12 research outputs found

    A fundamental analysis of means of producing and storing energy

    Get PDF
    The goal of this dissertation is to examine some of the most promising non-fossil means for producing electricity and storing energy for transportation, to provide a thorough and (hopefully) unbiased assessment of which hold the most promise, and therefore warrant further research focus. Additionally, recommendations are made for potential means for improving proposed or existing technologies, in particular the technology of a new subcritical reactor design using an electronuclear driver and thermal transmutation of transuranic actinides. The high energy density of liquid hydrocarbon fuels is ideal for transportation applications, but our ability to sustainably produce such fuels (i.e. biofuels) is limited by the low photosynthetic efficiency achieved by plants. While some proposals are made herein to make the most of the potential of biofuels, their limitations ultimately will require the storage of electrical energy (in batteries, hydrogen, or mechanical energy storage) if we are to eliminate our dependence on petroleum for transportation. The outcome of this analysis is that lithium-ion batteries are best suited for such an application. This is based on a significantly better net efficiency with only moderately lower energy density compared to the best means of storing hydrogen, and no additional infrastructure requirements. The analysis also indicates the direction research should take to further improve lithium-ion batteries. Since the sustainability of electric vehicles depends on the means of producing electricity, a focus of this dissertation is assessing the potential to produce electricity with advanced nuclear fission and fusion reactors. While magnetic and inertial confinement fusion are interesting from the standpoint of the plasma and nuclear physics involved, the analysis presented here illustrates that the potential for commercial electricity production with either is slim, with several potential deal breakers. Further, muon catalyzed fusion is shown to offer no practical means of producing net energy. Furthermore, fusion fuels other than Deuterium-Tritium (DT) have triple product requirements roughly two orders of magnitude greater for net energy production. The analysis of a catalyzed deuterium plasma presented herein shows it to be less promising than previous analyses have indicated. The flux of 14.1 MeV neutrons from a DT plasma presents a significant challenge that is likely to limit or prevent commercialization of DT fusion power. The primary alternative approach that may become viable is a so-called helium catalyzed DD cycle. However, there are two significant challenges (the need for active tritium removal and the large onsite tritium inventory) that must be addressed for this option to have significant potential. Greater focus therefore should be placed on advanced fission reactors, in particular thermal thorium reactors and driven subcritical reactors, such as of the general design proposed in this dissertation

    A study of space station needs, attributes, and architectural options, volume 2, technical. Book 2: Mission implementation concepts

    Get PDF
    Space station systems characteristics and architecture are described. A manned space station operational analysis is performed to determine crew size, crew task complexity and time tables, and crew equipment to support the definition of systems and subsystems concepts. This analysis is used to select and evaluate the architectural options for development

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Digital Transformation

    Get PDF
    The amount of literature on Digital Transformation is staggering—and it keeps growing. Why, then, come out with yet another such document? Moreover, any text aiming at explaining the Digital Transformation by presenting a snapshot is going to become obsolete in a blink of an eye, most likely to be already obsolete at the time it is first published. The FDC Initiative on Digital Reality felt there is a need to look at the Digital Transformation from the point of view of a profound change that is pervading the entire society—a change made possible by technology and that keeps changing due to technology evolution opening new possibilities but is also a change happening because it has strong economic reasons. The direction of this change is not easy to predict because it is steered by a cultural evolution of society, an evolution that is happening in niches and that may expand rapidly to larger constituencies and as rapidly may fade away. This creation, selection by experimentation, adoption, and sudden disappearance, is what makes the whole scenario so unpredictable and continuously changing.The amount of literature on Digital Transformation is staggering—and it keeps growing. Why, then, come out with yet another such document? Moreover, any text aiming at explaining the Digital Transformation by presenting a snapshot is going to become obsolete in a blink of an eye, most likely to be already obsolete at the time it is first published. The FDC Initiative on Digital Reality felt there is a need to look at the Digital Transformation from the point of view of a profound change that is pervading the entire society—a change made possible by technology and that keeps changing due to technology evolution opening new possibilities but is also a change happening because it has strong economic reasons. The direction of this change is not easy to predict because it is steered by a cultural evolution of society, an evolution that is happening in niches and that may expand rapidly to larger constituencies and as rapidly may fade away. This creation, selection by experimentation, adoption, and sudden disappearance, is what makes the whole scenario so unpredictable and continuously changing

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the ïŹrst industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and ïŹ‚exible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    How We Use Stories and Why That Matters

    Get PDF
    How We Use Stories and Why That Matters guides the reader through the tangled undergrowth of communication and cultural expression towards a new understanding of the role of group-mediating stories at global and digital scale. It argues that media and networked systems perform and bind group identities, creating bordered fictions within which economic and political activities are made meaningful. Now that computational and global scale, big data, metadata and algorithms rule the roost even in culture, subjectivity and meaning, we need population-scale frameworks to understand individual, micro-scale sense-making practices. To achieve that, we need evolutionary and systems approaches to understand cultural performance and dynamics. The opposing universes of fact (science, knowledge, education) and fiction (entertainment, story and imagination) – so long separated into the contrasting disciplines of natural sciences and the humanities – can now be understood as part of one turbulent sphere of knowledge-production and innovation. Using striking examples and compelling analysis, the book shows what the New York Shakespeare Riots tell us about class struggle, what Death Cab for Cutie tells us about media, what Kate Moss’s wedding dress tells us about authorship, and how Westworld and Humans imagine very different futures for Artificial Intelligence: one based on slavery, the other on class. Together, these knowledge stories tell us about how intimate human communication is organised and used to stage organised conflict, to test the ‘fighting fitness’ of contending groups – provoking new stories, identities and classes along the way

    How We Use Stories and Why That Matters

    Get PDF
    How We Use Stories and Why That Matters guides the reader through the tangled undergrowth of communication and cultural expression towards a new understanding of the role of group-mediating stories at global and digital scale. It argues that media and networked systems perform and bind group identities, creating bordered fictions within which economic and political activities are made meaningful. Now that computational and global scale, big data, metadata and algorithms rule the roost even in culture, subjectivity and meaning, we need population-scale frameworks to understand individual, micro-scale sense-making practices. To achieve that, we need evolutionary and systems approaches to understand cultural performance and dynamics. The opposing universes of fact (science, knowledge, education) and fiction (entertainment, story and imagination) – so long separated into the contrasting disciplines of natural sciences and the humanities – can now be understood as part of one turbulent sphere of knowledge-production and innovation. Using striking examples and compelling analysis, the book shows what the New York Shakespeare Riots tell us about class struggle, what Death Cab for Cutie tells us about media, what Kate Moss’s wedding dress tells us about authorship, and how Westworld and Humans imagine very different futures for Artificial Intelligence: one based on slavery, the other on class. Together, these knowledge stories tell us about how intimate human communication is organised and used to stage organised conflict, to test the ‘fighting fitness’ of contending groups – provoking new stories, identities and classes along the way

    The Fifth National Technology Transfer Conference and Exposition

    Get PDF
    No abstract availabl

    Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Seventh Italian Conference on Computational Linguistics (CLiC-it 2020). This edition of the conference is held in Bologna and organised by the University of Bologna. The CLiC-it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after six years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Efficient Exploration of Telco Big Data with Compression and Decaying

    No full text
    corecore