292 research outputs found

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Get PDF
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators

    Efficient Neural Networks for Tiny Machine Learning: A Comprehensive Review

    Full text link
    The field of Tiny Machine Learning (TinyML) has gained significant attention due to its potential to enable intelligent applications on resource-constrained devices. This review provides an in-depth analysis of the advancements in efficient neural networks and the deployment of deep learning models on ultra-low power microcontrollers (MCUs) for TinyML applications. It begins by introducing neural networks and discussing their architectures and resource requirements. It then explores MEMS-based applications on ultra-low power MCUs, highlighting their potential for enabling TinyML on resource-constrained devices. The core of the review centres on efficient neural networks for TinyML. It covers techniques such as model compression, quantization, and low-rank factorization, which optimize neural network architectures for minimal resource utilization on MCUs. The paper then delves into the deployment of deep learning models on ultra-low power MCUs, addressing challenges such as limited computational capabilities and memory resources. Techniques like model pruning, hardware acceleration, and algorithm-architecture co-design are discussed as strategies to enable efficient deployment. Lastly, the review provides an overview of current limitations in the field, including the trade-off between model complexity and resource constraints. Overall, this review paper presents a comprehensive analysis of efficient neural networks and deployment strategies for TinyML on ultra-low-power MCUs. It identifies future research directions for unlocking the full potential of TinyML applications on resource-constrained devices.Comment: 39 pages, 9 figures, 5 table

    Noise Robust Keyword Spotting Using Deep Neural Networks For Embedded Platforms

    Get PDF
    The recent development of embedded platforms along with spectacular growth in communication networking technologies is driving the Internet of things to thrive. More complex tasks are now possible to operate in small devices such as speech recognition and keyword spotting which are in great demand. Traditional voice recognition approaches are already being used in several embedded applications, some are hybrid(cloud-based and embedded) while others are fully embedded. However, the environment surrounding the embedded devices is usually accompanied by noise. Conventional approaches to add noise robustness to speech recognition are effective but also costly in terms of memory consumption and hardware complexities which limit their use in embedded platforms. The purpose of this thesis is to increase the robustness of keyword spotting to more than one type of noise at once without increasing the memory footprint or the need for a denoiser while maintaining the recognition accuracy to an acceptable level. In this work, robustness in treated at the phoneme classification level as the phoneme based keyword spotting is the best technique for embedded keyword spotting. Deep Neural Networks have been successfully deployed in many applications including noise robust speech recognition. In this work, we use mutil-condition utterances training of a Deep Neural Networks model to increase the keyword spotting noise robustness. This technique is also used for a Gaussian mixture model training. The two approaches are compared and the deep learning proved to not only outperform the Gaussian approach, but has also outperformed the use of a denoiser system. This results in a smaller, more accurate and noise robust model for phoneme recognition

    LUT-NN: Empower Efficient Neural Network Inference with Centroid Learning and Table Lookup

    Full text link
    On-device Deep Neural Network (DNN) inference consumes significant computing resources and development efforts. To alleviate that, we propose LUT-NN, the first system to empower inference by table lookup, to reduce inference cost. LUT-NN learns the typical features for each operator, named centroid, and precompute the results for these centroids to save in lookup tables. During inference, the results of the closest centroids with the inputs can be read directly from the table, as the approximated outputs without computations. LUT-NN integrates two major novel techniques: (1) differentiable centroid learning through backpropagation, which adapts three levels of approximation to minimize the accuracy impact by centroids; (2) table lookup inference execution, which comprehensively considers different levels of parallelism, memory access reduction, and dedicated hardware units for optimal performance. LUT-NN is evaluated on multiple real tasks, covering image and speech recognition, and nature language processing. Compared to related work, LUT-NN improves accuracy by 66% to 92%, achieving similar level with the original models. LUT-NN reduces the cost at all dimensions, including FLOPs (≤\leq 16x), model size (≤\leq 7x), latency (≤\leq 6.8x), memory (≤\leq 6.5x), and power (≤\leq 41.7%)

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    WAKE WORD DETECTION AND ITS APPLICATIONS

    Get PDF
    Always-on spoken language interfaces, e.g. personal digital assistants, rely on a wake word to start processing spoken input. Novel methods are proposed to train a wake word detection system from partially labeled training data, and to use it in on-line applications. In the system, the prerequisite of frame-level alignment is removed, permitting the use of un-transcribed training examples that are annotated only for the presence/absence of the wake word. Also, an FST-based decoder is presented to perform online detection. The suite of methods greatly improve the wake word detection performance across several datasets. A novel neural network for acoustic modeling in wake word detection is also investigated. Specifically, the performance of several variants of chunk-wise streaming Transformers tailored for wake word detection is explored, including looking-ahead to the next chunk, gradient stopping, different positional embedding methods and adding same-layer dependency between chunks. Experiments demonstrate that the proposed Transformer model outperforms the baseline convolutional network significantly with a comparable model size, while still maintaining linear complexity w.r.t. the input length. For the application of the detected wake word in ASR, the problem of improving speech recognition with the help of the detected wake word is investigated. Voice-controlled house-hold devices face the difficulty of performing speech recognition of device-directed speech in the presence of interfering background speech. Two end-to-end models are proposed to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake word segment of the audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. A multi-task learning setup is also explored where the ideal mask, obtained from a data synthesis procedure, is used to guide the model training. In addition, a way to synthesize "noisy" speech from "clean" speech is also proposed to mitigate the mismatch between training and test data. The proposed methods show large word error reduction for Amazon Alexa live data with interfering background speech, without sacrificing the performance on clean speech
    • …
    corecore