9 research outputs found

    The Constructive method for query containment checking (extended version)

    Get PDF
    We present a new method that checks Query Containment for queries with negated derived atoms and/or integrity constraints. Existing methods for Query Containment checking that deal with these cases do not check actually containment but another related property called uniform containment, which is a sufficient but not necessary condition for containment. Our method can be seen as an extension of the canonical databases approach beyond the class of conjunctive queries.Postprint (published version

    The design and implementation of a relational programming system.

    Get PDF
    The declarative class of computer languages consists mainly of two paradigms - the logic and the functional. Much research has been devoted in recent years to the integration of the two with the aim of securing the advantages of both without retaining their disadvantages. To date this research has, arguably, been less fruitful than initially hoped. A large number of composite functional/logical languages have been proposed but have generally been marred by the lack of a firm, cohesive, mathematical basis. More recently new declarative paradigms, equational and constraint languages, have been advocated. These however do not fully encompass those features we perceive as being central to functional and logic languages. The crucial functional features are higher-order definitions, static polymorphic typing, applicative expressions and laziness. The crucial logic features are ability to reason about both functional and non-functional relationships and to handle computations involving search. This thesis advocates a new declarative paradigm which lies midway between functional and logic languages - the so-called relational paradigm. In a relationallanguage program and data alike are denoted by relations. All expressions are relations constructed from simpler expressions using operators which form a relational algebra. The impetus for use of relations in a declarative language comes from observations concerning their connection to functional and logic programming. Relations are mathematically more general than functions modelling non-functional as well as functional relationships. They also form the basis of many logic languages, for example, Prolog. This thesis proposes a new relational language based entirely on binary relations, named Drusilla. We demonstrate the functional and logic aspects of Drusilla. It retains the higher-order objects and polymorphism found in modern functional languages but handles non-determinism and models relationships between objects in the manner of a logic language with notion of algorithm being composed of logic and control elements. Different programming styles - functional, logic and relational- are illustrated. However, such expressive power does not come for free; it has associated with it a high cost of implementation. Two main techniques are used in the necessarily complex language interpreter. A type inference system checks programs to ensure they are meaningful and simultaneously performs automatic representation selection for relations. A symbolic manipulation system transforms programs to improve. efficiency of expressions and to increase the number of possible representations for relations while preserving program meaning

    Deconstructing Datalog

    Get PDF
    The deductive query language Datalog has found a wide array of uses, including static analy- sis (Smaragdakis and Bravenboer, 2010), business analytics (Aref et al., 2015), and distributed programming (Alvaro et al., 2010, 2011). Datalog is high-level and declarative, but simple and well-studied enough to admit efficient implementation strategies. For example, Whaley et al. found they could replace a hand-tuned C implementation of context-sensitive pointer analysis with a comparably-performing Datalog program that was 100x smaller (Whaley and Lam, 2004; Whaley et al., 2005). However, Datalog’s semantics are not stable under extensions. For instance, adding arithmetic operations breaks Datalog’s termination guarantee. Despite this, nearly all practical implementations extend Datalog beyond its theoretical core to add niceties such as arithmetic, datatypes, aggregations, and so on. Moreover, pure Datalog cannot abstract over repeated code: one may express a static analysis over a particular program, but to express the same analysis over multiple programs, one must duplicate the analysis code for each program analyzed. This thesis deconstructs Datalog from a categorical and type theoretic perspective to determine what makes it tick. Datalog’s semantic guarantees are provided by brute syntactic restrictions, such as stratification and the absence of function symbols. In place of these, we find compositional semantic properties such as monotonicity, which we capture using types. We show that this permits integrating Datalog’s features with those of typed functional languages, such as algebraic data types and higher order functions. In particular, this thesis makes the following contributions: 1. We define and expound the semantics and metatheory of Datafun, a pure and total higher-order typed functional language capturing the essence of Datalog. Where Data- log has predicates defined by a restricted class of Horn clauses, Datafun has finite sets and set comprehensions; Datalog’s bottom-up recursive queries become iterative fixed points; and Datalog’s stratification condition becomes a matter of tracking monotonicity with types. 2. We show how to generalize seminaïve evaluation to handle higher-order functions. Seminaïve evaluation is a technique from the Datalog literature which improves the performance of Datalog’s most distinctive feature: recursive queries. These are com- puted iteratively, and under a naïve evaluation strategy, each iteration recomputes all previous values. Seminaïve evaluation computes a safe approximation of the difference between iterations. This can asymptotically improve the performance of Datalog queries. Seminaïve evaluation is defined partly as a program transformation and partly as a modified iteration strategy, and takes advantage of the first-order nature of Datalog. We extend this transformation to handle higher-order programs written in Datafun. 3. In the process of generalizing seminaïve evaluation, we uncover a theory of incremental, monotone, higher-order computation, in which values change over time by growing larger, and programs respond incrementally to these increases

    Proceedings of the Third Symposium on Programming Languages and Software Tools : Kääriku, Estonia, August 23-24 1993

    Get PDF
    http://www.ester.ee/record=b1064507*es

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Attribute Exploration of Gene Regulatory Processes

    Get PDF
    This thesis aims at the logical analysis of discrete processes, in particular of such generated by gene regulatory networks. States, transitions and operators from temporal logics are expressed in the language of Formal Concept Analysis. By the attribute exploration algorithm, an expert or a computer program is enabled to validate a minimal and complete set of implications, e.g. by comparison of predictions derived from literature with observed data. Here, these rules represent temporal dependencies within gene regulatory networks including coexpression of genes, reachability of states, invariants or possible causal relationships. This new approach is embedded into the theory of universal coalgebras, particularly automata, Kripke structures and Labelled Transition Systems. A comparison with the temporal expressivity of Description Logics is made. The main theoretical results concern the integration of background knowledge into the successive exploration of the defined data structures (formal contexts). Applying the method a Boolean network from literature modelling sporulation of Bacillus subtilis is examined. Finally, we developed an asynchronous Boolean network for extracellular matrix formation and destruction in the context of rheumatoid arthritis.Comment: 111 pages, 9 figures, file size 2.1 MB, PhD thesis University of Jena, Germany, Faculty of Mathematics and Computer Science, 2011. Online available at http://www.db-thueringen.de/servlets/DocumentServlet?id=1960
    corecore