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Abstract

The recent development of embedded platforms along with spectacular growth in com-
munication networking technologies is driving the Internet of things to thrive. More com-
plex tasks are now possible to operate in small devices such as speech recognition and
keyword spotting which are in great demand. Traditional voice recognition approaches
are already being used in several embedded applications, some are hybrid(cloud-based and
embedded) while others are fully embedded. However, the environment surrounding the
embedded devices is usually accompanied by noise. Conventional approaches to add noise
robustness to speech recognition are effective but also costly in terms of memory consump-
tion and hardware complexities which limit their use in embedded platforms. The purpose
of this thesis is to increase the robustness of keyword spotting to more than one type of
noise at once without increasing the memory footprint or the need for a denoiser while
maintaining the recognition accuracy to an acceptable level. In this work, robustness in
treated at the phoneme classification level as the phoneme based keyword spotting is the
best technique for embedded keyword spotting. Deep Neural Networks have been success-
fully deployed in many applications including noise robust speech recognition. In this work,
we use mutil-condition utterances training of a Deep Neural Networks model to increase
the keyword spotting noise robustness. This technique is also used for a Gaussian mixture
model training. The two approaches are compared and the deep learning proved to not
only outperform the Gaussian approach, but has also outperformed the use of a denoiser
system. This results in a smaller, more accurate and noise robust model for phoneme
recognition.
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Chapter 1

Introduction

1.1 Motivation

We live in the information age, where information is key to almost everything in our daily
lives. From economy to military to science, the more information we have and the better
our processing of it is, the more effective are our actions. Data science has been thriv-
ing in recent years. However, it has been established that most of the relevant data is
not being recorded (or processed) for lack of appropriate technology and because of other
challenges in storing, processing and mining huge amount of data. Thus the emergence
of the Internet of Things (IoT) [25] that will help acquiring large amounts of data that is
of better quality. In addition to the thriving of data science, speech recognition has been
experiencing a resurrection in interest thanks to deep learning [28, 27]. An effective speech
engine and natural language understanding makes a great human-machine interface which
explains the great demand for such technology. Speech is one valuable and attractive data
to be collected. This is due to the rich nature of speech, which is becoming among the
most valuable information we can collect for further processing.
In the foreseeable futures, our homes, offices and streets will be connected and speech
enabled. Speech engines that are deployed today and those under development by ma-
jor speech companies such as Google and Apple are server and cloud based. Hence, every
recorded speech utterance is sent to the servers via the Internet, gets processed and the ap-
propriate command is sent back to the connected device to make the appropriate response.
This promises a great deal of accuracy and speed thanks to the Internet infrastructure
and servers processing power. This is considered a great step in the technological race
for powerful human machine interaction. However, it also raises a serious privacy issue as
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every word or sound anyone makes is recorded and sent for processing over the Internet.
Even if the speech companies do not use the collected data for other than what is explicitly
intended, a number of entities such as hackers could intercept the data and collect it for
malicious use. Continuous surveillance is not an attractive idea to most individuals. How-
ever, it is possible to get the best of both worlds: privacy and technological advancement.
The key to such compromise is to perform the speech recognition locally without having to
send the data over the network. The speech utterance is not at risk of interception and the
intelligent embedded system would be able to decipher the command and act accordingly.
While small embedded platforms such as a switch, a fridge or a lamp are not equipped
with the proper hardware to handle large vocabulary speech recognition, most designers
of theses systems believe that a few trigger words and commands are more than enough
to activate them. Thus, an efficient keyword spotting is capable of activating most IoT
devices.
Keyword spotting on small embedded platforms comes with a few challenges including
limited memory and processing power. In fact, the connected devices should remain cost
effective at lower power consumption. In addition, IoT components are subject to acoustic
interference as they would be placed all over the environment which makes robustness of
the speech engine to noise an important aspect. Therefore, designing a small foot-print,
low power consumption and robust keyword spotting engine would be the ideal solution
to speech enabled IoT devices that preserve privacy and offer a comfortable interface with
the users.

1.2 Thesis Contributions

The main goal of this thesis is to develop an effective approach for designing a noise robust
small footprint phoneme classifier system which is also computationally efficient. This will
be accomplished through two contributions. The first contribution is designing a system
that has the ability to replace a software or hardware denoiser by including noisy data in
the training process of the machine learning technique. This reduces the cost, memory
requirement and increases the robustness of the speech engine and the processing speed.
This is achieved by applying multi-condition training of the recognizer. The targeted noises
are represented by injecting the corresponding noise into the training data enabling the
model to simulate the noisy environments as it is trained with the clean and noisy data.
Hence the denoising aspect is no longer a separate module but rather incorporated in the
deep learning model itself. The second is to reach a good compromise between the clean
and noisy data training, replacing the need for multiple noise models with a single one that

2



provides accurate and robust results for both clean and noisy conditions. This also serves
the purpose of reducing memory footprint and decreasing the pre-processing delay caused
by the model selection step.

1.3 Thesis Outline

The thesis starts with a detailed description of the major approaches used in the develop-
ment process of the robust keyword spotting engine. We start in the second chapter by
highlighting various speech recognition and keyword spotting algorithms. Along the way,
we outline the theoretical background on Deep Neural Networks (DNN) speech enhance-
ment tools. Following the presentation of the background material, the proposed approach
to reach a robust and small keyword spotting engine is then presented in chapter 3. This
includes the selected techniques alongside the appropriate test scenarios to test the per-
formance of the proposed approach when compared with the state-of-the-art techniques.
Finally, the test scenarios results are presented and discussed in chapter 4. A conclusion
is drawn to assert whether the proposed approach has reached the expected outcome.

3



Chapter 2

Technical Background and Literature
Review

2.1 Introduction

In this chapter, a general description of the speech recognition process and its main com-
ponents is introduced. Next, the different methods of keyword spotting are highlighted
and compared. The objective is to choose the best technique for keyword spotting to use
in the process of designing a robust DNN based keyword spotting engine. Artificial Neural
Networks (ANN) and their previous use in speech recognition is then described followed
by more details on DNN. This chapter, concludes with a presentation of various speech
enhancement approaches found in the literature.

2.2 Automatic Speech Recognition (ASR)

2.2.1 Definition

Speech recognition is the ability of a computer to identify and respond to the sounds pro-
duced in human speech [59]. We call Automatic Speech Recognizer (ASR) the system that
identifies the speech utterance and translates them to text while we call Natural Language
Understanding (NLU) the system that interprets the stream of utterances, allowing the
interface machine to respond accordingly. This thesis only targets the first module, hence
producing text given an audio signal.
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2.2.2 Components of an ASR

An ASR is composed of two major components, namely a feature extractor followed by
a decoder that requires a language model and an acoustic model to produce an estimate
of the audio signal transcript. Figure 2.1 illustrates the relationship between the different
modules and required elements for a fully functioning ASR [60].

Figure 2.1: Speech recognition process

For feature extraction, there is a variety of techniques to derive features from the signal,
each emphasizing on linguistically relevant or irrelevant information. Robustness can be
addressed at the features level, making the decoding task easier [78]. However, it has been
proved that enhancing the features for more robustness has minimal impact on the speech
recognition process as a whole. Decoding the features is usually done in two steps. The
first step is performing classification by any of the pattern recognition techniques which
requires the use of an acoustic model. One example is using continuous classification of the
feature vectors, by modeling the parameters of the distribution equation representing each
class, commonly with Gaussian Mixture Models (GMM). A fairly new technique based on
neural networks to classify a speech utterance by estimating the probability for different
classes. The second step in the decoding process is hypothesis search, usually performed
by the Hidden Markov model (HMM), a formulation that expresses the constraints of pro-
nunciation and word sequence in a single finite-state network, for which efficient search and
training algorithms are known. The combination of the dictionary, the phonetic descrip-
tion of each word, and the grammar which details the relationship between the dictionary
words is called the language model [60].

5



2.2.3 Feature extraction

Representing the speech signal is possible in both time and frequency domains. Since the
audio signal is in the time domain, using a similar representation, temporal waveforms [34],
seem the best way to go. However, according to [34], using frequency domain representation
is more useful as it better depicts the different sounds and is more accurate. In fact, the
human ear also relies on frequency based sound’s representation. Since most of the sound
is not speech, continuous listening will collect much useless data and waste energy. Using
Voice Activation Detection (VAD) enables the system to only extract the utterances that
contain speech and ignore the irrelevant sounds and noises.

Mel-frequency cepstral coefficient (MFCC)s are the frequency domain features repre-
sentation that are used in the scope of this thesis, but the audio signal input has to go
through an analog to digital conversion before getting to the frequency domain represen-
tation. The latter is performed using a specific sampling rate depending on how much
details we want to extract out of the analog signal. Having sampled clean speech data will
need a representation that would have the benefits of the frequency domain representation
but also what could be recovered from the time domain. The most commonly used MFCC
features are extracted through performing a Discrete Fourier Transform (DFT) followed
by a number of Mel scale filters generating the Mel filter bank. At last, Discrete Cosine
Transform (DCT) is used to generate the MFCC [84]. Experiments prove that 13 MFCCs
are the most representative to perform speech recognition [48]. To regain some of the
temporal information lost when performing the DFT, the differential and the acceleration
coefficient are added to the 13 MFCC reaching a vector of 39 features for each frame. The
calculation of the differential and the acceleration coefficient helps estimate the temporal
change in the signal [31]. Equation 2.1 illustrates the calculation of the deltas and double
deltas of the 13 MFCCs.

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

(2.1)

where dt is a delta coefficient, from frame t computed using the MFCC coefficients ct+N
to ct−N . Double delta coefficients are computed the same way, by replacing the MFCC
coefficients with the deltas [4].
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2.2.4 Hybrid HMM/GMM

A HMM is a finite state machine, where transitioning from one state l to another state
m is performed every time frame t with probability alm. While entering the state m, an
observation vector xt is produced with a probability distribution bm(xt). Figure 2.2 illus-
trates a HMM which has two states with no probability emission, one before the beginning
of the chain and another after the final probability has been calculated. The remaining
states have emission probability densities that are usually estimated by GMM [60, 19].

Figure 2.2: Hidden Markov Model states

For every emitting state, the HMM can stay at its current position or move to the
adjacent state. Each of the speech units requires some acoustic data for training. The
data could be from one or different speakers for better training of the HMM parameters.

HMMs in speech recognition are used to model the speech signal sequential structure,
each of the states have a Gaussian density that helps model the signals spectral variability.
With the Expectation Maximization (EM) algorithm, Gaussian models fit easily the data.
In fact, they are quite effective in modeling the HMM states to MFCC. With the adequate
number of mixtures, GMM can effectively model the probability distribution of the HMM
states over their feature vectors. However, GMM in HMM-based acoustic models still suffer
limitations motivating the research community for alternative models [60].

2.3 Keyword Spotting (KWS)

This section tackles in detail the well known four Keyword Spotting (KWS) methods,
Large-Vocabulary Continuous Speech Recognition (LVCSR) KWS, Acoustic KWS and
Phonetic Search KWS, followed by a discussion and comparison of these methods. The
figures in this section are inspired from [54].
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2.3.1 LVCSR-based KWS

The LVCSR translates the speech utterance into text and feeds it to the KWS engine.
The text output of the speech recognizer is searched by the KWS engine to determine
the existence and the positions of a specific list of keywords within the text output [77].
Applying the LVCSR based method in keyword spotting is performed over two steps. At
first, using Viterbi search, a LVCSR that requires a large size acoustic and language models
is performed on the audio utterance, generating text output. Next, a Keyword spotting
procedure is used to identify the presence of the keyword list in the previously generated
text. In [68, 53, 10], LVCSR keyword spotting method was tested giving quite unsatisfac-
tory results of only 61.2% accuracy. Figure 2.3 illustrates the different components of an
LVCSR based keyword spotting engine [55].

Figure 2.3: LVCSR based keyword spotting[55]
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2.3.2 Acoustic KWS

Unlike the LVCSR, the acoustic KWS system does not estimate the whole text of the
audio, yet it uses the same search algorithm. Instead of having one large acoustic model
trained using representative data of the English language, this technique performs speech
recognition based on a small subset of specific words alongside a general non-keyword
model. Having a model for keywords and another for other words that are usually re-
ferred to as ”garbage”, the acoustic KWS can execute its search in one single step [68] as
shown in Figure 2.4. In fact, Google [9] uses a similar method to train their trigger word
”Okey Google” using DNN. Instead of having multiple models, they train their neural
network using multiple occurrences of the trigger word with another training set classified
as filler [55].

Figure 2.4: Acoustic based keyword spotting[55]

2.3.3 Phonetic search KWS

Phonetic search KWS consists of finding the keyword based on their phonetic transcript
which is performed over two steps. The first step performs phoneme decoding that trans-
forms the audio input to an array of phonemes in contrast of the LVCSR that produces a
list of words [2, 64, 70]. The second consists of a phonetic search calculating the distance
between the produced phonetic sequence from the previous stage with the list defining the
keywords [2]. Figure 2.5 illustrates the different stages of the phonetic search process. It
is noted that the engine requires a keyword list with their phonetic description alongside
a general phoneme database. The latter is used by the decoder to produce an estimate of
the phoneme sequence present in the input audio file [55].
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Figure 2.5: Phonetic search based keyword spotting[55]

2.4 Comparison: Performance Indexes

The major comparison metrics for the above mentioned KWS techniques are accuracy,
processing time, keyword level flexibility and training data availability [32, 18, 46, 62].
These metrics are described next.

2.4.1 KWS accuracy

Relying on the textual transcript of the input speech, either in the case of LVCSR based
or phonetic search based KWS, is subject to a great deal of mismatch due to disturbances
in the testing environment. In fact, the quality of the microphone, ambient noise, mis-
pronunciation, word overlap and even accents would usually lead to a poor performance
of the decoder. The resulting text will be filled with substitution, deletion and insertion
errors [6, 24]. The accuracy also depends on the quality of the database and how well it
mimics real-life environment [6, 7]. Since the KWS, in both mentioned methods, relies on
the decoder output, the accuracy is greatly influenced by the first stage results. The main
difference between the phonetic search and the LVCSR based KWS is on the possibility
of increasing the accuracy at the second stage. For the LVCSR KWS, the second stage
is limited to searching the words and detecting whether a keyword is in the text or not,
making it hard to improve accuracy. However, in the phonetic search, there is room for
improvement as one keyword is composed of several phonemes. Hence, if even one or two
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phonemes are mistakenly classified, using a smart second stage algorithm the correct key-
word could be detected. Hence, in theory the accuracy in the phonetic search based KWS
is better than the LVCSR based KWS.

2.4.2 Response time

On the overall complexity level, phonetic search based and LVCSR based KWS both rely
on a two-step process: First in converting the speech to textual format (words for LVCSR
and phonemes for phonetic search based). On the other hand, acoustic based KWS does
not rely on any kind of transformation and performs on the speech input in one single
step. Although searching for the correct keyword, while given a full text in the LVCSR
technique, is quite fast, the first stage is considered a huge drawback when it comes to
time response. This is caused by the large size of the vocabulary and the complexity of
the models involved in the transcript generation stage.

Phonetic search implements phoneme recognition without the need of any lexicon or
word level language model. Nonetheless, the second stage search calculates the distance be-
tween the phonetic textual representation from the first stage and the keywords phonemes.
In contrast with LVCSR method that reaches the word level from the first stage, generat-
ing a hypothesis of the keywords is necessary for the phonetic search KWS, based on the
sequence of phonemes produced by the first stage. However, acoustic KWS only needs the
list of keywords without requiring any language model or phonetic description of the key-
words. Requiring small vocabulary and operating on the input signal, the acoustic based
KWS is optimal for real-time KWS in small databases. In [9], Google is using this tech-
nique for the trigger command recognizer on the handheld devices using Android operating
systems. Yet, this also means that the model must be very accurate and well trained [70]
to sidestep an excess of false alarms.

2.4.3 Training data availability

For LVCSR and phoneme search based KWS, any general database such as Texas In-
struments and Massachusetts Institute of Technology (TIMIT) or the World Street Jour-
nal (WSJ) should be sufficient to train the model [41, 37]. On the other hand, Acoustic
based KWS requires a database that is very specific for the specific keywords. Such a
database is very hard and almost impossible to obtain, making this method exclusive to
big companies with vast resources such as Google and Apple [9].
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2.4.4 Keyword flexibility

Working with the smallest unit of speech, namely phonemes, the phonetic search based
KWS is at a great advantage when it comes to keyword flexibility as LVCSR runs on a word
sequence [7, 5, 76]. The phonetic search offers the user absolute freedom on changing the
keywords as needed, provided that phonemes have no vocabulary constraints. One other
flexibility aspect that phonetic search offers is the ability to change the keyword and not
having to run the decoding stage again. The second stage is sufficient to spot newly defined
keywords. In contrast, the textual transcript formed by LVCSR requires running both
stages again as the engine is constrained with a vocabulary and a language model unless
the keyword is already present in the language model. [7, 68, 45]. Given that keywords
are usually domain specific terms and are not included in common lexicons [76, 24], then
keyword flexibility represents a great disadvantage of the LVCSR technique.

Acoustic KWS is not adequate for frequent changing of the keywords. Since acous-
tic KWS is a one-step process that uses a keyword specific model, changing the keyword
list would required a retaining of the model. Most real-world applications need keyword
flexibility, alongside the fast real-time execution when applied to any type of speech in-
put. According to [55], Phonetic search KWS technique is more efficient than LVCSR and
acoustic-based methods. The focus of this thesis is phonetic search KWS, and the imple-
mentation of an algorithm for the reduction of computational complexity in the phonetic
search KWS process.

The following table 2.1 summarizes the comparative study between the different KWS
approaches[55].

KWS
approach

Keyword
flexibility

Response
time

KWS
accuracy

Data
availability

LVCSR
based

high low high abundant

Acoustic
based

low high high scarce

Phonetic
search
based

high medium medium abundant

Table 2.1: KWS comparison summary.

It is clear that there is no single best approach with high efficiency for all three metrics.
However, for this thesis, more emphasis is put on keyword flexibility as embedded systems
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are known to be versatile and are produced in big numbers, hence retraining for each
keyword change would make the KWS engine less practical and less desirable. In addition,
the data availability plays an important role as it excludes the acoustic KWS technique
due to the lack of training data. Therefore the phonetic search based approach is adopted
in this thesis as our platform for KWS.

2.5 DNN for Speech Recognition

Prior work for implementing feed-forward ANN instead of GMM within a HMM-based
acoustic model has its advantages [47]. In order for the GMM to approximate the posterior
probabilities, they require comprehensive detailed data distribution assumptions, while the
ANN do not. ANN also let us use and apply different types of data, whether they are
continuous or discrete [71]. Last but not least, ANN use the entirety of the training data
to tune the network parameters and they have proved very efficient in modeling highly non-
linear data. However, the ANN had many limitations when modeling speech data. This
is due to the highly variant nature of speech [71]. Deeper networks (networks with many
layers) have been proposed as the solution for more complexity to fit data such as speech,
but the random initialization of the network parameters led to negative results when using
Multi-Layer Perceptron [71]. In 2006, Hinton introduced the pre-training step to initialize
the weights and therefore was able to solve the problem of initialization [28]. Deep Belief
Networks (DBN) have been the most common technique for generatively pre-train deep
networks where each layer extracts a higher representation and new structures from the
input. A popular example that explains the abstraction aspect of the deep neural network
is image processing. Figure 2.6 [33] shows the different abstractions that an image of a
traffic sign could go through depending on the DNN depth. It can be seen that the first
layer highlights the edges of the input image while decreasing the feature dimension from
32× 32 to 28× 28. The deeper we go the more abstract the features become.
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Figure 2.6: Abstraction layers of DNN [33]

.

Recent deep learning algorithms have shown that for acoustic modeling simulations,
neural networks are more appropriate and very effective [3]. The two-steps algorithm
to train neural networks goes as follows: The first step of the DNN process consists of
initializing the weights of the network using generative pre-training, usually with Restricted
Boltzmann Machines (RBM) or Stacked Autoencoders (SDA). Each of the layers offer a
new abstract representation of the input data. Next, a discriminative back-propagation
step takes over and performs the supervised learning step of the network. For pre-training
deep networks, DBN is the most common method used in the literature. The pre-training
reduces the likelihood of overfitting and makes the fine tuning stage less computationally
intensive as the initialized weights may lead to a local or even global minima [28]. Thus,
the backpropagation algorithm will reach convergence in less iterations. Hybrid HMM and
DNN architectures for speech recognition acoustic modeling combine both, the sequential
modeling of the HMM and the abstract representation of the DNN [58].

2.5.1 Stacked autoencoders (SDA)

A SDA model is used to learn new generic features, and as such is part of a representation
learning system. It has been used for speech recognition in the recent years and has shown
good prospects for DNN [74]. Stacked Autorncoders are, as the name implies, a stack
of single-level autoencoders as shown in Figure 2.7. Hence the SDA are a deep learning
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approach. SDA use the autoencoders as building blocks to create a deep network. While
deep architectures can be more expressive and can extract more sophisticated features
from input data, until relatively recently, deep networks were thought to be too difficult
to train and as such of limited utility. As mentioned above, the breakthrough came when
Geoffrey Hinton and his colleagues [28] showed how fast, layerwise greedy and unsuper-
vised algorithms can be used to initialize a slower algorithm that fine tunes the learned
weights and provides very good results on deep networks. This result revitalized machine
learning research and deep architectures have become a tool of choice for a wide variety of
classification and prediction problems [49].

The basic idea behind layerwise training is shown in Figure 2.7. After a layer is trained,
the autoencoder output layer is discarded and the features (the y) are used as the input
to the next layer. Hence the training is greedy and layerwise. The final step is to fine tune
the network in a supervised fashion using the backpropagation algorithm.

Figure 2.7: Stacked autoencoders

.

2.5.2 Deep belief networks (DBN)

In this section, the background required to understand the main prediction approach used
in this research, namely DBN, is provided. The method is particularly suitable when
dealing with a very large amount of data generated by complex interconnected systems.
DBN are formed by stacking RBMs, which are then trained greedily using unsupervised
algorithms [28]. An RBM is an undirected graphical model that has no connections within
visible (x) or hidden (h) units, as illustrated in Figure 2.8.
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Figure 2.8: Restricted Boltzmann Machines

RBM are developed based on the inter-layer interaction energy and bias energy of each
layer. Mathematically, the energy function of an RBM is defined as:

E(x,h) = −b>x− c>h− h>Wx (2.2)

where b and c are bias vectors associated with the hidden and visible layers respectively,
and where W is the weights matrix between the visible and hidden layers. We denote the
set of parameters b, c, and W by θ. An RBM defines a distribution, which involves the
hidden units, over the visible units. The distribution of observing a particular visible and
hidden units configuration based on the energy function is given by:

P (x,h) =
e−E(x,h)

Z
(2.3)

where Z is the partition function. Using Equation 2.3, the distribution of observing a set
of visible units is defined as:

P (x) =
∑
H

P (x,h) = exp
−F (x)

Z
(2.4)

where F (X) is known as the free energy term and H is the number of hidden layers, and
is defined as follows:

F (x) = exp

(
c>x +

H∑
j=1

log(1 + exp(bj + W(j,:)x))

)
/Z (2.5)

To train an RBM, the average negative log-likehood (NLL) function of all training
points (t = 1, ..., T ) needs to be minimized. The NNL function is set as follows:

NLL =
1

T

∑
t

l(f(x(t))) =
1

T

∑
t

− logP (x(t)) (2.6)
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Then, the NNL function is optimized with respect to θ using stochastic gradient descent
algorithm; the result of the optimization is defined as:

−∂ logP (x(t))

∂θ
= Eh

[
∂E(x(t),h)

∂θ

∣∣x(t)

]
− Ex,h

[
∂E(x,h)

∂θ

]
(2.7)

Where E designates the expectation with respect to the prior knowledge in the case of Eh

and with respect to the observation alongside the prior knowledge in the case of Ex,h. The
second term in the right-hand side of the equation is hard to compute since we have to
make an exponential sum over both x and h. To address this problem, the authors of [8]
proposed the contrastive divergence algorithm, which has three main steps:

1. Estimate a point x̃ to replace the expectation Ex,h.

2. Estimate the point using Gibbs sampling.

3. Start the sampling chain at each observation x(t).

As illustrated in Figure 2.9, the conditional independence of intra-layer units in an RBM
allows us to apply the Gibbs sampling iteratively for sampling visible and hidden units.

Figure 2.9: Illustration of Gibbs sampling

To perform the Gibbs sampling, the conditional distributions P (h|x) and P (x|h) have
to be computed according to Equation 2.8.

P (h|x) =
∏
i

P (hi|x)

P (x|h) =
∏
k

P (xk|h) (2.8)

17



If xk and hj are binary units, the following applies

P (hj = 1|x) =
1

1 + exp(−(bj + W(j,:)x))

= sigm(bj + W(j,:)x)

P (xk = 1|h) =
1

1 + exp(−(ck + h>W(:,k)))

= sigm(ck + h>W(:,k)) (2.9)

After the negative sample x(k) = x̃ is estimated, the point estimate of the expectations in
Equation 2.7 is computed as follows:

Eh

[
∂E(x(t),h)

∂θ

∣∣x(t)

]
≈ ∂E(x(t), h̃)

∂θ

Ex,h

[
∂E(x,h)

∂θ

]
≈ ∂E(x̃, h̃)

∂θ
(2.10)

Even with only one step sampling, i.e., k = 1, this algorithm has been proven to be
successful for unsupervised training [8]. Using Equation 2.10, the parameter θ of the RBM
are updated according to the following equation:

θ(t+1) = θ(t) − α
(
∇θ(− logP (x(t)))

)
(2.11)

Where α is the learning rate. For each parameter W, b, and c, the update equations are
given below:

W(t+1) = W(t) − α
(
h(x(t))x(t)> − h(x̃)x̃>)

)
b(t+1) = b(t) − α

(
h(x(t))− h(x̃)

)
c(t+1) = c(t) − α

(
x(t) − x̃

)
(2.12)

where h(x) , sigm(b + Wx).

Furthermore, once the unsupervised training is done, the obtained parameters are used
to initialize the neural networks that will be trained using a supervised back-propagation
algorithm. In this work, the neural networks are trained to learn phonemes in a multi-class
setting. Figure 2.10 depicts a multi-class classification with a soft-max layer on top of the
stacked RBM.
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Figure 2.10: DBN architecture for multi-class classification

2.6 Noise Reduction

Speech recognition tests are usually carried out in ideal environments within laboratories,
hence their accuracy level is substantially degraded when tested in real world conditions.
The different noises and disturbances accompanying the highly variant testing environ-
ments create a considerable mismatch between the training and the testing set. Hence the
accuracy degradation [57].

The latter mismatch has been the motivator behind more robust speech engines. In-
creasing robustness of the ASR can be achieved in the following three levels:
i) Improving the Signal to Noise Ratio (SNR) in the acoustic level by multiple speech
enhancement approaches [81, 79]
ii) Choosing a parametric representation that is more robust to noise [23, 39] and
iii) Including both the noisy and clean signal in the modeling stage allowing the new model
to recognize the speech under specific noisy environment [42].

In the scope of this thesis, the third type of speech enhancement technique is used.
Dealing with the mismatch is a crucial step in the speech recognition development and its
introduction to real world environments. Although a lot of research has been dedicated
to speech enhancement over the last decades, most of the proposed approaches under

19



a multitude of assumptions were unsuccessful. [40, 14, 21]. Artificial Neural Networks,
with only one layer (also known as shallow networks), have been introduced to act as
nonlinear filters [69, 35]. Due to the simplistic representation of the shallow neural network
and the usually small size of the training set, the results have not been encouraging. In
addition, the random weight initialization, and the gradient-descent or ascent optimization
get the network training process stuck in what is called local minimas or plateau [3].
This problem gets more pronounced when increasing the number of layers for a deeper
architecture. Deeper networks are known to provide a better solution, but the latter
problem has prevented any progress in that direction. In 2006, Hinton et al. [29] introduced
a greedy layer-wise unsupervised pre-training that initializes the network weights avoiding
the local minima obstacle, hence resurrecting the use of DNN. One of the first fields
Hiton and al. chose to test the DNN was speech recognition. The obtained results are
overwhelmingly better than the state-of-the-art recognizers [27, 83]. Binary classification
on time-frequency approaches have also been tested, yet the time-frequency units proved
not to be a good choice for classification. Ideal ratio mask estimation, in the MFCC
features, is also performed using DNN for purposes of increasing the robustness of the
ASR [56]. Another use of DNN is mapping a complex function from noisy to clean data
using training data varying factors in noisy speech such as different speakers, different
noise types, and SNRs in [79], leading to a major improvement. In fact 76% of subjective
listeners prefer the DNN based clean speech over the other techniques.

2.7 Summary

In this chapter, The three major keyword spotting approaches, namely the acoustic, the
LVCSR and the phonetic search based were highlighted and their performances compared.
Phonetic search KWS had been shown to have more promising features and it is selected
here as the KWS method. Recent use of DNN with Restricted Boltzmann Machine and
Stacked Autoencoders in speech recognition was also described, suggesting that both pre-
training algorithms should be tested and compared. Finally, the standard techniques for
speech enhancement were presented.

This thesis focuses on training a DNN model using large size speech data under var-
ious conditions, encompassing clean, stationary noise contaminated, non-stationary noise
contaminated and stationary then non-stationary noise contaminated to simulate various
real-life environments. This is developed in the next chapter.
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Chapter 3

Proposed Approach For Keyword
Spotting Robustness

3.1 Problem Statement

Most of the speech databases that are commonly used by the industry as well as by re-
searchers, such as TIMIT or WSJ contain large amount of data and are quite representative
of the diversity of potential speakers [41, 37]. These databases encapsulate a multitude of
aspect variations of the targeted speech domain. In fact, they include speakers of different
gender, age and sometimes even with different accents [1]. This variety ensures high level
of the database generality. Indeed, most of the speech recognition applications using such
databases for training their models are known to be efficient and accurate [60].

However, theses databases present a substantial downside, namely that they are recorded
in a clean environment. In fact, testing the laboratory grade trained and tuned models
under real-life circumstances results in poor accuracy. This is due to the fact that the
model is not trained to deal with the noise accompanying the speaker utterances.
Noise is an important factor and not to be ignored, as both the speaker and the background
can create noise that greatly disturbs the input signal making it hard for the decoder to
decipher and recognize the spoken phonemes or words [52].

This is where the denoiser intervenes by trying to enhance the speech and estimate the
original clean speech to feed it to the decoder. This should lead to better results depending
on how efficient is the denoiser estimation. Denoisers are also trained with specific noises
which make them dependent on the mismatch between the noise used for training and the
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noise present while testing. Nevertheless, for the same type of noise, whether stationary
or non-stationary, the denoiser is somehow efficient [63, 20, 13].

In an environment with changing types of noise, the convenient noise-specific denoiser
model has to be chosen before applying it to the speech signal. Recently developed smart
denoisers approximate the noise type and apply the correct model, one at a time. Denoising
proves to be usually effective, even though it adds an overhead for the process. It also
created a delay that is affects the real-time functionality which is at the core of every
speech enabled system.

The next challenge is when the environment presents two or more different types of
noises at the same time. The denoiser would eventually choose one model to filter out
the noise and would fail to treat the other type of noise hence usually leading to poor
accuracy![26].

One approach to solve coexistent noise types problem is to use the noisy data in the
training stage to produce a model that handles more than one type of noise at the same
time and not having to deal with the overhead of a denoiser. Since the available databases
are composed of clean data, a noise adder is used to contaminate the data with specific
noises generating the noisy data needed for the training. Creating different datasets using
several noise samples produces a representative database of most real-world environments.
However, the model becomes quite complicated and the traditional modeling approaches
cannot capture the high level of non-linearity of the noisy data. This lead to the aban-
donment of the noise modeling technique and the focus on improving the denoiser-based
method. With the recent development and success of deep learning, attempting to model
the noisy utterance using deep learning may prove to be an excellent choice.

This thesis attempts to improve the recognition results in noisy environments using
deep learning. The next section details the proposed approach for better accuracy using
the noise modeling technique on a phoneme recognition engine. The results are compared
to those of the denoiser-based method.

3.1.1 Noise robustness using deep neural networks (DNN)

Thanks to recent advancement of deep learning [28], DNN has been used successfully in a
multitude of areas including speech recognition [27]. The next step is to use deep learning
to enable the speech engine with noise robustness. Several methods have been used to
incorporate noise robustness into the DNN training in the speech recognition area [65].
These methods are:
i) Multi-condition utterances training
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ii) Denoising the utterances before the training
iii) Noise estimation incorporated into the network.
These approaches are similar to noise robustness techniques in the traditional HMM-GMM
engines [75]. The following is a brief description of each method.

Multi-condition utterances training

Using multi-condition data for DNN training permits a higher level features learning by the
network. These features are more robust to the noise effect on the overall classification.
In this regard, DNN is considered as nonlinear feature extractor and also a nonlinear
classifier. The lower layers represent discriminative features that are independent from
the various conditions across the many acoustic conditions existing in the training data.
Hence in multi-condition utterances training data, the input vector is a combination of the
noisy utterances frames. Although the multi-condition technique is theoretically similar
for both GMM and DNN, they are substantially different. For GMM, a Gaussian mixture
directly models the data, hence the noise introduced variability is captured and modeled.
In discriminative training, noisy features are discarded by the GMM while the deep neural
network extracts helpful information using the nonlinear processing of the layers [75].

Enhanced features for DNN training

One intuitive solution to noisy data is to filter out the noise from the speech utterances
before the training stage. Hence, using a speech enhancement technique reduces the noise
effects on the input signal. The classifier learns any flaw introduced by the enhancement
algorithm if the latter is used on both, the testing and training data. The HMM-GMM
version of this technique is called feature space noise adaptive training [75, 17]. The same
technique could directly be applied to the DNN training.

DNN noise-aware training

The last technique consists of adapting the model to the environment noise by introducing
a noise estimation in the model itself. The noise model adapts the GMM parameters based
on a model that determines how the clean speech is corrupted. Equation 3.1 describes the
relationship between the noise, the noisy signal and the clean speech.

y = x+ log(1 + en−x) (3.1)
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Where x designates the clean speech, y is the noisy signal and n is the noise. The non-
linearity of Equation 3.1 makes noise robustness a considerable challenge. Yet, thanks
to various layers of nonlinear processing of DNN, the network is capable of learning the
relationship from the data. This is done by appending each input with an estimate of
the noise [75]. The DNN is informed of the noise and not adapted to it, therefore this
technique is called DNN noise-aware training.

According to [75], multi-condition utterances training is the best approach for noise ro-
bustness, combined with the dropout technique, the accuracy is improved by 7.5% relative
to the best published result in speech recognition. Therefore, the multi-condition training
is adopted in this work as the DNN approach to achieve noise robustness.

3.2 Proposed Approach

In order to fulfill the need of the fast growing market of the IoT, the main goal of this
work is to develop a keyword spotting engine that is robust to noisy environments and that
could also sit on a platform with considerable memory and processing power constraints.
This is accomplished by applying multi-condition utterances training of the recognizer.
The targeted noises are injected into the training data enabling the model to simulate the
noisy environments as it is trained with the clean and noisy data. Therefore dismissing the
need for a denoiser as the robustness will be incorporated in the deep learning model. As
mentioned in the previous chapter, the keyword spotting method used here is the phoneme
search based. Indeed, this approach presents the best combination of excellent keyword
flexibility with the ability to frequently change the list of keywords as desired with ease.
Moreover, it ensures real-time response and satisfactory accuracy which is most important
when it comes to any classification problem. Finally, the training data for the phoneme
search based KWS is widely available.

Figure 3.1 illustrates the different modules of a KWS engine based on phoneme search.
Figure 3.1 also depicts the data flow and what format the data takes going from one module
to another [54]. The first module being the MFCC pre-processing, takes in the raw speech
signal generating features that represent the most important information of the speech
data. The second module is the most important as it decodes the speech features into
phonemes producing the input for the next module. Finally, the keyword mapper module
generates the list of detected keywords if they exist in the input signal [68].

The scope of this thesis only focuses on optimizing the phoneme decoder, in terms of
small memory foot-print and faster response time while maintaining good robustness and
accuracy.
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Figure 3.1: Phoneme search based keyword spotting engine architecture
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Thanks to the recent successes of deep learning, in particular DNN, applied to various
domains such as speech recognition [27], DNN are chosen to be the deep learning approach
with which to implement the phoneme decoding task of the overall KWS process. As noted
in the previous chapter, deep learning performs a pre-training step followed by a network
fine-tuning step based on the standard backpropagation algorithm. The pre-training itself
has been used in two different ways in the literature. The first method is to generate a new
set of features using either RBM or SDA from the input training data. The new features are
considered more abstract and are more representative than the original features. However,
for speech recognition, MFCC is considered the standard representation and is used by
most of the speech recognition engines in the market [28].
In this thesis we use the second method of deep learning which consists of using the pre-
training stage to initialize the weights of the neural networks in preparation for the next
fine-tuning process [33].

3.2.1 Customization of DNN for phoneme classification

The first stage of designing a DNN is the most important part in the training process.
Therefore, choosing the correct pre-training algorithm would greatly influence the trained
network accuracy. For speech recognition, the two main methods used in the literature are
RBM and SDA which were already detailed in the previous chapter [28, 74].
To ensure that the best technique is used, both methods have been tested, the results are
reported in the next chapter.

Speed and efficiency are two prominent features of DNN. However, some researchers do
not prefer to use them as their success is dependent on a large number of uncertain factors,
namely the training database and the empirical tuning of numerous parameters. The
following section sheds some light on several parameters of the DNN and their importance
to overcome common neural network problems.

How to overcome overfitting

One of the major shortcomings of neural networks is overfitting. The latter happens when
a statistical model, neural networks in our case, interprets noise or random error instead
of the underlying relationship. Overfitting is common when a model is extremely complex,
such as having disproportionate parameters relative to the number of observations [61].
Training neural networks to model a robust phoneme recognizer is quite complex and
requires the use of multiple layers with a substantial number of neurons for the different
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layers. This represents a typical case where overfitting is very likely to happen. Hence,
some precautions are taken to avoid overfitting [61, 66].

Database size As per the definition of overfitting, the major cause is having a small
database and a large number of neurons and layers. To overcome this problem, larger
datasets need to be used. In the scope of this work, the WSJ database is selected. In fact,
the WSJ is composed of over 82,700 audio files with a sampling frequency of 100 samples
per second. The databse offers around 60 million data points. This contributes to avoiding
overfitting, at least not out of data points scarcity.

Early Stopping In this technique, the WSJ database is divided into three sets. First is
the training subset, which is used to compute the gradient and update the network biases
and weights. The second subset is called validation used for monitoring purposes. The error
on the validation set is observed during the training stage. Normally, the validation error
decreases during the initial phase of training, as does the training error. Nevertheless, as
soon as the network starts overfitting the data, the error of the validation subset typically
starts rising. After a certain number of iterations, validation error rises and the training is
stopped, conserving the reached values of the weights and biases. Hence the name of this
technique [80].

Adaptive learning rate As seen in the previous section, the validation error is typically
used to sense overfitting and stop the training accordingly. Another use of the validation
error to avoid overfitting is for it to be monitored for a different purpose. In this case to
adapt the learning rate. In fact, if the validation error is almost constant, that usually
means that the network is stuck in a local minima and continuing the training with a
constant validation error contributes to overfitting. This technique updates the learning
rate when the validation error is almost constant, allowing the network to break free from
the local minima and move to a better local, or even the global, minima. Thus, this
technique also helps avoiding overfitting [27].

Regularization An alternative technique to improve generalization is regularization.
For this technique to operate, the performance function, which is usually the mean of sum
of squares of the network errors on the training set, needs to change. Equation 3.2 describes
the function usually used to train feed forward neural networks [30].
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F = mse =
1

N

N∑
i=1

(ei)
2 =

1

N

N∑
i=1

(ti − αi)2 (3.2)

Where N is the number of neurons, ei is the error, ti is the label and αi is the network
output. To improve the generalization and avoid overfitting, it is needed to change the
performance function by adding a term that represents the mean of the sum of squares of
the network weights and biases msereg = θmse+ (1− θ)msw, where θ is the performance
ratio, and msw is as follows

msw =
1

N

n∑
j=1

w2
j (3.3)

Where wj designates the weights of the network. Using the modified version of the
performance function allows the network to have smaller biases and weights, thus forcing
a smoother response of the network making it less likely to overfit.

Determining the best value for the newly introduced performance ratio parameter is
quite difficult. A larger than necessary ratio could result in overfitting. A ratio too small
causes the network to overfit the training data.

It is preferable to automatically regulate the optimal regularization parameters. Bayesian
framework processed by David MacKay [44] is one mechanism to reach automatic regula-
tion. In this technique, the biases and weights of the network are random variables with
certain distributions. The regularization parameters are linked to the variances affiliated
with these distributions. Statistical techniques can help with the values of the parameters.

dropout This technique randomly drops units along with their connections from the
neural network architecture during the training phase. Thus preventing the units from
excessive co-adaption. The word dropout indicates dropping out visible and hidden units
of a neural network. One unit drop means briefly removing it from the network. All
incoming and outgoing connections of the unit are also removed as shown in Figure 3.2.
The choice of the units to be dropped is random. In fact, every ”thinned” network should
perform well in the absence of the removed neurons. This requires each neuron to be
more independent from the other neurons. Given that each neuron receives input from a
random combination of neurons from a lower level layer, it gets noisier. In this regard,
the dropout method introduces random noise to the training data. Dropout decreases the
learning capacity of the deep neural network, hence leading to the generalization of the
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model. Since a dropped out neurons is equivalent to having its activation fixed to 0, the
dropout operation is the only change applied to the training algorithm [65]. While training,
units dropout form a large number of distinct thinned networks. While validating, the use
of one unthinned network with small weights approximates the effect of averaging the
predictions of the thinned networks. This substantially reduces overfitting [66]. Dropout
was successfully used on phoneme recognition with the TIMIT database in [30].

Figure 3.2: Dropout neural net model. Left: NN with 2 hidden layers. Right: A thinned
NN after applying dropout to the network on the left [66].

Context padding

The acoustic signal is originally in the time domain, but going through the MFCC feature
extraction process, more specifically through DFT, transforms the data into the frequency
domain. This means that the data looses the temporal relationship between frames. To
compensate for this loss, context padding is used to add more information about the
acoustic signal [36]. Context padding consists on taking the frame in question alongside a
specific number of frames from the right hand-side and from the left hand-side [36]. The
purpose of this process is to take into consideration the dynamic nature of speech signal as
identifying a phoneme often depends on more than the spectral features at a specific time.
Indeed, it also depends on how features change over time. Applying context padding in
speech recognition is performed by concatenating the MFCC features of the current frame
ft with those of the p prior and p posterior frames as seen in Figure 3.3. The input vector
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V is a combination of context dependent frames of the speech utterance as shown in 3.4.

Vt = [ft−p, ..., ft−1, ft, ft+1, ..., ft+p] (3.4)

Figure 3.3: Frames context padding

Context dependent speech recognition has proved to be a breakthrough in speech recog-
nition using deep neural networks as reported in [16, 72]. Context padding can be per-
formed manually by creating a new set of data points that include the neighbouring frames
features. A more convenient way would be on performing the context padding on the fly
which is available is some libraries.

In the next section, we outline the essence of common approaches for adding noise and
for denoising to an acoustic signal. This is known as artificial noise contamination and
denoising, respectively.
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3.2.2 Noise contamination

Training and testing the phoneme recognizer using noisy speech signal, in the absence of
a noisy database, requires adding artificial noise to the clean database files. This involves
selecting a noise sample file which can be of either types, stationary or non-stationary. Noise
contamination is based on computing SNR of noise vs. speech. The energy calculation of
a speech utterance requires adding up the sum of squares of all samples:

ESpeech =
N∑
i=0

s(i)2 (3.5)

s(i) represents the speech utterances vector and ESpeech is the energy of the speech signal.
Noisy samples can be generated or a dedicated noise sample file can also be used. The
noise file could contain noises like babble, fan or any type of noises simulating real-life
environment noises. Then the noise sample is truncated at the correct length. While using
a noise sample file, it is critical to randomise the start position for every file to not have the
same exact noise (of someone shouting or a door slam for example) at the same position in
all the contaminated database files. In fact, not using random start position would have
negative implications during the training stage of the classifier as it may confuse it with a
pattern and therefore not contaminating the speech properly [43]. Next, the noise energy
is computed as follows:

ENoise =
N∑
i=0

n(i)2 (3.6)

n(i) represents the noise vector used to calculate the noise energy ENoise. The following
equation details the calculation of the SNR between the speech utterance and the noise:

SNR = 10log10(
ESpeech
ENoise

) (3.7)

Lacking a noise sample and only having a contaminated speech sample, the noise can be
determined as follows:

n(i) = x(i)s(i) (3.8)

Given x(i) as the contaminated signal. Next, To reach the proper SNR, the noise is
scaled by amplifying or reducing the amplitude, then added to the clean speech utterance.
Assuming 5dB is the targeted SNR, the following formula is used:

K =

√
ESpeech
105dB/10

(3.9)
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Where K is the scale factor. The last step would be creating the noisy signal using the
noise sample n̂ = Kn(i). Contaminated signal is then computed as follows [43]:

x(i) = s(i) + n̂(i) (3.10)

The next subsection discusses the denoising approach.

3.2.3 Denoising

In order to compare the use of a denoiser on the noisy speech input signal with the method
implemented in this thesis, the performance of the DNN trained with clean data and tested
with features of denoised speech have to be measured. Therefore, an efficient denoiser has
to be selected. Noise could be stationary or non-stationary and for each type, a different
method is used. Minimum Mean-Square Error (MMSE) estimation is based on minimizing
Bayesian squared-error cost function [21]. It is known that mean-squared based distortion
error of the log-spectra is a better match for phoneme recognition processing. Therefore,
in [21] an algorithm based on log(MMSE) is employed, making the denoising process very
efficient in handling stationary noise but not as efficient with non-stationary noises.

For non-stationary noisy speech data, a different approach [22] is used. In [22], for ev-
ery time frame and every frequency range, the MMSE measure of noise power recursively
updates the noise variance estimation. This estimation uses a spectral gain function de-
termined by an iterative data driven training method. This method proves more efficient
in non-stationary noise contaminated data.

In the following sections, the different experiments that are used to asses this work are
detailed.

3.3 Test Scenarios

In this section, the different parameters of the proposed techniques in the phoneme clas-
sification process are discussed. Starting from the pre-processing features extraction and
ending with the classification task, the reasoning behind the selected scenarios is presented

3.3.1 Feature extraction

The pre-processing stage is important as it is the first step in the phoneme recognition
process, thus any poor choice in the parameters will propagate and will greatly influence
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the final classification results. In addition, to fairly compare the proposed approach using
DNN to the HMM/GMM based phoneme recognizer, similar feature extraction parameters
have to be selected. Therefore, no changes are made to tune the pre-processing stage
parameters. Instead, the optimal values that produce the best phoneme classification
results for the hybrid HMM/GMM based recognizer are selected. The following are the
different parameters used for feature extraction:

Number of MFCC features Most phoneme and speech recognition systems use 13
MFCC features as they best represent the speech information in the frequency domain. As
detailed in chapter 1, to add temporal information to the features, the differential ∆ and
the acceleration ∆∆ coefficients of the selected 13 MFCC features are added to the main
features.

Sampling frequency Being the main units of a word, phonemes have shorter time
length, hence the need to use a high sampling frequency. In this case, one frame is recorded
every 10 ms of the speech utterance capturing enough data to represent short speech units
such as phonemes.

Hamming Window length To reduce the spectral leakage of the signal while applying
Fourier Transform, a Hamming window is used to add smoothness to the input signal. A
25 ms T hamming window is commonly used for speech recognition systems. For the scope
of this work, the same frequency is selected.

3.3.2 Phoneme classification

Phonemes classification probability output is also the input to the keyword recognition
algorithm, making the phoneme recognition process accuracy crucial to the final keyword
detection result. Given the multitude and sensitivity of parameters to be tuned in the
neural networks structure, cross validation is performed for each of the test scenarios. The
following describes the different selected parameters for the DNN phoneme classifier, in
both training and testing stages.

Context padding As previously explained, context padding is important to regain the
lost temporal aspect of the speech data. For word classification in acoustic keyword spot-
ting, the number of past and future features to be added are usually different. This is due
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to the fact that some sounds or words usually come after or before the keyword in question.
This present work focuses on smaller units of speech, namely phoneme. Hence the proba-
bility of phonemes or sounds neighbouring a specific phoneme should be the same on both
sides. Therefore, the selected context padding features are the same for left and right. To
decrease the data preparation cost in the testing stage, the number of neighbouring feature
is kept small. In this case, the scenarios of 3, 4 and 5 features are tested.

Cross validation N-fold cross validation technique is most used to validate the results,
especially in machine learning systems. Since the selected WSJ database contains almost
60 million data points, then using a 2-fold validation should be sufficient to validate the
results.

Number of layers Given that the ultimate target of the keyword spotting engine is an
embedded system, then the memory size of the model is critical and has to be kept to a
minimum. The smaller the model, the more embedded systems it can fit. In addition, the
classifier uses deep neural networks and not neural networks, which implies the use of more
than one or two hidden layers. Hence the selected number of layers are 3, 4 and 5. The
results are reported in the next chapter.

Number of Neurons For the same reasons listed in the previous paragraph, namely the
need for a small model, the number of neurons per layer is also kept as small as possible.
Since the size of the input layer is around 351 due to adding the 4 context frames on both
sides, more or less 80, and the first layer is usually composed of more neurons than the
feature vector size, then the selected number of neurons for the first hidden layer are 450,
500, 550 and 600 respectively. For the rest of the layers and in an attempt to minimize
the size of the model, hence the number of neurons, the latter is decremented by 100 then
incremented or decremented by 50 neurons to cover a fair range of possibilities. To tune
the number of neurons for one layer X, the number of neurons in the rest of the layers
is kept unchanged and the layer X neurons are varied according to the above detailed
experimental scheme.

Learning rate Adaptive learning rate is one of the recently implemented methods to
avoid overfitting as previously noted. A small learning rate would cause the network an
excessive number of epochs to reach a minima in the gradient descent process. However
a large learning rate would cause the error rate to fluctuate missing the minima, hence
preventing a quick convergence. Therefore, we choose the starting value of the learning
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rate as 0.08. The selected rate constantly decrements the training and validation error
with no fluctuation. And since the used learning rate is adaptive, here is how it evolves:
if the validation error reduction between two consecutive epochs is less than 0.001, the
learning rate is scaled by 0.02 during each of the remaining epochs. Training terminates
when the validation error reduction between two consecutive epochs falls below 0.0001.
The minimum number of epoch is selected to be 20, after which scaling can be performed.
The number of epochs in the pre-raining stage are selected to be 8, 10 and 12 as Restricted
Boltzmann Machine and Stacked Autoencoders do not require many epochs to converge.

Dropout Proving to be one of the most effective methods to avoid overfitting, dropout
technique is employed. Each of the layers has its own dropout factor, meaning the dropout
does not have to be applied to all the layers. However, to boost the performance, all the
layers should alternate a fraction of their neurons without training. Each layer can have
a different dropout factor, but for this particular work, only one value is selected for all
layers. The tested values are taken as 0.2, 0.3 and 0.4. The results are reported in the
next chapter.

Data distribution As discussed in the cross validation section, 2-fold validation is se-
lected for this work. Therefore, the MFCC features database is divided into 2 sets taking
turn in being the training then the testing data. Since the databse is around 60 million
data points, each of the two sets is composed of around 30 million frames. Each frame is
represented by 39 MFCC features.

Having detailed the different phoneme recognition scenarios using clean data performed
in this work, the next section describes the measures taken to enhance the noisy signal and
make the phoneme recognizer more robust.

3.3.3 Speech enhancement process

Two major data preparation steps are needed to train the robust model and test its effi-
ciency: noise contamination and denoising.

Noise contamination

Since the used database only contains clean speech and the chosen method to implement
robustness include the noisy data in the training of the DNN, noise contamination is
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performed. Given that the theory behind noise contamination is already detailed in the
previous chapter. This section details the different contamination scenarios.
Since this step is about simulating a real-life environment, each noise contamination is
tested using -10, 10 and 20 SNR values. We then select only the one that seems more
realistic.
Noise can be either stationary or non-stationary, hence, more than one noise contamination
has to be performed.

For stationary noise, the ”Fan” noise sample is selected as it is a commonly present
noise in our environment. Humans might not be aware of as our minds learned to ignore
it due to its stationary nature and its continuous presence.

For non-stationary noise, ”Babble” is what seems to be the best example that is always
present and even the human ear cannot seem to ignore it due to the non-stationary and high
frequency nature of such noise. However, ”Babble” noise only simulates the chatter but
not other background noises that are usually present in the environment. Therefore, the
”Restaurant” noise sample is selected to act as the non-stationary noise in our experiments.

Finally, our real-life environments do not usually contain one specific noise, but rather
a combination of them. For the scope of this work, a combination of the ”Fan” and
”Restaurant” noises is used to simulate this type of background noise.

Denoising

As previously explained, standard denoisers can focus either on stationary or non-stationary
noise, but not both of them at the same time. However, smart denoisers simulate simulta-
neous denoising by periodically estimating the noise type and applying the corresponding
denoising technique. In the scope of this thesis, a smart denoiser is used to ensure DNN
noisy training is fairly compared to the state-of-the-art denoising technology.

3.4 Tools

This section provides a concise description on the various computational and algorithmic
tools used in this work.
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3.4.1 Hidden Markov toolkit (HTK)

Hidden Markov Model Toolkit (HTK) is a toolkit for building and manipulating hidden
Markov models. HTK is primarily used for speech recognition research and is adopted
by many speech recognition projects worldwide. HTK consists of a set of library modules
and tools available in C source form. The tools provide sophisticated capabilities for
speech analysis, HMM training, testing and results analysis. HTK is used during the
pre-processing step of the KWS process and more specifically for the MFCC extraction
step and the forced alignment that is needed to prepare the training and testing data for
the DNN. HTK is also used for the training and testing of the GMM baseline approach
adopted in this thesis [15].

3.4.2 Python Deep Neural Networks (PDNN) library

PDNN is a Python deep learning toolkit developed under the Theano environment. PDNN
implements a complete set of models. Unsupervised learning (SDA, RBM), supervised
learning (DNN, CNN) and multi-task learning can be conducted within a single framework.
PDNN offers the simple use of DNN with all the required parameter settings, such as
number of layers and neurons, context padding, dropout and adaptive learning rate. This
library also offers the use of the Graphical Processing Unit (GPU) which is necessary given
the size of the database which is composed of nearly 60 million data points. The use of the
GPU helps to substantially reduce the required time needed to train the DNN. Since many
tests are required in this work, GPU support is a necessity for the chosen DNN library.
Hence, the PDNN library is selected [50].

3.4.3 Denoiser and noise adder

Based on the theory behind noise adding previously presented in the first chapter, a custom
Matlab implementation is used as a noise adder for data contamination. An open source
Matlab toolbox is also used for the smart denoising of the contaminated data.

3.4.4 General Purpose Graphical Processing Unit (GPGPU)

Training deep neural networks requires a great deal of computation and the use of a GPU
has become a necessity for training deep networks. In our case, we use the Tesla-C2075
NVIDIA GPU card with 6 GBytes of embedded memory. The Tesla has 448 CUDA core,
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delivering up to 515 Gigaflops of double-precision peak performance in each GPU. It
offer levels L1 and L2 cache, supports the CUDA programming language and is connected
through a high speed PCIe generation 2.0 interface. The use of such a powerful GPU
makes it possible to train DNN models in a reasonable time frame.

3.5 Experiments Summary

Figure 3.4 summarizes the different experiments conducted in the scope of this thesis.
Each of the experiments is characterized by a different colour. The data flows are detailed
as follows:

Clean model with clean data The blue arrows show the different steps taken to train
and test the clean data. Indeed, the clean data goes through the pre-processing module
generating the correspondent MFCC features which are then split into two main subsets:
the training subset that is used to train the DNN as previously described and the testing
subset that is used to test the DNN module and outputting the final phoneme classification
results.

Noisy model with noisy data The green arrows depict the flow of the data generating
a noisy model and testing a different noisy subset. It is to be noted that noisy data, in both
the training and testing subsets, are a combination of clean, fan contaminated, restaurant
contaminated and fan then noisy contaminated.

Clean model with noisy data For comparison purposes, the clean data is also tested
using the noisy model to determine how much accuracy is lost when including the noisy
data into the training of the noisy model. The purple colour is given to this data flow.

Noisy model with noisy data The green arrows are assigned to describe what steps
the data has taken to train and test the noisy model. The adopted path shows the use
of the contamination module followed by pe-processing step to generate the training and
testing data sets that are used to generate and test the noisy model.
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Figure 3.4: Data flow diagram

Clean model with noisy data To prove the necessity of using the noisy model rather
than the denoiser, the clean model is also tested with the raw noisy data. The orange
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colour in this case shows that the noisy testing features are used to test the performance
of a clean trained DNN model.

Clean model with denoised data This is one of the main tests that are necessary to
show that a noisy trained model is better than a clean model with a denoiser to interpret
noisy speech. The red colour is chosen to describe the path taken by the testing data.
Obviously, the use of the contamination module is necessary to corrupt the data, then it
passes through the denoiser followed by the MFCC extractor which generates the features
that are tested with the clean model.
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Chapter 4

Experimental Results And Discussion

In this chapter, the different experiments leading to the tuning of the deep neural network
and their results are presented. After the network has been tuned, the scenarios described in
the previous chapter are performed and their corresponding results are reported. Finally,
a discussion is conducted to evaluate the effectiveness of the proposed approach in this
thesis.

4.1 Deep Neural Network Tuning

One of the drawbacks of DNN is the difficulty of selecting the network parameters, making
the network tuning one of the major steps in any machine learning application that uses
connectionist modeling. This section highlights the multiple steps taken to tune the neural
networks. These experiments are very helpful in directing us forward. The final network
parameters which are used to perform the test scenarios detailed in the previous chapter.

As has been mentioned, the following are conducted using a 2-Fold cross validation to
generalize the results and draw conclusive decisions. Only clean WSJ data is used for the
purpose of tuning the neural networks.

4.1.1 Layer configuration

To choose the most efficient number of layers the network should adopt, 3, 4 and 5 layers
are tested and their output compared. The number of neurons per each layer is kept
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constant to 600 with RBM as the pre-training technique. The number of epochs in the
first training stage is 12 with an adaptive learning rate that also specifies the number of
epochs of the second training stage.

Figure 4.1: Comparison of WER (%) for different layer configurations

As can be seen in Figure 4.1, ”4” is the number of layers that produces the lowest
testing error rate. Therefore, for the rest of the experiments, all networks will have 4
hidden layers.

4.1.2 Neurons configuration

After selecting the best configuration regarding the number of layers, the number of neurons
per layer has to be chosen based on the scenarios described in the previous chapter.
To tune the number of neurons of the first layer, the neurons of the other layers is kept
unchanged and the neurons of the layer in question are varied. Once the best number of
neurons is selected, the neurons are kept unchanged for the rest of the experiments.

First layer The tested number of neurons for the first layer are 450 to 550 with an
increment of 50.

Figure 4.2 depicts the different results of varying the number of neurons on the first
layer. It is clear that the best number of neurons for the first layer is 500 as it reaches an
error of 46.7% whereas the other configurations vary between 47.1% and 48%.
Therefore, for the rest of the tests, the first layer his composed of 500 neurons.
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Figure 4.2: Comparison of WER (%) for different neurons configurations of layer 1

Second layer The number of neurons for the second layer is varied from 350 to 500 with
an increment of 50.

Figure 4.3 shows two numbers of neurons that provide similar results, the first at
350 and the second at 450 neurons. The classifier’s response time and the corresponding
footprint are among the metrics used to measure the performance of the KWS that would
use the tuned DNN as a decoder. Therefore, the selected number of neurons for the second
layer is 350 as it offers almost the same accuracy performance while reducing the memory
footprint and computational cost when compared with 450 neurons.

Figure 4.3: Comparison of WER (%) for different neurons configurations of layer 2
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Third layer The number of neurons used to test the response of the third layer is varied
from 100 to 250 with an increment of 50. Looking at Figure 4.4, it can be concluded
that 200 neurons for the third layer offers the highest accuracy in the testing phase which
is 43.2%. The rest of the configurations offer higher testing errors between 43.6% and
47%. Thus, for the remaining of the experiments, the third layer will be composed of 200
neurons.

Figure 4.4: Comparison of WER (%) for different neurons configurations of layer 3

Fourth layer To tune the last hidden layer of the network, 50, 100, 150 and 200 are the
number of neurons tested and the reported. Figure 4.5 illustrates the overall behaviour of
the network. It can be concluded that 100 neurons results in the best performance, leading
to the selection of 100 as the adopted number of neurons for the fourth hidden layer.
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Figure 4.5: Comparison of WER (%) for different neurons configurations of layer 4

4.1.3 Pre-training approach

As described in the previous chapter, both stacked autoencoders and restricted Boltzmann
machines are tested to select the best approach for the pre-training stage. The experiment
is combined with testing verious number of epochs and selecting the one with the least
error rate.

Figure 4.6: Comparison of WER (%) for RBM and SDA

Examining Figure 4.6, it is clear that for all the tested epoch numbers, RBM outper-
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forms SDA in this case. Therefore RBM is selected as the pre-training technique to be
used in the coming scenarios. Among the different epoch numbers selected to test the un-
supervised learning stage, 10 seems to result in the lowest testing error. Hence, 10 epochs
is chosen for the rest of the experiments.

4.1.4 Dropout selection

It is already established in the third chapter that the best dropout is one of the best
techniques to avoid overfitting [66]. Therefore, it is tested with 0.2, 0.3 and 0.4 as the
dropout rates for the chosen network structure.

Figure 4.7: Comparison of WER (%) for different dropout ratios

Figure 4.7 proves that the dropout technique enhances the performance of the network.
In this case, the dropout ratio 0.2 seems to outperform the other ratios reaching an error
rate of 36.1%. Thus, 0.2 of the network neurons are to be dropped out at each layer while
training.

4.1.5 Context padding selection

As outlined in the previous chapter, the use of context padding promises a great improve-
ment in the testing error. In this experiment, 3, 4 and 5 context padding on each side are
tested and their results are analysed.
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Figure 4.8: Comparison of WER (%) for different context padding frames

In Figure 4.8, ”4” seems to be the best combination of frames to be added to the
current frame. The total number of frames involved in a single frame classification is now
”9”. Given that each frame is represented by 39 features, the total number of features in
one data point comes to a total of ”351” features per frame. Adding ”4” frames to the
equation dropped the testing error from 36.1% to 28% which is the best result for all the
different parameters combinations that have been tested.

4.1.6 Network final configuration

The previous results suggest that the best network configuration to be used for the noise
handling scenarios is composed of 4 layers. The neurons distribution throughout the layers
is: 351 for the input layer, 500 for the first layer,350 for second layer, 200 for the third
layer, 100 for the pre-last layer and finally 40 for the output layer as there are 40 phonemes
to classify. The dropout is set to 20%. The number of epochs for the pre-training is set
to 10 with RBM as the preferred algorithm for the unsupervised learning. The number
of epochs for the backpropagation is automatically set through the adaptive learning rate
mechanism detailed in the previous chapter. The number of frames on the right and left
hand-side to be included in the data point is set to ”4”.
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4.2 Test Scenarios Results

At this point the network is tuned and configured to be used for the test scenarios detailed
in the previous chapter. This section presents the different scenarios results followed by
their interpretation. A conclusion is drawn on the effectiveness of the adopted technique.
To determine the efficiency of the DNN, it has to be compared to the state-of-the-art
phoneme classifier, namely HMM/GMM [15] based. In the scope of this thesis, the reference
model is a mono-phone 3-state HMM for 40 phonemes with the probability distribution
on each state being 5 mixture GMM. For the following tests, the use of noisy data is
considered. As previously mentioned, noisy data are a combination of clean (25%), ”Fan”
(25%), ”Restaurant” (25%) and Fan convoluted with ”Restaurant” contaminated data.
The DNN is tested with both, context dependent (CD) and context independent (CI) for
fair comparison with GMM and to see the impact of context padding on the testing error
of the DNN.

4.2.1 Clean data modeling

The first test sets used only the clean data of the WSJ database for model training.

Clean Data Testing This test is performed to compare the efficiency of the DNN based
model with the GMM based model to determine if the DNN is more accurate than GMM
for phoneme classification under clean data for training and testing.

Modeling approach Training data Testing data Testing error

GMM Clean Clean 41%
DNN (CI) Clean Clean 34%
DNN (CD) Clean Clean 28%

Table 4.1: Comparison of WER (%) for GMM and DNN Clean data

Table 4.1 shows the superiority of the DNN approach over the GMM with a substantial
improvement of 7% in the testing error. Using context dependent input to the DNN with
”4” frames on each side further improves the accuracy by 4%. This proves that DNN
is better than GMM in the phoneme classification of clean data. This has already been
established in recent literature as detailed in chapter 2 [60].
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Noisy Data Testing The following test is performed as a reference to prove that a clean
model performs poorly when tested with noisy data. Table 4.2 depicts the high Word Error

Modeling approach Training data Testing data Testing error

GMM Clean Noisy 65%
DNN Clean Noisy 62%

Table 4.2: Comparison of WER (%) for GMM and DNN Noisy data

Rate (WER) rate when using both approaches with noisy data on clean models. This is an
expected outcome. Still the DNN model performs slightly better. Therefore, the approach
adopted in this thesis to overcome the noisy environment condition is detailed in the
following section.

4.2.2 Noisy data modeling

In this section noisy data is used to model GMM and DNN models and a conclusion is
drawn from comparing their respective results.

Noisy Data Testing The purpose of training noisy models is to improve the performance
of the phoneme decoder when tested under noisy condition, thus the noisy DNN model.
The latter model is then compared to the GMM model that is also trained with noisy data
and the best approach under both clean and noisy environment is selected to carry the
phoneme classification for the KWS process.

Modeling approach Training data Testing data Testing error

GMM Noisy Noisy 61%
DNN (CI) Noisy Noisy 54%
DNN (CD) Noisy Noisy 43%

Table 4.3: Comparison of WER (%) for GMM and DNN Noisy data

Figure 4.3 clearly shows the poor performance of the GMM modeled with noisy data as
it only decreased the testing error by 4% when tested with noisy data. On the other hand,
DNN efficiently modeled the noisy training data, as the testing error decreased by 19% for
the context independent bringing the classification error to 43% which is only 15% away
from the clean model with clean testing data. The Context dependent DNN also decreased
the testing error by 8% which still outperforms the GMM model by 7%
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Denoised Data Testing The previous tests proved that using a DNN model with noisy
training outperforms the GMM counterpart with the same training data. But it could be
argued that the use of a denoiser could replace the DNN noisy training. Thus, this test is
performed to monitor the behaviour of the clean model with denoised testing data.

Modeling approach Training data Testing data Testing error

DNN (CI) Clean Denoised 58%
DNN (CD) Clean Denoised 54%
DNN (CI) Noisy Noisy 54%
DNN (CD) Noisy Noisy 43%

Table 4.4: Comparison of WER (%) for DNN denoised data

The illustrated results in table 4.4 prove that using a denoiser prior to feeding the
testing data to the clean DNN model improved the performance by 4%. Whereas the DNN
noisy trained model gives a testing error of 54% which is substantially better considering
that there is no use of a denoiser. Performing the context padding improved accuracy by an
extra 4% when using denoised data. Context dependent noisy DNN training outperforms
the denoised clean model DNN by a considerable 11%. Removing the denoiser from the
system and reaching a better accuracy for noisy data is one of the contributions of this
thesis.
Better performance under noisy condition only implies that the system will have two models
one for noisy and the other for clean data.

Context dependent input features reduced the testing error considerably in the various
above tests. Therefore, the rest of the DNN experiments are performed using context
padding with ”4” frames on each side of the current frame.

Clean Data testing To prove that the noisy trained DNN noisy model could be the
sole replacement of multiple models without the need for a denoiser, which is usually
expensive to deploy in real world applications, testing the noisy model in clean conditions
and comparing it to GMM is required.

Table 4.5 depicts the degradation of the DNN noisy model when compared to the DNN
clean model using clean testing data. The degradation is about 10% but the noisy model
still outperforms the clean model in noisy conditions by 19%.

This is considered as a good compromise when it comes to the overall behaviour of the
classifier. However, a better compromise could be reached by increasing the clean data
component currently at 25% in the noisy data set.
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Modeling approach Training data Testing data Testing error

DNN Clean Clean 28%
DNN Noisy Clean 38%

Table 4.5: Comparison of WER (%) for DNN clean data

4.2.3 Increased clean data ratio

Increasing the clean data ratio in the mixed training error from 25% to 50% may bring an
increase of the testing error under noisy conditions while it also promises an increase of
the performance when tested with clean data. In fact, the model is less familiar with the
noisy data and more familiar with clean data as the proportions shift toward a half and
half ratio.

Modeling approach Training data Testing data Testing error

DNN (25% Clean) Noisy Noisy 43%
DNN (50% Clean) Noisy Noisy 46%
GMM (25% Clean) Noisy Clean 45%
DNN (25% Clean) Noisy Clean 38%
DNN (50% Clean) Noisy Clean 31%

Table 4.6: Comparison of WER (%) for DNN Clean data ratio

Table 4.6 depicts the expected degradation of the noisy DNN model with the noisy
testing data from 43% to 46%. However, the testing error only decreased from 38% to
31%. The same test is performed using GMM generating a testing error of 45% which is
quite higher than the DNN.
This confirms the superiority of the DNN over GMM when testing the noisy model with
clean data. This presents a better compromise for both condition.

4.2.4 Speed and memory consumption

DNN are more accurate classifiers than GMM (once trained) but at the same time DNN
is very slow to train compared to GMM. The size of the data, the deep nature of the used
neural networks that add exponential complexity with each added layer and the significant
number of epochs that the deep neural network requires to converge to a local minima
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makes it very slow to train. Due to the nature of this study, several experiments are needed
to obtain consistent and reliable results. Therefore, speeding up the training process may
be helpful but is not crucial for this work. The dropout technique used in this work to avoid
overfitting also affects the neural network training speed. Since a percentage of the neurons
is dropped from every layer to favour the generalization of the network, their connections
are also ignored during the weights calculations. This reduces the training time depending
on the dropout value for each layer. In our case, we use a dropout of 0.2 which makes the
training speed up around 20%. This speed up has also been reported in the literature [66].

DNN reach the top of their potential when they are deep (many layers) and having
many neurons per layer [12]. Training them on a traditional Central Processing Unit
(CPU) would require months. The high data transfer latency limits the multi-threading
programming making it not suitable for this situation. Nonetheless, recent parallel neural
networks for graphics cards GPUs have solved the training speed limitation of the DNN [11].
GPU designed code for classification should be up to two orders of magnitude faster than
the CPU [67, 73]. In [85], the use of 4 GPUs made the DNN code about 4-6 times faster.
Using the parallel programming DistModel platform with 3 GPUs achieved a 2.6 times
speed up according to [51]. In our case, only one NVIDIA Tesla GPU was available and
has been used to train the different models needed for this thesis. The actual speed up was
not calculated as the CPU took a seemingly very long time to train the model, which makes
the speed up seem very high, as the GPU only takes a dozen hours to train the model. The
DNN training speed is not the only issue as the decoding of a DNN is also slower than the
GMM decoding due to the high number of float multiplications required for a classification
especially for deep networks. According to [38], using a GMM model on embedded systems
is twice as fast as using a DNN for a speech recognition decoding task. However, there
are a number of techniques that speed up the decoding of DNN to reach a speed equal
to that of GMM. Theses techniques are the following: Using fixed point operations and
frame skipping technique [38]. In this thesis, none of the mentioned techniques has been
used, but they will be used once the network is tuned and tested on embedded systems
as the decoding speed is also crucial in realt-time embedded applications such as keyword
spotting.
Although the DNN decoding process is more complex than the GMM decoding, the memory
footprint does not follow the same pattern. Indeed, according to [38], a DNN model with
1.48M parameters outperforms the GMM in accuracy, with a disk size of only 17% of the
GMMs. This is considered a major advantage for deep neural networks as small memory
consumption enable smaller embedded platform to be speech enabled. In our case, the
GMM model is only twice as large as the deep learning model while the DNN is best in
terms of accuracy.

52



4.2.5 Summary and discussion

The above results indicate that using DNN instead of GMM to train the phoneme classifier
model substantially improves the performance of the decoder. Indeed, using clean data for
both testing and training, DNN model outperformed the GMM based model by 13% in
accuracy. Furthermore, using a mix of noisy and clean data to model the DNN classifier
prove to be a better alternative than using a denoiser in noisy conditions. It also avoids
the case where the clean data is mistakenly considered as noisy data, leading the denoiser
to disturb the clean utterance and producing corrupt data that is wrongly classified.

Despite dropping the testing error by 19%, the introduction of noisy data in the training
set increased the phoneme classification error rate by 10%. A 50% balance between the
clean and the noisy data when training the DNN model actually presents better overall
results. In fact, while the noisy tests error rate drops by 16% instead of 19%, the clean
testing data only drops by 3%. In summary, adding the noise to the training set drops the
clean classification accuracy by 3% while it increases the noisy data classification by 16%
This means that the newly trained noisy model can replace both models(clean and noisy),
hence using one single model instead of two and not having to classify the data as clean
or noisy. This makes the recognition process faster and less greedy in terms of memory
footprint. In fact, one model in stead of two models reduced the memory requirements
and the processing time is decreased by not having to detect the noise level and later load
the corresponding model.

Therefore, it is safe to say that the noisy trained DNN model outperforms GMM and
the use of a denoiser under all circumstances. In addition, it can replace the use of two
model and only focus on a single process using DNN to classify more than one type of
noise. The DNN model size is half the size of the GMM model, whereas it is slower at its
current state.
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Chapter 5

Conclusion and Future Work

Using DNN mixed data training approach promised to enhance the system robustness to
background noises without the need for a hardware or a software denoiser. This technique
also allows us to replace the two model approach, one for noisy and the other for clean
environment, by a single model with a small penalty in terms of accuracy but with large
gain in terms of less model complexity. According to the reported results, the DNN model
reached a phoneme classification error rate of 46% whereas the denoiser processed data
reached large error rate of 54%. This proves the superiority of the proposed approach
in terms of robustness over the use of a denoiser and over the use of other modeling ap-
proaches such as HMM/GMM that only reached a testing error rate of 61%. The same
noisy trained model tested with clean data also offers an excellent error rate of 31% with
only a small degradation of 3% when compared to the clean trained model (28%) without
introducing any additional complexity compared to standard DNN classification process.
Both results combined proves that the mixed data trained model is capable of processing
both clean and noisy data without the need of a denoiser, a noise sensing tool or other
models. These results are reached while reducing, not only the memory footprint as the
DNN model is shown to be much smaller than the GMM model and removing the denoisr
also saves the memory space it occupies, but also with a possibility of not increasing the
processing time, which are the overall goal of this thesis. Indeed, the DNN model is just
a few hundreds of kilobytes large which is smaller than the GMM model size as detailed
in the previous chapter. The absence of the denoiser and the noise sensing tool means less
memory and less processing time as only the DNN multiplications are needed to reach a
phoneme classification with no need for a denoiser. However, the DNN decoding is slower
than GMM decoding which will be rectified when introducing the mentioned speedup tech-
niques for DNN in the previous chapter.
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Therefore, the proposed approach is clearly an attractive alternative to the standard key-
word spotting techniques available in the market. Testing more noises and reaching better
compromises in terms of clean and noisy data proportions in the training set would be the
focus of the next step in this research.
The following step involves developing a small and fast phoneme mapping algorithm that
would be the module taking the phoneme classifier output and deciding if a keyword is
spoken in the given speech utterance.
Finally, an end-to-end systems needs to be developed and tested on embedded platforms
to report real-life experiments and results.
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