623 research outputs found

    Peak to average power ratio reduction in NC–OFDM systems

    Get PDF
    Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems

    OFDM PAPR reduction for image transmission using improved tone reservation

    Get PDF
    High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128Ă—128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with several numbers of subcarriers; we found that the PAPR is reduced as the number of subcarriers decreased

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Peak to average power ratio reduction in spectrally efficient FDM using repeated clipping and filtering

    Get PDF
    Multi-carrier transmission may be considered one of the important developments in wireless communications. Spectrally efficient frequency division multiplexing (SEFDM) is a promising multi-carrier modulation which can significantly improve utilization of spectral. The SEFDM has high peak to average power ratio (PAPR) like any multicarrier system. High PAPR reduces the random forest (RF) transmitter power amplifier efficiency, which minimize the use of this technique in limited power supply transmitters. In this work, a repeated clipping and filtering method is introduced to reduce the PAPR in SEFDM with minimum or no out of band radiation. The results of the simulated approach show that the PAPR of the SEFDM was reduced from 16.264 dB to 7.9146 dB with marginal degradation in system performance when the clipping ratio varied from 4 to 2

    EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLC) thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem as a convex linear optimization problem and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white Gaussian noise (AWGN) channel and frequency-selective channel. We will compare the performance of DCO-OFDM and ACO-OFDM under different power constraint scenarios

    Automatic transmit power control for power efficient communications in UAS

    Get PDF
    Nowadays, unmanned aerial vehicles (UAV) have become one of the most popular tools that can be used in commercial, scientific, agricultural and military applications. As drones become faster, smaller and cheaper, with the ability to add payloads, the usage of the drone can be versatile. In most of the cases, unmanned aerials systems (UAS) are equipped with a wireless communication system to establish a link with the ground control station to transfer the control commands, video stream, and payload data. However, with the limited onboard calculation resources in the UAS, and the growing size and volume of the payload data, computational complex signal processing such as deep learning cannot be easily done on the drone. Hence, in many drone applications, the UAS is just a tool for capturing and storing data, and then the data is post-processed off-line in a more powerful computing device. The other solution is to stream payload data to the ground control station (GCS) and let the powerful computer on the ground station to handle these data in real-time. With the development of communication techniques such as orthogonal frequency-division multiplexing (OFDM) and multiple-input multiple-output (MIMO) transmissions, it is possible to increase the spectral efficiency over large bandwidths and consequently achieve high transmission rates. However, the drone and the communication system are usually being designed separately, which means that regardless of the situation of the drone, the communication system is working independently to provide the data link. Consequently, by taking into account the position of the drone, the communication system has some room to optimize the link budget efficiency. In this master thesis, a power-efficient wireless communication downlink for UAS has been designed. It is achieved by developing an automatic transmit power control system and a custom OFDM communication system. The work has been divided into three parts: research of the drone communication system, an optimized communication system design and finally, FPGA implementation. In the first part, an overview on commercial drone communication schemes is presented and discussed. The advantages and disadvantages shown are the source of inspiration for improvement. With these ideas, an optimized scheme is presented. In the second part, an automatic transmit power control system for UAV wireless communication and a power-efficient OFDM downlink scheme are proposed. The automatic transmit power control system can estimate the required power level by the relative position between the drone and the GCS and then inform the system to adjust the power amplifier (PA) gain and power supply settings. To obtain high power efficiency for different output power levels, a searching strategy has been applied to the PA testbed to find out the best voltage supply and gain configurations. Besides, the OFDM signal generation developed in Python can encode data bytes to the baseband signal for testing purpose. Digital predistortion (DPD) linearization has been included in the transmitter’s design to guarantee the signal linearity. In the third part, two core algorithms: IFFT and LUT-based DPD, have been implemented in the FPGA platform to meet the real-time and high-speed I/O requirements. By using the high-level synthesis design process provided by Xilinx Corp, the algorithms are implemented as reusable IP blocks. The conclusion of the project is given in the end, including the summary of the proposed drone communication system and envisioning possible future lines of research
    • …
    corecore