1,327 research outputs found

    Advanced Methods in Business Process Deviance Mining

    Get PDF
    Äriprotsessi hälve on nähtus, kus alamhulk äriprotsessi täitmistest erinevad soovitud või ettenähtud tulemusest, kas positiivses või negatiivses mõttes. Äriprotsesside hälbega täitmised sisaldavad endas täitmisi, mis ei vasta ettekirjutatud reeglitele või täitmised, mis on jäävad alla või ületavad tulemuslikkuse eesmärke. Hälbekaevandus tegeleb hälbe põhjuste otsimisega, analüüsides selleks äriprotsesside sündmuste logisid.Antud töös lähenetakse protsessihälvete põhjuste otsimise ülesandele, esmalt kasutades järjestikkudel põhinevaid või deklaratiivseid mustreid ning nende kombinatsiooni. Hälbekaevandusest saadud põhjendusi saab parendada, kasutades sündmustes ja sündmusjälgede atribuutides sisalduvaid andmelaste. Andmelastidest konstrueeritakse uued tunnused nii otsekoheselt atribuute ekstraheerides ja agregeerides kui ka andmeteadlike deklaratiivseid piiranguid kasutades. Hälbeid iseloomustavad põhjendused ekstraheeritakse kasutades kaudset ja otsest meetodit reeglite induktsiooniks. Kasutades sünteetilisi ja reaalseid logisid, hinnatakse erinevaid tunnuseid ja tulemuseks saadud otsustusreegleid nii nende võimekuses täpselt eristada hälbega ja hälbeta protsesside täitmiseid kui ka kasutajatele antud lõpptulemustes.Business process deviance refers to the phenomenon whereby a subset of the executions of a business process deviate, in a negative or positive way, with respect to its expected or desirable outcomes. Deviant executions of a business process include those that violate compliance rules, or executions that undershoot or exceed performance targets. Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing business process event logs. In this thesis, the problem of explaining deviations in business processes is first investigated by using features based on sequential and declarative patterns, and a combination of them. The explanations are further improved by leveraging the data payload of events and traces in event logs through features based on pure data attribute values and data-aware declare constraints. The explanations characterizing the deviances are then extracted by direct and indirect methods for rule induction. Using synthetic and real-life logs from multiple domains, a range of feature types and different forms of decision rules are evaluated in terms of their ability to accurately discriminate between non-deviant and deviant executions of a process as well as in terms of the final outcome returned to the users

    Behavioral constraint template-based sequence classification

    Get PDF
    In this paper we present the interesting Behavioral Constraint Miner (iBCM), a new approach towards classifying sequences. The prevalence of sequential data, i.e., a collection of ordered items such as text, website navigation patterns, traffic management, and so on, has incited a surge in research interest towards sequence classification. Existing approaches mainly focus on retrieving sequences of itemsets and checking their presence in labeled data streams to obtain a classifier. The proposed iBCM approach, rather than focusing on plain sequences, is template-based and draws its inspiration from behavioral patterns used for software verification. These patterns have a broad range of characteristics and go beyond the typical sequence mining representation, allowing for a more precise and concise way of capturing sequential information in a database. Furthermore, it is possible to also mine for negative information, i.e., sequences that do not occur. The technique is benchmarked against other state-of-the-art approaches and exhibits a strong potential towards sequence classification. Code related to this chapter is available at: http://feb.kuleuven.be/public/u0092789/status: publishe

    Learning high-level process models from event data

    Get PDF

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Verifying responsiveness for open systems by means of conformance checking

    Get PDF
    corecore