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Abstract

Always-on spoken language interfaces, e.g. personal digital assistants, rely on a wake

word to start processing spoken input. Novel methods are proposed to train a wake word

detection system from partially labeled training data, and to use it in on-line applications.

In the system, the prerequisite of frame-level alignment is removed, permitting the use

of un-transcribed training examples that are annotated only for the presence/absence of the

wake word. Also, an FST-based decoder is presented to perform online detection. The suite

of methods greatly improve the wake word detection performance across several datasets.

A novel neural network for acoustic modeling in wake word detection is also inves-

tigated. Specifically, the performance of several variants of chunk-wise streaming Trans-

formers tailored for wake word detection is explored, including looking-ahead to the next

chunk, gradient stopping, different positional embedding methods and adding same-layer

dependency between chunks. Experiments demonstrate that the proposed Transformer

model outperforms the baseline convolutional network significantly with a comparable

model size, while still maintaining linear complexity w.r.t. the input length.

For the application of the detected wake word in ASR, the problem of improving speech
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recognition with the help of the detected wake word is investigated. Voice-controlled

house-hold devices face the difficulty of performing speech recognition of device-directed

speech in the presence of interfering background speech. Two end-to-end models are pro-

posed to tackle this problem with information extracted from the anchored segment. The

anchored segment refers to the wake word segment of the audio stream, which contains

valuable speaker information that can be used to suppress interfering speech and back-

ground noise. A multi-task learning setup is also explored where the ideal mask, obtained

from a data synthesis procedure, is used to guide the model training. In addition, a way to

synthesize “noisy” speech from “clean” speech is also proposed to mitigate the mismatch

between training and test data. The proposed methods show large word error reduction

for Amazon Alexa live data with interfering background speech, without sacrificing the

performance on clean speech.

Primary Reader and Advisor: Prof. Sanjeev Khudanpur

Secondary Reader: Dr. Daniel Povey, Prof. Philipp Koehn
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Chapter 1

Introduction

1.1 The Wake Word Detection Problem

Always-on spoken language interfaces, e.g. personal digital assistants, often rely on a

wake word to start processing spoken input. Wake word detection is the task of detecting

a predefined keyword from a continuous stream of audio. It has become an important

component in today’s voice-controlled devices, like the Amazon Echo, Google Home or

smart phones. Voice-controlled devices work in the low power mode most of time, with

wake word detection system running in the background. When people wish to to interact

with such devices by voice, usually they “wake-up” the devices by saying a predefined

word or phrase like “Alexa” for Amazon Echo or “Okay Google” for Google Home. If the

word is identified and accepted, the device turns on, i.e. goes into a state with higher power

1



consumption to recognize and understand subsequent more complex spoken instructions

[131]. A wake word detection system has the following considerations/constraints:

• Power efficient: Due to privacy issue, the wake word detection system usually runs

on a local device with limited computational resources and power source. In order to

save more power for later interactions with users, the wake word system should run

with low power consumption.

• Small memory footprint: Memory on voice-controlled devices is also limited to save

both cost and power, requiring low peak memory usage during the detection.

• Low latency: Since the wake word detection system often serves as a triggering

system for later interactions between users and devices, in order to improve the user’s

experience in the human-device conversations, a wake word should be triggered as

soon as possible after the user has finished uttering it.

The wake word detection task has some similarity with the better studied keyword spot-

ting (KWS) task [120]: both of them are trying to answer whether and where a given word

appears in a long audio segment. However, they also have several differences: 1) a wake

word is usually a predefined word that is fixed throughout training and detection, while in

KWS the word is unknown during training and it is sometimes even when the system pro-

cesses the test audio, and it can be any words, even out of vocabulary (OOV); 2) during the

detection/test period, a wake word detection system is run in an online streaming fashion,

meaning that we do not wait for the whole audio stream to be processed for determining the
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presence of the wake word, but instead we start the detection as soon as the audio stream

becomes available, and report the positive trigger once a wake word is detected with high

confidence, while a KWS system usually works offline and tolerates more latency; and

3) due to their application scenarios, wake word detection task have more restrictions in

computation and memory resources than KWS.

The above characteristics and constraints make straightforward automatic speech recog-

nition (ASR) based methods, which are widely used for KWS, inapplicable for wake word

detection. An ASR based system needs to train both an acoustic model and a language

model to recognize word or subword units, requiring large amount of well transcribed

data. During decoding, it usually generates lattices that keywords can be searched over.

Although ASR based methods attain good KWS performance, they require large vocabu-

lary coverage, more computational resources for both training and decoding, and also time

consuming, making it difficult to deploy in applications, like wake word detection.

As a result, most of the wake word detection systems only build an acoustic model with

very few modeling units, e.g., one for the predefined word and one for all other words.

Post processing is then applied on top of the output of the acoustic model. either with

post-smoothing or search on the decoding graph.

Similar to ASR, modern wake word detection systems can be constructed with either

hybrid Hidden Markov model (HMM) / deep neural network (DNN) [87], [117], [132],

[138] or pure neural networks [8], [41], [49], [104], [108]. In Chapter 3 we propose a
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hybrid HMM/DNN system that achieves state-of-the-art performance among other systems

on three wake word datasets.

In both kinds of wake word detection systems, certain neural network architectures are

popular for acoustic modeling to encode the input features of an audio recording into a

high level representation. It is conventional to use convolutional networks because of their

streaming nature and efficient computations while achieving good detection accuracy. Re-

cently the self-attention structure, as a building block of the Transformer networks [123],

has been explored in both NLP and speech communities for its capability of modeling con-

text dependency for sequence data without recurrent connections [54], [123]. We explore

several streaming variants of such architectures in Chapter 4 and show their advantages

over simple convolutions.

1.2 The Wake-Word-Assisted Speech Recogni-

tion Problem

The goal of wake word detection is to “wake up” the device for later voice interaction

with the the same person who wakes up the device. However, the real world environment is

sometimes not ideal, in the sense that the speech from that person (called “device-directed

speech”) is possibly interfered with by background speech from other people or other media

devices. Then the problem is how to recognize the device-directed speech and ignore the

interfering speech using speaker information from the wake word segment, which we call
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anchored speech recognition. The challenge of this task is to learn a speaker representation

from a short segment corresponding to the wake word.

We tackle the anchored speech recognition problem in the scenario where a foreground

speaker first wakes up a voice-controlled device with an “anchor word”, and the speech

after the anchor word is possibly interfered with by background speech from other people

or media. Consider the following example:

SPEAKER 1: Alexa, play rock music.

SPEAKER 2: I need to go grocery shopping.

Here the wake word “Alexa” is the anchor word, and thus the utterance by SPEAKER 1 is

considered as device-directed speech, while the utterance by SPEAKER 2 is the interfering

speech. Our goal is to extract information from the anchor word in order to recognize the

device-directed speech and ignore the interfering speech. We propose our solution to such

problem for end-to-end ASR in Chapter 5.

1.3 Contribution of this Dissertation

We have identified key research issues regarding wake word detection systems and their

applications in speech recognition. Those are the issues that we address in this dissertation.

The dissertation makes the following contributions.

1. We propose a suite of methods to build a hybrid HMM-DNN system for wake word

detection, including:
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(a) Sequence-discriminative training based on alignment-free LF-MMI loss, re-

moving the need for knowing the location of the wake word in each training

example.

(b) Whole-word HMMs for the wake word and filler speech, removing the need for

transcripts of the training speech or pronunciation lexicons.

(c) An online decoder tailored to the low latency constraints of the wake word

detection task.

The first two features significantly reduce model size and greatly simplify the train-

ing process, while the last one is suitable for a fast online detection. We evaluate

our methods on two publicly available real data sets, showing 50%–90% reduction

in false rejection rates at prespecified false alarm rates over the best previously pub-

lished figures, and re-validate them on a third (large) data set from an industry col-

laborator.

2. We explore the performance of several variants of chunk-wise streaming Transform-

ers tailored for wake word detection in the above LF-MMI system, including looking-

ahead to the next chunk, gradient stopping, different positional embedding methods

and adding same-layer dependency between chunks. We demonstrate that the pro-

posed Transformer model outperforms the baseline convolutional network by 25%

on average in false rejection rate at the same false alarm rate as a baseline model
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with a comparable size, while still maintaining linear complexity w.r.t. the sequence

length.

3. We develop a fully parallelized PyTorch implementation of alignment-free LF-MMI

training for the streaming Transformer models, supporting GPU training on both

numerator and denominator graphs. It can be used for both wake word detection and

ASR, contributing to the broader speech research community.

4. We propose two encoder-decoder-with-attention (or named “attention-based

encoder-decoder”) models to tackle the anchored speech recognition problem using

information extracted from the anchored segment. The anchored segment refers

to the wake word part of an audio stream, which contains the speaker information

needed to suppress interfering speech and background noise.

(a) The first method is called Multi-source Attention where the attention mecha-

nism takes both the speaker information and decoder state into consideration.

(b) The second method directly learns a frame-level mask on top of the encoder

output.

(c) We also explore a multi-task learning setup where we use the ground truth of

the mask to guide the learner.

The proposed methods show up to 15% relative reduction in WER for Amazon Alexa

live data with interfering background speech without significantly degrading on clean

speech.
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This dissertation is organized as follows. We firstly introduce necessary background

in Chapter 2, which includes traditional HMM-based and more recent neural end-to-end

speech recognition approaches, trained with either frame-level or sequence-level loss, dif-

ferent challenges that wake word detection has from speech recognition and how existing

wake word detection systems are therefore designed. In Chapter 3 we will detail our pro-

posed HMM-based wake word detection system, providing thorough experimental results

and analyses. Chapter 4 proposes a streaming version of Transformer neural networks and

demonstrate its effectiveness in acoustic modeling for wake word detection. Chapter 5

presents approaches for anchored speech recognition with the detected wake word segment

as an anchor. We finally make conclusions in Chapter 6.
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Chapter 2

Background

2.1 Speech Recognition

Speech has been one of the most important ways for human to communicate with each

other and convey information and knowledge, since long before writing systems were in-

vented. Historically speech from people in important occasions or events were transcribed

into books manually. In our age, thanks to the development of information technologies,

computers can now do such a job quite well automatically. The task of speech transcription,

also known as automatic speech recognition (ASR) [146], refers to a computer program that

transcribes human speech from audio into text. Note that the ASR task does not involve the

process of “understanding” the content of speech. So a successful ASR system itself does

not necessarily imply that computers can, for example, take instructions from human, un-
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derstand the intention, or respond appropriately. These problems are subjects of extensive

study in the current human language technology literature (e.g. [93], [142]).

Almost all successful ASR systems today tackle the problem from a probabilistic per-

spective. Mathematically, if we denote the observed audio as O (either the raw waveform

or a suitable predefined acoustic representation called “features”, e.g., spectrogram [33],

filter bank outputs [99], mel-frequency cepstral coefficients [78] (MFCCs), or perceptual

linear predictive [43] (PLP)) and its word transcription as𝑊 , the goal of ASR is to find the

most probable word sequence given O:

W∗ = arg max
W

𝑃(W|O) (2.1)

The process of finding the best sequence hypothesis as shown in Eq. (2.1) is called

“decoding” in ASR.

The ASR problem fits in the supervised learning paradigm, where given the input fea-

tures (here it is O), the machine learning model is trained to predict the label/class (here

it is W). There are generally two types of probabilistic models for supervised learning:

generative models and discriminative models, each of which represents one mainstream of

approaches to tackle the ASR problem today. In the next section we will introduce the

HMM based approaches as generative models. Our work on the wake word detection also

falls in this category. Then we will introduce the so-called “end-to-end” approaches most
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of which are basically discriminative ones and have recently gain much popularity. Our

work on wake-word assisted ASR belongs to this category.

The most common metric of evaluating the performance of an ASR system is word

error rate (WER). WER measures the minimal number of allowed operations required in

order to change the reference sequence to the hypothesis sequence. Allowed operations to

the hypothesis sequence includes substituting an existing word with another one, inserting

a word at a position, or deleting an existing word, Mathematically, let’s assume the hy-

pothesis is a word sequence h = [ℎ1, ℎ2, . . . , ℎ𝑀] of length 𝑀 and the reference is a word

sequence r = [𝑟1, 𝑟2, . . . , 𝑟𝑁 ] of length 𝑁 , then WER of h is computed as:

𝑊𝐸𝑅 =
𝑆 + 𝐼 + 𝐷

𝑁
(2.2)

where 𝑆, 𝐼 and 𝐷 are the number of substitution, insertion and deletion operations applied

to r. WER is normalized by the length of r to make it comparable among sequences

of varying lengths. The numerator part of Eq. 2.2 is well-known in computer science as

Levenshtein distance [69], and it can be efficiently computed with dynamic programming.

2.1.1 HMM based Systems

Generative models learn the joint probability distribution of both labels and features

𝑃(W,O), which can further be decomposed into the product of 𝑃(W) and 𝑃(O|W) using

Bayes’ Theorem. The assumption is that, the data is generated by first sampling the labels
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W from a prior probability distribution, and then generating the features O from a condi-

tional distribution given the labels. The parameters of 𝑃(W), 𝑃(O|W) are estimated from

training data. For prediction, by applying Bayes Rule, Eq. (2.1) can be rewritten as:

W∗ = arg max
W

𝑃(W|O) (2.3)

= arg max
W

𝑃(O|W)𝑃(W)
𝑃(O)

= arg max
W

𝑃(O|W)𝑃(W)

In ASR, 𝑃(O|W) and 𝑃(W) are obtained from an acoustic model and a language model

respectively. Before decoding, a decoding graph, usually represented with a Weighted

Finite State Transducer (WFST, explained in the next section), is constructed to constrain

the search space with the language model [141]. During decoding, the score from the

language model will be combined with the score from the acoustic model to find the path

through the WFST with the best combined score among all permissible paths in the search

space. That best path corresponds to recognized word sequence.

The most widely used generative model for 𝑃(O|W) in ASR is the hidden Markov

model (HMM) [144], where the temporal dynamics of linguistic units are modeled via

transition probabilities under the Markov assumption, and acoustic features given linguistic

units are modeled via emission probabilities. Note that here we use the term “linguistic

units” rather than “words”, as practically, we do not directly use words as modeling units

in acoustic modeling due to data scarcity issue for very large vocabulary; instead finer-
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granularity ones like phonetic [50] or graphemic [65] units L are used with a lexicon as:

𝑃(O|W) =
∑︂

L∈L(W)
𝑃(O|L)𝑃(L|W) (2.4)

where L(W) is the set of all possible phonetic/graphemic sequences corresponding to the

word sequence W. 𝑃(L|W) is static and is usually given by a lexicon, while 𝑃(O|L) can

be considered as the probability of the frame sequence under a long HMM concatenated

from several small HMMs each of which corresponds to a subword unit (e.g., phoneme or

grapheme, etc) in L:

𝑃(O|L) =
∑︂

S∈A(L)
𝑃(O, S|L) =

∑︂
S∈A(L)

𝑇∏︂
𝑡=1

𝑃(𝑜𝑡 |𝑠𝑡)𝑃(𝑠𝑡 |𝑠𝑡−1) (2.5)

where A(L) is the set of all possible HMM state sequence of length 𝑇 subject to 𝐿,

𝑃(𝑜𝑡 |𝑠𝑡) is the emission probability of 𝑜𝑡 given the state 𝑠𝑡 , and 𝑃(𝑠𝑡 |𝑠𝑡−1) is the transition

probability from 𝑠𝑡−1 to 𝑠𝑡 in HMMs. Note that the states as random variables are unob-

served (hidden), so the summation over these random variables in Eq. (2.5) is needed to

marginalize all possible values.

2.1.1.1 Weighted Finite-state Transducers

First we introduce finite-state automaton (FSA) [34]. An FSA defines a directed graph

which accepts a set of strings. The nodes in the graph represent states and the arcs be-
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tween nodes represent transitions between these states. Formally, an FSA is a 5-tuple

(𝑄,Σ, 𝐼, 𝐹, 𝛿) such that:

• 𝑄 is a finite set of states;

• Σ is a finite set of input alphabet;

• 𝐼 is a subset of 𝑄 representing initial states;

• 𝐹 is a subset of 𝑄 representing final states;

• 𝛿 ⊆ 𝑄 × (Σ⋃︁{𝜖}) ×𝑄 is the set of transitions, where 𝜖 is the empty string meaning

“no symbol”.

A weighted finite-state automaton (WFSA) is an extension of FSA where a weight is

associated with each transition and optionally with initial and final states, so that each ac-

cepted string has an associated weight which is the “multiplication” of all weights along the

path corresponding to that string. Note that “multiplication”, along with another operation

“addition”, is defined in an algebraic structure named “semiring” [82].

A finite-state transducer (FST) [52] is a generalization of an FSA, where it defines

relations of two sets of strings. In addition to a set of input strings that an FSA accepts,

an FST defined another set of output strings that input strings map to. An FSA can be

seen as a special case of an FST when the input and output set of strings are identical and

the mapping is the identity function. Similarly, FST can also been extended to Weighted

Finite-state Transducer (WFST). Therefore, a WFST can be defined on top of a WFSA as
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an 8-tuple (𝑄,Σ, Γ, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) with 𝑊 being the set of weights, where 𝑄,Σ, 𝐼, 𝐹 are the

same as the definitions above, and:

• Γ is a finite set of output alphabet;

• 𝛿 ⊆ 𝑄 × (Σ⋃︁{𝜖}) × (Γ⋃︁{𝜖}) ×𝑄 ×𝑊 is the set of transitions, where 𝜖 is the empty

string meaning “no symbol”;

• 𝜆 : 𝐼 → 𝑊 is the mapping from initial states to weights;

• 𝜌 : 𝐹 → 𝑊 is the mapping from final states to weights.

composition is an operation defined on two FSTs1. If FST 𝐴 transduces string 𝑥 to

𝑦 and FST 𝐵 transduces string 𝑦 to 𝑧, then the composition 𝐴 ◦ 𝐵 transduces string 𝑥 to

𝑧. Composition is important in speech recognition because it is able to combine different

granularity levels of symbols together. For example, as mentioned in Section 2.1.1, the

decoding graph is represented as an FST, which is a composition of 4 FSTs: 𝐻 ◦𝐶 ◦ 𝐿 ◦𝐺.

𝐻 is an HMM (represented as an FST) that transduces phone states to context-dependent

phones (see Figure 2.1 for an example FST transducing all allowed phone state sequences

to one context-dependent phone). 𝐶 is an FST that transduces context-dependent phones

to context-independent (mono-) phones. 𝐿 is a lexicon transducing mono-phones to words.

𝐺 is a language model, which is usually an FSA specifying the probability of an accepted

word sequence. Therefore, composition allows the decoding graph to directly transduce a

phone state sequence to a word sequence with an associated weight as a “score” measuring
1The remaining of this dissertation will use the terminology “FST” and “WFST” interchangeably to refer

to weighted finite-state transducer if not otherwise specified, following the convention in speech recognition.
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how likely each word sequence would be. Interested readers may refer to [82] for more

details on how WFSTs are used in speech recognition.

0

0:0

11:1

0:0

22:0

0:0

33:0

0:0

44:0

Figure 2.1: An example FST transducing phone state sequences to a phone indexed with 1.
Every arc represents a transition, and the pair of numbers associated with an arc are indexes
of pdf-ids (used for emissions in HMMs) and a phone respectively (0 is the index of blank
in the input and the index of 𝜖 in the output). So this FST defines a phone with 4 pdf-ids.

2.1.1.2 Deep Neural Networks for Acoustic Modeling

Traditionally Gaussian mixture models (GMM) [5] were used to estimate the emission

probabilities 𝑃(𝑜𝑡 |𝑠𝑡) in HMMs, in which case the whole model is called “HMM-GMM”.

With the recent success of deep learning and advances of graphics processing units (GPUs),

deep neural networks (DNN) have replaced GMMs [45] because of their stronger modeling

power. Such “HMM-DNN” models are referred to as “hybrid systems” in literature as they

are hybrid of two different types of probabilistic models: a Bayesian network [62] (i.e.

HMM) and a neural network.

The transition probabilities in HMM-DNN models are usually obtained from a prior

training stage (e.g. HMM-GMM training), and the neural network can be trained either
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with a frame-level loss or a sequence-level loss. If trained with a frame-level loss (e.g.,

cross-entropy loss), the output of the neural network DNN can be roughly interpreted as

the conditional probability 𝑃(𝑠𝑡 |𝑂) for the frame at time step 𝑡2. However the frame-level

label 𝑠𝑡 are not directly available from the ASR training transcripts (i.e., word sequence).

On the other hand, research (e.g. [45]) has shown that HMM-GMM models could provide

reliable estimate of the HMM state occupancy for each frame. Therefore, 𝑠𝑡 is inferred from

a trained HMM-GMM model3 via a process called “forced alignment”, and is actually the

result of performing Viterbi decoding [125]. Note however that what we actually need in

Eq. 2.5 is 𝑃(𝑜𝑡 |𝑠𝑡), which can be obtained by resorting to Bayes Rule again:

𝑃(𝑜𝑡 |𝑠𝑡) ∝
𝑃(𝑠𝑡 |𝑜𝑡)
𝑃(𝑠𝑡)

(2.6)

where the state prior 𝑃(𝑠𝑡) is estimated from the forced alignment of the entire training

scripts produced by HMM-GMM models.

Neural networks used for acoustic modeling have also been evolved over the past years.

The name “DNN” initially refers to a type of neural networks with several feed-forward

layers [45], where each layer can be described as

y = 𝜎(Wx + b) (2.7)

2We use “roughly” to emphasize that the neural output cannot be interpreted exactly the same way as the
corresponding probability in GMM.

3The HMM-GMM model itself is trained with the Expectation-Maximization algorithm [5].
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where x ∈ R𝑑𝑖𝑛 is the input to the layer, y ∈ R𝑑𝑜𝑢𝑡 is the output, W ∈ R𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 , b ∈ R𝑑𝑜𝑢𝑡

are trainable parameters (or “weights”), and 𝜎(·) is an activation function which is usu-

ally implemented as an element-wise non-linearity function, e.g. Rectified Linear Unit

( 𝑓 (𝑥) = 𝑥 if 𝑥 ≥ 0 or 0 otherwise) or Sigmoid ( 𝑓 (𝑥) = 1
1+𝑒 (−𝑥) ). According to universal

approximation theorem [25], [47], a multilayer feed-forward neural network, with an arbi-

trary number of artificial neurons or layers, is a universal approximator of any continuous

function. This implies neural networks can represent various functions with appropriate

weights. However, this theorem does not give how to construct such networks given a

specific task, and people need to try different types of hand-crafted neural networks for

different tasks 4.

Inspired by the success of conventional networks in hand-written digit recognition [66]

and natural image recognition [40], researchers found convolutions can also better model

the speech data and perform better than feed-forward networks [1]. In convolutions, con-

volution kernels are defined to capture local patterns of speech features (e.g., spectrgram

or filterbanks). The kernel slides along time axis (1D convolutions) or additionally along

frequency axis (2D convolutions), outputting a large value if a local pattern matches that

kernel:

𝑔(𝑥, 𝑦) = W ∗ 𝑓 (𝑥, 𝑦) =
𝑚∑︂

𝑑𝑥=−𝑚

𝑛∑︂
𝑑𝑦=−𝑛

W(𝑑𝑥, 𝑑𝑦) 𝑓 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) (2.8)

where ∗ is the convolution operator, W is the kernel of size (2𝑚 + 1) × (2𝑛 + 1), 𝑓 (𝑥 − 𝑑𝑥 :

𝑥 + 𝑑𝑥, 𝑦 − 𝑑𝑦 : 𝑦 + 𝑑𝑦) is a patch centered at (𝑥, 𝑦), and 𝑔(𝑥, 𝑦) is the output value at (𝑥, 𝑦).
4Recently there is some work on neural archtecture search [31] to automate this process.
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Note that the definition of convolution in machine learning applications (e.g. computer

vision and speech recognition) is actually a “flipped” version of that in signal processing:

in signal processing convolution is defined as:

𝑔′(𝑥, 𝑦) = W ∗ 𝑓 (𝑥, 𝑦) =
𝑚∑︂

𝑑𝑥=−𝑚

𝑛∑︂
𝑑𝑦=−𝑛

W(𝑑𝑥, 𝑑𝑦) 𝑓 (𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦) (2.9)

where the signs before 𝑑𝑥 and 𝑑𝑦 in 𝑓 (·, ·) are negative. The procedure of repeatly applying

the kernel at different location of the input is designed to be able to extract shift-invariance

features from the input, as local patterns at different location lead to the same output value.

More global patterns (or long-range dependency in sequence data like speech) will be cap-

tured by stacking multiple convolution layers together. The more the layers, the more input

the output can “see”. Here we introduce the concept of receptive field, which will also be

used in later chapters. Receptive field is defined as the size of the region in the input that

produces an output. It measures the association of an output of a neural network to the input

region, and a larger number means the output needs to rely more input frames to compute a

value. For example, a single convolution layer with a kernel size 3 has the receptive field of

size 3 × 3, and a network consisting of two such convolution layers has the receptive field

of size 5 × 5.

The time delay neural network (TDNN) was first introduced for phoneme classification

[126] using features representing a pattern of unit output and its context from the previous

layer. It is equivalent to convolution with “dilated” convolution kernels. “Dilated” means,
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instead of applying the kernel on a contiguous input region, the kernel is applied to a dilated

region where every 𝑘-th input in a patch is involved in the computation:

𝑔(𝑥, 𝑦) = W ∗ 𝑓 (𝑥, 𝑦) =
𝑚∑︂

𝑑𝑥=−𝑚

𝑛∑︂
𝑑𝑦=−𝑛

W(𝑑𝑥, 𝑑𝑦) 𝑓 (𝑥 + 𝑘 · 𝑑𝑥, 𝑦 + 𝑘 · 𝑑𝑦) (2.10)

TDNN was later applied to acoustic modeling for ASR [39], [91], [92] and speaker recog-

nition [114], and was demonstrated to be robust to speech recognition with different rever-

beration levels. The “dilation” also provides a way of enlarging the receptive field without

increasing the number of parameters.

Although convolutional networks have the capacity of modeling long-range depen-

dency for sequence data, it is later found to be less effective than another type of neural

networks named recurrent neural networks (RNN) with its more sophisticated variants

such as Long-short Term Memory (LSTM) [46] and Gated Recurrent Units (GRU) [19]

networks. Mathematically, an RNN defines a recursive computation along the time axis:

𝑠𝑡 = 𝑓 (𝑠𝑡−1, 𝑥𝑡) (2.11)

where 𝑠𝑡 is the hidden state at 𝑡 and 𝑥𝑡 is the input at 𝑡. At any time 𝑡, the network compute

the new state at 𝑡 based on the old state 𝑠𝑡−1 and the new input 𝑥𝑡 . Hence an RNN can the-

oretically encode arbitrary long history of information into a fixed-length vector. However

in practice, a carefully designed network architecture (e.g. LSTM or GRU) and training
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strategy (e.g. gradient clipping) are needed to avoid the gradient explosion/vanish problem

[46] when the sequence length is long.

Recently self-attention [123] has shown its superior performance in both NLP and

speech communities for its capability of modeling long-range dependency for sequence

data without recurrent connections. In self-attention each frame directly interacts with

other frames within the same layer, making each frame aware of its contexts, i.e. for a

given frame 𝑖, its output 𝑦𝑖 is the weighted sum of all the hidden state ℎ 𝑗 in the same layer:

𝑦𝑖 =
∑︂
𝑗

𝑤𝑖, 𝑗ℎ 𝑗 (2.12)

where the weight 𝑤𝑖, 𝑗 is determined by the similarity between frame 𝑖 and frame 𝑗 . Owing

to the direct connections between frames, the gradient paths are much shorter while back-

propagating, alleviating gradient explosion/vanishing problems commonly seen in recur-

rent networks.

2.1.1.3 Training with HMMs

The HMM is a generative model, in the sense that the there exists a generative process

specified by the model for describing the observation O. The training method aims to
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maximize the observation’s likelihood given the HMM. If we ignore the the intermediate

linguistic units, the training can be expressed as:

max
𝜃

∑︂
𝑢

log 𝑃(O𝑢 |W𝑢; 𝜃) (2.13)

where 𝜃 represents the model parameters, and 𝑢 indexes the training utterances. This way

of learning the model through Eq. (2.13) is called Maximum likelihood estimation (MLE).

Some generative models, like HMM, can also be trained discriminatively. For exam-

ple, in some discriminative training of the HMM, we are trying to maximize the posterior

probability of labels W𝑢:

max
𝜃

∑︂
𝑢

log 𝑃(W𝑢 |O𝑢; 𝜃) = max
𝜃

∑︂
𝑢

log
𝑃(O𝑢 |W𝑢; 𝜃)𝑃(W𝑢)

𝑃(O) (2.14)

= max
𝜃

∑︂
𝑢

log
𝑃(O𝑢 |W𝑢; 𝜃)𝑃(W𝑢)∑︁
W 𝑃(O𝑢 |W; 𝜃)𝑃(W)

where the numerator in Eq. 2.14 computes the probability assigned by the model to the

reference label W𝑢, while the denominator computes the probability over all possible label

sequences (called “competing hypotheses”). By comparing Eq. 2.14 with Eq. 2.13, we can

see that, rather than only making the “correct” sequence more likely, the discriminative

training also learns to make “incorrect” sequences less likely. In other words, the model

is trained to maximize the separation between the correct and incorrect answers. Note that

both the numerator and denominator involve the probability of label sequence 𝑃(W), which
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means that the discriminative training also takes linguistic information into consideration.

That is why the discriminative training is typically seen to have better performance than

the MLE training, especially when the training data is relatively small.

There are several specific discriminative training criteria for ASR, including Maximum

Mutual Information (MMI) and Minimum Phone Error (MPE) [94]. They share similar

spirit, and the main difference lie in what quantity (e.g., mutual information or phone error)

is being used as criteria. We use MMI for the exposition above, as it is directly related to

the work in this dissertation.

In the straightforward implementation of MMI training, competing hypotheses being

used in the denominator are usually compactly represented as a word lattice. A lattice is

a directed acyclic graph representing a set of likely word sequences for an utterance, with

various information associated with the arcs and/or nodes (e.g., in Kaldi [96] a lattice is a

special WFST, where acoustic model score and language model score are separately stored

on arcs). A word lattice contains a set of finite number of word sequence hypotheses after

decoding with a decoding graph, so it is just an approximation of the whole hypothesis

space [14]. Also, it requires a pretrained model to be generated. One may also consider

using a word-based denominator graph in the denominator of Eq. (2.14). However, the

word vocabulary size is usually in the tens of thousands, making the forward probabilities

required by forward-backward algorithm unable to fit in GPU memory. To resolve this

issue, Lattice-free MMI [98] (LF-MMI) was proposed, where an “exact” phone-level lan-

guage model is used to construct the denominator graph. Because the phone inventory size
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of a language is much smaller than the word vocabulary size (typically less than 100), the

computation of the denominator sum in Eq.( 2.14) can efficiently be carried out on GPUs.

2.1.2 Neural End-to-end Systems

The HMM-DNN hybrid systems introduced in the previous section have improved

WERs significantly over the last decade. Some ASR systems can even reach “human par-

ity” on some benchmarks [105], [139]. However, the hybrid systems involve independently

trained components, namely acoustic, language, and pronunciation/spelling models, lead-

ing to a complicated pipeline and possibly sub-optimal performance. Also, due to the large

size of the language model used to build the decoding graph, it is not easy to perform on-

device inference with limited memory. To address these problems, recent work in ASR

begun paying attention to so-called neural end-to-end systems [7], [21], [37], which are

characterized by generally smaller code size, and greater portability and maintainability

across hardware platforms and software environments.This shift is analogous to the one in

the machine translation (MT) community: from feature- and syntax-based statistical ma-

chine translation (SMT) systems (e.g. Moses [61], Joshua [71]) to end-to-end neural ma-

chine translation (NMT) systems (e.g. OPENNMT [58], OPENSEQ2SEQ [63], FAIRSEQ

[86]).

All such neural end-to-end systems are trying to learn a sequence-to-sequence model.

Let’s denote the input sequence as 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇 , and output sequence as 𝑌 =

𝑦1, 𝑦2, . . . , 𝑦𝑈 , where 𝑈 is not necessarily equal to 𝑇 . What these models do is to learn
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a mapping function 𝑓 : 𝑋 → 𝑌 using a properly designed neural network. One major

difficulty in finding such a mapping function is how to learn the alignment between the

input frames and output labels. Most HMM-DNN based systems tackle this problem by

the forced alignment (see Sec. 2.1.1.2). For neural end-to-end systems, since there are

no existing models which can be used to generate such alignment, the model itself has to

simultaneously infer the alignment and the mapping function with the alignment. Differ-

ent from the HMM based models, most of the neural end-to-end models are discriminative

models, as they learn the conditional probability 𝑃(𝑌 |𝑋) as opposed to the joint probability

𝑃(𝑋,𝑌 ).

The earliest neural end-to-end ASR systems were trained with the so-called connec-

tionist temporal classification (CTC) loss [36], [37]. There is a single network in such

systems that encodes the input feature frames 𝑋 into an intermediate representation, and

all possible alignments 𝐴 corresponding to the reference transcript are marginalized to give

the conditional probability:

𝑃(𝑌 |𝑋; 𝜃) =
∑︂

𝐴∈B−1 (𝑌 )
𝑃(𝐴|𝑋; 𝜃) (2.15)

where B(·) is the many-to-one function that maps an alignment to its corresponding tran-

script. B−1(𝑌 ) thus specifies all possible alignments for a reference𝑌 . It assumes the output

length 𝑈 is not longer than the input length 𝑇 5, and a special blank symbol is introduced

to output transcriptions of shorter lengths (𝑈 < 𝑇). B(·) is simply achieved by collapsing

5There are other assumptions, like monotonic alignments which is satisfied in ASR.
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repeats and then removing all the appearances of the blank symbol from 𝐴. The sum in

Eq. 2.15 is efficiently computed using the forward-backward algorithm, similar to the one

used in HMMs.

One disadvantage that CTC has is given the input 𝑋 , that the output symbols at each

time step are conditionally independent of each other, i.e., the prediction at time 𝑡 will not

be affected by predictions from any other time steps. Such a assumption does not hold

in ASR. Therefore, a separate language model, adding back the statistical dependence, is

needed to improve the decoding results.

Some work argue that the property of conditional independence in CTC is beneficial

while adapting to a new language domain [79], [80]. However, there is still the belief

that a jointly trained model with both acoustic and language components is preferable in

terms of ASR performance. To overcome the conditional independence assumption of

the CTC model, two novel models have been proposed. The first one is called “RNN

Transducer” (RNN-T) 6 [35]. Compared with CTC, besides the encoder network 𝑓enc,

RNN-T has an additional so-called prediction network 𝑓pred, which is analogous to auto-

regressive RNNLMs [81], to model the conditional dependency among predicted symbols.

6The name is a bit confusing. There is no limitation to the type of the neural network being used. Actually
Transformers have been recently adopted as its encoder in lieu of a recurrent neural network (RNN) to obtain
better results [10], [143], [148].
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In addition, a joint network combines the the output from the encoder and the prediction

network to compute the alignment scores:

y𝑢,𝑡 = 𝑓joint(q𝑢, s𝑡) (2.16)

where q𝑢 is the hidden state of the 𝑢-th step of the predictor network 𝑓pred, and s𝑡 is

the 𝑡-th frame of the output of encoder network 𝑓enc. Different from those in CTC, RNN-

T allows emissions of multiple symbols for each input frame. The loss is computed by

forward-backward algorithm as well, taking both the acoustic and language information

into account.

Both CTC and RNN-T work in a frame-synchronized way, meaning that predictions

are made on every frame. On the contrary, the second type of model overcoming the con-

ditional independence is the encoder-decoder with attention model. It works in a label-

synchronized manner, i.e, symbols are not emitted on each frame, and there should be a

special end-of-sentence symbol indicating the termination of the prediction during decod-

ing. This type of model was originally proposed for Neural Machine Translation (NMT)

[3], [74], and was then successfully pioneered by [21] in the speech community. It consists

of three modules: an encoder network 𝑓enc, a decoder network 𝑓dec, and an attention net-

work 𝑓att. What distinguishes itself most from CTC or RNN-T is that the model introduces

an attention mechanism to guide the decoder network 𝑓dec to pay attention to a specific part
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of the output of the encoder network 𝑓enc while making a prediction:

𝛼𝑢,𝑡 = Attention(q𝑢, s𝑡) (2.17)

c𝑢 =
∑︂
𝑡

𝛼𝑢,𝑡s𝑡 (2.18)

where 𝛼𝑢,𝑡 indicates how much attention q𝑢 in the decoder should pay to s𝑡 in the encoder.

Attention(·) represents the attention module, which can be implemented as Bahdanau At-

tention [2] or Luong Attention [74]. Both of them are to compute some kind of affinity

score between q𝑢 and s𝑡 . The difference is that former one adds the transformed q𝑢 and s𝑡

vector together:

𝜔𝑢,𝑡 = v⊤ tanh(W𝑞q𝑢 +W𝑠s𝑡 + b) (2.19)

while the latter one use the dot-product of the two vectors:

𝜔𝑢,𝑡 = q⊤𝑢 W𝑞⊤W𝑠s𝑡 (2.20)

The similarity scores are then normalized by softmax function to obtain the valid proba-

bility 𝛼𝑢,𝑡 :

𝛼𝑢,𝑡 = softmax(𝜔𝑢,𝑡) (2.21)

At every decoder time step, it not only relies on the previously predicted symbol (sim-

ilar to the prediction network in RNN-T), but also on the information provided by the

encoder and the attention module. The attention module tells the decoder, given the current
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decoding state, what portion of the input feature is most useful, by making a summary of

the useful portion:

q𝑢 = 𝑓dec(q𝑢−1, [𝑦𝑢−1; c𝑢−1]) (2.22)

where q𝑢 is the decoder state at the 𝑢-th step, 𝑦𝑢−1 is the output from the the 𝑢 − 1-th step,

and c𝑢−1 is the summary vector computed from the attention and encoder for the this step.

This attention mechanism is key to the anchored speech recognition task, as will be detailed

in Chapter 5.

2.2 Wake Word Detection

Similar to ASR, approaches to wake word detection can also be categorized into two:

1) HMM-based keyword-filler models; and 2) pure neural models. However, due to the

much more restricted computational resources and the low latency requirement discussed

in Chapter 1, existing methods from large-vocabulary ASR cannot be directly applied to

wake word detection. Specifically:

• In ASR, the modeling units are usually tri-phones/bi-phones in HMM-based systems,

or wordpieces/words in neural end-to-end systems. So the vocabulary size is at least

several thousands, making the model size and computation cost prohibitive for wake

word detection.
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• Datasets for wake word detection are usually collected and prepared in a way that

rich transcripts are unavailable, both because of the difficulty of the transcription

given the poor quality of recordings collected from challenging environments, and

lack of necessity of doing so as the task is not to recognize all the words, but just

assert the presence of the wake word. This affects the design of models.

• For HMM-based ASR, a word lattice is generated by expanding the decoding graph

based on the acoustic score of each frame. The lattice is needed so that it can be

rescored with a stronger word language model to obtain better results [140]. For

wake word detection, because of its very limited word vocabulary, the word language

model is extremely simple and a lattice is not needed for rescoring with a word

language model.

• While offline decoding is admissible in some ASR applications, for wake word de-

tection, we do not want to wait until the current recording has finished for decoding.

Instead we want to start decoding as soon as the audio stream is available, and report

the positive trigger immediately once the wake word is spotted. This will affect both

the model design and the decoding strategy.

There is no definitive conclusion about whether the pure neural systems are better than

HMM-based ones. Note that for ASR, HMM-based systems have the disadvantage that the

decoding graph could take up large space in memory usage. However, this is not a problem

for wake word detection, as the decoding graph is orders of magnitude smaller.
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2.2.1 HMM-based Wake Word Detection Systems

The existing way of decoding HMM-based wake word systems is basically similar

to that for ASR: usually conducted through Viterbi search where multiple high scoring

partial paths are maintained at each frame, and extended synchronously using dynamical

programming. To speedup the decoding process and reduce the computation cost, beam

search is commonly adopted: only partial paths with their scores within a predefined beam

width of the best one are considered for extension, and their scores are incremented with

both the frame-wise acoustic score and the “language model” score on the arc it chooses

to extend with from the graph. Once all frames are consumed, the best path on the graph

is traced back to determine the presence of the wake word. In [138] two decoding graphs

are constructed: the foreground graph for the wake word, and the background graph for

non-wake-word. The difference of the scores obtained with the two graph is used for the

decision. We will introduce a different strategy in Chapter 3, considering all the partial

hypotheses in the beam for making the detection decision.

The classical HMM-based keyword-filler models, representing both the keyword and

filler (background) models, for KWS are discussed in [102], [103], [118]. The keyword

model consists of all valid phone sequences from the keyword, and the filler model includes

all other speech and non-speech. During the decoding phase, usually the ratio of the scores

with keyword graph and with the filler graph is computed for determining the presence of

the wake word. With recent advances in deep learning, HMM-DNN hybrid wake word

systems replace GMM-based acoustic models with a neural network to classify individual
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frames [87], [117], [138]. While the filler model for background speech is specified as

having an ergodic topology between speech and non-speech in [87], [117], it is represented

as an all-phones loop in [138], increasing both the neural network model size and decoding

graph size due to the increased number of modeling units. Finally, some methods add

automatic speech recognition (ASR) as an auxiliary task during training [117]. In Chapter

3 we will show that it suffices to use a much smaller number of output units than the number

of all phones’ states, with which we can remove the need to specify a pronunciation lexicon.

2.2.2 Pure Neural Wake Word Detection Systems

Pure neural models abandon HMMs and completely rely on neural networks for acous-

tic modeling, where the subwords or even whole words of the wake word phrase (wake

phrase, for short) are directly used as modeling units. The first successful wake word de-

tection systems of this type were proposed in [8], [104]. They use individual words in the

wake phrase as the modeling units to reduce the network size. However, they still need a

forced alignment of the training audio with its transcripts, obtained from an existing HMM-

based ASR system, to form training examples for the wake word system, which limits the

applicability of their methods if an ASR system is unavailable. For decoding, they adopt

a fast posterior handling approach where the posterior probability of words is smoothed

within a sliding window over the audio frames. [24], [83] use the whole wake phrase as

the training target, but they still need phone-level alignments to pretrain a small network

before being fine-tuned with word targets. There are also several proposals that do not re-
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quire frame-level alignment for training, including max-pooling [49], [116], the attention

mechanism [108], [129], and global mean-pooling [4]. More recently, RNN-transducer

and attention based models have been investigated for KWS/wake word detection [4], [41],

[108].

It has been shown that some sequence-level training criteria perform better than some

frame-level criteria for ASR. The output in a wake word detection task, by contrast,

is relatively simple. However, if the modeling units are subwords (e.g., phonemes or

HMM states), wake word detection may still be considered as a sequence prediction task.

Sequence-level discriminative training such as CTC loss [36] has been explored for the

wake word detection task with graphemes or phonemes as subword units [32], [68], [136],

[151]. Lattice-free maximum mutual information (LF-MMI) is an HMM-based sequence-

level loss first proposed in [98] for ASR. In the context of wake word detection, it is re-

cently investigated in [15], where it still requires alignments from a prior model like an

HMM-GMM system to generate numerator graphs.

2.2.3 Neural Networks

Recurrent neural networks, such as LSTMs, GRUs and their variants may not be the

best choice for wake word detection due to latency considerations. Also for wake word

detection, the importance of long range temporal dependency may not be as large as in

ASR. Therefore, convolution-like or time-constrained self-attention are preferable as both

of them are highly parallelizable. Convolutional networks increase their receptive field by

33



stacking multiple layers together, with higher layers “seeing” more input frames, and self-

attention directly computes the relationship of the neighboring frames at the same layer

without the traditional recurrent connections. The number of future input frames that a

model depends on, i.e. look-ahead, should also be controlled for latency purposes.

Recently self-attention [123] has received popularity in both NLP and speech commu-

nities for its capability of modeling context dependency for sequence data without recurrent

connections. Self-attention replaces recurrent connections with direct interactions across

time within the same layer, making each frame aware of its context. Also, the gradient

paths are much shorter while back-propagating, alleviating gradient explosion/vanishing

problems commonly seen in recurrent networks. The computations are more easily par-

allelizable, in the sense that the computations of later frames do not depend on those of

previous frames in time. However, the original self-attention require the entire input se-

quence to be available before the global attention can be executed. Moreover, the vanilla

self-attention does not have a mechanism for saving the current computed states for future

reuse, and thus does not support the scenario of streaming inference for wake word detec-

tion. Time-restricted self attention [97] allows the self-attention to be restricted within a

small context window around each frame, which is preferable in our task as it can restrict

the attention to be only focused within limited contexts to achieve low latency. But it is

not a streaming model without the ability of caching history states. Transformer-XL [26]

consumes the input sequence in a chunk-wise fashion: the state from the previous chunk is

cached for the next chunk to attend to, which is suitable for streaming inference. It is not
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clear, however, whether this advantage still holds for short-range temporal modeling like

wake word detection. So we will explore and discuss this aspect in Chapter 4.

2.2.4 Metrics

There are two major metrics for the evaluation of the wake worc detection performance:

equal error rate (EER) and false rejection rate (FRR) at a pre-specified false alarms per

hour (FAH). EER is obtained at an operating point on the Receiver Operating Character-

istic (ROC) curves as a scalar value at which the false rejection rate and the false alarm

rate are equal. This metric has been widely adopted in many other fields including biol-

ogy, medicine, statistics, etc., where binary classification is performed. In the wake word

detection scenario, people care more about, “the proportion of falsely rejected actual wake

word occurrences, while false alarms should only take place less than a specific number of

times per hour of negative data”. Therefore, the value of FRR at some pre-specified value

of FAH is usually reported for evaluation. A typical specification is between 0.1 and 1.0

for FAH.

2.3 Target Speaker ASR

In many real world scenarios, recordings obtained for ASR are not clean. Besides envi-

ronmental noise and reverberation caused by the imperfect recording devices and room

acoustics, there may also exist interfering speech from other speakers and background
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noise. One example is in a multi-party meeting, where multiple talkers speak alternately,

and sometimes simultaneously. Another example is when a person is speaking to a voice-

controlled device, other people or devices like television in the background may also make

speech-like sounds, and such noise is undesirable to the voice-controlled device. Hence

there is a practical demand to perform ASR only for desired speaker from a recording con-

taining speech of multiple speakers, or mixture of speech and non-speech, while ignoring

other interfering speech or noise. We call this task “target-speaker ASR”.

One related task is speech separation 7, where each source of speech is to be isolated

from the mixture of speech before doing ASR. The common approach is to estimate a time-

frequency mask for each source in the mixture. This includes those directly estimating the

speaker-dependent mask with a deep neural network [127], [128], and those clustering the

embeddings of time-frequency bins for different speakers [16], [44]. The former ones re-

quire the neural network to have a fixed number of outputs and suffer from the permutation

problem [44], while the later ones do not suffer from those problems and postpone the time

of specifying the number of sources to the clustering stage. Another approach is using

“permutation invariant training” (PIT) [145], [147], which resolves the permutation prob-

lem within utterances but not across utterances. However, it still requires a predefined and

fixed number of the network’s outputs.

To perform target-speaker ASR, i.e., only recognizing the desired speaker’s speech

given some additional information about the speaker, the challenges are two-fold. One

7The problem is also famously referred to as “cock-tail party problem” [17].
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is how to provide a good speaker representation (speaker identity or speaker characteris-

tics) that is distinctive and representative among other speakers. And the other is how to use

that speaker representation to extract and recognize the target speaker’s speech. A couple

of techniques have been proposed for learning speaker representations, e.g., ivector [27],

[106], mean-variance normalization [72], maximum likelihood linear regression (MLLR)

[67]. With the recent progress in deep learning, neural networks are used to learn speaker

embeddings. for speaker verification/recognition [42], [77], [115], [122]. There are several

methods for adapting the acoustic models with such speaker embedding vectors, and some

of them simply concatenate these vectors with the input features or intermediate neural

network outputs [55], [106], [107], [124], or adapt network parameters to speakers [84].

However, concatenation or biasing parameters does not provide a direct mechanism to only

focus on the target speaker and suppress other interfering/background speech. In addition,

off-the-shelf speaker embeddings learned separately may not be optimal for a downstream

task like target-speaker ASR.

Work that jointly trains the speaker embedding and the acoustic model for target speak-

ers can be found in [28], [53], [152]. In [152], all sub-layers of the speaker adaptive layer

are summed with learned weights to extract speech from the target speaker, where the

weights are determined from the speaker embedding learned from an adaptation utterance,

a short sample of speech from the target speaker. Then [28] extends that idea for target-

speaker ASR in hybrid systems, and it also demonstrates that joint training of the speaker

embedding and the acoustic model is more beneficial compared with separate training. [53]
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adds an auxiliary loss for interference speakers to further improve the ASR performance.

In their experiments, however, target utterances are contiguous in the mixture of speech,

i.e., no interruptions by the background speech/noises. Specifically, if an utterance contains

segments without speech from the target speaker at all, and these segments are interleaved

with the segments containing only the target speaker, then there is no explicit mechanism

to skip those segments during decoding, as the output of all the frames will be used for

decoding.

Wake word segments have also been used to extract the speaker embeddings [55],

[75]. Two methods—anchor mean subtraction (AMS) and an encoder-decoder network—

are proposed to detect desired speech by extracting speaker characteristics from the wake

word [75]. This work is further extended for acoustic modeling in hybrid ASR systems

[55]. However, as mention above, its concatenation of the embedding to the input does not

empower the model with enough capacity.

In Chapter 5, we propose a unified architecture based on attention-based encoder-

decoder ASR model that uses wake word segments as an additional input for target-speaker

ASR. It relies on the attention mechanism over the encoder output, to explicitly select

frames belonging to the desired speaker. As a result, only the speech from the person who

speaks the wake word is recognized, and other speech and noise are ignored.
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Chapter 3

Wake Word Detection with

Alignment-Free Lattice-Free MMI

This chapter first briefly introduces how Lattice-Free maximum mutual information

(LF-MMI) training works, and explains why it needs alignments for training, and then

presents our proposed wake word detection system, including the HMM topology, training

criterion, acoustic modeling, data preprocessing and augmentation, and online decoding.

The contributions of this work are: (i) we remove the prerequisite of frame-level alignments

in the LF-MMI training algorithm, permitting the use of un-transcribed training examples

that are annotated only for the presence/absence of the wake word; (ii) we show that the

classical keyword/filler model must be supplemented with an explicit non-speech (silence)

model for good performance; (iii) we present an FST-based decoder to perform online

detection. We evaluate our methods on two real data sets, showing 50%–90% reduction
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in false rejection rates at prespecified false alarm rates over the best previously published

figures, and re-validate them on a third (large) data set. We also provide detailed analyses

of our proposed system, including how different model and receptive field sizes affect the

performance, the wake word alignments learned from the system, and the decoding latency.

Finally several alternative system design choices and their experimental results are given.

These results are worse than our final system, but reveal information that are valuable for

discussions. The work in this chapter has been published as [132] and [135].

3.1 Lattice-Free MMI

As pointed out in Sec. 2.1.1.3, rather than the data likelihood, the MMI training objec-

tive is trying maximize the reference labels’ posterior probability, and the reference directly

competes against all other labels to learn good decision boundaries discriminatively.

For easy lookup we rewrite the MMI objective here:

FMMI =
∑︂
𝑢

log
𝑃(O𝑢 |W𝑢; 𝜃)𝑃(W𝑢)∑︁
W 𝑃(O𝑢 |W; 𝜃)𝑃(W) (3.1)

=
∑︂
𝑢

(︄
log 𝑃(O𝑢 |W𝑢; 𝜃)𝑃(W𝑢) − log

∑︂
W
𝑃(O𝑢 |W; 𝜃)𝑃(W)

)︄
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Next we will derive the gradient of the MMI objective with respect to 𝜃.

∇𝜃FMMI =
∑︂
𝑢

(︄
∇𝜃 log 𝑃(O𝑢 |W𝑢; 𝜃) − ∇𝜃 log

∑︂
W
𝑃(O𝑢 |W; 𝜃)𝑃(W)

)︄
(3.2)

=
∑︂
𝑢

(︃
∇𝜃 log 𝑃(O𝑢 |W𝑢; 𝜃) −

∑︁
W ∇𝜃𝑃(O𝑢 |W; 𝜃)𝑃(W)∑︁

W 𝑃(O𝑢 |W; 𝜃)𝑃(W)

)︃
=

∑︂
𝑢

(︃
∇𝜃 log 𝑃(O𝑢 |W𝑢; 𝜃) −

∑︁
W 𝑃(O𝑢 |W; 𝜃)𝑃(W)∇𝜃 log 𝑃(O𝑢 |W; 𝜃)∑︁

W 𝑃(O𝑢 |W; 𝜃)𝑃(W)

)︃

where the last equality leverages the fact that

∇𝜃𝑃(O𝑢 |W; 𝜃) = 𝑃(O𝑢 |W; 𝜃)∇𝜃 log 𝑃(O𝑢 |W; 𝜃) (3.3)

Now let’s derive ∇𝜃 log 𝑃(O𝑢 |W𝑢; 𝜃). Note that this is the derivative of the acoustic log

likelihood w.r.t. 𝜃. If we are using HMM for acoustic modeling:

log 𝑃(O𝑢 |W; 𝜃) = log
∑︂

𝑠0,...,𝑠𝑇𝑢 :W
𝑃(𝑠0)

𝑇𝑢∏︂
𝑡=1

𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡) (3.4)

where 𝑇𝑢 is the sequence length of 𝑢-th utterance, 𝑠𝑡 is the HMM state at time 𝑡, 𝑡 =

0, . . . , 𝑇𝑢, and 𝑠0, . . . , 𝑠𝑇𝑢 : W denotes all valid values that 𝑠0, . . . , 𝑠𝑇𝑢 can take subject to
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W and the HMM topology. Then

∇𝜃 log 𝑃(O𝑢 |W; 𝜃) (3.5)

= ∇𝜃 log
∑︂

𝑠0,...,𝑠𝑇𝑢 :W
𝑃(𝑠0)

𝑇𝑢∏︂
𝑡=1

𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)

=

∑︁
𝑠0,...,𝑠𝑇𝑢 :W ∇𝜃𝑃(𝑠0)

∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)∑︁

𝑠0,...,𝑠𝑇𝑢 :W 𝑃(𝑠0)
∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)

=

∑︁
𝑠0,...,𝑠𝑇𝑢 :W

∑︁𝑇𝑢
𝑡=1 ∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)𝑃(𝑠0)

∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)∑︁

𝑠0,...,𝑠𝑇𝑢 :W 𝑃(𝑠0)
∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)

=

𝑇𝑢∑︂
𝑡=1

∑︁
𝑠0,...,𝑠𝑇𝑢 :W ∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)𝑃(𝑠0)

∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)∑︁

𝑠0,...,𝑠𝑇𝑢 :W 𝑃(𝑠0)
∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)

=

𝑇𝑢∑︂
𝑡=1

∑︁
𝑠𝑡 ∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)

∑︁
𝑠0,...,𝑠𝑡−1,𝑠𝑡+1,...,𝑠𝑇𝑢 𝑃(𝑠0)

∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)∑︁

𝑠0,...,𝑠𝑇𝑢 :W 𝑃(𝑠0)
∏︁𝑇𝑢
𝑡=1 𝑃(𝑠𝑡 |𝑠𝑡−1)𝑃𝜃 (𝑜𝑢𝑡 |𝑠𝑡)

=

𝑇𝑢∑︂
𝑡=1

∑︁
𝑠𝑡 ∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)𝑃(O𝑢, 𝑠𝑡 |W; 𝜃)

𝑃(O𝑢 |W; 𝜃)

=

𝑇𝑢∑︂
𝑡=1

∑︂
𝑠𝑡

∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)𝑃(𝑠𝑡 |O𝑢,W; 𝜃)

The second equality is obtained by moving the derivative inside the log function and then

go on moving it inside the summation. The third equality is after applying product rule

for derivatives and making use of a similar trick as in Eq. (3.3). The fourth equality

is simply switching the summation in the numerator. The fifth equality is specifying a

particular order of the summing the sequence 𝑠0, . . . , 𝑠𝑇𝑢 . The sixth equality obtained by

marginalizing HMM states except 𝑠𝑡 . The last equality is from applying Bayes’ theorem.
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If we plug Eq. (3.5) into Eq. (3.2), we have:

∇𝜃FMMI (3.6)

=
∑︂
𝑢

𝑇𝑢∑︂
𝑡=1

∑︂
𝑠𝑡

∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)
(︃
𝑃(𝑠𝑡 |O𝑢,W𝑢; 𝜃) −

∑︁
W 𝑃(O𝑢 |W; 𝜃)𝑃(W)𝑃(𝑠𝑡 |O𝑢,W; 𝜃)∑︁

W 𝑃(O𝑢 |W; 𝜃)𝑃(W)

)︃
=

∑︂
𝑢

𝑇𝑢∑︂
𝑡=1

∑︂
𝑠𝑡

∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡)
(︃
𝑃(𝑠𝑡 |O𝑢,W𝑢; 𝜃) −

𝑃(𝑠𝑡 ,O𝑢; 𝜃)
𝑃(O𝑢)

)︃
=

∑︂
𝑢

𝑇𝑢∑︂
𝑡=1

∑︂
𝑠𝑡

∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡) (𝑃(𝑠𝑡 |O𝑢,W𝑢; 𝜃) − 𝑃(𝑠𝑡 |O𝑢; 𝜃))

Now, log 𝑃(𝑜𝑢𝑡 |𝑠𝑡) is given by a neural network, so ∇𝜃 log 𝑃(𝑜𝑢𝑡 |𝑠𝑡) is calculated by back-

propagation through the network. 𝑃(𝑠𝑡 |O𝑢,W𝑢; 𝜃) is the HMM state occupancy probability

conditioned on𝑊𝑢 and 𝑃(𝑠𝑡 |O𝑢; 𝜃) is the unconditional state occupancy probability. These

two quantities can be efficiently computed using the forward-backward algorithm over the

numerator graph and denominator graph respectively in Eq. (2.14). The numerator graph

is constrained by the reference W𝑢, meaning that all the paths in the graph correspond to

the reference transcript. Conceptually, the denominator graph is unconstrained with paths

and represents all possible sentences in a language. However, practically a subset of all

possible hypotheses, either in the form of a word lattice (in traditional MMI training) or

an n-gram phone language model (in LF-MMI) is used to approximate the sum over all

possible sentences. In either case, the denominator graph is actually constrained by a set

of sentences representing competing hypotheses against the reference transcript. “Lattice-

Free” in LF-MMI refers to the replacement of word lattices with an n-gram phone language
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model, so that the probability tensor can fit into GPU memory for ASR. It also avoids the

need to generate such lattices by decoding the training data.

In either traditional MMI or LF-MMI, the numerator graph is acyclic, having exactly

the same number of time steps as that of the neural network’s output. The acyclic graph

is created from forced-alignments or decoding lattices with a prior trained model. For

example, in LF-MMI, an HMM-GMM tri-phone model, the same one used to generate

training labels in frame-level cross-entropy training, is used to generate lattices for numer-

ators. While it makes the training converge faster, it could potentially harm the flexibility

of learning alternative alignments if the HMM-GMM model is inaccurate in its alignments.

Also, having to train an additional model is not desirable as we always prefer simple but

still effective models.

Therefore we propose a wake word detection system with alignment-free LF-MMI as

training criterion, so as not to require such forced alignments for training. Alignment-

free LF-MMI was initially proposed for ASR [38]. In order to make it work for our task,

we made several necessary adaptations/changes to the lexicon, HMM topology, and data

preprocessing for both efficiency and performance reasons. A fast online decoder is also

proposed for the wake word detection task. Experiments on three real wake word data

sets all show its superior performance compared to the best of the other systems recently

reported in the literature.
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3.2 Alignment-Free and Lattice-Free MMI

Training of Wake Word Detection Systems

3.2.1 HMM Topology

Different from other traditional HMM-based keyword-filler models (e.g., those pro-

posed in [15], [87], [117], [138] where each phoneme of the whole wake phrase corre-

sponds to an HMM or HMM state, we propose to model the whole wake phrase (in posi-

tive recordings) with a single HMM (referred to as word HMM), and the number of distinct

states within that HMM is a predefined value which is not necessarily proportional to the

number of phonemes in its pronunciation. We argue that using a fixed number of HMM

states, which is usually less than the number of the actual phonemes, has enough model-

ing power for the wake word task. Similarly, we use another HMM of the same topology

(referred to as freetext HMM) to model all non-silence speech (in negative audio exam-

ples). From our preliminary experiments we also found that having an additional HMM

dedicated to non-speech sounds, denoted SIL and called the silence HMM, is crucial for

good performance. SIL is added as optional silence [9] to the beginning and end of each

positive/negative recording so that it is exposed to at least some actual silence properly.

Note that in ASR, optional silence is also added between every pair of consecutive phones

in the lexicon (see Figure 3.1, where for a specific phone sequence DH IH1 S, it can either

follow the path 0 → 1 → 3 → 7 → 1, or 0 → 1 → 5 → 8 → 2 → 1. The latter one is

45



where optional silence is taking place.). If we make an analogy to ASR, optional silence

in our system is a special case of that as we only specify a single phone to each word. The

topologies we use are shown in Figure 3.2 and Figure 3.3.

0

1
<eps>:<eps>

2

<eps>:<eps>

3DH:THIS

4
W:WHY

5DH:THIS

6

W:WHY

SIL:<sil>

7IH1:<eps>

AY1:<eps>

8IH1:<eps>

AY1:<eps>

S:<eps>

S:<eps>

Figure 3.1: The illustration of a Lexicon FST with optional silence, which shows two
entries in the lexicon: DH IH1 S for the word THIS and W AY1 for the word WHY.
input-symbol and output-symbol on arcs are represented as <input-symbol>:<output-
symbol> and weights are omitted for clarity. Such representations apply to other WFST
figures in this dissertation, if not otherwise specified.
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0

0:0

11:1

0:0

22:0

0:0

33:0

0:0

44:0

Figure 3.2: The HMM topology used for the wake word and freetext. The number of
emitting HMM states is 4. The final state is non-emitting. We represent an HMM as a
WFST. Note that here we use numbers, which are the indexes of symbols, to denote input-
/output-symbols on arcs.

0

0:0

11:2

Figure 3.3: The HMM topology used for SIL. The number of emitting HMM states is 1.
The final state is non-emitting.

3.2.2 Alignment-Free Lattice-Free MMI

In the regular LF-MMI the numerator graph used to compute the truth sequence is an

acyclic graph generated from frame-level alignments. In alignment-free LF-MMI [38],

the numerator graph is an unexpanded FST (usually with loops and self-loops) directly
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0

1SIL

2SIL

3<word>

4<freetext>

5SIL

SIL

Figure 3.4: Topology of the phone language model FST for the denominator graph. Labels
on arcs represent phones.

generated from training transcripts, giving more freedom to learn the alignments during

the forward-backward pass in training.

For ASR, the competing hypotheses in the denominator graph are constructed from a

phone LM trained from the training transcripts. By comparison, for the wake word detec-

tion task, we manually specify the topology of the phone LM FST as shown in Figure 3.4.

One path containing the word HMM corresponds to positive recordings, and the other two

correspond to negative recordings (other speech/non-speech and silence). If we have more

than one wake word as those in our Mobvoi (SLR87) data set, each wake word would cor-

respond to one such positive path. We assign final weights in a way such that they reflect

the ratio of the number of positive/negative examples in the training set.
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3.2.3 Acoustic Modeling

Owing to efficiency and latency concerns specific to our task, the family of recurrent

[19], [46] or full-length self-attention-based [123] neural networks are not considered. In-

stead, we use a factorized time delay neural network (TDNN-F) architecture with skip

connections [95] for acoustic modeling. In a TDNN-F layer, the number of parameters

is reduced by factorizing the weight matrix in TDNN layers [91] into the product of two

low-rank matrices, the first of which is constrained to be semi-orthogonal. It is assumed

that the semi-orthogonal constraint helps to ensure that we do not lose information when

projecting from the high dimension to the low dimension.

The authors of the original paper found that, instead of factorizing the TDNN layer

into a convolution times a feed-forward layer, it is better to factorize the layer into two

convolutions with half the kernel size. For example, instead of using a kernel with context

(−3, 0, +3) in the first factor of the layer, and 0 context in the second factor, it is better to

use a kernel with context (−3, 0) in the first factor and a kernel with context (0, +3) in the

second factor. As we mentioned in Chapter 2, a larger kernel size/context means the output

needs to rely more input frames to compute a value, which incurs more latency in the wake

word detection. For example, an additional convolution layer with context (−3, 0, +3) will

add 6 more frames to the receptive field of the whole neural network.

As in architectures like ResNet [40], we incorporate skip connections. This means that

some layers receive input not only from the previous layer but also from other prior layers.

This allows us to make the network deeper by alleviating the vanishing gradient problem. In
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the original paper [95], the prior layers were concatenated to the input of the current layer,

and the skip connections were created between the low-rank interior layers of the TDNN-

F. However, we found in our preliminary experiments that the following modifications are

more helpful: 1) instead of individually specifying the skip connection, each TDNN-F layer

always receives its immediate prior layer’s output (i.e. its own lower-layer’s input) as the

skip connection, and 2) instead of concatenation, the prior layer is added to the input of the

current layer after being scaled down with a constant (0.66 in our experiments).

We use a narrow (the hidden dimension is 80) but deep (20 layers) network with each

output frame covering a receptive field of size 80. The output is evaluated every 3 frames

for LF-MMI loss to reduce the the computation cost both in training and test time. We also

find a cross-entropy regularization (practically using the numerator part of the LF-MMI

objective function in Eq. (2.14) as an auxiliary objective function) together with the main

LF-MMI loss helpful. As a result, the total number of parameters is about 150k, with

the number of targets being only 18 using the HMM topologies described in Sec. 3.2.1.

The details of the network architecture are shown in Table 3.1 and Figure 3.5. Note that

BatchNorm [51] is applied after each ReLU, but is omitted in the table and the figure for

brevity.

3.2.4 Data Preprocessing and Augmentation

Compared with the positive examples of the wake word, the negative audio examples

usually have a longer duration and have more variability as they can include all possible
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Table 3.1: TDNN-F architecture for acoustic modeling in the wake word detection systems.

Layer Layer Type Context
factor1

Context
factor2

Skip
conn.
from
layer

Size Inner
size

1 TDNN-ReLU t-2, t+2 80
2 TDNN-F-ReLU t-1, t t, t+1 0 (input) 80 20
3 TDNN-F-ReLU t-1, t t, t+1 1 80 20
4 TDNN-F-ReLU t-1, t t, t+1 2 80 20
5 TDNN-F-ReLU t-1, t t, t+1 3 80 20
6 TDNN-F-ReLU t-1, t t, t+1 4 80 20
7 TDNN-F-ReLU t-1, t t, t+1 5 80 20
8 TDNN-F-ReLU t-1, t t, t+1 6 80 20
9 TDNN-F-ReLU t 7 80 20
10 TDNN-F-ReLU t-3, t t, t+3 8 80 20
11 TDNN-F-ReLU t-3, t t, t+3 9 80 20
12 TDNN-F-ReLU t-3, t t, t+3 10 80 20
13 TDNN-F-ReLU t-3, t t, t+3 11 80 20
14 TDNN-F-ReLU t-3, t t, t+3 12 80 20
15 TDNN-F-ReLU t-3, t t, t+3 13 80 20
16 TDNN-F-ReLU t-3, t t, t+3 14 80 20
17 TDNN-F-ReLU t-3, t t, t+3 15 80 20
18 TDNN-F-ReLU t-3, t t, t+3 16 80 20
19 TDNN-F-ReLU t-3, t t, t+3 17 80 20
20 TDNN-F-ReLU t-3, t t, t+3 18 80 20
18 Linear 30
19 Dense-ReLU-Linear 30 80
20 Dense N. targets
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Figure 3.5: Schematic figure of our TDNN-F architecture corresponding to Table 3.1. The
number at the bottom-right corner of each TDNN-F block represents the number of repeats
of that block.
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speech except the wake word/phrase. However we only use a single freetext HMM for

it, making it difficult for the model to learn smoothly if batching them with the positive

examples as is (see Sec. 3.3.2). To tackle this imbalance, we chunk the negative recordings

into shorter chunks of random lengths drawn from the empirical length distribution of the

positive recordings, disregarding word boundaries. Successive chunks overlap by 0.3s,

giving a trailing word-fragment from one chunk a chance to appear as a whole-word in the

next. All chunks are assigned a negative label.

LF-MMI was shown to be robust to unclean speech [90]. However, if the amount

of data used for training is limited, usually the trained model will not be very robust to

various test conditions. Although all our training data is recorded in real environments

with background noise, we still found that data augmentation is helpful1. Therefore we

apply the same type of data augmentation techniques as used in [135], making use of noise,

music, background speech from the MUSAN corpus [113], simulated reverberation [60]

and speed perturbation [59]:

• Babble: a dataset consisting of audio files of 3 to 5 speakers from the microphone

portion of Mixer 6 [23] that have been summed together to create babble noise.

• Music: the music files from the MUSAN corpus [113]2 that do not contain vocals.

• Noise: the noise files from the MUSAN corpus.

1Another direction to improve the model generalization is model-based approaches, e.g., “backstitch” in
[134].

2http://www.openslr.org/resources/17
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• Reverb: simulated RIRs3 as described in [60].

We randomly apply additive noises from the “babble”, “music” and “noise” datasets

separately on each copy of the original training audio. For each training example, “babble”

is added as background noises 3 to 7 times with SNRs ranging from 13 to 20; “music” is

added as background noises once with SNRs ranging from 5 to 15; “noise” is added as

foreground noises at the interval of 1 second with SNRs ranging from 0 to 15. Then re-

verberation is applied on top of them using the simulated RIRs with room sizes uniformly

sampled from 1 meter to 30 meters. The above procedure leads to 4 times more augmented

training data. The alignments for these augmented data, whenever needed (e.g. for compar-

ing to regular LF-MMI or frame-level cross-entropy models), are obtained from their clean

counterparts. In addition, we apply 3-fold speed perturbation [59] to the clean training data,

i.e., apply speed-perturbation with the factor of 1.1, 1.0 (original), and 0.9 respectively. In

total, these augmentations increase the amount of training data by 4 + 3 = 7-fold.

3.2.5 Decoding

We next describe online Viterbi decoding without lattice generation for wake word

detection, using the term “tokens” to denote partial hypotheses [85].

First we construct our decoding graph with a word-level FST specifying the prior prob-

abilities of all possible word paths, in a similar way as we specify the phone language

model FST in Figure 3.4, except that the start state and final states are merged to form a
3http://www.openslr.org/resources/28
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0

<sil>

1<sil>

2word

3

freetext

<sil>

<sil>

Figure 3.6: Topology of the word-level FST specifying the prior probabilities of all possible
word paths. Labels on arcs represent words.

loop. The loop allows decoding with an audio interleaving wake words with other possible

speech. As shown in Figure 3.6, the graph has one loop path <sil>→word→<sil> corre-

sponding to the positive segment, one loop path <sil>→freetext→<sil> corresponding to

the non-silence negative segment, and one self-loop path SIL corresponding to the pure

silence segment.

Algorithm 1 describes the online decoding procedure. It takes the prepared decoding

graph and the input audio stream as input and runs chunk-wise processing during online

decoding (starting from Line 4). A routine PROCESSEMITTINGANDNONEMITTING, ba-

sically doing Viterbi beam search, is invoked for every frame within the chunk, returning

surviving partial hypotheses as ACTIVETOKLIST (Line 9). Then depending on whether we

are processing the last chunk in the stream or not, we have different strategies:
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Algorithm 1 Online Decoding for Wake Word Detection
Input: audioStream, graph ⊲ input stream and decoding graph
Output: isDetected ⊲ indicates whether the wake word is detected

1: procedure ONLINEDECODING(audioStream, graph)
2: emitting← ∅
3: isDetected← False
4: for chunk in audioStream do
5: activeTokList← ∅
6: immortalTok← NULL
7: prevImmortalTok← NULL
8: for frame in chunk do
9: activeTokList← ProcessEmittingAndNonEmitting(activeTokList, frame)

10: end for
11: if chunk is the last one in audioStream then
12: bestTok← BestToken(activeTokList)
13: isDetected← BackTrack(bestTok, immortalTok)
14: else
15: (immortalTok, prevImmortalTok)←UpdateImmortalToken(activeTokList)

16: if immortalTok ≠ prevImmortalTok then
17: isDetected← BackTrack(immortalTok, prevImmortalTok)
18: if isDetected = True then
19: break
20: end if
21: end if
22: end if
23: end for
24: end procedure
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• If it was not the last chunk, we update two consecutive “immortal tokens” IM-

MORTALTOKENS and PREVIMMORTALTOKENS in the routine UPDATEIMMORTAL-

TOKEN (Line 15), and backtrack along the frames delimited by these two tokens

4, checking whether there is a wake word detected from this partial backtracking

(Lines 16-19).

• If it was the last chunk, we take the best hypothesis from ACTIVETOKLIST as BEST-

TOK (in the routine BESTTOKEN) and backtrack from BESTTOK to IMMORTALTO-

KENS for the wake word (Lines 11-13).

In either case, once a wake word is found, stop decoding and trigger the system; other-

wise continue to process the next chunk if it exists.

What plays an essential role in Algorithm 1 is the “immortal tokens”. An “immor-

tal token” is the common ancestor (prefix) of all active tokens, i.e. it will not “die” no

matter which active token eventually survives. The way we compute and update “immor-

tal tokens” is described in the routine UPDATEIMMORTALTOKEN as Algorithm 2, where

Lines 3-8 obtain the last emitting token from each active token. Lines 12-28 find the com-

mon ancestor of all active tokens. Lines 30-32 update the immortal token (and assign the

old one to PREIMMORTALTOK) if a newer one is found; otherwise keep the old one from

the previous decoding step.

The intuition is that if all currently active partial hypotheses are from the same token at a

4These two consecutive tokens can refer to the same one, indicating no backtracking is needed at that
point.
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Algorithm 2 Update the Immortal Token for Backtracking
Input: activeTokList ⊲ represents all current hypotheses
Output: immortalTok, prevImmortalTok ⊲ global, storing the latest one and previous

one respectively
1: procedure UPDATEIMMORTALTOKEN(activeTokList)
2: emitting← ∅
3: for tok in activeTokList do
4: while isNonEmittingToken(tok) do tok← tok.prev
5: end while
6: if tok ≠ NULL then emitting.insert(tok)
7: end if
8: end for
9: prevImmortalTok← NULL

10: immortalTok← NULL
11: tokenOne← NULL
12: while True do
13: if |emitting| = 1 then
14: tokenOne← emitting[0]; break
15: end if
16: if emitting = ∅ then break
17: end if
18: prevEmitting← ∅
19: for tok in emitting do
20: prevTok← tok.prev
21: while isNonEmittingToken(tok) do
22: prevTok← tok.prev
23: end while
24: if prevTok = NULL then continue
25: end if
26: prevEmitting.insert(prevTok)
27: end for
28: emitting← prevEmitting
29: end while
30: if tokenOne ≠ NULL then
31: prevImmortalTok← immortalTok
32: immortalTok← tokenOne
33: end if
34: end procedure
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previous time step, all hypotheses before that token had already collapsed to one hypothesis

(due to beam search pruning and token recombination), ), and there exists only one single

path between two immortal tokens, from which we would check whether it contains the

wake word in a chunk-by-chunk fashion. However, if the immortal token found at the end

of the current chunk is the same as the one found before, it means that any active tokens

have the risk of being pruned in the future, and we should wait until the next immortal

token appears for back-tracking, otherwise it is inefficient to track from every active token

back to the last immortal token.

3.3 Experiments and Analyses

3.3.1 Data Sets

There are three real wake word data sets available to us to conduct em-

pirical evaluations: the SNIPS data set (https://github.com/snipsco/

keyword-spotting-research-datasets) [24] with the wake word “Hey Snips”,

the Mobvoi single wake word data set5 [129] with the wake word “Hi Xiaowen”, and the

Mobvoi (SLR87) data set (https://www.openslr.org/87) [48] with two wake words

“Hi Xiaowen” and “Nihao Wenwen”. The statistics for each data set are summarized in

Table 3.2. We will use the first two data sets to demonstrate the effects of several design

choices in our system, and give the final results on all these three data sets when comparing

5This data set is not publicly available.
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our system with others. If not otherwise specified, we show our experimental results in

an incremental way, meaning that later experiments would be conducted on top of the

one that is better from the previous experiment. The operating points in detection error

tradeoff (DET) [29] curves are obtained by varying the cost corresponding to the positive

path in the decoding graph while keeping the cost corresponding to negative path at 0.

40-dimensional MFCC features are extracted in all the experiments.

Table 3.2: Statistics for the three wake word data sets.

Name
Train Dev Eval

#Hrs #Utts (#Positive) #Hrs #Utts (#Positive) #Hrs #Utts (#Positive)

SNIPS 54 50,658 (5,799) 24 22,663 (2,484) 25 23,072 (2,529)
Mobvoi 67 74,134 (19,684) 7 7,849 (2,343) 7 7,841 (1,942)

Mobvoi (SLR87) 144 174,592 (43,6256) 44 38,530 (7,357) 74 73,459 (21,282)

3.3.2 Effect of Negative Recordings Sub-segmentation

We first show the effect of sub-segmenting negative recordings on training. We start

from the training data with only speed-perturbation applied. To be consistent with the per-

formance reported by others on the same data sets, false rejection rate (FRR) is reported

in Table 3.3 at 0.5 false alarms per hour (FAH) on the SNIPS data set, and at 1.5 FAH

for Mobvoi. Apparently, without sub-segmentation the performance is far from satisfac-

tory. We also inspected the training/validation loss in both cases, and found that there is

severe overfitting when training without sub-segmentation: the gap between the training
6 The statistics include two wake words.
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Table 3.3: Effect of sub-segmentation of negative recordings.

FRR(%) SNIPS (FAH=0.5) Mobvoi (FAH=1.5)

w/o sub-segmentation 67 47
w/ sub-segmentation 0.6 5.6

loss and the validation loss without sub-segmentation is much larger than that with sub-

segmentation (see Figure 3.7). This indicates that, given the correct labels, the LF-MMI

system is still unable to learn the forced-alignments for unsegmented examples well, i.e.,

poor generalization to the validation data.
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Figure 3.7: train/validation curves of LF-MMI objective: with v.s. without sub-
segmentation of the negative training audios. Note that the numbers of total iterations
are different for the same number of epochs, because the total number of training examples
is changed after sub-segmentation.

3.3.3 Effect of Data Augmentation

We investigate the effect of data augmentation introduced in Section 3.2.4. The results

before and after augmentation are shown in Table 3.4. It can be seen that the augmentation

strategy is highly effective, where FRR with SNIPS is even 0 at FAH=0.5.
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Table 3.4: Effect of data augmentation.

FRR(%) SNIPS (FAH=0.5) Mobvoi (FAH=1.5)

w/o data augmentation 0.6 5.6
w/ data augmentation 0 0.4

3.3.4 Effect of Alignment-Free LF-MMI Loss

To compare our proposed alignment-free LF-MMI loss with regular LF-MMI and con-

ventional cross-entropy loss for our task, we train a phoneme-based HMM-GMM system

to generate the numerator lattice (for regular LF-MMI loss) or the forced alignments (for

conventional cross-entropy loss) for the same sub-segmented and augmented training data.

The network architectures are the same as that used for alignment-free LF-MMI training

except the final layer (depending on the loss being used).

The results in Table 3.5 validate that training with LF-MMI loss is generally advanta-

geous to training with frame-level cross-entropy loss in the wake word detection task, and

alignment-free LF-MMI loss achieves better performance than regular LF-MMI on SNIPS

and Mobvoi (SLR87), but worse on Mobvoi.

It is worth noting that we believe SNIPS and Mobvoi (SLR87) results are more in-

dicative of performance, as after manually listening to the false alarms in Mobvoi at this

specific operating point, we found that all the false alarms (9 in total) are actually inten-

tionally pronounced with a different tone on the last character “wen”, which is extremely

difficult for the model to learn given the limited amount of data; some would even argue that
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those examples should be labeled as positive cases in order for the model to accommodate

Chinese speakers with accents. The better performance of the system with alignment-free

LF-MMI loss is possibly due to the capability of learning more flexible alignments than

GMM models.

Table 3.5: Effect of alignment-free LF-MMI loss.

FRR(%)
SNIPS (FAH=0.5) Mobvoi (FAH=1.5) Mobvoi (SLR87) (FAH=0.5)

Hi Xiaowen Nihao Wenwen

cross-entropy 0.6 3.5 1.7 2.5
regular LF-MMI 0.1 0.2 0.6 0.7
alignment-free LF-MMI 0 0.4 0.4 0.5

3.3.5 Regular LF-MMI Refinement

The experiment from the previous section motivates us to do an additional experi-

ment investigating how the regular LF-MMI performs when it gets alignments from the

alignment-free LF-MMI system instead of from a GMM model, and whether the regular

LF-MMI training could further improve the performance as a refinement of our existing

system. To this end, we compare the three systems in Table 3.6. Note that as we already

achieve FRR=0 at FAH=0.5 with SNIPS using our alignment-free LF-MMI system, we

set the operating point at a smaller FAH (0.04) for it. Table 3.6 demonstrates that further

improvement can be obtained by running an additional regular LF-MMI training on top of

alignment-free LF-MMI, suggesting an optional refinement stage for better performance.
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Table 3.6: Effect of using alignments from Alignment-free LF-MMI for regular LF-MMI.

FRR(%)
SNIPS (FAH=0.04) Mobvoi (FAH=1.5) Mobvoi (SLR87) (FAH=0.5)

Hi Xiaowen Nihao Wenwen

regular LF-MMI 0.2 0.2 0.6 0.7
alignment-free LF-MMI 0.2 0.4 0.4 0.5

+regular LF-MMI refinement 0.1 0.3 0.4 0.4

3.3.6 Comparison with Other Baseline Systems

We compare our proposed system with other systems recently proposed for the same

data sets. We use our alignment-free LF-MMI system without refinement, as the refinement

is optional. The results are shown in Table 3.7. DET curves of our system on all the three

data sets are plotted in Figure 3.8.

For the SNIPS data set we compare against their original paper [24], where a voice

activity detection system is used to obtain frame-level wake word labels for training. While

their system is already very good in term of FRR, our system even achieves FRR=0 at

FAH=0.5.

For the Mobvoi data set we compare our system with [129] where an attention mech-

anism is adopted for pooling across frames to make a prediction. They also propose

an adversarial examples generation algorithm for robust training. The modeling units

are wake words, and they use recurrent rather than convolutional networks. Our system

achieves significantly better results, improving FRR to 0.4%, compared to their FRR=3.6%

at FAH=1.5, a 90% relative reduction.

For the Mobvoi (SLR87) data set, the approach proposed in [49] is compared, where
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the label imbalance issue is tackled by selective negative sampling. Again, it uses wake

words as modeling units. Note that this data set contains two wake words (“Hi Xiaowen”

and “Nihao Wenwen”), and when we are evaluating for a specific one, the other one is con-

sidered a false alarm or negative example. We achieve 50-70% reduction in FRR compared

to their system at the same FAH=0.5.

Table 3.7: Comparison with other wake-word detection baselines.

SNIPS #Params FRR(%) at FAH=0.5
Coucke at al. [24] 220k 0.12
alignment-free LF-MMI (Ours) 150k 0

Mobvoi #Params FRR(%) at FAH=1.5
Wang at al. [129] 84k ∼3.6
alignment-free LF-MMI (Ours) 150k 0.4

Mobvoi (SLR87) #Params
FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen
Hou at al. [49] 7 N/A 1.3 1.0
alignment-free LF-MMI (Ours) 150k 0.4 0.5

7 The numbers shown here, different from those in the original paper, are obtained at https://github.
com/jingyonghou/KWS_Max-pooling_RHE on the same data as what we are using.Those shown in the
original paper are obtained from an in-house dataset.
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Figure 3.8: DET curves for the three data sets.

3.3.7 Different Model Sizes and Receptive Field

Since we already achieve good performance with the current wake word detection sys-

tem, we would like to further reduce the neural network size, as well as the the size of the

receptive field, to a a smaller memory footprint for the model and low detection latency

respectively. Some recent work [4], [150] shows that neural networks with size of 20-100k

can already have competitive performance in the KWS task. We gradually reduce the model

size of the LF-MMI model by removing some layers, to investigate how the performance
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Table 3.8: Results of reducing model size and receptive field for alignment-free LF-MMI
on SNIPS.

Model Size #layers receptive field FRR(%) at FAH=0.5

149k 20 87 0
143k 19 81 0.1
136k 18 75 0.2
123k 16 63 0.4
110k 14 51 0.5
97k 12 47 0.4
91k 11 41 0.4
78k 9 37 0.7

is affected. Note that when removing layers, the receptive field of each output frame is

potentially getting smaller, depending on the layer removed.

Table 3.8 shows the results when reducing the model size in our proposed alignment-

free LF-MMI model. We can see that when the receptive field becomes smaller as result

of reducing the number of layers, the performance tends to degrade. When the receptive

field is 41, it can still achieve FRR=0.4% at FAH=0.5. However, when the receptive field

is further reduced to 37 (at which the model size is 78k), there is a significant loss in FRR.

Table 3.9 is the results of the same experiment conducted on Mobvoi (SLR87). Overall

it shows a similar trend as in SNIPS. The point of significant degradation happens when

the receptive field is reduced from 75 to 63, suggesting 70 is necessary to maintain good

performance.
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Table 3.9: Results of reducing model size and receptive field for alignment-free LF-MMI
on Mobvoi (SLR87).

Model Size #layers receptive field FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen

150k 20 87 0.4 0.5
143k 19 81 0.4 0.6
137k 18 75 0.5 0.7
124k 16 63 0.6 1.2
111k 14 51 1.0 1.3
98k 12 47 1.1 1.3
91k 11 41 2.0 2.6

3.3.8 Alignment Analysis

The superior detection performance of the alignment-free LF-MMI system over regular

LF-MMI motivates us to examine their state-level alignments for better understanding their

difference. We also would like to know, given the 4-state HMM, how often each state

appears in these alignments. We first choose the Mobvoi (SLR87) dataset for analysis as

it has the largest training set (144 hours) among the three. As there are no ground truth

alignments, we have to analyze them qualitatively.

We look at the forced-alignments generated from 3 types of the acoustic model: 1)

the GMM model used in the regular LF-MMI providing the numerator supervision for

LF-MMI; 2) the neural network trained with regular LF-MMI; and 3) the neural network

trained from scratch (alignment-free LF-MMI).

For both positive and negative examples, the state-level alignments generated from the

GMM model are much more diverse than those from the LF-MMI trained neural networks,
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meaning more states within an HMM are occupied by quite a few number of frames. It can

be explained by the fact that LF-MMI is a kind of sequence-level loss optimizing sequence

posteriors and it does not focus on frame-level alignments. On the other hand, GMM

is trained with HMM generatively maximizing the likelihood of the data, and generative

models tend to be in favor of more complicated models. Therefore the generatively trained

HMM-GMM will achieve better data likelihood if more HMM states get involved.

Now let’s look at the examples in groups. For positive examples (i.e. containing “HiXi-

aowen” or “NihaoWenwen”), around 60% of these examples have leading or trailing silence

lasting at least 10% of the total duration in their alignments from the GMM model, while

from the other two models there is almost no silence. After listening to the original audio, it

turns out that the part aligned to silence from the GMM models is mostly not pure silence,

but rather non-speech background white noise (see Figure 3.9a). Actually there are very

few frames corresponding to pure silence. For negative examples, the GMM model often

mistakenly aligns the beginning or ending part of non-wake-word speech frames to silence,

while the other two models rarely align frames to silence. We found, after listening to those

negative examples, that there is nearly no noticeable leading or trailing silence (See Fig-

ure 3.10a). In sum, neither positive nor negative examples have enough leading or trailing

silence in the Mobvoi (SLR87) dataset, making it difficult to learn a reliable silence model.

We note that the SNIPS dataset contains more positive and negative examples with si-

lence at the beginning or end (See Figure 3.9b for the positive and Figure 3.10b for the

negative). So we carried out the same analysis on SNIPS. The phenomenon that one state
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dominates among others in an HMM for LF-MMI trained models still exists in both pos-

itive and negative examples. On the other hand, the word-level alignment patterns are

different from those for Mobvoi (SLR87). The GMM model has a tendency of aligning

quite a large number of frames, either at the beginning or ending of an example, to silence,

for both positive and negative examples. The regular LF-MMI can mostly align silence

frames correctly, and usually makes mistakes when trying to align very short silence at the

beginning or end. However, the alignment-free LF-MMI model is still not able to align the

silence frames well: at most only the first frame is aligned to silence. It can be attributed

to the freedom of learning alignments that alignment-free LF-MMI has, as it does not pay

attention to individual frames, despite its best overall detection performance. Note that no

silence in an alignment does not imply the probability of silence is 0; it just means that the

posterior probability of silence is not higher than that of wake words and non-silence. Fig-

ure 3.11 shows the neural network output over time from a positive example of the SNIPS

dataset. Each curve corresponds to log probability of the acoustics given a specific state

over time i.e., log 𝑃(𝑜𝑢𝑡 |𝑠𝑡) for 𝑡 ∈ {1, . . . , 𝑇}, and curves with the state belonging to the

same HMM have the same color. For example, the SIL HMM has two states, and the curves

for these two states are colored with red. The values on these two red curves are around 0

in most of the time, meaning that their probability mass is far above 0 (if the probability is

close to 0, then the log probability is a negative value far from 0).
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(a) The waveform of a typical positive example from Mobvoi (SLR87).
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(b) The waveform of a typical positive example from SNIPS.

Figure 3.9: Examples of positive waveforms from two datasets to illustrate their difference
in silence at the beginning/end. There is tiny wave before/after the wake word in the top
subfigure indicating background noise, while in the bottom one it is more “silent” in the
corresponding regions.
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(a) The waveform of a typical negative example from Mobvoi (SLR87).
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(b) The waveform of a typical negative example from SNIPS.

Figure 3.10: Examples of negative waveforms from the two datasets to illustrate their dif-
ference in silence at the beginning/end. Compared with the top subfigure, the bottom one
has a more significant portion of silence at the beginning.
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Figure 3.11: The neural network output over time from a positive example of the SNIPS
dataset.The x-axis is for frames and y-axis represents the log-probability of the acoustic
features given an HMM state. Each curve corresponds to a specific HMM state. Curves
with the state from the same HMM have the same color.

3.3.9 One-state experiments

In Section 3.3.8 we found that when generating forced alignments with an LF-MMI

trained model, one state usually dominates over the other emitting states belonging to the

same HMM. A natural question arises: now that the other states are mostly not used, what

if we further simplify the HMM topology. Recall that in Section 3.2.1 we specified the

topologies for the wake word HMM and freetext HMM as 4 emitting states followed by 1
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non-emitting state in a left-to-right structure. We now reduce the number of emitting states

to 1, i.e., giving the wake word and freetext models the same topolgy as the SIL HMM.

Table 3.10: Comparison of 4-state and 1-state HMMs for wake-word and non-silence with
alignment-free LF-MMI.

SNIPS FRR(%) at FAH=0.5
alignment-free LF-MMI

(4 states) 0

alignment-free LF-MMI
(1 state) 0.1

Mobvoi (SLR87)
FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen
alignment-free LF-MMI

(4 states) 0.4 0.5

alignment-free LF-MMI
(1 state) 0.4 0.5

Table 3.10 compares the 1-state systems with the 4-state ones on the SNIPS and Mobvoi

(SLR87) at the same operating points as those in Table 3.7. It turns out the 1-state topology

has slightly inferior performance on SNIPS, while performing as good as the 4-state one

on the Mobvoi (SLR87). The DET curves shown in Figure 3.12 validate these trends.

However, applying the one-state HMM to the regular LF-MMI system leads to signif-

icant degradation (see Table 3.11). The regular LF-MMI system relies on a prior HMM-

GMM system to obtain the alignments, and we suspect that GMM models do not have

enough modeling capability for diverse acoustic characteristics, so a smaller number of

HMM states (e.g., only 1 state here) makes it difficult to learn a good GMM model. In fact

we do observe different patterns of the GMM forced alignments: some frames previously
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Figure 3.12: DET curves: 4-state v.s. 1-state with alignment-free LF-MMI. All red curves
are with 4 states and all blue curves are with 1 state. Different line styles correspond to
detecting different wake words.
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aligned to the wake word or non-silence in the 4-state system are now aligned to silence in

the 1-state system.

Experiments in this section suggest another advantage of alignment-free LF-MMI: it

requires a smaller number of HMM states to achieve good detection performance. We still

would like to keep the 4-state HMM in the proposed version as it achieves the best detection

performance across different datasets and is more resistant to misalignments.

Table 3.11: Comparison of 4-state and 1-state HMMs for wake-word and non-silence with
regular LF-MMI.

SNIPS FRR(%) at FAH=0.5
regular LF-MMI

(4 states) 0.1

regular LF-MMI
(1 state) 2.3

Mobvoi (SLR87)
FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen
regulare LF-MMI

(4 states) 0.6 0.7

regular LF-MMI
(1 state) 1.0 1.0

3.3.10 Decoding Analysis

In this section we examine the performance of the proposed decoding algorithm intro-

duced in Section 3.2.5 used for wake word detection. The task of wake word detection

requires low detection latency, i.e., the system should be triggered as soon as the wake

word appears in the audio stream, while still maintaining high detection accuracy. There
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are basically two factors affecting the detection latency. One is the receptive field of the

neural network which determines the number of future frames to look at in order to com-

pute the output at a frame. This has been discussed in Section 3.3.7 where we observe that

there is no significant degradation unless the receptive field is below 40/70 frames (or the

number of dependent future frames is smaller than 20/35) for SNIPS and Mobvoi (SLR87)

respectively. The other factor is the delay of being triggered by a detected word, which

is normally measured by the difference between the triggered time and the time when the

wake word ends. Unfortunately, none of the datasets we are using has the ground-truth

timing information of wake words, which prevent us from providing accurate and quanti-

tative analysis of the latency. We instead provide some qualitative and indirect analysis,

by showing visualized examples, providing some statistics during decoding, and observing

performance changes with different level of decoding constraints.

Recall that the immortal tokens introduced in Algorithm 2 play the role of notifying

the decoder to back-track between two consecutive immortal tokens, checking if a wake

word exists in the hypothesis. There are two possible cases when we do the back-tracking

and then detect a wake word: 1) the last immortal token is identified before the decoder

reaches the end of the audio recording, and the wake word is detected when back-tracking

from that immortal token to the previous one; and 2) the wake word is not detected until

the decoder reaches the end of the recording, and the best one among all the surviving

tokens is selected for back-tracking in which the wake word is detected. Clearly the second

case is less preferable, as it suggests potential delays during the detection. In order to
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know how many times the wake word is detected in each of these two cases, we count

them on both SNIPS and Mobvoi (SLR87), each with cross-entropy, regular MMI and

alignment-free MMI trained models. We set the frequency of checking the immortal token

to every 1 frame by making the chunk size in Algorithm 1 equal to 1, so that there is no

extra delay introduced by the chunk size itself. For convenience we perform the counting at

FAH=0.5 in each experiment, although empirically there is not much difference if obtaining

the counts at other operating points nearby.

Table 3.12 shows the statistics, from which we have two observations:

• The alignment-free LF-MMI has more cases when the back-tracking happens at the

end of the utterance than regular LF-MMI and cross-entropy systems. The reason,

we believe, is that the alignment-free LF-MMI tends to learn delayed alignments for

achieving a better training criterion.

• The “back-tracking at the end” case happens more frequently for the alignment-free

LF-MMI on Mobvoi (SLR87) than on SNIPS. In Section 3.3.8 we mentioned that

the positive examples in SNIPS usually contain leading/trailing silence, while Mob-

voi (SLR 87) has much less such cases. The occurrence of “back-tracking at the end”,

however, does not necessarily imply large detection latency if there is not much trail-

ing silence (as is the case for Mobvoi (SLR 87)); in that case the recording just ends

right after the wake word ends.

Due to lack of ground-truth timing information, we instead show some qualitative ex-
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Table 3.12: The percentage (%) of all positives in the Eval set that are triggered before
reaching the end of examples.

System Type
SNIPS (FAH=0.5) Mobvoi (SLR87) (FAH=0.5)

Hi Xiaowen Nihao Wenwen

cross-entropy 97.8 99.2 99.2
regular LF-MMI 95.3 92.3 97.3
alignment-free LF-MMI 62.1 37.3 35.5

amples for detection latency. Figure 3.13 shows three examples on SNIPS. Each example

is a waveform with two epochs marked by vertical lines: the black line indicates the frame

at which the detector triggers, and the red vertical lines indicate the time when the latest

immortal token is generated before the detector triggers. The x-axis represents the speech

sample index. Fig 3.13a shows an example with a long duration of trailing silence. The last

immortal token is identified at the time when “Hey Snips” just finished, and the triggered

time is about 0.2 second later (the sampling rate is 16k). Fig 3.13b shows an example with

long leading silence but short trailing silence, in which the triggered time is also around 0.2

second after the end of the wake word. Fig 3.13c gives an example where the last immortal

token is identified within the segment corresponding to the wake word, and the triggered

time is about 0.4 second later after the wake word.

Figure 3.14 shows 3 examples on Mobvoi (SLR87), which is much more noisy than

SNIPS. Figure 3.14a is a case where there is a lot of background noise during and after

the wake word “Hi Xiaowen”. The “bottleneck” between the red and black line is actually

the end of the wake word, so the delay of the triggered time is around 0.5 second. Figure
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3.14b demonstrates another example where there is a long trailing “silence” (with some

mild noise) and it looks like the system is triggered on time. In Figure 3.14c we show an

example where it is triggered at the end and there is no immortal token identified (so the red

line is placed at the first frame), which means that there is no such a point when multiple

hypotheses have ever collapsed to a single hypothesis during the decoding.

To further investigate the latency, we conduct two more experiments: we restrict the

the maximum number of back-tracking steps starting from 1) the current immortal token

towards the previous immortal token at line 17 in Algorithm 1, or 2) the best surviving

token at the last frame if it is reached at line 13. We apply these two constraints separately

so that we would know their individual influences on performance. It turns out that the

former constraint does not have significant impact on the detection results for either the

regular or the alignment-free LF-MMI system even with a small maximum number (i.e.,

20 frames), implying there are no much delay in triggering wake words within the time

interval between the current and previous immortal token.

However, the latter constraint has significant impact if the maximum number of back-

tracking frames is getting smaller. The details are shown in Table 3.13 8. For both regular

and alignment-free LF-MMI, the detection performance degrades significantly when the

maximum number of back-tracking frames is small, i.e. when maximum number of back-

tracking frames is below 50 for regular LF-MMI, or below 80 for alignment-free MMI.

Also we can observe that regular LF-MMI is more robust to smaller number of back-

8∞ means not applying any constraint for max. back-tracking #frames.
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(a) An example with a long duration of trailing silence.
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(b) An example with a long duration of leading silence.

Figure 3.13: Positive examples showing the detection latency on SNIPS. The black vertical
lines indicate triggered time, and the red vertical lines indicate the time when the latest
immortal token is generated before the triggered time.
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(c) An example where the the time when the system is triggered is a
bit late.

tracking frames than the alignment-free one when backtracking from the last frame, which

provides another evidence that the alignment-free LF-MMI trained system leads to a more

delayed triggering.

Motivated by the observations above, we slightly modify Algorithm 1 and 2, such that

we maintain a variable last_checked_frame storing the last frame from which we re-

cently back-tracked. last_checked_frame is updated whenever a new immortal token

is identified, or a forced back-tracking is invoked. If the frame being reached by the de-

coder is at least 𝑁 frames ahead from last_checked_frame, back-tracking is forced to

be invoked from the best token at that frame. So 𝑁 gives an upper bound of how often the

decoder checks for the wake word. We initially set 𝑁 to a small value (e.g., 30), and then

gradually increase it while monitoring the changes of the detection results. As expected,
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(a) An example with background noise.
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(b) An example with considerable amount of trailing silence (with
mild noise).

Figure 3.14: Positive examples showing the detection latency on Mobvoi (SLR87). The
black vertical lines indicate triggered time, and the red vertical lines indicate the time when
the latest immortal token is generated before the triggered time.
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(c) An example with few trailing silence

Table 3.13: Performance comparison with varying the number of max back-tracking frames
from the end of examples.

System Type
Max. back-tracking #frames

Mobvoi (SLR87) (FAH=0.5)

Hi Xiaowen Nihao Wenwen

regular LF-MMI

∞ 0.6 0.7
120 0.6 0.7
100 0.6 0.7
80 0.8 0.7
50 0.8 1.6
30 18.0 5.9

aligment-free LF-MMI

∞ 0.4 0.5
140 0.4 0.5
120 0.5 0.6
100 0.7 0.9
80 2.0 3.0
50 61.1 58.7
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the results keep improving before reaching a plateau. 𝑁 at which the plateau starts is about

40 for regular LF-MMI, and about 80 for alignment-free LF-MMI. This experiment also

provides a rough and indirect estimate of latency.

In sum, the alignment-free LF-MMI system has larger detection latency than the regular

LF-MMI system. To control the latency, we can leverage the modified algorithm introduced

in the previous paragraph and specify a value for 𝑁: a smaller 𝑁 leads to low latency but

may hurt the detection performance.

3.3.11 Resources Consumption

As wake word detection systems usually run on devices where there are very limited

computation and memory resources, it is useful to provide some measures of computation

and memory resources consumption during the detection stage for reference.

The first one is the number of floating point operations. It measures how much compu-

tation is needed to evaluate a model. The more floating point operations, the more power

consumption. Here we calculate the number of floating point operations in the neural net-

work 9. For example, the matrix multiplication A × B, where A ∈ R𝑚×𝑘 and B ∈ R𝑘×𝑛,

involves 2𝑚𝑛𝑘 floating point operations (𝑚𝑛𝑘 arithmetic additions and 𝑚𝑛𝑘 arithmetic

multiplications). In a convolution, the kernel matrix is repeatedly applied on patches of

9The computation in the decoder in negligible compared to that in the neural network.
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input. Taking 1D convolution for instance, the number of repeats is computed as:

num_repeats =
⌊︃
𝐿 + 2 × padding − dilation × (kernel_size − 1) − 1

stride
+ 1

⌋︃
(3.7)

where 𝐿 is the input length. Based on the neural architecture specified in Table 3.1, the

number of floating point operations is about 292, 000 × 𝑇 where 𝑇 is the number of input

feature frames.

The second one is the peak memory usage. We use the Linux command:

ps -o rss= $pid

where $pid is the process id of the running decoding program, to obtain resident set size

(RSS) 10. The decoding is run on an Intel Xeon CPU E5-2620 v3 @ 2.40GHz. The max-

imum value of RSS during the execution of the program is recorded as the peak value. It

turns out that the peak memory usage is 77 MB. Note that we run the decoding purely on

CPUs, so both the executions of neural network’s forward pass and the online decoding are

on CPUs.

3.3.12 Unsuccessful Experiments

There are several other design choices we have tried before arriving at the system pro-

posed in Section 3.2. Those choices turned out to be unsuccessful, so we discarded them or

found other alternatives in our final system. However, we think some of those are valuable

10 RSS is the portion of memory occupied by a process that is held in main memory (RAM) [101].
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for discussions. In this section, we give our initial motivation of those attempts, along with

the experiments and analyses for these negative results.

3.3.12.1 Two-HMM Experiments

There are 3 HMMs in our final system: word, freetext and SIL corresponding to 3 dis-

tinct classes of pronunciation units11 to be learned. Note that our annotations only contain

two labels: either positive or negative (including non-silence and silence) for training. The

problem is mainly for negative examples: it is possible that a negative example contains

non-silence and silence interleaving with each other. Consider the an example where the

underlying transcript is like:

[silence] [non-silence] [silence] [non-silence] [silence]

where “[non-silence]” represents any non-silence text except the wake word and “[silence]”

is the silence. However the supervision for this example is a single label representing

negative. While the leading and trailing silence can be captured by optional silence added

to the lexicon FST [9], silence in the middle of non-silence will not. So conceptually

the setup in the proposed system cannot follow arbitrary combinations of non-silence and

silence.

Therefore, our attempt was to merge freetext and SIL as a single “negative HMM”

without differentiating between non-silence and silence at the whole word level, and in-

stead relying on the underlying HMM topology to account for it. One possible way is to
11In ASR pronunciation units are usually phones. But in our wake word detection system, we use a single

HMM to model the wake word, silence, or other non-silence text, so actually the pronunciation units are
modeling acoustics longer than phones.
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have an HMM topology with two emitting states having an arc to each other (i.e. ergodic),

where one state corresponds to non-silence and the other state corresponds to silence (Fig-

ure 3.15). A more complicated way is to have more than 2 states for the negative HMM,

having an arc from the last emitting state to the first emitting state to account for interleav-

ing between non-silence and silence (E.g., in Figure 3.16 we have 1-state for silence and 4

states for non-silence).

0

0:0

11:0

24:1
3:0

0:0

2:1

Figure 3.15: A negative HMM topology with 2 emitting states, each of which has an arc to
the other. State 0 and 1 also have an arc to the final non-emitting state.
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Figure 3.16: A negative HMM topology with 5 emitting states, where state 0 is for silence
and state 1, 3, 4, 5 are for non-silence.

We tested two-HMM setups with the two specific HMM typologies for negatives shown

in Figure 3.15 and Figure 3.16 respectively. In order to evaluate potentially different im-

pacts on the alignments, both a alignment-free LF-MMI and a regular LF-MMI (with align-

ments from a HMM-GMM model) system are evaluated.

Similar to the proposed system in Section 3.2, we first experiment with two-HMM

systems with optional silence present in positive examples, which means there can be a

negative HMM appearing before or after the wake word in positive examples, which should

ideally only model silence. The results are shown in Table 3.14.

The performance of the two-HMM systems are quite unstable on the two datasets. On

Mobvoi (SLR87) the results are comparable to our proposed three-HMM system only when

the negative HMM has two states. However, in the other cases, i.e. the 5-state one on

Moboi (SLR87) and both the 2-state and 5-state ones on SNIPS, the performance degrades
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Table 3.14: Comparisons of three-HMM and two-HMM alignment-free LF-MMI systems
(with optional silence).

System
FRR(%) at FAH=0.5

SNIPS Mobvoi (SLR 87)
Hi Xiaowen Nihao Wenwen

3 HMMs (proposed) 0 0.4 0.5
2 HMMs

(2 states for negatives) 99.8 0.5 0.5

2 HMMs
(5 states for negatives) 26.9 74.0 50.2

Table 3.15: Comparisons of three-HMM and two-HMM regular LF-MMI systems (with
optional silence).

System
FRR(%) at FAH=0.5

SNIPS Mobvoi (SLR 87)
Hi Xiaowen Nihao Wenwen

3 HMMs 0.1 0.6 0.7
2 HMMs

(2 states for negatives) 0.5 0.6 0.7

2 HMMs
(5 states for negatives) 14.9 0.5 0.7
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so drastically that quite a large amount of positive examples are missing in the detection.

Recall that in Section 3.3.9 we observe that there are considerably long silences before

or after positive examples in SNIPS. We suspect that it is those leading/trailing silence

segments that make the model struggle in learning good alignments in the presence of

optional silence, as the “negative HMM” is now supposed to not only differentiate silence

from non-silence, but also needs to avoid being aligned to the positive segments. Also,

more states may also increase the difficulty of finding good alignments due to increased

degree of freedom.

By inspecting the state-level forced-alignments, we have the following observations:

1. For positive examples mostly only the first and last frame are aligned with the neg-

ative HMM and the rest are all aligned with the positive HMM, which means the

leading and trailing silence are mistakenly aligned with the positive HMM.

2. For negative examples almost all the frames are aligned with a single state of the neg-

ative HMM, i.e., one HMM state dominates among others in the alignments, which

indicates that it fails to differentiate between non-silence and silence.

In Section 3.3.8 we mention that HMM-GMM models are more capable of learning

good alignments than alignment-free LF-MMI. In order to decouple the difficulty of train-

ing with two-HMM settings from learning alignments from scratch, we apply the same

2-phone settings to the regular LF-MMI systems where the alignments are obtained from

an HMM-GMM model. Table 3.15 gives the results. Note that the three-HMM system
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listed there is also trained with regular LF-MMI (as opposed to alignment-free LF-MMI).

We see that, except for the result of the 5-state system on SNIPS, all the other two-HMM

systems result in reasonable performance. Especially the results of the two two-HMM

systems on Mobvoi (SLR 87) are comparable to those of the three-HMM systems.

Therefore, in order to mitigate the burden imposed on the “negative HMM” in the

two-HMM systems, we remove the optional silence, so that the entire positive examples

are to be aligned with the positive word HMM, and show their results in Table 3.16 and

Table 3.17. By comparing the results without optional silence to those with optional si-

lence (Table 3.16 v.s. Table 3.14 for alignment-free LF-MMI and Table 3.17 v.s. Table

3.15 for regular LF-MMI), we observe that those experiments with optional silence yield-

ing FRR>10% get largely improved in the corresponding experiments without optional

silence, e.g. the two-HMM 5-state alignment-free LF-MMI system on Mobvoi (SLR87) is

improved from 74.0/50.2 to 0.6/0.9, and the two-HMM 5-state regular LF-MMI on SNIPS

is improved from 14.9 to 0.1. Given these observations, removing optional silence turns

out to be crucial in the two-HMM settings to learn a good negative HMM model.

Next we compare Table 3.16 and Table 3.17. Unlike what is observed in the three-

HMM systems, regular LF-MMI generally performs better than alignment-free LF-MMI

with the two-HMM systems, and the difference is more prominent on SNIPS. We think the

two-HMM systems are more difficult to learn due to more modeling flexibility, requiring

better alignments to work well.

Interestingly, by looking only at Table 3.17 we see the two-HMM 5-state system is
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Table 3.16: Comparisons of three-HMM and two-HMM alignment-free LF-MMI systems
(two-HMM systems are without optional silence).

System
FRR(%) at FAH=0.5

SNIPS Mobvoi (SLR 87)
Hi Xiaowen Nihao Wenwen

3 HMMs (proposed) 0 0.4 0.5
2 HMMs

(2 states for negatives) 2.0 0.5 0.5

2 HMMs
(5 states for negatives) 1.5 0.6 0.9

slightly and consistently better than the three-HMM system, suggesting that two HMMs

are already capable of modeling in our task if a reliable alignment model (e.g., an HMM-

GMM model) is available.

From Table 3.16 and Table 3.17, we also see that the HMM typology with more states

has clear advantage over the one with less states on SNIPS, while on Mobvoi (SLR87) they

are comparable. These observations are similar to what is reported in Section 3.3.9 where

the 1-state topology in the three-HMM system is discussed.

Based on this series of experiments and observations above, we conclude that it is

difficult for the two-HMM systems, where a single HMM is used to model both non-silence

and silence for negatives, to differentiate leading/trailing silence segments from the positive

segment in a positive example, even for an HMM-GMM model which tends to assign more

frames to silence in three-HMM systems. One needs to use only the positive HMM for

positive examples, dedicating the negative HMM to negative examples. In this case, both
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Table 3.17: Comparisons of three-HMM and two-HMM regular LF-MMI systems (two-
HMM systems are without optional silence).

System
FRR(%) at FAH=0.5

SNIPS Mobvoi (SLR 87)
Hi Xiaowen Nihao Wenwen

3 HMMs 0.1 0.6 0.7
2 HMMs

(2 states for negatives) 0.2 0.6 0.6

2 HMMs
(5 states for negatives) 0.1 0.5 0.7

the alignment-free LF-MMI and regular LF-MMI can perform well, and the regular LF-

MMI may be a better choice because it is trained based on better alignments. The best

two-HMM system (shown as the last row in Table 3.17) is still inferior to our proposed

three-HMM alignment-free LF-MMI one.

3.3.12.2 Lexicon Modifications

Given the less-than-stellar empirical performance of the two-HMM experiments, we

then considered tackling the same problem in the lexicon. Lexicons in ASR are used to

specify either how each word is pronounced in the form of a phonetic symbol sequence

(as pronunciation lexicons in phonetic systems) or how each word is spelled in the form

of a graphemic symbol sequence (as spelling lexicons in graphemic systems). A lexicon

is usually represented as a WFST, with phonetic/graphemic symbols as input labels and

words as output labels. In our proposed wake word detection system, the pronunciation of
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a word 12 is specified with a single symbol13 (e.g., the symbol that the freetext HMM is

associated with corresponds to the word representing “negative”). However, as pointed out

in Section 3.3.12.1, negative examples can have an interleaving silence-non-silence pattern,

i.e.

silence [ non-silence silence ]*

in regular expression. Therefore, we modify the lexicon FST for negatives as shown in

Figure 3.17 and apply it to only training graphs. The decoding graph being used is the

same as that in our proposed system, which already accepts the interleaving silence-non-

silence pattern.

0

<freetext>

0 1SIL
<eps>

2<freetext>
SIL

Figure 3.17: Modification of lexicon FST for negatives. It only shows the subgraph for the
freetext and omit the output symbol for clarity.

Again, we test the modified lexicon FST with both regular and alignment-free LF-MMI

and the results are shown in Table 3.18. The alignment-free LF-MMI training diverges

on SNIPS, possibly due to the failure of learning good alignments with the modified (and

12There is only a single “word”, representing either positive or negative. for an example. We use the term
“words” for convenience.

13There is an optional silence before and after that symbol to learn silence.

96



Table 3.18: Comparison: modified v.s. unmodified lexicon FST.

System LF-MMI type
FRR(%) at FAH=0.5

SNIPS Mobvoi (SLR 87)
Hi Xiaowen Nihao Wenwen

unmodified lexicon
regular 0.1 0.6 0.7

alignment-free 0 0.4 0.5

modified lexicon
regular 0.1 1.1 1.2

alignment-free 99.3 0.6 0.7

more complicated) lexicon structure. The other experiments do not show advantage over

the unmodified lexicon either, either for alignment-free or for regular LF-MMI.

3.4 Chapter Summary

We describe a suite of methods to build a hybrid HMM-DNN system for wake word de-

tection, including sequence-discriminative training based on alignment-free LF-MMI loss,

removing the need for frame-level training alignments, and whole-word HMMs for the

wake word and filler speech, removing the need for training transcripts or pronunciation

lexicons. These features significantly reduce model sizes and greatly simplify the training

process. An online decoder tailored to wake word detection is proposed to complete the

suite. The system widely outperforms other wake word detection systems on three differ-

ent real-world wake word data sets. We also qualitatively investigate the alignments and

decoding latency among different models, providing a more comprehensive analysis of the

proposed system. We have open-sourced our system in Kaldi [96]. The code and recipes are
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available at https://github.com/kaldi-asr/kaldi/tree/master/egs/{snips,

mobvoi,mobvoihotwords}.
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Chapter 4

Wake Word Detection with Streaming

Transformers

Modern wake word detection systems usually rely on neural networks for acoustic mod-

eling. In the previous chapter we proposed a wake word detection system with convolu-

tional neural networks as acoustic models. Transformers have recently shown superior per-

formance over LSTM and convolutional networks in various sequence modeling tasks with

their better temporal modeling power [6], [30], [123]. However it is not clear whether this

advantage still holds for short-range temporal modeling like wake word detection. Besides,

the basic Transformer is not directly applicable to the task due to its non-streaming nature

and the quadratic time and space complexity. In this chapter we explore the performance

of several variants of chunk-wise streaming Transformers tailored for wake word detec-

tion in our proposed LF-MMI system, including looking-ahead to the next chunk, gradient
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stopping during training, different positional embedding methods, and adding same-layer

dependency between chunks. Our experiments on the Mobvoi wake word dataset demon-

strate that our proposed Transformer model outperforms the baseline convolutional network

by 25% on average in false rejection rate at the same false alarm rate with a comparable

model size, while still maintaining linear complexity w.r.t. the sequence length. The work

presented in this chapter was published as [133], [110] and [130].

4.1 Introduction

As was introduced in Chapter 2, wake word detection systems can be constructed with

either HMM-DNN hybrid models [87], [117], [132], [138] or pure neural networks [8],

[41], [49], [104], [108]. In either of these two categories some types of neural networks are

used for acoustic modeling to encode the input features of an audio recording into a high

level representation for the decoder to determine whether the wake word has been detected

within some range of frames.

A wake word detection system usually runs on devices, and it needs to be triggered

as soon as the wake word actually appears in a stream of audio. Same as what is pointed

out in Chapter 2 for wake word detection systems, the neural networks are also limited

to: 1) small memory footprint; 2) small computational cost; and 3) low latency in terms

of the number of future frames needed to compute the score for the current frame. Under

these criteria, the family of recurrent neural networks [19], [46] is not suitable because
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its sequential nature in computation prevents it from being parallelized across time in the

chunk-streaming case even with GPUs. So most of the current systems adopt convolutional

networks. A convolution kernel spans over a small and fixed range of frames, and is re-

peatedly applied by sliding across time or frequencies. Although each kernel only captures

a local pattern, the receptive field can be enlarged by stacking several convolutional layers

together: higher layers can “see” longer range of frames than lower layers, capturing more

global patterns.

The self-attention structure, as a building block of the Transformer networks [123],

has gained popularity in both NLP and speech communities for its capability of modeling

context dependency for sequence data without recurrent connections [54], [123]. Self-

attention replaces recurrence with direct pairwise interactions between frames in a layer,

making each frame aware of its contexts. The computations are more parallelized, in the

sense that the processing of a frame does not depend on the completion of processing other

frames in the same layer. [4] also explored the self-attention in the keyword search (KWS)

task. However, the original self-attention requires the entire input sequence to be available

before any frames can be processed, and the computational complexity and memory us-

age are both quadratic in the length of the input. Time-restricted self-attention [97] allows

the self-attention to be restricted within a small context window around each frame using

attention masks. But it still does not have a mechanism of saving the current computed

state for future computations, and thus is not applicable to streaming data. Transformer-

XL [26] performs chunk-wise training where the previous chunk is cached as hidden state
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for the current chunk to attend to for long-range temporal modeling. So it can be used for

streaming tasks. The time and space complexity are both reduced to 𝑂 (𝑇), and the within-

chunk computation across time can be parallelized with GPUs. While there has been recent

work [73], [119], [121], [137], [148] with similar ideas showing that such streaming Trans-

formers achieve competitive performance compared with latency-controlled bidirectional

LSTMs [149] or non-streaming Transformers for ASR, it remains unclear how the stream-

ing transformers work for shorter sequence modeling task like wake word detection.

In this chapter we investigate various aspects of streaming Transformers applying them

to wake word detection for the alignment-free LF-MMI system [132] described in Chap-

ter 3. The work in this chapter has the following contributions: 1) we explore how the

gradient stopping point during back-propagation affects the performance; 2) we show how

different positional embedding methods affect the performance; and 3) we compare the

performance of either obtaining the hidden state coming from the current or previous layer.

In addition, we propose an efficient way to compute the relative positional embedding in

streaming Transformers. To the best of our knowledge, this is the first time that streaming

Transformers are applied to this task.

We build our system on top of the state-of-the-art system from Chapter 3, which adopted

dilated and strided 1D convolutional networks (or “TDNN” [91], [95]) for acoustic mod-

eling, which is straightforward as the computation of convolution is both streamable by

its nature and highly parallelizable. In the next section, we will detail our approach to

streaming Transformers for modeling the acoustics in our task.
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4.2 Streaming Transformers

We recapitulate the computation of a basic single-headed Transformer (Figure 4.1)

here.1 Assume the input to a self-attention layer is X = [x1, . . . , x𝑇 ] ∈ R𝑑𝑥×𝑇 where

x 𝑗 ∈ R𝑑𝑥 . The tensors of query Q, key K, and value V are obtained via

Q = W𝑄X, K = W𝐾X, V = W𝑉X ∈ R𝑑ℎ×𝑇 (4.1)

where the weight matrices W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑ℎ×𝑑𝑥 . The output at 𝑖-th time step is com-

puted as

h𝑖 = VM𝑖 ∈ R𝑑ℎ , M𝑖 = softmax
(︃
[Q⊤K]𝑖√

𝑑ℎ

)︃
∈ R𝑇 (4.2)

where [·]𝑖 denotes the 𝑖-th row of a matrix. All the operations mentioned above are ho-

mogeneous across time, thus can be parallelized on GPUs. Note that here Q,K,V are

computed from the same X, which represents the entire input sequence.

Such dependency of each output frame on the entire input sequence makes the model

unsuitable for streaming data, where in each step only a limited number of input frames are

available for processing. Also, the self-attention is conducted between every pair of frames

within the whole sequence, making the memory usage and computation cost both 𝑂 (𝑇2).

Transformer-XL-like architectures address these concerns by performing chunk-wise

processing of the sequence. The whole input sequence is segmented into several equal-

1 A multi-headed extension is straightforward but irrelevant to our discussion here. See Fig. 4.2 for an
illustration of the multi-head attention and refer to [123] for details.
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Figure 4.1: The transformer architecture.
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Figure 4.2: An illustration of the multi-head attention, where it shows that the results of the
dot-product attention from all the heads are concatenated to form a single vector which is
then projected through a linear layer. This figure is cropped from [123].
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length chunks (except the last one whose length can be shorter). As shown in Figure 4.3a,

the hidden state from the previous chunk is cached to extend keys and values from the

current chunk, providing extra history to be attended to. In this case, K̃ (or Ṽ) is longer in

length than Q due to the prepended history. To alleviate the gradient explosion/vanishing

issue introduced in this kind of recurrent structure, gradient is set to not go beyond the

cached state, i.e.,

K̃𝑐 = [SG(K𝑐−1); K𝑐], Ṽ𝑐 = [SG(V𝑐−1); V𝑐] (4.3)

where 𝑐 is the chunk index, [·; ·] represents concatenation along the time dimension, and

SG(·) is the stop gradient operation.2 The memory usage and computation cost are both

reduced to 𝑂 (𝑇) when the chunk size is constant.

4.2.1 Look-ahead to the Future and Gradient Stop in His-

tory

Our initial experiments showed that only having history to the left is not sufficient for

a good performance in wake word detection. So we also allow a chunk to “look-ahead” to

the next chunk to get future context when making predictions from the current chunk. For

the right context, the gradient in back-propagation does not just stop at 𝐾𝑐+1 and 𝑉𝑐+1, but

rather goes all the way down to the input within the chunk 𝑐 + 1. On the other hand we

2 For example, this would be Tensor.detach() in PyTorch [88].
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Figure 4.3: Two different type of nodes dependency when computing self-attention in
streaming Transformers. The figures use 3-layer networks with 2 chunks (delimited by
the thick vertical line in each sub-figure) of size 2 as examples. The grey arcs illustrate
the nodes dependency within the current chunk, while the green arcs show the dependency
from the current chunk to the previous one.
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can optionally treat the left context (i.e. the history state) the same way as well. Intuitively,

permitting more information (i.e. gradient flow back-propagated from the loss) while the

weights are being updated should always be beneficial, as long as their gradient flow is

constrained within a fixed range of time steps. This can be achieved by splicing the left

chunk together with the current chunk and then only selecting the output of the current

chunk for loss evaluation, at the cost of having one more forward computation for each

chunk by not caching them. We will show a performance comparison between with and

without such state-caching in the experiments.

4.2.2 Dependency on the Previous Chunk from the Same

Layer

Note that when there are multiple stacked self-attention layers, the output of the 𝑐-

th chunk of the 𝑙-th layer actually depends on the output of the (𝑐 − 1)-th chunk of the

(𝑙 − 1)-th layer. So the receptive field of each chunk grows linearly with the number of the

self-attention layers, and the current chunk does not have access to previous chunks in the

same layer (Figure 4.3a). This may limit the model’s temporal modeling capability as not

all parts of the network within the receptive field are utilized. Hence, we take the output

from the previous chunk in the same layer, and prepend it to the key and value. Formally,
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let H = [h1, . . . , h𝑇 ] ∈ R𝑇×𝑑ℎ where h𝑖 is defined in Eq. (4.2). Then Eq. (4.3) becomes:

K̃𝑙

𝑐 = [SG(H𝑙
𝑐−1); K𝑙

𝑐], Ṽ𝑙

𝑐 = [SG(H𝑙
𝑐−1); V𝑙

𝑐] (4.4)

where we use superscript 𝑙 to emphasize tensors from the same layer. Figure 4.3b illustrates

nodes dependency in such computation flows.

4.2.3 Positional Embedding

The self-attention in Transformers is invariant to sequence reordering, i.e., any permu-

tations of the input sequence will yield exactly the same output for each frame. So it is

crucial to encode the positions. The original Transformer [123] employs deterministic si-

nusoidal functions to encode absolute positions. In our chunk-streaming setting, we can

also enable this by adding an offset to the frame positions within each chunk. However,

since our goal for wake word detection is just to spot the word rather than recognize the

whole utterance, a relative positional encoding may be suffice and even more appropriate,

as it does not matter what the absolute position the wake word is at. One type of relative

positional embedding, as shown in [111], encodes the relative positions from a query frame

to key/value frames in the self-attention blocks, and pairs of frames having the same posi-

tional offset share the same trainable embedding vector. The embedding vectors E ∈ R𝑑ℎ×𝑇

are then added to the key (optionally to the value as well) of each self-attention layer. So
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Eq. (4.2) is modified as:

h𝑖 = (V + E)M𝑖 ∈ R𝑑ℎ , M𝑖 = softmax
(︃
[Q⊤ (K + E)]𝑖√

𝑑ℎ

)︃
∈ R𝑇 (4.5)

As suggested, the relative positional embedding is fed into every self-attention layer and

jointly trained with other model parameters.

Unlike the case in [111], where the query and key (or value) have the same sequence

length, there is an extra hidden state prepended to the left of the key and the value in the

current chunk, making the resulting key and value longer than the query. By leveraging

the special structure of the layout of relative positions between the query and key, we

design a series of simple but efficient tensor operations to compute self-attentions with

positional embedding. Next we show how the dot product between the query Q and the

positional embedding E for the key K can be obtained. Note that we drop the batch and

heads dimensions for clarity. So all tensors become 2D matrices in our description.

Let’s denote the length of the query and the extended key as 𝑙𝑞 and 𝑙𝑘 , respectively,

where 𝑙𝑞 < 𝑙𝑘 . As shown in Figure 4.4, since the key is extended to the previous chunk on

its left, the time indices of the query tensor Q and the key tensor K are right-aligned. As a

result, relative to the 0-th query frame, the positions of frames in the key are in the range

[−𝑙𝑘 + 𝑙𝑞, 𝑙𝑞 − 1]; relative to the (𝑙𝑞 − 1)-th (last) query frame, the positions of frames in the

key are in the range [−𝑙𝑘 + 1, 0].

Now we map those relative positions to their corresponding elements in the embedding
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Figure 4.4: The illustration of how relative positions are obtained in the streaming setting.
the length of K 𝑙𝑘 is larger than the length of Q 𝑙𝑞 and they are right-aligned because
the second half of K falls in the same chunk as Q. The dashed lines connecting to the
same point in Q denotes the range of all the positions in K w.r.t. that point. They are
[−𝑙𝑘 + 𝑙𝑞, 𝑙𝑞 − 1] w.r.t. the 0-th (left-most) frame in Q, and [−𝑙𝑘 + 1, 0] w.r.t. the (𝑙𝑞 − 1)-th
(right-most) frame in Q.
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matrix. There are (2𝑙𝑘 − 1) possible relative positions from the query to the key in the

range [−𝑙𝑘 + 1, 𝑙𝑘 − 1], given that the key length 𝑙𝑘 is larger than the query length 𝑙𝑘 ,

leading to an embedding matrix E ∈ R𝑑ℎ×(2𝑙𝑘−1) . However, not all the integers that fall

within that range are being used in our case. Actually from Fig 4.4 and the description

from the previous paragraph, we can see that the “active” range is [−𝑙𝑘 + 1, 𝑙𝑞 − 1] =

[−𝑙𝑘 + 𝑙𝑞, 𝑙𝑞 − 1] ∪ [−𝑙𝑘 + 1, 0]. In other words, the last 𝑙𝑘 − 𝑙𝑞 positions in the embedding

matrix E are never used. Specifically, we first compute its dot product with the query Q,

resulting in a matrix M = Q⊤E ∈ R𝑙𝑞×(2𝑙𝑘−1) . Then for the 𝑖-th row in M, we select 𝑙𝑘

consecutive elements corresponding to 𝑙𝑘 different relative positions from the 𝑖-th frame

in the query to each frame in the key, and rearrange them into M′ ∈ R𝑙𝑞×𝑙𝑘 . This process

is illustrated in Figure 4.5. In the 0-th row, we keep those corresponding to the relative

positions in the range [−𝑙𝑘 + 𝑙𝑞, 𝑙𝑞−1]; in the 𝑖-th row, the range is left shifted by 1 from the

one in the (𝑖−1)-th row; finally in the (𝑙𝑞 −1)-th row, the range would be [−𝑙𝑘 +1, 0]. This

process can be conveniently implemented by reusing most of the memory configuration

from M for M′without copying the underlying storage of M, and then doing the following3:

1. Point M′ to the position of the first yellow cell in M, i.e., the (𝑙𝑞 − 1)-th position.

2. Modify the row stride of M′ from 𝑙𝑘 to (𝑙𝑘 − 1).

3. Modify the number of columns of M′ from (2𝑙𝑘 − 1) to 𝑙𝑘 .

The procedure when adding the embedding to the value V is very similar. Let A =

3In PyTorch, these can be conveniently implemented using Tensor.as_strided().
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Figure 4.5: The process of selecting relevant cells from the matrix M ∈ R𝑙𝑞×(2𝑙𝑘−1) (left)
and rearranging them into M′ ∈ R𝑙𝑞×𝑙𝑘 (right). The relevant cells are in yellow, and others
are unselected. Note that the position of yellow block in one row of M is left shifted by 1
cell from the yellow block in the row above.

[a1, . . . , a𝑇 ] ∈ R𝑙𝑞×𝑙𝑘 where a𝑖 is defined in Eq. (4.5). Then the tensorized version of Eq.

(4.5) with the length of the query 𝑙𝑞 and the length of the extended value 𝑙𝑣 = 𝑙𝑘 is:

H = (V + E′) A⊤ ∈ R𝑑ℎ×𝑙𝑞 (4.6)

where E′ ∈ R𝑑ℎ×𝑙𝑘 is as follows:

1. Duplicate E ∈ R𝑑ℎ×(2𝑙𝑘−1) 𝑙𝑞 times along a new dimension by creating a new view on

the underlying storage without allocating new memory.4. Now we have an interme-

diate tensor E′′ ∈ R𝑑ℎ×𝑙𝑞×(2𝑙𝑘−1) .

2. Follow the steps for transforming M to M′, but this time apply them to E′′ to obtain

E′.
4 For example, this would be Tensor.expand() in PyTorch.
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Note that although E′′ is 3-dimensional, the operations applied along the 0-th dimension are

all identical. Again it is very efficient as there is no memory copy or allocation involved.

4.3 Experiments

4.3.1 The Dataset

We use the Mobvoi (SLR87) dataset5 [48] including two wake words: “Hi Xiaowen”

and “Nihao Wenwen”. It contains 144 hrs training data with 43,625 out of 174,592 positive

examples, and 74 hrs test data with 21,282 out of 73,459 positive examples. We do not

report results on the other datasets mentioned in Chapter 3, because both the numbers

reported there and in our own experiments are too good (FRR < 0.1%) to demonstrate any

significant improvements.

4.3.2 Experimental Settings

All the experiments in this paper are conducted in ESPRESSO, a PyTorch-based end-

to-end ASR toolkit [130], using PYCHAIN, a fully parallelized PyTorch implementation of

LF-MMI [110].

We follow exactly the same data preparation and preprocessing pipeline as those in

[132] (also in Chapter 3), including HMM and decoding graph topolopies, feature extrac-

5 https://www.openslr.org/87
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tion, negative recording sub-segmentation, and data augmentations. During evaluation,

when one of the two wake words is considered, the other one is treated as a negative ex-

ample. The operating points are obtained by varying the positive path cost while fixing the

negative path cost at 0 in the decoding graph. It it worth mentioning that all the results

reported here are from an offline decoding procedure, as currently Kaldi [96] does not sup-

port online decoding with PyTorch-trained neural acoustic models. However, we believe

that the offline decoding results would not deviate significantly from the online ones.

The baseline system is a 5-layer dilated 1D convolutional network with 48 filters and the

kernel size of 5 for each layer, leading to 30 frames for both left and right context (25% less

than that in [132]) and only 58k parameters (60% less than that in [132]). For the streaming

Transformer models, the first two layers are 1D convolution. They are then followed by

3 self-attention layers, with an embedding dimension of 32, and 4 heads resulting in 48k

parameters without any relative embedding. See Table 4.1 for model sizes with different

relative embedding settings. To make sure that the outputs can “see” approximately the

same amount of context as those in the baseline, the chunk size is set to 27, so that in

the no state-caching setting the right-most frame in a chunk depends on 27 input frames

(still smaller than 30) as its right context; in the state-caching case, the receptive field

covers one more chunk (or 27 more frames) on the left, as it increases linearly when the

number of self-attention layers increases. Our experiments suggest 27 is the optimal in this

setting: a smaller chunk hurts the performance, and a larger one does not have significantly

improvement but incurs more latency.
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All the models are optimized using Adam with an initial learning rate 10−3 , and then

halved if the validation loss at the end of an epoch does not improve over the previous

epoch. The training process stops if the number of epochs exceeds 15, or the learning

rate is less than 10−5. We found that learning rate warm-up is not necessary to train our

Transformer-based systems, probably due to the relatively simple supervisions in our task.

4.3.3 Streaming Transformers with State-caching

We first evaluate our streaming Transformer models with state-caching. The results

are reported in Table 4.1, as false rejection rate (FRR) at 0.5 false alarms per hour (FAH).

If we only rely on the current chunk and the cached state from the previous chunk but

without taking any look-ahead to the future chunk, the detection results (see row 2 in Table

4.1) are much worse than the baseline. It is actually expected, as the symmetric property

of convolution kernels allows the network to take future frames into consideration. This

validates that look-head to the future frames is important in the chunk-wise training of

Transformers.

Then adding absolute positional embedding seems not to improve the performance sig-

nificantly. One possible explanation could be: the goal of the wake word detection is not

to transcribe the whole recording, but just spot the word of interest, where the absolute

encoding of positions do not have too much effective impact.

On the contrary, when we add relative positional embedding to the key of self-attention
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Table 4.1: Results of streaming Transformers with state-caching.

#Params
FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen

1D Conv. (baseline)6 58k 0.8 0.8
Transformer (w/o look-ahead) 48k 3.5 4.7

+look-ahead to next chunk 48k 1.3 1.2
+abs. emb. 48k 1.2 1.2
+rel. emb. to key 52k 1.0 1.1

+rel. emb. to value 57k 0.7 0.5

layers instead, there is a slight improvement over adding the absolute embedding, which

supports our hypothesis that the relative embedding makes more sense in such task.

When the embedding is also added to the value, FRR reaches 0.7% and 0.5% at

FAH=0.5 for the two wake words respectively (i.e., 25% relative improvement over the

baseline on average), showing that the embedding is not only useful when calculating the

attention weights, but also beneficial when encoding the positions into the layer’s hidden

values.

4.3.4 Streaming Transformers without State-caching

Next we explore whether back-propagating the gradient into the history state helps

train a better model. As we mentioned in Sec. 4.2.1, this can be done by concatenating

the current chunk with the previous chunk of input, instead of caching the internal state

6 We do not compare with other systems, because to our best knowledge this baseline system is the state-
of-the-art reported on the same dataset at the time of writing this dissertation.
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Table 4.2: Results of streaming Transformers without state-caching.

#Params
FRR(%) at FAH=0.5

Hi Xiaowen Nihao Wenwen

1D Conv. (baseline) 58k 0.8 0.8
Transformer (w/ look-ahead) 48k 1.0 1.1

+abs. emb. 48k 0.8 0.8
+rel. emb. to key 52k 0.6 0.7

+rel. emb. to value 57k 0.6 0.6

of the previous chunk. Table 4.2 shows several results. By looking at Table 4.2 itself, we

observe a similar trend as that in the state-caching model from Table 4.1: relative positional

embedding is advantageous over the absolute sinusoidal positional embedding, and adding

the embedding to both key and value is again the best. Furthermore, by comparing the

rows in Table 4.2 with their corresponding entries in Table 4.1, we observe that, except

for the case in the last row, regardless of the choice of positional embedding and how

it is applied, the models without state-caching outperform models with state-caching. It

demonstrates the benefit of updating the model parameters with more gradient information

back-propagated from the current chunk into the previous chunk. However in the case

where relative positional embedding is also added to the value, the gap seems diminished,

suggesting that by utilizing the positional embedding in a better way, there is no need to

recompute the part of the cached state in order to reach the best performance.

We provide DET curves of the baseline convolutional network and the two proposed
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streaming Transformers in Figure 4.6, for a more comprehensive demonstration of their

performance difference, over an entire operating range.
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Figure 4.6: DET curves for the baseline 1D convolutional network and our two proposed
streaming Transformers.

4.3.5 Streaming Transformers with Same-layer Depen-

dency

We next explore the architectural variant introduced in Sec. 4.2.2. Note from Eq. (4.2)

that the column vectors in H𝑙
𝑐−1 are all in range(V𝑙

𝑐−1), i.e., the column vectors of H𝑙
𝑐−1 lie

119



in the space spanned by the the columns of V𝑙
𝑐−1. Therefore, concatenation of H𝑙

𝑐−1 and

V𝑙
𝑐 together along the column dimension as shown in Eq. (4.4) is legitimate. However,

if the relative positional embedding is added to the value tensor H𝑙
𝑐−1 as shown in Eq.

(4.5), the columns in H𝑙
𝑐−1 would no longer be in the same space as range(V𝑙

𝑐). Then it is

problematic to concatenate H𝑙
𝑐−1 and V𝑙

𝑐 together. In addition, because H𝑙
𝑐−1 is going to be

concatenated to both K𝑙
𝑐 and V𝑙

𝑐, we need to make sure that the columns of K𝑙
𝑐 and V𝑙

𝑐 are

in the same space.

Our solution to these issues—which arises due to the same-layer dependency—is to

only add the positional embedding to K𝑙
𝑐. So Eq. (4.5) is modified as:

h𝑖 = VM𝑖 ∈ R𝑑ℎ , M𝑖 = softmax
(︁
[Q⊤ (K + E)]𝑖

)︁
∈ R𝑇 (4.7)

Also, the projection weight matrices for the key/value in Eq. (4.1), i.e. W𝐾 and W𝑉

respectively, are tied together, so that K𝑙
𝑐 == V𝑙

𝑐 always holds. However, the model with

such a configuration only achieves FRR=1.3% at FAH=0.5. When absolute embedding is

used, FRR=1.1% at the same FAH. This contradicts the observations in [73], [137] where

same-layer dependency was found to be more advantageous for ASR and it was attributed

to the fact that the receptive field is maximized at every layer7.

7 They did not mention the type of positional embedding being used.
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4.3.6 Resources Consumption

According to Eq. 3.7 in Section 3.3.11, the convolution baseline involves 43, 000 × 𝑇

floating point operations.

For the chunk-wise streaming transformers with state-caching, as the “current chunk”

will be served as the cached history for the next chunk, we amortize the computation of

history across the entire input audio frames and ignore the boundary case for the first chunk,

i.e., for every chunk of the input we always assume its history is available and do not take it

into consideration we calculating the computation cost. On the contrary, the future chunks

are not cached and thus account for the computation cost. Therefore when the chunk size

is 27, the length of the query is 54 (“current chunk” + “future chunk”) and the length of

the key/value is 81 (“history chunk” + “current chunk” + “future chunk”). It turns out that

there are about 132, 000 × 𝑇 floating point operations for such an architecture.

A larger number of floating point operations does not necessarily means faster infer-

ence. Actually speed is determined by several factors, including parallelization of compu-

tation and CUDA kernel optimization. To directly measure the speed, we run the forward

pass of the neural networks on all the examples from the same test set (74 hours) with

a single NVIDIA GeForce GTX 1080 Ti GPU. It takes 445 seconds for the baseline 1D

convolutional network, and 286 seconds for the chunk-wise streaming transformers with

state-caching. Note that it is not straightforward to draw a conclusion such as one network

is advantageous to the other one, as PyTorch may apply different optimization strategies
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to different network configurations; but at least it can been shown that the transformer

network does not have obvious disadvantages in terms of inference speed.

Next we show the peak memory usage of the two networks using the same method as

explained in Section 3.3.11: the peak memory usage is 120 MB for the 1D convolution and

399 MB for the chunk-wise streaming transformers with state-caching. So apparently the

transformer model consumes 3 times more memory than the convolutional one. Note that

the neural networks in this chapter are just prototype systems implemented in PyTorch, and

they are not intended for deployment. Hence the absolute memory usage is not very in-

dicative for real applications. However, our main purpose here is to show the difference in

memory consumption between the convolution baseline and the proposed streaming Trans-

former.

4.4 Chapter Summary

Transformers are power neural networks that have shown their modeling strength in

a variety of NLP and ASR tasks. In this chapter we investigated their performance in

wake word detection. Due to the discrepancy between the streaming nature of wake word

detection and the whole sequence dependency of self-attention in the basic transformer,

we explored various aspects of chunk-wise streaming transformers, including how look-

ahead of the future chunk, and different gradient stopping, layer dependency, and positional

embedding strategies could affect the system performance. Our experiments show that
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streaming transformers achieve better detection performance compared to 1D convolutions

with similar model and receptive field sizes on the public Mobvoi (SLR87) dataset using

the state-of-the-art alignment-free LF-MMI system. Specifically, we found that:

• Look-ahead to the future chunk is necessary for the streaming Transformer model to

collect enough context information and make reliable chunk-wise predictions.

• Relative positional embedding is more suitable than absolute positional embedding

(with chunk offsets) and provided additional gain for wake word detection with

streaming Transformers, because relative positions are more informative for the

detection task. Moreover, adding the embedding to both keys and values of self-

attention layers is better than only adding to keys.

• Training Transformer without state-caching yields better detection performance than

with state-caching in most cases, as the former one allows more weights to be up-

dated according to the gradient information back-propagated across all layers. But

no caching requires extra computational cost of overlapping chunks.

• Fortunately, when relative positional embedding is added to both keys and values,

the performance of the Transformer with state-caching is on par with the one without

state-caching.

• Normally the chunk of one layer depends on the previous chunk from the previous

layer when calculating self-attention in chunk-wise streaming Transformers. We also

123



tried a variation where the chunk depends on the previous chunk from the same layer.

However, it did not lead to better performance.

Along the way we also proposed a series of simple tensor operations to efficiently com-

pute the self-attention in the streaming setting when relative positional embedding is in-

volved.

Unlike basic Transformers, chunk-wise streaming Transformers have linear time and

space complexity with respect to the frame length 𝑇 . Specifically, if the chunk-width is𝑊 ,

the time complexity is 𝑂 (𝑊 ·𝑇) = 𝑂 (𝑊2 ·𝑇/𝑊). If the constant factor𝑊 is larger than the

kernel size of a convolutional layer, which is normally the case, the number of float point

operations in streaming Transformers is still more than that in convolutions (as shown in

Section 4.3.6). Some recent work [20], [57] of improving efficiency of self-attention has

the potential to further reduce the complexity.
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Chapter 5

End-to-end Anchored Speech

Recognition

In the previous two chapters, we proposed methods to detect wake words in audio

stream [132], [133]. In this chapter we will show how we can leverage the detected wake

word to improve the ASR performance for voice-controlled house-hold devices. We would

like to teach the device to ignore speech that is not intended for it. Specifically, our tech-

nique takes an acoustic snapshot of the wake word and compares subsequent speech to it.

Speech whose acoustics match those of the wake word is judged to be intended for the de-

vice, and all other speech is treated as background noise and ignored. Rather than training a

separate neural network to make this discrimination, we integrate our wake-word-matching

mechanism into a standard ASR system. We will show how we design our attention-based

encoder-decoder ASR model to realize this task, and how much improvement is obtained
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on the live data collected by Amazon Alexa Echo, a popular house-hold device, as well as

on a simulated data set. Specifically, our contributions in this chapter are: we propose two

end-to-end models to tackle this problem with information extracted from the anchored

segment. The anchored segment refers to the wake word part of an audio stream, which

contains valuable speaker information that can be used to suppress interfering speech and

background noise. The first method is called Multi-source Attention where the attention

mechanism takes both the speaker information and decoder state into consideration. The

second method directly learns a frame-level mask on top of the encoder output. We also

explore a multi-task learning setup where we use the ground truth of the mask to guide

the learner. Given that audio data with interfering speech is rare in our training data set,

we also propose a way to synthesize “noisy” speech from “clean” speech to mitigate the

mismatch between training and test data. The work in this chapter was published in [131]

and [130].

5.1 Introduction

We tackle the ASR problem in the scenario where a foreground speaker first wakes

up a voice-controlled device with an “wake word”, and the speech after the wake word is

possibly interfered with by background speech from other people or media. Consider the

following example:

SPEAKER 1: Alexa, play rock music.
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Figure 5.1: An illustration of anchored speech recognition. We would like to suppress
speech from Speaker 2 and only recognize that from Speaker 1, because it is Speaker 1
who says “Alexa” to the device.

SPEAKER 2: Stop.

Here the wake word is “Alexa”, and thus the utterance by speaker 1 is considered as

device-directed speech, while the utterance by speaker 2 is the interfering speech. Our

goal is to extract information from the wake word in order to recognize the device-directed

speech and ignore the interfering speech. We name this task anchored speech recogni-

tion (Figure 5.1). The challenge of this task is to learn a speaker representation from a

short segment corresponding to the wake word. Several techniques have been proposed

for learning speaker representations, e.g., i-vector [27], [106], mean-variance normaliza-

tion [72], maximum likelihood linear regression (MLLR) [67]. With the recent progress in

deep learning, neural networks are used to learn speaker embeddings for speaker verifica-

tion/recognition [42], [77], [115], [122]. More relevant to our task, two methods—anchor

mean subtraction (AMS) and an encoder-decoder network—are proposed to detect desired

speech by extracting speaker characteristics from the wake word [75]. This work is further

extended for acoustic modeling in hybrid ASR systems [55]. However, they simply con-

catenate the vector characterizing speakers to the input acoustic feature vector, and there

is no explicit mechanism of ignoring undesired speech. In fact, the speaker feature only
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plays the role of a biasing term to the input feature. Therefore, it does not have enough ca-

pacity of distinguishing speaker difference between device-directed and interfering speech.

target-speaker mask estimation is also explored for target speaker extraction [28], [128].

Specifically, [28] uses an adaption utterance (corresponding to wake word segment in our

problem) to estimate a weight vector that is then leveraged to eventually estimate the target

speaker mask. But this method is not applicable to our problem, since it assumes the tar-

get speech is present during the entire utterance, while in our problem the device-directed

speech can be present in several parts of the whole utterance. [128] proposes what they

called “deep extractor network” for speaker-aware source separation. Our method shares

some spirit with [128] in that we both compute the similarity between two embedding

vectors to estimate masks, and ours directly addresses the ASR problem.

Recently, much work has been done towards end-to-end approaches for speech recog-

nition [7], [13], [18], [22], [35], [37]. These approaches typically have a single neu-

ral network model to replace previous independently-trained components, namely, acous-

tic, language, and pronunciation models from hybrid HMM systems. End-to-end models

greatly alleviate the complexity of building an ASR system. Among end-to-end models, the

attention-based encoder-decoder models [2], [7] do not assume conditional independence

for output labels as CTC based models [36], [37] do.

We propose two end-to-end models for anchored speech recognition, focusing on the

case where each frame is either completely from device-directed speech or completely

from interfering speech, but not a mixture of both [11], [28]. They are both based on the
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attention-based encoder-decoder models. The attention mechanism provides an explicit

way of aligning each output symbol with different input frames, enabling selective decod-

ing from an audio, i.e., only decode desired speech that is being uttered in some parts of

the entire audio stream. In the first method, we incorporate the speaker information when

calculating the attention energy, which leads to an anchor-aware soft alignment between

the decoder state and encoder output. The second method learns a frame-level mask on

top of the encoder, where the mask can optionally be learned in the multi-task framework

if the ground-truth mask is given. This method will pre-select the encoder output before

the attention energy is calculated. Furthermore, since the training data is often relatively

clean, in the sense that it contains device-directed speech only, we propose a method to

synthesize “noisy” speech from “clean” speech, mitigating the mismatch between training

and test data.

We conduct experiments on a training corpus consisting of 1200 hours of live data in

English from Amazon Echo. The results demonstrate a significant WER relative gain of

12-15% in test sets with interfering background speech. However, a method that suppresses

non-anchored speech may also accidentally suppress the target speaker, especially when no

interfering speech is present but the system expects there to be some. Indeed, for a test set

that contains only device-directed speech, we see a small relative WER degradation from

the proposed method, ranging from 1.5% to 3%. We also demonstrate the results of the

proposed models on the data simulated from the public data set Wall Street Journal (WSJ)

[89].
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5.2 Model Overview

5.2.1 Attention-based Encoder-Decoder Model

The basic attention-based encoder-decoder model typically consists of 3 modules as

depicted in Fig 5.2:

1. An encoder transforming a sequence of input features x1:𝐿 into a high-level repre-

sentation of the features h1:𝑇 through a stack of convolution/recurrent layers, where

𝑇 ≤ 𝐿 due to possible frame down-sampling.

2. An attention module summarizing the output of the encoder h1:𝑇 into a fixed length

context vector c𝑛 at each output step for 𝑛 ∈ [1, . . . , 𝑁], which determines parts of the

sequence h1:𝑇 to be attended to in order to predict the output symbol 𝑦𝑛. Typically, the

context vector is more compact than the original input. The attention mechanism’s

decision is typically based on the current states of both the encoder and decoder

3. A decoder module taking the context vector c𝑛 as input and predicting the next sym-

bol 𝑦𝑛 given the history of previous symbols 𝑦1:𝑛−1.
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Figure 5.2: Attention-based Encoder-Decoder Model. It is an illustration in the case of
a one-layer decoder. If there are more layers, as in our experiments, an updated context
vector c𝑛 will also be fed into each of the upper layers in the decoder at the time step 𝑛.

The entire model can be formulated as follows:

h1:𝑇 = Encoder(x1:𝐿) (5.1)

𝛼𝑛,𝑡 = Attention(q𝑛, h𝑡) (5.2)

c𝑛 =
∑︂
𝑡

𝛼𝑛,𝑡h𝑡 (5.3)

q𝑛 = Decoder(q𝑛−1, [𝑦𝑛−1; c𝑛−1]) (5.4)

𝑦𝑛 = arg max
𝑣
(W 𝑓 q𝑛 + b 𝑓 ) (5.5)

Although our proposed methods do not limit themselves to any particular attention mecha-

nism, we choose the Bahdanau Attention [2] as the attention function for our experiments.
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So Eq. (5.2) takes the form of:

𝜔𝑛,𝑡 = v⊤ tanh(W𝑞q𝑛 +Wℎh𝑡 + b) (5.6)

𝛼𝑛,𝑡 = softmax(𝜔𝑛,𝑡) (5.7)

5.2.2 Multi-source Attention Model

Our first approach is based on the intuition that the attention mechanism should consider

both the speaker information and the decoder state. It simply adds an input to the attention

mechanism. In addition to receiving information about the current states of the encoder

and decoder networks, our modified attention mechanism also receives the raw frame data

corresponding to the wake word. During training, the attention mechanism automatically

learns which acoustic characteristics, that are similar to the wake word, to look for in

subsequent speech.

When computing the attention weights, in addition to conditioning on the decoder state,

the speaker information extracted from the frames of the wake word is also utilized. In our

scenario, the device-directed speech and the wake word are uttered by the same speaker,

while the interfering background speech is from a different speaker. Therefore, the attention

mechanism can be augmented by placing more attention probability mass on frames that

are similar to the anchor word in terms of speaker characteristics.

Formally speaking, the wake word segment is further denoted as w1:𝐿 ′. We add another
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encoder (S-Encoder) to be applied on both w1:𝐿 ′ and x1:𝐿 to generate a fixed-length vector

w̃ and a variable length sequence u1:𝑇 respectively:

w̃ = Pooling(S-Encoder(w1:𝐿 ′)) (5.8)

u1:𝑇 = S-Encoder(x1:𝐿) (5.9)

As shown above, S-Encoder extracts speaker characteristics from the acoustic features. In

our experiments, the pooling function is implemented as Max-pooling across all output

frames if S-Encoder is a convolutional network, or picking the hidden state of the last

frame if S-Encoder is a recurrent network. Rather than being appended to acoustic feature

vector and fed into the decoder as proposed in [55] (which we tried in our preliminary

experiments but did not perform well), w̃ is directly involved in computing the attention

weights. Specifically, Eq. (5.7) and Eq. (5.3) are replaced by:

𝜙𝑡 = Similarity(u𝑡 , w̃) (5.10)

𝛼
anchor_aware
𝑛,𝑡 = softmax(𝜔𝑛,𝑡 + 𝑔 · 𝜙𝑡) (5.11)

c𝑛 =
∑︂
𝑡

𝛼
anchor_aware
𝑛,𝑡 h𝑡 (5.12)

where 𝑔 is a trainable scalar used to automatically adjust the relative contribution from

the speaker acoustic information. Similarity(·, ·) is implemented as dot-product in our

experiments. As a result, the attention weights are essentially computed from two different
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sources: the ASR decoding state, and the confidence of a decision on whether each frame

comprises the device-directed speech. We call this model Multi-source Attention to reflect

the way the attention weights are computed.

5.2.3 Mask-based Model

The Multi-source Attention model jointly considers speaker characteristic and ASR

decoder state when calculating the attention weights. However, since the attention weights

are normalized with a softmax function, whether each frame needs to be ignored is not

independently decided, which reduces the modeling flexibility in frame selection.

As the second approach we train the network more explicitly to emphasize input speech

whose acoustic profile matches that of the wake word, which is named the Mask-based

model. We add a mechanism that directly compares the wake word acoustics with those of

subsequent speech. Then we use the result of that comparison as an input to a mechanism

that learns to suppress (or “mask out”) some elements of the encoder’s output before they

pass to the attention module.

Specifically, a frame-wise mask on top of the encoder1 is estimated by leveraging the

speaker acoustic information contained in the anchor word and the actual recognition ut-

terance. The attention mechanism is then performed on the masked feature representation.

Compared with the Multi-source Attention model, attention in the Mask-based model only

focuses on remaining frames after masking, and for each frame it is independently de-
1Here “frame-wise” actually means frame-wise after down-sampling, in accordance with the frame down-

sampling in the encoder network (see Section 5.4.1 for details).
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cided whether to be masked out based on their acoustic similarity. Formally, Eq. (5.6) and

Eq. (5.3) are modified as:

𝜙𝑡 = sigmoid(𝑔 · Similarity(u𝑡 , w̃)) (5.13)

hmasked
𝑡 = 𝜙𝑡h𝑡 (5.14)

𝜔𝑛,𝑡 = v⊤ tanh(W𝑞q𝑛 +Wℎhmasked
𝑡 + b) (5.15)

c𝑛 =
∑︂
𝑡

𝛼𝑛,𝑡hmasked
𝑡 (5.16)

where Similarity(·, ·) in Eq. (5.13) is dot-product as well.

5.3 Synthetic Data and Multi-task Training

5.3.1 Synthetic Data

Due to the difficulty of collecting a large amount of noisy speech from house-hold

devices and annotate them accurately, a problem we encountered in our task is: there is

very little training data that has the same condition as the test case. Some utterances in

the test set contain speech from two or more speakers (denoted as the “speaker change”

case), and some of the other utterances only contain background speech (denoted as the

“no desired speaker” case). In contrast, most of the training data does not have interfering

or background speech, making the model unable to learn to ignore.
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In order to simulate the condition of the test case, we generate two types of synthetic

data for training:

• Synthetic Method 1: for an utterance, a random segment2 from another utterance

in the dataset is inserted at a random position after the wake word within this utter-

ance, while its transcript is unchanged (i.e. the transcript of the inserted utterance is

ignored).

• Synthetic Method 2: the entire utterance, excluding the wake word, is replaced by

another utterance, and its transcript is considered as empty.

Figure 5.3 illustrates the synthesising process. These two types of synthetic data simulate

the “speaker change” case and the “no desired speaker” case respectively. The synthetic and

device-directed data are mixed together to form our training data. The mixing proportion

is determined from experiments.

5.3.2 Multi-task Training for Mask-based Model

For the generated synthetic data, we know which frames come from the anchor speaker

and which not, i.e., we have the ground-truth or ideal mask for each synthetic utterance,

where the frames from the original utterance are labeled with “1”, and the other frames are

labeled with “0”. Using this ideal mask as an auxiliary target, we train the Mask-based

model in a multi-task way, where the overall loss is defined as a linear interpolation of the

2The frame length of a segment is uniformly sampled within the range [50,150] in our experiments. It is
possible that the randomly selected segment is purely non-speech or even silence.
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<w> what’s the weather <w> play a song from frozen

<w> what’s the weather

<w> what’s the weather <w> play a song from frozen

<w>  <SPACE>

Figure 5.3: Two types of synthetic data: Synthetic Method 1 (top) and 2 (bottom). The
symbol ⟨W⟩ represents the wake-up word, and ⟨SPACE⟩ represents empty transcripts.

normal ASR cross-entropy loss and the binary-cross-entropy mask loss: (1 − 𝜆)LASR +

𝜆Lmask.

The ground-truth mask provides a supervision signal to explicitly guide S-Encoder to

extract acoustic features that can better distinguish the inserted frames from those in the

original utterance. As will be shown in our experiments, the predicted mask is more accu-

rate in selecting desired frames for the decoder with the multi-task training.
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5.4 Experiments

We provide experimental results on both simulated and real data to validate the power of

our proposed models in for anchored speech recognition. The simulated data is generated

based on our assumptions of real data, and thus is intended to verify that our proposed

models will behave as what it is supposed to be. Also, since we use the well-known public

dataset Wall Street Journal [89] (WSJ) for the simulation, people will get better sense

of how the proposed models performs compared to the baseline. One the other hand, the

experiments on the real data (which comes from real users of Amazon Alexa devices) show

the improvement in the real scenario. But absolute WER on the real data cannot be shared

due to privacy and proprietary considerations, and only relative changes in WER can be

reported here.

5.4.1 Experimental Settings

The WSJ corpus is for simulation. WSJ is an 80-hour English newspaper speech corpus

[89]. We use its dev93 set for model validation and eval92 set for evaluation. We simulate

the training/test data as follows: for each utterance, we randomly select a 2-second segment

from that utterance as a wake word. Then we apply the procedure described in Section 5.3.1

to eval92 to construct the simulated test set (referred to as “simulated”, while the original

eval92 set is referred to as “original”) to mimic the “speaker change” and “no desired

speaker” cases. Specifically, 60% of the utterances in the training set are kept unchanged,
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16% are processed with Synthetic Method 1, and 24% are processed with Synthetic Method

2. The duration of the inserted segments are uniformly distributed in the range [3.0, 5.0]

seconds, with the additional constraint that the duration of an inserted segment should

not exceed 20% of the duration of the original example. All the experiments on WSJ

are done with the open-source toolkit ESPRESSO [130], where there exists a very strong

attention-based encoder-decoder baseline recipe on WSJ that we can leverage3. We extract

80-dimensional filterbank features + 3-dimensional pitch features for each frame with the

frame rate 10 milliseconds and window size of 25ms. The output targets are graphemes

with vocabulary size of 52. We only use paired data (i.e. transcribed speech data) for

training and do not apply any language model fusion technique as it is orthogonal to the

problem we are solving here.

For the real data experiment, we conduct our experiments on training data of 1200-

hour live segments in English collected from the Amazon Echo. Each utterance is hand-

transcribed and begins with the same wake word whose alignment with time is provided by

end-point detection [70], [76], [109], [112]. As we have mentioned, while the training data

is relatively clean and usually only contains device-directed speech, the test data is more

challenging and under mismatched conditions with training data: it may be noisy, may

contain background speech4, or may even contain no device-directed speech at all. In order

to evaluate the performance on both the matched and mismatched cases, two test sets are

3Available at https://github.com/freewym/espresso/blob/master/examples/asr_wsj/
run.sh.

4background speech includes: 1) interfering speech from an actual non-device-directed speaker; and 2)
multi-media speech, meaning that a television, radio, or other media device is playing back speech in the
background.
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formed: a “normal set” (25k words in transcripts) where utterances have a similar condition

as those in the training set, and a “hard set” (5.4k words in transcripts) containing the chal-

lenging utterances with interfering background speech. Note that both of the two test sets

are real data without any synthesis. We also prepare a development set (“normal”+“hard”)

with a similar size as the test sets for hyper-parameter tuning. For all the experiments, 64-

dimensional log filterbank energy features are extracted every 10ms with a window size of

25ms. The end-to-end systems are grapheme-based and the vocabulary size is 36, which is

determined by thresholding on the minimum number of character counts from the training

transcripts. Our implementation is based on the open-source toolkit OPENSEQ2SEQ [64].

Our baseline end-to-end model does not consider anchor words. Its encoder consists

of four convolutional layers with 4x frame and frequency down-sampling for WSJ, or

three convolutional layers resulting in 2x frame down-sampling and 8x frequency down-

sampling for the Amazon live data, followed by 3 Bi-directional LSTM [46] layers with

320 hidden units. The decoder consists of 3 unidirectional-LSTM layers with 320 hidden

units. The attention function is Bahdanau Attention [2]. The cross-entropy loss on charac-

ters is optimized using Adam [56], with an initial learning rate 0.001 which is then halved

if the metric on the validation set at the end of an epoch does not improve over the previ-

ous epoch for WSJ [130] (or the initial learning rate is 0.0008 which is then adjusted by

exponential decay for the Amazon live data). A beam search with beam size 60 for WSJ

(or 15 for the Amazon data) is adopted for decoding. The above setting is also used in our

proposed models.
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5.4.2 Multi-source Attention Model vs. Baseline

S-Encoder consists of three convolution layers with the same architecture as that in the

baseline’s encoder.

First of all, we compare Multi-source Attention Model and the baseline trained on

device-directed-only Amazon live data or the original WSJ training data, i.e., without any

synthetic data. The results are shown in Table 5.1 and Table 5.2 respectively.

Table 5.1: Multi-source Attention Model vs. Baseline with device-directed-only training
data. The WER, substitution, insertion and deletion values are all normalized by the base-
line WER on the “normal” set5. The normalization applies to all the tables throughout this
chapter in the same way.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline
Device-

directed-only

normal 1.000 0.715 0.108 0.177 —

hard 3.354 1.762 1.123 0.469 —

Mul-src.

Attn.

Device-

directed-only

normal 1.015 0.731 0.115 0.169 -1.5

hard 3.262 1.746 1.062 0.454 +2.8

Amazon live data The relative WER reduction (WERR) of Multi-source Attention on the

“hard” set is 2.8% and it is mostly due to a reduction in insertion errors. We also observe a

slight WER degradation of 1.5% relative on the “normal” set. It implies that the proposed

model is more robust to interfering background speech.
5For example, if WER for the baseline is 5.0% for the “normal” set, and 25.0% for the “hard” set, then

the normalized values would be 1.000 and 5.000 respectively. Due to Amazon’s policy, we are unable to
publicize the absolute WERs on Amazon Alexa’s customer data.
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Table 5.2: Multi-source Attention Model vs. Baseline with original WSJ training data.
WERs are normalized relative to 12.35.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline Original
original 1.000 0.801 0.122 0.078 —

simulated 4.605 0.859 3.668 0.078 —

Mul-src.

Attn.
Original

original 1.012 0.789 0.128 0.095 -1.2

simulated 4.640 0.827 3.748 0.066 -0.8

WSJ It is clear that the insertion error is much higher on the simulated data (around

30 time larger) than that on the original data, both for the baseline and the Multi-source

Attention model due to the way the simulated data is generated. However, there is no

significant difference between the Multi-source Attention model and the baseline when

tested on either original or the simulated test set, suggesting that the wake word part is not

well utilized for extracting desired speech.

Next, we further validate the effectiveness of the Multi-source Attention model by

showing how synthetic training data has different impact on it and the baseline model re-

spectively.

Amazon live data Synthetic training data is prepared such that 50% of the utterances in

the training set are kept unchanged, 44% are processed with Synthetic Method 1, and 6%

are processed with Synthetic Method 2. The ratio is tuned on the development set. This new
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training data is referred as “augmented” in all result tables. Table 5.3 exhibits the results.

For the baseline model, the performance degrades drastically when trained on augmented

data: the deletion errors on both of the “normal” and “hard” test sets get much higher. This

is expected since without the anchor word the model has no extra acoustic information of

which part of the utterance is desired, so that it tends to ignore frames randomly regardless

of whether they are actually from device-directed speech. On the contrary, for the Multi-

source Attention model the WERR (augmented vs. device-directly-only) on the “hard” set

is 12.5%, and WER on the “normal” set does not get worse. Moreover, the insertion errors

on the “hard” set get reduced while the deletion errors increase much less than that in the

case of the baseline model, indicating that by incorporating the anchor word information

the proposed model effectively improves the ability of focusing on device-directed speech

and ignoring others. This series of experiments also reveals significant benefits from using

the synthetic data with the proposed model. In total, the combination of the Multi-source

Attention model and augmented training data achieves 14.9% WERR on the “hard” set,

with only 1.5% degradation on the “normal” set.
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Table 5.3: Augmented vs. Device-directed-only training data on the Amazon live data. Re-
sults with “Device-directed-only” training set are from Table 5.1 for clearer comparisons.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline

Device-

directed-only

normal 1.000 0.715 0.108 0.177 —

hard 3.354 1.762 1.123 0.469 —

Augmented
normal 3.215 1.223 0.038 1.954 -221.5

hard 4.208 1.777 0.246 2.185 -30.9

Mul-src.

Attn.

Device-

directed-only

normal 1.015 0.731 0.115 0.169 -1.5

hard 3.262 1.746 1.062 0.454 +2.8

Augmented
normal 1.015 0.700 0.108 0.207 -1.5

hard 2.854 1.569 0.723 0.562 +14.9

WSJ The proportion of original/simulated utterances for training are the same as that

for testing as described in Section 5.4.1, and we name it as “Augmented” in Table 5.4

for consistency. One interesting observation is that, by training the baseline model with

“Augmented” data, the WER on simulated data gets improved by 10.3% (mainly because

of less insertion errors), and its deletion errors are kept low (Note that the corresponding

experiment on the Amazon live data yields very high deletion errors). We believe this is due

to the artifacts introduced by the simulation, and the baseline model learn to ignore some
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inserted segments from such artifacts rather than ignoring speech randomly as the case on

Amazon data. This conjecture is verified by the observation that almost all such corrected

insertion errors come from those test examples where Synthetic Method 1 is applied. The

Multi-source Attention model, on the other hand, further improves insertion errors over the

baseline on simulated data, leading to an overall 27.7% WERR. However, there is still a

large gap between the performance on the original and simulated data 6. Given the fact that

the simulated data is also generated from the original data, the gap indicates that the Multi-

source Attention model still does not learn to ignore non-target speech very well, even

trained with “Augmented” data. Also, both the baseline model and Multi-source Attention

model have some degradation on the original test set when trained with “Augmented” data,

although the degradation is relatively small compared to the improvement on the simulated

data.
6The simulated test data is actually a noisy version of the original data, so the WER performance on the

original data can be considered as a lower bound for the simulated data
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Table 5.4: Augmented vs. Original training data on WSJ. Results with “Original” training
set are from Table 5.2 for clearer comparisons. WERs are normalized relative to 12.35.

Model Training Set Test Set WER sub ins del WERR(%)

Baseline

Original
original 1.000 0.801 0.122 0.078 —

simulated 4.605 0.859 3.668 0.078 —

Augmented
original 1.059 0.858 0.112 0.089 -5.9

simulated 4.132 0.916 3.109 0.108 +10.3

Mul-src.

Attn.

Original
original 1.012 0.789 0.128 0.095 -1.2

simulated 4.640 0.827 3.748 0.066 -0.8

Augmented
original 1.067 0.838 0.128 0.102 -6.7

simulated 3.328 0.853 2.354 0.121 +27.7

5.4.3 Mask-based Model

In the Mask-based model experiments, 3 convolution and 1 Bi-directional LSTM layers

are used as S-Encoder, as we observed that it empirically performs better than convolution-

only layers. Due to the importance of using the augmented data for training our previous

model, the same synthetic approach is directly applied to train the Mask-based model. Also,

as we mentioned in Sec 5.3.2, multi-task training can be conducted since we know the ideal
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mask for each synthesized utterance. Given the imbalanced mask labels, i.e., frames with

label “1” (corresponding to those from the original utterance) constitute the majority com-

pared with frames with label “0” (corresponding to those from another random utterance),

we use weighted cross entropy loss for the auxiliary mask learning task, where the weight

on frames with label “1” is 0.6 and on those with label “0” is 1.0, to counteract the label

imbalance.

5.4.3.1 Results on the Amazon Live Data

We first set the multi-task loss weighting factor 𝜆 = 1.0 so that only the mask learning

is performed. For the Amazon live data, it turns out that around 70% of frames with label

“0” and 98% with label “1” are recalled on a held-out set synthesized the same way as the

training data.

Then we perform ASR using the Mask-based model with and without mask supervision

respectively, and the results on the Amazon live data are presented in Table 5.5. WERRs

are all relative to the baseline model trained on device-directed-only data. For the Mask-

based model without mask supervision, it achieves 3.9% WERR on the “hard” set while

has a degradation of 34.8% on the “normal” set. On the other hand, with mask supervision

(𝜆 = 0.1) corresponding to the multi-task training, it yields 12.6% WERR on the “hard”

set while only 3.0% worse on the “normal” set. The performance gap between them can

be attributed to the ability of mask prediction: while with mask supervision the recall is
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still around 70% (for frames labeled as “0”) and 98% (for frames labeled as “1”) on the

held-out set, it is only 48% and 50% respectively without mask supervision.

Note that even with multi-task training, the WER performance of the Mask-based model

is still slightly behind the Multi-source Attention model, mainly due to the insertion error.

Our conjecture is, the mask prediction is only done within the encoder, which may lose

semantic information from the decoder that is potentially useful for discriminating device-

directed speech from others.

Table 5.5: Mask-based Model: with and without mask supervision on the Amazon live
data.

Model Training Set Test Set WER sub ins del WERR(%)

w/o

Supervision
Augmented

normal 1.348 0.725 0.096 0.527 -34.8

hard 3.223 1.508 0.628 1.087 +3.9

w/ Supervision

(𝜆 = 0.1)
Augmented

normal 1.030 0.715 0.115 0.200 -3.0

hard 2.931 1.586 0.809 0.536 +12.6

5.4.3.2 Results on WSJ

for the pure mask prediction (i.e. 𝜆 = 1.0) on WSJ, 75% of frames with label “0” and

79% with label “1” are recalled. These results demonstrate the effectiveness of estimating

masks from the synthetic data. Recall of label “1” on WSJ (79%) is lower than that on
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the Amazon live data (98%), and We suspect the reason is that, the task of differentiating

frames from different utterances on WSJ is more difficult as the recording conditions are

very similar.

The experiments on WSJ, as shown in Table 5.6, demonstrate a similar trend: with-

out the mask prediction (i.e. 𝜆 = 0.0) the performance are significantly inferior to the

model with mask prediction (𝜆 = 0.3), especially on the simulated test set which is more

challenging. The improvement of the proposed Mask-based model over the baseline is

65.7%, which is much more significant than what is observed with the Multi-source Atten-

tion model. In particular, the insertion error rate is greatly reduced, although is still higher

than that on the original test set. The degradation on the original test set compared to the

baseline (10.9%) can be explained by the recall value of label “1”: it is 90% which is not

close to 100% in the multitask setting. Overall, the masking mechanism + mask predic-

tion effectively guides the model to focus on target speakers determined by the wake word

segment.

Comparing the mask prediction performance on the Amazon data and WSJ, we see that

it is not that easy for our proposed models to extract target speech with the presence of

wake word segments. The WSJ corpus is recorded in well-controlled environments where

the environmental variations across samples are minimal, while the Amazon live data is

recorded by house-hold devices with diverse environmental conditions (i.e. every training

example is most probably recorded in a unique environment). Therefore, it is possible that

the proposed models tend to learn environmental characteristics from the Amazon data if
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such a task is easier than learning speaker characteristics. It can also possibly explain the

difference in performance between the Multi-source Attention model and the Mask-based

model on WSJ: a strong supervision signal like the mask ground-truth in our Mask-based

model would help learn the speaker-related characteristics.

Table 5.6: Mask-based Model: with and without mask supervision on WSJ. WERs are
normalized relative to 12.35.

Model Training Set Test Set WER sub ins del WERR(%)

w/o

Supervision
Augmented

original 1.206 0.964 0.130 0.112 -13.9

simulated 3.551 1.046 2.385 0.119 +22.9

w/ Supervision

(𝜆 = 0.3)
Augmented

original 1.175 0.916 0.138 0.122 -10.9

simulated 1.578 0.994 0.509 0.075 +65.7

5.5 Chapter Summary

We propose two approaches for end-to-end anchored speech recognition, namely Multi-

source Attention and the Mask-based model. We also propose two ways to generate syn-

thetic data for end-to-end model training to improve the performance: the Multi-source

Attention model and the Masked-based model. Given the synthetic training data, a multi-

task training scheme for the Mask-based model is also proposed. With the information

150



extracted from the anchor word, both of these methods show their ability in picking up

device-directed part of speech and ignore other parts. This results in large WER improve-

ment of 15% relative on the test set with interfering background speech, with only a minor

degradation of 1.5% on clean speech when experimenting on the Amazon live data.

We conduct experiments on the simulated data based on WSJ corpus, where environ-

mental conditions across different recordings are more close to each other. The Multi-

source Attention model struggles in learning good speaker characteristics and thus per-

forms poorly with large insertion error, while the auxiliary task of mask prediction in the

Mask-based model provides strong supervision signal for learning representations that dif-

ferentiate target speech from non-target speech much better. As a result, the Mask-based

model achieves much less insertion errors and significantly improved the overall WER

evaluated on the simulated data.

Obviously the mismatch still exists between the training and test data. Future work

would include finding a better way to generate synthetic data with more similar condi-

tion to the “hard” test set, and taking decoder state into consideration when estimating

the mask. The other direction is to utilize anchor word information in contextual speech

recognition [12].
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Chapter 6

Conclusions

This dissertation investigates the task of wake word detection and its applications in

ASR, focusing on an HMM-DNN based detection system with predefined wake words and

an ASR system only recognizing speech for speakers who utter the wake word.

6.1 Contributions

We propose a hybrid HMM-DNN system for wake word detection, including se-

quence discriminative training based on alignment-free LF-MMI loss, removing the need

for frame-level training alignments, and whole-word HMMs for the wake word and filler

speech, removing the need for training transcripts or pronunciation lexicons. The HMM

only contains 4 states for positive and negative words, or 1 state for silence. These features

significantly reduce model sizes and greatly simplify the training process. For such a sys-
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tem without alignments, we find chunking long negative recordings into smaller ones help

stabilize the training.

We present an FST-based decoder tailored to wake word detection to perform online

detection. We leverage “immortal tokens” to determine the points at which backtracking

is performed. Backtracking only takes place when all the active partial hypotheses at the

decoding front-end are from one partial hypothesis at an earlier time step. This is to guar-

antee that there is only one path we need to check retrospectively in a chunk-by-chunk way

with adaptive chunk sizes.

We compare our proposed wake word detection system with other baselines, including

the pure neural models reported in other work as well as HMM-based ones we implemented

with traditional cross-entropy loss or regular LF-MMI, both of which require alignments

obtained from an existing model. On all 3 real-world datasets the proposed alignment-free

LF-MMI achieves the best detection performance, with comparable or even smaller model

sizes.

We perform alignment analysis for the alignment-free model and find that, in spite of its

best detection performance, the quality of its alignments is not as good as those trained with

more constrained supervision (e.g. regular LF-MMI) or generative models (e.g. GMM):

one state in each HMM dominates in the alignment, and silence segments are sometimes

aligned with non-silence. It can be attributed to the flexibility in learning alignments that

alignment-free LF-MMI has.

Given the dominance of one state in the alignment, we compare the proposed 4-state
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HMM topology and an alternative 1-state topology for both alignment-free and regular LF-

MMI. It is shown that the 1-state topology performs slightly worse with alignment-free LF-

MMI, but significantly worse with regular LF-MMI. Our conjecture is that 1-state HMMs

do not have enough modeling capacity for HMM-GMM models to learn good alignments

fro regular LF-MMI.

We then study the latency of the alignment-free LF-MMI system. As we do not have

ground-truth timing information for the location of the wake words, we design some prob-

ing techniques in the decoding algorithm and verify that the alignment-free LF-MMI sys-

tem does have higher latency than the regular LF-MMI system. We can trade detection

performance for latency by enforcing the max number of frames ahead the last immortal

token, which is around 80 in our experiments.

We also show several alternative designs motivated by various reasons in the early stage

of our work but all turn out to be inferior to our final system, which include 1) merging the

silence HMM and the negative HMM; 2) modifying the lexicon FST for negative examples

to accept alternating the “silence-non-silence” pattern. The former one only works with

alignment-free LF-MMI when optional silence is removed from the lexicon of positive ex-

amples, otherwise it will deteriorate the alignments for positive examples. Interestingly, the

the two-HMM system is better than three-HMM system with regular LF-MMI, suggesting

sufficient modeling power of the two-HMM system given a reliable alignment is provided.

The latter one diverges on one dataset with alignment-free LF-MMI, and performs worse

than our final system on the other datasets, suggesting such a modified lexicon may either
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be unnecessary or too complicated to learn reliable alignments. We report them in this

dissertation so that readers can have a more comprehensive understanding of our work.

While our original wake word detection system adopts convolutional neural networks

for acoustic modeling, Transformers have recently shown superior performance in various

sequence modeling tasks. We explore the performance of several variants of chunk-wise

streaming Transformers tailored for wake word detection in our proposed alignment-free

LF-MMI system, and demonstrate the streaming Transformer model outperforms the base-

line convolutional network with a comparable model size. We found that: 1) look-ahead to

the future chunk is necessary for the network to obtain enough future context; 2) the relative

positional embedding is better than the absolute one, and adding the relative positional em-

bedding to both keys and values of self-attention outperforms only adding it to keys; 3) no

state-caching is generally better in performance than state caching, as it allows gradient to

be back-propagated through all the layers for weight updates, but the state caching achieves

comparable performance when the relative positional embedding is added to both keys and

values; and 4) same-layer dependency in chunk-wise streaming Transformers does not per-

form well in wake word detection. In addition, we proposed an efficient way to compute

the self-attention with relative positional embedding for the streaming Transformers.

With a detected wake word, we tackle the ASR problem in the scenario where a fore-

ground speaker first wakes up a voice-controlled device with a wake word, and the speech

after the wake word is possibly interfered with by background speech from other people or

media. The speech from the person who speaks the wake word is called “device-directed
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speech”. Our goal is to extract information from the wake word in order to recognize the

device-directed speech and ignore the interfering speech. To this end, we propose two neu-

ral networks, Multi-source Attention and the Mask-based model, to address this problem

based on the encoder-decoder attention-based architecture. We also propose two ways of

generating synthetic data for training in order to alleviate the training/test data mismatch

issue commonly seen in practical situations, which are proven crucial in the experiments.

Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live

data with interfering background speech, with only a minor degradation of 1.5% on clean

speech. A further break down of WER improvement reveals that, by incorporating the

wake word information the proposed models effectively improves the ability of focusing

on device-directed speech and ignoring others. On the other hand, A simulation on WSJ

indicates the advantage of the Masked-based model with the mask prediction as an auxil-

iary task in learning better speaker-related characteristics than the Multi-source Attention

model, because of the strong supervision signals provided from the auxiliary branch of the

neural network.

6.2 Future Work

It can be seen that although LF-MMI approaches outperform the cross-entropy system,

the quality of their alignments still needs to improve. If ground-truth positions of wake

words are available (obtained either by human annotations or from a existing ASR acoustic

156



model trained with a large in-domain corpus), it is possible to encode and exploit that extra

information for training wake word models. One way is simply adding an auxiliary task

of predicting the target of wake words at those positions. Another way is simultaneously

predicting the positions, using approaches like region proposal networks [48], [100]. It can

also possibly improve the decoding latency if positions of wake words are better estimated.

Our proposed wake word detection is based on the assumption that the word to be de-

tected is known and fixed during training. We have shown that very few of modeling units

are needed to achieve very good performance in this scenario. There exists other scenarios

where users are allowed to customize their own wake words without updating or replac-

ing the model, and thus the word is undetermined during training. In such cases, the target

should cover all units that can be part of all possible wake words, and the training data needs

to consist of general ASR corpora with richly transcribed text. The model size may need to

be larger in order to have enough modeling capacity for modeling sequences derived from

rich texts (e.g., graphemic or phonetic sequences). For example, [41] adopts an acoustic

model with 4.6M parameters trained with 22M utterances, and both the model size and

the amount of training data needed are thousands times more than our proposed system,

preventing them from easily running on resource-limited devices. It poses a question of

how to build more efficient models. Another aspect worth investigating is how to notify the

model of the wake word selected to be detected. Simply transducing grapheme/phoneme

sequences into word sequences is inefficient as we do not need to devote computational

resources equally to every possible sequence for wake word detection. [41] alleviates this
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problem by feeding the wake word as an additional input of the acoustic model, guiding

the model to only focus on sub-sequences corresponding to the wake word. However it still

requires a left-to-right language model to model the temporal dynamics of the output se-

quence, which still seems an over-complicated solution, which necessitates a more efficient

way of specifying the intended wake word.

For anchored speech recognition, As presented in the experiments and conclusion part

of Chapter 5, the model trained with the Amazon live data may have learned some non-

speaker characteristics other than pure speaker-related information, because of the way the

training data is synthesized. A possible solution is to sample recordings collected from the

same device and house as where the training example is recorded to control the environ-

mental influence on the model training. In addition, our proposed models are based on the

assumption that there is no overlap between target speech and interfering speech, which

is not the case in some real scenarios. Therefore a background speech suppression mod-

ule conditioned on the wake word is necessary for such a task when there is overlapping

speech.
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