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Abstract

In recent years, there has been a flood of continuously changing infor-

mation from a variety of web resources such as web databases, web sites,

web services and programs. Online Social Networks (OSNs) represent

such a field where huge amounts of information are being posted online

over time. Due to the nature of OSNs, which offer a productive source

for qualitative and quantitative personal information, researchers from

various disciplines contribute to developing methods for extracting data

from OSNs. However, there is limited research which addresses extract-

ing data automatically. To the best of the author’s knowledge, there

is no research which focuses on tracking the real time changes of infor-

mation retrieved from OSN profiles over time and this motivated the

present work.

This thesis presents different approaches for automated Data Extraction

(DE) from OSN: crawler, parser, Multi Agent System (MAS) and Appli-

cation Programming Interface (API). Initially, a parser was implemented

as a centralized system to traverse the OSN graph and extract the pro-

file’s attributes and list of friends from Myspace, the top OSN at that

time, by parsing the Myspace profiles and extracting the relevant tokens

from the parsed HTML source files. A Breadth First Search (BFS) al-

gorithm was used to travel across the generated OSN friendship graph

in order to select the next profile for parsing. The approach was imple-



mented and tested on two types of friends: top friends and all friends.

In case of top friends, 500 seed profiles have been visited; 298 public

profiles were parsed to get 2197 top friends profiles and 2747 friendship

edges, while in case of all friends, 250 public profiles have been parsed

to extract 10,196 friends’ profiles and 17,223 friendship edges.

This approach has two main limitations. The system is designed as

a centralized system that controlled and retrieved information of each

user’s profile just once. This means that the extraction process will stop

if the system fails to process one of the profiles; either the seed profile

(first profile to be crawled) or its friends. To overcome this problem,

an Online Social Network Retrieval System (OSNRS) is proposed to

decentralize the DE process from OSN through using MAS. The novelty

of OSNRS is its ability to monitor profiles continuously over time.

The second challenge is that the parser had to be modified to cope with

changes in the profiles’ structure. To overcome this problem, the pro-

posed OSNRS is improved through use of an API tool to enable OSNRS

agents to obtain the required fields of an OSN profile despite modifica-

tions in the representation of the profile’s source web pages. The experi-

mental work shows that using API and MAS simplifies and speeds up the

process of tracking a profile’s history. It also helps security personnel,

parents, guardians, social workers and marketers in understanding the

dynamic behaviour of OSN users. This thesis proposes solutions for web

database processing on data extraction from OSNs by the use of parser

and MAS and discusses the limitations and improvements.

Keywords: Data Extraction, Online Social Network, Agent, Multi

Agent System, Formal Specification.
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Chapter 1

Thesis Introduction

1.1 Introduction

When the World Wide Web (WWW) or “web” for short was released to the public

in 1993, the early web stage which is represented by “web 1.0” was started. It was

considered as a “read-only web”, according to Tim Berners-Lee, due to the fact that

its web pages usually contained text and hypertext: text with hyperlinks to point

to other text or documents.

The lack of active interaction between users and the web led to the birth of “Web

2.0” in 2004 and to the beginning of the “read-write web” allowing users to con-

tribute with the information available to them. Online Social Networks (OSN) such

as Facebook1, Twitter2 and Myspace3 are some of the most commonly referenced

phenomena to explain the concept of Web 2.0, where users are encouraged to gen-

erate web content in the form of videos, photographs and text posted as comments

and tags.

Consequently, this has led to a massive explosion in the amount of data available

on the web and challenges researchers to apply new methods to reverse the process in

order to gain the benefit of these data. Many theories have been applied to produce

1http://www.facebook.com/
2http://www.twitter.com/
3http://www.myspace.com/
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1.2 Problem Domain

services and tools for end users to allow them to manage, query and extract data

from the web. This thesis plays a part in this, with its particular contributions to

extracting data from OSN profiles through investigating the current techniques and

developing new approaches of extraction. The approaches developed are general in

that they could be applied to any OSN. Furthermore, they are not restricted to

OSNs sites, but to many different area such as what is described in Section 3.2.1.

The purpose of this chapter is to present an overview of this research study. The

problem domain is presented in Section 1.2. The motivation, aims and objectives

of the research are given in Sections 1.3 and 1.4 respectively. Section 1.5 explains

the research methodology. Finally, the structure of the thesis is outlined in Section

1.6.

1.2 Problem Domain

Web data extraction is a field which concerns the extraction of data from different

web resources including websites, online databases and services. With the explosion

in the amount of data made available online, end users and application programs

face difficulties in finding useful and relevant data. This issue encourages researchers

to develop new methods for extracting data from the web.

OSN is one of the fields where the amount of personal data which is publicly

available online has increased massively. This is due to OSN allowing millions of indi-

viduals to organize, find friends and share their personal information and interests.

This information can provide a good collection of study resources for researchers

from different disciplines such as psychology, sociology and computer science.

There are several issues which contribute to users and applications failing to find

the required data. One of these issues is related to the representation of informa-

tion. Data on web pages can be found in different formats. HTML is designed for

2



1.3 Motivation

unstructured data which contains information in several formats, e.g. text, image,

video and audio. It is known that web pages in HTML format are “dirty” due to

the contents being ill-formed and “broken” [95]. In contrast, XML and XHTML are

designed for more structured data. They are stricter in terms of having well-formed

documents: i.e., the documents’ contents should conform to their syntax rules. This

feature helps the parsers of search engines to interact with the web pages’ contents

more efficiently [95].

Another issue which prevents efficient data extraction is related to the technique

used by search engines to find related web pages. Search engines depend on crawlers

to search the WWW for the required keyword(s) entered by end users. The majority

of the web pages which contain useful data are in the Hidden Web or Deep Web,

which is outside what is called the Publicly Indexable Web (PIW) which is reachable

by search engine crawlers.

1.3 Motivation

Developing new methods for extracting data from the web in general and OSN

in particular has attracted many researchers for years. What makes OSN profile

data different is that its structure, presentation and contents change rapidly and

continuously over time. Moreover, the new facilities to access these OSNs through

mobile devices, smartphones etc., especially when the developers pay great attention

to making access to OSN sites one of the leading features and applications of these

devices, add extra challenges for researchers in contributing to the development of

new methodologies to extract and monitor these changes over time.

Most research in the field of OSN data extraction either extracted data manually

through surveys and interviews or did not mention how the data was collected.

There is little research associated with automated extraction methods from OSN.

3
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Moreover, although there are studies which attempt to extract millions of profiles

from different OSN, to date, they have analyzed the results of data collected by

visiting each profile only once. To the best of the author’s knowledge, there is no

reported work which deals with the monitoring of changes in OSN profiles over time

automatically.

In contrast, the Multi Agent System (MAS) has many features such as autonomy,

sociability, pro-activity and perceptivity, which have been used to solve problems

related to real-time and distributed systems perfectly. These features fit very well

with the problem stated above in offering the possibility to distribute agents over

the OSN profiles to extract data and monitor any updates in the profile.

1.4 Aims and Objectives

This thesis aims to investigate new approaches in automated data extraction from

OSN, then save the results in a local repository to be used for further offline analysis.

In addition, the thesis aims to investigate the ability to apply MAS in a distributed

environment such as an OSN server. In order to achieve these aims, the objectives

of the thesis are set as follows:

� Provide an algorithm to extract semi-structured and unstructured data from

an OSN source web page.

� Provide an algorithm to extract data from an OSN in the absence of the source

of the web page.

� Develop a decentralized approach using MAS for automated extraction of data

from an OSN.

� Develop an approach to effectively monitor updates in OSN profiles over time.

4



1.5 Research Methodology

Figure 1.1: Venn Diagram of Intersection between OSNRS Areas

� Create historical records of the OSN profile records to help researchers of var-

ious disciplines such as security personnel, parents, guardians, social workers

and marketers in understanding the dynamic behaviour of OSN users.

� Study the accuracy of extracted data.

1.5 Research Methodology

Based on the given aims and objectives, the research methodology of the thesis will

be to initially gain a brief understanding of the following disciplines as shown in

Figure 1.1:

� What: the process of extracting data.

� Where from: OSN, one of the most recent, popular and dynamic web resources.

� How: using MAS technique combined with the parser or API.

Consequently, a review of the state of the art within these topics and the intersec-

tion between them is presented to motivate the need for a system which can extract

5
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historical data from OSN profiles and monitor changes in these profiles over time.

In order to address this goal, the thesis research was structured into the following

four phases:

Phase 1: Implementing an application to extract semi-structured and unstructured

data from OSN source web pages using the parser.

Phase 2: Presenting the feasibility of using MAS technology in extracting historical

data from OSN sites through using formal specification.

Phase 3: Enhancing the application developed in Phase 1 by applying MAS to

implement a decentralized application as specified in phase 2.

Phase 4: Improving the application developed in phase 3 by replacing the parser

with API in order to be able to extract data from the OSN in case of absence

of the source code.

This study will serve as a base for future studies in the process of tracking

user profile history and understanding the behaviour of OSN users, especially when

combined with text mining.

1.6 Thesis Organization

The thesis has eight chapters as shown in the Figure 1.2. They are as follows:

Chapter 1: provides a context for the research area. It presents a brief introduction

of the problem domain and overview of the research approach and methodology

followed by the layout and content of the thesis.

Chapter 2: presents a background of the three main disciplines and the intersection

of which this thesis lies; web data representation and extraction, Online Social

6
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Network and Multi Agent System. Also a brief overview of formal specification

is presented.

Chapter 3: reviews the literature and the state of the arts: web data extraction,

OSN and MAS.

Chapter 4: describes the thesis first contribution towards extracting data from

the web. In particular, it presents the first algorithm to extract data from

OSNs automatically. The conceptual overview and experimental work of the

developed approach is described in detail, accompanied by the results. The

contributions from this chapter are published in: [20, 9, 19] and presented in:

� The Institution of Engineering and Technology (IET) prestige invited

talk: Algorithms for Social Engineering in Online Social Network (with

S. Alim, D. Neagu and M. Ridley), (2010) University of Bradford, UK.

http://www.theiet.org/local/uk/yorks/west/social-eng.cfm

� Open Day: Automated Data Retrieval from Online Social Network Pro-

files (with S. Alim), (2010) University of Bradford, UK.

� Presentation at FAIRS2009 for: the 3rd annual forum for AI research stu-

dents: Algorithm for Data Retrieval from Online Social Network Profiles

(2009) Cambridge University, UK.

� Presentation and Demonstration to students from Bradford Grammar

School: Data Extraction from Online Social Network Profiles (2009) Uni-

versity of Bradford, UK.

� AI Research Seminar: Data Retrieval from Online Social Networking Pro-

files for Social Engineering Applications (2009) University of Bradford,

UK.

8
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Chapter 5: highlights through formal specification (Object-Z), the feasibility of

using MAS technology in extracting data from OSN sites in order to ensure

that the proposed web based system, the Online Social Network Retrieval

System (OSNRS), is robust, reliable and fits its purpose, before implementing

the application. The contribution from this chapter is published in [10].

Chapter 6: improves the algorithm presented in Chapter 4 through applying MAS

technology in extracting data from OSN. An algorithm to implement the ap-

proach developed for the OSNRS is proposed. The conceptual overview and

experimental work of the developed approach is described in detail, accompa-

nied by findings and results. The contributions from this chapter are published

in [8, 13, 11].

Chapter 7 continues the previous work of OSNRS, which provides real-time mon-

itoring of OSN profiles, through proposing new algorithms using API in order

to overcome the limitations of parsers. This facility allows OSNRS agents to

attain the required attributes despite modifications in the representation of

the profiles’ source web pages. The experimental work applies to a Facebook

mock network as well as a real network. The contribution from this chapter is

published in [14, 12] and presented in:

� Data Extraction from Online Social Networks using Application Pro-

gramming Interface in a Multi Agent System Approach (2011), Student

Seminar, University of Bradford, UK

Chapter 8 presents conclusions regarding the contribution of the thesis and dis-

cusses the limitations of the research. Finally, future areas of work are sug-

gested.
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1.6.1 Ethical Issues and Data Extraction form OSN

Associating ethics with DE from OSN is one of the main concerns of this thesis

due to personal data is being accessed directly. The study can be divided into two

stages regarding the OSN targeted in the experimental work for this thesis. Firstly,

when data is extracted from Myspace OSN, only public profiles have been crawled

and parsed. Private profiles were never been accessed except what is provided by

Myspace as will be explained in Section 4.5.

Secondly, in case of Facebook OSN which requires user authorization and au-

thentication to extract data, the author filled a “Research Ethics Application Form”

to gain approval from “The Committee for Ethics in Research” at the University of

Bradford. Appendix (A) illustrates the Consent Form which informs the participants

about the proposed research.

NOTE: All clear screenshots of OSN real profiles contained in this thesis is

presented temporary in order to illustrate the idea to the examiners. These figures

will be blurred in the final submission of the thesis to avoid breaching privacy.

10



Chapter 2

Background

2.1 Introduction

The aim of this chapter is to introduce the fundamental concepts of the three main

areas for the thesis; Data Extraction (DE), OSN and MASs which are shown in

Figure 1.1. However, it is firstly necessary to highlight relevant topics which are

important in the explanation of the three areas.

Thus, Section 2.2 presents a brief history of the web, while data representation

and extraction from the web is demonstrated in Section 2.3. The context of the

extraction which is OSN, is detailed in Section 2.4. Section 2.5 describes agents

and MASs as an approach for DE. The formal specification concept is presented in

Section 2.6 in order to construct a mathematical model of the proposed system.

Finally, the summary of the chapter is presented in 2.7.

2.2 Brief History of the Web

In the last two decades, we have witnessed the beginning of the explosion in the

digital information with the rise of the web [91](p. 1). Most people use the words

“web” and “Internet” interchangeably as synonyms while they are not. The Internet

is a networking protocol which connects computers over the world through a physical

network, while the web is a software protocol that runs over the Internet to build

11
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a virtual network linking a massive amount of information stored in files together.

Briefly, the web has a memory which stores a network of interwoven documents

through links [121, 73, 57](p. 1-3, p. 5, p. 311 respectively).

However, the original idea of the web, which is the general domain of this thesis,

could be traced back to 1945, when Vannevar Bush described his imaginary desktop

machine which is called a “memex” to store information in a local file system. The

items on the machine are linked to each other repeatedly to form a trail which

allows memex users to traverse it for sharing and exchanging knowledge through

“associative indexing”. The idea of a memex has been improved by Bush and other

researchers until Ted Nelson generalized the memex system after 20 years to coin

the term “hypertext” and built his system “Xanadu”. Nelson viewed his system as a

network of unlimited size of repositories that allow users to connect their documents

to any document on the network and achieve a universal hypertext [91](p. 3-4).

This view came true three years later in 1968 when the first online hypertext

system was developed by Douglas Engelbart. Then, it turned into reality as known

today by Tim Berners-Lee who invented the WWW as “information space where

data of all types could be freely accessed”. Bernars-Lee introduced his first web

browser at the end of 1990, including a server and an editor to write the webpage, and

then Marc Andreessen developed “Mosaic” in 1993 as a free web browser accessible

by the public [91](p. 3-4).

The webpage usually contains text and the hypertext (text with hyperlinks which

are able to point to another document or any part of the document). Individual web

pages define the beginning of the web forming what are known as websites. Since

most websites require updating and feeding with new information continuously, there

is a need to handle, organize and access this information within websites.

The database concept has proved to solve such problems of managing and query-

12
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ing information on local machines and over networks. Thus, researchers were at-

tracted to gather the power of the web and database technology in order to produce

what is called a web database [57](p. 31). Web databases could be described as a

database whose data is managed and accessed through the Internet. In other words,

“accessible online database” as defined by Goa et al. in [62]. Many HTML pages

are a visible web database. Web database applications have been developed to en-

able data to be managed and present analytical results online. However, this data

need to be extracted in the first place. Web data extraction is a reverse engineering

process of how this data is built, structured and represented on the web as will be

detailed in the following section. However, since some research in this field distin-

guishes between data and information, and extraction and retrieval, it is important

to clarify the relationship between these terms.

Clarifying Terminologies

As shown in Figure 2.1, each area of these 4 areas is made up from a combination

of two broader areas; Data vs. Information and Extraction vs. Retrieval. The

following sections distinguish each of them briefly.

1. Data Extraction (DE)

Data Extraction is also called “Web Scraping”. Gao et. al. in [62] stated

that web data extraction is extracting “the relevant information from a variety of

different Websites belonging to identical fields, and then integrat(ing) them into a

unified format for the following-up treatment or application”. DE is concerned about

retrieving data out of unstructured or poorly structured source to enable further

processing or storage. Unstructured data may include documents, emails, scanned

text and web pages.

The main technical challenge that affects DE from unstructured data is the need

to deal with the continuous changes in the physical formats of the page. However,

13
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Figure 2.1: Clarifying Terminologies of Information Seeking

most webpage designers adding structure to unstructured data in different forms

such as:

� Using regular expression in records to identify small or large scale structure.

� Using table-based approach to categorize common sections in a limited domain.

� Using text analytics to help in understanding the text.

Automated data extraction concerns extracting information which is relevant to

a user in a concise form.[17].

2. Data Retrieval (DR)

It could refer to different processes such as recovery of lost data or gathering

information from unknown individual and organization of data. Mostly, DR ad-

14
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dresses extracting the required data from Databases, such as reports and queries,

then storing the output in a file or printing them on the screen.

3. Information Retrieval (IR)

IR focuses on finding and ranking a subset of documents from a given collection

of documents based on the user’s query. Consequently, the user has to browse the

returned documents to fulfil his needs [113]. The information could be in documents,

meta data about documents or even the documents themselves which are found in

a rational database or other WWW. The most well known application of IR is in

search engines which will be explained in the coming sections.

There are overlaps between Data Retrieval, Document Retrieval, Information

Retrieval and Text Retrieval but they differ [17].

4. Information Extraction (IE)

IE means “the identification and extraction of instances of a particular class of

events or relationships in a natural language text and their transformation into a

structured representation e.g. database” [113]. In other words, IE aims to extract

structured information from unstructured machine readable documents such as news

wire reports. IE and IR complement each other and borrow techniques from each

other [113].

According to these classifications, it would be clear that this thesis focuses on

the DE although DR could be used as well. This is due to in early stages the

target of web pages for this thesis vary between unstructured and semi-structured

formats which are not applicable for DR. In contrast, since the data retrieved is

stored basically on web database, it is possible to use DR. However, the terms data

and information may be used interchangeably in the thesis regarding their general

meaning.
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2.3 Data Representation and Extraction

There are several issues which contribute to users and applications failing to find

the required web pages for the information they are seeking. One of these issues is

related to data representation and the other issue is related to the technique used to

find related web pages which contain the required information. Each of these issues

will be discussed separately in the following sub sections.

2.3.1 Data Representation on the Web

Web pages can be categorized into either static or dynamic. Briefly, static means

the web page contents are displayed as they are stored in ordinary documents. In

contrast, a dynamic web page is a web page whose contents are generated at the

time of request by web applications. Table 2.1 summarizes some of the features of

static and dynamic web pages as well as a comparison between these two categories

[117, 85].

The progression of moving from static web pages to dynamic web pages comes

along with the changes in the format of the web pages. Most web pages are written

in HyperText Markup Language (HTML). The typical HTML, as shown in Figure

2.2(A), relies on a set of markup tags such as <h1> and <img> in order to describe

web pages. HTML is designed for unstructured data, which is ill-formed and broken

[95].

However, from the beginning of last decade , there was a move to be stricter re-

garding web page design as W3C1 recommended web designers to use the eXtensible

Markup Language (XML) and eXtensible HyperText Markup Language (XHTML)

as shown in Figure 2.2(B) and 2.2(C) respectively [2].

XML and XHTML are designed for more structured data, i.e. structured and

1http://www.w3.org/
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 (A) HTML for Unstructured Data   
 

 (B) XML for Structured Data 
 

 (C) XHTML for Semi Structured Data 
 

Figure 2.2: Typical Structure of Web Pages Representation
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semi-structured data. They are stricter in terms of having well-formed documents

i.e., the documents’ contents should conform to their syntax rules. For example,

elements must be: properly nested, always be closed, must be in lowercase and

its documents must have one root element. This feature helps the parsers of search

engines to interact with the web pages’ contents more efficiently [95, 2]. More details

will be discussed in Chapter 4.

2.3.2 Seeking Information on the Web

In contrast to the popular view of information seeking on the web as being just a

few mouse clicks, information seeking from the web is different and more difficult

than it from other electronic systems such as libraries or databases. This is due to

the nature of the web itself and its features e.g. the size of the web, the dynamic

and heterogeneity nature of its contents, the organization and representation of

information within web pages, in addition to the rapid changes of all these features.

[99](p. 7).

Initially, the broad term “information seeking” is used as Levene suggests in

[91](p. 24) in order to refer to the process of finding information on the web. Seeking

information could be traced back to the period between late 50s and early 60s. On

those days, there was a thought that the traditional techniques of searching would

not be successful on unstructured and open environments like the web. Thus, early

search tools missed most of the basic capabilities for seeking information [122](p.

3).

There are two main strategies for seeking the required information on the web

as Figure 2.3 shows; navigating and searching. A brief overview of each strategy is

presented below.
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1. Navigating

Navigating the web is known also as browsing or surfing the web. Navigating means

“employing the link-following strategy starting from a given web page, to satisfy the

information need” [91](p. 24-25). The link points to another object on the web such

as an image, document, webpage, etc. The navigating is either directly or through

using a directory.

Direct Navigation: is the simplest and often most successful approach to find

the home pages of companies, institutes and services but rarely successful for finding

products. It depends on the user typing the website address in the browser, then

following the links to find the required information depending on the (proximal) cues

like text and images snippets that the web pages are designed to offer to their users.

Some browsers share auto-complete feature to help users when they are typing the

websites URLs.

Navigation within a Directory: a web directory could be considered as like

a book’s table of contents. They are “catalogues of information resources that are

Figure 2.3: Strategies of Information Seeking
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arranged by subject, which makes them very useful for browsing” [73](p. 54). This

approach of navigation is the basis of the “Web Portal” sites which work as a gate-

way to other resource on the web. It depends on human editors to organize the

information in the sites and classify them in directories [91], [122](p. 22).

2. Searching

This strategy is the most common in use nowadays if not the only one used by most

people. It is based on getting the required information by employing a search engine.

Sherman and Price in [122](p. 23) defined search engines as “databases containing

full-text indexes of web pages”. Search engines work through three parts as follow:

1. The web crawler: which finds and fetches the web pages. (More details in

next sections).

2. The indexer: which indexes the web pages’ words and stores them in massive

databases.

3. The query processor: which recommends the documents based on the best

match of the submitted query and the stored indices in the database [122] (p.

26).

The common steps for using a search engine may include:

1. Submit the query which consists of keyword(s) to the search engine.

2. Select one of the results that are ranked and referenced by search engines.

3. Surfing the web pages by clicking from summary shown links related to the

query .

4. Interrupt navigation and modify the query to be more specific based on the

personal judgement of the user when surfing the result.

5. Go back to first step.
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Navigating Searching

� Easy, natural, intuitive.
� Impractical with big size,

diversity of web.
� Poor for exhaustive

searches.

� Requires learning how to use
tools to get satisfactory results.

� No limitation in the size of the
web.

� Good for exhaustive searches.

Table 2.2: Comparison between Information Seeking Strategies

Table 2.2 presents a comparison between the strategies. Nevertheless navigating

or searching, the process of seeking information faces some problems such as:

� The web is an open, unstable system. i.e. the format and the contents of web

pages and web sites change continuously.

� The quality of the presented information varies. No controls on who is pub-

lishing, how accurate is the published information, are the links still available

or they are out of date.

To overcome such problems, researchers keeping developing techniques to sim-

plify the process of seeking information as this thesis aims. Thus, the following

sections present some of the most common techniques which help in the process of

DE from the web.

2.3.3 Web Data Extraction Techniques

As stated previously, the fast growth and the decentralized nature of the web brings

major problems in term of navigation and making use of indexing the full text of

pages that are stored on web servers [122](p. 12-13). In Section 2.3, it has been

mentioned that the second issue which prevents efficient data extraction is related

to the technique used to find the related web pages which contain the required infor-

mation. The following sections present some of the techniques (crawlers, wrappers
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2.3 Data Representation and Extraction

Figure 2.4: Relationship between Different Techniques Graph 2

and parsers) as shown in Figure 2.4. Note that the relationship between these

techniques is a containment relation from the outer to the inner. This means that

each technique includes the next one in order to extract data from various formats

of documents on the web. In addition, the parser is based on either the string tok-

enizing, DOM or API. DOM is explained first because it is the most used with these

techniques.

Document Object Models (DOM)

The Document Object Model is a W3C standard for defining (and accessing) the

objects, properties and methods of all the elements in a document. The professional

definition of DOM is a “platform- and language-neutral interface that will allow

programs and scripts to dynamically access and update the content, structure and

style of documents. The document can be further processed and the results of that

processing can be incorporated back into the presented page”[75].
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Figure 2.5: The DOM Node Tree Corresponding to XML File in Figure 2.2(B)
Modified from [3]

A DOM approach could be used to parse 3 different types of documents. HTML

documents, XML documents and any structured documents. DOM views the docu-

ment as a node tree where each element in the document represents a node and has

a relationship with other elements (nodes)[1].

Figure 2.5 shows the DOM node tree corresponding to XML documents in

Figure 2.2(B), modified from [3].

1. Crawlers

Search engines depend on crawlers (also known as spiders or bots) to search the

WWW for the required keyword(s) which are entered by end users. The crawler

is “a computer program that navigates the hypertext structure of the web” [17](p.

263). Crawlers collect information about the visited web pages then save them in a

queue. This information is recorded in a process called indexing which is used later

for ranking websites. Crawlers will be activated periodically to update the index.

The basic algorithm of a crawler is as follows:

1. Get the first seed URL from the list of URLs to be visited.
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2. Fetch the web page of the seed URL.

3. Index the web page.

4. Add new URLs found on the web page to the list of URLs.

5. Go back to first step.

During this process, crawlers have to address problems such as detecting dupli-

cate web pages which have different URLs, determining the quality of the fetched

web page and indexing web pages which contain errors. Even though, there is a

problem that has arisen because of the limitation of crawlers’ capabilities. Crawlers

can cover only the publicly indexable web (PIW) while the majority of useful data

is in the hidden or deep web, which is not reachable by crawlers as highlighted by

Lawrence and Giles in [89], and Bergman in [31]. Deep web pages are described

by Park and Barbosa in [111] as dynamic pages listing data from databases using a

predefined format. Their content is likely to be of very high quality since they are

managed by organisations interested in maintaining accurate and useful databases.

Due to the fast and continuous growth in the size of the web, it is recommended

to use the focused crawlers which focus on visiting web pages related to topics of

interest based on the highest ranking URLs in the list to crawl first [91].

2. Parsers

Ludwig in [94] described the parser as a tool that “breaks data into smaller ele-

ments, according to a set of rules that describe its structure”. In other words, it takes

the HTML source of webpage as a stream of Unicode characters to a tokenization

stage where the tokens are classified to build the DOM tree [3].

Gupta et al. mention several advantages of parsing a webpage’s HTML into

a DOM tree such as the ability to extract data from large logical units, manipu-
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late smaller units such as specific links within the structure of the DOM tree and

reconstruct a complete webpage easily.[67].

3. Wrappers

A wrapper is considered to be a traditional and useful approach for DE. It based

on converting HTML documents into semantically meaningful XML files to simplify

the operation of extracting data [87, 50, 92]. Formally, a wrapper is “a function

from a page to the set of tuples it contains”[86].

To create a wrapper, we have to specify the structure of the source webpage

through:

� Identifying the interesting tokens (e.g. heading of sections) on the page.

� Identifying the nested hierarchy within the sections and/or subsections of the

source webpage.

The resulting structure will be a basis on which to build a parser which is de-

scribed in the previous section [24].

However, using wrappers is impractical in some cases where the interesting tokens

on the webpage are very large and when the content and the format of the source

webpage are likely to be changed [24]. Wrappers are not efficient because program-

mers have to find the reference point and the absolute tag path of the targeted data

content manually. This requires one wrapper for each website since different sites

follow different templates. The effects are increased time consumption and effort

from the programmer.

4. Application Programming Interface (API)

IBM has defined an application programming interface (API) as “a functional

interface supplied by the operating system or a separately orderable licensed program
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that allows an application program written in a high-level language to use specific

data or functions of the operating system or the licensed program” [79], i.e. API is

a software-to-software interface.

In the thesis experiment domain, an API allows third-party software developers

to access any web services provided by developers of OSN as open source software

does. Meanwhile, the privacy of the application’s source code is protected as a closed

application does. The power of an API is in its ability to integrate and interoperate

different applications and tools with each other regardless of which programming

language is used to write the application or how it was designed.

Mostly when using APIs, the developers return the results in a common XML file

format or as Java Script Object Notation (JSON) objects. Table 2.3 summarizes

some of the similarities and differences between them.

2.3.4 Evaluation

There are some measures for the common performance of software retrieval systems

[17](p. 62-64) which include:

� Functionality: does the system satisfy all the functions that the system is

designed for.

� Response time of extracting data.

� Space requirements: the developers have to balance between these two mea-

sures because there is usually a trade off between them.

� Quality: the hardest measure for the retrieval system is to evaluate the quality

of the retrieved information. This is due to the vague of the user needs.

� Precision and recall measure: this is the most popular measure. The precision

is used to get the accuracy of the retrieval system while the recall is the
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XML JSON
Stands for Extensible Markup JavaScript Object

Languge Notation
Extended from SGML (Standard JavaScript

Generalized Markup
Language)

Developed on 1996 2011

Developed by World Wide Web Douglas Crockford

Consortium
Official website http://www.w3c.org/ http://json.org

TR/rec-xml
Speed X
Simplicity X
Extensibility X
Interoperability X X
Openness X
Human readable/writeable X
Machine readable/writeable X
Resource(CPU/Memory) utilization X
Provide Structure to data X X
Ease of creating data on server side X
Processing easily form client side X
Self description data X X
Data exchange format X
Document exchange format X
Mapping to Object-Oriented X
program

Internationalization X X
Adopted by industry X
Ease of debugging and trouble- X
shooting on server side

Ease of debugging and trouble- X
shooting on client side

Lack of Security X X

Table 2.3: XML vs JSON
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percentage of the actually retrieved documents. The higher precision means

more probability to retrieve relevant documents while the higher number of

the recall implies that the system retrieved the most relevant document from

the collection.

� F- measure: it is derived from precision and recall measure. It takes the

harmonic mean of the two values. i.e. the ratio of the multiplication of the

precision and recall divided by the arithmetic mean.

� Average precision: is represented by a weighted precisions sum:

Average precision =
∑N

i=1 precision(i)×relevance(i)
|R|

where R is the set of the known relevant documents. The relevance value is 1

when the document is relevant and 0 if it is not.
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2.3.5 Section Summary

The first section of this chapter presents a brief overview of the “web” as it is the

general domain of this thesis. It starts with a short description of the web history

then it clarifies the difference between the IR, IE, DR and DE to be accurate in

time of choosing the appropriate techniques to extract data from the web. Thus, it

would be important to know how data is represented on the web in first place in

order to be extracted. Consequently, different strategies for how to seek information

on the web are described followed by various techniques of DE from the web.

The well understanding of these topics helps in determining the appropriate tech-

nique for this thesis which focuses on extracting unstructured and semi-structured

data from OSN. The data extracted will be evaluated using some of the measured

stated above e.g. response time.

The next section of this chapter will focus on OSN, one of the most challenging

area of the web in terms of the massive changes in its data amount and speed.
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2.4 Online Social Network

Section 2.3 presented a brief overview of the general domain of the web as a source

of online data to be extracted. This section now focuses on a particular domain

which contains a massive amount of personal information, namely that of Online

Social Networks (OSNs), in order to create an overview of the nature of which forms

the context of the data extraction process. What makes OSN unique from other

areas of the web is that the web in general is organized around content, while OSNs

are organized around users [102]. Sociologists expect that the structure of OSN will

increasingly reflect the relationship of real life society [44].

2.4.1 What is an Online Social Network?

In the 1950s, Professor Barnes coined the term “Social Network” and identified its

size as a group of 100 to 150 people [5]. With the emergence of the web and with the

ease of communication between its users, the virtual world on the web is attracting

users rapidly as it offers them the opportunity to make new friendships, to share

their interests even with unknown people, and to upload photos and distribute their

personal information.

Accordingly, the term and definition of OSN has expanded. Lenhart and Madden

define OSNs as the “online place where a user can create a profile and build a personal

network that connects him or her to other users” [90], while Boyd and Ellison in

[41] specify three characteristics in their definition of social network sites, describing

such sites as: “social network sites as web-based services that allow individuals to:

1. construct a public or semi-public profile within a bounded system.

2. articulate a list of other users with whom they share a connection.

3. view and traverse their list of connections and those made by others within the
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system”.

2.4.2 Brief History of Online Social Networks

OSNs started to be used publicly for communication purposes through Friendster1

in 2003, although the concept of offline social network had been known since the

1960s. Within a few months, Friendster had attracted more than 5 million users,

as reported by Mika et al. in [100] and inspired the creation of other OSNs. In

Figure 2.6 which is modified from [41], a brief timeline of the launch dates of major

OSNs sites is described, starting with SixDegrees.com2 in 1997 and progressing with

Facebook, Twitter and Windows Live Spaces3 in 2006.

2.4.3 Why are Online Social Networks Important?

The popularity of OSNs has increased significantly over the last decade, coming to

be at the heart of some web sites. Figure 2.7 shows the top OSN according to [78]

based on the United States market share of visits. The OSN has some potential

benefits which include:

1. An OSN allows interests and trust to be shared: users are likely to trust

other people in their friends list and have common interests with each other.

This attracts the development of many research systems, in order to make use

of this trust [102], as will be shown in Chapter 3.

2. OSNs influence youth: the appropriate use of OSNs can help teenagers to be

more confident in communicating with other people online as well as in keeping

in touch with family members who live far away. They help people to become

familiar with and up-to-date on new technologies. Schools and universities

1http://www.friendster.com/
2http://www.sixdegrees.com/
3http://spaces.live.com
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Figure 2.6: Timeline of the Launch Dates of Major Social Network Sites Modified
from [41]
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Figure 2.7: Top Online Social Network (Source of Data from [78])

encourage students to participate in discussion forums, create class blogs, ex-

plore interesting topics, and create a positive self-image on their profiles [127].

This helps them in building their identities.

3. OSNs influence the future of the Internet: the popularity and bandwidth-

intensity of OSNs have a significant impact on the Internet traffic. Thus,

understanding the structure of OSN helps in understanding the security and

robustness of distributed OSNs and their impact on the future Internet [102].

4. OSNs influence other disciplines: besides the impact of OSNs on different

fields of computer science, the OSN affects various sectors of society. Soci-

ologists can study the behaviour of users and test their theories offline on

the extracted data. Election candidates can reach a larger number of voters

to deliver their programs and compete with their rivals [26]. Marketing has

the largest share of benefit to gain from OSN. Governments and police can

find OSNs useful for crimes associated with threats and abuses. Finally, but

not least importantly, parents and social workers can monitor children’s and
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students’ behaviours.

2.4.4 Dangers of Online Social Networks

However, as with any new technology, the rapid expansion of OSNs contributes to

rising worries for parents, sociologists and governments, especially when the youth

represents the heart of OSN sites activities, with little control or protection for such

online interaction [126, 41]. Businesses, job seekers and adults should also be aware.

Some of the dangers include:

1. Privacy: breach of privacy is the main issue accompanying use of an OSN.

This breach could be either by other users in the friends list who could com-

ment on your private information, e.g. mobile number, address or date of birth,

or by the third party companies which share the users’ information through

OSN applications.

2. Phishing / Scams: when data becomes a currency, it is more likely to be

stolen or used for potential crime such as identity theft or fraud.

3. Children / Students: although most OSN sites require a minimum age limit

to create a new profile, fooling the system is too easy. Children tend to post

detailed information about their identities e.g. phone number, school name,

class schedules, etc., and this could allow them to be stalked by strangers

who claim to be as the same age as them and to have the same interests.

Posting inappropriate information or pictures may land children in trouble

due to violation of institution policy.

4. Employment: job seekers should be aware of what they post on their profile.

They should expect that employers are likely to make a background check on

their OSN accounts in order to gain a reflection of their personal character.
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Serious cases have been reported where contracts have been terminated due

to a picture or a statement posted on OSN profiles.

2.4.5 Section Summary

The second section of this chapter has given a brief overview of OSNs as the specific

context for data extraction in the thesis. The OSN is selected as it is one of the

most recent areas of public information which provides a wealth of rapidly updated

personal data. Despite its advantages, the OSN may also pose a threat; especially

for youth, who represent the heart of most OSNs. The next section describes MAS,

one of the techniques which could be used to improve the process of extraction and

monitoring of OSN data.

2.5 Agents and Multi Agent Systems

With the rapid growth in the technology of the software industry, many expecta-

tions which were formerly considered impossible have become more achievable. For

example, users previously gave detailed instructions to the computer in order to

fulfil a specific task. The demand for the development of approaches which allow

computers to think and act toward a predefined goal on the individual’s behalf and

without human intervention has grown over time.

This idea has in fact become the cornerstone in the emergence of software agents

(or agents) for short as an Artificial Intelligence (AI) field. Agents are a combination

of several fields in AI: encompassing knowledge representation, reasoning and learn-

ing [32](p. 181). The following subsections present the basic principles of agents

and their history, features, classifications and environment, as well as considering

MASs, which are a collection of agents.

36



2.5 Agents and Multi Agent Systems

2.5.1 Brief History of the Agent

Distributed Artificial Intelligence (DAI) is considered to be the root of the Software

Agent since it contains, besides Distributed Problem Solving (DPS) and Parallel

Artificial Intelligence (PAI), MAS from which the Software Agent has evolved, as

will be explained. This means that the Agent has inherited some features, good or

bad, from DAI and AI, such as: modularity, speed, reliability, reusability, platform

independence and ease of maintenance [108].

Most researchers including [105, 118, 7, 15] have traced the proponent of agent

technology back to the 1970s, and in particular, in 1977 when Carl Hewitt introduced

his Actor Model and termed it “éactoŕı” [74]. He defined his actor as “computational

agent which has a mail address and a behavior. Actors communicate by message-

passing and carry out their actions concurrently” [108].

In contrast, Alan Kay(1984) traces agents’ history to two decades earlier in

the mid-1950s when John McCarthy originated the idea of an agent, and then his

colleague in the Massachusetts Institute of Technology, Oliver Selfridge, coined the

term “agent” a few years later. Together, they proposed a system that “when given

a goal, could carry out the details of the appropriate computer operations and could

ask for and receive advice, offered in human terms, when it was stuck. An agent

would be a “soft robot” living and doing its business within the computer’s world”

[42](p. 4).

Hyacinth Nwana in [108] has split the research on agents into two main strands.

The first strand, which started in 1977, worked on smart agents and concentrated on

macro issues besides the theoretical, architectural and language issues. The aim was

to specify, analyze, design and integrate systems comprising multiple collaborative

agents. Some classic systems and work which resulting from this includes the actor

model [74].
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The second strand started in 1990. It focused on a “much broader range of agent

type, from moronic to the moderately smart. The emphasis has subtly shifted from

deliberation to doing, from reasoning to remote action” [108, 42](p. 1-4).

2.5.2 What is an Agent?

Although researchers trace the concept of the agent to almost 40 (or 60) years ago,

to date, there is still no approved definition of a software agent [28, 48, 129].

One of the reasons mentioned by Nwana as to why the definition is sensitive is

that the term “agent” is an umbrella for various fields of information technology

research hiding highly diverse accepted synonyms [108, 61].

Thus, in the absence of a universal consensus on the definition of an agent,

end-users think of the agent as “the program that assists people and acts on their

behalf ” [88], while software developers and software engineers count agents as a func-

tional program which depends on the input-computer-output operational structure,

although many systems have a reactive flavour since they must maintain ongoing

interaction with their environment [37]. From the perspective of AI researchers,

agent means “an abstract entity that is able to solve a particular problem” [107].

However, the definition chosen for the current thesis is that provided by Wooldridge

and Jennings in [130], due to its greater precision in describing the system developed,

as well as the fact that it is increasingly adopted by many researchers in the field

[28]. The definition states that,“An agent is a computer system situated in some

environment and capable of an autonomous action in this environment in order to

meet its design objectives”.

Despite the multiplicity of agent definitions, all definitions agree that an agent is

a special piece of software which acts as a human agent to achieve its client’s agenda

with consideration of autonomy, as will be detailed in the upcoming sections [30].

The lack of clarity in the definition of agents leads to some confusion with the
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Features Classic Expert
system

Agent

Acting with the environment directly x X
having reactive and proactive behaviour x X
sociability, ability to cooperate, coordinate
or negotiate

x X

Table 2.4: Comparison between Agent and Expert System

different sectors of workers in the field of Information Technology (IT). For example,

AI researchers consider the agent as an expert system due to its ability to think and

decide to act.

While this may be true however, the agent has extra features that the classic

expert system does not [129](p. 27-28) such as those which are shown in Table 2.4.

Another example includes most programmers who are familiar with Object-Oriented

languages, who commonly confuse agents with objects. Table 2.5 summarizes some

of the similarities and differences between agents and objects [129](p. 25-27), [6].

Object Agent
High level of software abstraction

� Defined in terms of classes, at-
tributes and methods.

� Difficult to write code of actions.

� Less autonomy:“the decision lies
with the object that invokes the
method”.

� Some page structure is replicated.

� Difficult to update contents.

� Defined in terms of its behaviour..

� Easy to specify behaviours.

� More autonomy: decides to per-
form an action or request another
agent to do it.“the decision lies
with the agent that receives the
request”.

� Has flexible behaviour(reactive,
social, proactive).

� It is multithreaded. Each agent
has at least one thread of control.

Table 2.5: Comparison between Agent and Object
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2.5.3 Why are Software Agents Important?

“As future generations of computing systems begin to sound more like

biological systems than mathematical ones, we believe software agents will

play a central role in network-intensive applications, self-healing systems,

adaptive software applications, and software systems in general”

Qusay Mahmoud [97]

In general, the importance of the software agent comes from two aspects [42, 6]:

1. The need to simplify the efficient description and building of complex systems

for different applications, especially those applications that involve distributed

computation, communication between components, sensing or monitoring en-

vironments or autonomous operation.

2. The need to overcome user interface problems: e.g. the interface agent can

help users in completing forms from different websites, such as for booking a

flight, that have different fields.

As a result, the main software development companies which use object technolo-

gies are motivated to increase their interest in agents: Oracle1 for example considers

the use of an agent approach as a reliable solution for defining a new “client-agent-

server”2 architecture [63]. These companies are motivated for three reasons, as [61]

states. Firstly, motivation stems from the belief of AI researchers in the advantages

of working with simpler, more flexible and reusable software entities such as soft-

ware agents to overcome the disadvantages of AI which for many years have led to

complex and hard to develop software.

1http://www.oracle.com
2“The client-agent-server is an extension of the client-server model where the agent plays a

central role for dispatching client requests on already registered servers” [131]
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The second factor is the appearance of the necessity of having autonomous and

mobile objects to be used in designing new object oriented languages especially after

the integration of the object world in the network environment.

Finally, a new direction in computer use has appeared via the expansion of

networks and distributing of resources among different various systems. This leads

to the use of agents to automate control and management processes, and to quickly

adapt the network’s behaviour to the client’s needs.

2.5.4 What is a Multi Agent System (MAS)

The agent cannot be found isolated in the environment. Each agent has a limited

viewpoint, incomplete information and each has a sphere of influence. By work-

ing together with asynchronous computations, they can perform the tasks that are

considered difficult or impossible for an individual agent to solve more efficiently.

Just like people, each agent is specialized for a particular task. The “collection of

software agents that communicate and cooperate with each other” [6] to accomplish

a common goal is termed a Multi Agent System (MAS).

The environment or the world of software agents can be represented by computer

operating systems, databases or networks. Some agents live in an artificial environ-

ment such as a computer screen or in its memory. Each agent in MAS has to sense

its environment and act autonomously upon it according to its own agenda [6, 60].

2.5.5 Classification of Software Agent Features

Based on the different definitions of agents as described in Section 2.5.2, identifica-

tion and classification agent features differ according to the field that the agent has

been used in and its behaviour [59]. Moreover, the same feature may be known by

more than one name. Some of the agent features are explored as follows:

1. Autonomy
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The agent has the ability to operate as a standalone process, which means it can

operate independently without the direct intervention of users. In other words, it

exerts control over its actions and internal state. For instance, provided by the user

with the goal and plans of a specific task, the agent must make a decision on how

to achieve the goal in a reasonable manner. This can be achieved due to the fact

that each state of the agent’s behaviour is done for a purpose.

2. Learning (Adaption)

The agent has the ability to learn from its environment and/or users. It uses

its previous knowledge then combines it with the data currently detected from the

environment. Consequently, its reaction is based on the experience that it has to

achieve its goals. The agent learns via different mechanisms such as:

� using a process known as machine learning, whereby the machine can improve

its performance based on previous results.

� exchanging metadata (data about data).

� using knowledge discovery and data mining, which are interdisciplinary areas.

Knowledge discovery and data mining are methodologies for automatically

extracting patterns which could be considered as knowledge about data from

large volumes of data. [82, 4].

3. Sociability

As stated earlier, an agent is designed to perform a particular task. Mostly

the agent has to communicate with other agents; users, other software agents or

other software processes, by means of some kind of language. Communication can

either be direct, provided agents speak the same language, or indirect through use
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of an interpreter, provided agents know how to talk to the interpreter and vice versa

[33](p. 186). Sociability does not mean exchanging bytes, it means the ability to

communicate at the knowledge level, i.e. exchange their beliefs, goals and plans

4. Cooperation

This feature is built on the previous feature (sociability). It was stated in Section

2.5.3 that one of the points which makes the agent important is the need to simplify

complex systems through splitting tasks into smaller pieces of tasks. Allocating an

agent to each task requires the ability of theses agents to cooperate with each other

to achieve the common goal.

An agent uses messages to communicate and cooperate with other agents, hu-

mans, or application programs. Each message contains a set of attributes, as will

be detailed in Section 6.2.4 and Appendix (C). Design of messaging format and

communication protocols are part of the basic agent mechanism and are not any

more the responsibility of the system developers [6].

5. Perceptivity

This feature is included implicitly in most definitions of agent. It involves de-

tecting the changes in the environment, whether the physical world, Graphical User

Interface (GUI), Internet or a combination of all of these, then responding or taking

action in such a way as to achieve an effective balance between the goal-directed

designing agent and reactive behaviour.

6. Mobility

The mobile agent is a promising technology due the simplicity it brings to the

design and implementation of different systems such as distributed systems and

43



2.5 Agents and Multi Agent Systems

network management. It can travel between different nodes in a computer network

without the need for a continuous connection between machines [33](p. 20).

Mobile agents operate autonomously and asynchronously without a need for

monitoring by the user, which saves time and reduces communication costs. Also,

mobile agents can go offline when the network connection is too busy [115].

However, the mobile agent suffers from security issues as reported in [65] and

[114](p. 267). The mobile agent may harm the host or vice versa in a MAS with a

low level of security.

7. Proactivity

The agent has the constantly spirit of initiative to achieve the goals that are

delegated to it, not simply act in response to its environment [103].

Other features:

Agents are characterized with some other features such as: truth; an agent will

not provide false information intentionally, benevolence; it tries to perform its task,

rationality; it will never prevent itself from achieving its goals [30]. Table 2.6

summarizes some of the agent’s features.

The most accepted classification for an agent based on its features is that pre-

sented by Nwana in [108]. He classified agents into three main categories based on

its features: cooperative agents, autonomous agents and learning agents. Overlap

between two of these features creates other features: collaboration agents, interface

agents and collaboration learning agents respectively, as shown in Figure 2.8. If

all these six features are combined in one agent, then the agent is termed a smart

agent.

Franklin and Graesser in [60] summarize some of these features along with their

synonyms, as shown in Table 2.7. Despite this diversity, there is a minimum set of

common features that all agents share [37, 30].

44



2.5 Agents and Multi Agent Systems

Feature Description

Autonomy The ability to operate as a standalone process to achieve the
goals and perform actions such as task selection, prioritization
and decision-making with some kind of control without direct in-
tervention of user.

Sociability The ability to communicate with other agents (users, software
agents, software processes) by some kind of communication lan-
guage at knowledge level by exchanging their beliefs, goals and
plans.

Perceptivity The ability to detect changes in the environment and respond in
a timely fashion in such a way that achieves an effective balance
between goal-directed and reactive behaviour .

Proactivity The ability to exhibit goal-directed behaviour by taking initiative,
not just act as response to the environment.

Mobility The ability to convey itself between different machines in the net-
work.

Table 2.6: Agent Features

Figure 2.8: Nwanna’s Primary Attributes Dimension
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property Other names Meaning
reactive (sensing and act-

ing)
responds in a timely fashion to changes
in the environment.

Autonomous exercises control over its own actions.
Goal- oriented pro-active pur-

poseful
does not simply act in response to the
environment.

temporally con-
tinuous

is a continuously running process.

communicative socially able communicates with other agents, per-
haps including people.

learning adaptive changes its behaviour based on its pre-
vious experience.

mobile able to transport itself from one ma-
chine to another.

flexible actions are not scripted.
character believable “personality” and emotional

state.

Table 2.7: Classification of Agent Features by Franklin and Graesser

.

2.5.6 Agent Programming Languages, Platforms Frameworks

Although many languages can be used to design and implement agents, such as

Java1, C/C++, Lisp, Prolog, Tcl, Smalltalk2 and Perl3, it is very difficult to build

an agent from scratch. This would require sound experience in different areas such as

“agent architecture, communications technology, reasoning systems, knowledge rep-

resentation, agent communication languages and protocols, and machine learning”

[71](p. 216).

The selected language for building the agent must support agent features, database

and knowledge base, mediated architecture (i.e. it is able to add information to and

subtract information from a computer), support multi-threaded and finally support

communication and execution security. Mobile agents require a language that sup-

1http://www.java.com/
2http://www.smalltalk.org
3http://www.perl.org/
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ports mobility [6]. Bordini et.al in [36] classify agent programming languages into

three categories:

1. Declarative languages: which are “partially characterized by their strong

formal nature, normally grounded on logic” e.g. CLAIM, FLUX, Minerva,

Dali, and ResPect.

2. Imperative languages: which are “purely imperative approaches to agent-

oriented programming”. This type is less common than the previous one as

agent-oriented design is declarative in nature. An example of an imperative

language is JACK Agent Language (JAL).

3. Hybrid languages: various agent programming languages are hybrid. Such

languages are declarative as well as providing some specific constructs allow-

ing for the use of code implemented in some external imperative language.

Examples include 3APL, Jason, IMPACT, Go!, and AF-APL.

Note that agent framework implementation is not strongly tied to the program-

ming language, but is concerned more with supporting agent features such as com-

munication and coordination [36]. Some agent construction toolkits (AgentBuilder1,

Aglets2 and JADE3) which were either used or were tried out and rejected in the

building of the MAS for the current study will be described briefly in Section 6.2.1

as well as in appendices (B) and (C).

2.5.7 Section Summary

This section clarifies the definitions of agent and MAS, which are selected as a

technique to improve data extraction from OSNs. Some features of the MAS are

1http://www.agentbuilder.com/
2http://aglets.sourceforge.net/
3http://jade.tilab.com/
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explained to show how these features will fit with the requirements of OSN data

extraction. Selection of programming language is critical in designing a MAS due

to building a MAS from scratch is time- and effort- consuming. Furthermore, it

requires a broad knowledge base of several domains (e.g. mediated architecture,

database and knowledge base).

Since it is well-known that MAS is a complex system to design, the next section

presents a brief overview of the formal specification to be used before building MAS.

2.6 Formal specification

Developing a software application requires specifying in detail how to solve the prob-

lem either in formal or informal specification. This section presents a brief overview

of the definition of formal specification, its importance and some description Object-

Z language, which is an extension of one of Z notation, the most common language

for formal specification.

2.6.1 What is Formal Specification

Ratcliff in [116](p. 13) defines formal as a “notation [which] enables us to describe

the outward form or essence of something in a precise and clear way”, while Currie

in [53] describes specification as “a statement of requirements for a system, object

or process”. Based on these and similar definitions, several definitions have been

stated to define the formal specification.

Duke and Rose define formal specification as “the process of creating precise

(mathematical) models of a proposed system. The role of such a model is to provide

unambiguous description of the functionality of the system” [55]. In [27], Baryannis

classifies 9 definitions of formal specification according to the domain. The definition

that fits with the OSNRS in this thesis is the one which is in the context of Web
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services. It identifies the formal specification as “a precise mathematical description,

supported by a sound logic and reasoning apparatus, of what the service should do

in terms of its capabilities and the functionality it offers”.

2.6.2 Why Formal Specification

Formal specification describes “what the system should do, not (necessarily) how

the system should do it”. The importance of formal specification can be viewed via

the drawbacks of informal specification. Using natural language, as with informal

specification, may be satisfactory in some cases of specifying software due to nat-

ural language is expressive and does not require training [38], However, as George

suggests in [64] cited from [69], using natural language leads to three problems:

1. Ambiguity : the meaning and interpretation of a word in natural language may

differ according to its context. This vagueness is considering as a drawback in

software development.

2. Incompleteness : the details may be unspecified and incomplete in natural

language.

3. Contradiction: the system requirements may contain conflict or inconsistency

between statements.

Moreover, if the software is considered to be one of the more complex systems to

develop, as is the MAS which forms one of the developed approaches in the thesis,

it would place extra pressure on software developers when they decide to use MAS

[134, 76]. Thus, they must avoid issues such as running over time, exceeding the

budget, producing incorrect or inefficient software products and not being able to

reuse the software components. Mostly, these problems are caused as a result of
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choosing informal, imprecise methods at different stages of the software engineering

process [53, 25].

In brief, using natural language alone to design a MAS is not sufficient. Natural

language is inaccurate and can tolerate more than one interpretation [112]. Usu-

ally, this is the main cause of the production of ambiguous and incomplete system

specifications.

2.6.3 Formal Specification Languages

Saaman et.al. in [119](p. 11) describe a formal specification language as a program-

ming language in which operations definitions are not be executable as they cannot

be compiled or interpreted. Formal specification languages share a similar general

structure although they vary widely in detail.

There are many formal specification languages which have been developed through

the years. The next section presents just one of these languages, the Object-Z, which

is used in the implementation of the MAS developed for this thesis. Object-Z sup-

ports the required features of MAS, specifically; concurrency, communications and

state.

2.6.4 Object-Z

Object-Z is an object-oriented extension of the Z notation, a leading formal spec-

ification language, in which all syntax and associated semantics of Z are part of

Object-Z. Object-Z was developed by researchers at the University of Queensland

to facilitate the specification of Z in order to overcome the scalability and structural

problems of formal languages [64, 55].

The general structure of Object-Z [53](p. 32), [55](p. 6-12) is shown in Figure

2.9. The structure contains a class which combines (in order):

� Visibility list: specifies the interface of the class objects to be visible to the
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Figure 2.9: General Structure of Object-Z Class Modified from [64]
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class environment. If there is no explicit visibility list, then it considers that

all features of objects are visible.

� Definitions of types, variables and constants: defining the values which

types, constants and variables may take.

� State schema: unnamed box to declare all information related to the class.

It is divided into two parts: the upper part contains the declaration of the class

state variables while the lower part (termed the class invariant) contains the

predicate involving the constraints on the values of state variables declared.

� Initial schema: always called INIT which consists of a predicate conjoined

with a class invariant to define the initial condition. Note that the initial

schema is not just an operation of initialization; it could involve returning the

object to its initial configuration by one of the class operations during the

evolution of the system.

� Operation schemas: involve a set of communication variables for passing

messages between the class objects and their environment. It specifies the re-

lationship between the variable values before and after executing the operation

[55](p. 10).

Initial Object-Z supports defining class unions outside inheritance restrictions.

Also multiple communications can be applied through a range of composition oper-

ators [40]. Appendix (D) contains some of the Object-Z notations which are used

in Chapter 5.

2.6.5 Section Summary

The last section of this chapter defines the formal specification and explains its

importance in specifying the system at the design stage to minimize the time and
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cost of the implementation stage. The section focuses on Object-Z language as it is

used to formally specify the application developed in this thesis.

2.7 Chapter Summary

The aim of this chapter was to present a brief background to the three main disci-

plines of the thesis which are: web DE, OSN and MAS. Also, several relevant topics

such as formal specification have been defined and their importance explained.

The chapter started by presenting the general domain of the thesis, the web, and

how data is represented and extracted from it using different techniques. The focus

was then narrowed to OSNs, one of the hottest areas on the web. The OSN was

selected due to it being distinctive in its wealth of continuously updated personal

data over time, provided by users rather than documents.

Extract data from OSNs and monitor updates over time requires technology such

as MAS to support the traditional techniques for web DE. Thus, the chapter presents

a brief overview of agent, MAS and some features of which fit the requirements of the

proposed algorithm. However, MAS is considered a complex system which needs to

be specified formally to ensure that the system is robust before the implementation

stage. Therefore, an overview of Object-Z structure is presented as the selected

language to formalize the proposed MAS for DE from OSN.

Next chapter presents state of the arts in using some of these techniques in DE

from web in general and OSN in particular.

53



Chapter 3

Literature Review

3.1 Introduction

The huge growth in data available on the web increases the demand for methods

and tools to process and extract this data. Different approaches to the search for

information on the web have been presented in the previous chapter. Figure 3.1

shows the areas which will be covered in the literature review of the thesis.

The rest of the chapter is organized as follows: Section 3.2 introduces previous

works related to different approaches for extracting data from the web in general,

while Section 3.3 narrows the research scope to the approaches for extracting data

from OSN. Section 3.4 explores research using MAS technology in seeking infor-

mation from different domains on the web. Section 3.5 describes state of the art

research similar to this thesis in extracting data from OSN using MAS. Section 3.6

illustrates some of the formal specification languages which are used to formally

specify MAS. Finally, Section 3.7 summarizes the chapter.

3.2 Approaches for Web Data Extraction

A considerable amount of literature has been published on the various approaches

for seeking information on the web. This section explores some of the research on ex-

tracting data from web pages. Search engines, as the most well-known approach for
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Figure 3.1: Division of Areas Covered in the Literature Review

web DE, ignore at the time of indexing extra contents of web pages which surround

the main content such as advertisements, headers, footers, copyright information

navigation links, comments and reviewing. As mentioned in Section 2.3.2, search

engines rely on web crawlers to extract data. The core technique to construct the

appropriate web crawler is the wrapper [83], which identifies data of interest and

maps them to suitable formats.

A leading study presented by Laender and Ribeiro-Neto in [87] surveys around

15 different web data extraction tools in order to provide a qualitative analysis of

these tools. The tools have been characterized into 6 groups based on the main

technique used by each tool to generate a wrapper, as follows:

1. Language for Wrapper Development : specially designed languages to help

users in constructing wrappers.

2. HTML-aware Tools : these inherit HTML documents’ structural features through

turning the HTML document into a kind of representation which reflects the

tag hierarchy of the HTML.

3. NLP-based Tools : using Natural Language Processing (NLP) techniques (e.g.
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Figure 3.2: Qualitative Analysis of DE Tools Modified from [87]

filtering and part-of-speech tagging) to correlate the phrase and sentence ele-

ments to learn rules for DE.

4. Wrapper Induction Tools : generate rules for extraction based on formatting

features which delineate the structure of data pieces found in a given set of

training examples. These tools are independent of linguistic constraint, which

quality distinguishes them from NLP-based tools.

5. Modeling-based Tools : locate portions of data which implicitly conform to a

given structure of interested objects.

6. Ontology-based Tools : these are unlike all previous tools, which rely on the

structure of the data within a document. Rather, the extraction of these tools

relies on data directly through locating constants present in the page in order

to construct the interested objects.

Laender and Ribeiro-Neto summarize a qualitative analysis of each tool in Figure

3.2. A more recent study presented by Amin et al. in [21] classifies research on

wrapper generation into three categories:
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1. Wrapper Programming Languages : these are specialized pattern specification

languages which aim to help users in creating an extraction system.

2. Wrapper Induction: this is created to overcome the data manual labeling of

web pages contents. It learns data extraction rules from examples which are

manually labeled.

3. Automatic Extraction: these are techniques to generate a web wrapper auto-

matically.

Table 3.1 presents some studies which develop different DE tools. The first two

studies [21, 24] develop wrappers based on HTML tags in order to find the primary

contents of the web pages, e.g. <TABLE> and <DIV>. The structure and layout of

web pages differ according to the content type. Consequently, the position or the

tags of main contents also differs. Thus, the second two studies [62, 23] propose a

tag independent algorithm and rely on a DOM tree.
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The types of structure used in web pages as underlined in Table 3.1 include tab-

ular data (structured data), semi-structured data and unstructured data. Tabular

data is targeted by Amin et al. in [21] while Crestan et al. in [51] set semi-structured

data as the target. Other research attempted to generalize the extraction method

to be flexible with structured and loosely structured data as done in [23] and [111].

However, usually the crawlers cannot cover the deep web, where the majority of

useful data is stored. This is because crawlers rely on hyperlinks in finding new web

pages and have a limited ability to submit forms [96]. Thus, Hedley et al. in [72]

generated a method to detect the templates then analyse the textual content and

the document’s adjacent tag structure to extract query related data.

Liu and Zhai in [92] realised the importance of extracting data records which

are retrieved from deep web (backend database). They proposed a method termed

nested data extraction using tree matching and visual cues (NET) to extract flat or

nested data records automatically.

[50] demonstrated a system to grab data from the web automatically. The pro-

posed system is also similar to two other approaches: in the first one, [84] are

concerned with analysing news websites by identifying pages of news indexes and

pages containing news; their work aims to classify pages according to their structure,

without any previous assumptions. [46] approach is focused on crawling: in con-

trast to [84], this system is focused on structure recognition rather than searching

for pages which are relevant to the topic. This approach does not crawl data behind

forms.

Based on the above and on similar research, it is possible to classify the approach

adopted for this thesis under HTML-aware tools, which is presented in [87], and as

more likely to be under wrapper induction regarding classification in [21], as will

be explained in the next chapter. It is similar to [24] in terms of relying on token
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analyzers to find the data of interest in the HTML web page.

3.2.1 Thesis primary experiments

Since web crawlers are a central part of all search engines, details of their algorithms

and architecture in the past tended to be kept as business secrets. Currently however

there are several open sources which explain the basic concept of how to crawl the

web. The starting point for this thesis in extracting information from the web is

established based on the functionality of the search engine crawler of two programs:

“WebCrawler”, created by Thom Blum et al. [34], and “Search Crawler”, produced

by James Holmes [120]

The developed application “My Search Crawler”, as illustrated in Figure 3.3,

intends to surf the web looking for a particular data as most search engines do. It

works as follows: when the user specifies a web page and the keyword(s) of his/her

interest, the application has to retrieve the hyperlinks (URL addresses) of sub web

pages that contain the required keyword(s), and the results are then listed in the

“Search Result” area.

Figure 3.3: Screen Shot of the Output of My Search Crawler
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3.2 Approaches for Web Data Extraction

Figure 3.4: Pseudocode of HTML Parser Modified from [68]

The second early stage in the progress of the thesis is to understand how to parse

the source document of the web page in order to extract data. The parser, which is

developed by Haines in [68] was the main resource for building the DE application

in the thesis. Figure 3.4 illustrates the pseudocode of the parser modified from the

Haines Java codes.

This parser is tested to develop a simple application, “Stock Retrieval”, to extract

structured data from a business web site. The application is developed based on

the Haines’s application “Stock Tracker Application”. Only those classes which are

used for the extraction process are selected. Several methods in many classes have

been changed to be rendered compatible with the currently released version of the

software used (e.g. Java and PostgreSQL 8.31), as well as the structure of the chosen

1http://www.postgresql.org/
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3.2 Approaches for Web Data Extraction

Figure 3.5: Stock Quote Examples from PCQUOTE

web site.

The Stock Retrieval application intends to extract stock data of an online stock

market: in this case, http://www.pcquote.com/stocks/. The retrieved informa-

tion is saved in a local repository for off-line analysis. The collected data set could

be used for various purposes in business intelligence. Figure 3.5 shows examples of

screen shots of the “PCQUOTE Stock Market” (taken in 2008).

Figure 3.6 shows the source web pages of the corresponding parts of the first

table in Figure 3.5. Note that the data relevant for extraction from the source web

page is found outside the HTML tags. In addition, the tags have no semantic to

reflect or predict what the next data means. Thus, the application has to browse

the source web page and splits its contents into tokens. If the token equals the open

tag sign ‘<’, then it will ignore all next tokens until it meets the close tag sign ‘>’.

Data outside the tags will be extracted and saved in a vector to be sent to the local

database. The the output and pseudocode of the Stock Retrieval application are as

shown in Figure 3.7 and Figure 3.8 respectively.
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Figure 3.6: Part of the HTML Source Text of the PCQUOTE web page

Figure 3.7: Sample of the Content of Stock Retrieval Table in Local DB
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Figure 3.8: Pseudocode of Stock Retrieval Application
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3.3 Data extraction from OSN

OSNs are a special part of the web where several interesting phenomena take place.

The information in an OSN can provide a good collection of resources, for researchers

from different disciplines such as psychology, sociology and computer science to

study. The changes in the users’ profiles affect their networks’ behaviour and ac-

tions and lead to alterations in the pattern analysis. In terms of human aspects,

online social network (OSN) providers cannot provide users data to any third par-

ties because of the privacy regulations. Thus, more attention is required on how

information will be collected from OSN websites to cope with the rapid changes

[47, 128].

Most of the early research in DE from OSNs either does not mention how the data

has been extracted or relies on non automated approaches to extract information,

e.g. conducting surveys and interviews, then analyzing the results. Table 3.2 sum-

marizes some of this research [16, 56, 66, 124]. Although the research presents some

interesting findings, for instance in studying the disclosure and privacy behaviours

of students in colleges and universities, the samples upon which the findings and

results are based are too small (a few hundreds in the best cases). In addition,

the samples were recruited in an ad-hoc manner instead of via random sampling.

Thus, the sample may not reflect the real behaviour of the targeted phenomenon,

especially if participants did not tell the truth.
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Table 3.2: Non Automated Data Extraction from OSN

Research study Advantages & Disadvantages

[56] 2007

The research compares the trust and

privacy concerns of users of two

OSNs as well as the desire to share

information and form new relation-

ships.

Methods

Online survey of users of two OSNs:

Facebook and Myspace.

Advantages

The research is qualitative in comparing

the users behaviours in two most popular

OSNs rather than one, as most research

has done.

Disadvantages

Small sample (total of 117 participants:

69 Facebook users and 48 MySpace users).

[66] 2007

The research investigate s how stu-

dents unknowingly played an impor-

tant role in posing themselves and

their campus networks to malicious

attacks.

Methods

� Interview security experts.

� Conduct surveys with univer-

sity students.

Advantages

Presents steps to reduce the effectiveness

of an attack, e.g. instituting a combina-

tion of policies and controls, and increase

students security awareness of the risks of

using OSN.

Disadvantages

Small sample (41students)

[124] 2007

The research examines qualitatively

the disclosure and privacy be-

haviours and attitudes of the stu-

dents.

Methods

� Interview university students.

� Survey of university students.

Advantages

The research points to the impact of the

complexity and ambiguity of the Facebook

interface in utilizing the appropriate pri-

vacy.

Disadvantages

Small sample (12 active Facebook users).
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Table 3.2: (continued)

Research study Advantages & Disadvantages

[16] 2006

The research explores the patterns

and motivations of students to dis-

close information on Facebook. The

study concludes that the widespread

public attention on the privacy risks

of Facebook affects its users.

Methods

� Conduct surveys with college

students.

� Using Perl scripts to download

and parse Facebook HTML

pages (when Facebook was

limited to students).

Advantages

The research methodology is explained

very well and uses two different ap-

proaches to gathering data (manual and

automated). In addition, the results are

based on a sample which is filtered pre-

cisely.

Disadvantages

Small sample of survey (294 out of 506 ac-

tually completed the whole survey) com-

pared with 7,000 profiles parsed using Perl

scripts.

[77] 2008

The study finds out empirically the

type of posted information on Mys-

pace OSN by youth.

Methods

� Use generators to select Mys-

pace profiles randomly.

� Extract data from profiles

manually through filling in

data collection forms.

Advantages

The study provides useful recommenda-

tions based on statistical analysis of pro-

files contents to youth and parents in or-

der to increase the awareness of disclosure

their personal information publicly.

Disadvantages

Too exhaustive and slow work to extract

and analyze an average of 16 profiles per

day by each staff, due to 8406 public pro-

files out of 9282 are randomly selected

within period (June- August 2006) by staff

of 6 (2 author and 4 assistants).

Moreover, these approaches are time consuming and inconvenient nowadays, es-

pecially with the rapid changes in the amount of information uploaded to OSNs on

a daily basis. Recent research has relied more on automated approaches such as
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crawlers, which are used in the majority of research developed.

Table 3.3 presents some of these studies. Note that the criticism of literature

is based on techniques used for data extraction. The advantages and disadvantages

are not limited to what are mentioned in the table, and some of the cells regarding

disadvantages are empty due to the fact that the disadvantages are not related to

the field of data extraction.
Table 3.3: Automated Data Extraction from OSN

Research study Advantages & Disadvantages

[128] 2009

Extract the interaction between more

than 60,000 Facebook users and study the

evolution of the activity of a given user

profile and friends of their friends over 2

years.

They found that the majority of interac-

tions from over than 800,000 logged in in-

teractions are generated by a minority of

user pairs.

Methods

� Build a crawler.

� Download HTML documents.

� Use BFS fashion to select the next

profile.

Advantages The study retrieves

the history of users profiles through

their wall posts and analyzes the re-

sults based on two groups:

� Low level interaction: pair of

friends who take more than 1

month to start wall posts.

� High level interaction: those

who initiate conversations

immediately after becoming

friends.

Disadvantages

� The data is collected just twice

within 2 years.

� Different data is collected each

time: 1- just friendship links

are collected. 2- the profile

walls of users who are crawled

in the first collection.
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Table 3.3: (continued)

Research study Advantages & Disadvantages

[35] 2009

The study focuses on the technical aspects

of how data will be extracted from Face-

book OSN. It examines the difficulties in

collecting profile and graph information as

well as describing various approaches to

extraction of data by third parties such as

public listing, false profiles, profile phish-

ing, malicious applications and Facebook

query language (FQL). Also, the study

evaluates each of above techniques to mea-

sure their effectiveness against profiles’

privacy settings.

They conclude that the existing privacy

protection systems in OSNs are not con-

sistent with users’ expectations.

Methods

� Build a crawler.

� Use Facebook query language (FQL)

to collect data.

Advantages

Extract information from Facebook

profiles using 3 algorithms in order

to study the privacy issues of OSN

users:

� Public listing: to crawl public

profiles.

� False profiles: to crawl search-

able profiles via creating false

profiles.

� Profile compromise and phish-

ing: to crawl random or spe-

cific accounts through mali-

cious applications and phish-

ing attacks.

Disadvantages

The crawler script collects only pro-

file IDs and friendship links.
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Table 3.3: (continued)

Research study Advantages & Disadvantages

[45] 2008

The research extracts data using two ap-

proaches:

� Random sampling: since the Mys-

pace profiles IDs are sequentially

numbered, the sample is chosen by

generating random IDs.

� Relationship based sampling: pro-

vided a random set of IDs, the sam-

ple is chosen from the friends lists of

these IDs to have a connected struc-

ture of network.

The extracted data from both samples is

analyzed and compared in order to un-

derstand who is using the OSNs and how

these networks have been used.

Methods

Build 2 Myspace-specific crawlers based

on two modules:

� Perl’s LWP::UserAgent.

� HTML::Parser.

Advantages

Extract a large-scale study of Mys-

pace OSN (over 1.9 million profiles).

Analyze the extracted data from 3

aspects:

� Sociability: how users partici-

pate in OSN.

� Demographics: how users de-

scribe themselves.

� Language model: how users

share their feelings and inter-

ests.
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Table 3.3: (continued)

Research study Advantages & Disadvantages

[52] 2004

The study uses email contents as inputs

to extract a large network containing the

user’s friends of friends of friends, and to

build the system as follows:

� Extract the names and email ad-

dresses from the email headers of the

user.

� Use a set of string matching rules to

find out the multiple representation

of the same person.

� Find the home page of each person

based on his name and interested do-

main .

� Employ some probabilistic informa-

tion extraction models to find all in-

formation about this person and all

the people found on his webpage and

build a social network.

� Create a list of keywords for each

person.

� Analyze and cluster the social net-

work by graph partitioning algo-

rithms.

Methods

� Use a machine learning approach

to extract contact information from

web pages.

� Use Conditional Random Field

(CRF) to build a probabilistic model

of these fields.

Advantages

The system can

� Find experts in large commu-

nities.

� Automatically recommend ex-

perts on particular topics.

� Build and analyze the social

network graph to find a path

between users and cluster their

attributes.
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Table 3.3: (continued)

Research study Advantages & Disadvantages

[102] 2007

The study aims to analyze the struc-

tural properties of OSN. The data is col-

lected by crawling 4 OSNs using auto-

mated scripts on a cluster of 58 machines.

Methods

� Build a crawler which relies on

API and screen scraping the HTML

pages.

� Use BFS algorithm.

Advantages The authors claim

that their study is the first which ex-

tracts data from multiple OSNs at

scale.

� Extract data from 4 OSN:

Flicker, YouTube, LiveJournal

and Orkut.

� Extract large scale data set

(over 11.3 million users and

328 million links).

Disadvantages

The data collected by the crawlers is

limited to the URL of user profiles

and their friends for the 4 OSNs.

Unlike Mislove et al. in [102], who simply retrieves profiles’ URLs for users

and their friends, the research in this thesis concerns extraction of all accessible

information on the profile. However, this thesis uses API as well as screen-scraping

to parse the HTML pages. Viswanath et al. in [128] are concerned with extracting

historical data over time, as in the aim of this thesis. However, their approach limits

the historical data extracted to the wall posts. Moreover, despite the fact that data

is collected over 2 years, the collected data could be categorised into two types, and

each is collected just once. The first type is the profile IDs and their friendships

links, while the second is the wall posts of these profiles.

Bonneau et al. [35] present a unique study in discussion of DE from OSNs from

a technical point of view. However, they limit the data extracted to only profile IDs

and their friendship links, and this only once. In contrast, this thesis focuses on

extracting all information which can be crawled.
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Caverlee et al. in [45] present a very interesting approach to choosing the seed

IDs of the sample. The seed ID is the first profile ID to start a crawling process.

The samples are used to compare the results based on connected and disconnected

sub networks.

The approaches adopted for this thesis, as will be described in Chapters 4,

6 and 7, are similar to [128, 45, 49] in terms of using a Breadth First Search

(BFS) algorithm to travel across the OSN, since it is optimal, easy to implement

and more representative to the friendship relations. Alike [45], profiles that have

the structures associated with bands, comedians or musicians are rejected because

they do not represent friendships between individuals. In fact, this is required by

a member of the co-authors in the papers published in [20, 9, 8] to calculate the

vulnerability measurement of individuals in OSNs.

3.4 Seeking for Information using MAS

Despite the power of online information seeking tools in locating matching terms and

phrases on the web, these tools are considered passive systems as claimed in [104].

MAS transforms these passive information seeking tools into active personal user

assistants through merging the agent technology with effective information seeking

techniques in order to improve the performance of information seeking tools. Table

3.4 illustrates some of the previous works attempting to seek information using MAS.

This thesis uses an html parser with agent as in [123], and JADE, as [101] does not

mention how the data has been collected by agents. However, their approach, which

uses the JXTA agent communication method to communicate through firewalls and

network address translators, could be suggested as future work for the systems

developed in this thesis.
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Table 3.4: Seeking Information using MAS

Research study Advantages & Disadvantages

[101] 2007

The study proposes architecture for

MAS to retrieve information using

the fuzzy logic concept. When

the user submits the query to the

system, an agent called a Broker

Agent (BA) passes the query to

several Search Agents (SA): each

looks for information in different

web database servers to return an

ordered list of results to a Response

Agent (RA).

RA must rank all results returned

from SAs and apply some meth-

ods based on associating each server

with a fuzzy set of key terms most

representing the topics. The ap-

proach enables developers to build

and deploy peer to peer applications

to manage document retrieval from

multiple sources.

Methods

� Using fuzzy logic based result

fusion mechanism.

� Using JADE framework to im-

plement MAS.

Advantages

Use JXTA agent communication method

to communicate through firewalls.

Disadvantages

Does not mention how SAs collect data.
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Table 3.4: (continued)

Research study Advantages & Disadvantages

[123] 2001

The study presents three crawler

agents to test their performance

in retrieving biomedical informa-

tion about diseases when informa-

tion about genes is given.

The first two agents are single-

agent algorithms based on Best-

First traversals (BFSN) where N =1

and N=256. BFS1 is the more stud-

ied algorithm and BFS256 is a more

explorative agent.The third agent is

called the InfoSpider agent. It is

a multi agent approach based on

an evolving population of learning

agents.

Starting from a seed set, each agent

visits up to 1000 pages per topic,

chopping pages larger than 100 KB.

A maximum buffer of 256 links is al-

lowed for each agent to be tracked.

The agent must decide to replace

some of these links if the buffer is

full.

The experiment shows that the In-

foSoft agent performs best in the

static similarity metric.

Methods

� Using MAS implemented in

Perl.

� Using simple HTML parser.

Advantages

The authors claim that their study was

the first in using an agent to crawl web

pages for biomedical information.

Disadvantages

� Although the methodology used to

select seeds ensure the existence of

the page and the links, some of the

seeds found do not exist or have no

links.

� Some of the retrieved pages are not

in English, which causes some mis-

match.

� Some of the topics were eliminated

regarding the cryptic nature of the

gene names, gene product names

and gene symbols which leads to re-

sults in different areas. E.g. BACH1

is a symbol of gene product but leads

to the composer Bach in the music

world instead of the breast cancer

field.
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Table 3.4: (continued)

Research study Advantages & Disadvantages

[104]2004

The study aims to minimize the

total completion time to traverse

routes for retrieving information us-

ing mobile agents. The user ini-

tiates multiple mobile agents con-

currently. Each agent visits the

providers which host the information

and retrieves a subset of required in-

formation to be returned to the user.

Methods

� Using intelligent agent.

� Using evolutionary computing

as in search optimization and

learning algorithms.

� Using fuzzy logic.

Advantages

The author claims that the study is unique

(at the time of publication) in the way in

which the intelligent agents are directed

and in combining the computational intel-

ligence techniques with intelligent agents

to improve filtering and retrieval of infor-

mation.
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Table 3.4: (continued)

Research study Advantages & Disadvantages

[125] 2005

The study proposes architecture for

MAS to retrieve information using

the fuzzy logic concept. When

the user submits the query to the

system, an agent called a Broker

Agent (BA) passes the query to

several Search Agents (SA): each

looks for information in different

web database servers to return an

ordered list of results to a Response

Agent (RA).

RA must rank all results returned

from SAs and apply some meth-

ods based on associating each server

with a fuzzy set of key terms most

representing the topics. The ap-

proach enables developers to build

and deploy peer to peer applications

to manage document retrieval from

multiple sources.

Methods

Applying 3 heuristic methods:

� Saving.

� Insertion.

� Serial Reverse-Constructed

Route(SR-CR).
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3.5 Data extraction from OSN using MAS

To the best of the authors’ knowledge, existing research in extracting data from

OSNs using MAS technology is limited, due to the fact that OSNs have become

popular only recently, within the last decade, although the concept of OSN has

been known since the 1997 as mentioned in Section 2.4.2.

The only research that is found in this area is that of Chau et al. in [47], who

extend the parallel crawler designed by Cho et al. in [49]. While Cho et al. work on

the static assignment architecture, where each crawler is assigned to a part of the

web (in general) to retrieve information and coordinate with each other without a

central coordinator, Chau et al. work on dynamic assignment architecture to crawl

the ebay1 network using a central coordinator (Master Agent) to control all crawlers.

Chau et al. built a parallel crawler for crawling ebay users’ profiles through the

list of IDs of those users who left feedback on the main user profile. The crawler

system is designed for NetProbe: a fast and scalable system for fraud detection (see

[110]).

Moreover, situations which require a continuous observation of the OSN user’s

profile in order to track the changes that could help in understanding the structure

of OSNs and its effects on different disciplines have not been addressed widely.

3.5.1 Data Extraction using API:

In this thesis, the focus is on using API programmatically to enable software de-

velopers to extract data from OSN profiles. To the best of the authors’ knowledge,

little research has reported on using API to extract data from an OSN. For example,

Mislove et al. in [102] collected a data set that includes over 11.3 million users and

1http://www.ebay.com
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328 million links from Flickr1, YouTube2, LiveJournal3 and Orkut4 through inte-

grating their crawlers with the API supported by OSN providers. The retrieved

data is used to study and analyze the structure of those OSNs. The results show

that OSNs have a far higher fraction of symmetric links as well as higher levels of

local clustering. The researchers stated how these properties could affect designing

OSN algorithms and applications.

Another study was undertaken by [22], who used API to look for the term “uni-

versity” in the name or description of Flickr groups. The aim was set to investigate if

the Flickr community could benefit from the tags that are used within the university

image groups. They retrieved a sample of 250 random images together with image

tags, uploaded by those groups. They found that the uploaders of the images pay

attention to assigning multiple tags (at least four) on each image, which is useful

for image retrieval purposes.

The work presented in this thesis is similar to [47] in terms of using BFS algorithm

to crawl the OSN profiles as well as using MAS to extract data in parallel. However,

the MasterAgent must assign which agent is to crawl the next OSN user in the

queue. Moreover, the grabber agents are designed to monitor the profiles of OSN

users to build a history for each user rather than visiting each user only once. Note

that details related to how the crawler is built in [47] have not been presented.

Catanese et al. in [44] extracted data in August 2010 when it was allowed for

third parties to access the Facebook Friends of Friends (FOF) profiles. They used

a queue to list the pending users who are seen but not visited yet using Breadth

First Fashion. A central coordinator and data master is created to control the queue

in order to ensure that no redundancy occurs in visiting the ebay users. Parallel

1http://www.flickr.com
2http://www.youtube.com
3http://www.livejournal.com
4http://www.orkut.com
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crawler agents are distributed to crawl the ebay profiles. Each crawler agent sends

a request to the master in order to get the next user from the queue. The crawler

agents use multiple threads for crawling then return the extracted information to

the master. Within 3 weeks, they had visited more than 11 million profiles, and

66,130 profiles had been visited completely (i.e. with all users in the feedback list

having been crawled).

Although these parallel crawlers were termed agents, the authors did not pay

any attention to considering their crawler system as a MAS.

3.6 Formalizing MAS

In Section 2.6.2, the importance of using formal specification in describing the

system before implementation was explained. Moreover, Hilaire et al. in [76] define

two roles for the specification process to fulfil. Firstly, it should provide the under-

lying rationale for the developing system. Secondly, it should guide in the design,

implementation and verification phases of the system. MAS used to be considered

a complex system that needed to be formalized [132, 39]. Thus, various research

approaches have been evolved in the last two decades to face the problem of devel-

oping MAS. Figure 3.9 which is modified from [39] presents some of the formalisms

used in formalizing MAS.

Boucherit et al. in [39] classified research on formalizing agents into two major

approaches:

� Behavioural approach.

� Logic approach.

This section highlights some of these languages and methods.
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Figure 3.9: Formalisms Used for MAS Formalization Modified from [39]

Logic for Contract Representation (LCR)

The Logic for Contract Representation (LCR) language is developed by Dignum et

al. in [54] as a very expressive logic to describe the interaction in MAS. LCR is

based on branching-time logic: i.e. it uses a tree-type branching structure where

the nodes represent the states and the arcs represent the events.

According to the possibilities that the agent has at each moment, states are

linked to obtain courses of events in order to obtain what is called a path. LCR

allows checking of whether the agents follow the required interaction patterns as

well as whether the agent preserves the desired social states. One of the limitations

of LRC is that it concentrates only on the logical representation of contracts while

the interaction structure as a whole has not been investigated.

Specification Language for Agent-Based Systems (SLAB)

SLAB stands for Specification Language for Agent-Based Systems and is presented
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by Zhu in [134, 132, 133]. It focuses on behaviours of agents in its environment.

Specification of the MAS in SLAB consists of the following:

System ::= Agent-description — caste-description

SLAB produces the concept of “Caste” which means a set of agents in a MAS

that have common capabilities and behaviours to perform a certain task. Caste is a

natural evolution of a class concept in object-orientation. Caste, as shown in Figure

3.10 (on the left) contains a description of the structure of its state and actions as

well as a description of its behaviour and environment.

The second concept that SLAB presents is the “agent” (see Figure 3.10 on the

right) which is similar to the object concept in object-orientation. An agent within

castes differs from an object within a class in that the agent can be added or removed

from the castes at run-time. Every agent in SLAB should be an instance of a caste.

Consequently, agents inherit all a castes structural behaviour and environment de-

scriptions. SLAB sets a default caste called AGENT if no caste name is given in

the agent specification [132, 134]. Although SLAB is a powerful formal specification

language [39], it is not used widely. Most research found in literature which uses

SLAB in specifying the MAS refers to its founder as an author, e.g . [98].

Figure 3.10: Graphical Description of Castes on the Left and Agents on the Right
as Presented by [132]

Z Notation

Unlike all other languages, the formal specification language Z has been made an

ISO standard for formalizing software systems. It is used widely in academia as

well as in large projects in industry [81, 71, 40]. This attracts many researchers
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to adopt it in developing complex systems, e.g. MAS models. For example, Niazi

and Hussain in [106] developed a simulation model for wireless sensor networks for

monitoring Complex Adaptive Environment. They chose Z to present FABS, a novel

Formal framework for Agent-Based Simulation [93]. However, Iglesias et al. argue

that since Z does not have a notion of time, it would be less well suited to specifying

agent interactions [80].
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3.7 Chapter Summary

The chapter presented some of previous studies which are related to different ap-

proaches to extract data from the web in general and OSN in particular. Also the

chapter explored research using MAS technology in seeking information from the

web as well as from OSN. Additionally, some of the formal specification languages

which are used to formally specify MAS are illustrated.

How the thesis gets advantages from these studies are described after each sub

section as follows: in terms of the technique used for this thesis, the approach

adopted is under HTML-aware tools, which is presented in [87], and as more likely

to be under wrapper induction regarding classification in [21]. It is similar to [24]

in terms of relying on token analyzers to find the data of interest in the HTML web

page.

Regarding DE from OSN, the approaches adopted for this thesis are similar to

[128, 45, 49] in terms of using a BFS algorithm to travel across the OSN, since it is

optimal, easy to implement and more representative of the friendship relations. Alike

[45], profiles that have the structures associated with bands, comedians or musicians

are rejected because they do not represent friendships between individuals.

In terms of using MAS, the thesis uses an HTML parser with agent as in [123],

and JADE toolkit to build MAS as [101], although they do not mention how the

data has been collected by agents.
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Chapter 4

An Approach to Data Extraction
from an Online Social Network

Preamble

With the increased use of online social networking sites, data extraction from social

networking profiles is becoming a major tool for business. What makes social net-

working profile data different is its semi-structured format. The structure and the

presentation of profile data change all the time. In OSN, there is a lack of research

into automated data extraction from web pages. This chapter will highlight our ap-

proach which is based on automated retrieval of the profile’s attributes and listing

of top and all friends from MySpace, one of the early known OSN.

4.1 Introduction

The popularity of OSN sites has increased the amount of personal data which is

publicly available. This data is distributed on the web as user profiles, which are

mostly in unstructured or semi-structured format, change all the time; not just in

their content but in their structure as well.

To benefit from the wealth of personal data accessible in OSNs, data must be ex-

tracted in the first instance. This requires new extraction methods to be developed.

Most of the existing methods collect data from OSN manually or do not mention
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how the data has been extracted. There is very limited research associated with

automated extraction methods from OSN sites, as described in Chapter 3.

This chapter presents the thesis’s first contribution to extract data from deep

web, particularly from OSNs automatically. This is due to the fact that data ex-

tracted is not reachable by crawlers of search engines. The Conceptual overview

of the proposed approach is described in detail in Section 4.2. The implemented

application is presented in Section 4.3, and Section 4.4 discusses the experimen-

tal results. Section 4.5 describes the validation while Section 4.6 highlights the

approach limitations. Finally, Section 4.7 summarizes the chapter.

Note that “user profile”, “profile identity” and “URL address” are used inter-

changeably in the thesis. Also, if ”parser” is mentioned in experiments, it means

parser with string tokenizing as a part of crawler.

4.2 Conceptual Overview of Data Extraction from

OSN Web Pages

This section presents the algorithm developed to extract data from OSN web pages

automatically. It concentrates on how to extract the displayed personal details of

OSN profiles such as name, age, gender, location, etc. as well as the list of friends

and their information through the following steps:

4.2.1 Specifying the Domain of Extraction

Although there are several sites for OSN, Myspace has been chosen as the domain

of extraction for two reasons. Firstly, at the time of the extraction (2009, 2010),

it was the largest OSN and the most visited web destination according to Caverlee

and Web in [45] as well as shown in Chapter 2. Secondly and most importantly,

Myspace is open, i.e. it allows a rich source of data to be derived from profiles

without the need for membership.
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Figure 4.1: An Example of a Default Myspace User Profile

Figure 4.1 shows the default webpage of a Myspace OSN profile, where the

basic information is displayed on the top left next to the profile picture, the detailed

information in a blue table on the bottom left, and the list of top friends is on the

bottom right. The list of all friends is obtained by clicking on the hyperlink (number

in red).

However, Myspace allows the profiles’ owners to customize their webpage to

display the most interesting information. Figure 4.2 shows the way in which the
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Figure 4.2: An Example of a Customized Myspace User Profile

page has been customized and the displayed information such as the list of top

friends has been altered.

4.2.2 Contribution to Automated Data Extraction

In order to apply automatical extraction of data from OSN profiles, the selected

approach relies on building a crawler: a popular method to retrieve data from a web

page, as shown in Chapter 2. The crawler is a modified form of “The stock tracker

application” which is presented by Haines in [68]. Haines’ application was designed

to extract data from the online stock market, where the source of data is structured.

However, building a crawler for parsing OSN profiles is more challenging for many

reasons, including:
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� OSN web pages are mostly in unstructured or semi-structured format, which

is more difficult to deal with than a structured format. They contain a wide

variety of data formats e.g. text, photos, videos, links etc.

� OSN web pages can be customized by users. Customization adds various

effects to an already dynamic web page.

Figure 4.3 shows the approach developed to extract data from an OSN auto-

matically. The details of the approach are as follows:

1. Data Pre-processing:

As discussed previously in Section 2.3.3, building a web crawler depends mainly

on the parser of the web page. This requires downloading of the source document

(HTML) of Myspace profiles and analysis of the document.

Since Java is selected to implement the application, it would be simple to down-

load the HTML of Myspace pages from the web through three steps:

� Create a java.net.URL object of the address of the first Myspace profile (seed

node).

� Open a connection to that URL through the OpenStream ( ) method.

� Read the data from the URL through one of the stream reader methods e.g.

InputStreamReader or BufferedReader which translate the bytes read into

characters.

Once the complete Myspace profile web page is being read as text, i.e. the HTML

source document of the profile has been obtained, this document should be analyzed

to pinpoint the required information.
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Figure 4.3: Automated Extraction Approach for Myspace Profile
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It is well known that HTML documents contain tags ‘<’, ‘>’ to encapsulate all

formatting information and commands for the web page. For example, the HTML

raw text: <B>my name is: </B> denotes that the format command starts with

the tag “<B>” and ends with the tag “</B>” and the text “my name is:” between

the tags will appear on the browser web page in bold.

Thus, all information displayed on the web page is located between the tags. In

other words, the parser must strip out all HTML tags to obtain the actual informa-

tion from the OSN profiles, which is referred to as the “token”. From the resulting

set of tokens, the location of the required tokens to be extracted and saved can be

found.

Figure 4.4 illustrates the pseudocode of the proposed parser as modified from

Haines’ Stock Tracker Application [68].

2. Getting the URL Address

The approach begins by asking the user to specify two inputs. Firstly, it requests

the seed URL of the Myspace profile. Seed URL means the first address of the

Myspace profile to extract its information. This could be considered the central

node of the resulting graph of the sub network. Each profile in all OSNs including

Myspace has a unique URL address.

Once the user inserts the URL, the application should check it to insure that

it is in the correct format. MySpace profile URLs should start with http://www.

myspace.com/ followed by the unique ID as shown in step 2 of Figure 4.3.

3. Checking the Stopping Criteria

The second input that the application must collect from the user before starting

the extraction process is the stopping criteria for quitting the application.

The user can specify whether the extraction should be stopped by:
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Figure 4.4: Pseudocode of HTML Parser Modified from Haines 2000
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� The number of friends extracted.

� The level of iteration (e.g. a friend of a friend).

4. Visiting the Specified Profile

Myspace classifies its profiles into different categories such as musician, bands,

magazines, public or private profiles. The categories differ in their representation,

attributes and structure, which affect the defining of the tokens in the parser.

Visiting the web page of the specified profile involves downloading the HTML

document, as explained in data pre-processing stage, if the profile is not related to

the musicians, bands or magazines categories. Otherwise, it will skip this profile and

move on to the next profile in the queue of friends list. The queue will be explained

later, in Section 4.3. The downloaded document will be read and translated into

an array of characters.

5. Extracting and Saving Data from the Profile Webpage

To extract the required data from a profile, the parsing method in [68] has been

modified to enable it to work with the two different Myspace source documents

as will be explained in Section 4.3.1. The extracted data includes all possible

information about the profile users such as personal information (name, age, gender,

photo link, etc.), detailed information, (smoker, drinker, etc.) and comments. If the

information is specified by the user, it will be extracted. Otherwise, it will be

replaced by null.

6. Extracting and Saving a List of Friends and their Profile Ad-

dresses

There are two kinds of friends lists: a list of top friends, with whom it is assumed

that the user might have a strong affiliation, and a list of all friends. Myspace will
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select by default, if the profile owner has not customized it, a subset of friends to be

in the list of top friends, usually based upon the oldest friendships. Only top friends

would be displayed in the main profile web page as shown in Figures 4.1 and 4.2.

It was necessary to distinguish between these lists because they affect the choice

of which profile should be the next for crawling. The resultant network will vary

accordingly, and will influence data analysis and the relationship between network

components.

For both kinds, a Breadth First Search (BFS) algorithm was used to select the

next profile for extraction. The scenario below illustrates how BFS will be applied

to the graph in Figure 4.5.

The graph represents a sub network of OSN where the vertices or nodes represent

the profiles and the edges are the friendship relationships. The first node (seed) has

two friends in its friends list which are nodes A and B. Node A has three friends

which are: seed, C and D. Node B is a friend of three profiles: C, G and F.

Figure 4.5: A Graph to Illustrate Breadth First Search

The BFS visits the nodes level by level. Thus, traversing the graph would be as

follows:

1. Add the node seed, which is in level 0, into the front of the queue.

2. Obtain its friends list, nodes A and B, and add them to the rear of the queue.
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Here the first level of iteration is completed.

3. Loop (while there are more friends in the level)

(a) Look at the next node at the front of the queue (in this case node A)

(b) Obtain its friends list: seed, C and D.

(c) If the node does not exist in the queue (C and D), then add it to the rear

of the queue. Otherwise, skip it (e,g, seed).

(d) Repeat steps ‘a’, ‘b’ and ‘c’.

4. By completing all nodes, the second level is ended.

The process will be repeated by obtaining the next URL in the front of the queue

until the condition of the stopping criteria is met. The pseudocode in Figure 4.6

illustrates the extraction process.

4.3 Implementation of Social Networking Extrac-

tor Application

An application called “Social Networking Extractor” is implemented. The applica-

tion is built as a crawler that obtains the seed URL, extracts information on the

web page and finds friends links to crawl their profiles as well. To clarify the devel-

oped application, the flowchart in Figure 4.7 details the steps of each stage in the

extraction process.

The extraction process divided into three stages: Data pre-processing, Input

initialization, and data collection and processing as detailed below:

4.3.1 Data Pre-processing

The Social Networking Extractor application is a sort of crawler that relies mainly

on the parser. As stated in Chapter 3 and Section 4.2.2, the parser takes the
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Figure 4.6: Pseudocode of the Automated Data Extraction Approach
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Figure 4.7: Flowchart of the Social Networking Extractor Application
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source document (HTML) of Myspace profiles as a stream of Unicode characters

to the tokenization stage where the tokens are classified. This requires down-

loading of the HTML document through three steps using the created Java class:

InternetManager as shown in Figure 4.8.

The next step of the data pre-processing stage after reading the source profile’s

web page involves analysing it in order to find the values and locations of the profile

attributes. Although MySpace allows external users to access the profile contents,

the author created several MySpace profiles for two reasons. Firstly, to help in in-

vestigating all possible structures and attributes to develop the parser and database

tables, especially as it was found that for most of the profile attributes, it is not

compulsory to complete them, and this reflects on the resulting profiles.
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Basic information Details Schools
Display Name Marital Status Country
First Name Sexual Orientation County
Last Name Hometown City
Headline Ethnicity Your school
Gender Religion Student status
Age Smoker Dates attended
City Drinker Year graduated
Country Children Degree type
Region Education Major
Zip code Occupation Minor
Photo link Zodiac Grades

Table 4.1: A Sample of Profile’s Attributes

Table 4.1 contains some of the profile attributes that can be completed. Database

tables and columns were built based on these attributes and their values were tar-

geted at extraction time of profile information. Secondly, the small friendship net-

work of the profiles created helps in understanding and testing the application faster,

especially in the early stages of designing the application.

From the experimental work, we recognized two different representations of the

basic information of Myspace profiles. The difference is not related to the customiza-

tion feature that MySpace allows its users to apply on their profiles. It is a reflection

of how data has been represented in the source document of the web page in the

first place, and this affects the design of the parser to extract data from the profile

webpage.

Figure 4.9 shows the basic information from two profiles which have a different

appearance, while Figures 4.10 and 4.11 represent the corresponding source docu-

ments of the web pages of the two profiles. Note that the information displayed in

Figure 4.9 is highlighted in Figures 4.10 and 4.11.
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Figure 4.9: Two Different Public Profile Representations

It is obvious that in Figure 4.10, the highlighted data is unstructured, while

it is semi-structured in Figure 4.11. To clarify this point, consider the attributes

Gender, Age, City, Country and Region of the profiles’ basic information (See Table

4.2). In order to find the values of these attributes in case of the unstructured data

(Figure 4.10), the correct table of basic information must be found and then the

HTML tags stripped out to find the tokens which are outside the tags but delimited

by the tags as shown in the first column of Table 4.2. The tokens, which are mostly

siblings in the DOM tree, will be extracted and saved in the corresponding columns

of the Basic Info table in the local repository.

In contrast, in the case of semi-structured data (Figure 4.11), the tag gives

a sense of what the value of the attribute would be (see Table 4.3). The parser

should be able to take into account all these different structures. Thus, the parser

that is presented in Figure 4.4 has been improved to retrieve the required data in

the semi-structured format along with the data that is in an unstructured format.

Representation of Source Data Attributes Values
<tdclass="text" ... "align = "left" > Female Gender Female
<br />26 years old Age 26 years old
<zr />any City City any City

<br />any Country Country any Country

<br /> Region null

Table 4.2: Representation of Attribute Values in an Unstructured Web Source
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Representation of Source Data Attributes Values
<span class="gender">Female</span> Gender Female
<span class="age">25</span> Age 25
<span class="locality">Bradford</span> City Bradford
<span class="country-name">UK</span> Country UK
<span class="region">Northwest</span> Region Northwest

Table 4.3: Representation of Attribute Values in a Semi-Structured Web Source

4.3.2 Initializing Inputs

This stage contains two main steps:

1. Specifying the URL Address of a Profile

The second stage of this automated approach is to specify the URL of the seed

profile to start the extraction process. All social network profiles come with a unique

profile URL address. In 2009 and 2010, the URL address of Myspace profiles was

clearly placed by default on the top right of the profile webpage, as shown in Figure

4.3. Then, in early 2011, it was placed in a third box on the left of the profile. At

present, the URL address has been removed from the main page of the user profile

by default. To find the profile URL address, the mouse is placed over the profile

picture or the hyperlink of the name of the profile user, and a small pop up window

appears on the bottom left of the screen.

Note that the URL address given in Figure 4.3 is one of the dummy accounts

which were created for coding and testing. The account has been deleted to avoid

any breach of privacy. Once the user has inserted the URL, the application will

add it to a queue and validate it as it should start with http://www.myspace.com/

followed by the unique ID. Should there be any mismatch of this format, the user

will be informed and requested to correct it as shown in Figure 4.12.

2. Specifying the Stopping Criteria

The users can specify whether they want to stop the extraction by either:
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Figure 4.12: Error Message

1. The number of friends extracted (e.g. the first 100 friends).

2. The level of iteration (e.g. a friend of a friend). The seed URL is specified at

level 0. Thus, level 1 represents the friends of the seed profile; level 2 gives the

friends of the seed URL’s friends, and so on. In this experiment, extraction

was stopped at the third level of iteration.

A screen shot of the Graphical User Interface (GUI) of the application “Social

Network Extractor” is shown in Figure 4.13. The blue section represents the in-

formation required before starting the extraction process, while the pink section

represents the result text area.

Figure 4.13: Screen Shot of the Social Network Extractor Application
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4.3.3 Data Collection and Processing

The third stage of the application begins by clicking the “Start” button as shown

in Figure 4.13. The application ensures that the loop condition is verified in order

to establish the following actions:

Step 1 : either obtains the seed URL from the queue of friends list, if the

application is running for first time, or the URL of the friends if the application is

running for the next iteration.

Step 2 : visits the specified URL and checks if the profile is available. This

requires downloading of the HTML document as explained previously if the profile

belongs to a public or private individual user.

Step 3 : extracts the values of the specified attributes in the parser from the

data pre-processing stage. For the unstructured data, all HTML tags were stripped

out from the string, the remaining text split into tokens and the tokens placed into a

vector. For the semi-structured data, it is necessary to recognize what is between the

tags to be used as a unique keyword. Figure 4.14 represents some of the extracted

values of the basic information attributes.

Step 4 : saves all extracted data to a local repository to be used for further

analysis. “Postgresql1” has been used to create relational database tables. Mostly,

each keyword specified in step 3 corresponds to a column in the database tables.

The value of attributes will be extracted if it is specified by the user; otherwise, it

will be null.

Step 5 : extracts a list of the profile’s friends. Public profiles allow a list of

friends and their URL addresses to be extracted, unlike private profiles which just

some of the basic information can be accessed.

As mentioned in Section 4.2.2, Myspace classifies friends list into top friends

1http://www.postgresql.org/
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Figure 4.14: Screen Shot of a Sample of the Seed Profile Extracted Information

and all friends. The choice of whether to extract the profiles’ top friends or all

friends depends on the purpose of the extraction. A full list of friends could give a

more accurate picture of the sub network and the environment of the profiles. From

an extraction perspective, the algorithm to extract the profile’s top friends list is

similar to extracting the all friends list. A BFS algorithm is applied to each of them

to select the next profile for extraction.

The difference starts when the parser must crawl through pages’ hyperlinks to

get the all friends list. Extra limitations have been added when dealing with all

friends:

1. The profile is skipped if the number of all friends is too big, such as if the

profile has 40,000 friends or hundreds of thousands of friends. E.g. Tom, the

default friend when a Myspace account is created, has more than 2 million
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Figure 4.15: Confirmation before Exiting Application

friends.

2. The maximum level of iteration was set as two to minimize the sub network.

The Java virtual machine heap, which is used for dynamic memory allocation,

is affected and the application may even stop if the number of friends is too

great.

Step 6 : saves the extracted friends list in the database tables as well as saving

it in a queue. Note that the URLs in the queue are unique: i.e. the URL address

will be added only if it has not been stored before, to prevent duplication in visiting

profiles.

As illustrated in the flowchart, the first iteration is completed when the crawler

finishes extracting information of the seed URL. It will then automatically move on

to obtain the next profile in the queue of friends list to extract the information of

the friends and friends of friends of the seed profile, until the condition of stopping

criteria are met.

The user has a choice to reset the application by pressing the “Reset” button

in Figure 4.14 if he would like to start extracting information from another seed

profile, or exit the application when the “Exit” button is pressed. The dialogue

boxes (Figure 4.15) pop up to confirm terminating the application.
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4.4 Experimental Results

Even though the purpose of the research is to present an approach to extracting

data from OSN profiles automatically rather than concentrating on the extracted

data itself, some interesting results have been obtained. The results will be divided

into two sections according to the type of friends list; top friends and all friends. For

both types, the extracted friendship network will be presented as a graph, where the

profiles are the vertices and the edges represent the friendship relationship between

two profiles in OSN. The open source application Nodexl1 has been used to draw

the graphs.

4.4.1 Top Friends Results

Figures 4.16 and 4.17 represent graphs of Myspace sub networks for the same

seed profiles extracted at different times. The first graph of the sub network in

Figure 4.16, which was extracted at the end of 2009, corresponds to the extracted

information of the profile shown in Figure 4.14, where the seed profile is node 0.

This node has 3 top friends in its list; nodes 1, 2 and 3. The nodes are symbolized

by red spheres in Figure 4.16.

By extracting the information of node 0 and its list of top friends, first iteration

is accomplished. The second iteration starts when node 1 is parsed to extract its

information and list of top friends (symbolized by solid diamonds). The same process

is applied to nodes 2 and 3 to complete level 1. Continuing this, 500 seed profiles

have been visited; 297 public profiles were parsed to obtain 2197 top friends’ profiles

and 2747 friendship edges.

The second graph (Figure 4.17) was extracted in mid-2010 for the same seed

profile. The sub network has grown although the seed profile has removed one of its

1http://nodexl.codeplex.com/
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Figure 4.16: Graph 1 of a Myspace Sub Network (Top Friends)

Figure 4.17: Graph 2 of a Myspace Sub Network (Top Friends)
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Graph Metric Graph1 Graph2
Vertices 2197 5395
Unique Edges 2465 6259
Edges With Duplicates 282 474
Total Edges 2747 6733
Visited Profiles 500 1300
Public Profiles 297 542

Table 4.4: Metrics of the Sub Networked Graph 1 and 2

top friends, i.e. node 0 has two friends; nodes 1 and 2. Moreover, node 2 is private,

which means its friends list could not be extracted.

Table 4.4 summarizes some of the metrics of the two graphs. From the table, it

can be predicted that two profiles have a strong friendship if they are in each others’

list of top friends: the closest friends. Although the friendship is a symmetric

relationship, top friends relationship is not: e.g. nodes A, B and C are friends.

Thus each profile should be in the list of all friends of the other. However, while A

and C are in the list of top friends of each other, A is in the list of B’s top friends,

but B is not in the list of A’s top friends. Thus it can be concluded that A and C

are closer to each other than B. These mutual top friends are shown in the table as

duplicate edges (282 in Graph 1 and 474 in Graph 2).

While Figure 4.18 confirms the results of other researches which show that the

Figure 4.18: Histogram of Age for both Genders in Graph 1 and Graph 2
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Figure 4.19: Distribution of Top Friends of Public Profiles

majority of Myspace users are female (e.g. [45]), Figure 4.19 shows the histogram

of number of top friends in the public profiles. The average number of top friends

is 10 while the mode is 7. The results of the extraction are used to calculate the

vulnerability of friends which is detailed in [20].

4.4.2 All Friends Results

Figure 4.20 represents the graph of Myspace sub networks for the seed profile’s

all friends. The graph was built by parsing 250 profiles; 67 were public profiles to

extract 10,196 friends’ profiles and 17,223 friendship edges as shown in Table 4.5.

The coloured vertices (230) are all friends of the seed profile. According to Nodexl,

the graph is too large, as its vertices exceed 10,000.

From the extracted information, some basic statistics can be reached such as

Graph Metric Graph1
Vertices 10196
Unique Edges 17203
Edges With Duplicates 0
Total Edges 17223
Visited Profiles 250
Public Profiles 67

Table 4.5: Some of Graph Metrics of All Friends
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Figure 4.20: Graph of a Myspace Sub Network(AllFriends)

calculating the martial status of the users and the percentage of smokers or drinkers,

as shown in Figure 4.21. Such information could be useful during analysis stages

as in the results which are used to calculate the vulnerability of friends which is

detailed in [9].

Figure 4.21: Percentages for Martial Status, Smoker and Drinker in the All Friends
Sub Network
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4.5 Validation

In order to confirm the accuracy of the Social Networking Extractor Application,

the extracted data should undergo some form of validation. This validation process

is required to ensure that the application has met the aims intended for it, which

include the following:

1. Ensure that the extracted data matches what is displayed on the profile web

page.

2. Ensure that the profile URL is valid, not representing one of the excluded

formats and that none of the public profile has been skipped unless its friends

list exceeds one thousand friends.

3. Ensure that the extracted data has been saved accurately, i.e. the attribute

values are placed in the appropriate columns of the database tables.

Since it was difficult to find another application or crawler to compare results

using different approaches, the results extracted by the Social Network Extractor

application have been validated manually. To validate the first point, the extracted

results were compared with the information displayed on the profile web page. Fig-

ures 4.22 and 4.23 present screen shots of the data extracted by the application on

the right, while a screen shot of the profile web page is displayed on the left.

Figure 4.22 shows the seed profile and the first friend in its list of top friends (3

top friends), while Figure and 4.23 shows the second and the last friend.

From the figures, it should be noted that:

� The basic information displayed on the screen shots of the application results

is just a part of what has been extracted by the application due to the retrieved

data being too large to be displayed in its entirety.
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Figure 4.22: Manual Validation of the Seed Profile and the First Friend
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Figure 4.23: Manual Validation of the Second and Third Profiles
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� The list of friends has been displayed completely. This is to help in ensuring

that none of the public profiles is skipped unless it is one of the specified

exceptions.

� There is a separator line to illustrate when the iteration level is completed.

Then the crawler will start extracting the next profile in the queue, i.e. the first

friend of the seed profile’s first friend. The line is different than the separator

lines between profiles.

Similarly, the next screen shots from Figure 4.24 to Figure 4.27 show the list

of all friends for the seed profile of the graph in Figure 4.20. Note that profiles 1,

3, 4 and 5 are private profiles. Thus, just some of the basic information could be

extracted, as shown in Figures 4.26 and 4.27. Screen shots of some of the private

profiles’ web pages are displayed in Figure 4.28.

Figure 4.24: Seed Profiles info and list of all friends
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Figure 4.25: (Continued Seed Profiles list of all friends
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Figure 4.26: Continued Seed Profiles list of all friends
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Figure 4.27: Continued Seed Profiles list of all friends
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Figure 4.28: Sample of Private Myspace Profiles

4.6 Limitations of the Current Approach

The limitations of the current approach include:

1. When the URL of a profile is given, the parser must check the type of pro-

file. Those profiles which represent bands, magazines and gangs are excluded

because they do not represent friendship between two individuals. Private

profiles are also excluded as they prevent the parser from retrieving most of

their information. This may affect the structure of the sub network.

2. The structure of the profiles is unstable and changes over time: this requires

modification of the parser to keep pace with the updates. The update process

is time- and effort- consuming.

3. The application is built as a centralized approach. The application is likely to

stop if one of the profile structures does not match the cases in the parser.
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4.7 Chapter Summary

This chapter presents an automated approach for extracting data from OSN

sites. The chapter concentrates on the extraction of semi- structured and unstruc-

tured data from Myspace profiles. A detailed description of the “Social Network

Extractor” application has been shown. The application is implemented to extract

Myspace profiles information as well as list of top friends and all friends. Some of

interesting results of the extracted data are shown accompanied with graphs.

The research has shown how far social network extraction has come since the days

when extracting attributes involved much of interaction with the profile owner, e.g.

questionnaires and interviews. Automatic extraction of attributes is the way forward

and it can be applied to dynamic web pages. The main challenge when carrying

out the experiment to implement the approach was that with social networks such

as MySpace, profile structures change fast over time, besides having more than one

template through which the user can customize a profile.

The contribution to this chapter has been published in [20, 9, 19]. and presented

in:

� The Institution of Engineering and Technology (IET) prestige invited talk:

Algorithms for Social Engineering in Online Social Network (with S. Alim,

D. Neagu and M. Ridley), (2010) University of Bradford, UK. http://www.

theiet.org/local/uk/yorks/west/social-eng.cfm

� Open Day: Automated Data Retrieval from Online Social Network Profiles

(with S. Alim), (2010) University of Bradford, UK.

� Presentation at FAIRS2009 for: the 3rd annual forum for AI research students:

Algorithm for Data Retrieval from Online Social Network Profiles (2009) Cam-

bridge University, UK.
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� Presentation and Demonstration to students from Bradford Grammar School:

Data Extraction from Online Social Network Profiles (2009) University of

Bradford, UK.

� AI Research Seminar: Data Retrieval from Online Social Networking Profiles

for Social Engineering Applications (2009) University of Bradford, UK.
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Chapter 5

Formal Specification of MAS for
Historical Data Extraction from
OSN

Preamble

The approach developed in Chapter 4 for extracting data from OSN is a centralized

system which controls and retrieves information from each user’s profile once. To

overcome the limitations of that approach, MAS was applied because of its ability

to monitor the users’ profiles continuously in a parallel paradigm. However, MAS

is considered to be a complex system to develop. This chapter investigates through

formal specification (Object-Z) the feasibility of using MAS technology in extracting

historical data from OSN sites, to ensure that the proposed Online Social Network

Retrieval System (OSNRS) is robust, reliable and fit for purpose before moving to

the implementation phase.

5.1 Introduction

Coping with real time changes in a huge amount of personal information requires

an adaptation of previous methods for data extraction. In the previous chapter, an

approach for automated data extraction from OSN was presented. However, the

approach has several limitations which need to be acknowledged. The main cause
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5.2 Overview of the Enhanced System (OSNRS)

of those limits lies in the fact that the system was designed in the manner of a

centralized system which uses a single agent to collect data from OSN. As a result,

the system was unable to continue if one of the profiles could not be parsed correctly.

Moreover, the previous algorithm did not take into account the monitoring of users’

profiles continuously over time.

To overcome these limitations, an improvement to the previous approach is re-

quired to move from a single agent to MAS in order to extract and monitor updates

in many profiles concurrently. As described in Chapter 2, a MAS has characteristics

such as mobility, autonomy, sociability and perceptivity which enable it to work in

a parallel (multithread) approach.

This chapter highlights the feasibility of using MAS technology in extracting

data from OSN sites. Due to MAS is considered to be a complex system to develop,

a formal specification language (Object-Z) is used to specify the enhanced web based

system OSNRS in order to ensure that the system is robust, reliable and fits the

purpose, before implementing the application.

The rest of the chapter is as follows: Section 5.2 presents an overview of OSNRS.

The flow of information between the OSNRS components is described in Section 5.3,

while Section 5.4 presents the formal specification of OSNRS. Two main classes of

OSNRS: MasterAgent and GrabberAgent, are detailed in Sections 5.5 and 5.6

respectively. Finally, the summary is presented in Section 5.7.

5.2 Overview of the Enhanced System (OSNRS)

In order to have a better understanding of the formal specification of the enhanced

system, an informal overview of the system components will be presented in ad-

dition to a description of how these components interact with each other. This is

because the level of the informal description detail will influence the level of formal
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specification abstraction [55](p. 4).The enhanced system (OSNRS) can be defined

as described in Definition 1.

Definition 1: OSNRS

A MAS that consists of a finite set of grabber agents controlled by a special
agent called MasterAgent in order to achieve the goal of retrieving and moni-
toring OSN profile information starting from a given OSN profile (seed profile).

Through this thesis, the MasterAgent (which is denoted by mAg ) organizes the

extraction process, controls agents and saves the retrieved information in the local

repository. In contrast, the grabber agent (denoted by gAg ) is used to refer to

the agent that is responsible for extracting data from OSN profiles and detecting

updates in these profiles. Figure 5.1 shows the structural model of the enhanced

system.

The general features of MAS were described in Section 2.5.5. How these fea-

tures implemented in OSNRS is described briefly below and will be detailed in next

chapter at Section 6.2.3.

The autonomy feature of each agent is implemented through working as a stan-

dalone process in extracting data from a specific profile and monitoring its updates.

Also, the autonomy feature of gAg allows it to decide on a suitable period of time

after which to reactivate itself depending on how active the profile is.

The sociability feature is applied when agents communicate with each other (in

addition to users) and exchange their knowledge in order to achieve their main shared

goal, which is to monitor the OSN profiles over time. The perceptivity feature of gAg

is shown when it can detect the real time updates of the profile that it is assigned

to whenever it is activated. More details of the OSNRS agents’ features will be
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Figure 5.1: Structural Model of OSNRS

illustrated in the next chapter.

5.3 The Flow of Data between OSNRS Compo-

nents

As illustrated in Figure 5.2, the OSNRS starts when the user specifies an identity

of OSN to extract its information. The mAg receives this identity (seed profile) and

adds it to the front of friends’ list queue to be assigned to a gAg . The gAg browses

the web page of the profile and extracts basic information such as name, gender,

age, country, etc. as well as the profile’s list of friends. This information will be

stored locally in a file to be compared with the information retrieved the next time

the gAg is activated.

Another copy of the file will be sent to the mAg and used to create a history of

that profile. The mAg adds the set of files to a local repository to be mined later
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Figure 5.2: Sequence Diagram of OSNRS

for future analysis.

Consequently, the mAg will add the list of friends’ identities, which have not

added before at the rear of the queue. Each identity will be assigned to a gAg ,

provided this has not already been done. The extraction cycle will repeat until

the mAg matches one of the stopping criteria described earlier in Section 4.3.2.

The perceptivity feature of gAg allows it to detect updates in the profile that it is

assigned to when it is activated periodically. The updates are detected by comparing

the current extracted data with the saved file of the previous extraction iteration.

Once a change is captured, the gAg will inform the mAg and send a copy of the

changes.

5.4 Formal Specification of OSNRS

The above informal description of the OSNRS will be expressed as a formal spec-

ification using Object-Z specification language as Hilaire et.al in [76] and Hayes

in [70] selected to formalize MAS. Object-Z supports all MAS features covered by

the proposed system (OSNRS) specifically concurrency, communications and state.
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Also multiple communication could be applied through range of composition oper-

ators [40]. This fits well with our proposed system (OSNRS) that will use Java to

implement MAS.

Initially, the basic types of OSNRS and the relations between these types will be

identified. Then, the Object-Z Classes of OSNRS will be detailed independently.

5.4.1 OSNRS Basic Types

From the description of the OSNRS, the basic types of the enhanced system as

shown in Figure are defined as:

[Agent ,Record , Identity ]

where:

[Agent ] the set of all created agents.

[Record ] the set of files which contains the retrieved information from the users’

profiles excluding the list of friends. Time could be included in this type to

specify the time of retrieving, updating and saving information.

[Identity ] the set of the URL addresses of OSN profiles.

As seen in Figure 5.3, the main relations between the basic types of the system

are:

� visiting : is a partial injective function from Agent to Identity to record which

identity a gAg is visiting. visiting is a partial function, to exclude the initial

state and the cases where the identities are retrieved but not assigned to any

gAg . It is injective (one-to-one) function because each identity is visited by

at most one gAg .

� file: is also a partial injective function from Identity to Record to represent

one record of the identity’s extracted data at a time.
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Identity

Agent

-visiting 0..1

0..1

-history

0..1 0..*

-file

0..1 0..1
Record

Figure 5.3: Relationships between the Basic Types of OSNRS

� history : records a history of each identity that has been observed over time.

5.4.2 The Object-Z Classes of OSNRS

Although many classes are compounded to construct OSNRS, as are illustrated in

Figure 5.2, only the most two important classes will be focused on in the following

sections:

� The MasterAgent Class.

� The GrabberAgent Class.

The syntax of these Object-Z classes may contain a constant definition, a state

schema, an initial state and finally a set of operation schemas, as described in the

next sections.
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Master Agent
−iteration
−counter
−known
−waitingresponse
−visiting
−current
−next
+INIT ()
+getFirstidentity
+start()
+addAssigning()
+assignGrabber()
+receiveAllProfiles()
+nextlevel()
+completeReceiving()

Figure 5.4: Class Diagram of MasterAgent

5.5 MasterAgent Class

The MasterAgent class is the main class in OSNRS which controls the extraction pro-

cess as well as saving a history of extracted profile information in a local repository,

as mentioned earlier. A class diagram which displays the attributes and operations

of the class is shown in Figure 5.4.

Each component of the class is described in detail in the sub sections below:

5.5.1 Constants Definitions

The class MasterAgent has three constants: iterationLevel and counter . Both are

natural numbers specified by the user to declare the stopping criteria of the system.

The third constant null of type Record is required later in initializing the state

variable of the GrabberAgent class.

iterationLevel : N
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counter : N

null :Record

5.5.2 State Schema of MasterAgent

StateSchema
known : seq Identity
waitingResopnse : P Identity
visiting : Agent 7� Identity
current , next : (seq Identity × Z)

waitingResponse ⊆ ran known
ran first next ⊆ ran known
ran first current ⊆ ran known
disjoint〈ran first current , ran first next〉

The state schema in the class MasterAgent contains five state variables as illus-

trated below:

� known: is an injective sequence of all identities (URLs) which are known to

the mAg : either the identity has been retrieved as a friend in the friends list

or entered by the user. Each identity in known appears once.

� waitingResponse: is a set of identities that gAg (s) have been assigned to, but

whose details have not yet been retrieved.

� visiting : is a partial injective function from Agent to Identity as described

earlier in Section 5.4.1.

� current and next : are tuples. current is used to determine the sequence of

identities that are being retrieved in this iteration level, while next represents

the identities that will be retrieved in the next iteration level. See Definition

2 for the recursive definition of level. In other words, when the extraction
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Definition 2: Recursive definition of level

level? : * seed? is at level 0;

* if i is an identity at level n then,

friends of i , who have not previously been recorded are at level n +1.

process moves from an iteration level to another level, the contents of next

will become current ; then next will contain the list of friends of identities in

current .

The state invariants point out two roles of known; first of all, it has to record all

retrieved identities in addition to the initial identity provided by the user, denoted

(seed?). The second role is to filter the retrieved identities before adding them to

the existing list. Thus, all identities in next , current and waitingResponse are taken

from known.

At any level, the identities that are in next will become current for the next

levels, and the final invariant will ensure that the identity will not be extracted

twice by different gAgs, as will be illustrated in Figure 5.5.

Informal Description Example

To simplify understanding of the OSNRS state schema, it is useful to consider

the graph and the table in Figure 5.5. The node seed? will be added at level 0

to known as shown in the table of the Figure 5.5. This node represents the root

and it will be in next to determine that the tuple will become the current tuple for

extraction in the level 1.
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BA

Seed?

FGCD

E H

Level 0

Level 3

Level 2

Level 1

Figure 5.5: A Sample Model of Online Social Network

The node seed? has two top friends in its list which are A and B . These two

nodes will be added to the known and compose the tuple to be extracted in level 2.

Node A has three friends in its top friends list, which are C , D and seed?. Therefore,

the link between seed? and A is bidirectional, i.e. they are in each others’ top friends

list. However, known will filter the retrieved identities to not allow any redundancy,

i.e. seed? will not be added. The same principle is applied to the subsequent levels.

5.5.3 The Initial Schema

When an object of the class MasterAgent is initialized, no identity has been added

to the sequence known yet. Consequently, no identities are waiting for response in

waitingResponse.

The visiting variable is an empty set because the gAg has not been allocated to
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any identity. Therefore, current and next are tuples that, on level -1, contain empty

sequences of identities which are being or will be retrieved respectively.

INIT
known = 〈 〉
waitingResponse = ∅
visiting = ∅
current = (〈 〉,−1)
next = (〈 〉,−1)

5.5.4 MasterAgent Operations

The following eight main operations specify the transitions the MasterAgent class

can undergo. They are as below:

5.5.4.1 The start Operation

start =̂ INIT o
9 getFirstIdentity

When the object of the MasterAgent is established for first time, the start op-

eration initializes all state variables as described in the INIT schema, then it will

be composed sequentially with the getFirstIdentity operation, as will be explained

below.
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5.5.4.2 The getFirstIdentity Operation

getFirstIdentity
∆known,waitingResponse, next
seed? : Identity

seed? 6∈ ran known
known ′ = 〈seed?〉
waitingResponse ′ = {seed?}
next ′ = (〈seed?〉, 0)

When the user enters the identity seed?, the mAg has to add this seed? to the

sequence known which holds all identities whose information the system will retrieve.

Also, seed? will be added to the waitingResponse set to indicate that this identity

is assigned to a gAg but has not retrieved its information yet. Consequently, the

tuple is allocated to next to specify that seed? profile will be extracted in the next

iteration (level 0).

5.5.4.3 The assignGrabber Operation

assignGrabber =̂ [first next 6= 〈 〉]addAssigning o
9 assignGrabber

[]
[first next = 〈 〉] receiveAllProfiles

As described in Section 5.3, the first operation the MasterAgent object has to

carry out when it receives the seed? from the user is to assign it to a gAg . The

assignGrabber is a recursive operation that, when composed with the addAssigning

operation (as detailed below), will continue until all identities in the sequence in

next are allocated to gAgs.
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5.5.4.4 The addAssigning Operation

addAssigning
∆visiting , next
id ! : Identity

∃ gAg : GrabberAgent • gAg 6∈ ran visiting ⇒
visiting ′ = visiting ∪ {gAg 7→ id !} ∧
next ′ = (tail first next , second next) ∧
id ! = head(first next) ∧
gAg .receiveID

To express the addAssigning operation, assent is given that there exists a gAg

from the class GrabberAgent, which will be described in Section 5.6, that has not

been assigned before to any identity. This gAg will be allocated to the head of the

sequence of identities in next (denoted id !).

Consequently, the id ! will be removed from the sequence and the remaining

elements will be shifted to be ready for allocation to the subsequent gAg . Note

that the iteration level will not increment in this operation. Once addAssigning

is accomplished successfully, the identity (id !) will be passed to the GrabberAgent

class for retrieval of its information, as will be explained in Section 5.6.3.1.

5.5.4.5 The receiveAllProfiles Operation

receiveAllProfiles =̂ [waitingResponse 6= ∅]receiveProfiles o
9 receiveAllProfiles

[]
[waitingResponse = ∅] completeRetrieving

The receiveAllProfiles operation that was called in AssignGrabber operation is

also a recursive composition operation, which is composed of the receiveProfiles op-

eration. However, it will not move on to the next level of iteration until information

about all identities in waitingResponse is returned.
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5.5.4.6 The receiveProfiles Operation

receiveProfiles
∆known,waitingResponse, next
id? : Identity
newRec? : Record
newFriends? : seq Identity

waitingResponse 6= ∅
let filtered == (newFriends? � (Identity \ ran known)) •
known ′ = known a filtered
next ′ = newFriends?
waitingResponse ′ = waitingResponse \ {id?}

When the mAg receives information of a profile (id?) from a gAg , it has to pass

this information (newRec? and newFriends?) to the LocalRepository class to update

the history of the profile id?. It is necessary that the mAg filters newFriends? to

remove identities which already exist in known. Following this, it must remove this

id? from the waitingResponse.

5.5.4.7 The completeRetrieving Operation

completeRetrieving =̂ ¬ [second next = iterationLevel ∨ #known ≥ counter ]
nextLevel o

9 assignGrabber
[]

[second next = iterationLevel ∨ #known ≥ counter ]INIT

This operation either applies the nextLevel operation recursively or exits and

finishes the iteration if one of the stopping criteria is met as described in previous

chapter, Section 4.3.2.
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5.5.4.8 The nextLevel Operation

nextLevel
∆current , next ,waitingResponse
id ! : seq Identity

second next 6= iterationLevel
counter ≤ #known
next ′ = (〈 〉, second next + 1)
current ′ = next
waitingResponse ′ = ran first next
mAg .assignGrabber

When the mAg has completed retrieving all information about all identities in

the waitingResponse set, i.e. completes the iteration level, it must move to the

next level of iteration. At this stage, all identities in next will be copied to both

waitingResponse and current to start a new level of data extraction. The complete

MasterAgent class is displayed below in Figure 5.6.
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MasterAgent

iterationLevel : N

counter : N

null : Record

known : seq Identity
waitingResopnse : P Identity
visiting : Agent 7� Identity
current , next : (seq Identity × Z)

waitingResponse ⊆ ran known
ran first next ⊆ ran known
ran first current ⊆ ran known
disjoint〈ran first current , ran first next〉

INIT

known = 〈 〉
waitingResponse = ∅
visiting = ∅
current = (〈 〉,−1)
next = (〈 〉,−1)

start =̂ INIT o
9 getFirstIdentity

getFirstIdentity
∆known,waitingResponse, next
seed? : Identity

seed? 6∈ ran known
known ′ = 〈seed?〉
waitingResponse ′ = {seed?}
next ′ = (〈seed?〉, 0)

assignGrabber =̂ [first next 6= 〈 〉]addAssigning o
9 assignGrabber

[]
[first next = 〈 〉] receiveAllProfiles
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MasterAgent(cont)

addAssigning
∆visiting , next
id ! : Identity

∃ gAg : GrabberAgent • gAg 6∈ ran visiting ⇒
visiting ′ = visiting ∪ {gAg 7→ id !} ∧
next ′ = (tail first next , second next) ∧
id ! = head(first next) ∧
gAg .receiveID

receiveAllProfiles =̂
[waitingResponse 6= ∅]receiveProfiles o

9 receiveAllProfiles
[]

[waitingResponse = ∅]completeRetrieving

receiveProfiles
∆known,waitingResponse, next
id? : Identity
newRec? : Record
newFriends? : seq Identity

waitingResponse 6= ∅
let filtered == (newFriends? � (Identity \ ran known)) •
known ′ = known a filtered
next ′ = newFriends?
waitingResponse ′ = waitingResponse \ {id?}

completeRetrieving =̂
¬ [second next = iterationLevel ∨ #known ≥ counter ]

nextLevel o
9 assignGrabber

[]
[second next = iterationLevel ∨ #known ≥ counter ]INIT

nextLevel
∆current , next ,waitingResponse
id ! : seq Identity

second next 6= iterationLevel
counter ≤ #known
next ′ = (〈 〉, second next + 1) ∧
current ′ = next ∧
waitingResponse ′ = ran first next ∧
mAg .assignGrabber

Figure 5.6: Formal Description of MasterAgent Class
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5.6 GrabberAgent Class

GrabberAgent
−myID
−myRec
−myFriends

+INIT
+receiveID()
+updateID()
+updateInfo()

Figure 5.7: GrabberAgent Class Diagram

The second main class in the OSNRS is the GrabberAgent. The objects of the

GrabberAgent class in the OSNRS could be considered as the worker bees in the

bees’ colony. This is because the GrabberAgent objects must visit the OSN profile,

extract data, monitor updates and send regular reports to the MasterAgent class.

Figure 5.7 shows the class diagram of the GrabberAgent, in which its components

are detailed.

5.6.1 State Schema of GrabberAgent

StateSchema
myID : Identity
myRec : Record
myFriends : seq Identity

myID 6∈ ran myFriends

The state schema for the GrabberAgent class contains three state variables:

1. myID : denotes the unique profile identity that the gAg is assigned to.

2. myRec: denotes the personal information of the profile identity.

3. myFriends : denotes the list of friends of the profile identity.
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The predicate of the state schema is true if and only if each identity is not a friend

of itself.

5.6.2 The Initial State

INIT
myRec = null
myFriends = 〈 〉

When an object of the class GrabberAgent is created, it has not yet been allo-

cated to any identity. Accordingly, neither the personal information of the identity

nor its list of friends are known. Thus, the state variable myRec is initialized to the

constant null while myFriends is set to an empty sequence.

5.6.3 GrabberAgent Operations

Although GrabberAgent has only three main operations, these are what the OSNRS

is based upon. They are as follows:

5.6.3.1 The receiveID Operation

receiveID =̂ INIT o
9 updateID o

9 updateInfo

As mentioned earlier in the addAssigning operation of MasterAgent class (Sec-

tion 5.5.4.4), when the mAg assigns a gAg to an identity, the GrabberAgent class

will get this identity through a receiveID operation. The receiveID has to compose

several operations sequentially. If the id? is received for first time, then the INIT

will be executed as described above. Otherwise, i.e. where the id? has been received

before, one of the following operations will be applied; the updateInfo operation or

the updateID operation.
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5.6.3.2 The updateInfo Operation

updateInfo
rec! : Record
friends ! : seq Identity
id ! : Identity

∃ newRec? : Record , newFriends? : seq Identity •
newRec? 6= myRec ∨ newFriends? 6= myFriends ⇒
myRec ′ = newRec? ∧
myFriends ′ = newFriends? ∧
rec! = myRec ′ ∧
friends ! = myFriends ‘ ∧
id ! = myID ∧
mAg .receiveProfile

The updateInfo operation is invoked periodically after the gAg has been assigned

an id?. Since the retrieved information is coming from an external database (OSN

server), we abstract away from the querying process by assuming that there exists

a record (newRec?) that contains all personal information about myID , and a se-

quence of identities (newFriends?) that holds a list of myID friends. Either the

newRec? or newFriends?, or both, should be distinguished from the existing myRec

and myFriends respectively in order to be replaced. As a result, the new information

in myRec, myFriends accompanied with myID will be sent back to the MasterA-

gent class through rec!, friends ! and ID ! consecutively when the mAg .receiveProfile

operation is involved.

5.6.3.3 The updateID Operation

The upadateID operation is called upon to replace the old identity that the gAg is

allocated to with a new identity (id?). This is important in order to re-use the gAg

in cases where the identity that it is assigned to has been removed from the sub

network of OSN, or a gAg is assigned to a new profile.

148



5.6 GrabberAgent Class

updateID
∆myID
id? : Identity

myID ′ = id?

The Object-Z specification of the class GrabberAgent is given in Figure 5.8

GrabberAgent

myID : Identity
myRec : Record
myFriends : seq Identity

myID 6∈ ran myFriends

INIT

myRec = null
myFriends = 〈 〉

updateInfo
rec! : Record
friends ! : seq Identity
id ! : Identity

∃ newRec? : Record , newFriends? : seq Identity •
newRec? 6= myRec ∨ newFriends? 6= myFriends ⇒
myRec ′ = newRec? ∧
myFriends ′ = newFriends? ∧
rec! = myRec ′ ∧
friends ! = myFriends ′ ∧
id ! = myID ∧
mAg .receiveProfile

receiveID =̂ INIT o
9 updateID o

9 updateInfo

updateID
∆myID
id? : Identity

myID ′ = id?

Figure 5.8: Formal Description of GrabberAgent Class
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5.7 Summary

This chapter has presented, through Object-Z specification, the feasibility of using

MAS technology in extracting historical information from OSN sites. The aim was

to ensure that the proposed system (OSNRS) is robust, reliable and fits its purpose,

before the implementation phase. Object-Z is very close to being an executable

specification because it has the ability to be converted into computer code easily.

Next chapter will describe the implementation of OSNRS.
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Chapter 6

Design and Implementation of a
Multi Agent System for Historical
Data Extraction from Online
Social Networks

Preamble

The desire to track information changes in real time requires an adaptation to pre-

vious methods in web DE. In the previous chapter, a formal specification of an

OSN system was constructed to help us investigate the feasibility of using MAS

technology in retrieving historical information from OSN sites.

This chapter applies MAS technology in retrieving information from OSNs. An

algorithm making use of MAS within the OSNRS is proposed. The novelty of the

proposed approach is in associating an agent in each user profile to monitor its

updates, which are sent to a controller agent that saves a history of each users

activity in a local repository.

6.1 Introduction

The increased simplicity in accessing the WWW via wireless devices such as lap-

tops and smart phones helps end users to participate in OSNs. OSN gives them
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more opportunity to make new friendships, share their interests even with unknown

people, upload photos and distribute their personal information over time. These

changes in the users’ profiles may affect the behaviour and actions of their friends

and lead to alterations in the network analysis. Thus, more attention is required as

to how information will be collected from OSN websites taking into consideration

these rapid changes.

This chapter focuses on tracking profiles changes and extracting historical infor-

mation from OSN sites. Although there are numerous studies which have attempted

to extract millions of profiles from different OSNs, e.g. [45, 102], to date, they have

analyzed results gained by visiting each profile only once. To the best of the current

authors’ knowledge, there is no reported work which deals with monitoring the rapid

changes in those profiles.

In Chapter 4, a parser was developed for the automated extraction of personal

information of OSN profiles and their list of friends based on the BFS algorithm.

However, that approach has several limitations which need to be addressed regarding

using a centralized system and a parser (string tokenizer) to retrieve information

from the profiles’ source pages. Moreover, the previous algorithm did not address

the monitoring of profiles over time.

Thus, the aim of this chapter is to improve the algorithm presented in Chapter 4

through use of MAS to overcome some of the limitations in preserving and recording

the temporal ordering of OSN profiles’ events, to expedite the extraction process and

to make the algorithm more scalable.

The remainder of the chapter is arranged as follows: Section 6.2 presents the

conceptual overview of the contributions to OSNRS. Section 6.3 details the im-

plementation of running agents on MySpace profiles, while findings and results are

analyzed in Section 6.4. Section 6.5 validates the system and the limitations of
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current approach is illustrated in Section 6.6. Finally, the summary is presented in

Section 6.7.

6.2 Conceptual Overview of Online Social Net-

work Retrieval System

The developed Online Social Network Retrieval System (OSNRS) aims to overcome

one of the drawbacks of the Social Networking Extractor whereby the application

is stopped and terminates if it fails to parse one of the profiles. This issue could

be avoided if the information of the OSN profiles is extracted in a multi-threading

approach rather than using a single thread. As demonstrated in Chapter 5 through

formal specification, MAS is a useful technology to fulfil these aims.

6.2.1 Selecting the software

Since the OSNRS relies mainly on creating a MAS, choosing the appropriate pro-

gramming language and development tools are a significant issue in the success of

building a MAS [30](p.8). Although major programming languages such as Java

and C++ could be used to create the MAS, using tools that provide a relatively

straightforward implementation of MAS concepts would be helpful and time saving.

In building the OSNRS, the search for tools was restricted to those built in

Java, in order to ensure compatibility with the parser developed in Chapter 4.

Three different Agent tools have been evaluated to build the OSNRS. The common

issue with using all these tools is the incompatibility between their requirements

and available facilities, due to these tools advancing slowly with the development of

operating systems and other requirements. Besides, the attached manuals are not

up-to-date. The tools are:

1. AgentBuilder: is the first tool selected to build the agents. At the time
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of starting to code the agents in 2007, the latest Microsoft Windows desktop

operating system was Vista, while the AgentBuilder was designed to work with

Windows XP.

There were compatibility issues in using this tool. Moreover, AgentBuilder

is a commercial tool, i.e. not free software, and thus it was difficult to find

solutions for errors. The only option was to contact the developers, which

proved to be seriously time-consuming.

2. Aglets: is an open source platform and library for developing an agent in

Java. Many universities use it to support their courses. Appendix (B) presents

a brief overview of Aglets. The difficulty encountered with this tool was that

its latest version was released in 2004, and its forum was therefore relatively

inactive and inefficient.

3. JADE: stands for Java Agent DEvelopment framework. (JADE) has been

selected to implement OSNRS because it is a widely adopted open source

software tools for designing MAS in recent years. JADE is a “ distributed

middleware system with a flexible infrastructure allowing easy extension with

add-on modules” [30] (p.18).

As JADE is written in Java, this encouraged its selection, especially as it fits

well with the developed parser, which is described in Chapter 4. Appendix

(C) provides more information on JADE and how to use it.

6.2.2 Organizational Model of OSNRS

The Organizational model of the OSNRS is built based on the structure of MAS in

general and the selected tool in particular.

JADE is selected, as with Camacho et al. in [43] and Aldea et al. in [18], to

implement the OSNRS. In JADE, each agent should live in a running instance of
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Figure 6.1: Organizational Model of the Proposed System

runtime environment called a container. A composite of containers comprises the

platform.

Although many agents may live in one container, and several containers compose

a platforms, and the system is composed of one or more platform. it was decided to

simplify the OSNRS environment by:

� Assigning one platform to compose all containers.

� Creating each agent in a unique container.

Figure 6.1 shows the organizational model of OSNRS and its environment. Note

that the number of containers in the workstations can vary from 0 to many. Also,

the local repository (Database) can be accessed only by the mAg .
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Figure 6.2: Structural Model of OSNRS (Repeated)

6.2.3 Structural Model of OSNRS

In Section 5.2, the OSNRS was defined as a MAS that consists of a finite set of

agents (grabber agents) controlled by a special agent called a MasterAgent. Each

grabber agent (gAg ) will be allocated to a unique URL to extract the information

from an OSN profile and will continue to monitor any updates in the profile. The

extracted information will be sent back to the mAg , which creates a history of each

profile, recorded in a local repository to be ready for further analysis. As a reminder,

Figure 6.2 which represents the structural model of OSNRS is repeated from the

previous chapter (Figure 5.1 in Section 5.2).

The novelty of the OSNRS is in keeping the gAg monitoring the assigned profile

for updates. Such updates are detected by comparing the current retrieved infor-

mation with the saved file from a previous extraction. Once a change is captured,

the gAg will inform the mAg and send a copy of the updated file.
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Several MAS features fit well with the OSNRS. The proactivity feature of mAg

means that it initiates achievement of the goal for which it was designed, which

as stated is to collect the historical information of the seed profile and that of its

friends. Thus, it will start to behave as a stand alone process (autonomy feature)

through taking decisions such as:

� how to find the existing gAg in the platforms?

� which gAg should be allocated to a URL?

� whether the URL should be added to or removed from the queue.

� when it should terminate the application?

� when it should reactivate a gAg ? i.e. deciding whether a specified time is

appropriate to the extraction process.

The sociability feature of mAg allows it to communicate with the gAgs, the user,

and other software e.g. database systems. mAg communicates with gAgs using

messages to exchange plans and goals. For instance, the mAg must send a message

to a gAg to:

� allocate the gAg to a URL.

� ask the gAg to stop extracting information from a profile.

� change the targeted profile.

� reactivate the gAg to start monitoring.

The mAg perceptivity feature comes into play when it balances between the

directed goal (to extract historical information from OSN profiles) and the timely

response to factors detected in the environment. For example, if a gAg reports that

the allocated URL is broken or unavailable, the mAg must take a decision to remove

the URL from the queue and the database as well as releasing the gAg to make it

free for allocation to another URL (if necessary).

On the other hand, MAS features show up in the gAg as follows; the autonomy
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of a gAg allows it to operate as a standalone process to achieve its goal (retrieving

the profile information) without the direct intervention of users. The perceptivity

of the gAg permits it to detect changes in profiles and to make decisions as to when

it must report the results to the mAg .

The mobility feature permits the gAgs to be distributed between different ma-

chines in the network. The distribution of gAgs helps to speed up the operation of

extraction. The scalability of the MAS will facilitate the process of adding new gAg

or other agents for different purposes as required without having to change the exist-

ing system. The sociability allows gAg , mAg and users of OSNRS to communicate

with each other and exchange their knowledge.

6.2.4 Flow of Information between OSNRS Components

By applying MAS technology to the OSNRS, the tasks of the previous application

“Social Networking Extractor” will be modified and split between mAg and gAg .

Figure 6.3 shows the sequence of main actions between the OSNRS’ major

classes. When the object mAg of MasterAgent class is created successfully in the

container, it will prompt the user to specify the time to reactivate the gAg , in

addition to the seed URL and the stopping criteria. The mAg has to validate the

correctness of the URL as described earlier in Section 4.2.2. This seed URL will

be added to the front of the queue. Also the mAg must check the stopping criteria

before starting the process of extraction.

The extraction process starts when the mAg looks at the platform for a gAg ,

to allocate the profile URL to it. Allocation requires ensuring that the gAg has not

been allocated to any profile before, nor that the URL is duplicated. In other words,

each profile should be parsed by just one gAg . If no free gAg is found, the mAg

must create a gAg in a new container and add it to the platform.

Agents use messages to communicate with each other. JADE agents use Agent
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Figure 6.3: Sequence Diagram of OSNRS (Repeated)

Communication Language (ACL) which follows FIPA ACL1 standard; the most

used and studied agent communication language for messaging format. The most

common message attributes include:

� The sender (initialized automatically).

� List of receiver(s).

� Performative act: the goal of sending the message, e.g. to inform, request,

query, etc.

� Content of the message.

� Conversation ID: to link messages in the same conversation.

More details about JADE messaging can be found in Appendix (C).

Referring back to Figure 6.3, the gAg will receive the message and accept the

task. It will then start to extract profile information after ensuring the availability

1http://www.fipa.org/specs/fipa00061/
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of the profile. In addition to the basic information, the list of friends which are

hyperlinked to the users’ profiles is extracted.

A copy of this information will be saved in a file and another copy will be sent

back to the mAg using a different port. To speed up the extraction process, a port

is set up just for transferring files to distinguish it from the port that is used by

agents for other communications with the mAg . After submitting the file, the gAg

will go to sleep until the mAg decides to reactivate it in line with the time period

specified by the user. This time could be seconds, minutes, hours or even days

according to the purpose of extraction and the required information. When the

gAg is reactivated, it will repeat the process of extraction, but when it gets the file,

it must now compare the newly collected data with the previously saved data. If

updates are captured, the gAg must replace the saved file and inform the mAg of

the new updates (if nothing is found, the gAg will not send anything to the mAg ).

The mAg saves each returned file in a local repository. The repository is or-

ganized in such a way that the updated files, which are each related to the same

profile, are linked together to form a history of each profile. Also, each URL in the

friends list will be added to the rear of the queue after checking that it has not been

added before. This queue is used to ensure that the URL is allocated and parsed

by only one gAg . By completing this stage, the first iteration is accomplished.

The mAg works sequentially in terms of behaviour to deal with all the tasks

explained above. In order to allocate URLs in the friends list queue to gAgs, mAg

applies one of the features of MAS which allows it to carry out tasks in parallel using

a composition of behaviours, including parallel behaviour and cyclic behaviour in

addition to sequential behaviour. Figure 6.4 shows the classification of behaviours

which JADE provides for its agents. Appendix (C) presents some examples of these

behaviours.
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Figure 6.4: Classification of JADE Agent Behaviour

When each gAg in the queue is allocated to a URL, it will repeat what the first

gAg does as explained above. Note that the mAg will check the stopping criteria to

decide when to stop allocating gAgs.

6.3 Implementation of Online Social Network Re-

trieval System

This section highlights the steps required to implement the proposed system (OS-

NRS) taking into consideration the aim of developing an algorithm which is able to

overcome the limitations in the previous approach which was presented in Chapter

4, by applying MAS technology. The flowchart in Figure 6.5 details the steps of

the OSNRS experiment.
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Figure 6.5: Flow Chart of OSNRS
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Figure 6.6: Setting JADE Environment for OSNRS

The implementation of the work is accomplished by the following:

6.3.1 Setting the Environment of OSNRS

Setting the environment involves using two connected workstations to share one

JADE platform.

The containers are distributed on these two workstations to form the runtime

environment. Initially, the mAg is created to live in a container in a machine (e.g.

called D402-5-3) as an object of the class MasterAgent by the command in Figure

6.6(A), where mAg is the nickname of the agent. The successful creation of the mAg

gives what is shown in Figure 6.7.

Figure 6.7: Creation of MasterAgent

163



6.3 Implementation of Online Social Network Retrieval System

For creating gAg(s), if the gAg is created on the same mAg workstation, then

the gAg container should be attached to the main container (mAg container). If the

gAg is created on another workstation, then the host of the main container should

be added as shown in Figures 6.6(B) and 6.6(C) respectively.

6.3.2 Input Initialization

The mAg will prompt the user to specify 3 variables:

� The URL of the seed profile: the mAg must validate the correctness of the

URL as described earlier in Section 4.2.2.

� The stopping criteria: although the experiment could be stopped by one of

stopping criteria explained in Section 4.3.2, the stopping of the OSNRS in

the experiment is limited only if the second condition is met; i.e. if the friends

of the friends of the seed profile are reached. Limiting the stopping criteria

to this aims to simplify the extraction process and reduce the time required

to complete it. This is because monitoring the updates to profile information

requires time almost equivalent to extracting new friend information.

� The time to reactivate the gAg : as mentioned previously, specifying reacti-

vation time depends on the attributes of interest in the profile, which differ

according the purpose of extraction. At this stage of the experiment, the aim

was set to monitor how often the user changes his list of friends (either top

friends or all friends) in order to help calculate vulnerability over time [8].

Adding and/or removing friends is not subject to rapid changes; therefore it

was decided that the gAg should be reactivated (awakened) once a day for two

weeks.
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6.3.3 Choosing the Sample of OSNRS

The experiment is a continuation of the work of the previous application, where

Myspace profiles form the domain of extraction. The selected sample has been

divided into two groups as follows: for group 1, 20 random public profiles are set to

be the seed URLs. There are no connections between these profiles, i.e. no profile

is in the list of top friends of other profiles.

In contrast, group 2 is formed through choosing the profile which has the largest

number of top friends in group 1 (in this case 35 top friends). Subsequently, each

public profile in this list was established as a seed URL for extraction. As a result, it

was ensured that there are connections between these profiles. Choosing two groups

may help in assessing whether the behaviour of the users of the sub network affect

each other if they are in connected or disconnected groups.

6.3.4 Running the OSNRS

Once an object of the MasterAgent class is created successfully, it will establish a

connection with the local repository. As previously, Postgresql has been chosen to

save the retrieved information in rational database tables.

Note that the mAg uses the method dowait (time in millhseconds) to move

Figure 6.8: mAg Connection to Database
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Figure 6.9: Message for Allocating gAg to a URL

from an active state to a waiting state in order to allow these settings to be estab-

lished, as shown in Figure 6.8. After the specified time has passed, the mAg gets

the seed URL and adds it into the front of the friends list queue.

It then begins the loop for extraction, starting by looking for a free gAg , if any

exists, to allocate to the seed URL. Otherwise, the mAg will create one and add

it to the platform. Allocation of the URL to a gAg is accomplished by sending a

message (see Figure 6.9).

Figure 6.10: gAg Receiving Message
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Figure 6.11: File Name Format

Subsequently, the receiver agent (gAg ) will pick up the message from its mailbox

by using the receive ( ) method as shown in Figure 6.10. Once the gAg reads

the content of the message, which contains the URL, it will validate the web page

to be browsed.

As previously described in Chapter 4, validation includes checking that the

profile is not related to a musician, magazine or band. These types of profiles have

been excluded because they do not reflect a relationship between individuals. Also,

validation involves checking if the web page is broken, has been changed from public

to private or has been removed. The gAg reports to the mAg if one of these situations

has occurred. Otherwise, the gAg retrieves the list of top friends and number of all

friends, in addition to the personal information, using the parser that is described

in Chapter 4.

As soon as the gAg has completed extracting data, it will store it in a file. The

file name is specified at the time of creation in the following format:

Profile unique ID (either name or ID number) + “Info” + current time in

(YYYYMMDDhhmmss) format, where ‘Y’ used for year, ‘M’ for month, ‘D’ for

day, ‘h’ for hour, ‘m’ for minute and ‘s’ for second. For example, a similar file name

in Figure 6.10 is shown in Figure 6.11. Such a format guarantees that the file is

unique and simplifies the saving of a history of each profile. The file is attached with

a reply message to the sender (mAg ) but on another port as described previously

in Section 6.2.4.
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Figure 6.12: Reply Message from gAg to mAg

In order to reply, the gAg uses the createReply ( ) method and modifies the

content and performative of the message. The createReply ( ) method will au-

tomatically switch the sender and receiver and complete all necessary fields, such

as the conversation-id (unique ID of the conversation thread), reply-with (the ex-

pression used by a responding agent, in this case a gAg , to identify the message)

and in-reply-to (a reference to an earlier action to which the message is a reply), as

shown in Figure 6.12.

When the mAg receives the reply message from its mail box accompanied with

the file, it will save the information in a local repository. Part of the information

Figure 6.13: Results of Searching the Platform for gAgs
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contains the list of friends. For each URL in the friends list, the mAg checks that

it does not exist in the queue of the friends list before adding it at the rear. It

then searches the platform for an available gAg . Figure 6.13 shows the code and

a screen shot of a search of the platform for gAgs.

If a gAg is not found, the mAg will create a new gAg and then allocate it to the

URL from the friends’ list queue. Note that assigning a gAg to a URL forms a one

to one relationship: i.e. each profile is visited and observed by only one gAg .

One of the strengths of a MAS is its agents’ ability to work in parallel. Thus,

the mAg uses parallel behaviour for allocating URLs to gAgs as shown in first line

of the code in Figure 6.14. Thus, all gAgs will start to extract profiles information

simultaneously.

In order to keep an agent in each visited profile to track updates and send a

message to the mAg containing any new changes, each gAg is created in its own

container.

It should be noted that although all information is saved in a file to be sent to

the mAg , only some of the basic information is printed out on the screen, along with

the name of the file which contains the list of friends in Figure 6.15. In addition,

although the list of top friends of the seed URL contains 7 friends, as shown in

Figure 6.14, and the mAg sends a URL to each gAg , only 5 are valid, since the last

two are excluded due to the fact that they are not related to an individual profile.

The process will continue using a BFS algorithm. Currently, the experiment

is concerned with the top friends of each profile rather than all friends, for the

reason specified in the previous Section 6.3.3. Through this process, the historical

information from each profile will be saved in a local repository, keeping the gAg in

the profile’s URL to detect any changes in the profile contents.

The OSNRS terminates if the specified number of friends is retrieved or if all the
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Figure 6.14: Parallel Behaviour of mAg in Allocating URL Profiles to gAgs
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Figure 6.15: Some of the Extracted Basic Information and the File of Friends List
for Each gAg in its Own Container
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friends at level 2 in the sub network have been retrieved.

6.3.5 Algorithm of OSNRS

Figure 6.16 outlines the pseudocode for the approach developed to extracting a

profile’s personal information and list of friends from the MySpace social network.

The described approach is applied in the two groups as described. The results

of the experimental work are explained, followed by findings and future work.
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Figure 6.16: The Pseudocode of the Developed OSNRS

173



6.4 Experimental Findings and Results

6.4 Experimental Findings and Results

Since the target of this research focuses on justifying the approach developed rather

than being concerned with the extracted data, a simple goal is set for the experiment

in order to show the way in which the agent can track updates in OSN profiles. The

goal set is to establish how often the users change their friends, either in the total

number of friends or in their top list of close friends.

In Section 6.3.3, it was mentioned that two groups of Myspace profiles were

selected. From the experiment, the number of public profiles observed in both

groups ranged between 130 and 160 with changes in the sub network. Almost 80%

of the visited profiles were aged below 30. Just over half of them (56%) were female.

Table 6.1 presents results obtained from preliminary analysis of the retrieved

information. It shows that the user profile displays a significant difference between

the minimum and maximum number of all friends. The mode of the number of top

friends in both groups was similar, while in group 2 it was double regarding the

number of all friends.

The profiles from both groups were observed for two weeks by reactivating the

gAgs once a day. Tables 6.2 and 6.3 also show the daily changes in the number of

friends list, top friends and all friends respectively. The empty cells at the end of

Group 1 Group 2

Total 84 59

Top Friends All Friends Top Friends All Friends

Min no. of Friends 1 3 3 9

Max no. of Friends 39 535968 37 2150503

Average of Friends 10.9 15190.64 12.55 54262.07

Mode of Friends 6 20 7 43

Profiles % Profiles % Profiles % Profiles %

Changed 1 1.19 20 24 1 2 19 42.22

Unchanged 60 71.43 37 44 35 78 17 37.78

Incomplete Changed 2 2.38 15 18 0 0 5 11.11

Incomplete Unhanged 18 21.43 11 13 9 20 4 8.89

Table 6.1: Comparison between Group 1 and Group 2
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6.4 Experimental Findings and Results

Figure 6.17: Sub Network of a Profile in Week 1

the row mean that either the profiles have been removed from the list of top friends

of someone’s profile, or that the account has been closed by the owner (e.g. profiles

4, 7, 10 and 12).

If the empty cells appear in the beginning of the table as in profile 9, this shows

that this profile has been added recently to the list of top friends. The single most

striking observation from the tables is profile number 3, which has been dropped

from the list of top friends of one profile. Two days later, it appears again in the

list of the top friends of another profile. The fact that the profile already exists in

the database will undoubtedly help in understanding the impact of this profile on

the sub network.

By combining Table 6.1 with Tables 6.2 and 6.3, it may be concluded that

users are likely to change their friends list (adding or removing friends), but that

they are unlikely to change their closer friends in their top list. In each group, less

than 3% of users change their list of top friends.

As in Chapter 4, Nodexl is used to illustrate the friend networks of the profiles.

Figure 6.17 and Figure 6.18 show examples of the changes in the sub network of a
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Figure 6.18: Sub Network of a Profile in Week 2

user profile in group 2 when its list of top friends is changed. From the two figures, it

is noticed that the node labelled 4 in Figure 6.17 was removed from the friends’ list

in the second week of observation as shown in Figure 6.18. As a result, all friends

of node 4 have been removed from the sub network. In addition, node number 10

has reduced its list of top friends in Figure 6.18. Such changes affect the resulting

sub network and help in understanding user behaviour at the analysis stage.

Other observations may be made from Tables 6.4 and 6.5 which presents the

number of public profiles in each top friends list, such as:

� A larger number of the friends list of a profile does not imply that a larger

sub network can be retrieved. The key points depend on how many of those

profiles are public. Moreover, missing information due to privacy issues will

need to be factored into studies which analyze information from OSNs.

� Equality in the number of public profiles does not necessarily produce the same

size of sub network. For example, in group 1, the top friends of profiles 5 and

6 are equals (15) with equal public profiles as well (3). However, the resulting

sub networks significantly vary (38 and 3 respectively).
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6.4 Experimental Findings and Results

profile Top Public Retrieved Public profiles in
no. friends profiles profiles Top friends %

1 5 4 56 80
2 7 7 74 100
3 2 1 8 50
4 4 1 1 25
5 15 3 38 20
6 15 3 3 20
7 4 4 22 100
8 35 11 151 31.43
9 10 5 40 50

10 5 3 15 60
11 6 5 78 83.33
12 6 4 17 66.67
13 3 2 13 66.67
14 14 10 79 71.43
15 6 5 46 83.33
16 7 6 48 85.71
17 6 6 30 100
18 12 10 135 83.33
19 3 2 20 66.67

Table 6.4: The First Iteration of Group 1 Percentage of Public Profile in Top Friends

The final but not the least finding in this experiment is that the result which

is taken from a joint sample such as group 2 is more helpful in understanding the

behaviour of the users of OSN than the results of disjointed users as in group 1. In

fact, one of the means through which e-commerce companies target their customers

is by advertising their products on OSN sites.

profile Top Public Retrieved Public profiles in
no. friends profiles profiles Top friends %

1 11 10 50 90.91
2 11 7 109 63.64
3 30 20 100 66.67
4 2 0 0 0.00
5 12 6 40 50.00
6 7 7 122 100.00
7 30 15 155 50.00
8 6 2 21 33.33
9 6 4 58 66.67

10 6 3 23 50.00
11 11 2 56 18.18

Table 6.5: The First Iteration of Group 2 Percentage of Public Profile in Top Friends
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6.5 Experimental Validation

This section shows that the application developed (OSNRS) has addressed the draw-

back of the previous approach which was presented in Chapter 4.

To evaluate the accuracy of the retrieved results, many profiles were tested man-

ually by a co-author to be used in her research study of measuring vulnerability (see

[8]. An example is the cases where unexpected results were reported, as shown in

the case where empty cells in profile no. 3 in Tables 6.2 and 6.3. The results show

that all the information retrieved is correct. However, future work to extend mAg

functions to randomly check the contents of information retrieved at random times

is ongoing.

The screen shots below shows a DB which connects each retrieved profile with

its list of friends. Note that the time stamps for all retrieved files are equal because

the gAgs are working in parallel, unlike the gAg which is allocated to the seed URL.

Also if the time when the information is saved in the file in Figure 6.15 and the time

when it is saved in the database in Figure 6.19 is compared, an almost 1 second

delay can be seen for all files regarding to file transforming process.

6.6 Limitations

The process presented to correctly and accurately monitor and extract profile data

is not affected by the size of the retrieved information in terms of DE techniques.

Also, further work is required in order to evaluate mAg functions in checking the

contents of retrieved information to allow the gAg to decide the period of reactivation

independently according to how often the profile’s information is changed. Also, in

order to save time and traffic capacity, the gAg should simply send the updated

fields rather than the whole file.
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Figure 6.19: Snapshot of Friends List Table in Database
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6.7 Chapter Summary

This chapter has investigated DE from OSNs through MAS technology implemen-

tation of OSNRS. OSNRS is designed with multiple agents each of which assigned

to a specific profile. This work is an improvement on previous information extrac-

tion techniques from OSNs, in that the proposed algorithm allows the tracking of

information changes in the users’ profiles, while previous work was concerned with

extracting information from profiles only once.

The experimental work shows that using MAS simplifies the process of tracking

a profiles history. This study will serve as a base for future studies in the pro-

cess of tracking user profile history and understanding the behaviour of OSN users,

especially when combined with text mining.

The contribution to this chapter has been published in [13, 11, 8].

The next chapter will modify the implementation of OSNRS by using an Appli-

cation Programming Interface (API), in order to come into alignment with recent

changes to the structure of social network developing methods.
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Chapter 7

Multi Agent System for Data
Extraction from Online Social
Network in Application
Programming Interface Approach

7.1 Introduction

In the previous chapters, the developed approaches relied on the parser for the

automated extraction of personal information of OSN profiles and their list of friends.

However, the main drawback of the parser was its need for continuous modification

to go along with any changes in the structure of the profiles’ web page. Moreover,

it would be useless if the profile’s source documents were not provided by the OSN

developers.

Most current web service providers, including OSN developers, offer what is

called an Application Programming Interface (API) to allow software applications

to communicate with each other accurately and securely over the web. Thus, this

chapter aims to continue the previous work of OSNRS, which provides real time

monitoring of OSN profiles, through proposing new algorithms using API in order

to overcome the parser’s drawback. This facility allows OSNRS agents to acquire

the required attributes despite modifications in the representation of the profiles’
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7.2 Conceptual Overview of OSNRS with API

source web pages.

The structure of remainder of the chapter is as follows: Section 7.2 introduces a

conceptual overview for the use of API to improve OSNRS. Section 7.3 illustrates

the Flow of information between OSNRS components with API while Section 7.4

describes the structural models of OSNRS with API. Section 7.5 presents different

algorithms for integrating MAS with API. Section 7.6 explains the implementation

of using API in extracting information from Facebook, currently the most popular

OSN, supported with case studies. The findings and results are stated in Section

7.7. Finally, Section 7.8 summarizes the chapter.

7.2 Conceptual Overview of OSNRS with API

API is a software-to-software interface. Orenstein in [109] simplifies the definition

of API to “a description of the way one piece of software asks another program to

perform a service. The service could be granting access to data or performing a

specified function”.

In this case, OSNRS agents are going to connect with the OSNs providers using

API to perform the task of extracting the attributes of interest from the OSN profiles

rather than using a parser. The following subsections describe in detail the approach

developed in using API programmatically to integrate it with OSNRS agents.

7.2.1 Specifying the OSNRS Domain

All previous contributions, which are presented in Chapters 4 and 6, have crawled

Myspace web pages to extract profile information. Although the developers of Mys-

pace provide great support to integrate its platform functionality with different

applications including smart phones, Myspace will not be used as a domain for OS-

NRS application with API. Myspace has lost market share dramatically over the
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7.2 Conceptual Overview of OSNRS with API

Figure 7.1: Top Online Social Network (Source of Data: Hitwise)

last three years. In contrast, Facebook has increased its share strongly as reported

by [78] based on the United States market share of visits (see Figure 7.1). Facebook

claimed by the end of January 2012 that their active users hit 8 million, as reported

by BBC [29]. Therefore, Facebook was selected to be the domain for OSNRS data

extraction using API.

Facebook places users’ privacy as the top priority. Thus, third-parties are not

allowed to access users’ profiles except through API. Facebook presents the Graph

API as a core concept of its platform in order to allow applications access, to read

and write data to it. Graph API considers users’ profiles, photos, pages as objects,

and friend relationships and photo tags as connections between objects. Note that

attributes and connections differ between objects.(see Table 7.1)

Figure 7.2 shows a sample of a Facebook profile. Every object in Facebook

has a unique ID. To retrieve all attributes of an object, request: https://graph.

facebook.com/ID while http://graph.facebook.com/ID/connection-type is used

to obtain the connection related to the object. E.g. the object “Page” called

“Facebook platform” has an ID: 19292868552. Thus, to obtain the attributes

of the object “Facebook platform” through Graph API, request http://graph.
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7.2 Conceptual Overview of OSNRS with API

User
Attributes(fields) Connections

public non − public public non − public
id likes picture accounts

name third party id permissions achievements
first name timezone payments activities

middle name updated time albums
last name verified apprequests

gender bio books
locale birthday checkins
link education events

username email family
hometown feed

interested in friendlists
location friendrequests
political friends

favourite athletes games
favourite team groups

quotes home
relationship status inbox

religion interests
significant other likes

video upload limits links
website movies
work music

mutualfriends
notes

notifications
outbox
photos
pokes
posts

questions
scores

statuses
subscribedto
subscribers

tagged
television
updates
videos

Table 7.1: The Public and Non-Public Attributes and Connections of the Graph
API Object User
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7.2 Conceptual Overview of OSNRS with API

Figure 7.2: Sample of Facebook Profile
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7.3 The Flow of Information between OSNRS Components with API

facebook.com/19292868552 or http://graph.facebook.com/platform if the ID

is the username of the object (a special case of the objects people and pages).

To obtain the connection “links” of the Page object “Facebook platform”, request

http://graph.facebook.com/19292868552/links&access_token. The access to-

ken will be described in subsection 7.3. Graph API allows applications to read and

write data to Facebook [58].

7.2.2 Creating a Facebook Application

In order to allow OSNRS agents to integrate with Facebook providers, a Facebook

application called MY Software Agent (MYSA) is created as a desktop application

rather than a web application in order to be compatible with the existing OSNRS

through the following steps:

1. create an account in Facebook or log in if the account already exists.

2. join the developers’ community.

3. build up the MYSA application.

4. authenticate MYSA to acquire two parameters: application ID (or API key)

and application secret.

5. get the users’ authorizations to allow MYSA to access their:

� default information (e.g. public information).

� more specific information (e.g. friends’ basic information).

These steps will be described in detail in the coming sections.

7.3 The Flow of Information between OSNRS Com-

ponents with API

Figure 7.3 describes the sequence of actions between OSNRS classes using API.

The extraction process of OSNRS starts when the mAg , as the administrator of

the MYSA application, obtains MYSA parameters (application ID and application
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7.3 The Flow of Information between OSNRS Components with API

Figure 7.4: Sample of the Access Token

secret) in order to send them to a created gAg . Unlike previous approach in Chapter

6, the gAg has not yet been allocated to the seed profile.

Consequently, the gAg uses the received parameters to establish MYSA. MYSA’s

parameters should be validated by the OSN server (Facebook Server) to authenticate

the user. The authentication process includes validation of the login cookies of the

user, which are stored within the server if the user has already logged in. Otherwise,

the user will be prompted to log in to OSN. The logged in user will be considered

as the seed URL and will be allocated to the gAg .

Once the user has been authenticated successfully, the user will be redirected to

authorize the application. Authorization means ensuring that the user knows exactly

what type of data and permissions MYSA has been authorized to access. MYSA

asks the user for extra permissions besides the basic information that Facebook

provides by default, or which is specified as public information by the user.

Table 7.1 shows the public and non-public attributes and connections of the

Facebook Graph API object “User”. When the user authorizes MYSA, the appli-

cation authentication step is approved and the OSN server will generate a response

to the gAg . The response contains the access token accompanied with expiry pa-

rameter in seconds (See Figure 7.4).

The access token is the key for all requests using API. Thus the gAg will send a

copy of it to the mAg , as well as using it to extract the information of the profile

that it is allocated to. For example, the gAg will append the access token to build a

request to extract the profile wall, and another request to obtain the friends list of

the profile. The MYSA obtains the retrieved information from the Facebook server
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and sends it to the gAg in a file.

Facebook developers return the results either in common XML or JSON files.

JSON format has been selected because it is smaller, faster and easier to parse than

XML as shown previously in Section 2.3.3.

The file name combines the Facebook profile ID, the file contents such as info,

wall, searchPeople, searchPost, etc and the time of retrieval in YYYYMMDDhh-

mmss format, similarly to the process explained in Section 6.3.4 (e.g. profileID-

SearchPeople20120412082342). This is because each file name should be unique to

distinguish which profile it belongs to and when it was retrieved in order to accom-

plish the aim of creating historical information for each profile.

As in the previous approaches, a copy of the file will be saved by the gAg for

comparison, while another copy will be sent to the mAg to be saved in a local

repository. Although database tables could be used to save the returned files as

explained in Chapters 4 and 6, it was found to be inappropriate and time consuming

to save the data retrieved as JSON files in database tables, then query the tables

to extract data and save it back to a JSON file. Thus, JSON files are saved in the

local repository.

For each friend in the friends list of the seed profile, different scenarios may be

applied to monitor updates in the profiles, as shown in the next subsection.

7.4 Structural Models of OSNRS with API

Certain OSNs, including Facebook, do not allow their applications to access the

friends of friends of the logged in user unless the user and his friends give their

permissions. Thus, different models of OSNRS have been developed to explore how

the mAg will control the process of extracting information from the seed profile’s

list of friends.
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The models differ according to the proposed scenario. These scenarios will be

compared to uncover the best algorithm in terms of the speed of the extraction

process, the accuracy of the extracted information and the performance of the agents.

7.4.1 Scenario 1

This is the simplest scenario, where the mAg seeks the platform to find another gAg

in order to extract and monitor all profiles in the friends list. I.e. in this case, one

gAg is responsible for all profiles in the list of friends, as shown in Figure 7.5.

The gAg keeps a copy of information to use for comparison of results the next

time the gAg is activated, and additionally the gAg can search on profiles’ walls for

keyword(s) that are required when mining data. For example, the agent could look

for a keyword e.g. birthday, and then compare if the date of birth that is retrieved

from the user’s information matches the greetings date that friends wrote on the

user’s wall. The result would be used to help calculate the vulnerability of the user

based on how the friends could leak the user’s information, as explained in [8].

Figure 7.5: gAg for All Profiles
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7.4.2 Scenario 2

The second scenario differs from the previous one in that when the mAg obtains

the list of friends from the first gAg , it seeks the platform to assign a gAg to each

profile in the friends list, as illustrated in Figure 7.6. If the existing gAgs are

not sufficient, or are not found in first place, the mAg will create as many gAgs as

required to match the number of friends in the list. Consequently, each gAg will act

as the gAg in Section 7.4.1.

Returning to Section 7.3, which mentioned that the mAg acquires the access

token from the gAg : besides the list of friends of the seed profile, the access token

is required because the gAgs, which are allocated to each profile in the friends list,

are not allowed to extract any information unless they have permissions from the

seed profile. This permission can be gained through the access token.

For search purposes, OSNRS will create a special agent to look for the requested

keyword(s). This agent will communicate with all gAgs in the platform. Having

Figure 7.6: gAg for Each Profile
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a special search agent is more appropriate than letting each gAg to scan all other

walls to achieve the results.

7.4.3 Scenario 3

Since Facebook does not give permissions to applications to retrieve friends of friends

lists, a scenario was proposed whereby two or more users could login to Facebook

to allow MYSA to access their information. These users should be in the list of

friends of the seed user. In this way, MYSA is allowed to move deeply into the

social network indirectly.

For this scenario, there are two levels of control rather than one as there was in

the previous scenarios. The mAg will control the whole system but instead of having

control of all gAgs, a second level of control associated with the groupManagerAgent

(gmAg ) will be in the middle to coordinate communication between the mAg and

the gAgs. See Figure 7.7.

Each agent, including mAg , gAg (s) and gmAg applies the autonomy feature

Figure 7.7: Two Levels of Controlling Profiles
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through working as a standalone process in extracting data from a specific profile

and monitoring its updates. Also, the autonomy feature of the gAg (including gmAg

) allows it to decide on the suitable period of time to reactivate itself depending on

how active the profile is.

The sociability feature is applied when agents communicate with each other (in

addition to users) and exchange their knowledge in order to achieve their main shared

goal, which is monitoring the OSN profiles over time. The perceptivity feature of

the gAg is shown in that it can detect the real time updates of the profile that it is

assigned to whenever it is activated.

7.5 Algorithm of OSNRS with API

The previous OSNRS algorithm which is explained in Section 6.3.5 relied on a

parser to extract information from OSN web pages’ source. Using such a parser is

inconvenient or impossible in some cases where the OSN developers do not provide

information except via an API.

In this section, algorithms are proposed to improve OSNRS by applying an API

tool within the MAS approach. While Figure 7.8 describes the flow chart of OSNRS

in the API approach, Figure 7.9 illustrates the pseudocode of the general algorithm

of improved OSNRS that matches the sequence diagram explained in the previous

subsection 7.3.

195



7.5 Algorithm of OSNRS with API
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Figure 7.8: Flowchart of General Algorithm of OSNRS with API
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Figure 7.9: General Algorithm of OSNRS with API

7.5.1 Sub Algorithm 1

In the first sub algorithm, as illustrated in Figure 7.10, when the mAg obtains the

list of the profile’s friends, it will assign one gAg to retrieve all possible information
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and to monitor the updates on the profiles of all friends in the user’s list of friends.

These updates will be sent back to the mAg to build the history of each profile.

Figure 7.10: OSNRS Sub Algorithm 1
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7.5.2 Sub Algorithm 2

In the second sub algorithm, as shown in Figure 7.11, the mAg will assign a gAg

to each friend in the user’s list of friends. These gAgs will communicate with each

other to exchange knowledge as will be explained in the experimental work. Again,

all information will be sent back to the mAg to build the history.
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Figure 7.11: OSNRS Sub Algorithm 2
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7.5.3 Sub Algorithm 3

This algorithm is a combination of the two previous algorithms. It has two levels of

control. When the mAg receives the list of friends it will assign it to a special kind of

gAg called a groupManagerAgent (gmAg ). The gmAg has to play two roles. Firstly,

it will extract the information of the profile of the friend in the seed’s friends list.

Secondly, it will start to work as a mAg for the friends list of this profile. Thus, the

mAg will control the gmAg directly and all other gAgs indirectly. Also, the gmAg

must send the list of friends to the mAg to obtain its permission before assigning

any gAg to the profiles.

Note that the first two algorithms have been implemented in this thesis while

the third algorithm is stated as a future work.

7.6 Implementation of OSNRS with API

The experimental work presents different case studies based on various scenarios,

which are explained earlier, to run the OSNRS. However, some common steps should

be set up for these case studies as follows:

7.6.1 Setting up the OSNRS Environment

The OSNRS environment has set up as was done in Section 6.3.1 using JADE.

The additional setting in this experiment is related to using API. Facebook has the

users’ privacy as their top priority. Thus, third-parties are not allowed to access

users’ profiles aside from through API. To use Facebook Graph API, a Facebook

(either desktop or web) application must be created. For the thesis, a Facebook

application named MYSA is created as a desktop application rather than a web

application, to be compatible with the OSNRS developed in the previous chapter.

Facebook demands its applications, e.g. MYSA, to be authorized and authenticated
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Figure 7.12: A Sample of Mock Network Profiles

by their users to ensure that the users give their permission to MYSA to access their

information.

7.6.2 Choosing the OSNRS Sample

The experiment has been tested on the real Facebook accounts of the author and

her friends networks, as well as a mock network consisting of more than 20 Facebook

users which has been used as an OSNRS sample.

The mock network is taken from a project called “The Artemis” developed at

the University of Bradford. Figure 7.12 shows a screenshot of some of the mock

network profiles. The users of the mock network are connected partially with each

other in a random relationship.

Figure 7.13 shows the mock network where the vertices represent the users or

profiles and the edges are the relationships. Note that just over half of the sample

(55%) are females, symbolized by rectangle vertices, while males are symbolized by

circle vertices.
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Figure 7.13: Mock Network for OSNRS

41% of users are stated as classmates while 22% are connected by a family

relationship such as parent and child, or sibling (represented by bold edges). The

rest are friends or have shared interests.

7.6.3 Running the OSNRS with API

Following the setting up of the JADE environment and the building of the MYSA

application, the actual running of OSNRS is established when the mAg is created

and looks for an existing gAg to send the MYSA’s ID and secret key. The process

continues as described previously in Sections 7.3 and 7.4. Notice that besides the

basic information which Facebook developers provide by default, and the informa-

tion that Facebook users set as public, MYSA asks users for permission to access

extra information, as illustrated in Figure 7.14 . From the point where the gAg

acquires the access token through Facebook Graph API, different case studies are

given to manage how the retrieved information of the first user (seed profile) may

be handled.
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Figure 7.14: MYSA’s Authorization Request
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7.7 Findings and Results

Criterion Parser API
Allow accessing Friends of Friends (FoF) automatically X X
Allow direct information access X X
More concern about privacy X X
Require updating system regarding structure’s changes X X
Allow accessing basic information (even for private profiles) X X

Table 7.2: Table 2 Parser vs API in Developing OSNRS

7.7 Findings and Results

The aim of the experimental work is to improve OSNRS using the API tool. Thus,

Table 7.2 shows some of the differences between retrieving information using the

parser in the first version of OSNRS, which is implemented in Chapter 6, and in the

improved version of OSNRS in this paper which retrieves information using API.

Each of parser and API has some advantages and dis advantages in such away

that while the parser allows accessing FOF automatically, API concerns more about

privacy and allows accessing information directly without being affected by the

changes in the profile’s structure. I.e. DE using API is faster, more precise and

accurate in terms of data extracted.

Figure 7.15: Parts of JSON Results (Week 1 on the Left, Week 2 on the Right)
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Seed

Profile

No of

Friends

Total Files

(Unit)

Total

Size(KB)

Total Process (Seconds)

Case Study 1 Case Study 2

1 7 16 61 66 45
2 5 12 56 51 42
3 6 14 60 58 42
4 5 12 56 52 43
5 5 12 50 51 39
6 5 12 56 53 43
7 5 12 56 53 90
8 8 18 75 82 50
9 6 14 58 62 44
10 6 14 58 50 49
11 7 17 60 71 45
12 7 16 62 64 49
13 5 12 56 53 40
14 10 34 74 119 79
15 6 14 60 59 41

Table 7.3: Some Results of Case Studies 1 and 2 on Mock Network

Although generally speaking, there is no need to be concerned about the structure

of data representation when API is used, it was surprising that OSNRS code still

needed to be updated to deal with the changes in the structure of data in the JSON

file.

Figure 7.15 shows some of the retrieved information in JSON files. The values

of “television” and “friends” attributes have changed in week 2 of parsing to include

the sub attribute “paging” in addition to “data”. This affects the mAg when it has

to parse the returned JSON file to obtain the list of friends.

Data in Table 7.3 represents information about 15 seed profiles of the mock

network. These profiles have been parsed, as described in scenarios 1 and 2, in order

to calculate the required time for retrieving 2 JSON files for the seed profiles and

their friends. The first file contains all possible information, while the second file

contains the profiles’ walls.

The average files retrieved are 15 files with an average size of 60 kilobytes. Note
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Figure 7.16: Total Retrieval Time of Case Studies 1 and 2

that the port used to transfer files is different from the port used for exchanging

messages between agents, to speed up the extraction process.

From the Figure 7.16 a significant difference in the time for retrieving the same

amount and size of files can be noticed. The most interesting profile is profile number

14, which has the largest number of friends in the mock network. In case study 1,

where one gAg is used to retrieve and monitor all profiles, there is a sharp increase

in the required time for extracting information compared with case study 2 where

one gAg is responsible for monitoring each profile.

Moreover, the most time-consuming element in case study 2 is related to allocat-

ing gAgs and other processing issues. This is supported by the fact that an average

of 10 files could be retrieved within 3 seconds. In contrast, each file requires around

1 second to be retrieved in case study 1. Therefore, regarding these results, sub

algorithm 2 is better than sub algorithm 1.

In contrast, Table 7.4 illustrates the results of some of the author’s real network.

The average files retrieved are 220 files with an average size of 15089229 kilobytes.
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7.8 Summary

Seed

Profile

No of

Friends

Total Files

(Unit)

Total

Size(KB)

Total Process (Seconds)

Case Study 1 Case Study 2

1 63 125 7897052 744 279
2 56 105 10580976 815 344
3 294 597 37759190 5185 2142
4 27 55 4119698 734 120

Table 7.4: Some Results of Case Studies 1 and 2 on Real Network

7.8 Summary

This paper continued previous work in developing OSNRS to retrieve information

from OSN profiles and monitor the updates in those profiles. OSNRS were improved

through the use of API in order to address the drawback of the parser in which it

was required to be updated to reflect the changes in the structure of the profile.

Two algorithms were presented aligned with case studies to improve OSNRS.

Since the accuracy and correct retrieval and monitoring of OSN profiles is not af-

fected by the size of the sample, the initial results of the experimental work is

promising, especially when using sub algorithm 2. Thus, a sub algorithm 3 will be

implemented to enhance OSNRS.

However, several improvements to this work could be applied. E.g. when using

API, the retrieval process is limited by the allowance of expiry time of the access

token. Further investigation in using some features such as offline permission may

help to allow OSNRS agents monitoring profiles continuously.
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Chapter 8

Conclusions

With the birth of Web 2.0, there has been a significant increase in the number of

users involved in generating web contents, and in particular OSNs. Consequently,

new methods have to be proposed in order to extract data from these OSNs. What

distinguishes OSNs from other web areas is that the developers of mobile devices,

smartphones etc. pay more attention to simplifying access to OSN sites, which

accordingly speeds up the changes of OSNs in terms of contents as well as structure

and representation.

8.1 Research Contribution

The research in this thesis mainly focused on improving existing approaches and

studying new proposals for data extraction from web databases, particularly OSN

profiles. Before designing the extraction approach, a review was undertaken of

three topics which included web data extraction, OSN and MAS. Following this,

applications were implemented to extract and monitor the changes in the profiles.

Although there are several studies which have attempted to extract millions of

profiles from different OSNs, these studies differ from the work presented in this

thesis in two aspects:
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� The nature and amount of data extracted are different in terms of that, just

profiles’ links or some of basic information (e.g. comments and tags) have

been extracted. In contrast, the study in this thesis extracts all information

provided by the OSN users or OSN providers.

� To the best of the author’s knowledge, there is no reported work which mon-

itors the rapid changes in OSN profiles. All previous studies analyzed results

gained by visiting each OSN profile only once.

The first phase of the thesis, which was presented in Chapter 4, involved propos-

ing an approach to extract semi-structured and unstructured data from OSNs auto-

matically, by creating a parser with the ability to crawl the source web pages of OSN

profiles. The parser was developed from the code presented in [68]. An algorithm

was presented and described in detail to implement the “Social Network Extractor”

application in order to extract information from Myspace profiles, which was the top

OSN at that time, as well as a list of the profiles’ top friends and all friends. Some

interesting results from the extracted data are shown, accompanied by graphs. A

graph is used to visualize the notion of “friendship” in OSNs, where the profiles can

be represented as nodes and the relationship between two profiles is symbolized by

the edges.

Also, the application has been validated to ensure that the extracted data was

accurate. The experiment has shown that:

� Building a parser to extract data from a structured format is easier than

from an unstructured or semi-structured format for several reasons. First,

the data tags of the web page’s source are organized very well. Second, data

in a structured format follows the rules strictly. Finally, it is defined in a

hierarchical way. Thus, the required tokens can be more easily identified and

split.
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� The structure of MySpace profiles was found to differ depending on the users’

preferences and the type of profile such as public, private, bands and mag-

azines. This proved a challenge when implementing the code. Analysis of

HTML structures of various profiles revealed that there was a standard for-

mat.

� Even though some of the profiles were private profiles, some attributes, e.g.

nickname, gender, age and location, could still be extracted.

� Data that is placed in the repository can be mined and analysed offline to

recognize patterns and trends about the social network in which the profiles

are based. For example, from the retrieved age and country, it is possible to

detect the relationship between the connected profiles in a sub network.

� The profile data can also be used to identify which profile attributes and values

make the person vulnerable to social engineering attacks. Vulnerability can

be detected by the attributes presented, e.g. if the age and horoscope signs

are present on a profile then it is possible to guess roughly when the birthday

is. If there are comments present on the profile as well, it may be possible to

identify the exact date of the birthday. Other attributes that may contribute

to a profile being vulnerable includes whether the individual is a drinker or a

smoker.

� The research in this thesis adopted a BFS algorithm to move across the sub

network to select the next profiles to be crawled. However, the developed ap-

proach could be applied as well to different algorithm, e.g. the Depth First

Search (DFS) algorithm if the purpose of extraction requires moving (condi-

tionally) deep in the sub network.

Original results of the work on this subject has been published in [20, 9, 19]
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However, the approach developed has experienced two main limitations: firstly,

the system is designed as a centralized system, which means that the process of data

extraction will stop if the system fails to process one of the profiles, either the seed

profile (the first profile specified by the application user to be crawled) or one of its

friends. Secondly, the application parser needs to be modified continuously along

with updates in the structure of the web page source file.

The second and third phases of the research in the thesis, which were presented

in Chapters 5 and 6 respectively, concern overcoming the first limitation. MAS is

considered the best solution to overcome the problem of centralization and depen-

dency on fast changes of OSN data formats because of its characteristics, especially

in its ability to work in parallel paradigm. Due to the fact that MAS is considered

to be a complex system to develop, phase 2 highlights through formal specification

(Object-Z) the feasibility of using MAS technology in extracting data from OSN

sites in order to ensure that the enhanced web based system, the Online Social

Network Retrieval System (OSNRS) is robust, reliable and fits the purpose, before

implementing the application. Original work on this subject has been published in

[10].

The novelty of the OSNRS lies in having an agent associated with OSN user

profile to extract its data and to monitor its updates. The data is sent to a controller

agent which saves a history of each user’s activities in a local repository. An overview

of OSNRS is described informally to illustrate the system, followed by a description

of how the information flows between OSNRS components (classes).

Phase 3 implemented the OSNRS application through improvement of the algo-

rithm presented in phase 1 by applying MAS technology, where each agent thread is

assigned to a specific profile of an OSN to extract and track data changes. The ex-

perimental work of the approach developed is described in detail. In the case study,
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it was mentioned that two groups of Myspace profiles were selected and observed

for two weeks by reactivating the gAgs once a day in order to find out how often

users were likely to change their list of top and all friends. Some interesting findings

concluded from the experiments include:

� The size of friendship network of a profile mainly depends on two factors:

1. the number of public profiles in the network.

2. the size of each public profile’s network.

� Analyzing the results of a monitored connected network is more helpful in

understanding the behaviour of OSN users and their friends in terms of inter-

action between the two. Also, the trust between the user and his friends can

be valuable in e-commerce.

� From the observation of users’ behaviours, it is discovered that users are more

likely to change their friends list (adding or removing friends) than they are

to change their closer friends in their top list.

Original results of the work on this subject has been published in [8, 13, 11].

The final phase addresses the second limitation of the first phase, which is re-

lated to the need for a continuous parser modification to cope with updates in the

profile structure. The improved approach involves using API to extract the profile

information rather than the parser. The implemented application was applied on a

Facebook (which is currently the most used OSN) mock network as well as a real

network. The extracted data is saved in a local repository as JSON files. Original

results of the work on this subject has been published in [14, 12]

Overall the aims and objectives of the thesis have been achieved through propos-

ing and implementing different algorithms of parsers to extract semi-structured and

213



8.1 Research Contribution

unstructured data from OSN in case of the source web pages are provided. In

the case of the source web pages are unavailable, an algorithm which uses API is

presented.

By comparing the two techniques (parsers and API), it is concluded that both of

them allow accessing some of basic information even for private profiles. However,

each of parser and API has some advantages and disadvantages such that: while

the parser allows a direct accessing FOF automatically, API requires the user’s

authorization and authentication due to it concerns more about privacy. On the

other hand, API allows accessing information directly without being affected by the

changes in the profile’s structure. I.e. DE using API is faster, more precise and

accurate in terms of data extracted.

By comparing the two techniques (parsers and API), it is concluded that both of

them allow accessing some of basic information even for private profiles. However,

each of parser and API has some advantages and dis- advantages such that: while

the parser allows a direct accessing FOF automatically, API requires the user’s

authorization and authentication due to it concerns more about privacy. On the

other hand, API allows accessing information directly without being affected by the

changes in the profile’s structure. I.e. DE using API is faster, more precise and

accurate in terms of quality and time of extracting data.

Additionally, some of finding regarding using different algorithms in the thesis

are listed below:

� Extracting data using MAS alongside API allows OSNRS agents to obtain the

required attributes of an OSN profile despite modifications in the representa-

tion of the profile’s source web pages.

� Using API is a more ethical way to extract due to the fact that the user has

to grant permission to the application in order for its profile and sub network
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to be extracted (Refer to Appendix D for the ethical statement regarding the

work carried out in this phase of research).

� As expected, allocating a gAg for each profile to extract and monitor updates,

speeds up the process of extraction even though extra time is added for com-

munication and allocating agents to URLs.

� Saving the extracted data in a JSON file is more efficient than XML files due

to its simplicity and speed.

The thesis presents a novel decentralized approach for automated extracting and

monitoring data of OSNs. The approach can be applied to any social network as

well as many other areas. This research opens up a new direction in the OSN field

in terms of monitoring and analysing the behaviour of users and their profiles.

The data extracted in all phases of this study has been analyzed separately by

a co-author (Sophia Alim) to be used in her PhD thesis in order to calculate the

vulnerability of the friends of the OSN profiles. Some of the results have been

published as referenced where appropriate.

8.2 Recommendations for Future Work

Although the research presented in this thesis is promising and positive, there are

some limitations in addition to the ones mentioned previously. These limitations

include:

� Despite the size of data set extracted being large in some experiments of the

thesis regarding Nodexl, it would be considered small in other experiments

compared to researchers who have extracted millions of profiles.
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� The validation of the experiment has been carried out manually and shows that

the extracted data matches the content of the profile. Automated validation

through using precision, recall and average precision would help in measuring

the quality of data extracted. The precision is used to get the accuracy of

the retrieval system while the recall is the percentage of the actual retrieved

documents. The higher precision means more probability to retrieve relevant

documents while the higher number of the recall implies that the system re-

trieved the most relevant document containing the required information.

Further to the work reported in this thesis, several advances could be suggested

for further research. In terms of expanding the extraction process, it would be

recommended to:

� Extract data from another OSN, e.g. Twitter, which is expected to have

simpler representation of data formatting (mostly text) in order to analyze

data from a more focused group who share common subjects of interest, e.g.

the right of women to drive cars in Saudi Arabia. Also, investigating different

approaches to extracting data from OSN profiles presented in mobile devices

and smartphones.

� Extract data on a larger scale through adding extra workstations to maxi-

mize the agent’s platform and expedite the extraction process. To enlarge the

sample, it is suggested to build a parser based on DOM tree and compare

the retrieval and processing time with the parser which is built based on a

string tokenizing. DOM tree could be applied on XML documents as well as

HTML and XHTML documents. Moreover, DOM tree is tag independent,

which means it is faster and easier than string tokenizing.

� Missing information due to privacy issues will need to be factored into studies
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which analyze information from OSNs. This information may have a major

effect on the behaviour of OSN users. Similarly, profiles related to bands and

magazines which are excluded from the current study need to be considered

in account as well.

� Implement the third scenario presented in Chapter 7 and compare the results

with other scenarios in terms of speed and size of data extracted. Note that

extra ethical approval is required to allow MYSA application extracting friends

of friends’ information.

� Use a different agent method which has the ability to communicate through

firewalls, e.g. the JXTA agent communication method that is adopted in [101].

The agents of the current OSNRS application cannot communicate through

firewalls.
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nando, M. Modeling and formal specification of a multi agent telemedicine

system for diabetes care. In Proceedings of the International Conference on

Agents and Artificial Intelligence, ICAART2009, pp. 507–512 (2009).

[99] Meghabghab, G., Kandel, A. Search engines, link analysis, and user’s Web

behavior, volume 99. Springer-Verlag New York Inc (2008).

[100] Mika, P. Flink: Semantic web technology for the extraction and analysis of

social networks. Web Semantics: Science, Services and Agents on the World

Wide Web, 3(2-3):pp. 211–223 (2005).

[101] Milani Fard, A., Kahani, M., et al. Multi-agent data fusion architecture for

intelligent web information retrieval. International Journal of Intelligent Sys-

tems and Technologies, 2 (2007).

228



REFERENCES

[102] Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B. Mea-

surement and analysis of online social networks. In Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement, pp. 29–42. ACM (2007).

[103] Mohammadian, M. Intelligent agents for data mining and information re-

trieval. Idea Group Publishing (2004).

[104] Mohammadian, M., Jentzsch, R. Computational intelligence techniques driven

intelligent agents for web data mining and information retrieval. Intelligent

agents for data mining and information retrieval, pp. 15–29 (2004).

[105] Munoz, A., Anton, P., Mana, A. Static mutual approach for protecting mobile

agent. In International Symposium on Distributed Computing and Artificial

Intelligence, pp. 51–58. Springer (2011).

[106] Niazi, M., Hussain, A. A novel agent-based simulation framework for sensing

in complex adaptive environments. Sensors Journal, IEEE, 11(2):pp. 404–412

(2011).

[107] Ning, K., Yang, R. Mas based embedded control system design method and

a robot development paradigm. Mechatronics, 16(6):pp. 309–321 (2006).

[108] Nwana, H. S. Software agents: An overview. Knowledge Engineering Review,

11:pp. 205–244 (1996).

[109] Orenstein, D. Quickstudy: Application programming interface (api) (2000).

[110] Pandit, S., Chau, D., Wang, S., Faloutsos, C. Netprobe: a fast and scalable

system for fraud detection in online auction networks. In Proceedings of the

16th international conference on World Wide Web, pp. 201–210. ACM (2007).

229



REFERENCES

[111] Park, J., Barbosa, D. Adaptive record extraction from web pages. In Proceed-

ings of the 16th international conference on World Wide Web, pp. 1335–1336.

ACM (2007).

[112] Potter, B., Till, D., Sinclair, J. An introduction to formal specification and Z.

Prentice Hall PTR (1996).

[113] Qian, S. Natural language processing applications. lecture 8: Information

extraction -1 (2011-12-01).

[114] Quah, J., Chen, Y., Leow, W. Networking e-learning hosts using mobile agents.

Intelligent agents for data mining and information retrieval, p. 262 (2004).

[115] Quah, J., Leow, W., Chen, Y. Mobile agent assisted e-learning. In First

International Conference on Information Technology & Applications (ICITA

2002), Bathhurst, Australia (2002).

[116] Ratcliff, B. Introducing Software Engineering Specification Using Z: A Prac-

tical Case Study Approach. McGraw-Hill, Inc. (1994).

[117] Ricca, F., Tonella, P. Using clustering to support the migration from static

to dynamic web pages. In Program Comprehension, 2003. 11th IEEE Inter-

national Workshop on, pp. 207–216. IEEE (2003).

[118] Ricci, A., Bordini, R., Agha, G. Agere!(actors and agents reloaded): splash

2011 workshop on programming systems, languages and applications based on

actors, agents and decentralized control. In Proceedings of the ACM inter-

national conference companion on Object oriented programming systems lan-

guages and applications companion, pp. 325–326. ACM (2011).

[119] Saaman, C., Saaman, E., Klint, P., Mosses, P., Hesselink, W. Another formal

specification language (2000).

230



REFERENCES

[120] Schildt, H., Holmes, J. The art of java. McGraw-Hill Osborne Media (2003).

[121] Sherman, C., Price, G. The invisible Web: Uncovering information sources

search engines can’t see. Information Today, Inc. (2001).

[122] Sherman, C., Price, G. The invisible web. CyberAge Books (2002).

[123] Srinivasanacd, P., Mitchellab, J., Bodenreidera, O., Pantc, G., Menczerc, F.

Web crawling agents for retrieving biomedical information (2001).

[124] Strater, K., Richter, H. Examining privacy and disclosure in a social network-

ing community. In Proceedings of the 3rd symposium on Usable privacy and

security, pp. 157–158. ACM (2007).

[125] Sygkouna, I., Anagnostou, M. Efficient information retrieval using mobile

agents. In Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems, pp. 1241–1242. ACM (2005).

[126] Trusov, M., Bucklin, R., Pauwels, K. Effects of word-of-mouth versus tradi-

tional marketing: Findings from an internet social networking site. Journal of

Marketing, 73(5):pp. 90–102 (2009).

[127] university of the pacific. Online social networking dangers and benefits (2012-

02-26).

[128] Viswanath, B., Mislove, A., Cha, M., Gummadi, K. On the evolution of user

interaction in facebook. In Proceedings of the 2nd ACM workshop on Online

social networks, pp. 37–42. ACM (2009).

[129] Wooldridge, M. An introduction to multiagent systems. Wiley (2009).

[130] Wooldridge, M., Jennings, N. Intelligent agents: Theory and practice. Knowl-

edge engineering review, 10(2):pp. 115–152 (1995).

231



REFERENCES

[131] Yves, C., Jeannot, E. New dynamic heuristics in the client-agent-server model.

In Parallel and Distributed Processing Symposium, 2003. Proceedings. Inter-

national, pp. 11–pp. IEEE (2003).

[132] Zhu, H. A formal specification language for mas engineering. In The 2nd

International Workshop on Agent-Oriented Software Engineering (2001).

[133] Zhu, H. Formal specification of agent behaviour through environment scenar-

ios. Formal Approaches to Agent-Based Systems, pp. 263–277 (2001).

[134] Zhu, H. A formal specification language for agent-oriented software engineer-

ing. In Proceedings of the second international joint conference on Autonomous

agents and multiagent systems, pp. 1174–1175. ACM (2003).

232


	cover_sheet_thesis
	University of Bradford eThesis

	RuqayyasThesis120531
	Contents
	List of Figures
	List of Tables
	1 Thesis Introduction
	1.1 Introduction
	1.2 Problem Domain
	1.3 Motivation
	1.4 Aims and Objectives
	1.5 Research Methodology
	1.6 Thesis Organization
	1.6.1 Ethical Issues and Data Extraction form OSN


	2 Background
	2.1 Introduction
	2.2 Brief History of the Web
	2.3 Data Representation and Extraction
	2.3.1 Data Representation on the Web
	2.3.2 Seeking Information on the Web
	2.3.3 Web Data Extraction Techniques
	2.3.4 Evaluation
	2.3.5 Section Summary

	2.4 Online Social Network
	2.4.1 What is an Online Social Network?
	2.4.2 Brief History of Online Social Networks
	2.4.3 Why are Online Social Networks Important?
	2.4.4 Dangers of Online Social Networks
	2.4.5 Section Summary

	2.5 Agents and Multi Agent Systems
	2.5.1 Brief History of the Agent
	2.5.2 What is an Agent?
	2.5.3 Why are Software Agents Important?
	2.5.4 What is a Multi Agent System (MAS)
	2.5.5 Classification of Software Agent Features
	2.5.6 Agent Programming Languages, Platforms Frameworks
	2.5.7 Section Summary

	2.6 Formal specification
	2.6.1 What is Formal Specification
	2.6.2 Why Formal Specification
	2.6.3 Formal Specification Languages
	2.6.4 Object-Z 
	2.6.5 Section Summary

	2.7 Chapter Summary

	3 Literature Review
	3.1 Introduction
	3.2 Approaches for Web Data Extraction
	3.2.1 Thesis primary experiments

	3.3 Data extraction from OSN
	3.4 Seeking for Information using MAS
	3.5 Data extraction from OSN using MAS
	3.5.1 Data Extraction using API:

	3.6 Formalizing MAS
	3.7 Chapter Summary

	4 An Approach to Data Extraction from an Online Social Network 
	4.1 Introduction
	4.2 Conceptual Overview of Data Extraction from OSN Web Pages
	4.2.1 Specifying the Domain of Extraction 
	4.2.2 Contribution to Automated Data Extraction

	4.3 Implementation of Social Networking Extractor Application 
	4.3.1 Data Pre-processing
	4.3.2 Initializing Inputs
	4.3.3 Data Collection and Processing

	4.4 Experimental Results 
	4.4.1 Top Friends Results
	4.4.2 All Friends Results

	4.5 Validation
	4.6 Limitations of the Current Approach
	4.7 Chapter Summary

	5 Formal Specification of MAS for Historical Data Extraction from OSN 
	5.1 Introduction
	5.2 Overview of the Enhanced System (OSNRS)
	5.3 The Flow of Data between OSNRS Components
	5.4 Formal Specification of OSNRS
	5.4.1 OSNRS Basic Types
	5.4.2 The Object-Z Classes of OSNRS 

	5.5 MasterAgent Class
	5.5.1 Constants Definitions
	5.5.2 State Schema of MasterAgent
	5.5.3 The Initial Schema
	5.5.4 MasterAgent Operations
	5.5.4.1 The start Operation
	5.5.4.2 The getFirstIdentity Operation
	5.5.4.3 The assignGrabber Operation
	5.5.4.4 The addAssigning Operation
	5.5.4.5 The receiveAllProfiles Operation
	5.5.4.6 The receiveProfiles Operation
	5.5.4.7 The completeRetrieving Operation
	5.5.4.8 The nextLevel Operation


	5.6 GrabberAgent Class
	5.6.1 State Schema of GrabberAgent
	5.6.2 The Initial State
	5.6.3 GrabberAgent Operations
	5.6.3.1 The receiveID Operation
	5.6.3.2 The updateInfo Operation
	5.6.3.3 The updateID Operation


	5.7 Summary

	6 Design and Implementation of a Multi Agent System for Historical Data Extraction from Online Social Networks
	6.1 Introduction
	6.2 Conceptual Overview of Online Social Network Retrieval System
	6.2.1 Selecting the software
	6.2.2 Organizational Model of OSNRS
	6.2.3 Structural Model of OSNRS 
	6.2.4 Flow of Information between OSNRS Components

	6.3 Implementation of Online Social Network Retrieval System
	6.3.1 Setting the Environment of OSNRS
	6.3.2 Input Initialization
	6.3.3 Choosing the Sample of OSNRS
	6.3.4 Running the OSNRS
	6.3.5 Algorithm of OSNRS 

	6.4 Experimental Findings and Results
	6.5 Experimental Validation
	6.6 Limitations
	6.7 Chapter Summary 

	7 Multi Agent System for Data Extraction from Online Social Network in Application Programming Interface Approach
	7.1 Introduction
	7.2 Conceptual Overview of OSNRS with API
	7.2.1 Specifying the OSNRS Domain
	7.2.2 Creating a Facebook Application

	7.3 The Flow of Information between OSNRS Components with API
	7.4 Structural Models of OSNRS with API
	7.4.1 Scenario 1
	7.4.2 Scenario 2
	7.4.3 Scenario 3

	7.5 Algorithm of OSNRS with API
	7.5.1 Sub Algorithm 1
	7.5.2 Sub Algorithm 2
	7.5.3 Sub Algorithm 3

	7.6 Implementation of OSNRS with API
	7.6.1 Setting up the OSNRS Environment
	7.6.2 Choosing the OSNRS Sample
	7.6.3 Running the OSNRS with API

	7.7 Findings and Results
	7.8 Summary

	8 Conclusions
	8.1 Research Contribution
	8.2 Recommendations for Future Work
	References
	References





