. 

Accurate segmentation of the medical images is especially important for the fabrication 

of patient-specific guides because the guides are designed to conform to the anatomy of 

the patient. Errors in the segmentation can result in a guide that does not mount properly 

to the anatomy of the patient, which in tum will lead to inaccurate navigational guidance. 
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Fig. 1.4 Patient-specific guide for distal radius osteotomy 

(Left) View of the top of a computer model of a patient-specific guide. The channels in the guide 
provide navigation guidance for a surgical drill bit. (Right) View of the bottom surface of the 
guide; the shape of this surface matches the specific shape of the bone to be operated on. 

; 

Fig. 1.5 Application of a patient-specific guide for distal radius osteotomy 

(Left) A plastic model of a deformed radius that is to be corrected using a patient-specific guide. 
(Middle-left) The guide is mounted on the deformed radius and pilot holes are drilled into the 
radius using the channels. (Middle-right) The radius is cut into two fragments after the pilot holes 
have been drilled. (Right) The fixation plate is fastened to radius using the predrilled pilot holes. 



1.2 Medical Image Segmentation 

Accurate segmentation of 2D, 3D, and 4D (3D plus time)"medical images to extract 

anatomy of interest for analysis is crucial in many computer-aided surgical systems. 

Constructing anatomical models relies on segmenting data from patient images. 

Computer aided visualizations in diagnosis, surgical planning, and simulation heavily 

depend on segmented image data. In particular, intraoperative planning of surgical 

procedures requires fast and accurate segmentation to generate real-time visualizations. 

1.2.1 Challenges 

8 

The medical image segmentation problem is challenging. There is no general or unique 

solution due to the constantly growing number of highly varied objects of interest, 

different medical imaging modalities, partial-volume effects, signal inhomogeneity, noise, 

etc. [22] [23]. For instance, partial-volume effects, the artifacts caused by multiple tissue 

types contributing to a single voxel, can result in a blurring of intensity across boundaries. 

Another artifact, signal inhomogeneity, can cause unwanted variations in image intensity. 

These artifacts can significantly degrade the performance of segmentation methods and 

have to be taken into account. 
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1.2.2 Definitions 

Image segmentation is the means to divide an image into non-overlapping homogeneous 

regions such that a more simplified and meaningful representation of the image is 

generated to be analyzed easily. The sets that contribute to a segmentation must satisfy, 

n 

.{1 = u fl; (1.1) 

i=1 

where !lj n !lk = </J for j * k and each !li is connected [23]. In general, the homogenous 

regions are the regions with a well-defined intensity distribution. 

For medical image segmentation, the constraint of being connected is usually removed 

because disconnected regions belonging to same kind of tissue often occur. The 

segmentation problem of determining the region sets !li without having to be connected 

is called pixel classification. These sets are called classes. 

Labeling is the process of assigning a meaningful designation to each region set [23]. 

Labeling can be performed separately after segmentation, or simultaneously in some 

segmentation techniques [23]. 

1.2.3 Segmentation Techniques 

Due to diversity of objects of interest, image modalities and problem specific natures, no 

universal segmentation technique exists. In the following sections, several commonly 

used segmentation techniques in computer assisted surgery are reviewed. 



1.2.4 Rule-based techniques 

• Thresholding attempts to separate homogeneous classes by specific intensity 

values, called thresholds. A segmented region, .ni, segmented by thresholding is 

defined as 

(1.2) 
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where ti and ti+l are the lower and upper thresholds and I (x) is the intensity value 

of the pixel at location x. Thresholding is simple and fast, but it does not address 

topological information and is sensitive to noise and signal inhomogeneity. It is 

often used as an initial step of image-processing. 

• Region growing extracts connected image region based on predefined criteria. 

For example, one criterion to determine if a pixel at location x falls in a region R 

is that the intensity difference relative to an initial seed point is smaller than a 

threshold t 5 , and that the contrast of the region, C(R), stays smaller than a 

threshold tr 

I /(x) - l(Xseed)I ~ts 

C(R) = maxR(I(x)) - minR(I(x)) ~tr 

(1.3) 

(1.4) 

Region growing incorporates topological information but it requires manual 

interaction to set the initial seed points. 
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• Region splitting and merging first splits the whole image until all regions are 

homogenous by certain criteria, and then merges small regions as long as merged 

regions are still homogenous by another criterion. Combining splitting and 

merging can avoid over-segmentation. Like region growing, this method is also 

sensitive to initialization and requires user assistance. 

1.2.5 Edge-based techniques 

Edges correspond to abrupt changes in intensity in images. Ideally, edges are equivalent 

to the boundaries that separate objects. An edge can be expressed as the local maximum 

in the first derivative magnitude (basic gradient threshold and Canny detector) or a zero 

crossing in the second derivative (Laplacian zero-crossing). Edge-based techniques also 

involve human input for appropriate thresholds and may suffer with boundary 

discontinuity. 

1.2.6 Optimal statistical inference 

• Classifier (supervised) methods are pattern recognition techniques that partition 

the feature space derived from an image by using training data with known labels 

[23]. The feature space is the range space of a function of the image. In the 

simplest case, feature space can be the intensity alone. A classifier that is 

nonparametric, such as K-nearest-neighbor classifier and Parzen window 

classifier, makes no assumption about the statistical structure of data. A 

parametric classifier, however, assumes that the pixel intensities are independent 
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samples from a mixture of probability distributions, usually Gaussian. Common 

parametric classifiers are maximum-likelihood and Bayes classifier. The mixture, 

called a finite-mixture model, can be expressed by the probability density function 

(PDF) as, 

N 

f(I(x); 8, n) =I 7rnfn(I(x); 8n) (1.5) 

n=1 

where I(x) is the intensity of the pixel at location x, fn is a PDF component 

parameterized by (}n, and rrnis the weight (contribution) of fn in the mixture. 

Classifier methods are non-iterative and computationally efficient, but manual 

interaction is required to obtain training data. 

• Clustering (unsupervised) methods do not require training data. Instead they self-

train with available data, iteratively alternating between segmenting and 

characterizing class properties. Common clustering algorithms are K-mean 

(ISODATA), fuzzy c-means and expectation maximization (EM). Although 

clustering is done without training data, initial segmentation or correct number of 

classes is required. 

Both classifier and clustering methods do not take into account topological 

information, and hence, are sensitive to noise and signal inhomogeneity. To 

achieve robustness of noise, Markov Random Field (MRF) modeling is 

incorporated into these methods under a Bayesian prior model. MRF will be 

further discussed in Section 2.3. 
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1.2.7 Atlas-based techniques 

In atlas-based techniques, an atlas is generated by compiling information on the anatomy 

of interest. The atlas typically depicts prototypical locations and shapes of anatomical 

structures together with their spatial relations [22]. Then this atlas is used as a reference 

frame for segmenting the target image. Standard atlas-based techniques treat 

segmentation as a registration problem which attempts to find one-to-one transformations 

mapping atlas images to target images. These transformations can be linear or nonlinear. 

Atlas techniques are similar to classifiers except they are implemented in spatial domain 

rather than in feature space. 

Single atlas segmentation is not sufficient since one atlas cannot represent the whole 

image population. Commonly, a large number of atlases are used to address this issue, 

which is called multi atlas segmentation; however, this approach can be extremely time 

consuming. Another issue is, even with multi atlas, it is difficult to find accurate 

segmentations of complex structures due to natural anatomical variability, as well as 

variability caused by trauma and disease. 

1.2.8 Model-based techniques 

In model-based techniques, objects in images are described by model parameters. First, 

the parameterized prior information, namely the model, is obtained from examples. The 

prior information can be of object shapes and topology, object appearance, image 
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formation or expert observations. Then specified constraints are imposed to segment a 

target image using the model. Deformable models (also called snake or active contour 

models) and level set models restrict prior information to smoothness constraints, while 

statistical shape models incorporate prior information heavily [24]. Model-based 

techniques have become very popular in medical analysis due to their ability to obtain a 

continuous boundary of an object in spite of shape variations, image noise, image 

inhomogeneity, and occlusions [22]. 

1.2.9 Other techniques 

• The Watershed technique, unlike other edge-based techniques that needs 

additional mechanisms for joining contours, partitions an entire image into 

homogenous regions based on object morphology. It is a simple, fast and intuitive 

method even in poor contrast. However, it may suffer from over-segmentation 

and a post-processing step is needed to merge separate regions that belong to the 

same structure. 

• The Graph cut technique represents the image as a graph with pixels as vertices 

and pixel-to-pixel connections as weighted edges. The edge weight is determined 

by the similarity of the two vertices, i.e., 

(1.6) 

Then the segmentation problem becomes a minimization problem of finding the 

minimal cut for a fully connected graph, 
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(1.7) 

• The Artificial Neural Network (ANN) resembles biological learning with 

parallel networks of processing nodes. ANN represents a paradigm for machine 

learning and can be adapted to various segmentation methods such as classifier, 

clustering and deformable models. 

1.2.10 Evaluating performance in medical image segmentation 

To evaluate the segmentation performance in medical applications, we are usually 

interested in the segmentation accuracy and error rates. To determine segmentation 

accuracy, or correctness rate, we need to find the ratio of the number of correctly 

segmented pixels to the true number of pixels in this segment. In general, we desire a 

higher correctness rate; however, correctness rate is not the only metric we need to 

consider. Error rates may also be used to evaluate the performance of a segmentation 

method. 

There are two kinds of errors we may encounter, type I error and type II error. Consider 

the following null hypothesis, H0 , and alternative hypothesis, H1 : 

H0 : The label for the pixel at location xis 'background' 

H 1 : The label for the pixel at location x is 'bone' 

A type I error occurs when H0 is true, but is rejected. In our example, a type I error 

occurs when a pixel is labeled as bone when it is actually background. Type I errors are 
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also called false positive errors because the alternative hypothesis is incorrectly taken to 

be true. A type II error occurs when H 0 is false, but it is accepted as true. In our example, 

a type II error occurs when a pixel is labeled as background when it is actually bone. 

Type II errors are also called false negative errors because the default (null) hypothesis is 

incorrectly taken to be true. In this thesis, for a specific segment, the ratio of the number 

of labeled pixels having type I error to the true number of pixels is called its false positive 

rate, and the ratio of the number of labeled pixels having type II error to the true number 

of pixels is called its false negative rate. One can easily see that the summation of 

correctness rate and false negative rate is always equal to 1, and that there is no strict 

correlation between correctness rate and false positive rate. In extreme cases, the false 

positive rate can be greater than 1, meaning large numbers of pixels are labeled as 

belonging to a certain segment by mistake. To determine the segmentation performance 

by the two types of error rates, we need to consider which error rate is more significant. 

Which error rate is more significant? In medical image segmentations, the relative 

importance of type I and type II errors is application specific. For example, when 

designing a patient-specific guide, as shown in Fig. 1.6, type II errors will miss some 

bone surface which can lead to incorrect positioning of the guide, whereas type I errors 

are less likely to cause positioning errors. Another example is when models computed 

from segmented images are used for surface-based registration; both type I and type II 

errors are undesirable in these circumstances because the resulting model surface will not 

accurately match the patient's anatomy. 
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Fig. 1.6 Type I error and type II error injig customization 

First row demonstrates type I error, and second row demonstrates type II error. The green block 
represents the real shape and the blue block represents the segmented shape. The yellow block is 
the patient specific guide designed using the segmentation. With type I error, the guide can still 
sit on the green block firmly, but with type II error, the guide does not conform to the actual 
anatomic shape. 

1.3 Label Transfer System - an object recognition approach for 

medical image segmentation 

Image segmentation is challenging and there is no general solution. The most studied and 

widely considered advanced medical segmentation methods are atlas-based methods and 

model-based methods. But they are built on specific or isolated structures and relatively 

consistent knowledge base. They do not work well in cases that contain high anatomical 

variability, unpredictable distortion, or deformation. Recently, Liu and colleagues [ 1] 

invented an object-recognition-based scene parsing system called the Label Transfer 
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System that simultaneously segments and labels a query image by matching scale and 

rotation invariant features between the query image and pre-annotated images. They were 

able to achieve an average labeling accuracy of 76.67% on a series of natural image test 

cases having widely varying appearance. They also showed a single example of 

transferring labels from a CT image to and MRI image of a brain from a single patient. It 

seems worthwhile to assess the performance of this method on other medical image 

segmentation problems. 

1.4 Problem Statement 

In this thesis, we assess the performance of Label Transfer System by evaluating its 

segmentation correctness and error rates on x-ray orthopedic images. We used hip and 

hand x-ray images, with the images having a wide variation in the shapes and sizes of the 

anatomic structures, image contrast, and image quality. In searching for improvements to 

the Label Transfer System, we also altered certain factors in the system and compared the 

results with the original approach. 
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Chapter Two: Literature Review 

In medical image processing, thresholding methods are often used in combination with 

manual interaction to obtain segmentation results. Instead of using simple per-pixel 

intensities, more efficient and effective segmentation can be achieved by using highly 

distinctive features that are adaptable to variant contexts. In searching such distinctive 

features, methods such as Harris-comer [25], Harris-Laplace, Hessian-Laplace [26], 

determinant of Hessian, and Laplacian of Gaussian were studied. Lowe [27] invented the 

Scale-Invariant Feature Transformation (SIFT) using difference of Gaussian (DoG) to 

achieve high performance interest point detection. SIFT has been widely adapted in 

different vision applications and even extended as GLOH [28], PCA-SIFT [29] and so on. 

More recently, Bay and colleagues [30] created Speeded-up Robust Features (SURF) 

which uses an approximation of the determinant of Hessian to detect interest points. They 

claimed that the performance of SURF is comparable to and even superior to SIFT, 

especially in terms of computation speed and noise resistance. 

Image alignment problems have been actively studied for applications such as image 

stitching, stereo matching, video tracking, object recognition and so on. Traditionally, 

image alignment has been. achieved by aligning sparse corresponding features or by using 

dense intensity-based optical flow estimation. Recently, Liu and colleagues [31] invented 

an image alignment method called SIFT Flow that incorporates SIFT features and optical 

flow to obtain dense correspondence between a pair of images. They used a 
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nonparametric Markov Random Field (MRF) model utilizing cues including SIFT flow 

correspondence, spatial priors and preserved discontinuity (smoothness) to segment and 

recognize query image based on a large annotated image database. They called this 

object recognition and scene parsing method the Label Transfer System. In their method, 

Sequential Belief Propagation (BPS) is used to estimate the dense SIFT flow and 

optimize the MRF posterior probability because BPS is faster than other optimizers even 

though it may sacrifice matching or parsing accuracy slightly. 

In segmentation of orthopedic images, bony structures usually are of major concern. 

Because bony structures in medical images present strong edge feature, but the extraction 

of SIFT or SURF features involves Gaussian operator which suppresses high frequency 

content, it seems beneficial to accentuate edge feature in pre-processing step. To do so, 

we can apply edge preserving smoothing filter to the images. Such filters include median 

filter [32] and bilateral filter [33]. Median filter tends to round up edge comers and filter 

out thin edges, which may also attenuate SIFT or SURF features. Bilateral filter is a 

better choice for emphasizing structure edges prior to feature extractions. 

In this Chapter, we will discuss SIFT and SURF features, MRF and its optimizers, SIFT 

flow algorithm, Label Transfer System and bilateral filter in detail. 
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2.1 Scale-Invariant Feature Transform (SIFT) 

In 1999, David Lowe [27] introduced - SIFT - a method that detects and describes highly 

distinctive image features which are invariant to scale and rotation, robust to noise and 

changes in illumination or viewpoint; these sparse features were used to achieve reliable 

matching between objects or scenes in different views. Many applications adapting or 

extending SIFT have since been developed and shown to be successful. These 

applications include object recognition, image stitching, gesture recognition and others. 

In this section, we will introduce the four major steps in SIFT feature generation: 1) 

scale-invariant extrema detection; 2) accurate keypoint localization; 3) orientation 

assignment; 4) keypoint descriptor extraction. 

2.1.1 Scale-invariant extrema detection 

One can search for stable image features across all possible scales using a continuous 

function of scale known as scale space. The Gaussian function has been proven to be the 

only possible scale-space kernel [34] [35], thus, a scale space image function L(x, y, a) 

can be defined as, 

L(x,y,a) = G(x,y,a) * I(x,y) (2.1) 

where G is the Gaussian function with standard deviation a centered on the pixel location 

(x, y), I is the input image, and* indicates the convolution operation. 
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To detect stable keypoint locations in scale space, Lowe searched for extrema in the 

difference of Gaussian (DoG) image, D(x,y,a), which is defined as, 

D(x,y,a) = (G(x,y,ka) - G(x,y,a)) * I(x,y) = L(x,y,ka)- L(x,y,a) (2.2) 

The DoG image can be found by subtraction of two nearby scale space images where the 

scales are separated by a constant multiplicative factor, k. The DoG image provides a 

close approximation to the scale-normalized Laplacian of Gaussian, a 2V2 G, whose 

minima and maxima produce the most stable image features compared to other image 

functions such as gradient, Hessian, and Harris corner function [36]. Thus, by finding the 

local extrema in the DoG image, we can obtain the location (x, y) and scale (a) of the 

potential stable scale-invariant feature points, as shown in Fig. 2.1. 

Fig. 2.1 Finding local extrema 

The red star is considered an extrema if it is the minima or maxima among the pixels (green dots) 
at its neighboring location (x, y) and scale (a) 
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An efficient way to construct D(x, y, (J) is to divide each doubling space of (J, called an 

octave (e.g., [(J, 2(J]), into s evenly spaced intervals. Then the images in the octave are 

separated by a constant factor k = 21/s. In the first octave, the Gaussian functions 

G((J), G(k(J), ... , G(k 5
-

1(J) are convolved with the image/. Afterwards, Gaussian scaled 

images in consecutive octaves can be obtained by downsampling the corresponding 

Gaussian scaled images in the previous octave. For example, in octave 

L(2(J), L(2k(J), ... L(2k5
-

1(J), L(2(J) is downsampled from L((J) in the previous octave, 

L(2k(J) from L(k(J) and so on. 

second level 
octave 

first level 
octave 

~~~~ 2·2·2a ~~~~.........._ 
L:': :::::e--0(2·2ka) L:': -.......... extremas can be found 
~~~~ 2'2ka ~ _ ;:; z;2;4;! ~ atlevelD(2·2a) 

~D(2'2a) 
2·2a ~ _ _ extremas can be found 

; s=:; :s=~=!E:: q;z=;=; :== 

; =ns:?:!~::lr lM/ = = ; = 

; ;=;;ii ts=:::::::;;: 

= ;:;s/fo : g ! g ! : : ; : 

2
ka ~D(2ka) __.- at level D(2ka) 

20 ::::S--oc2a) 

Na~ 

/8--D(2ka) 

2ka~ 

8----D(2a) 

2a( 

/6---D(ka) 
ka 

~ 
a/6---D(a) 

Fig. 2.2 Using octaves to simplify Gaussian convolutions 

In the first octave, the initial image is repeatedly convolved with Gaussian functions with 
standard deviation kia, i = 0 ... 4 to produce scale space images on the left. The adjacent 
Gaussian images are subtracted to produce DoG images, D(kia ), i = 0 ... 3 on the right. Finally 
two groups of three adjacent DoG images are used to find the local extremas at two DoG levels. 
After an octave is computed, the Gaussian images are down-sampled by 2 to obtain the images in 
the next octave. 
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As shown in Fig. 2.2, where s = 2 and k = ..JZ, each octave covers + 1 = 3 Gaussian 

scaled images, L(er), L(ker), L(2er). To detect extrema in the full octave, namely, on DoG 

images D(ker) and D(2er), we need the base DoG image D(er) as well as the top one, 

D(2ker), which requires two extra Gaussian scaled images L(2ker)and L(2 · 2er). Hence, 

the total number of Gaussian scaled images needed to detect extrema in an octave is 

s + 1 + 2 = s + 3. Initially, for the first octave extrema detection, s + 3 convolutions 

have to be done. Then afterwards, there only remain downsamplings to obtain higher 

octave Gaussian scaled images and subtractions to find DoG. The calculation cost is 

dramatically reduced while the accuracy is maintained [36]. 

2.1.2 Improving stability by accurate keypoint localization 

In Fig. 2.1, the extrema corresponds to a pixel location in one of the DoG images. To find 

the location of an extrema with sub-pixel accuracy, Brown and Lowe [37] fit a 3D 

quadratic to the DoG image location, D (x, y, er), such that, 

(2.3) 

where xis the offset from (x, y, er). The quadratic coefficients are computed by 

approximating the derivatives with pixel differences of the neighboring points. The 

accurate keypoint location offset, x, is then taken as the extremum of the 3D quadratic, 

which can be found by differentiating D (x) with respect to x and setting the value of 

derivative to zero; doing so yields, 



a2 D-1 aD 
x = - ax2 ax (2.4) 
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Once xis determined, we can find D(x) , which is simplified by the above two equations, 

(2.5) 

If ID(x) I is less than some threshold value, then the extrema is considered low contrast 

and will be discarded. Otherwise, the result is a keypoint location P = ( Xp, yP, <Jp) = 

(x, y, a)+ x. 

The next step is to remove keypoints that have a strong edge response but are otherwise 

poorly localized. To do this, a 2 x 2 Hessian matrix, H, of a keypoint, is computed using 

the difference of the neighboring sample points, 

H= [
Dxx 
Dxy 

(2.6) 

Then we examine whether keypoint satisfies, 

Tr(H) 2 (r + 1)2 

---<---
Det(H) r 

(2.7) 

where Tr(H) = Dxx + Dyy' Det(H) = DxxDyy - (Dxy) 2 are the trace and determinant 

of H, which resemble the summation and production of eigenvalues of H. r is the 

magnitude ratio between larger eigenvalue and the smaller one. If the above criterion is 

not met, the keypoint is considered edge response and will be discarded. In practice, 

r = 10 is chosen. 
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2 .1.3 Rotation invariance by orientation assignment 

In SIFT, rotation invariance is achieved by assigning a consistent orientation to each 

keypoint based on the local image properties. The keypoint is represented relative to this 

orientation and maintains consistency against different rotations. 

For a keypoint with scale aP, we select the Gaussian smoothed image, L(x, y), with scale 

closest to ap. For each sample in this image, the gradient magnitude m(x, y) and 

orientation 8(x, y) is calculated by pixel differences, 

m(x,y) = .J(L(x + 1,y) - L(x - 1,y))2 + ((L(x,y + 1) - L(x,y- 1))2 (2.8) 

) 
_ _ 1 (L(x,y+1) - L(x,y-1)) 

()(x,y - tan L( 1 ) L( ) x + ,y - x -1,y 
(2.9) 

Then, we build an orientation histogram which has 3 6 bins covering the 3 60 degree range 

of orientation. The weighted gradient magnitude of each sample around the keypoint is 

added to the histogram according to its orientation 8. The weighting window is a 

Gaussian circle with standard deviation 1.SaP. Then the highest peak in the histogram 

and any other peak within 80% of the highest peak will be chosen as the keypoint 

orientation. Thus, it is possible to find multiple keypoints at single location but with 

different orientations. To avoid boundary effects and to address the influence of the 

neighboring orientation beside a selected peak, a parabola is used to fit the 3 histogram 

values closest to this peak to interpolate the peak position. 
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2.1.4 SIFT Descriptor 

From the previous step, we find the location, scale and orientation for each stable scale-

rotation-invariant keypoint, P = ( Xp, yP, <Ip, 8). The next step is to find a highly 

distinctive descriptor for the local image region. At the same time, this descriptor should 

also be invariant to illumination or viewpoint changes. 

First, the image gradient magnitudes and orientations around the keypoint location are 

sampled from the Gaussian blurred image with scale closest to <Ip. Then, the coordinates 

of the descriptor and gradient orientations are rotated relative to the keypoint orientation 

to achieve orientation invariance. A Gaussian weighting function is then used to assign a 

weight to the gradient magnitude of the sample points around the keypoint to avoid 

sudden changes in the descriptor for small changes in the position of the weighting 

window, and to give less emphasis to gradients far from the center of the weighting 

window. 

Next, we divide the 16 x 16 sample region around the keypoint to 4 x 4 subregions with 

each subregion containing 4 x 4 sample points, as shown in Fig. 2.3. The samples in a 

subregion are accumulated into orientation histograms with 8 orientation bins. To avoid 

boundary effects, trilinear interpolation is used to distribute the value of each gradient 

sample into adjacent histogram bins. Thus, a 4 x 4 x 8 = 128 element feature vector is 

generated as the keypoint descriptor. 
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Finally, to reduce the influence of changes in illumination, the 128 element vector is 

normalized. Furthermore, to address non-linear illumination changes, one can remove the 

large gradients by thresholding the values in the unit vector to no larger than 0.2 and then 

renormalizing to unit vector. 
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Fig. 2.3 Computing SIFT descriptor 

A SIFT descroptor is computed from 16 x 16 sample area. The sample are wetighted by a 
Gausain window (the green circle). Then the area is divied into sixteen 4 x 4 subregieons. In 
each subregion, gradients are accumulated into an orientation histogramwith 8 bins representing 
the different orientations. In the end, a l 6x 8 = 128 element vector is generated. 

The SIFT descriptor is not fully affine invariant, though a 50 degree change in viewpoint 

still gives 50% matching accuracy. Brown and Lowe [3 7] developed a method to find 
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corresponding keypoints between images that contain large changes in viewpoint by 

using groups of interest points to form a geometrically invariant descriptor based on SIFT. 

2.2 Speeded-Up Robust Features (SURF) 

Speeded-Up Robust Features (SURF) is scale-rotation-invariant detector and descriptor 

developed by Bay and colleagues [30]. They claimed that SURF has close or better 

performance than previous descriptors in terms of repeatability, distinctiveness, and 

robustness. They pointed out that DoG in SIFT, which is an approximation of the 

Laplacian of Gaussian, increases computation speed but sacrifices accuracy. More 

importantly, SURF computes and matches faster than its precedents. This is due to the 

utilization of an integral image in interest point detection and descriptor calculations, and 

the simplified structure of the SURF descriptor (64 elements compared to 128 in SIFT). 

They pointed out that although SURF descriptor seems less distinctive in terms of 

dimensionality, its performance is comparable to or better than its predecessors, making it 

a superior descriptor that is robust to noise, detection errors, geometric and photometric 

deformations. 
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2.2.1 Integral images - the vehicle to speed-up calculation 

SURF uses an integral image to increase computation speed. In an integral image, Ir.(x), 

the value of an entry x = (x, y)T is the sum of all pixels in the input image I within the 

rectangular region formed by the origin and pixel x, 
x y 

li;(X) =I I I(i,j) (2.10) 
i=O j=O 

Integral image computation time is quadratic in the image size (length or width). But it is 

a onetime calculation which only involves additions as shown in Fig. 2.4. Most 

importantly, the resulting integral image can be used to perform a box filter calculation in 

constant time. 

x-1, y-1 x,y-1 

x-1, y x,y 

Fig. 2.4 Computing integral image 

Given image I, to compute the value at location (x, y) in its integral image Ir., we need to do 3 
additions: Ir.(x,y) = Ir.(x,y -1) + Ir.(x -1,y) - Ir.(x - 1,y -1) + I(x,y). The complexity is 
linearly proportional to the number of pixels in the image, but quadratic to its size (length or 
width). 
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B 

c A 

Fig. 2.5 Finding summation of a specific area in the image 

Once we have the integral image, to find the summation of an area ABCD (colored in pink), we 
need 3 additions: 1) subtract area B from area A; 2) then add area D back to reform a complete 
area C; 3) then subtract area C. 

In a box filter calculation, we need the sum of a rectangular neighborhood of pixels. 

Specifically, to obtain the summation of a rectangular area Ret( abed) as shown in Fig. 

2.5, only three additions are required, namely, 

I (X) = l:r;(ii) - I:r:(b) - l:r;(C) + I:r:(d) (2.11) 
xERet(abcd) 

no matter how big this area is. Box filters, particularly those with large sizes, will be 

repeatedly used in the following interest point detection and descriptor calculation. 

2.2.2 Scale-invariant interest point detection 

SURF uses a basic Hessian matrix approximation for interest point detection. Blob-like 

structures are detected at locations where the determinant of the Hessian matrix is 

maximal. The scale selection also relies on determinant of the Hessian matrix, as 

described by Lindeberg [38]. For point x = (x,y)r in an image/, the Hessian matrix 

H(x, a) in x at scale a is define as, 
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~ [Lxx(x,a) 
H(x,a) = L (~ ) xy x,a 

(2.12) 

_ where Lxx(x, a) = I(x) * ::2 Gcr(x), is the convolution of the image I with the second 

derivative with respect to x of the Gaussian function with scale a evaluated at point x. 

Because a complete Gaussian filter calculation is not practical in most cases, Bay and 

colleagues approximated Lxx, Lxy' and Lyywith box filters Dxx' Dxy' Dyy as shown in Fig. 

2.6, such that, 

Lxx ""Dxx = I /(X) - 2 X I /(X) (2.13) 
xE(X1 UX2) xEX3 

Lyy ""Dyy = I I(i) - 2 x I I(i) (2.14) 
xE(Y1 UY2) xEY3 

I I(i) - I I(i) (2.15) 
xE(XY1 UXY2) XE(XY3 UXY4) 

The summations in the above equations can be calculated easily by using the integral 

image as stated in Section 2.2.1. And the calculation time is independent of the filter size. 

Then the determinant of Hessian can be approximated as, 

(2.16) 

where w is the relative weight of filter responses used to balance the approximation. 

Although theoretically, w depends on the scale (a) change, Bay and colleagues observed 
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that, keeping w = 0.9 constant did not have significant impact on the results [30]. Finally, 

the filter responses at a specific scale (filter size) are normalized with respect to the filter 

size. 

• 

1-------, 

I I 

~~~j 
r---------1 • 

I xy4I 
L _____ J 

Fig. 2.6 Simple box filter calculations for Gaussian 2°d order derivative convolution 

To estimate the convolution of Gaussian 2nd order derivative with an image at a specific location, 
we only need to find the summations of certain areas around this location from the integral image 
and do simple additions [30]. 

The lowest scale in SURF, referred to as scales = 1.2 (the approximation of a Gaussian 

with a = 1.2) are computed using 9 x 9 box filters. To build the scale space pyramid as 

in SIFT for scale space analysis (Section 2.1), Bay and colleagues used 9, 15, 21, and 27 

as the sizes of box filters in the first octave. The size difference between two successive 

box filters is 6. For the minimal filter with size 9, a lobe size for calculating the second 



derivative is~ of the filter size, which is 3. To increase the filter size, ensuring the 
3 
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presence of a central pixel for each lobe, the lobe size must increase by at least 2 pixels. 

Thus, the total filter size must be increased by a minimum of 3 x 2 = 6 pixels. For upper 

scale octaves, they derive a list of box filter sizes as shown in Fig. 2. 7, which covers all 

possible discrete scale spaces. 

Octaves 

2 4 8 16 32 

Logarithmic scale 

Fig. 2. 7 Filter sizes for different level of octaves in discrete scale space 

Analogous to SIFT octaves, in each octave, two levels of extremas are found in two groups of 
adjacent filtered images. In the first octave, extramas in level 15 are found using 9-15-21 images; 
for level 21, images 15-21-27 are used. Extremas in higher octaves are found in a similar fashion 
[30]. 

2.2.3 Interest point localization 

For interestpoint localization over positions and scales, a non-maximum suppression [39] 

in 3 x 3 x 3 neighborhood is used. Then the interpolations for accurate locations and 

scales are carried out by the same way as in Section 2.1.2. 
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2.2.4 Rotation invariance by orientation assignment 

Bay and colleagues used first order Harr wavelet responses in x and y direction to 

describe the distribution of intensity around the interest point, instead of using gradient as 

in SIFT and its variants. This approach can exploit integral images found in the previous 

step, thus it can increase the overall speed. Harr wavelet is a sequence of rescaled 

"square-shaped" functions, which has the form like, 

1 
1 O<t<-- 2 

l/J(t) = 1 (2.17) 
-1 -<t<l 2-

0 otherwise 

In their case, as shown in Fig. 2.8, the intensity summation of area A, /(A), is given the 

Harr wavelet function value 1 as coefficient, and the intensity summation of area B, I(B), 

is given Harr wavelet function value -1 as coefficient. Then the Harr wavelet response 

with a specific direction (x or y) at a given location (the red star) is the 

summation, I(A) - I(B). The Harr wavelet responses can be found with seven additions 

using the integral image as shown in Fig. 2.8. 

To find the dominant orientation for an interest point at scale s, the Harr wavelet 

responses in both x, y directions within circular area of radius 6s around the interest point 

are first found. The side length of the wavelets are 4s. Then the wavelet responses in both 

x, y directions are weighted with a Gaussian ((J = 2s) centered at the interest point. 
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bl cl al bl b2 

A cl c2 

A 
b2 c2 a2 al a2 

Fig. 2.8 Calculating Harr wavelet responses using integral image 

To calculate Harr wavelet response at specific location (x, y), shown as red star in the figure, we 
need to find the difference between area A and area B, thus 7 additions are needed given the 
integral image Ir,, likely, 
1-C(x,y) = Ir.(a2 ) - Ir.(a1 ) - Ir.(c2) + lr.(c1 ) - (/r.(c2) - Ir.(b2 ) - Ir.(c1 ) + Ir.(b1 )) 

Unlike SIFT, which uses an orientation histogram for accumulating sample magnitudes, 

SURF uses a ~ sliding orientation window to accumulate the weighted x, y Harr wavelet 
3 

responses. The two summed responses in the window then yield a local orientation vector. 

Then the longest orientation vector over all windows will define the orientation of the 

interest point. Bay and colleagues indicated, even without assigning a specific orientation 

to the interest point, SURF still maintains robustness to rotation of about ±15° while 

giving faster computation and higher distinctiveness. 

2.2.5 SURF descriptor 

Like in SIFT, the SURF descriptor is a means-to describe the properties of the local 

neighborhood around the interest point. Given the location, scale ( s) and orientation (} 

found from previous steps, the next step is to construct a square region centered at the 

selected interest point and oriented with direction 6. The size of this window is 20s. 
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Then the region is divided into 4x 4 subregions with each subregion containing 5 x 5 

sample points as shown in Fig. 2.9. A Gaussian function, with a = 3.3s and centered at 

the interest point is applied to the wavelet responses in both x, y directions (relative to the 

interest point orientation) of all samples. The weighted wavelet responses of all samples 

in one subregion are accumulated as L dx and L dy; the absolute value sums are also 

found as L I dx I and L I dy I· Thus, for each subregion, a 4 element vector v = 

(L dx ,L dy ,Lldxl ,Lldyl)Tis defined. 

Combing all 4 x 4 subregion vectors, a 64 element descriptor vector is formed. Finally, 

this vector is normalized to achieve contrast-invariance. To make the descriptor more 

distinctive, an eight element vector 

v = (L d~- 1L d~+, L d~- 1L d~+ 1L ldxly- 1L ldxly+ 1L ldylx- 1L ldylx+)T can be 

used to represent each subregion, where d~- means x direction Harr wavelet response 

when y direction Harr wavelet response is negative. Because SURF integrates the 

gradient information within a subpatch, whereas SIFT depends on the orientations of the 

individual gradients, the result is better noise resistance in SURF compared to its SIFT­

like counterparts. 
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Fig. 2.9 Finding SURF descriptor 
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First, the Harr wavelet responses (dx, dy) of 20x20 sample points are Gaussian weighted (green 
circle) centered at the interest point. Then, the sample area is divided into 4x4 subregions. In each 
5x5 subregion, wavelet responses and their absolute values are accumulated as 
L dx , L dy, LI dx I , LI dy I· In the end, a descriptor vector consists of 4x4x4=64 components. 

2.3 Markov random field (MRF) and its optimizers 

In early vision, problems involving pixel-labeling tasks (Fig. 2.10) such as stereo 

matching [ 40], image stitching [ 41 ], image segmentation [ 42], image denoising and 
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inpainting [43] [44] can be elegantly expressed as Markov random fields, given the fact 

that neighboring pixels have interactions among each other. However, MRF energy 

minimization problems have long been considered intractable; minimization with 

previous approaches such as iterated conditional modes (ICM) [ 45]or simulated 

annealing has been shown to be either ineffective or inefficient [43]. Recently, powerful 

optimizers such as loopy belief propagation (LBP) and graph cuts have proven to be more 

accurate and faster [ 4 3]. 
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Fig. 2.10 Pixel labeling applications using Markov Random Field 

First row, stereo matching results with stereo disparity shown as greyscale images (darker color 
indicates further position) [ 43]; second row, segmentation of extracting foreground objects [ 42]; 
third row left, photomontage by stitching multiple views into one big image [41]; third row right, 
denoising and inpainting [43] 
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2.3.1 Markov random field 

A Markov random field, or undirected graphical model, is a set of nodes each of which 

corresponds to a variable or a group of variables, as well as a set of links each of which 

connects a pair of nodes. Links in MRF are undirected, and loops can be present. In a 

MRF, variables or groups of variables maintain the Markov property, namely, the future 

state of a node depends only on the states of its neighbors despite the sequence of events 

that preceded it. To be specific, in a MRF model, the following equivalent Markov 

properties must be satisfied, 

1) Any two non-adjacent variables are conditionally independent given all other 

variables. 

2) A variable is conditionally independent of all other variables given its neighbors. 

3) Any two subsets of variables are conditionally independent given a separating 

subset. 

In 2D image analysis, it is convenient to assume that a 4-neighbor MRF model is satisfied. 

The state (label, for example) of a pixel is only affected by its direct neighbors but not 

any further pixels. 

2.3.2 Iterated Conditional Modes (ICM) 

Iterated Conditional Modes is a deterministic greedy algorithm for obtaining local 

minimum. It starts with an estimated initial configuration, then for each pixel, it chooses 

a new configuration that gives the largest decrease of the energy function, then iterates 
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until convergence is reached. Although this algorithm guarantees rapid convergence, it is 

extremely sensitive to the initialization; thus, it is not practical to find global solutions. 

2.3.3 Graph Cuts 

Graph cuts algorithms repea~edly compute global minimum of binary labeling obeying 

max-flow/min-cut theorem. They converge rapidly to a strong local minimum. Although 

graph cuts algorithms can find an exact global solution only for binary labeling problems, 

they can be also used to obtain near global optimum for problems with more than two 

labels. Two most popular graph cuts algorithms are the swap-move algorithm and the 

expansion-move algorithm [43]. 

2.3.4 Loopy Belief Propagation (LBP) 

Belief propagation (BP) is a message passing algorithm that calculates marginal 

distributions of unobserved nodes, given conditions on the observed nodes. Exact BP 

algorithm can only be used to find marginal distributions for the simplest form of graph -

tree. For a general graph with loops, an approximate BP algorithm called loopy belief 

propagation (LBP) can be applied by slightly adjusting the message initialization and 

message passing procedures. There are two approaches of LBP, max-product LBP and 

sum-product LBP. The former was designed for finding the lowest energy solution, yet 

the latter one only ~omputes marginal distributions for each node. Szeliski and colleagues 

compared two different LBP algorithms, BP-M (a max-product LBP) and BP-S (an LBP 

derived from TRW). They found that in a binary segmentation application, BP-S 



outperforms BP-M significantly in terms of speed, yet the minimal energy ofBP-S is 

slightly higher than the one ofBP-M [43]. Loopy believe propagation will be further 

discussed in Section 2.4.6. 

2.3.5 Tree-Reweighted Message Passing (TRW) 
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Tree-reweighted message passing looks similar to LBP, but it can compute a lower bound 

on the energy. Thus, one can use the lower bound to assess the quality of solutions found 

by other optimizers. However, the original TRW algorithm does not guarantee that the 

lower bound always increases with time. Szeliski and colleagues developed an improved 

TRW algorithm called sequential TRW (TR W-S), in which the lower bound estimate is 

guaranteed not to decrease [43]. Since the energy can oscillate in practice, one can keep 

track of the updated lowest energy and return it when the algorithm stops. 

2.4 SIFT-flow image alignment algorithm 

SIFT flow algorithm is a dense correspondence, pixel-to-pixel image alignment method. 

It is used to solve a challenging alignment problem, scene alignment, in which objeet 

categories sharing similar characteristics will be aligned in two images even if they 

appear differently in the scene. In addition to its success in solving scene correspondence 

problems, SIFT flow can also give comparable or better results in traditional image 

alignment applications [ 1]. 



2.4.1 Image alignment 

Image alignment or image registration, is the process of transforming or integrating 

multiple sets of data obtained from different measurements into a common coordinate 

frame such that comparison or analyses across different times or under different 

conditions can be conducted. 
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A common approach for solving the image alignment problem involves finding 

correspondences across different views. In these cases, it is often considered that 

corresponding pixels have similar intensity after the images are aligned. These 

applications include image stitching [ 41] [ 46] and stereo matching [ 40] (Fig. 2.10). A 

more complicated alignment problem is video sequence analysis which is often achieved 

by estimating optical flow between two temporally adjacent frames [47] [48]. Compared 

to the geometric parametric motion in image stitching and 1 D disparity in stereo 

matching, the 2D flow vector gives higher level of complexity. In object recognition, 

image alignment becomes even more difficult because of the variation of possible shapes, 

sizes, and appearances within an object class. 

Liu and colleagues [31] attempted to solve the scene alignment problem in which they 

tried to align two images from different 3D scenes sharing similar scene characteristics. 

The objects in the two images may be under different viewpoints, located in different 

sites, and/or -having different scales. Furthermore, there may be different quantities of 

objects from the same category in the two images. To solve this challenging problem, 



they proposed a method analogous to optical flow called SIFT Flow dense scene 

correspondence. 
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Instead of simply using pixel intensities as is done in optical flow, SIFT flow relies on the 

scale-rotation-invariant SIFT descriptor. Unlike optical flow in which adjacent frames in 

a video sequence are used as closest neighbors for finding meaningful correspondence, 

the SIFT flow closest neighbors are those with best feature matches, which can become 

semantically meaningful if the inspected images include large collection of possible 

scenes in the world. 

More importantly, when SIFT flow is applied to the regime of traditional image 

alignment, comparable or even better results can be obtained [31]. Recently, we used the 

SIFT-flow algorithm for warping x-ray images, with promising results. Fig. 2.11 and Fig. 

2.12 show the warping result of SIFT-flow algorithm on hand and hip x-ray images, 

respectively. 
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(1) (2) (3) 

• 

(4) (5) (6) 

Fig. 2.11 SIFT flow visualization and pixel-to-pixel alignment results on hand images 

(1) Query image [2] (2) Template image [2] (3) After template image was warped to query image 
(4) SIFT feature visualization for query image (5) SIFT feature visualization for template image 
( 6) SIFT flow visualization using color scheme of Baker and colleagues [ 49]: orientations are 
characterized by color hue, while magnitudes are represented by saturations. For example, the 
white parts in (6) means no significant flow field, as the pixels of the query image and template 
image in these parts tend to be one-to-one similar. 
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(1) (2) (3) 

(4) (5) (6) 

Fig. 2.12 SIFT flow visualization and pixel-to-pixel alignment results on hip images 

(1) Query image [7] (2) Template image [50] (3) After temple image was warped to query image 
(4) SIFT feature visualization for query image (5) SIFT feature visualization for template image 
( 6) SIFT flow visualization using color scheme of Baker and colleagues [ 49]: orientations are 
characterized by color hue, while magnitudes are represented by saturations. For example, the 
homogenous purple color in ( 6) means the flow movements of most pixels have similar directions 
(downwards). The fact that the lower part is more saturated indicates the movements of the pixel 
there are larger. 

2.4.2 Optical flow and its estimation 

When an object captured in an image sequence moves, its brightness patterns raised in 

the sequence will move accordingly. The apparent motion of the brightness pattern is 

called optical flow. 

The basic assumption for estimating optical flow is brightness constancy which states 

I(x,y, t) = I(x + u,y + v, t + 1) (2.18) 
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where I(x,y, t) is the intensity of an image pixel located at (x,y) at time t, I(x + u,y + 

v, t + 1) is the intensity of the corresponding pixel in the image taken at time t + 1 at 

position (x + u, y + v) with u, v defined as the offset in x and y direction, respectively. 

However, in real life, slight changes of brightness may often happen in natural scenes. To 

address this issue, we can utilize another assumption called gradient constancy to allow 

for small changes in brightness, 

\ll(x,y,t) = \ll(x+u,y+v,t+ 1) 

where \7 = (ax I a y) T is the vector differential operator and \7 I ( x I y I t) is the spatial 

gradient. 

(2.19) 

Another assumption is the smoothness of flow field, which is used to address the aperture 

problem (i.e., only the normal or perpendicular direction of a flow is detectable within an 

aperture window [ 51]) and the existence of outliers. In general, a piecewise smooth flow 

field is required because of the fact that boundary discontinuities may occur in optimal 

flow estimation. 

Based on the above assumptions, the energy function for finding optical flow can be 

stated as, 

2.20 E(u, v) = Edata + aEsmooth (2.20) 

with 



48 

Edata(U, v) =I (II(X + W) - I(i)l2 + rlVI(i + W) - 17/(i)l 2
) (2.21) 

n 

Esmooth(u, v) =I (IV3ul 2 + IV3vl 2
) (2.22) 

n 

where x = (x, y, tf is the location (x, y) in time t, w = (u, v, 1) is the optical flow 

Vector during unit time interval, \73 = (ax, ay, at)T is the Spatio-temporal gradient [52). 

As expected, using the above objective function can lead to local minima trapping. To 

achieve the global minimum, it can be useful to apply a coarse-to-fine strategy. Starting 

with coarsely smoothed problem, the first solution is found and used in the finer level 

problem as the initialization. After several coarse-to-fine iterations till the original 

problem is reached, a close to global solution can be obtained (more detail can be seen in 

Section 2.4.8). 

2.4.3 Dense SIFT descriptors 

As stated in Section 2.1, SIFT is scale-rotation-invariant. In most applications of SIFT, 

scale-rotation invariant keypoints at (x, y, er) are found after extrema detection, 

localization and orientation assignments. Then SIFT descriptors of the keypoints are 

calculated. The amount ofkeypoints is limited (sparse) compared to the pixel count of the 

image; hence, robust matching and transformation can be performed efficiently. 

However, to utilize the SIFT descriptor in optical flow estimation, SIFT descriptors of all 

pixels in the image are required, which does not involve extrema detection. The per-pixel 
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SIFT descriptor image si (width x height x 128) is called the dense SIFT image [31]. 

Fig. 2.13 shows the dense SIFT images of hand and hip x-ray photographs. 

Fig. 2.13 Visualization of dense SIFT images 

The 128-D SIFT feature descriptor of each pixel are projected to RGB color space; pixels with 
similar colors may imply they are with similar structures [2] [50] 

2.4.4 SIFT flow estimation objective function 

Inspired by the optical flow estimation such as one mentioned in Section 2.4.2 and 

utilizing dense SIFT image, Liu and colleagues formulated the SIFT flow objective 

function as following, 
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E(W) =I min(lls1CP) - Sz(P + WCP))ll1, t) + 
p 

2.23 I 11Clu(j))I + lv(j))I) + (2.23) 
p 

I ( min((alu(j)) - u(ij)l),d) + min((alv(j)) - v(ij)l),d)) 
(p,q)EE 

where p = (x, y)T is the coordinate of a sample point, w(p) = ( u(p), v(p)) is the flow 

vector of p, s1and s2 are the per-pixel dense SIFT images of the query image and 

template image, respectively, Eis the neighborhood (4 neighbors in 2D) of p. The first 

term is the data term which substitutes the SIFT descriptor for intensity in Equation 2.20. 

The third term is the smoothness term, accordingly. The thresholds t and d are used to 

address the matching outliers and flow discontinuities. The second term, called the small 

displacement term, is used to constrain the flow vectors to be as small as possible when 

the data term and smoothness term do not give significant contributions. 

2.4.5 Solving SIFT flow estimation 

To optimize the objective function above, decoupled sequential loopy belief propagation 

(BP-S) with distance transformation technique is applied by Liu and colleagues. As 

commonly used in solving optical flow problems, a coarse-to-fine scheme is used to 

speed up the global solution search process. In the following sections, dual-layer 

sequential loopy belief propagation and the coarse-to-fine scheme flow matching scheme 

are further discussed. 
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2.4.6 Achieving Loopy Belief Propagation 

Consider a simple image, shown in Fig. 2.14, having three pixels p1 , p2 , and p3 . We wish 

to assign labels f 1 , [ 2 , and f3 to the pixels where the labels are chosen from a discrete set 

of values L. The choice oflabels depends on two factors: (a) the observed pixel 

intensities, and (b) a model of how labels vary over an image. 

pixels 

labels 

Fig. 2.14 A simple 3-pixel image example for label assignment 

The three pixels p1 , p2 , and p3 are arranged linearly. Their corresponding labels are depicted 
as f 1 , f 2 , and f 3 below them. 

The relationship between the observed intensity for pixel Pi and its corresponding label f;, 

can be modeled using an energy cost function Di (f;,) which is the cost of assigning label 

f;, to pixel Pi. The function Di is called the data term because it relates the observed pixel 

intensity values (the data) to the labels. The relationship between pixel intensities and 

labels is shown in Fig. 2.15. 
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P1 pixels 

labels 

Fig. 2.15 Data term functions in the 3-pixel example 

The three pixels p1 , p2 , and p3 are arranged linearly. Their corresponding labels f1 , f 2 , and {3 are 
determined by the data term energy cost functions D1 (/1), D2 (/2 ) and D3 (/3). 

In an image where each object has a uniform intensity and different objects have different 

intensities, we would expect labels within an object to be the same, and we would expect 

labels to change at the boundaries between objects; i.e., the choice of label for a pixel 

depends on the labels assigned to the nearby pixels. In a Markov random field model, the 

label for a pixel depends only on the labels of the immediately adjacent pixels. For our 

example image, label f1 depends on label [2 , but not label f 3 . Similarly, label f 3 depends 

on label [2 , but not label f1 . Label [2 depends on labels f1 and f 3 . The relationship 

between labels for adjacent pixels Pi and Pj can be modeled using an energy cost 

function V (fi, fj). The function V is called the smoothness term or the discontinuity cost 

because it models the relationship between labels on adjacent pixels. The relationship 

between adjacent pixel labels is shown in Fig. 2.16. 
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Pt P2 p3 pixels 

(fi) Di.Ji) D3(h) 

ft 
V(fi,J;) 

h 
V(fz,J;) 

J; 
V(fz,ft) V(h,J;) 

labels 

Fig. 2.16 Smoothness term functions in the 3-pixel example 

The three pixels p1 , p2 , and p3 are arranged linearly. Their corresponding labels [ 1 , [ 2 , and [3 are 
determined not only by the data term energy cost functions DiCfa, but also by the smoothness 
term functions VCfi, fj). 

For our example image, the total cost of the labeling fall of the pixels is given by 

E(f) = V(fvf2) + V(fz,f1) + V(fz,f3) + V(f3,f2) 
+ D1 Cf1) + D2 Cf2) + D3 ({3) 

and the best labeling is the one that minimizes E (f). 

(2.24) 

Belief propagation is an iterative algorithm that solves the overall energy minimization 

problem by repeatedly solving energy minimization sub-problems at each label node; the 

minimized energy for each sub-problem is communicated to adjacent label nodes in a 

process called message passing. The details for computing an individual message are 

described in [ 44]. Fig. 2.17 shows the messages passed at iteration t between nodes for 

our 3-pixel labeling example. For a Markov network without loops, it can be shown that 

the messages rapidly converge to a fixed value. The best label for each node can then be 

computed locally at each node by considering only the messages incoming to the node 



and the data cost at the node. In two dimensional images, messages are usually passed 

between nodes adjacent vertically and horizontally, as shown in Fig. 2.18. 

P1 P2 p3 pixels 

m'12 
~ 

m'23 
~ 

Ii 
~ 

h_ 
~ 

h labels 
I I 

Fig. 2.17 Belief propagation message passing in the 3-pixel example 

At iteration t, node f1 receives message m~1from node f 2 ; node f 2 receives message miz from 
node f 1 and message m~2 from node f 3 ; and node fJ receives message m~3 from node f2 . 
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Fig. 2.18 Belief propagation message passing in a 2D image 

In two dimensional images, messages are usually passed between nodes adjacent vertically and 
horizontally. 

In the classic belief propagation algorithm, the messages computed at iteration t are 

independent of one another, and are dependent only on messages computed during the 
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previous iteration. More precisely, let miq be a message from node p to node q at 

iteration t; then: 

• miq depends only messages from iteration t - 1 

• m~qdoes not depend on message m~-p1 

• miqdepends on all other messages mi-v where node xis adjacent to node p 

The dependencies for m~6 are shown in Fig. 2.19. Note that the order in which messages 

are computed during a single iteration is unimportant. 

Ii h J; 

25 m•-1 ! 
mt-I m'56 ..:::...J) ~ 

ti Is h 

l mt-I 
85 

h Is h 

Fig. 2.19 Message passing of an example node in a 2D image images 

Node fs receives message m~51from nodef2 , message m~51 from node fa and message m~51 

from nodef4 . Then message m~6 can be computed based on these messages. Note that message 

m~5 1 from node f6· 

Variations of the classic belief propagation algorithm allow interdependencies between 

messages passed during a single iteration to increase the speed of convergence. For 
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example, in our 3-pixel problem, we could compute messages from left to right, and then 

from right to left: During iteration t, we first compute mf2 ; next, we use mf2 to compute 

mb; next, we could compute mb; finally, we use m~2 to compute m~1 . If 

interdependencies between messages passed during a single iteration are allowed, then 

the order in which messages are computed can affect the final result. The order in which 

messages are computed is called the message passing schedule. For images, a commonly 

used schedule is to compute messages row-wise and then column-wise; i.e., messages are 

computed from left to right, then right to left, then top to down, and finally down to top. 

This variation is the BP-M algorithm. 

Yet another variation for images to compute the messages in scanline order. Starting at 

the first node on the first row, messages are passed to the right and bottom neighbors. The 

process is repeated with the second node on the row, and so on, until messages have been 

computed for every node on the row. Then, the second row is processed, and so on, until 

the last row is processed. The process then reverses, this time working in reverse scanline 

order and passing messages to the left and top neighbors for each node. This variation is 

the BP-S algorithm used by Liu and colleagues [1] to solve the label transfer optimization 

problem; we refer to this algorithm as BP-S-Liu. 

A slight modification of BP-S was proposed by Szeliski and colleagues [43]. Their 

version uses the message passing schedule of BP-S, but modifies the calculation used to 

compute the optimal label at a node. The normal calculation used to compute the optimal 
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label at a node p considers all of the messages incoming to node p. Szeliski' s version 

uses only the messages incoming to node p that originate from nodes that come after pin 

scanline order. The reason for this modification is that the messages originating from 

nodes after p already contain information about the messages from nodes prior to p. We 

refer to this algorithm as simply BP-S. 

2.4.7 Dual-layer sequential loopy belief propagation 

Due to the topological relationships between neighboring pixels in an image, it is straight 

forward to consider minimizing the energy function like Equation 2.20 based on graphical 

models. For the smoothness term and the small displacement term in SIFT flow 

estimation, one can exploit the property that continuity interaction (smoothness) is 

separable (sum of horizontal and vertical interactions) and can decouple the energy model 

as two interacting fields of a scalar variable [53] as shown in Fig. 2.20. The original 

neighboring graph is transformed to a dual-layer graph, with nodes T becoming nodes V1 

and V2
, edges E becoming £ 1

, £ 2 and £ 12
. The complexity is reduced from ITI · ILl 2 to 

2 · IT I · IL I, where L = { dmin ... dmax} is the possible displacement of a pixel in either 

horizontal (du) or vertical ( dv) direction. It is easy to see, before decoupling, the possible 

displacement of a pixel (hence number of nodes in a graph) is ILl 2
; but after decoupling, 

the number of nodes to represent a single pixel displacement becomes 2 · IL I. The factor 

graph for the energy function in Equation 2.23 can be represented as in Fig. 2.21. 
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V2 

Vl 

Fig. 2.20 Decoupling horizontal and vertical interactions 

Picture shows the neighborhood structure of two vertices v1 and v2 and the edges connecting 
their neighbors [53]. · 

Inference of graphical models can be done by techniques such as, belief propagation, 

graph cuts, Markov chain Monte Carlo (MCMC), simulated annealing and so on. Liu and 

colleagues [31] used loopy belief propagation as the base algorithm to optimize the 

objective function in Equation 2.23 because loop structures exist in the model. However, 

loopy belief propagation does not guarantee convergence at all due to the existence of 

cycles (loops) [54] [55]. To address this issue, sequential belief propagation (BP-S), 

which is a loopy belief propagation implementation derived from sequential Tree-

Reweighted Message Passing (TRW-S), is used for better convergence [43]. 
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e u(p) 

® v(p) 

• Data term 

v • Smoothness term on u 

Ill Smoothness term on v 

• Small displacement term on u 

u [i] Small displacement term on v 

Fig. 2.21 Factor graph - decoupling u, v in SIFT flow Energy function [31] 

2.4.8 Coarse-to-fine flow matching 

Even though the dual-layer loopy propagation significantly reduces the computational 

complexity from ITI · ILl 2 to 2 · ITI · ILi, the calculation still scales poorly. When we 

consider that displacement can happen to any position in an image, 2 · IT I · IL I 

becomes 21TI2 = 2 I h 2 I 2 = 21hI4, where h is the length of the image. Complexity of 

dual-layer belief propagation is 0 ( h 4). 

To speed up performance, Liu and colleagues incorporated the coarse-to-fine idea into 

their SIFT flow matching technique. First, SIFT pyramids { sik)} and { s~k)} for two SIFT 

images s1 and s2 are generated, wheres?) = si and si(k+t) is smoothed and 

downsampled from si(k). At level k, let Pk be the coordinate of a pixel on st) to match, 
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ck be the offset or centroid of the searching window in s~k), and w(pk) be the best match 

from belief propagation. An example of 3-level pyramid is shown in Fig. 2.22. At the top 

level, the search window of p3 is centered at c3 = p3 , and the window size ism x m, 

where mis the width or height of s?). The complexity of belief propagation is O(m4
). 

Once convergence is reached, flow vector w(p3) is found. In finer level, c2 is 

determined by propagating p2 with w(p3), but the searching window size is fixed to be 

11 x 11. The process is iterated from s?) to s?) until the flow vector w(p1) is 

determined. The complexity of the coarse-to-fine approach is reduced from O(h4
) to 

O(h2 logh). To further reduce computational complexity by exploiting the truncated Ll 

norm in Equation 2.23, a modified distance transform function [44] to cope with coarse­

to-fine scheme is developed in Liu's SIFT flow algorithm. 
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Fig. 2.22 Coarse-to-fine SIFT flow matching pyramid 

2.5 Label Transfer System 

Even though active research heavily focuses on establishing mathematical models for 

images, scenes and objects to achieve object recognition and image understanding, Liu 

and colleagues proposed a nonparametric approach for scene parsing, called Label 

Transfer. First, the Label Transfer system extracts nearest neighbors for a query image 

from a large annotated image database. Then the SIFT flow algorithm is used to obtain 

dense correspondences between the query image and the nearest neighbors. Finally, an 

MRF model based on the dense correspondence, object location priors, and pair-wised 



62 

smoothness is used to segment and recognize the query image. In this section, we first 

introduce a web-based annotation tool developed by Russell and Torralba [56] for easy 

image annotation by web service and instant access via Matlab®. Next, the three steps of 

Label Transfer image parsing will be discussed. 

2.5.1 LabelMe web-based tool for image annotation 

Seeking to build a large collection of images with ground truth labels for object 

recognition research, Russell and Torralba developed an easy-access, open and dynamic 

annotation system called LabelMe. LabelMe takes into account of object-part hierarchy 

and occlusion, which allow polygons with a high degree of overlapping. 

The annotation user interface of LabelMe is shown in Fig. 2.23. First, the image requiring 

annotation is uploaded to the system. Then the labeler can create polygons to encapsulate 

objects and name them. During polygon drawing, labelers can make adjustments or start 

over. After closing the polygons, labelers can relocate vertices, delete or rename the 

polygons. Once all objects are annotated, the annotation information can be downloaded 

as a structural XML. In the end, the system will store the pair of image and annotation 

(XML) files as a new data entry. In the future, researchers or programmers can use the 

LabelMe Matlab package to retrieve image data and annotation information. 



Upload Image 

· Adjust polygon I • Delete I 

You are: yao 
Ciian.llld) 

There are 0 labelled objects 

Polygons In this Image 
QM2,!flll.) 

Fig. 2.23 LabelMe annotation user interface 

2.5.2 Neighborhood and scene retrieval 

For a query image, before retrieving the most similar images from a large annotated 

image database, one needs to define the measurement of image similarity. We call this 

measurement the distance between two images, denoted as dist(imagel, image2). 

There are several descriptors that can be used for measuring the scene distance such as 
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GIST [57] [58], HOG [59], or the dense SIFT described in Section 2.4.3. Although it has 

been reported that various nearest metrics do not result in significant difference in 

obtaining nearest neighbors for matching [31], Liu and colleagues found that scene 

retrieval based on GIST gives best accuracy in the Label Transfer System [1]. The GIST 
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descriptor is obtained by computing output energy of Gabor-like filters that are tuned into 

varied orientations and scales [60]. GIST is considered to be able to reliably estimate the 

dominant spatial structure of a scene, such as naturalness, openness, roughness, 

expansion and ruggedness [57]. GIST is a low-dimensional representation of a scene, 

which can be easily computed without identifying specific regions or objects in the image. 

To better address the density variation of the neighborhoods, Liu and colleagues claimed 

that the appropriate nearest neighbors of an instance x should be in the set of its (K, E) -

nearest neighbors, or, the Neighbor(K,E)-NN(x), which is defined as, 

Neighbor(K,E)-NN(x) = 

{yd dist(x, Y1) :::; ··· :::; dist(x, ya :::; ·· · :::; dist(x, YK ), (2.25) 

dist(x, ya :::; (1 + E)dist(x, y 1 ), 1 :::; i :::; K} 

Neighbor(K,E)-NN(x) is the intersection of NeighborK-NN(x) and NeighborE-NN(x). 

For NeighborK-NN(x), the number of closest neighbors is fixed to K, which will 

include outliers in a sparse neighborhood (Fig. 2.24a), reducing retrieval reliability. But 

for NeighborE-NN(x), closest neighbors are those with distance no larger than (1 + 

E) times of the minimal distance, which may result in large number of neighbors in a 

dense neighborhood (Fig. 2.24b ), increasing computing time. With 

Neighbor(K,E)-NN(x), outlier rejection and number regulation can be well balanced by 

choosing appropriate E and K, thus, a high performance neighbor retrieval can be 

achieved. 
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In this figure, two dots (green and red) are examined for closest neighbors. In (a), taking K -
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NN (k = 5), the green dot's closest neighbors (light green) include outliers which distances are 5 
times of the minimal distance (the straight dash line); In (b), taking E - NN(E = 1), the red dot 
have nine closest neighbors (within the dashed circle), which is too many if the desired 
number of closest neighbors is consider 5. With (K, E) - NN(K = 5, E = 1), these 
conflicts can be resolved, for the greet dot, only the 2 neighbors within the dashed circle 
are chosen, while only the closest 5 dots (orange) are considered good neighbors of the 
red dot [1]. 

2.5.3 SIFT-flow dense correspondence 

After nearest neighbors are retrieved by means of matching GIST distances, dense 

correspondences between a query image and its neighbors can be established using SIFT-

flow algorithm (please refer to Section 2.4 for detail of SIFT-flow dense scene alignment). 

2.5.4 Label transfer 

Once dense correspondences are found, the next step is to transfer the existing 

annotations to parse a query image. Optimizing SIFT flow energy function 2.23 for the 

query image (imq) and its (K, E) nearest neighbor (ima, we can obtain the SIFT flow 
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field wi from imq to imi and the minimal energy of the function. Then we can sort the 

(K; E) nearest neighbors by the output energy. The neighbor having the lowest energy is 

rated the best matching. From the SIFT flow sorted neighbors, we choose the top 

M ( M ::; K) as the candidate set for label transferring. 

Shotton and colleagues [61] presented a discriminative conditional random field (CRF) 

model which exploits texture-layout filters, combining lower-level image features (color, 

location, edge), to achieve near pixel-specific segmentation (or recognition by pixel 

labeling) of the image. 

Analogous to Shotton and colleague's idea, Liu and colleagues proposed a nonparametric 

MRF model which only takes voted candidates(M) within nearest neighbors(K) into 

account with carefully chosen weights (a, /3) to achieve label transferring. Replacing 

texture-layout term with SIFT-flow data term, removing color term, they defined the 

posterior probability as, 

-logP(cll, s, {si, ci, wJ) 
Likelihood (SIFT flow data) location prior 

=I l/J(c(p); s, {s;D +a I il(c(p)) 
p p (2.26) 

smoothness (edge potential) normalization 

+ f3 I cp(c(p), c(q); I) + 
~ 

logZ 

{p,q}EE 

where I is the query image, sis its dense SIFT image, {si, ci, wJi=l:M is {SIFT image, 

annotation label image, SIFT flow field from s to si} of the ithvoted candidate, and Z is 
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the normalization constant of the probability. This posterior consists of three components, 

namely; likelihood, prior, and spatial smoothness. 

The likelihood term is defined as, 

{

.min lls(p) - si(P + w(p))ll, np,t * 0 
l/J(c(p) = l) = lEfip,l 

r, D.p,l = 0 
(2.27) 

where np,l = {i; ci(P + w(p)) = l}, l = 1, ... , L, is the index set of candidates whose 

pixel at p + w(p) is with label l. r = max51,s
2
,plls1 (p) - s2 (p)ll is the maximal 

difference of SIFT feature at pixel p. 

The prior term il(c(p) = l) represents the prior probability of object class l appearing at 

pixel p. It can be obtained by counting the occurrence of each object class at each 

location in the training images: 

il(c(p) = l) = - log histi (p) (2.28) 

The smoothness term has the form of Potts model for pairwise edge potential. When no 

other information is available, smoothness term can bias the neighboring pixels into 

taking the same label. Its probability relies on the edge of the image, i.e. the stronger edge 

contrast, the more possibility of that the neighboring pixels have different labels: 

(
~ + e-YllI(p)-/(q)ll

2
) 

¢(c(p), c(q)) = 8[c(p) * c(q)] ~ + 
1 

(2.29) 

where y = (2(11/(p) - /(q)ll 2 ))-1, and 0 is the average operation over the whole image. 
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Compared to Shotton and colleague's approach, Label Transfer System only involves 

choosing values of the parameters K, M, a, p without training large sets of annotated 

images for 6. Once the parameters are determined, the BP-S optimizer is used to 

minimize the energy in solving the above MRF posterior probability. The resulting 

integer label image c(/) is the desired segmentation (recognition). Fig. 2.25 shows the 

results of hand and hip x-ray image segmentation using Label Transfer System with 

parameters K = M = 1, a = 0.06, p = 20. 

a b c d e f 

Fig. 2.25 Segmentation results using Label Transfer System for hand and hip x-ray mages 

(a) query image [4] (b) candidate image [2] (c) candidate annotation (d) warped candidate pixels 
on query image (e) resulted segmentation (f) ground truth annotation of query image 
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2.6 Bilateral filter 

The bilateral filter proposed by Tomasi and Manduchi is a nonlinear smoothing filter that 

can Teduce noise and preserve edges at the same time [33]. Bilateral filter not only 

considers distance as a metric to measure weight of the neighbor points but also considers 

the intensity similarity as an important metric. It is a combination of a domain filter and 

range filter. It can be formulated as following, 

00 00 

-00 -00 

where the normalization k(x) is to maintain the total weights to be one, 

00 00 

(2.31) 

-00 -00 

c( (, x) is the measure for geometric closeness ands(! ( (), f (x)) is the measure for 

intensity similarity. In this work, we applied Gaussian function to both c ands. So, in a 

smooth region where pixel intensities in a small window are similar, k- 1 s is close to 1, 

the filter acts as a standard Gaussian filter. However, when the inspected point is on the 

bright side of a boundary, the similarity function gives high weight to the neighboring 

pixels having similar intensities and almost zero weight to those pixels having very 

different intensities. Vice versa, the same can be applied to the points on the dark side. In 

such a way, the boundary is maintained. Below is the formula for c ands using Gaussian 

function, 
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. -+ -+ 1 r~ x ·. ( II-+ -+11
2

) 
: ( (, x) = exp - Z .. dJ" . (2.32) 

(2.33) 

where ad and ar are deviations for the domain filter and range filter, respectively. A 

larger ad blurs more. Pixels with intensity difference smaller than ar will be mixed 

together; otherwise they will not be mixed. Both domain filter and range filter are shift-

invariant. The range filter is also insensitive to overall intensity changes [33]. 

In terms of cost, bilateral filter is twice as expensive as a non-separable domain filter of 

the same size. A simple trick for decreasing this cost is to compute all values for s(f (x)) 

first as we do in computing a mask for linear filters. In the case of Gaussian filters, if the 

image has n intensity levels, there will be 2n + 1 possible values for s(f (x)). 

Experiments on color images showed that bilateral filter can handle multi-channels much 

better than other edge-preserving filters such as median filter. Tomasi and Manduchi also 

showed that if a cartoon-like appearance is desired, we can apply multiple iterations of 

bilateral filter on the target image such that the edges or object boundaries can stand out 

more [33]. Fig. 2.20 shows the results of bilateral filter on hand and hip x-ray images. 

Notice that the bone boundaries are emphasized yet the soft tissues and interior area of 

the bones are blurred. 



Fig. 2.20 Results of bilateral filter on x-ray images 

The images on the left [5] [14] are from the original source. The images on the right are results 
treated by bilateral filtering. The images on the 1st row were taken from a rheumatoid arthritis 
hand. The images on the 2nd row were taken from a distorted hip. 
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Chapter Three: Assessing Segmentation Performance 

of Label Transfer System on Medical Images 
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In this chapter, we describe the approach of evaluating the segmentation performance of 

the Label Transfer System on medical images, particularly, orthopedic x-ray images. We 

also attempt to alter several factors, such as feature type, preprocessing filter, MRF 

optimizer and neighborhood system, to find improvements of the Label Transfer System. 

In the first section of this chapter, we briefly review Liu's Label Transfer System. In the 

second section, we discuss the choosing of preprocessing filter, neighborhood system, 

different features and varied optimizers. In the last section, we describe the 

implementations of our approach which includes assessing pro~edures, experiment 

settings, data collection and organization. 

3.1 Review of Label Transfer System 

Liu and colleagues' Label Transfer System is a nonparametric scene parsing system 

which does not involve model training to determine parameters. To parse a query image, 

the system matches the objects in the query image to the pre-annotated images in a 

database. If the matchings in the pre-annotated images are annotated with object labels 

and semantically meaningful, then the labels of the pre-annotated images will be simply 

transferred to the query image. The Label Transfer System consists of three key 
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algorithmic modules, scene retrieval, dense scene alignment, and label transfer as- shown 

in Fig. 3.1: 

1) First, for a given query image, the scene retrieval module uses scene retrieval 

techniques (based on GIST, for example) to find its nearest neighbors in the pre­

annotated image database. For example, it first computes the query image GIST 

feature. Then it calculates the GIST distances between the query image and the 

images in the database. Finally, it takes the images with the smallest GIST 

distances as the nearest neighbors of the query image. The number of the nearest 

neighbors is (K, E) as stated previously. 

2) Second, a dense scene alignment module establishes dense scene 

correspondences between the query image and each of the (K, E) nearest 

neighbors. The M top matching nearest neighbors are chosen as voting candidates, 

where M ~ K. Firstly, this module finds the dense SIFT features of the query 

image and a nearest neighbor; then it estimates the SIFT-flow between the pair by 

minimizing the flow energy. Repeated on all (K, E) nearest neighbors, a set of 

SIFT-flow images representing the dense correspondence with their optimal 

energies are found. Finally, M neighbors with lowest optimal energies are 

determined as voting candidates. 



3.) The label transfer module warps the annotations from the voting candidates to 

the query image by using a Markov random field model to integrate the dense 

correspondences, multiple object priors, and spatial smoothness constraints. 
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Fig. 3.1 Workflow of Label Transfer System 
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In this figure, rectangles represent algorithmic processes, parallelograms represent input/output. 
The three key algorithmic modules, scene retrieval, dense alignment and label transfer, are 
colored in orange. 
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3.2 Our assessing approach 

As Liu and colleagues pointed out, even though concrete algorithms are chosen for each 

module in their paper, any algorithm appropriate for a module can be plugged into their 

parsing system [1]. We hope that altering algorithms or processing mechanisms can yield 

consistent, substantial performance gains for segmenting medical images, in particular, 

those with unusual deformations. In our assessment, we concentrate on four major 

factors: feature descriptors for computing dense correspondence, MRF optimizers in the 

label transfer module, the neighborhood system, and utilization of an image 

preprocessing filter. In this section, we elaborate on the rationale of choosing these 

factors as our focus points. 

3.2.1 Choosing feature descriptors 

In Liu and colleague's Label Transfer System, dense SIFT descriptors are used to find 

dense correspondences between points in two different images. They showed that SIFT 

flow is capable of establishing semantically meaningful correspondence by matching 

local SIFT descriptors [31] because SIFT features allow robust matching across different 

object appearance (with varied scales, orientations, viewpoints and illuminations). 

However, the dense SIFT descriptors in the Label Transfer System do not address the 

possibility that multiple keypoints with different orientations may reside at the same 

location. Lowe pointed out the existence of multiple keypoints at a single location can 
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·significantly improve·matching performance,even though approximately 15% of 

locations·have multiple orientation keypoints [36]. To address this problem, we propose 

to use·SURF, another scale-rotation-invariant robust feature, to replace SIFT in the 

system. Compared to SIFT, SURF has superior noise resistance. And more importantly, 

as Bay and colleagues indicated, even without assigning a specific orientation to the 

interest point, SURF still maintains robustness to rotation of about ±15° while giving 

faster computation and higher distinctiveness [30]. Considering the fact that rotational 

variations among most medical images are not larger than 15°, we chose to investigate 

whether SURF would outperform SIFT when used the Label Transfer System for medical 

image segmentation. Moreover, the SIFT descriptor is a 128-dimension vector whereas 

the SURF descriptor has only 64 dimensions. This implies that the Label Transfer System 

utilizing SURF will run faster than that with SIFT in estimating dense correspondence 

using feature-flow. 

Unlike Lowe's SIFT descriptor that is generated by extrema detection and accurate 

localization, the SIFT descriptors used in the Label Transfer System are per-pixel SIFT 

descriptors, which do not involve detection and localization. This dense feature approach 

sacrifices matching precision, because unlike sparse keypoint matching which locate 

keypoints at sub-pixel-level, dense feature correspondence considers all locations at 

pixel-level. And this issue will also occur despite the choice of different feature 

descriptors. To address this problem, we combine both SIFT and SURF features to 
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.. attempt.to feed more local structural information into the system. There are two ways to 

do so: 

1) By combining the 128-D SIFT descriptor vector and 64-D SURF descriptor 

vector into a 196-D descriptor at each pixel. We called this descriptor the STSF 

descriptor. The dense STSF descriptors then are normalized and used to find the 

STSF dense correspondence (STSF-flow). 

2) By computing both SIFT-flow and SURF-flow in the dense correspondence 

module. Then, in the label transfer module, we find the likelihood data with SIFT­

flow and SURF-flow separately. Further, we combine the likelihoods from SIFT­

flow and SURF-flow with respect to a specific object class. We coined this 

approach as SSLH (SIFT and SURF likelihood). 

3.2.2 Comparing MRF optimizers in label transfer 

We believe Liu and colleagues implemented their version of sequential loopy belief 

propagation (BP-S-Liu) as the Markov random field optimizer in label transfer module 

because BP-S usually converges substantially faster than other MRF optimizing 

algorithms such as iterated conditional modes (ICM), simulated annealing, max-product 

loopy belief propagation (BP-M), graph cuts, and tree-reweighted message passing 

(TRW), despite the fact that BP-Soften does not obtain the lowest MRF energy [43]. For 

their natural scene parsing application which involves a large amount of pre-labeled 

images, running time is crucial. However, for applications related to medical images, the 

tradeoff is obvious: we usually prefer better accuracy over faster computation. We are 



interested .in replacing BP.'.""S-Liu with Szeliski and colleagues' suite of MRF optimizers 

and finding substantial accuracy: improvement for medical image segmentation. 
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As Szeliski and colleagues stated, among MRF optimizers, ICM and simulated annealing 

have been proven to be either ineffective or extremely inefficient [43]. Based on that, we 

used BP-S, BP-M, two varieties of graph cut (swap or expansion move), and TRW as the 

replacements of BP-S-Liu in our assessment. 

3.2.3 Using the (K, E)-NN neighborhood system or a single template 

Natural scene parsing is a challenging problem. The compositions of object classes in 

query images are not always the same; for instance, in one query image, there is sky and 

sea, but in another image, there exist buildings, a street and vehicles. To parse 

dramatically different scenes, the Label Transfer System relies on a database with a large 

amount of varied pre-annotated images, which may cover as many object classes as 

possible. Then similar images, called nearest neighbors, can be retrieved for a query 

image. But for medical images, query scenes are usually pre-assumed, i.e., given a query 

image, we almost always know what anatomical structures will be in the image. Thus, we 

propose a single template approach which only uses one pre-labeled structure-specific 

image to parse query images with the same structure. For example, only one pre-labeled 

hand x-ray image will be used as template to parse other hand x-ray images in the 

modified Label Transfer System. In this way, we minimize the feature-flow calculation to 

a single image only, thus reducing the computation time significantly because the dense 



correspondence module (flow estimation) is the major time consuming component. In 

comparison, we call this approach Tl (one template), and denote the (K, E)-NN 

neighborhood system as Tk. Fig. 3 .2 demonstrates how the Tl approach eliminates the 

nearest neighbor search and reduces feature flow calculations. 

In our assessment, we test both Tk and Tl approaches. The hypothesis is that Tl 

approach is sufficient to achieve similar accuracy as the Tk approach. 
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Fig. 3 .2 Simplified Label Transfer System for medical image segmentation 
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The original (K, E)-NN system involve K times feature flow computations as of our Tl approach. 
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3.2.4 Using a multi-image prior or a single-image prior for Tl 

For Liu and colleagues' natural scene parsing application, the prior probability that an 

object.class appears at a ·specific location of a.query image is found by traversing all pre­

labeled images in the database to count the occurrence of this object class at the specific 

location. Ideally, with a sufficiently large number of images in the database, the object 

priors reflect the close-to-truth situation. We call this the multi-image object prior (MP). 

In our assessment, we used their method to find the multi-image object prior for the 

(K, E)-NN system (Tk). For the Tl approach, in addition to utilizing multi-image object 

prior, we also used a single-image prior method (coined as SP) which only involves the 

single template. Basically, the single-object prior is the normalized pixel intensities of the 

template image convolved with a broad Gaussian filter. Thus, toggling Tk/Tl and 

MP/SP, we have three conditions to evaluate: Tk-MP, Tl-MP and Tl-SP. 

3.2.5 Using a preprocessing filter (bilateral filter) 

In orthopedic image segmentation, different object classes are usually distinguished by 

boundaries. Edge features are very important in isolating bony structures. However, SIFT 

or SURF feature extractions utilize repeated Gaussian processes which could 

substantially suppress edge features. This may result in unreliable matching in the dense 

correspondence module for our applications. 
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To address the possible suppression of edges, we propose to conduct a preprocessing step 

before executing Label Transfer System. An appropriate preprocessing filter is bilateral 

filtering. The bilateral filter is an edge-preserving filter that can both accentuate edge 

features and reduce image noise. We expect that, after bilateral treatments on both the 

query and training images, Gaussian smoothing in feature-flow may be reduced. 

3.3 Implementations 

To test the many combinations of feature descriptors, MRF optimizers, neighborhood 

systems, and preprocessing filters, we modified the Label Transfer System into a cross­

factor testing platform. We evaluated its performance in terms of recognition accuracy 

and running time under conditions of 4 feature descriptors, 6 MRF optimizers, 3 

neighborhood/prior approaches, and 2 preprocessing treatments: thus, there are a total of 

4 x 6 x 3 x 2 = 144 conditions for each query image. In this section, we briefly explore 

how this testing platform is constructed and what data are generated by it. A complete 

flowchart can be found in Fig. 3.3. 
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3.3.1 Assessing procedures 

First, we divided the assessment experiments into 3 big blocks determined by the 

different combinations of nearest neighborhood system and object prior calculation 

methods. As stated in previous section, they are Tl-SP, Tk-MP, and Tl-MP. Then each 

block is divided into two sub-blocks representing the use of bilateral filter or not. In each 

sub-block, we generate four different feature-flows (SIFT, SURF, STSF and SSLH) 

between the query image and training image(s). In the end, the four feature-flows are fed 

to the label transfer module individually. For each type of feature-flow, the label transfer 

module utilizes six different MRF optimizers (BP-S-Liu, BP-M, BP-S, Expansion, Swap, 

and TRW) to parse the query image to obtain segmentation results. A condensed 

flowchart of these procedures is shown in Fig. 3.4. 
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Fig. 3 .4 Workflow of our assessment platform 

Our platform tests query images under 3 neighborhood/prior approaches and 2 preprocessing 
filter treatments, using 4 feature descriptors and 6 MRF optimizers. The total number of 
conditions is 3 x 2 x 4 x 6 = 144. 



3.3.2 Software and hardware environment 

Our assessment platform is built on the Label Transfer System code from Liu and 

colleagues [62]. The platform is implemented in Matlab 2011 b on Ubuntu 64bit 12.04 

LTS operating system. For higher efficiency, some computationally intense algorithms, 

such as dense SIFT extraction, feature flow estimation, and label transfer MRF 

optimization are coded in C++ mex-files. Parallel computation on all CPU cores is also 

used in the SURF descriptor calculation and feature flow estimation using the Matlab 

Parallel Computation Toolbox. 
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The same system was used to run all of the experiments. The hardware configuration of 

this system was a PC architecture workstation with one 2.93GHz Intel i7 Core Quad 

CPU, and 12GB memory. 

3.3.3 Data collection 

To evaluate segmentation performance of the Label Transfer System on medical images, 

we focus on the measurements of recognition accuracy (correctness rate and error rates) 

and algorithm running time. For each query image, the 144 sets of recognition 

correctness rates, false positive (falsePos) rates, false negative (falseNEG) rates, and run 

times were calculated and recorded. All flow estimation times were also recorded to 

compare the efficiencies of feature flow algorithm using different feature combinations. 
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For a query image under a specific condition, one confusion matrix is recorded for 

accuracy analysis. In the confusion matrix,' each column represents the pixels in a 

predicted class, while each row represents the pixels in an actual class. From this matrix, 

. we can obtain the table of confusion of each object class, which contains its true positive 

pixel count, false negative pixel count, false positive pixel count and true negative count. 

Furthermore, we can calculate the correctness rate and error rates as, 

· true positives 
correctness rate (accuracy)= . . (3.1) 

true positives+ false negatives 

false positives 
f alsePos error rate (type I) = . (3.2) 

true positives +false negatives 

false negatives 
f alseNEG error rate(type II) = . (3.3) 

true positives+ false negatives 

Also, from the confusion matrix, we can obtain an overall recogi:iition rate for this query 

image as, 

Li true positives of class i 
overall correctness rate = L ll l (3.4) 

a va ues 

An example of the confusion matrix and its utilization for calculating recognition 

accuracy is demonstrated in Fig. 3.5. Notice that, for an object class Ci, (correctness rate 

+ falseNEG rate) = 1, but the falsl0 s rate can be any non-negative value (possibly larger 

than 1 if the recognition algorithm fails to distinguish pixels belonging to other classes 

from pixels of class Ci). 
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Fig. 3.5 Confusion matrix and recognition rates 
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In confusion matrix (left), columns represent pixel counts in predicted classes while rows give 
pixel counts in actual classes. For instance, value at row 2 column 1 represent the amount of 
pixels that actually below to structure 2 but mistakenly predicted as part of structure 1. In table of 
confusion for structure 2 (right), four counts are present and rates can be easily obtained as, 
correctness rate = 103/( 103+44) = 70 .1 %, false NEG rate = 44/( 103+44) = 29 .9%, and falsePos rate 
= 71/(103+44) = 48.3%. The overall recognition rate is, (201+ 103+98+ 179)/sum_of_all = 72.l %. 
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Chapter Four: Evaluation and Discussion 

In this chapter, we present the results of assessment experiments and analysis of these 

results. In the first section, we describe the hand and hip x-ray images used to test the 

Label Transfer System. In particular, we point out the specific challenges among 

automatic segmentations of these images. Then in the next two sections, we describe and 

discuss the experimental results, respectively. 

4.1 Description of test images 

The two sets of x-ray images were all collected from the internet and [2]. There were 

eight images in the hand image set and fourteen images in hip image set. The images 

were all in grayscale. The size of each hand image was 691 x 691 pixels. For each hip 

image, the width was 500 pixels and the height was 400 pixels. The twenty four images 

were manually segmented and annotated by us using LabelMe we-based tool mentioned 

in Section 2.5.1. 

In each set, we picked one clear image with complete and normal anatomy as the 

template image and the rest were tested in our assessment platform. The template images 

and their ground truth segmentations are shown in Fig. 4.1 (hand) and Fig. 4.3 (hip). The 



test images are shown in Fig. 4.2.1, Fig. 4.2.2 for hand, and Fig. 4.4.1, Fig. 4.4.2, Fig. 

4.4.3 for hip. 
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The hand images were taken from left hands with thumbs positioned on the right side. 

There were 24 labels in the hand images including 5 distal phalanges, 4 middle phalanges, 

5 proximal phalanges, 5 metacarpals, carpal bones taken as a single whole unit, ulna, 

radius, the overall hand shape and picture background. The hip images contained 13 

labels, including left/right pelvis, left/right femurs, left/right sockets, left/right femurs in 

socket, left/right pelvic holes, tail bones, the overall body shape, and picture background. 

Labels in both hand and hip images can be found in Fig. 4.1 and Fig. 4.3. 

4.1.1 Hand images 

The hand images were taken from left hands with thumbs positioned on the right side 

(Fig. 4.1 ). There were 24 labels in the hand images including 5 distal phalanges, 4 middle 

phalanges, 5 proximal phalanges, 5 metacarpals, the carpal bones grouped as a single 

label, the ulna, the radius, the soft tissues of the hand, and the image background. The 

bones of the wrist (the carpal bones) were grouped as a single label because of the large 

amount of overlap between the bones in a typical x-ray image. 

We picked the 18 year old female hand as the template (Fig. 4.1) because it had complete 

and normal anatomy, and clear structural contrast. The remaining 7 images (Fig. 4.2.1 

and Fig. 4.2.2) included a baby hand, two small-scaled hands, a hand with where the 
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angle between the thumb and index finger was small compared to the template image, a 

rheumatoid arthritis hand, a 90 degree rotated version of the 3rd hand and a hand where 

the tips of the thumb and middle finger were cropped at the edges of the image. 

One challenge in the baby hand is that the intensity of the bone structure is more 

homogenous than the adult counterparts because the tissue differentiation in baby bones 

has not taken place yet. Another issue is there are large gaps between bones in baby 

hands because the bone structures are not fully grown. For example, the carpals are two 

tiny dots instead of the eight bones present in the fully formed wrist. In this particular 

image, the baby hand is significantly larger in size compared to the adult ones. 

In the 2nd and 3rd images, the hands are significantly smaller in scales than in the template 

images. We predicted that the result would be good because the feature flows are 

considered scale invariant. However, we observed that there were contrast changes in the 

2nd image that might affect the segmentation results. 

The 4th image is taken from an 18 year old male and is very similar to the template image 

except that the thumb is angled closer to the index finger. We thought that this should not 

have a significant effect on the segmentation accuracy because the system can preserve 

discontinuity and endure minor rotations. 
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The iiiost challenging-image.was .the.5th image which was taken from a rheumatoid 

arthritis patient. Compared to the template, there were significant clockwise rotations of 

the bottom half of the hand and obvious counter-clockwise rotation of the upper half of 

the hand. Also, joints between the proximal phalanges and metacarpals were fused or 

distorted. Because of the rotation-invariant aspect of feature flow, we predicted that the 

system might achieve a reasonable (although not perfect) segmentation in this case. 

The 6th image is a counter-clockwise rotated version of the 3rd image. This image was 

used to evaluate the rotation-invariant characteristic of the Label Transfer System in an 

extreme case of rotation and displacement. 

The last image is slightly larger in scale than the template which leads to cropping of the 

tips of the 3rd distal phalange and the 1st distal phalange. Also, signal inhomogeneity 

artifacts exist and cause contrast isotropy, particularly at the finger tips. 
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• (01) Ulna • (13) 3rd distal phalange 
• (02) Radius • (14) 4th metacarpal 
• (03) 1st metacarpal .· (15) 4th proximal phalange 
• (04) 1st proximal phalange • (16) 4th middle phalange 
• (05) 1st distal phalange D (17) 4th distal phalange 
• (06) 2nd metacarpal (18) 5th metacarpal 
• (07) 2nd proximal phalange • (19) 5th proximal phalange 
• (08) 2nd middle phalange • (20) 5th middle phalange 
• (09) 2nd distal phalange ~ (21) 5th distal phalange 
• (10) 3rd metacarpal · (22) Hand 
• (11) 3rd proximal phalange L ___ ; (23) Carpals 
• (12) 3rd middle phalange D (24) Picture 

•Unlabeled 

Fig. 4.1 Template image in hand image set and its segmentation ground truth 

The top left image [2] is the x-ray photograph with 691 x 691 pixels in dimensions. The top right 
image shows the manually labeled structures. The bottom of this figure lists the names of the 
labeled structures with corresponding colors in the top right image. 
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1 2 

3 4 

Fig. 4.2.1 Test images (1-4) in hand image set [2] [3] [ 4] [2] 
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5 6 

7 

Fig. 4.2.2 Testing images (5-7) in hand image set [5] [4] [6] 
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4.1.2 Hip images 

The hip. images contained 13 labels, including both sides of the pelvis, the femurs, the 

overlap .of the femoral heads and pelvis, the joint space between the acetabulum and 

femoral head, the pelvic holes, tail bone, the soft tissues, and the image background (Fig. 

4.3). 

Size and Contrast and 
Signal inhomogeneity Abnormality 

Interfering 
displacement quality structures 

I upper part is dimmer intestines 

2 
bigger; loss of upper part is dimmer; 
periphery parts joints are stronger 

3 
moved up; loss of 

intestines 
pelvis; Jong femurs 

4 
moved up; long 

male organ 
femurs 

5 low contrast intestines 

6 broken left femur 

7 low contrast 
upper pelvis are 

male organ 
inhomogeneous 

8 bad quality 
right joint fusion; 

asymmetric 

9 low contrast 
lower part of image is 

strong 

10 
moved up; loss of 

upper part is dimmer male organ 
pelvis; 

11 upper part is dimmer 

12 
bigger; loss of 

upper part is dimmer right joint fusion intestines 
periphery parts 

13 both joints fusion 

Table 4.1 Overview of challenges of hip image segmentations 

We chose a hip x-ray image taken from a female as the template image (Fig. 4.3). It 

presents complete and normal hip anatomy. The remaining 13 images (Fig. 4.4.1, Fig. 
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4.4.2 and Fig. 4.4.3) vary in size, contrast and signal inhomogeneity. There are also 

structural differences, such as arthritis, broken bones, and occlusions caused by non-bony 

structures. Table 4.1 gives an overview of the segmentation challenges we may face in 

each test image using the Label Transfer System. 

• (01) Body 

• (02) Femur (left) 
• (03) Femur (right) 
• (04) Pelvic (left) 
• (05) Femur in socket (left) 
• (06) Pelvic hole (left) 
• (07) Pelvic sokect (left) 

• (08) Pelvic (right) 
• (09) Femur in socket (right) 
• (10) Pelvic hole (right) 
• (11) Pelvic sokect (right) 

• (12) Picture 
• (13) Tail bones 
•Unlabeled 

Fig. 4.3 Template image in hip image set and its segmentation ground truth 

The top left image [50] is the x-ray photograph with 500 pixels in width and 400 pixels in height. 
The top right image shows the manually labeled structures. The bottom of this figure lists the 
names of the labeled structures with corresponding colors in the top right image. 



98 

1 2 

3 4 

Fig. 4.4.1 Testing images (1-4) in hip image set [7] [8] [9] [1 O] 
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5 6 

7 8 

Fig. 4.4.2 Testing images (5-8) in hip image set [11] [12] [13] [14] 
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9 10 

11 12 

13 

Fig. 4.4.3 Testing images (9-13) in hip image set [15] [16] [17] [18] [19] 
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4.2 Experiment results 

7hand images and Phip imageswere tested using the assessment procedure described 

in Section 3.2.1. There are 4 features,:6 optimizers, 2 filter treatments and 3 

neighborhood/prior configurations as major factors to consider in our assessing platform. 

Hence, we have 144 specific conditions·for each test image. For referring convenience, 

we code different factors with a capitalized letter followed by one digit as shown in Table 

4.2. For a specific condition, we have a unique code. For instance, F2-02-Bl-Pl means 

that the test condition uses (1) SURF as the feature descriptor, (2) BP-Mas the label 

transfer optimizer, (3) no pre-filtering with a bilateral filter, and ( 4) one template image 

with the prior computed from the template image. 

Fl SIFT 01 Liu's BP Bl No Pl Tl SP 
F2 SURF 02 BP-M B2 Yes P2 TkMP 
F3 STSF 03 BP-S P3 Tl MP 
F4 SSLH 04 Expansion 

05 Swap 
06 TRW-S 

Table 4.2 Notations of factor options 

For simplicity, in the following subsections, we only present full results under condition 

Fl-01-Bl-Pl, which is close to the original setting in Liu and colleague's paper [1]. 

Section 4.2.1 shows results for hand image set and Section 4.2.3 is for hip image set. 
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4.2.1 Results on hand images 

The resulting segmentations compared to ground truth of hand images, under condition 

Fl-01-Bl-Plare shown in Fig. 4.5. 

Qualitatively, the best results were achieved in image 3, 4, and 7. In the 3rd image, the tip 

of middle finger is over-extended. In the 4th image, there are clear errors in the thumb. In 

the ih image, parts of the background are incorrectly labeled as soft tissue. 

In the baby hand image, the small (pinky) finger is not recognized at all and the ring 

figure is mistaken for the small finger. The middle finger is incorrectly labeled as two 

fingers (ring and middle finger). The joint spaces are not preserved and are labeled as 

bony structures. The carpals, ulna and radius are over-labeled. 

In the 2nd image, the middle finger is labeled as ring finger; hence there are two middle 

fingers in the result. The thumb and index finger are mixed up as well. 

In the 5th image, the rheumatoid arthritis hand, most of the labeling is incorrect. Only the 

1st, 2nd, 3rd, and 4th phalanges are partially recognized, leaving all other structures 

scattered in the scene. 
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The worst result occurs in the 61
h image, which is the 90 degree rotated version of 3rd 

image. The result does not seem rotated at all and oddly resembles the orientation of the 

template. 

. 
~t ID 

\~/ 

\,' 

) / r 

C--~-~~~~~~~-~~~~~ 

Fig. 4.5 Segmentation under Fl-01-Bl-Plancl ground truth on hand images 

There are 7 pairs of resulted segmentation and corresponding ground truths are shown in this 
figure. In each pair, the left image is the resulted label map and the right is its ground truth. 
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The overall correctness rates and structure specific correctness rates of all 7 images are 

shown in Table 4.3. The 2nd, 3rd, 4th and 7th images resulted in over 90% correctness. But 

if we exclude classes 'Hand' and 'Picture', which occupy large portion of the images, 

only the 3rd, 4th and ih images yields correctness rate over 90%. For the 1st and 5th images, 

the overall correctness rates without considering 'Hand' and 'Picture' are not satisfactory. 

The 6th image gives 0 correctness rate in terms of bony structures. 

Among bony structures, the worst recognized structures are 'Ulna', 'Radius', '1st distal 

phalange' and '5th distal phalange'. 

The boxplots of correctness rates, false negative rates and false positive rates across 

images are shown in Fig. 4.6. Due to the poor result of image 6, we remove image 6 from 

the boxplot generation. 

The median false negative rates vary from 0.02 to 0.4 among bony structures, but are 

generally under 0.2. The median false positive rates vary from 0.02 to 0.3, and are also 

generally under 0.2. 

The variations of correctness rates, false positive rates, and false negative rates are 

generally large, which indicates that the recognition rates vary a lot widely among 

different images. 
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lmage Image lmage Image lmage Image Image 
Mean 

Mean excluded 
1 2 3 4 5 6 7 

image 6 
Overall 1 81.9 93.8 98.l 95.8 75.4 70.5 94.0 
Overall 2 54.9 72.9 92.9 91.5 28.9 0.0 91.8 fl 
Struct 1 0.0 90.7 71.3 71.0 0.0 0.0 84.7 45.4 52.9 
Struct 2 1.6 96.5 86.5 74.7 0.0 0.0 0.0 37.0 43.2 
Struct 3 78.0 90.4 97.4 98.7 90.3 0.0 96.3 78.7 91.9 
Struct 4 95.0 1.5 96.0 46.7 73.4 0.0 93.9 58.1 67.7 
Struct 5 99.6 0.0 88.7 0.0 52.9 0.0 67.9 44.1 51.5 
Struct 6 89.8 90.3 90.6 95.5 2.7 0.0 93.9 66.1 77.1 
Struct 7 99.4 31.7 98.1 98.l 59.6 0.1 95.0 68.9 80.3 
Struct 8 72.5 0.0 98.6 97.8 90.6 0.0 96.8 65.2 76.1 
Struct 9 94.2 0.0 94.6 95.7 83.2 0.0 92.3 65.7 76.7 
Struct 10 56.4 94.8 97.8 96.1 0.0 0.0 95.4 62.9 73.4 
Struct 11 65.9 38.0 97.1 99.0 63.2 0.0 95.8 65.6 76.5 
Struct 12 53.0 0.0 96. l 97.3 94.4 0.0 95.2 62.3 72.7 
Struct 13 90.0 0.0 83.8 95.8 83.8 0.0 89.3 63.2 73.8 
Struct 14 17.3 86.7 89.5 92.8 0.0 0.0 94.9 54.4 63.5 
Struct 15 0.0 96.6 96.9 99.4 41.1 0.0 96.2 61.4 71.7 
Struct 16 0.0 96.3 97.1 97.8 95.9 0.0 95.4 68.9 80.4 
Struct 17 0.0 80.3 93.5 96.1 81.3 0.0 89.0 62.9 73.4 
Struct 18 83.6 94.2 95.6 97.7 0.0 0.0 94.7 66.5 77.6 
Struct 19 0.0 96.0 97.3 98.8 0.0 0.0 96.6 55.5 64.8 
Struct 20 0.0 94.5 98.1 98.3 0.0 0.0 89.3 54.3 63.4 
Struct 21 0.0 76.4 93.6 94.5 0.0 0.0 83.0 49.7 57.9 

56.3 91.4 94.8 87.2 69.9 18.8 88.4 72.4 81.3 
Struct 23 100.0 95.6 94.2 97.7 0.0 0.0 81.8 67.0 78.2 

99.7 97.2 99.6 98.8 95.2 92.2 96.9 97.1 97.9 
Mean of 

52.2 64.1 93.6 88.6 44.9 4.6 87.6 
structures .. 

Table 4.3 Recognition correctness rates on hand images under Fl-01-Bl-Pl 

The overall rate l represents correctness rate considering all existing structures in an image. The 
overall rate 2 only considers structures excluding those labeled "Picture" and "Hand" (colored in 
darker gray). 
Note: Figures in this table are in unit percentage. 
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1 2 3 4 5 6 7 8 9 10 11 12 131415 161718 19 20 212223 24 
structure 

0 

. I 0 I . I L f ~ I I I . ~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 212223 24 

structure 

Fig. 4.6 Result boxplots of hand image set under Fl-01-Bl-Pl 

The top left diagram shows the overall recognition correctness rates: ( 1) all structures are 
considered; (2) structures with labels, Ulna[l], Radius[2], Hand[22], Carpals[23], Picture[24], are 
excluded; (3) structures with labels, Hand[22], Carpals[23], Picture[24], are excluded; (4) 
structures with labels, Hand[22], Picture[24], are excluded. 

The top right diagram shows the structure specific recognition correctness rates: names for 
structures can be found in Fig. 4.1. 

The bottom left diagram shows the structure specific false negative error rates. 

The bottom right diagram shows the structure specific false positive error rates, some structures 
may have error rates higher than 100%, such as structure Radius[2]. 

Note: (1) these boxplots are generated by excluding image 6 due to its extremely bad result. The 
red and blue color coding is used to group the finger bones into five individual fingers. 
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4.2.2 Replacing Feature Flow for One Hand Image 

The misplaced labels produced in the hand image (for example, in hand image 2) may be 

due to the discontinuity preserving characteristics of the feature flow algorithm. To 

investigate this issue, we replaced the feature flow algorithm with a thin plate spline warp 

of the template hand to the target hand. The thin plate spline warp was computed by 

manually selecting corresponding points on the outlines of the entire hand of the template 

and target hand images. The thin plate spline warp was applied to the entire image to 

obtain the flow field from the template to the target hand; we called this flow field TPS-

flow. The TPS-flow was given to the label transfer module to obtain the final 

segmentation. The results were slightly improved compared to the other variations, but it 

was still not satisfactory. Fig. 4.7 shows the warping result using TPS-flow. Table 4.4 

shows the correctness rate comparison between using TPS-flow and using SIFT-flow. 

Fig. 4. 7 Thin plate spline warping of the template to target hand 

(Left) 20 landmarks were manually chosen on the outline of the template hand image [2]. (Middle) 
the 20 corresponding landmarks were manually chosen on the outline of the target hand image [5]. 
(Right) A thin plate spline warp that matched the landmarks from the template hand to the target 
hand was computed and applied to the template hand. 
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Correctness Rate False ne~ ative rate False positive rate 
TPS-tlow SIFT-flow TPS-tlow SIFT-flow TPS-flow SIFT-flow 

Overall I 78.07 75.43 NIA NIA NIA NIA 

Overall 2 43.71 28.90 NIA NIA NIA NIA 
f > . ><·.····· .. ·· Mean o . 46. 

79 structures , . 44.90 
. .. 

53.21 55.10 23.02 43.63 

Table 4.4 Performance comparison between TPS-flow and SIFT-flow 

Overall correctness rate 2 is calculated by excluding labels "Picture" and "Hand". Numbers are in 
percentage. Bold numbers indicate better performance. False negative rates and false positive 
rates are structure specific; overall correctness rates are not applicable to these rates. 

4.2.3 Results on hip images 

For the hip images, the resulted segmentations under condition Fl-01-Bl-Pland their 

corresponding ground truths are shown in Fig. 4.8. 

Qualitatively, considering the accuracy of the essential structures (particularly, the pelvic 

sockets and femurs), we see that the results on the 1 sr, 2nd, 3rd, 5th, and 11th images are the 

best. The left sockets in 1st, 3rd images, and the right sockets in 3rd, 11th image are under-

labeled. There is a common over-labeling problem of the right sockets, in which the 

system tries to resemble the appearance of the corresponding area on the template image. 

There is also a common problem that the system labels the soft tissues or organs as a part 

of the pelvis as in image 4, 5, 6, 7, 9 and 13. Or conversely, the system labels the 

overlapping area of bony structure and soft tissues as a part of "Body", which appears in 

image 10, 12 and 13. 



The worst results are achieved from the gth and 12th images. In image 8, the left pelvis 

and tail bones are mixed up; the right femur, right socket and right pelvis are also 

incorrectly labeled. In image 12, both sides of the pelvis and socket areas are largely 

mislabeled. 
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The overall correctness rates and structure specific correctness rates of all 13 images are 

shown in Table 4.5. 

Excluding labels 'Body' and 'Picture', we find that 8 images (1-5, 7, 9, and 11) have 

approximately 90% correctness rates, which compares favorably to the results in hand 

image set. But if we consider only the socket areas, the results are not acceptable. 

Among the bony structures, both pelvic sockets are poorly recognized (correctness rates, 

left: 44.5%, right: 63 .1 % ). Other bony structures are recognized with correctness rates 

over 80%. 

The boxplots of correctness rates, false negative rates and false positive rates across 

images are shown in Fig. 4.9. Median false negative rates and false positive rates also 

reflect the poor recognition performance on the socket areas. General median error rates 

among structures are below 0.2, but for the two sockets, the rates go up, especially, the 

median false positive rate of right pelvic socket is even more than 1. 



Fig. 4.8 Segmentation under Fl-01-Bl-Pland ground truth on hip images 

There are 13 pairs of resulted segmentation and corresponding ground truths are shown in this 
figure. In each pair, the left image is the resulted label map and the right is its ground truth. 

110 



111 

Img Img lmg hng Img lmg lmg lmg Img lmg hng lmg Img 
Mean 

1 2 3 4 5 6 7 8 9 10 11 12 13 
Overa 

• JI 1 90.9 90.0 87.8 79.0 83.6 79.1 87.0 74.9 86.2 83.l 88.2 72.7 79.9 

Overa 90.3 91.9 93.1 90.2 91.4 85.9 89.4 76.6 89.5 81.3 92.4 73.0 79.3 JI 2 

94.2 86.5 81.9 72.5 73.5 64.7 81.7 70.6 82.0 85.3 85.7 73.5 84.8 79.8 

Struct 95.8 84.8 95.l 93.3 75.4 86.5 90.6 82.5 86.6 81.9 97.5 90.8 49.2 85.4 2 
Struct 97.4 80.7 97.2 79.l 94.0 86.5 94.0 85.1 89.0 89.5 96.6 81.5 79.6 88.5 3 
Struct 90.6 94.4 93.7 96.2 96.2 86.0 96.6 82.6 88.5 87.5 93.4 77.5 82.4 89.7 4 
Struct 87.9 93.6 68.0 93.5 84.4 85.0 94.4 84.0 97.9 97.3 84.7 74.9 71.9 86.0 5 
Struct 98.9 97.8 96.5 98.1 99.7 98.7 97.8 96.1 99.8 59.7 99.3 17.1 96.7 88.9 6 
Struct 43.0 60.4 19.7 46.3 52.5 58.6 57.8 48.2 7.3 54.0 60.7 54.8 15.9 44.5 7 
Struct 90.5 95.0 93.3 95.5 96.5 83.1 90.3 76.7 90.1 81.4 97.1 69.8 92.4 88.6 8 
Struct 92.1 97.0 93.3 94.7 93.2 85.5 95.6 36.8 95.0 97.2 92.1 88.9 97.3 89.1 9 
Struct 92.6 100.0 96.6 97.5 97.6 99.9 97.6 98.8 96.7 65.6 98.5 11.9 95.0 88.3 10 
Struct 77.9 80.7 63.2 75.6 68.1 67.7 82.3 26.3 59.1 57.5 70.2 36.1 55.4 63.1 11 

78.5 23.1 97.4 37.7 0.0 75.1 76.6 0.0 48.5 90.7 69.2 7.6 33.8 49.1 
Struct 86.3 90.1 92.6 84.8 89.0 89.5 78.7 69.6 92.4 69.8 85.0 69.4 76.1 82.6 13 
Mean 

I 81.9 of 86.6 83.4 ... 83.7 78.5 82.1 87.2 66.0 79.4 78.3 86.9 58.0 71.6 
struct .·· 

Table 4.5 Recognition correctness rates on hip images under Fl-01-Bl-Pl 

The overall rate 1 represents correctness rate considering all existing structures in an image. The 
overall rate 2 only considers structures excluding those labeled "Picture" and "Body" (colored in 
darker gray). 
Note: Figures in this table are in unit percentage. 

The variations of correctness rates and false negative rates are generally smaller than 

those of hand image set. However, the variations of false positive rates, especially, in the 

two socket structures, are large, which indicates the system cannot reliably segment such 

structures. 
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Fig. 4.9 Result boxplots of hip image set under Fl-01-Bl-Pl 

The top left diagram shows the overall recognition correctness rates: ( 1) all structures are 
considered; (2) structures with labels, Body[l], PelvicHole(L)[6], PelvicHole(R)[lO], Picture[12], 
Tai1Bones[13] are excluded; (3) structures with labels, Body[l], Picture[12], Tai1Bones[13], are 
excluded; (4) structures with labels, Body[l], Picture[12], are excluded. 

The top right diagram shows the structure specific recognition correctness rates: names for 
structures can be found in Fig. 4.3. 

The bottom left diagram shows the structure specific false negative error rates. 

The bottom right diagram shows the structure specific false positive error rates, some structures 
may have error rates higher than 100%, such as structure Picture[12]. 

Note: The structures colored in red belong to the left side of the body. The structures colored in 
blue belong to the right side of the body. 
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4.3 Experiment analysis 

The segmentation results under condition F 1-01-B 1-P 1 are not satisfying, even though 

the correctness rates of the hip image set are over 85%, which is above 76.67% achieved 

by Liu and colleagues [1]. This is because in medical image analysis, we generally 

require more accurate recognition. In searching for substantial improvement of the Label 

Transfer System, we incorporated alternations in the major components (factors) as stated 

in Section 3.2. We compared the recognition performance under 144 conditions and 

could not find significant improvements than that of F 1-01-B 1-P 1. 

In this section, we describe the statistical performance differences controlled by the four 

factors separately. Particularly, we fix three factors and vary the other factor to determine 

if any alternation of this factor can improve the recognition performance. For example, 

we choose feature as 'SIFT', bilateral treatment as 'None' and neighborhood/prior as 

'one template and one prior', then compare the results using the 6 different optimizers. 

We denote this configuration as 'F 1-0*-B 1-P 1 '. In the following subsections, we show 

the comparison and analysis of configurations, 'F*-01-Bl-Pl ', 'Fl-0*-Bl-Pl ', 'Fl-01-

B*-Pl ',and 'Fl-01-Bl-P*'. For each configuration, we give the statistic tables of 

structure-specific correctness rates and overall (image-specific) correctness rates; and a 

group of boxplots representing structure-specific recognition correctness rates, false 

negative rates, and false positive rates. 
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We· also use ANOV A to determine the significance of the differences achieved by the 

different.choices of factor in each configuration. To justify the ANOV A normal 

distribution assumption, we run J arque-Bera tests under all factor combinations. The 

results show that the correctness rates across 7 hand images have the possibility of being 

normally distributed under all factor combinations. For hip images, under 88.2% of factor 

combinations, the correctness rates may be normally distributed. Hence, we assume the 

samples (images) represent the normally distributed populations, and ANOVAs on these 

samples are approximately valid. Then we give the n-way ANOV A result of all 

configurations 'F*-0*-B*-P*' excluding those options that produced decreased accuracy. 

In the end, we also report the effects on flow estimation time and recognition time caused 

by different selections of factors. 

4.3.1 Analysis on feature descriptor selection 

Under condition F*-01-Bl-Pl, we compare the recognition accuracy of cases using 

different feature descriptor for flow estimation. Results show that the mean structure­

specific correctness rate using STSF on the hand is 0.59438, which is significantly lower 

than the other descriptors (Table 4.6) with F544,3 = 5.6, p < 0.0009 in ANOV A. A 

similar result occurred for the hip images with mean structure-specific correctness rate of 

0.6925, F648,3 = 13.24, p < 0.0001. 
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In terms of overall correctness, rates (Table 4. 7), the results are similar. STSF accuracy is. · 

significantly worse· than the others. {Fis,3 =:. 3.4,.p < 0.0454 for hand images, F36;3 = · 

7.0, p < 0.0008 for hip images). 

Boxplots shown in Fig. 4.10 also indicate that the variation of correctness rates and false 

negative rates are much larger by using STSF than by others. Also, the false negative 

rates of using STSF are obviously larger. We conclude that, STSF is not reliable as a 

feature descriptor. 

Because we are looking for improvement in the system, inferior descriptors such as STSF 

should be removed from feature descriptor choices. ANOV A of structure-specific 

correctness rates without STSF shows that the difference among the remaining three is 

not significant, with F544,3 = 5.6, p < 0.8805 for hand images and F544,3 = 0.3, p < 

0.7375 for hip images. However, in terms of overall correctness rates, with STSF 

removed, ANOVA shows that: there is no significant difference among the remaining 

features in hand image set with F10,2 = 0.08, p < 0.9228; but there is significant 

difference among the remaining features in hip image set with F24,2 = 8.5, p < 0.0016. 

From Table 4.7, we can see SIFT's accuracy is statistically higher than SURF and SSLH 

for hip images. The differences do not lead to the conclusion that SIFT is superior to 

SURF and SSLH such that SURF and SSLH should be excluded as capable feature 

descriptors. 
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Thus, we conclude that, only the STSF should be ruled out as a feature descriptor and 

change of descriptors cannot significantly improve recognition accuracy under conditions 

F*-01-Bl-Pl. 

Hand image set SIFT SURF STSF SSLH 

mean 0.7183 0.7073 0.5948 0.7010 

median 0.9064 0.8833 0.7173 0.8904 

standard deviation 0.3657 0.3416 0.3833 0.3485 

Hip image set SIFT SURF STSF SSLH 

mean 0.7873 0.7769 0.6925 0.7866 

median 0.8572 0.8594 0.7921 0.8665 

standard deviation 0.2248 0.2181 0.2818 0.2112 

Table 4.6 Structure specific statistics of correctness rate under F*-01-Bl-Pl 

In hand image set, statistical measures are calculated from 144 samples (24 structures in 6 test 
images, excluding image 6). In hip set, we have 169 samples (13 structures in 13 test images) 

Hand image set SIFT SURF STSF SSLH 

mean 0.7215 0.7420 0.5884 0.7351 

median 0.8220 0.8182 0.6156 0.8228 

standard deviation 0.2593 0.1972 0.3099 0.2076 

Hip image set SIFT SURF STSF SSLH 

mean 0.8649 0.8311 0.8014 0.8369 

median 0.8951 0.8474 0.8019 0.8525 

standard deviation 0.0670 0.0755 0.0785 0.0724 

Table 4.7 Image specific statistics of correctness rate under F*-01-Bl-Pl 

In hand image set, statistical measures are calculated from overall correctness rates of 6 images. 
In hip set, we have 13 images. 
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Fig. 4.10 Results on features (F*-01-Bl-Pl) 

Left columns are boxplots for hand image set and the right columns are for the hip image set. 
Plots on 1st row are correctness rates. Plots on 2°d row are for false negative rates and plots on 3rd 
row are for false positive rates. 
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4.3.2.Analysis OD'alternate MRF optimizers 

Under condition Fl-0*-BL-PJ.~ the results show that the mean structure-specific 

correctness rate using BP.~S on the:hand "is 0.2894, which is significantly lower than the 

other optimizers (Table 4.8) with F830,5 = 48.82, p < 0.0001 in ANOV A. A similar 

results occurs for the hip images with a m·ean correctness rate of 0.5422, F984 5 = 
' 

41.93, p < 0.0001. In terms of overall correctness rates (Table 4.9), the results are 

similar (F25,5 = 89.88, p < 0.0001 for hand images and F60,5 = 60.85, p < 0.0001 for 

hip images). 

Boxplots in Fig. 4.11 also indicate that the variation of correctness rates and false 

negative rates are much larger using BP-S compared to the other optimizers. Also, the 

false negative rates of using BP-S stand out from others. 

We believe that BP-Sis not reliable as a MRF optimizer. ANOVA of structure-specific 

' correctness rates without BP-S shows that the difference among the rest five is not 

significant, with F687,4 = 0.02, p < 0.9994 for hand images, and F816,4 = 0.81, p < 

0.5188 for hip images. Similarly, ANOV A of overall correctness rates without BP-S 

indicates no significant accuracy difference with F20,4 = 1. 75, p < 0.1777 for hand 

images and F48,4 = 0.76, p < 0.5541 for hip images. 
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Thus, we.conclude that, BP-S· should be ruled out as a MRF optimizer, and changing of 

optimizers cannot significantly improve· recognition accuracy under conditions Fl-0*-

Bl-Pl. 

Hand image set BP-Liu BP-M BP-S Expansion Swap TRW-S 

mean 0.7183 0.7176 0.2894 0.7123 0.7116 0.7127 

median 0.9064 0.9117 0.0000 0.9143 0.9143 0.9152 

standard deviation 0.3657 0.3657 0.3621 0.3665 0.3664 0.3669 

Hip image set BP-Liu BP-M BP-S Expansion Swap TRW-S 

mean 0.7873 0.7840 0.5422 0.7699 0.7642 0.7675 

median 0.8572 0.8576 0.6983 0.8624 0.8645 0.8559 

standard deviation 0.2248 0.2271 0.3732 0.2525 0.2608 0.2553 

Table 4.8 Structure specific statistics of correctness rates under Fl-0*-Bl-Pl 

In hand image set, statistical measures are calculated from 144 samples (24 structures in 6 test 
images, excluding image 6). In hip set, we have 169 samples (13 structures in 13 test images) 

Hand image set BP-Liu BP-M BP-S Expansion Swap TRW-S 

mean 0.7215 0.7216 0.3080 0.7155 0.7149 0.7145 

median 0.8220 0.8225 0.3633 0.8194 0.8192 0.8184 

standard deviation 0.2593 0.2611 0.2093 0.2644 0.2643 0.2641 

Hip image set BP-Liu BP-M BP-S Expansion Swap TRW-S 

mean 0.8649 0.8651 0.7643 0.8656 0.8654 0.8643 

median 0.8951 0.8986 0.7769 0.8980 0.8981 0.8953 

standard deviation 0.0670 0.0666 0.0774 0.0664 0.0662 0.0660 

Table 4.9 Image specific statistics of correctness rates under Fl-0*-Bl-Pl 

In hand image set, statistical measures are calculated from overall correctness rates of 6 images. 
In hip set, we have 13 images. 
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Fig. 4.11 Results on optimizers (Fl-0*-Bl-Pl) 

Left columns are boxplots for hand image set and the right columns are for the hip image set. 
Plots on 1st row are correctness rates. Plots on 2°d row are for false negative rates and plots on 3rd 
row are for false positive rates. 
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4.3.3 Analysis on bilateral treatments 

Under conditions Fl-01-B*-Pl, results of mean correctness rate are shown in Table 4.10. 

For both hand and hip image sets, the mean structure-specific correctness rates with and 

without using bilateral filter are very similar. ANOVA shows the differences are 

insignificant, with F258,1 = 0.02,·p < 0.8935 for hand images, and F312,1 = 2.54, p < 

0.1120. In terms of overall correctness rates (Table 4.11), the results are similar (F5,1 = 

0.42, p < 0.5470 for hand images and F12,1 = 2.75, p < 0.1233 for hip images). 

Boxplots in Fig. 4.12 also indicate that the results with and without using bilateral filter 

are very similar, either for hand images or for hip images. We conclude that, change of 

bilateral treatments cannot significantly improve recognition accuracy under conditions 

Fl-01-B*-Pl. 

Hand image set no filter bilateral Hip image set no filter bilateral 

mean 0.7183 0.7136 mean 0.7873 0.7620 

median 0.9064 0.9113 median 0.8572 0.8292 

standard deviation 0.3657 0.3604 standard deviation 0.2248 0.2223 

Table 4.10 Structure specific statis.tics of correctness rates under Fl-01-B*-Pl 

In hand image set, statistical measures are calculated from 144 samples (24 structures in 6 test 
images, excluding image 6). In hip set, we have 169 samples (13 structures in 13 test images) 

Hand ima~e set no filter bilateral Hip image set no filter bilateral 

mean 0.7215 0.7415 mean 0.8649 0.8497 

median 0.8220 0.7844 median 0.8951 0.8611 

standard deviation 0.2593 0.1970 standard deviation 0.0670 0.0595 

Table 4.11 Image specific statistics of correctness rates under Fl-01-B*-Pl 

In hand image set, statistical measures are calculated from overall correctness rates of 6 images. 
In hip set, we have 13 images. 
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Fig. 4 .12 Results on bilateral treatments (F 1-01-B * -P 1) 

Left columns are boxplots for hand image set and the right columns are for the hip image set. 
Plots on 1st row are correctness rates. Plots on 2nct row are for false negative rates and plots on 3rd 

row are for false positive rates. 
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4.3.4 Analysis on neighborhood and prior configurations 

Under conditions Fl-01-Bl-P*, the results of mean correctness rate are shown in Table 

4.12. For both hand and hip image sets, the mean structure-specific correctness rates 

among using three different neighborhood/prior configurations are very similar. ANOVA 

shows the differences are insignificant, with F401,2 = 1.39, p < 0.2499 for hand images, 

and F480,2 = 0.35, p < 0.7063. In terms of overall correctness rates (Table 4.13), there is 

no significant accuracy difference among the three configurations for the hand images 

with F10,2 = 1.33, p < 0.3085; but there is statistically significant difference for the hip 

images with F24,2 = 10.6, p < 0.0005. From Table 4.13, we see that the overall 

correctness rates achieved by TkMP in hip images are larger than those obtained by Tl SP 

and Tl MP. But the differences do not lead to the conclusion that Tl SP and TlMP is 

inferior and they should be excluded as capable configuration. 

Boxplots in Fig. 4.13 indicate that the results among using three different 

neighborhood/prior configurations are very close, both for hand images and for hip 

images. 

We conclude that, changing of neighborhood/prior configurations cannot significantly 

improve recognition accuracy under conditions F 1-01-B 1-P*. 



I .. 

·Hand image set Tl SP TkMP Tl MP 

mean 0.7183 0.7678 0.7215 

·median 0.9064 0.9255 0.9179 

standard deviation 0.3657 0.3068 0.3659 

Hip ima2e set Tl SP TkMP Tl MP 

mean 0.7873 0.8008 0.7917 

median 0.8572 0.9089 0.8555 

standard deviation 0.2248 0.2491 0.2198 

Table 4.12 Structure specific statistics of correctness rates under Fl-01-Bl-P* 

In hand image set, statistical measures are calculated from 144 samples (24 structures in 6 test 
images, excluding image 6). In hip set, we have 169 samples (13 structures in 13 test images) 

Hand image set Tl SP TkMP Tl MP 

mean 0.7215 0.7663 0.7253 

median 0.8220 0.8829 0.8246 

standard deviation 0.2593 0.2109 0.2583 

Hip image set Tl SP TkMP Tl MP 

mean 0.8649 0.9105 0.8655 

median 0.8951 0.9086 0.8970 

standard deviation 0.0670 0.0348 0.0665 

Table 4.13 Image specific statistics of correctness rates under Fl-01-Bl-P* 
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In hand image set, statistical measures are calculated from overall correctness rates of 6 images. 
In hip set, we have 13 images. 
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4.3.6 N-way ANOVA on four factors 

In the previous subsections, we·analyze the configurations 'F*-01-Bl-Pl ', 'Fl-0*-Bl­

Pl ', 'Fl-01-B*-Pl ',and 'Fl-Ol~Bl-P*'. We found that STSF descriptor and BP-S 

optimizer were inferior in achieving more accurate recognitions. We also found that after 

removing STSF, the remaining descriptors do not produce significant differences in 

correctness rates. Similarly, the remaining 5 optimizers also do not produce significant 

differences in correctness rates. The bilateral treatments or neighborhood/prior 

configurations also do not produce significant differences. Now, we want to verify 

whether this situation stand for all configurations, i.e. F*-0*-B*-P*. 

We conduct 5-way ANOVA, which involves factors: image, feature descriptor, optimizer, 

bilateral treatment, and neighborhood/prior configuration, with STSF and BP-S results 

being stripped out from the dataset. 

The result shows that, the choice of optimizer cannot significantly change the recognition 

accuracy, with F525,4 = 0.03, p < 0.9983 for hand image set and F1148,4 = 0.09, p < 

0.9861 for hip image set. However, neighborhood/prior configuration, feature and 

bilateral treatment still play important roles on accuracy. This indicates, for some specific 

configurations, recognition performance may benefit from some particular choice of 

bilateral treatment, feature or neighborhood/prior configuration. But this beneficial 

choice is not consistent across all configurations. Another finding is that, in all ANOVA 

mentioned above, factor 'image' always gives significant impact on the performance. 
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This may indicate that the Label Transfer System performs differently across different · 

test images, which violates our intention to find a generic automatic segmentation system 

for medical images. 

4.3. 7 Analysis on label transfer recognition time and feature flow estimation 

time 

From ANOVA, we find that the major factor on label transfer recognition time is the 

MRF optimizer, with F847,5 = 341.93, p < 0.0001 for hand images and F1848,5 = 

1416.52, p < 0.0001 for hip ones. For hand images, factor ~eighborhood/prior, bilateral, 

and feature do not produce significant changes in label transfer time. For the hip images, 

all factors have statistically significant effects on label transfer time. The mean label 

transfer time among different optimizers can be found in Table 4.14. Boxplots on 

optimizers of label transfer recognition times across all images are shown in Fig. 4.14. 

Among the six optimizers, BP-S produced the fastest recognition time, which is 34% 

faster than BP-Liu in the hand image set, and 29% in the hip image set.TRW-Sis 

slightly slower than BP-S in the hip image set, but 33% faster than BP-Liu. In the hand 

image set, TRW-Sis slightly faster than BP-S, and 30% faster than BP-Liu. The graph 

cut based variations, Expansion and Swap run slowest, with almost twice longer than BP­

Liu in hand image set, but close to BP-Liu in hip image set. The number of pixels in a 

hand image is 2.38 times of that in a hip image; the running time in hand image is 4.35 

times of that in hip image using BP-Liu. But using Expansion or Swap, the time ratios 

become 10.42 and 22.58. 
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Expansion Swap TRW-S 

29.49 27.09 6.47 

28.52 26.66 6.46 

12.16 12.30 0.03 

Expansion Swap TRW-S 

2.83 2.34 1.43 

2.78 2.32 1.42 

0.60 0.32 0.01 

Table 4.14 Statistics oflabel transfer time using different MRF optimizers 

In hand image set, statistical measures are calculated from 168 samples ( 4 features, 2 bilateral 
treatments, 3 neighborhood/prior configurations in 7 test images). Similarly, in hip set, we have 
312 samples for the 13 test images. The unit is second. 
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Left boxplots are for hand image set and the right ones are for the hip image set. The unit is 
second. 

Considering the results in Section 4.3.l that BP-Sis not a suitable MRF optimizer due to 

the poor accuracy, and that the other 5 optimizers produce insignificant accuracy 

differences, we believe TR W-S is the better optimizer for this system. 
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Feature flow running time is not dependent on. the optimizers, neighborhood/prior 

configuration or bilateral treatments because feature flow is the first step in the. system. 

Here, we compare the flow estimation times using 4 different feature descriptors. Table 

4.15 shows the mean and median of flow estimation times using the four different feature 

descriptors. Boxplots of label transfer recognition times on feature descriptors across all 

images are shown in Fig. 4.15. 

Hand image set SIFT SURF STSF SSLH 

mean 67.23 58.13 76.86 125.36 

median 67.37 58.18 76.85 125.43 

standard deviation 0.86 0.57 0.63 1.22 

Hip image set SIFT SURF STSF SSLH 

mean 28.19 24.25 31.80 52.44 

median 28.17 24.25 31.79 52.40 

standard deviation 0.25 0.21 0.31 0.44 

Table 4.15 Statistics of flow estimation time using different feature descriptors 

In hand image set, statistical measures are calculated from 42 samples (2 bilateral treatments, 3 
neighborhood/prior configurations in 7 test images). Similarly, in hip set, we have 78 samples for 
the 13 test images. The unit is second. 

SSLH-flow relies on the results of SIFT-flow and SURF-flow, hence its estimation time 

is just the sum of the other two. Because the STSF descriptor is the concatenation of 

SIFT and SURF descriptor, containing 192 components, it is reasonable that STSF-flow 

has a longer computation time than SIFT-flow. The SURF descriptor contains only 64 

components, and the SIFT descriptor contains 128. Not surprisingly, SURF-flow was 

faster than SIFT-flow as well. Variations are very small; this indicates flow estimations 
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across different configurations are very consistent. Hence, SURF may be the best feature 

descriptor based on the fact there was insignificant accuracy differences among SIFT, 

SURF, and SSLH. 
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Fig. 4.15 Recognition time on feature 

Left boxplots are for hand image set and the right ones are for the hip image set. The unit is 
second. 
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4.4 Discussion 

The mean correctness rates across all 144 conditions are 89.3% for the hand image set 

(image 6 excluded) and 82.58% for the hip image set. The instances with best overall 

recognition rates are shown in Table 4.16. The correctness rates are higher than 95% 

among these best instances. The best recognized images are image 4 and image 7 in the 

hand image set, and image 9 and image 11 in the hip set. Although these results are quite 

high compared to those achieved in natural scene parsing by Liu and colleagues [1], we 

still cannot find solid evidence to prove the Label Transfer System is reliable in 

segmenting medical images. 

First, despite the claim that utilizing SIFT descriptor can achieve good performance in 

rotation-invariant cases, our results show otherwise. For example, the recognition results 

of, the slightly rotated thumb in hand image 4, the rotated carpals in hand image 5 hand, 

and the extreme case of image 6, are very disappointing. Also, statistics of Table 4.3 

shows that, among bony structures in hand, the 1st distal phalange and the 5th distal 

phalange are the worst recognized. This may be due to their outmost positions that cause 

rotation to produce the greatest displacement among all hand bones. The reason that 

SIFT descriptor does not give expected rotation invariant ability may lie on the fact that 

dense SIFT in Label Transfer System does not consider multiple orientations at single 

position and sacrifices detection and localization precisions as stated in Section 3 .2.1. 
\ 

Also, the problem may be rooted in the mathematical model of flow estimation, which 
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articulates displacement penalties without addressing that existence of rotations may 

cause large displacements. 

Hand image set 
Image# 4 4 4 4 4 4 7 7 7 7 

Feature 4 2 2 3 3 3 3 3 3 3 

Optimizer 3 1 1 6 4 2 1 2 6 5 

Bilateral 2 2 2 2 2 2 2 2 2 2 

NH/Prior 3 3 1 2 2 2 3 3 3 3 
Correctness 

0.9722 0.9819 0.9820 0.9796 0.9827 0.9823 0.9539 0.9528 0.9590 0.9602 
Rate 1 

Correctness 
0.9653 0.9636 0.9634 0.9585 0.9584 0.9550 0.9543 0.9542 0.9537 0.9532 Rate 2 

Hip image set 

Image# 11 9 11 9 11 11 9 11 11 11 

Feature 4 1 4 1 4 2 4 2 2 4 

Optimizer 1 4 2 5 6 1 6 2 2 5 

Bilateral 1 1 1 1 1 1 1 1 2 1 

NH/Prior 2 2 2 2 2 2 2 2 2 2 
Correctness 

0.8632 0.9356 0.8606 0.9353 0.8598 0.8676 0.9642 0.8600 0.8504 0.8605 Rate 1 
Correctness 

0.9611 0.9603 0.9601 0.9597 0.9592 0.9591 0.9589 0.9588 0.9586 0.9582 Rate2 

Table 4.16 Instances with highest overall correctness rates 

Instances are sorted by correctness rate 2 in descending order. In hand image set, correctness rate 
2 is calculated by excluding labels "Picture" and "Hand". In hip set, correctness rate 2 is obtained 
by excluding labels "Picture" and "Body". 

Another finding is, for structures displaced by a large amount, as long as the features are 

highly distinguishable, the results are good. For example, in hip image 3, even though the 

image is shifted upwards compared to the other hip images, the structures are still well 

recognized. But for structures with less distinguishable features, the results become much 
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worse.· For example, the middle fing~r and index finger of hand image 2 are mixed up 

because they are close to each other .yet have similar structures. Small structures such as 

the hip sockets are not well distinguished from surrounding structures. Soft tissues in hip 

image set also cause ambiguity to the system. This indicates the Label Transfer System 

may require more distinguishable feature descriptor. 

Another problem is that certain structures may not be recognized because the templates 

lack these structures or contain smaller portions of these structures; such structures 

include the Ulna, Radius in the hand images. This indicates, to a certain degree, the 

system depends on prior information on the training templates. 

Although the system does not work well with extreme low quality images such as hip 

image 8, in general, the system performs well in images with signal inhomogeneity and 

low contrast contents. This may benefit from the luminance invariant of SIFT or SURF 

features. 

In searching for better combinations of the four major factors (feature descriptor, MRF 

optimizer, preprocessing filter, neighborhood/prior configuration) in the system, we have 

the following findings. STSF is not considered a good feature descriptor. Among the 

remaining three descriptors, there is no significant difference in recognition accuracy . 

.SURF gives fastest performance and SURF may be considered the best descriptor. 

Similarly, BP-Sis not considered a good MRF optimizer.TRW-Sis the fastest and is 
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considered the best choice because there were ·no significant accuracy differences among 

the remaining 5. optimizers. Bilateral filtering did not produce consistent differences for 

both hand images and hip images; however,. the best recognized hand instances were 

treated by bilateral filter. Neighborhood/prior configurations did not produce significant 

differences. But since TkMP involves multiple training templates (K nearest neighbors), 

For each neighbor, the system needs to find the flow between this neighbor and the test 

image. It is likely (K ~ 2) that multiple flow estimations have to be calculated for one 

test image. Because the major bottle neck in this system is the flow estimation, TkMP is 

substantially slower than Tl SP and Tl MP. Also, Tl MP traverses all training set to 

calculate prior but Tl SP only needs one Gaussian filter operation. Hence, Tl SP is 

considered a better approach based on the insignificant accuracy among the three 

configurations. From N-way ANOVA, we do not see changes of the 4 factors can give 

consistent or substantial improvements in terms of recognition accuracy. 

Finally, as stated in Section 4.2.1, variations ofrecognition rates are generally large in the 

hand set. As stated in Section 4.3.6, n-way ANOVA showed that the 'image' factor had 

significant effects on performance. The 'image' factor seems to be the most influential 

factors of Label Transfer System; thus, the variations for the Label Transfer System we 

studied do not fulfill our goal to find a generic automatic segmentation system across 

variant medical images. 
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·Chapter Five: Conclusions and Outlook 

We explored and assessed the Label Transfer System for segmentation of medical x-ray 

images. We also attempted to modify certain factors in this system to search for 

performance improvements. The results showed recognition correctness rates higher than 

those in natural scene parsing applications, but the results were judged to be not reliable 

enough for clinical use. Variations of this system did provide performance improvements 

in certain images, but the improvements were not consistent across all images. In this 

chapter, we conclude the feasibility of using feature-flow and label transfer system to 

segment medical images with deformed anatomy in orthopedic surgery. Furthermore, we 

describe the future work can be done that may make use of this method in medical image 

segmentation. 

5.1 Future work 

Even though, we created and assessed many variations (144 in total) of the Label 

Transfer System by altering some major factors, there are still some possible options we 

did not implement in our assessment platform. 

1) We did test different MRF optimizers in the label transfer module, but we did not 

implement these optimizers in the feature flow estimation procedure. Liu' s belief 

propagation algorithm (BP-Liu) was designed to incorporate decoupling of the 



136 

smoothness term in :flqw estimation; ksimilar. de~oupling would need to be.-intc'grated ·. . ··: .. 

with .the other: optimizers we studied.before they could be used for feature·fto:w.' , :;. · .. · -. 1 .. / -·: .:. •• , 

estimation. .,-··:.· ,,1 

2) The feature flow estimation model-may put too much constraint on djsplace'meilts and · 

thus limit the possibility of rotations. We may consider a better model that ·can take both 

into account. 

3) The robust feature descriptors did not give the expected rotation-invarianfperformance. 

This may due to the fact that dense features omit the existence of multiple orientations at 

a single location. The lack of rotation invariance is problematic for highly articulated 

structures such as the hand where the angle between the individual fingers can vary, and 

the relative rotation between individual bones can vary dramatically (such as in the 

rheumatoid arthritis hand). A parts-based segmentation approach, where the individual 

parts that make up the object are detected, might be a better alternative for highly 

articulated anatomy. 

5.2 Conclusions 

While atlas-based methods and model-based methods are considered the most advanced 

state-of-art medical segmentation methods, they are built on specific or isolated structures 

and relatively consistent knowledge base. They have not been shown to work well in 

cases with highly variable anatomies, such as when unusual distortions and deformations 

are present. Liu and colleagues' Label Transfer System utilizes robust local feature flow 

and is able to preserve discontinuities between objects. This may give us the opportunity 
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to incorporate such a system in inventing reliable medical image segmentation methods 

that can handle unpredictable situations with least prior infonnation. However, this goal 

is extremely difficult to achieve. 

In this thesis, evaluation results of Label Transfer System and its variations showed that. 

this system achieved better recognition rates than those in natural scene parsing 

applications. The high recognition rates were not consistent across all images or 

structures. And even in the best instances, the correctness rates were not accurate enough 

to be considered clinically practical. 

Variations achieved by altering factors such as, feature descriptor, MRF optimizers, 

preprocessing filters, and neighborhood/prior settings obtained performance improvement 

for specific images or structures. But again, these improvements did not appear to be 

consistent. 

We conclude that the Label Transfer System and its variations presented in this paper 

cannot provide reliable segmentation for medical images. Although they cannot be used 

as a standalone segmentation tool in practice, it is still possible that we may improve this 

system by other means or incorporate this system with other medical segmentation tools. 
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