

Verifying responsiveness for open systems by means of
conformance checking
Citation for published version (APA):
Müller, R. (2014). Verifying responsiveness for open systems by means of conformance checking. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR780046

DOI:
10.6100/IR780046

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR780046
https://doi.org/10.6100/IR780046
https://research.tue.nl/en/publications/e92a05f2-51d2-48d7-af85-1f80ae5008af

V E R I F Y I N G R E S P O N S I V E N E S S F O R O P E N S Y S T E M S
B Y M E A N S O F C O N F O R M A N C E C H E C K I N G

P R O E F S C H R I F T

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen op
donderdag 28 augustus 2014 om 16.00 uur

door

Richard Müller

geboren te Dresden, Duitsland

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling
van de promotiecommissie is als volgt:

voorzitter: prof.dr. E.H.L. Aarts
1

e promotor: prof.dr.ir. W.M.P. van der Aalst
2

e promotor: Prof. Dr. W. Reisig (Humboldt-Universität zu Berlin)
copromotor: Dr. C. Stahl
leden: Prof. J.-C. Freytag, Ph.D. (Humboldt-Universität zu Berlin)

prof.dr.ir. J.F. Groote
Prof. Dr.-Ing. U. Nestmann (Technische Universität Berlin)
Prof. Dr. W. Vogler (Universität Augsburg)

V E R I F Y I N G R E S P O N S I V E N E S S F O R O P E N S Y S T E M S
B Y M E A N S O F C O N F O R M A N C E C H E C K I N G

D I S S E RTAT I O N

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(doctor rerum naturalium, Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

im Rahmen einer Binationalen Promotion mit der
Technischen Universiteit Eindhoven, Niederlande

von
Herrn Diplom-Informatiker

Richard Müller

geboren am 18. Oktober 1984 in Dresden

Präsident der Humboldt-Universität zu Berlin
Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II
Prof. Dr. Elmar Kulke

1. Gutachter Prof. Dr. Wolfgang Reisig

2. Gutachter prof.dr.ir. Wil M.P. van der Aalst

3. Gutachter Prof. Dr. Walter Vogler

eingereicht am 09. April 2014

Tag der mündlichen Prüfung 28. August 2014

V E R I F Y I N G R E S P O N S I V E N E S S F O R O P E N S Y S T E M S
B Y M E A N S O F C O N F O R M A N C E C H E C K I N G

abstract

Best engineering practices suggest specifying a system before actually imple-
menting it. Both the implementation as well as its specification exhibit behav-
ioral properties. Conformance checking is deciding whether the implementation
of a system preserves a certain behavioral property of its specification. This
is the central scientific problem of this thesis.

Over the past years, there has been a shift in systems engineering from
monolithic, closed systems to distributed systems, composed of open sys-
tems. Therefore, our research centers around conformance checking for open
systems. An open system interacts with other open systems—that is, its
environment. Of particular interest are responsive environments with which
interaction or mutual termination is always possible. We refer to such an
environment as a partner. For an open system, conformance checking trans-
lates to deciding whether each partner of its specification is a partner of the
implementation.

We consider conformance checking for open systems in two distinct sce-
narios. In the first scenario, the model-model scenario, we assume the speci-
fication and the implementation of an open system to be given as formal
models. We characterize conformance for two variants of responsiveness.
For the first variant, conformance turns out to be undecidable. For the sec-
ond variant however, we develop a decision algorithm for conformance and
a finite characterization of all conforming open systems. In addition, two
open systems can be composed, yielding again an (open) system. In general,
we require conformance to respect compositionality; that is, we wish to infer
the conformance of a composition from the conformance of the composed
open systems. Therefore, we also study the above mentioned composition-
ality property of conformance for the two variants of responsiveness, and
show its (un-)decidability.

In the second scenario, the log-model scenario, we assume the specification
of an open system to be given as a formal model, but this time no formal
model of the implementation is available. However, most implementations
record their actual behavior. The observed behavior of an implementation
can be recorded in an event log. This is a more realistic and practically rele-
vant assumption because the implementation is often too complex to be for-
mally modeled. The idea is to use an event log to check conformance of the
unknown implementation to its known specification. To this end, we present
a necessary condition for conformance: We analyze whether there exists a
conforming implementation which can produce the event log. Furthermore,
we study whether we can discover a formal model of the unknown imple-
mentation from the event log, assuming the implementation conforms to its
specification.

We implement the decision algorithm from the first scenario and use it to
develop algorithms for both questions in the second scenario. We evaluate
the implemented algorithms using industrial-sized specifications and event
logs.

v

kurzfassung

Es ist gute ingenieurwissenschaftliche Praxis, ein System vor seiner Imple-
mentierung zu spezifizieren. Sowohl die Implementierung als auch die Spezi-
fikation eines Systems zeigen Verhaltenseigenschaften. Eine Implementierung
eines Systems ist konform zu einer Spezifikation, wenn die Implementierung
bestimmte Verhaltenseigenschaften der Spezifikation bewahrt. Diese Konfor-
manz zu entscheiden ist die zentrale wissenschaftliche Fragestellung dieser
Arbeit.

In der Systementwicklung hat es in den letzten Jahren eine Verschiebung
weg von monolithischen, geschlossenen Systemen hin zu verteilten, offenen
Systemen gegeben. Daher beschäftigen wir uns in dieser Arbeit mit der Kon-
formanz offener Systeme. Ein offenes System interagiert mit anderen offe-
nen Systemen, d.h. mit seiner Umgebung. Von besonderem Interesse sind
hierbei responsive Umgebungen, mit welchen Interaktion oder gemeinsame
Terminierung immer möglich ist. Solch eine responsive Umgebung ist ein
Partner eines offenen Systems. Die Frage nach der Konformanz eines offe-
nen Systems lässt sich damit in die Frage übersetzen, ob jeder Partner der
Spezifikation auch ein Partner der Implementierung ist.

In dieser Arbeit betrachten wir die Konformanz offener Systeme in zwei
unterschiedlichen Szenarien. Im ersten Szenario, dem Modell-Modell-Szenario,
ist sowohl die Spezifikation als auch die Implementierung eines offenen
Systems als formales Modell gegeben. Wir charakterisieren Konformanz für
zwei Varianten von Responsivität und zeigen deren (Un-)Entscheidbarkeit.
Im Fall der Entscheidbarkeit entwickeln wir einen Entscheidungsalgorith-
mus und eine endliche Charakterisierung aller konformen offenen Systeme.
Die Komposition zweier offener Systeme ist wieder ein offenes System. Ei-
ne wünschenswerte Eigenschaft von Konformanz ist daher Kompositionalität,
d.h. wir wollen von der Konformanz der komponierten offenen Systeme auf
die Konformanz der Komposition schließen. Dementsprechend untersuchen
wir Konformanz für beide Varianten von Responsivität auch auf Komposi-
tionalität und zeigen deren (Un-)Entscheidbarkeit.

Im zweiten Szenario, dem Log-Modell Szenario, ist nur die Spezifikation ei-
nes offenen Systems als formales Modell gegeben; ein formales Modell der
Implementierung ist nicht bekannt. Jedoch stellen die meisten Implementie-
rungen beobachtetes Verhalten von sich in Form eines Logs zur Verfügung.
Diese Annahme ist weitaus realistischer und praktisch relevanter als das
Modell-Modell-Szenario, da die Implementierung eines offenen Systems in
der Regel zu komplex ist um formal modelliert zu werden. Die Idee ist nun,
mit Hilfe des Logs auf die Konformanz der unbekannten Implementierung
und der bekannten Spezifikation zu schließen. Zu diesem Zweck präsen-
tieren wir in dieser Arbeit eine notwendige Bedingung für Konformanz:
Wir entscheiden, ob eine konforme Implementierung existiert, welche das
gegebene Log erzeugen kann. Darüber hinaus entwickeln wir eine Metho-
de zum automatischen Erstellen eines formalen Modells der unbekannten
Implementierung aus dem gegebenen Log unter der Annahme, dass die
Implementierung konform zur Spezifikation ist.

Wir implementieren den Entscheidungsalgorithmus aus dem ersten Sze-
nario und verwenden ihn, um Algorithmen für beide Fragen im zweiten
Szenario zu entwickeln. Wir werten die implementierten Algorithmen mit
industrienahen Spezifikationen und Logs aus.

vi

C O N T E N T S

I introduction 1

1 about this thesis 3

1.1 Background . 3

1.1.1 Designing correct systems using conformance check-
ing . 3

1.1.2 Conformance checking for open systems 5

1.2 Problem statement and research questions 8

1.3 Contributions . 11

1.4 Thesis overview . 15

2 preliminaries 17

2.1 Basic mathematical notions 17

2.2 Labeled transition systems . 18

2.3 Petri nets . 21

2.4 Open nets and their composition 24

2.5 Open net environments and their composition 27

2.6 Relating open nets and open net environments 33

2.7 Conclusions and related work 35

2.7.1 Formalism based on process algebras 36

2.7.2 Formalism based on automata 37

2.7.3 Formalism based on Petri nets 37

2.7.4 Why do we chose open nets? 37

3 responsiveness for open systems 39

3.1 Formalizing responsiveness and conformance 40

3.2 Formalizing b-responsiveness and b-conformance 44

3.3 Classifying both formalizations 49

3.3.1 Classifying responsiveness and b-responsiveness . . 49

3.3.2 Comparing conformance and b-conformance 50

3.4 Conclusions and related work 51

II the model-model scenario 53

4 conformance and compositional conformance 55

4.1 Characterizing conformance 57

4.1.1 The stopdead-semantics for open nets 57

4.1.2 Refinement on the stopdead-semantics 61

4.2 Characterizing compositional conformance 64

4.2.1 The F+
fin-semantics for open nets 65

4.2.2 Refinement on the F+
fin-semantics 68

4.3 Undecidability of conformance and compositional confor-
mance . 75

4.3.1 Counter machines and their halting problem 76

4.3.2 Conformance is undecidable 79

4.3.3 Compositional conformance is undecidable 82

4.4 Conclusions . 83

5 b-conformance 85

5.1 Characterizing b-conformance 85

5.1.1 The b-bounded stopdead-semantics for open nets . . . 86

5.1.2 The b-coverable stopdead-semantics for open nets . . 92

5.1.3 Refinement on the b-coverable stopdead-semantics . . 97

vii

viii contents

5.2 Deciding b-conformance . 98

5.2.1 Deciding b-responsiveness using the LTS BSDb . . . 99

5.2.2 Deciding b-conformance using the LTS CSDb 105

5.2.3 Analyzing the computational complexity 117

5.3 An alternative decision procedure for b-conformance 121

5.3.1 Deciding b-responsiveness using matching 123

5.3.2 Deciding b-conformance using matching 127

5.3.3 Analyzing the computational complexity 132

5.4 Implementation and experimental results 135

5.5 Conclusions . 139

6 compositional b-conformance 141

6.1 Characterizing compositional b-conformance 141

6.1.1 The b-bounded F +
fin-semantics for open nets 142

6.1.2 Refinement on the b-bounded F +
fin-refinment 145

6.2 Deciding compositional b-conformance 149

6.2.1 Deciding F +
fin-refinement for finite LTSs 150

6.2.2 Reducing the decision of compositional b-conformance
to F +

fin-refinement . 153

6.3 Conclusions . 157

7 conclusions and related work 159

7.1 Overview of the results . 159

7.2 Classifying compositional conformance and compositional
b-conformance . 160

7.3 Related work . 162

7.3.1 Work based on process algebra and declarative models162

7.3.2 Work based on automata 164

7.3.3 Work based on Petri nets 165

7.3.4 Work related to the undecidability results 167

III the log-model scenario 169

8 testing for b-conformance 171

8.1 Formalizing observed behavior 173

8.1.1 Events, event traces, and event logs 173

8.1.2 Replaying an event log on a labeled net 174

8.1.3 Replaying an event log on an open net 177

8.2 The testing procedure . 179

8.3 Implementation . 183

8.4 Evaluation and experimental results 183

8.4.1 Preparing the evaluation process 184

8.4.2 Testing 1-conforming implementations 185

8.4.3 Testing non 1-conforming implementations 187

8.5 Conclusions . 191

9 discovering a model of a b-conforming system 193

9.1 The discovery procedure . 194

9.1.1 Discovering a b-conforming open net 194

9.1.2 Discovering a high-quality open net 194

9.2 Improving the discovery procedure with b-subnets 203

9.2.1 Impact on the fitness dimension 204

9.2.2 Impact on the simplicity dimension 205

9.2.3 Impact on the precision dimension 206

9.2.4 Impact on the generalization dimension 207

9.3 Implementation . 208

9.4 Evaluation and experimental results 212

contents ix

9.4.1 Preparing the evaluation process 212

9.4.2 Discovering 1-conforming open nets 215

9.5 Conclusions . 221

10 conclusions and related work 223

10.1 Overview of the results . 223

10.2 Work related to conformance testing 224

10.3 Work related to open system discovery 225

IV closure 227

11 applying the thesis results 229

11.1 The emergency ward service in a stroke unit 229

11.1.1 An informal specification 229

11.1.2 A formal model of the specification 232

11.1.3 Two implementations in WS-BPEL 232

11.2 The model-model scenario . 237

11.2.1 Step 1: Deriving formal models 237

11.2.2 Step 2: Checking for 1-conformance 241

11.3 The log-model scenario . 241

11.3.1 Step 1: Deriving event logs 242

11.3.2 Step 2: Testing for 1-conformance 243

11.3.3 Step 3: Discovering a high-quality model of a 1-con-
forming implementation 245

11.4 Conclusions . 246

12 thesis conclusions and outlook 249

12.1 Summary of contributions . 249

12.1.1 The model-model scenario 249

12.1.2 The log-model scenario 250

12.1.3 Tool support . 251

12.2 Limitations and open questions 253

12.2.1 Incomplete or unsound specifications 253

12.2.2 Measuring quality is subjective 253

12.2.3 Abstraction only preserves fitness and simplicity . . 254

12.3 Future work . 254

12.3.1 Refined conformance relations 254

12.3.2 Improved algorithms 255

12.3.3 Compositionality in the log-model scenario 255

12.3.4 Refined discovery . 256

12.3.5 Introducing additional aspects 256

bibliography 257

index 279

acknowledgements 283

curriculum vitæ 285

declaration 289

Part I

I N T R O D U C T I O N

1A B O U T T H I S T H E S I S

This thesis contributes to a general theory of open systems. Open sys-
tems are, as opposed to closed systems, inherently made to interact with

each other. Our goal is to verify responsiveness for open systems—that is,
to ensure that mutual termination or interaction between two open systems
is always possible. In this thesis, we aim to verify responsiveness for open
systems by means of conformance checking: A conformance relation for
responsiveness is a relation between two systems—based on their systems’
models—that preserves responsiveness; conformance checking is deciding
whether this conformance relation for responsiveness holds.

We introduce the background of conformance checking and responsive-
ness for open systems in Sect. 1.1. In Sect. 1.2, we formulate our problem
statement and derive five research questions. We give an overview over our
contributions in Sect. 1.3 and conclude this chapter with an outline of the
forthcoming chapters in Sect. 1.4.

1.1 background

In Sect. 1.1.1, we discuss conformance checking as a verification method for
the behavior of systems. We reminisce the rise of interacting open systems
from closed, monolithic systems in systems engineering in Sect. 1.1.2.

1.1.1 Designing correct systems using conformance checking

“Our civilization runs on software”, as Bjarne Stroustrup once said [229].
Software systems are everywhere nowadays, but only a small part of them
is visible—for example, the operating system of a personal computer. Most
software systems are omnipresent in form of embedded software [145], which
is invisibly woven into artifacts like vehicles, communication systems, bank-
ing systems, consumer electronics, household applications, and medical sys-
tems. A failure in those software systems may have profound consequences.
As an example, several cancer patients received deadly radiation overdoses
between 1985 and 1987 at oncology clinics in the U.S. and Canada because
of a software error in a certain linear accelerator model [262]. Another exam-
ple is the August 2003 blackout in the northeastern U.S. and Ontario. This
blackout was partly caused by a software error in General Electric’s XA/21

energy management system and is associated with costs between seven and
ten billion U.S. dollar [262]. Beside such fatalities, software failures cause
enormous economic cost associated with developing and distributing soft-
ware patches, reinstalling and substituting systems, and lost productivity. A
cost analysis from 2008 [197] estimates software bugs to cost alone the U.S.
economy 59.5 billion U.S. dollar a year. In addition, the impact of faulty
software systems is likely to rise, as the volume of embedded software sys-
tems is still increasing at 10 to 20 percent every year [88]. That is why there
is a vital interest in the development of correctly behaving software systems.
Thereby, correct behavior of a system refers to the absence of unwanted
states like deadlocks or livelocks, for example.

3

4 about this thesis

Developing correctly behaving software systems is a complex and error-
prone task [138]. Software systems are one of the most complex artifacts
produced by humans [147]. Modern operating systems consists of hundred
of millions lines of code (LOC)—for example, 45 Mio. LOC for Windows
XP [176], 86 Mio. LOC for Mac OS 10.5 (Leopard) [127], and 323 Mio. LOC
for Debian 5.0 (Lenny) [73]. Even embedded software systems, although spe-
cialized for particular hardware and not as universal as operating systems,
reach these complexity dimensions: For example, a modern car is driven by
software systems with up to 100 Mio. LOC [60] and the software systems
of an Airbus A380 consist of several 100 Mio. LOC [255]. Lines of code are
longly overhauled as a precise measure of software complexity [94]. Never-
theless, these numbers still give an impression of the complexity of software
systems.

Because of the complexity of software systems, there exists a long-standing
interest in techniques for checking the correctness of systems; already the
computing pioneers Turing, Goldstine, and von Neumann presented work-
able methods on systems correctness [183]. In the sixties, a broad set of
formal methods for correct systems has been established. Testing aims to iden-
tify errors by exercising tests on the running implementation [240]. How-
ever, testing can only show the presence of errors, but never their absence.
Verification aims to prove the correctness of a system—based on a mathe-
matical model of that system—with mathematical certainty [120]. Today,
with the dissemination of embedded systems into our daily lives, the in-
terest in computer-aided verification methods is as strong as ever. Con-
sequently, their usage in industrial projects increased significantly in recent
years [221, 260]. In this thesis, we investigate conformance checking [68] which
can be seen as a particular verification method.

Conformance checking centers around a relation v between two system
models. Usually, a detailed model Impl—the implementation—and a more
abstract model Spec—the specification—of the behavior of a system is as-
sumed to be given. It is then checked whether Impl is behaviorally “con-
tained” in Spec—that is, whether a certain behavioral correctness criterion
φ that holds in the specification also holds in the implementation. In this
thesis, we refer to v as conformance relation that preserves φ. Other names
found in literature are refinement relation [256, 37], implementation rela-
tion [119, 72, 143, 238], conformation relation [81], preorder relation [68],
accordance relation [226, 11], and subcontract relation [141, 44]. A confor-
mance relation v is usually formalized as a preorder, defining an ordering
among system models. If two system models Impl and Spec are related by
a conformance relation v, then intuitively Impl is less abstract than Spec.
In other words, Impl implements Spec in a certain sense, for example, by
resolving some nondeterminism of Spec.

In system design, one can distinguish two approaches for designing cor-
rectly behaving systems: correctness-by-construction (i.e., a priori verification)
and correctness-by-verification (i.e., a posteriori verification). Correctness-by-
construction is a top-down approach. An implementation is constructed
from a correct specification, and correctness of the implementation follows
from the construction algorithm. Complementary to correctness-by-con-
struction, correctness-by-verification is a bottom-up approach, where we
conclude correctness of a given implementation by verifying the correctness
of a specification. A conformance relation v enables both approaches:

• In the top-down approach, we are given a behavioral correctness crite-
rion φ and a specification Spec that satisfies φ. The goal is to construct

1.1 background 5

a correct implementation Impl—that is, Impl satisfies φ, too. To this
end, we incrementally transform Spec w Impl1 w Impl2 w . . . w Implk
such that the conformance relation is preserved in each step. As a re-
sult, the implementation Impl = Implk is correct by construction. This
approach is also known as stepwise refinement [256], which is one
of the main methods for the systematic construction of programs and
systems [24].

• In the bottom-up approach, we are given a behavioral correctness cri-
terion φ and an implementation Impl. The goal is to verify whether
φ holds in Impl. To this end, we construct an abstraction Spec from
Impl leaving out unnecessary details. Due to its more compact repre-
sentation, Spec is easier to verify than Impl. We can do so by applying
verification techniques such as theorem proving [158, 83] and model
checking [67, 28]. After establishing correctness of Spec, we can check
whether Impl is correct by checking whether Impl v Spec.

Summing up, there exists a need for designing correctly behaving soft-
ware systems. We can support their design with verification methods like
conformance checking.

1.1.2 Conformance checking for open systems

We already detailed in Sect. 1.1.1 that software systems are highly com-
plex. For handling this complexity, the principle of modularization is one of
the most fundamental principles in system engineering. Thereby, we con-
struct a large system by assembling smaller, interchangeable parts [169, 161].
Compositionality is one of the most desirable requirements for these inter-
changeable parts: An aggregate of properly assembled parts should behave
as one part itself. Over the last forty years, parts have been developed in
different forms like procedures, functions, modules [75], objects [175], com-
ponents [230], and services [201]. They all differ in many types of properties
like how they are assembled, whether they are stateless or not, or what kind
of side effects they have. However, all these forms of parts share a common
idea: Constructing a complex system by assembling less complex parts en-
ables the reuse of existing parts and an “organic” growth of systems—that
is, system evolution by redesigning and iteratively improving parts.

Consequently, there has been a constant shift in system engineering from
monolithic, closed systems to distributed, open systems: Nowadays, typical
complex systems are open and embedded in or connected with other open
systems. These open systems execute concurrently on different machines
and interact with each other through computer networks [22]. In other
words, many complex systems have—despite their names—quite simple
microscopic parts, and their complexity arises from local interactions [98].
Examples for such systems are service-oriented systems like web service ap-
plications [201], systems based on wireless network technologies like wire-
less sensor networks [17], online games [146], distributed transportation sys-
tems [117], medical systems [107], or a software system based on electronic
control units in a car or plane [60]. Figure 1 motivates our choice to focus
on conformance checking for open systems in this thesis.

The goal of this thesis is to contribute to a general theory of open systems.
For open systems, interaction is a first-class citizen: A typical open system
is not executed in isolation but interacts with other open systems—that is,
its environment. An open system interacts with its environment through a

6 about this thesis

our civilization runs
on SW systems

SW systems
are complex

we need SW systems
to behave correctly

verification through
formal methods

developing correctly behaving
SW systems is hard

interacting
open systems

SW systems

conformance checking
for interacting open systems

a conformance relation
enables both approaches

correctness-by-constructioncorrectness-by-verification

we construct complex
systems from less

complex parts
complexity arises
from interaction

Figure 1: A summary of the arguments presented in Sect. 1.1.1 and Sect. 1.1.2 that
motivate our study of conformance checking for interacting open systems.

well-defined interface. Message-based communication [29, 172, 55] emerged as a
fundamental interaction mechanism, where open systems interact with each
other by sending and receiving messages over the message channels of the in-
terface. In this thesis, we study asynchronous communication: Each message
channel is an unbounded, unordered, and lossless buffer [172, 134, 150]. We
consider asynchronous communication because it naturally supports the dis-
tributed setting of interacting open systems [172]. On the downside, asyn-
chronous communication between systems is more difficult to verify than
synchronous communication. Every (complex) communicating open sys-
tem has a communication protocol [174, 37] that describes the system’s control
flow (i.e., the order in which messages are exchanged) and the underly-
ing communication model (i.e., the way messages are exchanged with the
environment). The communication protocol of an asynchronously commu-
nicating open system is formulated in terms of visible actions (i.e., sending
or receiving a message) and invisible actions (i.e., internal activities). In this
thesis, we restrict ourselves to the communication protocol of an open sys-
tem and abstract from details such as the location of the open system, the
underlying middleware, or the content of messages. Figure 2 illustrates the
open systems notion.

Next to interaction, compositionality is another first-class citizen for open
systems: The composition of two open systems is again an open system.
Composition allows open systems to be composed from smaller ones. Ba-
sic forms of composition are, for example, parallel composition, sequential
composition, and recursion. In this thesis, we consider parallel composition
with asynchronous communication because we consider it to be the natural
form of composition for open systems.

Compositionality of open systems requires a compositional notion of con-
formance. A conformance relation is compositional if conformance between

1.1 background 7

messagemessage channel

interface open systemactivitycommunication protocol

Figure 2: An illustration of the concepts of open systems.

two composed systems can be derived by showing conformance for their
components. We illustrate the difference between a conformance relation
for open systems and a conformance relation for closed systems using Fig. 3.
For closed systems, there does not exist a notion of system composition.
Hence, the conformance relation is a relation between two closed systems
as depicted in Fig. 3a. For open systems, the conformance relation is a
relation between two open systems. The implementation on the left-hand
side in Fig. 3b is composed from three open systems Impl1, Impl2, and Impl3.
The specification on the right-hand side in Fig. 3b is composed from three
open systems Spec1, Spec2, and Spec3. Using a compositional conformance
relation, we can infer that the implementation conforms to the specifica-
tion from Impl1 conforming to Spec1, Impl2 conforming to Spec2, and Impl3
conforming to Spec3. Traditionally, compositional conformance notions for
concurrent systems are considered hard to obtain [51].

conforms to

Implementation Specification

SpecImpl

(a) Conformance relation between two closed systems

conforms to

Implementation Specification

Impl2

Impl1

Impl3 Spec3

Spec1

Spec2

(b) Conformance relation between two open systems

Figure 3: An illustration of the difference between a conformance relation for closed
systems and a conformance relation for open systems.

The composition of two open systems may be correct in terms of its syntax,
its semantics, its behavior, and its quality. Syntactical correctness ensures that

8 about this thesis

connected message channels have the same message type. Semantical correct-
ness guarantees that messages and their content are correctly interpreted.
Behavioral correctness expresses the absence of behavioral errors—that is, the
absence of unwanted communication patterns. Qualitative correctness en-
sures quality parameters like reliability, costs, or security levels. As already
motivated in Sect. 1.1.1, we restrict ourselves to the verification of behavioral
correctness.

1.2 problem statement and research questions

In this thesis, we aim to verify behavioral correctness of open systems by
means of conformance checking. Thereby, the employed conformance re-
lation always depends on a certain behavioral correctness criterion. In the
following, we motivate responsiveness as a minimal behavioral correctness
criterion for open systems.

Responsiveness ensures that termination of the composition of two inter-
acting open systems or communication between these two open systems is
always possible. In other words, responsiveness combines termination with
interaction: Termination is an important correctness criterion to all kinds
of systems, but usually too strict if considered in isolation. Interaction is
fundamental to open systems. A nonterminating composition of two open
systems that do not have the possibility to communicate is fundamentally ill-
designed. An example for the importance of responsiveness is Microsoft’s
asynchronous event driven programming language P [76]. P was used to im-
plement and verify the core of the USB device driver stack that ships with
Microsoft Windows 8. Thereby, P uses responsiveness for bounded message
channels as a combination of termination and interaction while additionally
requiring that no message in any channel is ignored forever. We aim at an
even more general notion of responsiveness by focusing solely on the com-
bination of termination and interaction. So the problem statement of this
thesis is:

How can we verify responsiveness in open systems by means of con-
formance checking?

In the following, we state five research questions that arise from our prob-
lem statement.

For the first research question, recall that conformance checking operates
on models of the behavior of open systems. Figure 4 illustrates the relation
between open systems in reality and their models.

In this thesis, we assume that we can translate a given specification and
implementation of an open system into formal models. We do not investi-
gate how these models are derived; they may be created manually or auto-
matically derived using existing techniques. Moreover, we focus on formal
behavioral models that abstract from non-controlflow related aspects such
as resource or timing information. The formal model of our choice will be
open nets [246, 153]—a variant of Petri nets [216]—which we present and
justify in Chap. 2. Figure 5 illustrates the relation between open systems’
behavior in reality and the translation of open systems’ behavior into open
nets. As an example, consider an open system in the form of a service [201].
Services are often implemented in the Web Services Business Process Ex-
ecution Language [130] (WS-BPEL). Those implementations can be trans-
lated into an open net using the compiler BPEL2OWFN [149]. In addition,

1.2 problem statement and research questions 9

Implementation

conforms to

Specification

R
ea

lit
y

M
od

el
s

models modelstranslates translates

conforms to SpecImpl

Figure 4: Verification using conformance checking operates on behavioral models of
open systems.

there exist approaches that can translate a service description in PHP [208]
or C [135] into an automata [223, 222] using techniques from the areas of
model checking [67, 28] and static program analysis [198]. Automata, in
turn, can be translated into Petri nets [25], e.g., using state-based [77, 215]
or language-based regions [157].

Implementation
(e.g., WS-BPEL)

conforms to

Specification
(e.g., WS-BPEL)

Re
al

ity
O

pe
n

Ne
ts

models modelstranslates translates

conforms to
SpecImpl

Figure 5: Employing existing translations of open systems’ behavior to formal mod-
els.

Conformance checking on formal models requires a formal notion of re-
sponsiveness and of the corresponding conformance relation, both formu-
lated in terms of these models. Therefore, our first research question is

1. How can we formalize responsiveness and the corresponding confor-
mance relation on open nets?

For the remaining four research questions, we distinguish two scenarios
for conformance checking, depending on the information we have about
the implementation: In the first scenario, we assume that a formal model of
the implementation is available. We refer to this scenario as the model-model
scenario. In the second scenario, however, a formal model of the implementa-
tion is unavailable; instead, we are given an event log of the implementation.
We refer to the second scenario as the log-model scenario.

In the model-model scenario, we assume that the specification and the
implementation of an open system are given as formal models. This sce-
nario corresponds to traditional conformance checking on formal models.

10 about this thesis

Hence, Fig. 5 also illustrates an instance of the model-model scenario. In
the model-model scenario, the following two research questions arise:

2. Is the conformance relation arising from responsiveness compositional?
If not, what is the compositional conformance relation that preserves
responsiveness?

3. How can we decide the (compositional) conformance relation arising
from responsiveness?

In the log-model scenario, we assume the specification of an open system
to be given as a formal model, but no formal model of the implementation
is available. In practice, often no formal model of the implementation is
available because the implementation is too complex to be formally mod-
eled. Even if there exists a formal model of the implemented system, it
can differ significantly from the actual implementation: The formal model
may have been implemented incorrectly, or the implementation may have
been changed over time. However, most implementations can provide some
kind of observed behavior, commonly referred to as event log. An event
log may be extracted from databases, message logs, or audit trails [8]. The
idea is to use a formalization Log of such an event log to investigate confor-
mance of the unknown implementation to its known specification. Thereby,
Log is a multiset of traces that abstracts from captured resource or timing
information, for example. This is often a more realistic and practically rel-
evant assumption than assuming the availability of a formal model of the
implementation as we do in the model-model scenario. Figure 6 depicts
our assumptions for the log-model scenario. By investigating the log-model
scenario in addition to the model-model scenario, we move closer toward
conformance checking in practice.

Event
Log

provides

Implementation
(unknown)

conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

modelstranslatesabstracts

SpecLog Impl

modelstranslates

(unavailable)

conforms to

Figure 6: The log-model scenario

The idea for the log-model scenario is fueled by recent advances in the
area of process mining [2]. Process mining techniques focus on extracting
process models from event logs (“process discovery”), comparing normative
models with the reality recorded in event logs (which is also called “con-
formance testing” [218] or “conformance checking” [12, 9, 219, 15]), and
extending models based on event logs (“extension”). In other words, by
investigating the log-model scenario, we pursue the goals of the verifica-
tion method “conformance checking” under the assumptions of (and with
techniques from) “conformance checking” in process mining.

1.3 contributions 11

In general, an event log captures only example behavior of an implemen-
tation; it is highly unrealistic to assume that a complex implementation
exhibits every possible behavior while being observed only for a limited
amount of time. Therefore, we need to assume an event log to be inherently
incomplete. This incompleteness hinders the application of traditional verifi-
cation techniques like conformance checking in the log-model scenario. Still,
testing for conformance may be applicable. Testing for conformance means
that if there is some deviating behavior captured by Log, we can conclude
that the implementation does not conform to the specification. However,
if there is no erroneous behavior captured by Log, we cannot make it pre-
cise whether the implementation conforms to the specification; we simply
cannot say whether conformance holds based on Log.

Another approach to support the design of responsive open systems in
the log-model scenario is to discover a formal model of the unknown imple-
mentation based on Log.

We summarize our research questions for the log-model scenario as fol-
lows:

4. How can we apply conformance testing using a specification and an
event log?

5. How can we discover a formal model of the unknown implementation
using a specification and an event log?

1.3 contributions

In the previous section, we elaborated five research questions from our prob-
lem statement. In this section, we summarize the contributions of this thesis
regarding these research questions.

contribution 1 : formalizing responsiveness We formalize two
variants of responsiveness for open nets: responsiveness and b-responsive-
ness. Responsiveness guarantees that either communication between two
open nets or termination of the nets is always possible; b-responsiveness
additionally guarantees that the number of pending messages between two
open nets never exceeds a previously known bound b. We classify the two
variants of responsiveness into a spectrum of behavioral correctness criteria.
We refer to two responsive open nets as partners and to two b-responsive
open nets as b-partners. We define the inclusion of all partners of the speci-
fication in the set of the partners of the implementation as conformance re-
lation: Intuitively, the implementation interacts desirably (i.e., responsively)
with at least all environments of the specification—or even more. In other
words, responsiveness (or more precisely, the set of responsive partners) is
preserved. Based on partner inclusion, two conformance relations arise from
the two variants of responsiveness: the conformance relation that preserves
responsiveness (conformance for short) and the conformance relation that
preserves b-responsiveness (b-conformance for short). Finally, we position
both relations in the whole spectrum of conformance relations.

contribution 2 : characterizing the compositional confor-
mance relations In the model-model scenario, we assume that the
specification and the implementation of an open system are given as open
nets. We analyze the conformance relation and the b-conformance relation

12 about this thesis

for compositionality: Technically, conformance and b-conformance are clas-
sical preorders and compositionality means that they are precongruences
with respect to open system composition as well. Compositional notions of
conformance are traditionally considered hard to obtain [51]. Figure 7 illus-
trates our general approach: To this end, we provide open nets with a certain
denotational semantics. Based upon this semantics we define a refinement
relation that coincides with the conformance relation under investigation.
Then, we investigate compositionality of the refinement relation. In general,
this is less difficult than directly investigating the conformance relation, be-
cause the denotational semantics abstracts from irrelevant details.

Implementation Specification

O
pe

n
Ne

ts

conformance relation

de
no

ta
tio

na
l

Se
m

an
tic

s

refines semanticssemantics

hashas

SpecImpl

Figure 7: An illustration of how we characterize a conformance relations based upon
a denotational semantics for open nets. A solid arc illustrates the relation
described by the corresponding arc label. The dashed arc illustrates logical
equivalence.

As a concrete example, Fig. 8 illustrates the relation between conformance
and the provided denotational semantics, to which we refer as stopdead-se-
mantics: We provide both the implementation and the specification with the
stopdead-semantics and refinement on the stopdead-semantics coincides with
the conformance relation. It turns out that the conformance relation is not
a precongruence; that is, it is not compositional. Therefore, we proceed by
characterizing its compositional core—that is, the coarsest precongruence
that is contained in the conformance relation. We refer to this precongru-
ence as compositional conformance. Again, we characterize the composi-
tional conformance relation using a denotational semantics for open nets.
We refer to this semantics as the F+

fin-semantics.
We employ the same approach to investigate the compositionality of b-

conformance. As for conformance, it turns out that the b-conformance re-
lation is not a precongruence; that is, it is not compositional. Again, we
proceed by characterizing the coarsest precongruence that is contained in
the b-conformance relation—that is, compositional b-conformance.

contribution 3 : showing (un-)decidability of the character-
ized conformance and compositional conformance relations

We analyze the (compositional) conformance relation and the (composi-
tional) b-conformance relation for decidability, thereby using their charac-
terizations that we described in the previous contribution. It turns out
that conformance and compositional conformance are undecidable, but b-
conformance and b-compositional conformance are decidable. Thus, we
elaborate a decision procedure for b-conformance and for compositional b-
conformance. The tools Chloe [115] and Delain [78] implement the decision
algorithm for b-conformance; both tools are free open source software that
we develop in the course of this thesis. We evaluate the decision algorithm

1.3 contributions 13

Implementation Specification

O
pe

n
Ne

ts conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
conforms to

semantics

hashas

SpecImpl

stopdead

F+
fin

stopdead

F+
fin

Figure 8: An illustration of how we characterize conformance and compositional con-
formance based upon denotational semantics for open nets. A solid arc
illustrates the relation described by the corresponding arc label. Dashed
arcs illustrate logical implication or logical equivalence, depending on their
number of heads.

for b-conformance with industrial-sized open nets. For a given open net,
we additionally develop a finite characterization of all b-partners and all b-
conforming open nets. The finite characterization of all b-partners serves
as an alternative decision procedure to decide whether two open nets are b-
partners with a better computational worst-case complexity. The finite char-
acterization of all b-conforming open nets serves as an alternative decision
procedure for b-conformance. This alternative decision procedure might be
more feasible in practice for an implementation with a very large state-space
and a specification with a very small state-space.

contribution 4 : conformance testing in the log-model sce-
nario In the log-model scenario, we assume that the specification of an
open system is given as a formal model and the implementation is given
as an event log, i.e., example behavior generated by the actual (not mod-
eled) implementation. We consider conformance checking only for b-con-
formance, because the conformance relation turns out to be undecidable.
To this end, we present a necessary condition for deciding b-conformance:
We analyze whether there exists a b-conforming implementation which can
replay the given event log. Thereby, we use the finite characterization of
all b-conforming open nets that we developed in the model-model scenario.
Figure 9 sketches this contribution. If there does not exist a b-conforming
implementation that can replay the given event log, then the implemen-
tation which provided that event log is certainly not b-conforming to the
specification. Thus, we provide an approach to test b-conformance in the
log-model scenario. We use the implemented decision algorithm for b-con-
formance from the model-model scenario to develop an algorithm to test
b-conformance. We evaluate the implemented algorithm using industrial-
sized specifications and event logs.

contribution 5 : discovering a formal model in the log-model

scenario We present an approach to discover a high-quality formal
model of the unknown implementation from the event log, assuming the im-
plementation b-conforms to its specification. To judge the discovered model
we consider two aspects: b-conformance (i.e., the discovered model b-con-
forms to the model of the specification) and quality (i.e., the ability of the

14 about this thesis

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

can be
replayed

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

Figure 9: Conformance testing in the log-model scenario. A solid arc illustrates the
relation described by the corresponding arc label. The dashed arc illus-
trates logical implication.

discovered model to describe the observed behavior in the event log well).
Regarding quality, there exist four quality dimensions for general process
models [2]: (1) fitness (i.e., the discovered model should allow for the behav-
ior seen in the event log), (2) precision (i.e., the discovered model should not
allow for behavior completely unrelated to what was seen in the event log),
(3) generalization (i.e., the discovered model should generalize the example
behavior seen in the event log), and (4) simplicity (i.e., the discovered model
should be as simple as possible). These quality dimensions compete with
each other, as visualized in Fig. 10. For example, to improve the fitness of a
model one may end up with a substantially more complex model. A more
general model usually means a less precise model. Clearly, the user needs
to set priorities when balancing the four quality dimensions.

generalization
"avoid overfitting model"

simplicity
"avoid overly complex models"

fitness
"avoid models that do not

allow for observed behavior"

precision
"avoid underfitting model"

quality

Figure 10: The different quality dimensions for model discovery.

We aim at discovering a formal model of the implementation that b-con-
forms to the given specification and, in addition, balances the four quality
dimensions guided by user preferences. In other words, we search for a
high-quality model in the set of all b-conforming open nets to the given spec-
ification. In general, this set is infinite and the competing four quality dimen-
sions are nonlinear. However, we can employ the finite characterization of
all b-conforming open nets that we developed in the model-model scenario.
Based on this finite characterization, we employ a genetic discovery algo-
rithm and a suitable abstraction technique to solve the problem. Figure 11

sketches our contribution. We use the implemented decision algorithm for b-
conformance (implemented in the tools Chloe [115] and Delain [78] from the
model-model scenario) to develop an algorithm to discover a high-quality
model of the implementation. We implement the discovery algorithm in the
“ServiceDiscovery” ProM plug-in [188], which we develop in the course of

1.4 thesis overview 15

this thesis. ProM [212] is an extensible framework that supports a wide vari-
ety of process mining techniques. We evaluate the implemented algorithm
using industrial-sized specifications and event logs.

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

discover

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

models
with high
quality

Figure 11: Discovering a high-quality model of the implementation in the log-model
scenario. A solid arc illustrates the relation described by the correspond-
ing arc label.

1.4 thesis overview

The thesis consists of four parts and 12 chapters. Figure 12 illustrates the
structure of the thesis. An arrow from a chapter A to a chapter B indicates
that the content of chapter A is required to understand the content of chap-
ter B.

3

5

6

7

8 109

11 12

421

Part I Part II

Part III

Part IV

Figure 12: Illustration of the dependencies between the chapters of this thesis.

Part I covers Chap. 1 to Chap. 3. In Chap. 2, we introduce the basic no-
tions needed in the remainder of this thesis. For example, we introduce
open nets as the formalism in which we model (the behavior of) open sys-
tems and their composition. In Chap. 3, we formalize responsiveness and b-
responsiveness and the corresponding conformance relations: conformance
and b-conformance. We compare the two variants of responsiveness with
two known behavioral correctness criteria for open nets: deadlock freedom
and weak termination. In addition, we show that conformance and b-con-
formance are incomparable. The content of Chap. 3 refers to our first contri-
bution from Sect. 1.3.

Part II covers Chap. 4 to Chap. 7. Here, we investigate conformance check-
ing in the model-model scenario; that is, Part II presents the second and
third contribution from Sect. 1.3. Figure 13 reflects how the model-model
and the log-model scenario are reflected in the chapters of this thesis. We
characterize conformance and compositional conformance in Chap. 4 and

16 about this thesis

show that both relations are undecidable. In Chap. 5, we investigate b-con-
formance. In particular, we show decidability of b-conformance and present
two decision procedures. In Chap. 6, we characterize compositional b-con-
formance and show its decidability. Finally, Chap. 7 summarizes the results
of Part II and reviews related work.

3

5

6

7

8 109

11 12

421

Model-Model Scenario

Log-Model Scenario

7

10

Figure 13: Illustration of the model-model scenario and the log-model scenario re-
flected in the chapters of this thesis. We highlighted Chap. 7 and Chap. 10

because they summarize the results of the respective parts.

Chapter 8 to Chap. 10 form Part III of this thesis, i.e., our study of the
log-model scenario. All of them refer to our fourth and fifth contribution
from Sect. 1.3. In Chap. 8, we recapitulate the formalization of an event
log and how it is replayed on the model of an open system. Based on that
formalization, we focus on the problem whether there exists a b-conforming
implementation which can produce a given event log. In Chap. 9, we formal-
ize the idea of model quality and discover a formal model of the unknown
implementation, assuming that the implementation b-conforms to the given
specification. Chapter 10 summarizes the results of the log-model scenario
and reviews related work.

Finally, Part IV consists of Chap. 11 and Chap. 12. We demonstrate the
applicability of our results in Chap. 11. Chapter 12 summarizes the contri-
butions and limitations of this thesis and outlines future work.

As shown in Fig. 14, Chap. 4 focuses on responsiveness, whereas Chap-
ters 5, 6, 8, and 9 focus on b-responsiveness. The undecidability of confor-
mance and compositional conformance (i.e., both relations that arise from
responsiveness) motivates our investigation of b-responsiveness and the aris-
ing b-conformance relation and compositional b-conformance relation. We
show the undecidability of conformance and compositional conformance in
one chapter—that is, Chap. 4—because both undecidability proofs are simi-
larly structured.

3

5

6

7

8 109

11 12

421

compositional b-conformance

b-conformance

conformance and
compositional
conformance

Figure 14: Illustration of the variant of conformance and b-conformance that we in-
vestigate in the different chapters.

2P R E L I M I N A R I E S

In this chapter, we introduce the basic notions from mathematics and com-
puter science used in this thesis. We start by recapitulating sets and mul-

tisets, binary relations, and words and languages in Sect. 2.1. In Sect. 2.2, we
introduce labeled transition systems, and we present Petri nets in Sect. 2.3.
Then, we introduce open nets, a variant of Petri nets, in which we model
(the behavior of) open systems and their composition in Sect. 2.4. We intro-
duce an open net environment in Sect. 2.6 as a tool with whom we describe
the semantics of an open net. We relate open nets to their environments in
Sect. 2.6, and close this chapter with a discussion of the choice of open nets
as our formal model in Sect. 2.7.

2.1 basic mathematical notions

sets We denote the set of natural numbers {0, 1, 2, 3, . . .} with N and
the set of positive natural numbers (i.e., excluding 0) with N+. As usual,
we denote membership in a set by ∈; for example, we have 0 ∈ N but
0 /∈ N+. We denote the empty set by ∅, set inclusion by ⊆, set union by
∪, set intersection by ∩, and set difference by \. For a set A, we denote its
cardinality with |A| and its powerset with P(A). For two sets A and B, let
A× B denote their Cartesian product and A] B the disjoint union of A and
B; writing A] B implies that A and B are implicitly assumed to be disjoint.

multisets A multiset or bag M over a set A is a mapping M : A −→ N.
We denote a multiset as a list; for example, we write [x, y, y] for a multiset
over a set A (with x, y ∈ A) that contains the element x once, the element y
twice, and no other element of A. As usual, [] denotes the empty multiset,
and we denote the set of all multisets over a set A with Bags(A). We define
+ for the sum and − for the difference of two multisets and =,<,>,≤,≥
for the comparison of two multisets in the standard way (i.e., pointwise). By
abuse of notation, we write M ⊆ B for a multiset M over A and a set B if
for all x ∈ A with M(x) > 0, x ∈ B.

We canonically extend the notion of a multiset over A to supersets B ⊇ A;
that is, for a mapping M : A −→ N, we extend M to the multiset M : B −→ N

such that for all x ∈ B \ A, M(x) = 0. Conversely, a multiset over A can be
restricted to a subset B ⊆ A. For a mapping M : A −→ N, the restriction of
M to B is denoted by M|B : B −→ N. For example, [x, y, y, z]|{y,z} = [y, y, z].
We lift the extension and restriction of a multiset to a set of multisets in the
standard way (i.e., element-wise). For example, {[x, y, y, z], [x, x]}|{y,z} =
{[y, y, z], []}.

binary relations A (binary) relation ≤ over a set A is a subset of
A × A; ≤ is a preorder if it is reflexive (i.e., for all a ∈ A: a ≤ a) and
transitive (i.e., for all a, b, c ∈ A: a ≤ b and b ≤ c implies a ≤ c). A preorder
≤ over a set A is a partial order if it is antisymmetric (i.e., for all a, b ∈ A:
a ≤ b and b ≤ a implies a = b), and ≤ is an equivalence relation if it is
symmetric (i.e., for all a, b ∈ A: a ≤ b implies b ≤ a). A preorder ≤ over
a set A is a precongruence with respect to a mapping + : A× A −→ A if ≤

17

18 preliminaries

is preserved by +; formally, we have for all a, b ∈ A: a ≤ b implies for all
c ∈ A: a + c ≤ b + c.

words and languages An alphabet is a set of symbols, a sequence of
symbols over an alphabet is a word, and a set of words is a language. We
denote the set of all finite words over an alphabet Σ with Σ∗. With v v w
we denote that a word v is a prefix of a word w; then, w is a continuation of
v. As usual, ε denotes the empty word, and ε is a prefix of every word. We
write |w| for the length of a word w, and |w|x denotes how many times the
symbol x occurs in the word w. Let Σ1 and Σ2 be two alphabets. For a word
w ∈ Σ∗1 and Σ2 ⊆ Σ1, w|Σ2 denotes the projection of w to the alphabet Σ2.

We introduce a few, more compact notations on languages.

Definition 1 [closures, remainder, complement]
Given a language L ⊆ Σ∗ over an alphabet Σ,

• ↓ L = {u ∈ Σ∗ | ∃v ∈ L : u v v} is the prefix closure of L,

• ↑ L = {u ∈ Σ∗ | ∃v ∈ L : v v u} is the suffix closure of L,

• v−1L = {u ∈ Σ∗ | vu ∈ L} is the remainder of v ∈ Σ∗ in L, and

• co-L = Σ∗ \ L is the complement of L.

For the suffix closure, we can show the following properties.

Lemma 2 [suffix closure]
Let X, Y ∈ P(Σ∗). Then the following properties hold:

1. ↑ (X ∪Y) = ↑ X ∪ ↑ Y

2. x−1(X ∪Y) = x−1X ∪ x−1Y for any x ∈ Σ

3. y /∈ ↑ Y implies y−1(X ∪ ↑ Y) ⊆ ↑ (y−1(X ∪Y))

Proof. Items (1) and (2) are trivial. For (3) observe that y−1(X ∪ ↑ Y) =
y−1X ∪ y−1↑ Y ⊆ ↑ (y−1X) ∪ ↑ (y−1Y) = ↑ (y−1(X ∪Y)). �

2.2 labeled transition systems

Labeled transition systems (LTSs) are a uniform formalism for modeling the be-
havior of systems. They are widely used in the theory of computation [224]
and for the verification of distributed systems [28, 49]. An LTS is an abstract
machine consisting of a set of states and labeled transitions between states;
a usual extension of the definition includes a fixed initial state and a state
labeling function [28]. For merely technical reasons, we additionally distin-
guish the transition labels between input-, output- and internal actions.

Definition 3 [labeled transition system]
A labeled transition system (LTS) S = (Q, δ, qS, Σin, Σout, λ) consists of

• a set Q of states,

• a labeled transition relation δ ⊆ Q×
(
Σin] Σout] {τ}

)
×Q,

• an initial state qS ∈ Q,

2.2 labeled transition systems 19

• an alphabet Σ = Σin] Σout of disjoint input actions Σin and output
actions Σout, and

• a state labeling function λ : Q→ N.

Σ] {τ} is the set of labels of S, and the label τ denotes an internal action.

Whenever the state labeling function of an LTS S = (Q, δ, qS, Σin, Σout, λ)
distinguishes only two kinds of states, we introduce final states as a separate
notion for readability reasons: We employ a set of final states Ω ⊆ Q instead
of the state labeling function λ, i.e., S = (Q, δ, qS, Σin, Σout, Ω).

Convention 1 Introducing an LTS S also implicitly introduces its compo-
nents Q, δ, qS, Σin, Σout, λ or Ω; the same applies to LTS S′, S1, etc. and
their components Q′, δ′, qS′ , Σin′, Σout′, λ′ or Ω′, and Q1, δ1, qS1 , Σin

1 , Σout
1 , λ1

or Ω1, respectively—and it also applies to other structures later on. �
An LTS S is finite if both Q and Σ are finite; it is τ-free if no transition is

labeled with τ; and it is deterministic if for all q, q′, q′′ ∈ Q, x ∈ Σ: (q, τ, q′) ∈
δ implies q = q′, and (q, x, q′), (q, x, q′′) ∈ δ implies q′ = q′′. Two LTSs
are action-equivalent if they have the same sets of input and output actions.
An LTS S′ = (Q′, δ′, qS, Σin, Σout, λ′) is an (initialized) subsystem of an LTS
S = (Q, δ, qS, Σin, Σout, λ), denoted by S′ ⊆ S, if Q′ ⊆ Q, δ′ ⊆ δ, and, for all
q ∈ Q′, λ′(q) = λ(q).

A transition (q, x, q′) ∈ δ is an incoming transition of q′ and an outgoing
transition of q. We write q x−→ q′ for (q, x, q′) ∈ δ and q x−→ if there exists
a state q′ such that q x−→ q′. We extend this to sequences: A transition
sequence q1

v1−−→ v2−−→ . . .
vk−−→ qk+1 is a run of S from q1 to qk+1 if for all 1 ≤

i ≤ k, qi
vi−−→ qi+1; for v = v1v2 . . . vk, we also write q1

v−→ qk+1 instead of

q1
v1−−→ v2−−→ . . .

vk−−→ qk+1 and q1
v−→ instead of q1

v1−−→ v2−−→ . . .
vk−1−−−→ qk

vk−−→.
If q v−→ q′, we say that q′ is reachable from q with v; a state q is reachable in S
if q is reachable from the initial state qS. If q v−→ q′ and w ∈ Σ∗ is obtained
from v by removing all τ labels, then we write q w

=⇒ q′. Similarly, if q v−→
and w ∈ Σ∗ is obtained from v by removing all τ labels, then we write q w

=⇒.
A trace of S is a word w ∈ Σ∗ such that qS

w
=⇒; the language L(S) of S is the

set of all traces of S. We define Li(S) = {w ∈ Σ∗ | qS
w
=⇒ q ∧ λ(q) = i} as

the language of S restricted to traces leading to states labeled with i ∈ N,
and LΩ(S) = {w ∈ Σ∗ | qS

w
=⇒ q ∧ q ∈ Ω} in the case of final states.

Convention 2 In the remainder of this thesis, we implicitly assume any
LTS to have only reachable states. In other words, we do not consider LTSs
with unreachable states. �

In this thesis, we strive for readability and understandability of the pre-
sented concepts and, hence, seek to avoid switching between different for-
malism, whenever possible. Therefore, we introduced the notion of a lan-
guage on labeled transition systems and not on the frequently used formal-
ism of finite automata [224, 123]. In contrast to an LTS, a finite automaton
has a set of accepting states that determines the automaton’s language; ac-
cepting states are in general unrelated to labeled states or final states of any
LTS. We can understand a finite LTS as a finite automaton if we regard the
transition label τ as the empty word ε and consider all states as accepting
states. That way, our notions of τ-freeness, determinism, and language co-

20 preliminaries

incide with the automata-theoretic notions of the same name. In case we
consider all i-labeled states (i ∈ N) as accepting states, then the automata-
theoretic notion of language coincides with the language Li(S). That way,
a family of finite automata that characterizes a family (Li)i∈N of languages
can be represented by one finite LTS.

Graphically, a rounded rectangle represents a state, and a directed arc
between two states represents a transition. We depict the identity of a state
inside the rounded rectangle and a transition’s label next to the directed arc;
two transitions between the same states but with different transition labels
are shown as one directed arc with the according transition labels separated
by a comma. We indicate the initial state by an unlabeled arc without source.

Example 4 Consider the four LTSs S1, S2, S3, and S4 in Fig. 15

and let Σin = {a} and Σout = {b, c}. We have S1 =
({q0, q1, q2, q3, q4}, {(q0, a, q1), (q1, b, q3), (q0, a, q2), (q2, c, q4)}, q0, Σin, Σout, λ1),
S2 = ({r0, r1, r2, r3, r4}, {(r0, a, r1), (r1, τ, r1), (r1, b, r3), (r0, a, r2), (r2, c, r4)},
r0, Σin, Σout, λ2), S3 = ({s0, s1, s2, s3}, {(s0, a, s1), (s1, b, s2), (s1, c, s3)}, s0, Σout,
Σin, λ3), and S4 = ({t0, t1, t2, t3, t4}, {(t0, a, t1), (t1, b, t2), (t1, c, t3), (t1, c, t4)},
t0, Σout, Σin, λ4). All four LTS are finite. S1, S2, and S4 are nondeterministic
(S1 and S2 because of their initial states, and S4 because of state t1), but
S3 is deterministic. S1, S3, and S4 are τ-free, whereas S2 is not because
of transition r1

τ−→ r1. In addition, S1 and S2 as well as S3 and S4 are
action-equivalent.

Although different in structure, S1, S2, S3, and S4 have identical
languages—that is, L(S1) = L(S2) = L(S3) = L(S4) = {ε, a, ab, ac}. In
general, the state labeling function λ of an LTS S induces a family of lan-
guages (Li)i∈N that are subsets of L(S): For example, let us assume that
the state labeling function λ4 of S4 is defined by λ4(t0) = 0, λ4(t1) = 1,
λ4(t2) = 2, λ4(t3) = 3, and λ4(t4) = 4. Then, we have L0(S4) = {ε},
L1(S4) = {a}, L2(S4) = {ab}, and L3(S4) = L4(S4) = {ac}. Regardless of
the actual definition of λ4, we always have Li(S4) ⊆ L(S4) for i ∈ N. �

q0

q1

q3

q2

q4

a a

cb

(a) LTS S1

r0

r1

r3

r2

r4

a a

cb

!

(b) LTS S2

s0

s1

s2 s3

a

cb

(c) LTS S3

t0

t1

t2 t3

a

cb

t4

c

(d) LTS S4

Figure 15: Four labeled transition systems. In addition to the figures, we have Σin
S1

=

Σin
S2

= Σout
S3

= Σout
S4

= {a} and Σout
S1

= Σout
S2

= Σin
S3

= Σin
S4

= {b, c}.

We frequently compare the structure of two given LTS using a (weak) sim-
ulation relation or (weak) bisimulation [202, 177].

Definition 5 [(weak) simulation, (weak) bisimulation]
Let S1 and S2 be two action-equivalent LTSs. A binary relation $ ⊆ Q1×Q2
is a

2.3 petri nets 21

• simulation relation if for all (q1, q2) ∈ $, for all x ∈ Σ1] {τ} and for
all states q′1 ∈ Q1 such that q1

x−→ q′1, there exists a state q′2 ∈ Q2

such that q2
x−→ q′2 and (q′1, q′2) ∈ $.

• weak simulation relation if for all (q1, q2) ∈ $, for all x ∈ Σ1] {τ} and
for all states q′1 ∈ Q1 such that q1

x−→ q′1, there exists a state q′2 ∈ Q2

such that q2
x
=⇒ q′2 and (q′1, q′2) ∈ $.

S1 is simulated (weakly simulated) by S2 if there exists a simulation
(weak simulation) relation relating their initial states qS1 and qS2 .

If $ and $−1 are simulations (weak simulations), then $ is a bisimula-
tion (weak bisimulation) relation. S1 and S2 are bisimilar (weakly bisimilar) if
there exists a bisimulation (weak bisimulation) relation relating their initial
states qS1 and qS2 .

If the LTS S2 in Def. 5 is deterministic (and we only consider LTSs with
reachable states as stated in Conv. 2), then the least (weak) simulation and
the least (weak) bisimulation of S1 and S2 is uniquely defined.

Example 6 Consider again the four LTSs S1, S2, S3, and S4 in
Fig. 15. S1 is simulated by S2 with the simulation relation $ =
{(q0, r0), (q1, r1), (q2, r2), (q3, r3), (q4, r4)}. The simulation relation $ is also
a weak simulation relation of S1 by S2. In contrast, S2 is not simulated
by S1 because of transition (r1, τ, r1), but weakly simulated by S1 with the
weak simulation relation {(r0, q0), (r1, q1), (r2, q2), (r3, q3), (r4, q4)}.

The LTSs S3 and S4 are bisimilar with, for example, the bisimu-
lation relation π = {(s0, t0), (s1, t1), (s2, t2), (s3, t3), (s3, t4)}. In other
words, π is a simulation relation of S3 by S4 and the inverse π−1 =
{(t0, s0), (t1, s1), (t2, s2), (t3, s3), (t3, s4)} of π is a simulation relation of S4
by S3. Because S4 is not deterministic, the simulation relation π is not
unique: for example, {(s0, t0), (s1, t1), (s2, t2), (s3, t3)} is another simulation
relation of S3 by S4. Observe that there does not exist any (weak) simula-
tion relation between S1 or S2 and S3 or S4 by Def. 5 because S1 or S2 and
S3 or S4 are not action-equivalent. �

2.3 petri nets

In this section, we introduce place/transition Petri nets [216] extended with
a set of final markings and transition labels.

Definition 7 [net]
A net N = (P, T, F, mN , Ω) consists of

• a set P of places,

• a set T of transitions such that P and T are disjoint,

• a flow relation F ⊆ (P× T)] (T × P),

• an initial marking mN , where a marking is a multiset over P, and

• a set Ω of final markings.

22 preliminaries

Usually, we are interested in finite nets—that is, nets with finite sets P
and T—but we shall also make use of infinite nets. Graphically, a circle rep-
resents a place, a box represents a transition, and the directed arcs between
places and transitions represent the flow relation. A marking m is a distri-
bution of tokens over the places, and a place p is marked at m if m(p) > 0.
Graphically, a black dot represents a token.

Let x ∈ P] T be a node of a net N. As usual, •x = {y | (y, x) ∈ F}
denotes the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We
canonically extend the notion of presets and postsets to sets of nodes of N,
and interpret presets and postsets as multisets when used in operations also
involving multisets.

The behavior of a net N relies on changing a marking of N by the firing
of transitions of N. A transition t ∈ T is enabled at a marking m, denoted

by m t−→, if for all p ∈ •t, m(p) > 0. If t is enabled at m, it can fire, thereby
changing the current marking m to a marking m′ = m− •t + t•. The firing

of t is denoted by m t−→ m′; that is, t is enabled at m and firing t results in m′.

We extend this to firing sequences: m1
t1−−→ . . .

tk−−→ mk+1 is a run of N from

m1 to mk+1, if for all 1 ≤ i ≤ k, mi
ti−→ mi+1; for v = t1 . . . tk, we also write

m1
v−→ mk+1 instead of m1

t1−−→ . . .
tk−−→ mk+1. A marking m′ is reachable

from a marking m if there exists a (possibly empty) run from m to m′, and
m′ is reachable in N if it is reachable from the initial marking mN . The set
MN represents the set of all reachable markings of N. The reachability graph
RG(N) of N is a labeled transition system with the reachable markings MN

as its states and a t-labeled transition from m to m′ whenever m t−→ m′ in N.
The set of final states of RG(N) is the set of reachable final markings of N.

Finally, we introduce with boundedness, deadlock freedom, and weak
termination three behavioral properties of a net. A marking m of a net N
is b-bounded for a bound b ∈ N if m(p) ≤ b for all p ∈ P. The net N is
b-bounded if every reachable marking is b-bounded; it is bounded if it is b-
bounded for some b ∈ N. A marking m 6∈ Ω of a net N is a deadlock if no
transition of N is enabled at m; N is deadlock-free if no deadlock is reachable
in N. Compared to the standard definition of a deadlock [216]—that is, a
marking that does not enable any transition—we additionally distinguish
between final and nonfinal markings: Only a nonfinal marking may be a
deadlock, because final markings model successful termination. A marking
m of a net N is weakly terminating if there is a marking m′ ∈ Ω reachable
from m; N is weakly terminating if every reachable marking of N is weakly
terminating.

Convention 3 Throughout this thesis, b denotes a bound—a positive nat-
ural number. �

Example 8 Figure 16 depicts the nets N1 and N2, both consisting of two
places p0 and p1, three transitions t0, t1, and t2, and the initial marking
[p0]. The net N1 is unbounded, because transition t0 has an empty preset
(and, thus, is always enabled) and may produce any number of tokens on
p0, thereby violating any bound b. Thus, the set of reachable markings
MN1 of N1 and, also, the reachability graph RG(N1) are infinite. In con-
trast, the net N2 is 2-bounded and, therefore, bounded; the set of reachable
markings of is MN2 = {[], [p0], [p1], [p0, p0], [p0, p1], [p1, p1]}. Both nets are
deadlock-free: N1 is deadlock-free because transition t0 is enabled at every

2.3 petri nets 23

reachable marking of N1, and N2 is deadlock-free because the only reach-
able marking [] that does not enable any transition is a final marking of N2.
If we assume [] is not a final marking of N2, then [] is a reachable dead-
lock of N2 and, thus, N2 is not deadlock-free. The net N1 is not weakly
terminating: If transition t0 fires—leading to the marking [p0, p0]—then
the only final marking [p0] is no longer reachable. In contrast, the net N2
is weakly terminating, because the final marking [] is reachable from every
reachable marking of N2. �

t2

t0

t1

p1p0

(a) Net N1

t2

t0

t1

p1p0

(b) Net N2

Figure 16: Two nets. In addition to the figures, we have ΩN1 = {p0} and ΩN2 = {[]}.

A labeled net extends a net by transition labels. Transition labels model
visible and invisible actions like the transition labels of an LTS. Using the
notion of a net’s reachability graph, we can, therefore, model an (but not
necessarily any) infinite LTS as a finite labeled net. In a sense, a labeled net
serves as a more compact model of (the behavior of) a system that is initially
modeled as an LTS.

Definition 9 [labeled net]
A labeled net N = (P, T, F, mN , Ω, Σin, Σout, l) is a net (P, T, F, mN , Ω) to-
gether with

• an alphabet Σ = Σin] Σout of disjoint input actions Σin and output
actions Σout, and

• a labeling function l : T −→ Σ] {τ}, where τ represents an invisible,
internal action.

Graphically, we represent a labeled net like a net. In addition, we depict
a transition label inside the transition with bold font to distinguish it from
the transition’s identity.

We canonically lift the notions of τ-freeness, action-equivalence, traces,
and language from LTS to labeled nets: A labeled net N is τ-free if no transi-
tion of N is labeled with τ. Two labeled nets are action-equivalent if they have
the same sets of input and output actions. If m v−→ m′ and w is obtained
from v by replacing each transition with its label and removing all τ labels,
we write m w

=⇒ m′. If mN
w
=⇒, then w is a trace of the labeled net N and the

language L(N) of N is the set of all traces of N. For a trace w, its Parikh vector
Parikh(w) : Σ → N maps every action a ∈ Σ to the number of occurrences
of a in w. For the reachability graph RG(N) of a labeled net N, we replace
each transition label t with l(t), and the sets of input and output actions of
N and RG(N) coincide, respectively. Finally, we canonically lift the notions
of (weak) simulation and (weak) bisimulation from two action-equivalent

24 preliminaries

LTSs in Def. 5 to two action-equivalent labeled nets N1 and N2 by relating
their reachability graphs RG(N1) and RG(N2).

Example 10 Figure 17 depicts the labeled net N3 and its reachability graph
RG(N3). Structurally, N3 coincides with the net N2 from Fig. 16b, thus N3 is
bounded and weakly terminating. Because N3 is bounded, its reachability
graph is finite. The language of N3 is the set L(N3) = {w ∈ {a, b}∗ | |w|a ≤
1}] {wa ∈ {a, b}∗ | |wa|a = 2}. It coincides with the language L(RG(N3))
of the reachability graph of N3. �

t2

t0

t1

p1p0

a

b

!

(a) Labeled net N3

Q0:
[p0,p0]

a

Q1:
[p0,p1]

b

Q3:
[p0]

!
Q2:

[p1,p1]

b

!

Q4:
[p1]

a

b

!

Q5:
[]

a

(b) LTS RG(N3)

Figure 17: A labeled net and its reachability graph. In addition to the figures, we
have ΩN3 = {[]} and ΩRG(N3) = {Q5}.

2.4 open nets and their composition

We model open systems as open nets [246, 153], thereby restricting ourselves
to the communication protocol of an open system. An open net extends a
net by an interface. An interface consists of two disjoint sets of input and
output places corresponding to asynchronous input and output channels. In
the model, we abstract from data and represent each message by a token on
the respective interface place. In the initial marking and the final markings,
interface places are not marked. An input place has an empty preset, and
an output place has an empty postset. For merely technical reasons, we
consider only open nets that have either at least one input and one output
place or no input and output places.

Definition 11 [open net]
An open net N = (P, T, F, mN , Ω, I, O) is a net (P] I]O, T, F, mN , Ω) where

• the set I of input places satisfies for all p ∈ I, •p = ∅;

• the set O of output places satisfies for all p ∈ O, p• = ∅;

• for all p ∈ I]O, mN(p) = 0 and for all m ∈ Ω, m(p) = 0; and

• set I = ∅ if and only if set O = ∅.

2.4 open nets and their composition 25

The set P is the set of internal places of N and the set I]O is the set of
interface places of N. If I = O = ∅, then N is a closed net. If every transition
of N is connected to at most one interface place, then N is sequentially com-
municating. Two open nets are interface-equivalent if they have the same sets
of input and of output places.

Graphically, we represent an open net like a net with a dashed frame
around it. An interface place p is positioned on the frame; an additional
arrow indicates whether p is an input or an output place.

Example 12 Figure 18 shows two open systems, each modeled as an open
net. The open net S in Fig. 18a models an unreliable time server that sends
its timing information (output place t) to some client and processes its
responses (input place r). Anytime before sending the next timing infor-
mation, an error may happen (output place e) and the server shuts down
(and final marking [] can be reached). As a typical time server, S is origi-
nally intended to be always running, thus [] is the only final marking. The
interface places of S are e, t, and r; its internal places are p0 and p1. S is
not a closed net and sequentially communicating.

The open net C in Fig. 18b models a client of the time server S. It
repeatedly updates its system time by the timing information sent by the
server (input place t) and responds with a response packet (output place
r). If the client receives an error message from the server (input place e),
it continuously tries to reset the time server (output place r). If reseting
the server was successful—that is, the client receives timing information
again—C may recover and respond with a response packet like before. The
output places of C are the input places of S and vice versa. The internal
places of C are p2, p3, and p4. Like S, the open net C is not a closed net
and sequentially communicating. �

process
r

e

t

error

send

p1p0

(a) Open net S

r response

e

t

catch

update

p2 p3

reset p4

recover

(b) Open net C

Figure 18: Two open nets modeling an unreliable time server and one of its clients.
In addition to the figures, we have ΩS = {[]} and ΩC = {[p3]}.

For the composition of open nets, we assume that the sets of transitions
are pairwise disjoint and that no internal place of an open net is a place
of any other open net. In contrast, the interfaces intentionally overlap. We
require that all communication is bilateral and directed; that is, every shared
place p has only one open net that sends into p and one open net that re-
ceives from p. In addition, we require that either (1) all interface places are
shared or (2) there is at least one input and one output place which are not
shared. We refer to open nets that fulfill these conditions as composable. We
compose two composable open nets N1 and N2 by merging shared interface
places and turning these places into internal places. The definition of com-

26 preliminaries

posable thereby guarantees that an open net composition is again an open
net (possibly a closed net).

Definition 13 [open net composition]
Two open nets N1 and N2 are composable if (P1] T1] I1]O1) ∩ (P2] T2]
I2]O2) = (I1 ∩O2)] (I2 ∩O1), and (I1] I2) \ (O1]O2) and (O1]O2) \
(I1] I2) are both either empty or nonempty. The composition of such open
nets is the open net N1 ⊕ N2 = (P, T, F, mN , Ω, I, O), where

• P = P1] P2] (I1 ∩O2)] (I2 ∩O1),

• T = T1] T2,

• F = F1] F2,

• mN = mN1 + mN2 ,

• Ω = {m1 + m2 | m1 ∈ Ω1, m2 ∈ Ω2},

• I = (I1] I2) \ (O1]O2), and

• O = (O1]O2) \ (I1] I2).

Recall that an interface place of an open net N is empty at the initial mark-
ing of N and at every final marking of N by Def. 11. Thus, the composition
N1 ⊕ N2 of two composable open nets N1 and N2 is well-defined—it is an
open net again. In general, N1 ⊕ N2 is not a closed net. Figure 19 gives a
schematic example for open net composition. The open nets N1 and N2 are
composable because only their sets of interface places overlap: x and y are
interface places in both N1 and N2. Therefore, the places x and y turn into
internal places in the composition N1 ⊕ N2, which is again an open net.

b ...

a ...

... y

x...

(a) Open net N1

y ...

x ...

... d

c...

(b) Open net N2

y

...

x

...

... d

c...

b ...

a ...

...

...

(c) Open net N1 ⊕ N2

Figure 19: Schematic example of two open nets N1, N2 and their composition N1 ⊕
N2.

Example 14 The open nets S and C in Fig. 18 are composable: Every input
place of one open net is an output place of the other, and vice versa. More-

2.5 open net environments and their composition 27

over, no other places are shared. In contrast to our schematic example in
Fig. 19c, the composition S⊕C is a closed net, which we depict in Fig. 20.�

process

error

send

p1p0

r
response

e

t

catch

update

p2 p3

reset p4

recover

Figure 20: The composition S⊕ C of the open nets S and C from Fig. 18. In addition
to the figure, we have ΩS⊕C = {[p3]}.

We frequently reason about the inner structure of an open net N. To this
end, we turn N into a labeled net inner(N)—the inner net of N—by removing
all interface places and by labeling every transition that is connected to an
interface place p in N with the label p.

Definition 15 [inner net]
The inner net of an open net N is the labeled net inner(N) = (P, T, F \ ((I×
T)] (T ×O)), mN |P, Ω|P, I, O, l), where

• l(t) =


i, i ∈ I ∧ (i, t) ∈ F
o, o ∈ O ∧ (t, o) ∈ F
τ, otherwise.

In this thesis, we consider only sequentially communicating open nets.
Thus, the inner net of an open net in Def. 15 is well-defined and unique.

Convention 4 Throughout this thesis, we implicitly assume every open
net to be sequentially communicating. This is not a restriction, as ev-
ery open net can be transformed into a sequentially communicating open
net [153] such that the language of its inner net is preserved. �

Example 16 Figure 21 shows the inner nets of the open nets S and C in
Fig. 18. Both inner nets are τ-free and—as S and C—bounded. Bounded-
ness is not always preserved. Assume the open net S with an additional
internal place x and an additional arc (process, x), yielding the open net
N in Fig. 22a. The open net N is bounded because the input place r is
never marked and transition process can never fire. In contrast, its inner
net inner(N), which we depict in Fig. 22b, is unbounded because place r is
removed and, therefore, process may fire infinitely many times. �

2.5 open net environments and their composition

In the first part of this thesis, we shall define different denotational seman-
tics for open nets to characterize certain relations between open nets. We
define these semantics upon the notion of traces of labeled nets—that is,

28 preliminaries

process

error

send

p1p0

e

t

r

reset

(a) Labeled net inner(S)

response

catch

update

p2 p3

reset p4

recover

e

t
r

t

r

(b) Labeled net inner(C)

Figure 21: The inner nets of the two open nets S and C from Fig. 18. In addition to
the figures, we have Ωinner(S) = {[]} and Ωinner(C) = {[p3]}.

process r

e

t

error

send

p1p0

x

(a) Open net N

process

error

send

p1p0

x

e

t

r

(b) Labeled net inner(N)

Figure 22: The open net N as a modification of the open net S from Fig. 18a, and its
inner net inner(N). In addition to the figures, we have ΩN = Ωinner(N) =
{[]}.

we define trace-based semantics. To give an open net N a trace-based se-
mantics, we consider its environment env(N), which we define similarly to
Vogler [246]. The net env(N) can be constructed from N by adding to each
interface place p ∈ I (p ∈ O) a p-labeled transition p in env(N) and renam-
ing the place p to pi (po). The net env(N) shows the possible behavior of an
environment of N—that is, which inputs it can send to N and which outputs
it can receive from N. It is just a tool to define our characterizations and
prove our results. But intuitively, one can understand the construction as
translating the asynchronous interface p of N into a buffered synchronous
interface (with unbounded buffers pi or po) described by the transition la-
bels of env(N).

Definition 17 [open net environment]
The environment of an open net N is the labeled net env(N) = (P] PI]
PO, T] I]O, F′, mN , Ω, I, O, l), where

• PI = {pi | p ∈ I},
• PO = {po | p ∈ O},
• F′ = ((P] T)× (T] P)) ∩ F

] {(pi, t) | p ∈ I, t ∈ T, (p, t) ∈ F}
] {(t, po) | p ∈ O, t ∈ T, (t, p) ∈ F}
] {(po, p) | p ∈ O}
] {(p, pi) | p ∈ I}, and

2.5 open net environments and their composition 29

• l(t) =

{
t, t ∈ I]O
τ, otherwise.

Comparing N and env(N) we see that the construction of env(N) changes
the set of places of N. Every interface place p of N is renamed to a place
pi or po. To keep things simple, we abstract from this difference and do not
distinguish between markings of N and env(N).

Convention 5 Throughout this thesis, we implicitly identify a marking of
N with the corresponding marking of env(N), and vice versa. �

As already mentioned at the beginning of this section, the environment
of an open net N is a tool to give N a semantics based on traces. To shorten
our notation, we shall define this semantics for labeled nets and implicitly
extend it to open nets using their environment.

Convention 6 Throughout this thesis, each trace set and semantics for la-
beled nets are implicitly extended to any open net N via env(N)—for ex-
ample, the language of N is defined as L(N) = L(env(N)). �

Example 18 Figure 23 shows the environments of the open nets S and C
in Fig. 18. Each interface place of the open nets S and C is now a transition
of the labeled nets env(S) and env(C), respectively. In contrast to the inner
nets inner(S) and inner(C) in Fig. 21, the labeled nets env(S) and env(C)
are neither τ-free nor bounded: For example, place ri is unbounded in
env(S) and place ei is unbounded in env(C). Clearly, we can relate the
firing m t−→ m′ of a transition t of inner(S) from the same marking m
in env(S): If t is connected to an output place p in S, then m t−→ m +

[po]
p−→ m′ in env(S), if t is connected to an input place p in S, then

m
p−→ m + [pi]

t−→ m′ in env(S). For example, we have [p0]
send−−−→ [p1] in

inner(S) and [p0]
send−−−→ [p1, to]

t−→ [p1] in env(S). Therefore, every trace of
inner(S) is also a trace of env(S): For example, we can simulate the trace
tr of inner(S) with its underlying run [p0]

send−−−→ [p1]
process−−−−→ [p0] by the

run [p0]
send−−−→ [p1, to]

t−→ [p1]
r−→ [p1, ro]

process−−−−→ [p0] in env(S), yielding
the trace tr of env(S). However, the converse does not hold: For example,
the trace r is a trace of env(S) but not a trace of inner(S). The language of
env(S) (and, by Conv. 6, of S) is

L(env(S)) = {w ∈ {r, t}∗ | ∀v v w : |v|t ≤ |v|r + 1}
] {wez | w, z ∈ {r, t}∗ ∧ ∀v v w : |v|t ≤ |v|r ∧ |wz|t ≤ |w|r} ,

and the language of env(C) (and, by Conv. 6, of C) is

L(env(C)) = {w ∈ {r, t}∗ | ∀v v w : |v|t ≥ |v|r}
] {wez | w ∈ {r, t}∗ ∧ z ∈ {e, r, t}∗ ∧ ∀v v w : |v|t ≥ |v|r} .

By the argumentation above, we have L(inner(S)) ⊆ L(env(S)) and
L(inner(C)) ⊆ L(env(C)). �

We can generalize the observations from Ex. 18 as follows: If an open net
N has at least one transition, then the environment env(N) is not τ-free. If an
open net N is not a closed net, then the environment env(N) is unbounded

30 preliminaries

reset

process

ri

eo

to

error

send

p1p0

e

t

r

e

t

r!

!
!

(a) Labeled net env(S)

ro
response

ei

ti

catch

update

p2 p3

reset p4

recover

e

t

r

e

t

r

!
!

!

!
!

(b) Labeled net env(C)

Figure 23: The environments of the open nets S and C from Fig. 18. In addition to
the figures, we have Ωenv(S) = {[]} and Ωenv(C) = {[p3]}.

because all former input places of N are unbounded and there exists at least
one such input place. By comparing the inner net with the environment of
an open net N, we state another fact: Every trace of inner(N) is a trace of
env(N), thus L(inner(N) ⊆ L(env(N)).

To compose environments of composable open nets in particular and la-
beled nets in general, we define a parallel composition operator ‖ where, for
each action a that the components have in common, each a-labeled transi-
tion of one component is synchronized with each a-labeled transition of the
other. In addition, we define a second parallel composition operator ⇑. This
operator works as operator ‖ and, in addition, hides all common actions—
that is, changes the respective labels to τ. Hiding and ‖ are defined as
in Vogler [246]. For merely technical reasons, we consider transition labels
of transitions that are synchronized by ‖ as output actions.

Definition 19 [parallel composition and hiding]
Two labeled nets N1 and N2 are composable if P1 ∩ P2 = Σin

1 ∩ Σin
2 = Σout

1 ∩
Σout

2 = ∅. The parallel composition of two composable labeled nets is the
labeled net N1‖N2 = (P, T, F, mN , Ω, Σin, Σout, l), where

• P = P1] P2,

• T = {(t1, t2) ∈ T1 × T2 | l1(t1) = l2(t2) 6= τ}
] {(t1, τ) ∈ T1 × {τ} | ∀t2 ∈ T2 : l2(t2) 6= l1(t1)}
] {(τ, t2) ∈ {τ} × T2 | ∀t1 ∈ T1 : l1(t1) 6= l2(t2)},

• F = {(p, (t1, t2)) ∈ P× T | (p, t1) ∈ F1 ∨ (p, t2) ∈ F2}
] {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

• mN = mN1 + mN2 ,

• Ω = {m1 + m2 | m1 ∈ Ω1, m2 ∈ Ω2},
• Σin = (Σin

1] Σin
2) \ (Σout

1] Σout
2),

• Σout = Σout
1] Σout

2 , and

• l(t1, t2) =

{
l1(t1), t1 ∈ T1

l2(t2), otherwise.

For a labeled net N and a set A ⊆ Σ, we obtain N/A from N by hiding
all actions of A, meaning we replace the respective labels in A with τ and

2.5 open net environments and their composition 31

remove A from the alphabet of N/A. For N/A and a word w ∈ Σ∗, φ(w)
denotes w|Σ\A. We canonically extend the notion of φ(w) pointwise to sets
of words.

We define the parallel composition with hiding as the labeled net N1 ⇑ N2 =
(N1‖N2)/(Σ1 ∩ Σ2).

Figure 24 extends Fig. 19 and gives a schematic example for the parallel
composition of two labeled nets with and without hiding. The labeled nets
nets env(N1) and env(N2) are composable because they coincide only on
the transitions x and y. The compositions env(N1)‖env(N2) and env(N1) ⇑
env(N2) are again labeled nets. In env(N1)‖env(N2), the transitions x and
y are still labeled with x and y, respectively, but in env(N1) ⇑ env(N2) the
label of both transitions has been replaced by τ.

bo

...

ai
...

...
yi

xo
...

x

y

a

b

x

y

a

b

(a) Labeled net env(N1)

yo

...

xi
...

...
di

co
...

c

d

x

y

c

d

x

y

(b) Labeled net env(N2)

bo

...

ai
...

...
yi

xo
...

x

y

a

b

x

y

a

b
yo

...

xi
...

...
di

co
...

c

d

c

d

(c) Labeled net env(N1)‖env(N2)

bo

...

ai
...

...
yi

xo
...

x

y

a

b

a

b
yo

...

xi
...

...
di

co
...

c

d

c

d!

!

(d) Labeled net env(N1) ⇑ env(N2)

Figure 24: Schematic example of the environments env(N1) and env(N2) of two open
nets N1 and N2 (as sketched in Fig. 19), and their parallel composition
with and without hiding.

Example 20 Figure 25 illustrates the parallel composition with and with-
out hiding of the environments env(S) and env(C) of the open nets S and
C from Fig. 23. The language of env(S)‖env(C) is

L(env(S)‖env(C)) = {tr}∗
] {wt | w ∈ {tr}∗}
] {wez | w ∈ {tr}∗ ∧ z ∈ {r}∗} .

In contrast, the language of env(S) ⇑ env(C) is L(env(S) ⇑ env(C)) = {ε},
because S⊕ C is a closed net and, thus, all transitions of env(S) ⇑ env(C)
are labeled with τ. �

To describe the behavior of compositions, we define parallel compositions
of words and languages; operator ‖ synchronizes common actions, operator

32 preliminaries

process

ri

eo

to

error

send

p1p0

e

t

r

e

t

r!

!
!

ro
response

ei

ti

catch

update

p2 p3

reset p4

recover

!
!

!

!
!

(a) Labeled net env(S)‖env(C)

process

ri

eo

to

error

send

p1p0

e

t

r
!

!
!

ro
response

ei

ti

catch

update

p2 p3

reset p4

recover

!
!

!

!
!

!

!
!

(b) Labeled net env(S) ⇑ env(C)

Figure 25: The parallel composition with and without hiding of the environments of
the two open nets S and C from Fig. 23. In addition to the figures, we
have Ωenv(S)‖env(C) = Ωenv(S)⇑env(C) = {[p3]}.

⇑ also hides them. Observe that in env(N1) ⇑ env(N2) only common tran-
sitions are merged; operator ‖ is needed to relate the respective transition
sequences.

Definition 21
Let Σ1, Σ2 be alphabets and Σ = (Σ1 ∪ Σ2) \ (Σ1 ∩ Σ2). Let w1 ∈ Σ∗1 and
w2 ∈ Σ∗2 be words, and let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be languages. We define

• w1‖w2 = {w ∈ (Σ1 ∪ Σ2)
∗ | w|Σ1 = w1, w|Σ2 = w2},

• w1 ⇑ w2 = {w|Σ | w ∈ w1‖w2},

• L1‖L2 =
⋃{w1‖w2 | w1 ∈ L1, w2 ∈ L2}, and

• L1 ⇑ L2 =
⋃{w1 ⇑ w2 | w1 ∈ L1, w2 ∈ L2}.

Convention 7 To simplify the notation in Def. 21, we do not add the alpha-
bets of w1 and w2 to the operators ‖ and ⇑; the alphabets will be always
clear from the context. �

Example 22 Consider again the environments env(S) and env(C) in Fig. 23.
We stated the languages of env(S) and env(C) in Ex. 18. For example, we
have A = {w ∈ {r, t}∗ | ∀v v w : |v|t ≤ |v|r + 1} ⊆ L(env(S)) and
B = {w ∈ {r, t}∗ | ∀v v w : |v|t ≥ |v|r} ⊆ L(env(C)), thus A‖B = {w ∈
{r, t}∗ | ∀v v w : |v|r ≤ |v|t ≤ |v|r + 1} ⊆ L(env(S))‖L(env(C)). Because

2.6 relating open nets and open net environments 33

Σenv(S) = Σenv(C), we have A ⇑ B = {ε}. In other words, for two languages
A and B over the same alphabet, A‖B collapses to A∩ B, and A ⇑ B = {ε}
if A ∩ B 6= ∅; otherwise, A ⇑ B = ∅. Therefore,

L(env(S))‖L(env(C)) = {tr}∗
] {wt | w ∈ {tr}∗}
] {wez | w ∈ {tr}∗ ∧ z ∈ {r}∗}

and L(env(S)) ⇑ L(env(C)) = {ε}. �

2.6 relating open nets and open net environments

As already mentioned at the beginning of Sect. 2.5, we shall define certain
trace-based semantics for open nets in the first part of this thesis. Here, it is
vital to infer the semantics of the composition N1 ⊕ N2 of two composable
open nets N1 and N2 from the semantics of N1 and N2. In this section, we lay
the foundation for this: We relate traces of the environment env(N1 ⊕ N2)
of N1 and N2 to traces of the individual environments env(N1) and env(N2).
To this end, we first relate traces of the individual environments env(N1)
and env(N2) to traces of the parallel composition env(N1)‖env(N2). In a
second step, we relate traces of the parallel composition env(N1)‖env(N2)
(and env(N1) ⇑ env(N2)) to traces of env(N1 ⊕ N2). The second step is
particularly elegant, because env(N1)‖env(N2) differs from env(N1 ⊕ N2) in
its hidden common actions and transitions that connect former overlapping
interface places of N1 and N2.

We start with the first step by recalling [246, Theorem 3.1.7(4)], which
relates a trace of a composed labeled net to traces of its components.

Proposition 23 [[246]]
For two markings m1 and m2 of composable labeled nets N1 and N2, re-
spectively, we have m1 + m2

w
=⇒ m′1 + m′2 in N1‖N2 iff there exist w1 ∈ Σ∗N1

,

w2 ∈ Σ∗N2
such that w ∈ w1‖w2, m1

w1==⇒ m′1 in N1, and m2
w2==⇒ m′2 in N2.

Example 24 Consider the labeled net env(S)‖env(C) in Fig. 25a. We
have Σenv(S) = Σenv(C), thus, Prop. 23 implies L(env(S)‖env(C)) =
L(env(S))‖L(env(C)). Therefore, we can confirm our characterization of
L(env(S)‖env(C)) = L(env(S))‖L(env(C)) = {tr}∗] {wt | w ∈ {tr}∗}]
{wez | w ∈ {tr}∗ ∧ z ∈ {r}∗} from Ex. 20 and Ex. 22. �

With Prop. 23, we can compute the language of the parallel composition
env(N1)‖env(N2) of two composable labeled nets N1 and N2 from the lan-
guages of env(N1) and env(N2). Next, we relate markings of the environ-
ment of the composition env(N1 ⊕ N2) to markings of the parallel composi-
tion of the environments env(N1)‖env(N2) of N1 and N2 (Def. 25). Then, we
use this relation to relate transition firings (Prop. 27), transition sequences
(Prop. 28), and traces (Lem. 30).

For the remainder of this section, we fix two composable open nets N1
and N2, and we put C = env(N1 ⊕ N2), E = env(N1)‖env(N2), and E =
env(N1) ⇑ env(N2). The labeled nets E and E differ only in their labelings;
C and E (E) have the same places, except for places p ∈ (I1 ∩O2)] (I2 ∩O1)
in C and the corresponding places pi, po in E (E). We study the relation

34 preliminaries

between reachable markings of different compositions of N1 and N2. To this
end, we define agreement between markings.

Definition 25 [agreement]
A marking m of C and a marking m of E (of E) agree if they coincide on the
common places and if for each p ∈ (I1 ∩O2)] (I2 ∩O1), m(po) + m(pi) =
m(p). They strongly agree if, additionally, m(po) = 0.

Example 26 Because S⊕ C is a closed net, Fig. 20 depicts the labeled net
env(S⊕ C) if we ignore the dashed frame and assume every transition to
be labeled by τ. Comparing env(S⊕ C) and the labeled net env(S)‖env(C)
in Fig. 25a, we see that the markings [p1, t, p3] of env(S⊕C) and [p1, to, p3]
of env(S)‖env(C) agree, and the markings [p1, t, p3] of env(S ⊕ C) and
[p1, ti, p3] of env(S)‖env(C) even strongly agree. �

Agreeing markings of C and E permit the firing of a transition of C in
both nets. We relate the firing of a transition of C and E (E) by recalling [228,
Lemma 15].

Proposition 27 [[228]]
Let the markings m of C and m of E agree, and let t ∈ TC. Then

1. If m t−→ m′, then m t−→ m′ such that m′ and m′ agree.

2. If m and m strongly agree, all additional transitions of E are disabled

at m, and further m t−→ m′ implies m t−→ m′ such that m′ and m′

agree.

As E and E differ only in their labelings, (1) and (2) also hold for E in place
of E.

The next proposition recalls [228, Lemma 16(1),(2)] and [228, Lemma 15(4)].
It states facts about sequences of transitions of C and E and relates final
markings. The intuitive idea is to extend Prop. 27 from a transition firing
to firing sequences, always enforcing (strong) agreement between markings
firing the “intermediate” transitions of E in between.

Proposition 28 [[228]]
Let m be a marking of C and m be one of E. Then

1. If m and m strongly agree and m v−→ m′ in C, then it is possible to
insert transitions from (I1 ∩O2)] (I2 ∩O1) of E into v such that for

the resulting v′: m v′−−→ m′ in E and also m′ and m′ strongly agree.

2. If m and m agree and m v′−−→ m′ in E, then it is possible to delete
transitions from (I1 ∩ O2)] (I2 ∩ O1) of E in v′ such that for the
resulting v: m v−→ m′ in C and also m′ and m′ agree.

3. m ∈ ΩC iff m ∈ ΩE iff for i = 1, 2: m|Penv(Ni)
∈ Ωenv(Ni)

.

As E and E differ only in their labelings, (1), (2), and (3) also hold for E in
place of E.

2.7 conclusions and related work 35

Example 29 To illustrate Prop. 28(1), we consider the strongly agreeing
markings [p1, t, p3] of env(S⊕ C) in Fig. 20 and [p1, ti, p3] of env(S)‖env(C)

in Fig. 25a. We have [p1, t, p3]
update−−−−→ [p1, p2]

response−−−−−→ [p1, r, p3] in
env(S ⊕ C). We can insert transition r (which is an interface place of

S and C) and obtain [p1, ti, p3]
update−−−−→ [p1, p2]

response−−−−−→ [p1, ro, p3]
r−→

[p1, ri, p3] in env(S)‖env(C), and [p1, r, p3] and [p1, ri, p3] strongly agree.
For Prop. 28(2), we consider the agreeing markings [p1, t, p3] and [p1, to, p3]

and [p1, to, p3]
t−→ [p1, ti, p3]

update−−−−→ [p1, p2]
response−−−−−→ [p1, ro, p3] in

env(S)‖env(C). We can delete transition t (which is an interface place

of S and C) and obtain [p1, t, p3]
update−−−−→ [p1, p2]

response−−−−−→ [p1, r, p3] in
env(S⊕ C), and [p1, ro, p3] and [p1, r, p3] agree. �

We have seen that agreement closely relates markings of C and E. The
following lemma justifies this by showing that agreement between markings
of C and E is a weak bisimulation.

Lemma 30 [agreement is a weak bisimulation]
The labeled nets C and E are weakly bisimilar due to the agreement rela-
tion.

Proof. First, we show that if we label each transition of C with itself in C and
E and every transition t ∈ (I1 \O2)] (I2 \O1) in E with τ, then agreement
between the markings of C and E is a weak bisimulation.

The initial markings mC and mE strongly agree by Def. 13 and Def. 17.
Writing $ for the agreement relation, we now assume that (m, m) ∈ $. To
prove that $ is a weak bisimulation, we have to show that

1. If m t−→ m′, then there exists m′ such that m t
=⇒ m′ and (m′, m′) ∈ $;

and

2. If m t−→ m′, then there exists m′ such that m t
=⇒ m′ and (m′, m′) ∈ $.

Consider the first item. By firing all τ-labeled transitions of E that are en-
abled at m, we can empty each place po while shifting the tokens to the
respective place pi. Let m′′ be the resulting marking of E. Then m ε

=⇒ m′′

and m′′ strongly agrees with m, because firing a τ-labeled transition does
not change the marking on the common places and no place po is marked

now. By Prop. 27(2), we have m′′ t−→ m′ such that m′ and m′ agree.
For the second item, we can set m = m′ if t is τ-labeled and, clearly,

m′ and m′ agree then. Otherwise, we can conclude from Prop. 27(1) that

marking m′ exists such that m′ and m′ agree. Thus, m t
=⇒ m′ and $ is a weak

bisimulation.
Because the original labelings can be obtained by the same relabeling

from the labelings considered in the first part of the proof, agreement is
also a weak bisimulation for C and E. �

2.7 conclusions and related work

In this section, we provided basic mathematical notions that we use through-
out this thesis. We introduced LTSs as a uniform formalism for modeling
the behavior of distributed and open systems. We introduced open nets—a
variant of Petri nets—to model the communication protocol of open systems.

36 preliminaries

Using the notion of (the reachability graph of) an open net environment, we
can easily translate an open net into an LTS. In other words, the environ-
ment of an open net links that net to LTSs.

As already detailed in Chap. 1, we investigate interacting open systems
that are executed concurrently on different machines. There exist various
formalisms to model the communication protocol [174, 37] of an open sys-
tem. We can roughly distinguish these formalisms by the employed com-
munication model [172, 134, 150] that primarily distinguishes between syn-
chronous and asynchronous communication. In the case of synchronous com-
munication, messages between systems are neither pending nor buffered,
because message exchange is assumed to be instantaneous. This type of
communication is sometimes called “handshaking” [34]. In the case of asyn-
chronous communication, a message sent from one system is buffered until
it is received by another system. We can, additionally, distinguish asyn-
chronous communication models by the ordering, capacity, quantity, and
lossyness of the employed buffer(s).

In this thesis, we consider asynchronous communication between open
systems over unbounded, unordered, and lossless buffers. This communi-
cation model is most general except for lossyness. Asynchronous commu-
nication allows for a more autonomous execution of the composed systems
than synchronous communication, because the sending and receiving of
a message are decoupled. Therefore, asynchronous communication natu-
rally supports the distributed setting of interacting open systems [172]. On
the downside, asynchronous communication requires the modeling of in-
termediate states of a composition, yielding an increased complexity. Bul-
tan et al. [56] show that many behavioral correctness notions are much
harder to decide in the case of asynchronous communication models. Fu
et al. [99] investigate necessary conditions for synchronizability—that is,
conditions for the possibility to abstract from message channels in asyn-
chronously communicating systems without effecting their behavior, effec-
tively translating them into synchronously communicating systems. Basu
et al. [31] identify a subclass of open systems for which an asynchronous
communication schema over unbounded First-In-First-Out queues can be re-
placed by synchronous communication while preserving reachability prop-
erties over output actions and states with no pending inputs. Such tech-
niques may lead to faster decision procedures for subclasses of open sys-
tems. The converse of synchronizability—that is, translating synchronous
to asynchronous communication—is for example studied by Decker et al.
[74].

In the following, we briefly review formalism that are used to reason
about the behavior of interacting open systems.

2.7.1 Formalism based on process algebras

Many articles on the behavior of concurrent systems are based on process-
algebraic concepts [244]. Process algebra is the study of the behavior of
parallel or distributed systems by algebraic means [27]; well-known process
algebras include CCS [177], CSP [119], and ACP [26]. The process algebras
CCS, CSP, and ACP assume that processes interact by means of synchronous
communication. However, there also exist process algebras using asyn-
chronous communication. For example, Bergstra et al. [34] and de Boer et al.
[39] investigate process algebras with asynchronous communication using
ordered (i.e., queues) and unordered (i.e., bags) message channels. Their un-

2.7 conclusions and related work 37

derlying semantics is that of process graphs (i.e., labeled transition systems).
Fournet et al. [97] consider CCS processes of asynchronous message pass-
ing software components with unbounded message channels. Again, their
operational semantics is that of labeled transition systems. Bravetti and Za-
vattaro [46] model the behavior of an asynchronously communicating open
system with an extension of basic CCS and one unbounded but ordered
message queue. Another process algebra for asynchronous communication
is the asynchronous variant of the π-calculus [206], where processes interact
by sending communication links to each other. The asynchronous variant
was first proposed by Honda and Tokoro [121, 122] and, independently, by
Boudol [41].

2.7.2 Formalism based on automata

I/O automata [159] and interface automata [18] are automaton models [224]
for the behavior and the composition of systems based on synchronous
communication. For asynchronous communication, communicating finite-
state machines [42] model systems that exchange messages via unbounded
queues. Here, each message channel between two systems is represented by
one unbounded buffer that preserves the order of sent messages. Berardi
et al. [33] and Calvanese et al. [57] model open systems as Mealy finite state
machines [170] but do not take any concept of message queuing into account.
Hull et al. [124] propose to model services with Mealy machines that com-
municate asynchronously over bounded or unbounded queues very similar
to [42].

Alur et al. [20] use concurrent automata that communicate asynchronously
over unbounded unordered buffers to model the behavior of components.
Service automata [166] are a simplification of I/O automata which have
been used to model service behavior. In contrast to I/O automata, service
automata communicate asynchronously and do not require the explicit mod-
eling of the states of message channels. A detailed comparison of service
automata with other automata models can be found in [165]. Both con-
current automata and service automata make no assumptions about the
infrastructure other than messages do not get lost.

2.7.3 Formalism based on Petri nets

The formalism of open nets [167, 226] is a variant of Petri nets [216, 194],
whose modular construction traditionally supports asynchronous commu-
nication over unbounded unordered buffers by fusing places [246]. Open
nets have been introduced as open workflow nets in [166, 153] and general-
ize workflow nets from Van der Aalst [1]. Workflow nets have been proven
successful for the modeling of business processes and workflows; for dis-
tributed business processes, workflow nets have been enriched by interface
places to asynchronously communicating workflow modules [163]. Open
nets can be composed, yielding a new open net (possibly a closed net) that
models the composition of the represented open systems. This idea is based
on the module concept for Petri nets which was proposed by Kindler [136].

2.7.4 Why do we chose open nets?

As can be seen from the above, there exist a plethora of formalisms to
model the behavior of asynchronously communicating open systems. The

38 preliminaries

actual choice of a formalism is negligible as long as it supports the most
general communication model—that is, asynchronous communication over
unbounded unordered buffers.

We have chosen open nets as a formal model for (the behavior of) open
systems because they adequately model asynchronous communication over
unbounded unordered buffers [246, 153, 226]. They—like service automata
and concurrent automata—make no assumptions about the infrastructure
or underlying middleware other than messages do not get lost. Open nets
have already been proven useful for modeling and verifying the behavior
of open systems [166, 151]. In contrast to the approaches of Massuthe et
al. [166, 165], Lohmann [151], and Parnjai [203], we do not translate an open
net into an LTS for verification purposes, but operate directly on open nets
using the notion of their environment. All our notions for open nets in the
subsequent chapters, for example a denotational semantics, are essentially
grounded in LTSs. However, we still use open nets instead of the underlying
LTSs because open nets allow, in general, for more compact models and an
easier notion of composition by fusing interface places.

In practices, open systems are usually not modeled as open nets. How-
ever, open systems that are specified in industrial languages, such as WS-
BPEL [130] or BPMN [63], can be translated into our formal model and then
be analyzed [149, 154]. Lohmann [149] presents a feature-complete open net
semantics for WS-BPEL and the compiler BPEL2OWFN that automatically
translates a WS-BPEL process into an open net. The translation of BPMN
into Petri nets [79] is also supported by tools. In addition, there exist ap-
proaches for open systems in the form of services: A service description in
PHP [208] or C [135] can be translated into an automata [223, 222] using
techniques from the areas of model checking [28] and static program analy-
sis [198]. Automata, in turn, can be translated into Petri nets [25], e.g., using
state-based [77, 215] or language-based regions [157].

3R E S P O N S I V E N E S S F O R O P E N S Y S T E M S

In this thesis, we aim to verify responsiveness for open systems. Respon-
siveness is a behavioral correctness criterion for two interacting open sys-

tems. It ensures that termination of their composition or communication be-
tween the two open systems is always possible. In other words, respon-
siveness combines termination (which is important for all systems) with
interaction (which is especially important for interacting open systems), as
both termination and interaction are too strict for open systems in isolation.

In this chapter, we formalize responsiveness in our modeling formalism.
We formalize two variants of responsiveness: The basic variant is respon-
siveness as the perpetual possibility to either terminate or communicate in
the composition of two open nets. As a second variant, we introduce b-
responsiveness that combines responsiveness and b-boundedness. The in-
troduction of b-responsiveness is motivated by some undecidability results
for responsiveness, which we present in more detail in Chap. 4.

The goal of this thesis is to develop algorithms to verify responsiveness
for open systems by means of conformance checking. A conformance re-
lation between two formal models is the central theme in conformance
checking. In this chapter, we formalize the conformance relation for re-
sponsiveness, called conformance, and the conformance relation for b-re-
sponsiveness, called b-conformance, for open nets. To this end, we define
two open nets to be partners if they behave desirably (i.e., responsively or
b-responsively) in composition. Intuitively, an implementation conforms to
the specification if the first interacts desirably with at least all partners of
the latter—or even more. Therefore, we define conformance as the set of
partners of the implementation superseding the set of partners of the spec-
ification. Figure 26 illustrates the formalization of conformance as partner
inclusion.

Implementation
(e.g., WS-BPEL)

conforms to

Specification
(e.g., WS-BPEL)

Re
al

ity
O

pe
n

Ne
ts

models modelstranslates translates

conforms to
SpecImpl

Se
ts

 o
f

O
pe

n
Ne

ts

supersedes
C1

C2

C1

has
partners

has
partners

Figure 26: Formalizing conformance as partner inclusion.

39

40 responsiveness for open systems

Compositionality for open systems allows open systems to be composed
from smaller ones; compositional conformance checking allows to infer con-
formance of a composition by checking conformance of the composed sys-
tems. For compositional conformance checking, we additionally require
the conformance relation to be compositional. Technically, a compositional
conformance notion extends the respective conformance relation (i.e., a pre-
order) to a precongruence with respect to the open nets composition opera-
tor. We require separate notions for a compositional conformance and a com-
positional b-conformance relation because conformance and b-conformance
are not compositional, which we elaborate in more detail in Part II. There-
fore, we also introduce the largest (i.e., coarsest) precongruence that is con-
tained in the conformance relation—that is, compositional conformance—
and the coarsest precongruence that is contained in the b-conformance rela-
tion.

The remainder of this chapter is structured as follows: We formalize re-
sponsiveness for open nets and introduce the corresponding relations con-
formance and compositional conformance in Sect. 3.1. Then, we formalize
b-responsiveness and introduce the b-conformance relation and the compo-
sitional b-conformance in Sect. 3.2. We classify responsiveness and b-respon-
siveness into a spectrum of behavioral correctness criteria for open nets in
Sect. 3.3. In addition, we relate conformance and b-conformance by show-
ing that they are incomparable. We finish this chapter in Sect. 3.4 with a
conclusion and a review of related work on the notion of responsiveness.

3.1 formalizing responsiveness and conformance

Responsiveness is the perpetual possibility to either terminate or commu-
nicate. Because the behavior of a composition of interacting open systems
derives from the interaction between the composed systems, we define re-
sponsiveness depending on two open systems in combination: In the com-
position, each of them will usually not reach all states it could reach in the
composition with other open systems. Thus, an open system may be respon-
sive with one open system, but not responsive with another open system.

For our formalization of responsiveness, we interpret communication be-
tween two open systems in the same way as (successful) communication
between two human beings: One person talks (i.e., sends a message) while
the other person does not talk (i.e., receives or ignores this message). Which
person talks and which person does not may change at any time, but this
change is not inevitable. Therefore, even for two nonterminating open sys-
tems, responsiveness does not imply a mutual sending of messages: It suf-
fices that just one open system can perpetually send a message to the other
open system. This most basic view on communication allows for a finite but
unbounded number of send and pending (i.e., unreceived or ignored) mes-
sages between two systems, which renders conformance for responsiveness
undecidable. We shall define another variant of responsiveness in Sect. 3.2,
which—in contrast to conformance in this section—actually implies a mu-
tual sending of messages.

In terms of open nets, sending a message is modeled by firing a transition
that puts a token on an output place; communication in turn is always
possible if it is always possible to enable such a transition in the composition
of two open nets.

3.1 formalizing responsiveness and conformance 41

Definition 31 [responsiveness]
Let N1 and N2 be two composable open nets. A marking m of N1 ⊕ N2
is responsive if we can reach from m a marking that enables a transition t
with t• ∩ (O1]O2) 6= ∅, or we can reach a final marking of N1 ⊕ N2 from
m. The open nets N1 and N2 are responsive if their composition N1 ⊕ N2 is
a closed net and every reachable marking of N1 ⊕ N2 is responsive.

In the following, we give an example for two responsive open nets.

Example 32 Throughout this thesis, we consider the unreliable time server
S and its recovering client C from Fig. 18 as a running example for every-
thing concerning responsiveness. For convenience, we depict them again
in Fig. 27. Recall that the open nets S and C are composable (cf. Ex. 14).
Their composition S⊕ C, which we depict in Fig. 27c, is a closed net, and
S and C are responsive: Either they can mutually send a message over the
interface places t and r or C repeatedly produces a token on place r after
consuming a token from e. The place r in S⊕ C is unbounded; thus, the
composition is unbounded, too. In addition, no final marking of S⊕ C is
reachable in S⊕ C—that is, termination of S⊕ C is impossible. �

process
r

e

t

error

send

p1p0

(a) Open net S

r response

e

t

catch

update

p2 p3

reset p4

recover

(b) Open net C

process

error

send

p1p0

r
response

e

t

catch

update

p2 p3

reset p4

recover

(c) Open net S⊕ C

Figure 27: Three open nets modeling an unreliable time server, a client, and their
composition. In addition to the figures, we have ΩS = {[]} and ΩC =
ΩS⊕C = {[p3]}.

Based on the correctness criterion responsiveness, we define a partner of
an open net N as an open net C such that N and C are responsive.

Definition 33 [partner]
An open net C is a partner of an open net N if N and C are responsive.

For every “truly” (i.e., not closed) open net N, there exists a partner—
the latter just has to continuously send a message (like C in Fig. 27b after
receiving message e). Continuously sending a message to N is possible for
any open net composable with N, because N has at least one input place by
Def. 11.

In the following, we give two examples for partners.

Example 34 As already explained in Ex. 32, the open nets S and C from
Fig. 27 are composable and responsive. Thus, S is a partner of C, and vice
versa. �

42 responsiveness for open systems

Example 35 The open net C′ in Fig. 28a represents another client for the
unreliable time server S in Fig. 27a. The client C′ repeatedly updates its
system time and responds with a response packet. However, if the time
server sends an error message, C′ receives this message (input place e)
and—in contrast to the client C in Fig. 27b—terminates (final marking [p4]).
The open nets S and C′ are composable; their composition S⊕C′ is a closed
net and depicted in Fig. 28b.

The open net C′ is also a partner of S: The marking [p4] is the only
reachable marking in their composition S⊕ C′ that does not enable future
communication. However, [p4] is a final marking of S⊕ C′, thus S and C′

are responsive. �

r response

e

t

catch

update

p2 p3

p4

(a) Open net C′

process

error

send

p1p0

r
response

e

t

catch

update

p2 p3

p4

(b) Open net S⊕ C′

Figure 28: The open net C′ modeling a terminating client of the open net S in Fig. 27a,
and their composition S⊕ C′. In addition to the figures, we have ΩC′ =
ΩS⊕C′ = {[p4]}.

If the partners of an open net Impl are a superset of the partners of another
open net Spec, then Impl can be seen as “more correct” than Spec; intuitively,
Impl interacts desirably (i.e., responsively) with at least all environments of
Spec—or even more. This relation based on partner inclusion between Impl
and Spec models the idea of a conformance relation that preserves a given
behavioral correctness criterion; an idea we already described in Sect. 1.1.1.
We refer to the resulting relation between open nets as conformance. Techni-
cally, conformance is a preorder over the set of all open systems.

Definition 36 [conformance]
For two interface-equivalent open nets Impl and Spec, Impl conforms to Spec,
denoted by Impl vconf Spec, if for all open nets C the following holds: If C
is a partner of Spec, then C is also a partner of Impl.

For modular reasoning—that is, compositional conformance checking—a
conformance relation should be a precongruence with respect to the open
net composition operator ⊕ (see also Sect. 1.1.2). Because conformance shall
turn out not to be a precongruence, we will make it stricter (smaller) as far
as needed to obtain such a precongruence, and we already introduce a no-
tation for this largest (i.e., coarsest) precongruence. We refer to the coarsest
precongruence that is contained in the conformance relation as compositional
conformance.

3.1 formalizing responsiveness and conformance 43

Definition 37 [compositional conformance]
We denote by vc

conf the largest subset of vconf such that vc
conf is a precon-

gruence with respect to ⊕. For two interface-equivalent open nets Impl and
Spec, Impl compositionally conforms to Spec, if Impl vc

conf Spec.

In the following, we give an example and a counter-example for two con-
forming open nets.

Example 38 The open net S′ in Fig. 29 models a patched time server. It
has the same functionality as the open net S in Fig. 27a, but it never sends
an error message. In contrast to S, S′ never shuts down and is intentionally
always running: the only final marking [] is unreachable.

The open net S′ conforms to the open net S: Every partner of S must
expect an error from S (i.e., a token on interface place e) and must reach
a final marking after catching the error (i.e., consuming the token from e).
Additionally, every partner of S must provide a token on r for each token
on t; otherwise, S can get stuck in a nonfinal marking with a token on p1.
Thus, every partner of S is also a partner of S′, where an error may never
happen. �

Example 39 Although the open net S′ conforms to the open net S, S does
not conform to S′. Assume the open net C′ in Fig. 28a, but this time with
the empty set of final markings. Clearly, C′ is a partner of S′ where an error
never happens, perpetually communicating over the places t and r. How-
ever, in contrast to Ex. 35, C′ is not a partner of S because of the changed
set of final markings: If S sends a message e, then transition catch in C′ may
fire, yielding the nonresponsive marking [p4] of their composition S⊕C′.�

process
r

e

t

send

p1p0

Figure 29: The open net S′ models a patched time server. We have ΩS′ = {[]}.

We show with the following example that conformance as defined in
Def. 36 does not guarantee compositionality, i.e., the preorder vconf is strictly
larger than the precongruence vc

conf.

Example 40 Consider the open nets X and Y in Fig. 30. The open net X
models a client that uses a time server as long as it does not catch an error;
if X catches an error, then it immediately switches to another time server
(i.e., open net Y).

Although S′ conforms to S, as detailed in Ex. 38, S′⊕X does not conform
to S⊕ X: The open net Y is a partner of S⊕ X but not of S′ ⊕ X, because
the transition catch in S′ ⊕ X can never fire and, thus, firing transition t2
in Y leads to nonresponsive markings of (S′ ⊕ X) ⊕ Y. The only final

44 responsiveness for open systems

marking [p5, p6] is not reachable in (S′ ⊕ X)⊕ Y. Therefore, S′ vconf S but
S′ 6vc

conf S. �

r
response

e

t

catch
update

p2 p3

t1 x

y
t0

p5p4

(a) Open net X

x
t3

y
t2

p7p6

(b) Open net Y

Figure 30: Two open nets proving that conformance is not a precongruence with
regard to open net composition ⊕. In addition to the figures, we have
ΩX = {[p5]} and ΩY = {[p6]}.

3.2 formalizing b-responsiveness and b-conformance

In the previous section, we formalized the notion of responsiveness and its
corresponding conformance and compositional conformance relation. As
it turns out in Sect. 4.3, conformance and compositional conformance are
undecidable and, thus, not applicable for the verification of open systems.
The composition of two responsive open nets may be unbounded, which
endangers decidability: Intuitively, we can never know whether the set of
partners of an open net Impl supersedes the set of partners of an open net
Spec by just examining all partners C of Spec such that Spec⊕ C is b-bounded.
There may always exist a partner C ′ of Spec such that C ′ ⊕ Spec is not b-
bounded and C ′ is no partner of Impl, thereby violating conformance of Impl
and Spec. In other words, checking conformance of Impl and Spec requires
to solve a kind of halting problem.

As conformance and compositional conformance turn out to be undecid-
able, we already introduce another variant of responsiveness in this section:
We require the composition of two open nets to be responsive and, addi-
tionally, to be b-bounded. We refer to this new notion of responsiveness
as b-responsiveness. Recall that throughout this thesis, b denotes a bound
(see Conv. 3). The bound b can be determined beforehand by static analy-
sis of the open system’s underlying middleware or of the communication
behavior of one of the open system, for instance. Therefore, using b-respon-
siveness instead of responsiveness does not restrict the verification process
in practice. As it turns out in Chap. 5 and Chap. 6, the conformance and
compositional conformance relations corresponding to b-responsiveness be-
come decidable.

Two open nets are b-responsive if they can terminate, or at least one net
can repeatedly interact with the other net while respecting the message
bound b. As for responsiveness, also b-responsiveness depends on two open
nets in combination: In the composition, each of them will usually not reach

3.2 formalizing b-responsiveness and b-conformance 45

all states it could reach in the composition with another open net. Therefore,
two open nets may be b-responsive although they are unbounded in isola-
tion, or the composition with other open nets is unbounded.

Definition 41 [b-responsiveness]
Let N1 and N2 be two composable open nets. A marking of N1 ⊕ N2 is b-
responsive if it is b-bounded and responsive. The open nets N1 and N2 are b-
responsive if their composition N1 ⊕ N2 is a closed net and every reachable
marking of N1 ⊕ N2 is b-responsive.

Technically, Def. 41 defines a family of behavioral correctness criteria for
two open nets: one criterion for each b-value. If two open nets N1 and
N2 are b-responsive, then N1 and N2 are b′-responsive for all b′ ≥ b. To
keep things simple (i.e., for smaller state spaces), we usually consider only
1-responsiveness in our examples.

In the following, we give an example for two b-responsive open nets.

Example 42 Figure 31 shows three open systems, each modeled as an open
net. The open net D models a database server. After processing a query
(input place q), it responds with the retrieved data (output place d). A user
may shut down D by sending a shutdown message (input place s). D has
the capability to forward a received shutdown message (output place f),
which erroneously interferes with its termination (the final marking [p0]
becomes unreachable).

The open net U models a user of the database. The user repeatedly
queries the database and analyzes the returned data. U never sends a shut-
down message and ignores any forwarded message from D. Throughout
this thesis, the open nets D and U serve as a running example for every-
thing concerning b-responsiveness.

The open nets D and U are composable. Their composition D⊕U is a
closed net, which is depicted in Fig. 31c. The open nets D and U are b-
responsive because [p1, p4], [p1, p3, q], [p2, p3], and [p1, p3, d] are the only
reachable markings in D⊕U; all of them are 1-bounded. Observe that this
statement holds for any bound b because D⊕U is 1-bounded. �

Recall that two open nets are b-responsive if they are responsive and their
composition is b-bounded. In contrast to responsiveness in Def. 31, we can
prove that, due to b-responsiveness, each net always has the chance to send
a message (possibly after some messages from the other net), or their com-
position terminates. In other words, b-responsiveness implies a choice be-
tween mutual interaction between the nets, or termination. Thus, the word
“responsive” is really justified here.

Proposition 43 [mutual interaction]
Let N1 and N2 be two composable open nets such that N1 and N2 are b-
responsive. Then, from any reachable marking m in N1 ⊕ N2,

1. markings m1 and m2 are reachable in N1⊕ N2 such that m1
t1−−→ with

t•1 ∩O1 6= ∅ and m2
t2−−→ with t•2 ∩O2 6= ∅, or

2. a final marking of N1 ⊕ N2 is reachable.

46 responsiveness for open systems

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

(a) Open net D

d
analyze

s

q

query

p3 p4

f

(b) Open net U

retrieve

shutdown
process

p2p1p0

forward

d

analyze

s

q

query

p3 p4

f

(c) Open net D⊕U

Figure 31: Three open nets modeling a database server, a user, and their composition.
In addition to the figures, we have ΩD = {[p0]}, ΩU = {[]}, and ΩD⊕U =
{[p0]}.

Proof. Assume that there exists a reachable marking m from which no suit-
able markings m1 and m2 are reachable. Then there is a final marking of
N1 ⊕ N2 reachable from m by Def. 31.

Now assume that there exists an m from which no final marking of N1 ⊕
N2 is reachable and from which—w.l.o.g.—only a marking m1 but no m2
is reachable. Then, in N1 ⊕ N2 there exists a run from m to a marking m1
enabling some t1. No tokens are put onto I1 = O2 in this run; otherwise,
we would have found an m2 just before such a firing. Hence, no transitions
of N2 are needed to enable t1, and we can assume that all transitions of
the run belong to N1. Consequently, no token is removed from O1 = I2.
Now, we fire t1 and reach some m′ with at least one token more on O1.
If m′ has an m′2 as claimed in the lemma, this can also serve for m as m2.
Hence, m′2 does not exist, but some m′1 must, as argued previously. We
repeat this argument, and each time the token count on O1 increases until
bound b is violated. However, this contradicts Def. 41, stating that N1 ⊕ N2
is b-bounded. As a consequence, a marking m2 must be reachable from m.�

We redefine the notion of a partner from Def. 33 for b-responsiveness to
b-partner. As for b-responsiveness in Def. 41, the notion of a b-partner is
technically a family of partners between two open nets.

Definition 44 [b-partner]
An open net C is a b-partner of an open net N if N and C are b-responsive.

In the following, we give an example and a counter-example for b-part-
ners.

Example 45 We already showed in Ex. 42 that the open nets D and U are
b-responsive; their mutual interaction, as detailed in Prop. 43, takes place

3.2 formalizing b-responsiveness and b-conformance 47

over the interface places q and d. Thus, U is a b-partner of D, and vice
versa. �

Example 46 The open net U′ in Fig. 32a represents another user of the
database server D. It has the same functionality as the open net U in
Fig. 31b, but may additionally decide to quit and shut down the database
(output place s). The open nets D and U′ are composable; their composi-
tion D⊕U′ is a closed net, which is depicted in Fig. 32b.

U′ is not a b-partner of D: After sending a message s, open net D could
fire shutdown and forward which leads to the nonfinal and noncommunicat-
ing marking [f] of D⊕U′. We generalize this observation to all open nets
that are composable with D: No b-partner of D sends s, as otherwise D can
successively fire the transitions shutdown and forward. After firing forward,
open net D neither receives any input on s or q nor provides any output
on d or f besides the single token on f produced by the firing of forward.
Thus, after receiving s, open net D cannot participate in mutual interaction
as stated in Prop. 43, and, therefore, no b-partner of D can send s. �

d
analyze

s

q

query

p3 p4

f

quit

(a) Open net U′

retrieve

shutdown
process

p2p1p0

forward

d

analyze

s

q

query

p3 p4

f

quit

(b) Open net D⊕U′

Figure 32: The open net U′ modeling another user of the open net D in Fig. 31a, and
their composition D⊕U′. In addition to the figures, we have ΩU′ = {[]},
and ΩD⊕U′ = {[p0]}.

While every open net has at least one partner, as explained in Sect. 3.1,
there exist open nets that do not have any b-partner. An example is an open
net N with a transition t such that •t = {p} and t• = {p, o} for an initially
marked internal place p and an output place o. Repeatedly firing t violates
any bound, which no open net that is composable with N could prevent.

We redefine the notion of conformance from Def. 36 for b-responsiveness
to b-conformance.

Definition 47 [b-conformance]
For two interface-equivalent open nets Impl and Spec, Impl b-conforms to
Spec, denoted by Impl vb, conf Spec, if for all open nets C the following
holds: If C is a b-partner of Spec, then C is also a b-partner of Impl.

Later we will see that also b-conformance is not a precongruence, so we al-
ready introduce its coarsest precongruence. We refer to the coarsest precon-
gruence that is contained in b-conformance as compositional b-conformance.

48 responsiveness for open systems

Definition 48 [compositional b-conformance]
We denote by vc

b, conf the largest subset of vb, conf such that vc
b, conf is a

precongruence with respect to ⊕. For two interface-equivalent open nets
Impl and Spec, Impl compositionally b-conforms to Spec, if Impl vc

b, conf Spec.

We give an example for b-conformance.

Example 49 Figure 33a depicts a patched database server D′. It has the
same functionality as D in Fig. 31a but never forwards a shutdown mes-
sage to the output place f and, hence, terminates after receiving a shut-
down message (final marking []).

The open net U in Fig. 31b is a b-partner of D′ just as U is a b-partner
of D, as they mutually communicate over the places q and d (recall that U
does not send s). In contrast, the open net U′ in Fig. 32a is not a b-partner
of D (see Ex. 45), but it is a b-partner of D′: The only reachable marking
without further communication—that is, marking [] of D′ ⊕U′—is a final
marking of D′ ⊕U′. We depict D′ ⊕U′ in Fig. 33b.

The open net D′ b-conforms to the open net D: No b-partner of D can
send s, as already explained in Ex. 45. In contrast, D does not b-conform to
D′: Receiving s is catastrophic for D but not necessarily for D′, because D′

may reach its final marking []. For example, the open net U′ is a b-partner
of D′ but no b-partner of D. Again, these statements hold for any bound
b. �

retrieve
d

s

q

shutdown
process

p2p1

f

(a) Open net D′

retrieve

d

s

q

shutdown
process

p2p1

f analyze

query

p3 p4

quit

(b) Open net D′ ⊕U′

Figure 33: Two open nets modeling a patched database server, and its composition
with the open net U′ in Fig. 32a. In addition to the figures, we have
ΩD′ = ΩD′⊕U′ = {[]}.

Like the conformance relation in Sect. 3.1, we can show that b-confor-
mance is not compositional. In other words, the preorder vb, conf is a strict
superset of the precongruence vc

b, conf.

Example 50 We extend the example in Ex. 49 with the open nets X and Y
in Fig. 34. The open net X is a b-partner of D⊕Y but no b-partner of D′⊕Y:
Whereas the transition activate of Y can be fired in (D⊕ Y)⊕ X (enabling
b-responsiveness), it cannot be fired in (D′ ⊕ Y)⊕ X. Thus, although D′ b-
conforms to D by Ex. 49, D′ ⊕ Y does not b-conform to D⊕ Y because of
the open net X. Therefore, D′ does not compositionally b-conform to D. �

3.3 classifying both formalizations 49

d

analyze

s

q

init

query

p5

p3

x y

p4

(a) Open net X

x

process2

y

retrieve2

p7

p6

f

activate

(b) Open net Y

Figure 34: Two open nets proving that b-conformance is not a precongruence with
regard to open net composition ⊕. In addition to the figures, we have
ΩX = {[p3]} and ΩY = {[p7]}.

3.3 classifying both formalizations

In the previous sections, we formalized responsiveness and b-responsive-
ness for open nets as well as the arising conformance and the b-conformance
relation. In this section, we compare responsiveness and b-responsiveness
to existing behavioral correctness criteria for open systems. In addition, we
compare conformance and b-conformance. We postphone a classification
of conformance and b-conformance into a spectrum of preorders between
systems, as this depends on characterizations of both relations which we
elaborate in Part II.

3.3.1 Classifying responsiveness and b-responsiveness

Figure 35 depicts the relations between four behavioral correctness crite-
ria for open nets that are closely related to responsiveness: b-bounded
weak termination [181, 162, 44, 259] (b-WT), weak termination [167, 259]
(WT), b-bounded deadlock freedom [166, 258] (b-DF), and deadlock free-
dom [166, 258] (DF). An arrow (and a sequence of arrows) between two
criteria denotes the implication relation; for example, weak termination im-
plies (is “stricter” than) deadlock freedom. Deadlock freedom requires the
composition of two open nets to be deadlock-free. Recall from Sect. 2.3 that
our notion of deadlock freedom is non-standard [216] as we distinguish be-
tween final and nonfinal markings [166]. Weak termination requires the
composition of two open nets to be weakly terminating, i.e., a final marking
is always reachable. We can combine both weak termination and deadlock
freedom with b-boundedness of the composition, yielding b-bounded weak
termination and b-bounded deadlock freedom, respectively.

b-WT b-DF

WT DF

Figure 35: Some behavioral correctness criteria for open nets.

Two open nets are responsive if they have the perpetual possibility to
either terminate or communicate; they are b-responsive if their composition
is additionally b-bounded. Consequently, b-responsiveness is a “stricter”

50 responsiveness for open systems

correctness criterion than responsiveness: Two b-responsive open nets are
responsive as well, yet the converse does not hold in general.

On the one hand, responsiveness is a stricter notion than deadlock free-
dom; that is, two responsive open nets are always deadlock-free. The con-
verse does not hold in general.

Example 51 Consider the open nets N1 and N2 in Fig. 36. The net N1 ⊕
N2 is deadlock-free because of transition t2. However, the only reachable
marking [p0, p2] of N1 ⊕ N2 is neither final nor enables a transition that is
connected to an interface place of N1 or N2. Thus, N1 and N2 are deadlock-
free but not responsive. �

t1
b

a

t0

p1p0

(a) Open net N1

b

a
t2

p2

(b) Open net N2

t3
b

a

t2

p3p2

(c) Open net N3

Figure 36: Three open nets that classify responsiveness between weak termination
and deadlock freedom. In addition to the figures, we have ΩN1 = {[p0]},
ΩN2 = {[]}, and ΩN3 = {[p3]}.

On the other hand, responsiveness is a weaker notion than weak termi-
nation, meaning two weakly terminating open nets are always responsive.
Again, the converse does not hold in general:

Example 52 The open nets N1 and N3 in Fig. 36 are responsive, perpetually
communicating over the interface places a and b. However, the only final
marking [p0, p3] of N1 ⊕ N3 is not reachable in N1 ⊕ N3. Thus, N1 and N3
are responsive but not weakly terminating. �

As the open nets N1 ⊕ N2 and N1 ⊕ N3 are 1-bounded, we conclude that
b-responsiveness is also stricter than b-bounded deadlock freedom and b-
bounded weak termination is stricter than b-responsiveness. We depict in
Fig. 37 the classification of responsiveness and b-responsiveness into the
spectrum of behavioral correctness criteria for open nets from Fig. 35.

b-WT b-DF

WT DF

b-R

R

Figure 37: Responsiveness (R) and b-responsiveness (b-R) in a spectrum of behav-
ioral correctness criteria for open nets.

3.3.2 Comparing conformance and b-conformance

Although the notions of responsiveness and b-responsiveness differ only by
b-boundedness of the composition of two open nets, the resulting notions of
conformance and b-conformance are incomparable. We illustrate this with

3.4 conclusions and related work 51

two technical examples. With the first example, we show that conformance
does not imply b-conformance.

Example 53 Consider the two open nets N4 and N5 in Fig. 38. The open
net N4 conforms to the open net N5, because every partner of N5 mutually
communicates over the places a and b, which is also possible in the com-
position with N4. However, N4 does not b-conform to N5: The place p0 is
unbounded in every composition of N4 with a b-partner C of N5 and, thus,
C is not a b-partner of N4. More precisely, N4 has, in contrast to N5, no b-
partner at all. �

t2
b

a
t0

t1

p2p1

p0

(a) Open net N4

t2
b

a
t0

t1

p2p1

(b) Open net N5

t3
c

a

b

t0

t2

p3p2

p0

p1

t1

(c) Open net N6

Figure 38: Three open nets proving that conformance and b-conformance are incom-
parable. In addition to the figures, we have ΩN4 = ΩN5 = ΩN6 = {[]}.

With the second example, we show that b-conformance does not imply
conformance.

Example 54 We define the open net N7 as the open net N6 in Fig. 38c but
with ΩN7 = {m ∈ Bags(PN7) | ∀p ∈ PN7 \ {p0, p1} : m(p) = 0} as its
set of final markings. N6 b-conforms to N7 because no b-partner C of N7
can send a message a; otherwise, transition t0 may fire and the place p1
becomes unbounded in N7 ⊕ C. Thus, every b-partner C of N7 perpetually
communicates with N7 over the places b and c, and therefore C is also a b-
partner of N6.

However, N6 does not conform to N7, because a partner C of N7 may
send a message a, which leads to a final marking in N7⊕C but not in N6⊕
C. Thus, C may not be a partner of N6, which contradicts the definition of
conformance. �

3.4 conclusions and related work

In this chapter, we formalized responsiveness, b-responsiveness and the cor-
responding (compositional) conformance relations, (compositional) confor-
mance and (compositional) b-conformance. As we require a user to define
the bound b, we obtain a family of preorders and precongruences for b-
responsiveness, each parameterized by b. We compared responsiveness
and b-responsiveness to two other behavioral correctness criteria for open
nets, and showed that responsiveness is stricter than deadlock freedom and
weaker than weak termination. In addition, we showed that conformance
and b-conformance are incomparable. In the following, we review related
work on responsiveness.

The idea of responsiveness for finite state open systems with final states
has been coined by Wolf [258]: An open net N is responsive if inner(N) is

52 responsiveness for open systems

b-bounded and from every reachable marking we can reach either a final
marking or a marking that enables a transition with an output place in its
postset [258]. In other words, Wolf defines responsiveness for single open
nets and considers only such responsive nets; this guarantees stricter forms
of our responsiveness and b-responsiveness notions. More generally, we
also deal with open nets that are responsive in some open net compositions
but not in others. Our definition of b-responsiveness is also more general
in terms of boundedness: In [258], only internally b-bounded open nets are
considered, whereas we consider arbitrary open nets (i.e., even internally
unbounded), as long as their composition with a partner is b-bounded.

Müller [187] presents an asymmetrical definition of responsiveness from
the point of view of one individual open system in a composition. In con-
trast, our notions of responsiveness and b-responsiveness are symmetrical.

Our definition of responsiveness corresponds to the notion of final-re-
sponsiveness in [249] and generalizes the notion of responsiveness in [247]:
While responsiveness in [247] requires at least one net of the composition to
repeatedly talk to the other net, our responsiveness in Def. 31 also allows the
composition to terminate instead (i.e., to reach a common final marking).

Recently, responsiveness has gained interest because it is crucial in the set-
ting of interacting open systems. An example is Microsoft’s asynchronous
event driven programming language P, which is used to implement device
drivers [76]. Desai et al. [76] define responsiveness for bounded message
channels, which is similar to our notion of b-responsiveness. However, their
notion of responsiveness additionally requires that no message in any chan-
nel is ignored forever. Therefore, b-responsiveness in Def. 41 is a more
general notion than responsiveness in [76].

In other work, the term responsiveness refers to different properties: Reed
et al. [214] aim to exclude certain deadlocks, whereas responsiveness in our
setting refers to the ability to communicate. The works [137, 14, 100] con-
sider with the π-calculus a more expressive model than open nets but in the
setting of synchronous communication, whereas we consider asynchronous
communication. Moreover, responsiveness in [14, 100] and lock-freedom
in [137] guarantee that communication over a certain channel is eventually
possible. In contrast, our notion of responsiveness requires that communi-
cation over some channel is always possible.

Kobayashi [137] defines responsiveness over the infinite runs of the sys-
tem, thereby using a strong fairness for the channel synchronization. More-
over, the language considered in [137] does not support choices. Acciai and
Boreale [14] use a type system and reduction rules different from Kobayashi,
and they give an example of a responsive process that cannot be expressed
in [137].

Gamboni and Ravara [100] use a variant of the π-calculus that is more ex-
pressive than the one in [137]: Choices are part of the language and it is also
possible to express how many times a communication over a certain channel
should take place. In addition to responsiveness in [14] (called activeness
in [100]), Gamboni and Ravara require that whenever communication takes
place over a channel, then the respective processes conform to a specified
protocol. The latter property is called responsiveness in [100].

Recently, Padovani [200] has taken up lock-freedom from Kobayashi [137].
He defines a behavioral type system using asynchronously communicating
session types and considers the progress property. However, progress is a
stricter notion than b-responsiveness as it (like responsiveness in [76]) addi-
tionally requires that no message in any channel is ignored forever.

Part II

T H E M O D E L - M O D E L S C E N A R I O

4C O N F O R M A N C E A N D C O M P O S I T I O N A L
C O N F O R M A N C E

This chapter is based on results published in [193, 247, 249].

In the model-model scenario, we assume that both the specification and
the implementation of an open system are given as formal models. Then,

we want to verify responsiveness by using conformance checking between
the two formal models. We already presented with open nets a suitable
formalism for open systems in Chap. 2. In Chap. 3, we formalized two vari-
ants of responsiveness for open nets and the arising (compositional) confor-
mance relations: Responsiveness and (compositional) conformance, and b-
responsiveness and (compositional) b-conformance. Thereby, we formalized
the corresponding conformance relations as partner-inclusion: The imple-
mentation Impl conforms to the specification Spec if the set of partners of
Impl includes the set of partners of Spec; Impl compositionally conforms to
Spec if they conform and their conformance relation is preserved under the
open nets composition operator. Figure 39 illustrates again our formaliza-
tion of conformance.

Implementation
(e.g., WS-BPEL)

conforms to

Specification
(e.g., WS-BPEL)

Re
al

ity
O

pe
n

Ne
ts

models modelstranslates translates

conforms to
SpecImpl

Se
ts

 o
f

O
pe

n
Ne

ts

supersedes
C1

C2

C1

has
partners

has
partners

Figure 39: Formalizing conformance as partner inclusion.

In the chapters of Part II, we analyze conformance and b-conformance for
compositionality and decidability. It turns out that both conformance and
b-conformance are not compositional. Therefore, we additionally character-
ize compositional conformance and compositional b-conformance. Orthog-
onally, we investigate whether conformance and b-conformance as well as
compositional conformance and compositional b-conformance are decidable.
It turns out that b-conformance and compositional b-conformance are decid-
able whereas conformance and compositional conformance are not. Conse-
quently, we elaborate decision procedures only for b-conformance and com-

55

56 conformance and compositional conformance

positional b-conformance. Because conformance and compositional confor-
mance turn out to be undecidable and both undecidability proofs are similar
in their structure, we merged our results about conformance and composi-
tional conformance into one chapter—that is, this chapter. In Chap. 5, we
investigate b-conformance and in Chap. 6, we investigate compositional b-
conformance. Table 1 illustrates how we structure the above mentioned re-
sults into the chapters of Part II. We left out Chap. 7, in which we summarize
the results of Part II and review related work.

relation characterization compositionality decidability

conformance Chap. 4 Chap. 4 Chap. 4

b-conformance Chap. 5 Chap. 6 Chap. 5 & Chap. 6

Table 1: The structure of Part II without Chap. 7. We highlight the current chapter
with a gray background.

In this chapter, we give a fine-grained analysis of the conformance and
compositional conformance notions that we introduced in Sect. 3.1. Fig-
ure 40 illustrates how we achieve this. To this end, we provide for each
open net a certain denotational semantics: A trace-based semantics for con-
formance, to which we refer as stopdead-semantics, and a failure-based se-
mantics for compositional conformance, to which we refer as F+

fin-semantics.
Then, we show that a refinement relation based on these semantics coin-
cides with the respective conformance relation. In other words, we provide
a trace-based characterization of conformance and a failure-based character-
ization of compositional conformance. Based upon these characterizations,
we show that conformance and compositional conformance are undecidable
by reducing them to the halting problem of counter machines.

Implementation Specification

O
pe

n
Ne

ts conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
conforms to

semantics

hashas

SpecImpl

stopdead

F+
fin

stopdead

F+
fin

Figure 40: Characterizing conformance and compositional conformance using deno-
tational semantics for open nets. A solid arc illustrates the relation de-
scribed by the corresponding arc label. Dashed arcs illustrate logical im-
plication or logical equivalence, depending on their number of heads.

We characterize conformance in Sect. 4.1 and compositional conformance
in Sect. 4.2. We prove conformance and compositional conformance to be un-
decidable in Sect. 4.3 and conclude this chapter with a discussion in Sect. 4.4.

4.1 characterizing conformance 57

4.1 characterizing conformance

In this section, we aim to characterize the conformance relation between
two interface-equivalent open nets Impl and Spec. To this end, we provide
a trace-based semantics for each open net in Sect. 4.1.1. The semantics con-
sists of two sets of traces. Inclusion of the two sets of traces of Impl in the
two sets of traces of Spec defines a refinement relation that coincides with
conformance, which we show in Sect. 4.1.2. This way, we provide a trace-
based characterization of conformance. Figure 41 illustrates the content of
this section.

Implementation Specification

O
pe

n
Ne

ts conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
conforms to

semantics

hashas

SpecImpl

stopdead

F+
fin

stopdead

F+
fin

Figure 41: The content of Sect. 4.1.

4.1.1 The stopdead-semantics for open nets

The idea for a trace-based semantics characterizing conformance is to collect
complete traces of (the environment of) an open net, thereby distinguishing
between successful and unsuccessful completed traces. Our trace-based se-
mantics of an open net N is based on the so-called stop-traces and dead-traces
of N’s environment env(N). A stop-trace records a run of env(N) that ends
in a marking weakly enabling actions of I only, such that N stops unless
some input from another open net is provided. A dead-trace is a stop-trace
leading to nonfinal markings only. Our notion of a stop-trace and a dead-
trace is a weak version of two notions with the same name in [228], where
only transitions of I and no τ-transitions are allowed to be enabled. We refer
to the semantics consisting of the two sets of stop-traces and dead-traces as
stopdead-semantics.

Definition 55 [stopdead-semantics]
Let N be a labeled net. A marking m of N is a stop except for inputs if there
is no o ∈ Σout such that m o

=⇒. If additionally, there is no final marking m′

of N with m ε
=⇒ m′, then m is dead except for inputs. The stopdead-semantics

of N is defined by the two sets of traces

• stop(N) = {w | mN
w
=⇒ m and m is a stop except for inputs}, and

• dead(N) = {w | mN
w
=⇒ m and m is dead except for inputs}.

58 conformance and compositional conformance

Example 56 As a running example for this chapter, consider again the
unreliable time server S and its client C from Sect. 3.1. For convenience,
we depict them again, together with the second client C′ from Ex. 34, in
Fig. 42. The language of S is

L(S) = {w ∈ {r, t}∗ | ∀v v w : |v|t ≤ |v|r + 1}
∪ {wez | w, z ∈ {r, t}∗ ∧ ∀v v w : |v|t ≤ |v|r + 1∧ |wz|t ≤ |w|r} .

Observe that after firing e, transition r is continuously enabled in env(S)
while transition t may also fire because of pending tokens on the place to.
Every stop-trace of S either contains an e or the number of r’s is smaller
than the number of t’s; more precisely,

stop(S) = {w ∈ {r, t}∗ | |w|t = |w|r + 1∧ ∀v v w : |v|t ≤ |v|r + 1}
∪ {wez | w, z ∈ {r, t}∗ ∧ wez ∈ L(S)} .

As [] is the only final marking of S, we have

dead(S) = {w ∈ {r, t}∗ | |w|t = |w|r + 1∧ ∀v v w : |v|t ≤ |v|r + 1}
∪ {wez | w, z ∈ {r, t}∗ ∧ wez ∈ L(S) ∧ |wz|t < |wz|r} .

The trace e illustrates the difference between stop- and dead-traces of S: It
always leads to the marking [] of env(S), thus e ∈ stop(S) but e 6∈ dead(S).

For C, the marking [p3] is the only reachable stop except for inputs of
env(C). Thus, every stop-trace of C has an equal number of t’s and r’s and
does not contain an e, or at least as many t’s as e’s because of transition
recover and at least as many r’s as t’s because of transition response; more
precisely,

stop(C) = {w ∈ {r, t}∗ | |w|t = |w|r ∧ ∀v v w : |v|t ≥ |v|r}
∪ {wezr | w ∈ {r, t}∗ ∧ z ∈ {e, r, t}∗ ∧ ∀v v w : |v|t ≥ |v|r

∧|ez|e ≤ |wez|t − |w|r ∧ |wez|t ≤ |wezr|r} .

As [p3] is the only final marking of C and all stop-traces of C lead to [p3],
we have dead(C) = ∅.

The open net C′ is a modification of C—that is, transitions reset and
recover removed and [p4] instead of [p3] as the only final marking. There-
fore, we have

stop(C′) = {w ∈ {r, t}∗ | |w|t = |w|r ∧ ∀v v w : |v|t ≥ |v|r}
∪ {wez | w ∈ {r, t}∗ ∧ z ∈ {r, t, e}∗ ∧ ∀v v wz : |v|t ≥ |v|r}

dead(C′) = {w ∈ {r, t}∗ | |w|t = |w|r ∧ ∀v v w : |v|t ≥ |v|r}
∪ {wez | w ∈ {r, t}∗ ∧ z ∈ {r, t, e}∗ ∧ ∀v v wz :

|v|t ≥ |v|r ∧ (|wz|t > |wz|r ∨ |z|e ≥ 1)} .

The fact that every stop-trace of C that does not contain an e is also a
dead-trace of C′ derives from the changed final marking of C′. The trace
e illustrates the difference between the open nets C and C′: We have e 6∈
stop(C) because e always leads to a marking m such that place p4 is marked,
and, thus, m is not a stop except for inputs of C because of transition reset.
In contrast to C, we have e ∈ stop(C′) because transition reset was removed
from C′. �

4.1 characterizing conformance 59

process
r

e

t

error

send

p1p0

(a) Open net S

r response

e

t

catch

update

p2 p3

reset p4

recover

(b) Open net C

r response

e

t

catch

update

p2 p3

p4

(c) Open net C′

Figure 42: The open nets S, C, and C′ from Sect. 3.1. In addition to the figures, we
have ΩS = {[]}, ΩC = {[p3]}, and ΩC′ = {[p4]}.

The presence of stop- and dead-traces in open nets N1 and N2 is closely
related to the question whether N1 and N2 are responsive. We continue by
relating responsiveness to markings that are dead except for inputs.

Lemma 57 [responsiveness vs. dead except for inputs]
Let N1 and N2 be composable open nets such that N1 ⊕ N2 is a closed net.
Let E = env(N1)‖env(N2), and let m be a marking of N1 ⊕ N2 and m be a
marking of E such that m and m agree. Then the following hold:

1. If m is responsive, then m is not dead except for inputs.

2. If m and m strongly agree, the converse of (1) also holds.

Proof. Let C = N1 ⊕ N2 and O = (I1 ∩ O2)] (I2 ∩ O1). We have C =
env(N1 ⊕ N2) and O = O1]O2, because N1 ⊕ N2 is a closed net. Note that
only transitions in O are not τ-labeled in E.

(1) If m and m do not agree strongly, m is not even a stop except for inputs
as there exists an o ∈ O with m o−→ by Def. 25, hence m o

=⇒. So assume
that m and m agree strongly. We distinguish whether we can reach a final
marking from m or not: If there is a final marking m′ of C reachable from m,
then, according to Prop. 28(1), there is a marking m′ reachable from m in E
such that m′ and m′ agree (even strongly). Marking m′ is a final marking of
E by Prop. 28(3). Thus, m is not dead except for inputs by Def. 55. If there
is no final marking reachable from m, then, as m is responsive, we can fire
some vt in C such that t is the first transition that produces a token on some

x ∈ O, i.e., m vt−−→ m′ in C. Then it is possible to insert transitions from O

of E into v such that for the resulting v′t: m v′t−−→ m′ in E and also m′ and

m′ strongly agree by Prop. 28(1). Hence either m
y
=⇒ for one of the inserted

transitions y or m x
=⇒, and m is not a stop except for inputs (and thus not

dead except for inputs).
(2) We distinguish whether m is a stop except for inputs or not: If m is no

stop except for inputs, and does not enable any transition x ∈ O (by strong

agreement), we have m v−→ m′ t−→ m′′ in E where neither t nor any transition
in v is in O, and m′′ enables a transition x ∈ O disabled at m′. Hence, xo ∈ t•

in E and, consequently, x ∈ t• in C by Def. 17. Applying Prop. 28(2), we get
m v−→ m′ in C such that m′ and m′ agree. Thus, transition t is enabled at
m′ in C, and m is responsive. If m is a stop except for inputs, then there is

60 conformance and compositional conformance

a final marking m′ of E reachable from m. Applying Prop. 28(2), there is a
marking m′ reachable from m in C such that m′ and m′ agree. Marking m′

is a final marking of C by Prop. 28(3), proving responsiveness of m. �

Next, we relate a marking that is dead except for inputs in the parallel
composition of two environments to a marking that is dead except for inputs
in one of the involved environments.

Lemma 58 [dead except for inputs vs. stopdead-semantics]
Let N1 and N2 be composable open nets, and let E = env(N1)‖env(N2).
Let m1 and m2 be a marking of env(N1) and env(N2), respectively. Then,
m = m1 + m2 is dead except for inputs in E iff m1 is a stop except for
inputs and m2 is dead except for inputs, or vice versa.

Proof. ⇒: W.l.o.g., assume that m1 is not a stop except for inputs due to
m1

o
=⇒ with o ∈ O1. As m2 enables o ∈ I2, we get m o

=⇒ with o ∈ O1]O2 by
Prop. 23, hence m is no stop except for inputs, a contradiction. Thus, both
m1 and m2 are stops except for inputs. Assume neither m1 nor m2 are dead
except for inputs due to m′1 and m′2, respectively. Then m = m1 + m2

ε
=⇒

m′1 + m′2 by Prop. 23 and m′1 + m′2 is a final marking by Prop. 28(3). This
contradicts the assumption.
⇐: Because m1 and m2 are stops except for inputs, there is no o ∈ O1]O2

such that m1
o
=⇒ in env(N1) and m2

o
=⇒ in env(N2). Applying Prop. 23,

m1 + m2
o
=⇒ is not in E; thus, m is a stop except for inputs. W.l.o.g., assume

m2 is dead except for inputs. Whenever m ε
=⇒ m′, Prop. 23 gives us m1

ε
=⇒

m′1 and m2
ε
=⇒ m′2 where neither m′2 nor—by Prop. 28(3)—m′ = m′1 + m′2 are

final. Thus, m is dead except for inputs in E by Def. 55. �

We combine Lem. 57 and Lem. 58 and show how the stopdead-semantics
can be used to characterize responsiveness.

Proposition 59 [responsiveness vs. stopdead-semantics]
For two composable open nets N1 and N2 such that N1 ⊕ N2 is a closed
net, we have

N1 and N2 are responsive iff stop(N1) ∩ dead(N2) = ∅ and

dead(N1) ∩ stop(N2) = ∅ .

Proof. Let C = N1 ⊕ N2 and E = env(N1)‖env(N2).
⇒: Proof by contraposition. W.l.o.g., we assume a trace w ∈ stop(N1) ∩

dead(N2). Hence, menv(N1)
w
=⇒ m1 in env(N1) and menv(N2)

w
=⇒ m2 in env(N2)

such that m1 is a stop except for inputs and m2 is dead except for inputs. By
Lem. 58, m1 + m2 is dead except for inputs in E. By Prop. 28(2), a marking
m is reachable in C such that m and m1 + m2 agree, and m is not responsive
by Lem. 57.
⇐: Proof by contraposition. Assume mC

ε
=⇒ m in C such that m is not re-

sponsive. Applying Prop. 28(1), we can reach some m1 + m2 in E (with
mi a marking of Ni, i = 1, 2) such that m and m1 + m2 strongly agree,
and, by Lem. 57, m1 + m2 is dead except for inputs. By Prop. 23, we have
menv(N1)

w
=⇒ m1 in env(N1) and menv(N2)

w
=⇒ m2 in env(N2), and by Lem. 58,

m1 is a stop except for inputs and m2 is dead except for inputs, or vice versa.
Thus, w ∈ stop(N1) ∩ dead(N2) or w ∈ dead(N1) ∩ stop(N2). �

4.1 characterizing conformance 61

Example 60 For the open nets S and C in Fig. 42, their stop- and dead-
traces are given in Ex. 56. We can see that stop(S) ∩ dead(C) = ∅ because
dead(C) = ∅. In addition, we have dead(S) ∩ stop(C) = ∅: Every dead-trace
of S without an e has an unequal number of t’s and r’s, whereas every
stop-trace of C without an e has an equal number of t’s and r’s. Every
dead-trace of S with exactly one e has at most as many t’s as r’s preceding
e, whereas every stop-trace of C with exactly one e must have more t’s
than r’s preceding e. Thus, S and C are indeed responsive by Prop. 59, as
already claimed in Ex. 32.

For S and the open net C′ in Fig. 42c, we can see in Ex. 56 that stop(S) ∩
dead(C′) = ∅: Every dead-trace of C′ either is a stop-trace of C (and thus not
a stop-trace of S by the previous argumentation) or contains an e and the
number of t’s is greater than the number of r’s. In contrast, every stop-trace
of S that contains an e has at most as many t’s as r’s. In addition, we have
dead(S) ∩ stop(C′) = ∅: Every stop-trace of C′ either is a stop-trace of C
(and thus not a dead-trace of S by the previous argumentation) or contains
an e and has at least as many t’s as r’s. In contrast, every dead-trace of S
that contains an e has fewer t’s than r’s. Thus, S and C′ are responsive by
Prop. 59, as already claimed in Ex. 35. �

4.1.2 Refinement on the stopdead-semantics

In the previous section, we defined a trace-based semantics for open nets
that consists of stop-traces (i.e., successfully completed traces) and dead-
traces (i.e., unsuccessfully completed traces). Inclusion of the stop- and
dead-traces of two open nets defines a refinement relation. With the next
theorem, we prove that an open net Impl conforms to an open net Spec if
and only if every stop-trace of Impl is contained in the stop-traces of Spec
and every dead-trace of Impl is contained in the dead-traces of Spec. In other
words, we provide a trace-based characterization of conformance.

Theorem 61 [conformance and stopdead-inclusion coincide]
For two interface-equivalent open nets Impl and Spec, we have

Impl vconf Spec iff stop(Impl) ⊆ stop(Spec) and

dead(Impl) ⊆ dead(Spec) .

Proof. ⇐: Proof by contraposition. Consider an open net C such that Impl⊕
C and, equivalently, Spec⊕C are closed nets. Assume that C is not a partner
of Impl. Then Impl and C are not responsive by Def. 33, and we find a
trace w ∈ stop(Impl) ∩ dead(C) or w ∈ dead(Impl) ∩ stop(C) by Prop. 59.
Due to stop(Impl) ⊆ stop(Spec) and dead(Impl) ⊆ dead(Spec), we have w ∈
stop(Spec) ∩ dead(C) or w ∈ dead(Spec) ∩ stop(C), respectively. Again with
Prop. 59, Spec and C are not responsive; that is, C is not a partner of Spec.
⇒: The idea is to construct for a dead-trace (stop-trace) w of Impl an open

net and to show using conformance of Impl and Spec that w is also a dead-
trace (stop-trace) of Spec.

Let I be the input and O be the output places of Impl and, equivalently, of
Spec. If I = O = ∅, we have stop(Impl) = {ε} = stop(Spec). Furthermore, ei-
ther dead(Impl) = ∅ (and we are done) or dead(Impl) = {ε} and we consider
an open net C just consisting of a marked place, giving a final marking; C
is not a controller of Impl, hence not of Spec, implying dead(Spec) = {ε}.

62 conformance and compositional conformance

For the case I 6= ∅ 6= O, we consider a trace w ∈ dead(Impl). Let w =
w1 . . . wn with wj ∈ I]O, for j = 1, . . . , n, and let o ∈ I be arbitrary but
fixed. Define the open net Nw = (P, T, F, mNw , ∅, O, I) by

• P = {p0, . . . , pn},

• T = {t1, . . . , tn},

• F = {(pi, ti+1) | 0 ≤ i ≤ n− 1}
] {(ti, pi) | 1 ≤ i ≤ n}
] {(wi, ti) | 1 ≤ i ≤ n, wi ∈ O}
] {(ti, wi) | 1 ≤ i ≤ n, wi ∈ I}, and

• mNw = [p0].

We extend Nw to an open net Nw,o = (P′, T′, F′, mNw,o , Ω, O, I)—see Fig. 43—
with

• P′ = P] {p, p′}] {p′0, . . . , p′n−1},

• T′ = T] {t, t′0, . . . , t′n−1, t′′0 , . . . , t′′n−1}] {twi | wi ∈ O},

• F′ = F
] {(p′, t), (t, p′), (t, o)}
] {(p, twi) | wi ∈ O}
] {(twi , p′) | wi ∈ O}
] {(wi, twi) | wi ∈ O}
] {(pi, t′i) | 0 ≤ i ≤ n− 1}
] {(t′i, p′i) | 0 ≤ i ≤ n− 1}
] {(p′i, t′′i) | 0 ≤ i ≤ n− 1}
] {(t′′i , p′i) | 0 ≤ i ≤ n− 1}
] {(t′′i , o) | 0 ≤ i ≤ n− 1},

• mNw,o = [p0, p], and

• Ω = {[pn, p]}.

At a stop except for inputs of env(Nw,o), no transition t with o ∈ t• (in
Nw,o) is enabled or can be enabled by firing τ-labeled transitions of env(Nw,o)
by Def. 55. Hence, a marking of env(Nw,o) is a reachable stop except for
inputs if and only if it is the marking [pn, p] (1), i.e., dead(Nw,o) = ∅—keep
in mind that every a ∈ I is an output place of Nw,o.

Obviously, Impl⊕ Nw,o as well as Spec⊕ Nw,o are closed nets by construc-
tion of Nw,o. Because w ∈ stop(Nw,o) according to observation (1), Impl and
Nw,o are not responsive by Prop. 59 and choice of w. Hence, Nw,o is not
a partner of Impl and neither a partner of Spec, because Impl conforms to
Spec. Thus, Spec and Nw,o are not responsive because of Def. 33. Again
with Prop. 59 and Def. 55, there exists v ∈ (I] O)∗ with menv(Spec)

v
=⇒

m1 and menv(Nw,o)
v
=⇒ m2 such that both m1 and m2 are stops except for in-

puts, and additionally m1 or m2 is dead except for inputs. As dead(Nw,o) =
∅, m1 is dead except for inputs of env(Spec); furthermore, m2 = [pn, p].

According to observation (1), transitions t1, . . . , tn of Nw,o occur in this
order in a run σ of env(Nw,o) underlying v and, thus, there is no occurrence
of a transition t′j in σ by construction. Furthermore, no transition twi has
fired and removed the token from p. These facts imply that the Parikh
vectors of σ and the run underlying w agree: Each ti consumes a token from

4.1 characterizing conformance 63

p0

t1a

t2b

t3

t4

p5

t5

c

d

p1

p2

p3

p4

(a) Open net Nw

p0

t1a

t2b

p0'

p1'

t3

p2'

p3'
t4

t0''

p4'

p5

t5

t1''

t2''

t3''

t4''

c

d

p

ta

p'

tc

t

t0'

p1
t1'

p2
t2'

p3
t3'

p4
t4'

(b) Open net Nw,b

Figure 43: Construction of Nw and Nw,b for w = abcdc with b, d ∈ I and a, c ∈ O; we
have ΩNw,b = {[p, p5]}.

or produces a token on wi, but all interface places are empty at the end of
the traces.

In σ, each occurrence of tj with wj ∈ t•j (as output place of Nw,o, i.e., wj ∈
I) is paired with a succeeding occurrence of wj (as transition of env(Nw,o));
otherwise, transition wj would be enabled at m2 in env(Nw,o) and m2 would
not be a stop except for inputs. As transition wj is not in conflict with any
other transition of env(Nw,o), we assume that wj fires immediately after tj.
In the corresponding rearranged trace v′ of v, all wj ∈ I occur in the same
order as in w, and v′ still leads to m2.

Similarly, each occurrence of tj with wj ∈ •tj (as input place of Nw,o,
i.e., wj ∈ O) is paired with a preceding occurrence of wj (as transition of
env(Nw,o)), which can be delayed such that it occurs immediately before tj.
In the corresponding rearranged trace v′′ of v′, all wj ∈ O occur in the same
order as in w, because the runs underlying v′ and v′′ have the same Parikh
vector as the run underlying w; thus, v′′ is w.

We have transformed v into w by moving wj ∈ I backwards and wj ∈ O
forwards. This can also be done in the run underlying v in env(Spec),
because the respective transitions have an empty preset and postset, re-
spectively. Thus, menv(Spec)

w
=⇒ m1 and menv(Nw,o)

w
=⇒ m2 and therefore

w ∈ dead(Spec).
For a trace w ∈ stop(Impl), we fix some arbitrary o ∈ I and define an open

net N′w,o = (P′, T′, F′, mN′w,o
, ∅, O, I), which is identical to Nw,o except for its

empty set of final markings. Thus, w ∈ dead(N′w,o), and we succeed with an
argumentation similar to the previous one. �

64 conformance and compositional conformance

Example 62 Consider again the patched time server S′ from Sect. 3.1,
which we depict again in Fig. 44. For S′, we have

stop(S′) = {w ∈ {r, t}∗ | |w|t = |w|r + 1∧ ∀v v w : |v|t ≤ |v|r + 1}

and thus stop(S′) ⊆ stop(S) (see Ex. 56). In addition, each stop-trace of S′

reaches the nonfinal marking [p1] in S′ and in S, hence stop(S′) = dead(S′)
and dead(S′) ⊆ dead(S) (see Ex. 56). Therefore, we conclude with Thm. 61

that S′ conforms to S, as already claimed in Ex. 38. �

process
r

e

t

send

p1p0

Figure 44: The patched time server S′ from Sect. 3.1. We have ΩS′ = {[]}.

Conformance, as defined in Def. 36, does not guarantee compositionality;
that is, it is not a precongruence with respect to the open net composition
operator ⊕. We showed this in Ex. 40 using the two open nets S and S′. To
see the difference between S and S′, consider for example the trace rt. The
trace rt reaches the marking [p1, ri], [p0], [p1, to], or [eo] in env(S), and the
marking [p1, ri], [p0], or [p1, to] in env(S′). In any of the four markings of
env(S), the trace re is always possible in env(S), but re is not possible in any
of the markings in env(S′). We can generalize this observation to any trace
of env(S) that does not contain an e. In the marking reached, there is a token
on p0, p1, or eo, and the trace re is always possible. In contrast, env(S′) can
always refuse re, because env(S′) can never perform e at all. Therefore, it is
not possible to differentiate between S and S′ with something even weaker
than standard failure semantics, as introduced by Brookes et al. [50]. Our
trace-based semantics in Def. 55 is weaker than failures, but we must differ-
entiate between S and S′ to characterize compositional conformance. There-
fore, we introduce a failure-based semantics for open nets that guarantees
compositionality in the following section. Building upon this failure-based
semantics, we characterize compositional conformance.

4.2 characterizing compositional conformance

In this section, we introduce a failure-based semantics for open nets. We
show that our semantics is compositional (i.e., the semantics of a composi-
tion of two open nets can be derived from the semantics of the composed
open nets) in Sect. 4.2.1, and that it coincides with compositional confor-
mance in Sect. 4.2.2. Thus, we provide a failure-based characterization of
compositional conformance. Figure 45 illustrates the content of this section.

4.2 characterizing compositional conformance 65

Implementation Specification

O
pe

n
Ne

ts conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
conforms to

semantics

hashas

SpecImpl

stopdead

F+
fin

stopdead

F+
fin

Figure 45: The content of Sect. 4.2.

4.2.1 The F+
fin-semantics for open nets

Taking into account the counterexample showing that conformance is not
compositional in Ex. 40 and the observation that refusal information is nec-
essary to distinguish open nets in terms of conformance (see the last para-
graph of Sect. 4.1.2), we shall characterize compositional conformance in
terms of a variant of failure semantics. For this, we will not use CSP fail-
ures, as introduced by Brookes et al. [50], but Vogler’s F+-semantics [246],
which was also introduced by Voorhoeve and Mauw [250] as impossible
futures semantics. Whereas a failure in [50] is a pair (w, X) where w is a
trace of a labeled net and X is a subset of the alphabet—a refusal set—the
F+-semantics is a stronger notion, considering pairs (w, X) where X is a set
of traces x such that wx is not a trace of the net; such a pair is a tree failure.

The F+-semantics does not distinguish between final and nonfinal mark-
ings, whereas the notion of responsiveness does. In fact, this information is
needed to determine whether a marking is dead except for inputs. There-
fore, we enhance the F+-semantics: The idea is basically to add an addi-
tional ingredient to a tree failure (w, X) yielding a fintree failure (w, X, Y).
This new ingredient is a set Y, collecting traces that cannot lead the net to
a final marking—including traces that cannot be performed at all. As the
traces in X, we bind the traces in Y to a certain marking m that is reached by
executing w. Different markings m can be reached by w because of nonde-
terminism, so different sets Y may be assigned to a tree failure (w, X). This
construction ensures that we can identify all traces in dead(N).

Definition 63 [F+
fin-semantics]

The F+
fin-semantics of a labeled net N is the set of fintree failures defined as

F+
fin(N) ={(w, X, Y) ∈ Σ∗ ×P(Σ+)×P(Σ∗) | ∃m ∈ MN : mN

w
=⇒ m

∧ ∀x ∈ X : m 6 x
=⇒

∧ ∀y ∈ Y : ∀m′ : m
y
=⇒ m′ implies m′ /∈ ΩN} .

We say that after executing w, N refuses X and fin-refuses Y; the set X is
the refusal set and the set Y is the fin-refusal set of a fintree failure (w, X, Y).

Figure 46 illustrates a fintree failure (w, X, Y) of a labeled net N. A mark-
ing m is reachable with the trace w from the initial marking mN . The large
white circle illustrates the set of markings of N. The smaller gray circle il-

66 conformance and compositional conformance

lustrates the markings of N that are reachable from m. We depict a final
marking of N as a black dot. We have x ∈ X and y ∈ Y; that is, N refuses
the word x and fin-refuses the word y after the trace w. Observe that x may
be in Y as well, because it does not lead to a final marking of N either.

mN m=)w
x

y m00

m0

markings

reachable
markings

final
marking

Figure 46: An illustration of a fintree failure (w, X, Y) of a labeled net N. We have
x ∈ X and y ∈ Y.

Example 64 Consider again the open nets S and S′ in Fig. 42a and Fig. 44.
After executing the trace ε, env(S) reaches the marking [p0], [p1, to], or [eo].
In all cases, env(S) cannot refuse the set of traces r∗e: Transition r is always
enabled in env(S), and there is always a marking reachable that enables
transition e. In contrast, after executing the trace ε, env(S′) reaches either
the marking [p0] or the marking [p1, to]. In both markings, it can refuse the
set of traces r∗e because no reachable marking of env(S′) enables transition
e. The empty set ∅ is a fin-refusal set of every marking of env(S) and
env(S′). Thus, we can distinguish S and S′ by their F+

fin-semantics: We

have (ε, r∗e, ∅) 6∈ F+
fin(S) but (ε, r∗e, ∅) ∈ F+

fin(S
′), for instance.

We can also distinguish S and S′ by focusing solely on their fin-refusal
sets: After executing the trace ε reaching [p0], [p1, to], or [eo] in env(S), we
can always perform some w ∈ (tr)∗e and reach the final marking [] of
env(S). Thus, env(S) cannot fin-refuse the set (tr)∗e after ε. In contrast,
env(S′) fin-refuses the set (tr)∗e after ε because env(S′) can never perform
e. Thus, we have (ε, ∅, (tr)∗e) 6∈ F+

fin(S) but (ε, ∅, (tr)∗e) ∈ F+
fin(S

′). Com-
bining both fintree failures with the fintree failures from the paragraph
above, we also get (ε, r∗e, (tr)∗e) 6∈ F+

fin(S) but (ε, r∗e, (tr)∗e) ∈ F+
fin(S

′). �

In the remainder of this section, we show that the F+
fin-semantics of a com-

position N1 ⊕ N2 can be derived from the F+
fin-semantics of the composed

open nets N1 and N2. Therefore, we relate the operator ⊕ on open nets to
the operator ⇑ on labeled nets and use that operator ⇑ is operator ‖ followed
by hiding of common actions according to Def. 19.

As a first step, we show that if we consider the composition of two open
nets N1 and N2, then its F+

fin-semantics coincides with that of the parallel
composition of the two environments env(N1) and env(N2).

Lemma 65 [F+
fin-semantics for open net composition]

For two composable open nets N1 and N2, we have

F+
fin(env(N1 ⊕ N2)) = F+

fin(env(N1) ⇑ env(N2)) .

4.2 characterizing compositional conformance 67

Proof. This lemma follows directly from Lem. 30: If one net has a fintree
failure (w, X, Y) due to a marking m, then the other net can reach an agree-
ing marking m′ with the trace w. If a trace x ∈ X could be performed from
m′ in the second net, this would also be possible from m in the first net due
to weak bisimilarity, yielding a contradiction.

If a final marking m′1 could be reached from m′ by performing y ∈ Y,
then an agreeing m1 can be reached from m. In the second net, all merged
interface places p or their derived pi and po are empty at m′1, as they are at
m1. Hence, m1 and m′1 coincide on the common places and m1 is final. This
is a contradiction, and (w, X, Y) is also a fintree failure of the second net. �

Next, we show how to determine the F+
fin-semantics for the parallel com-

position of two labeled nets without hiding.

Lemma 66 [F+
fin-semantics for labeled net composition]

For two composable labeled nets N1 and N2, we have

F+
fin(N1‖N2) ={(w, X, Y) | ∃(wi, Xi, Yi) ∈ F+

fin(Ni) for i = 1, 2 :

w ∈ w1‖w2 ∧ ∀x ∈ X, y ∈ Y :

(x ∈ x1‖x2 implies x1 ∈ X1 ∨ x2 ∈ X2)

∧ (y ∈ y1‖y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)} .

Proof. ⊆: Let E = N1‖N2 and let (w, X, Y) be a fintree failure of E. Then
there exists a marking m with mE

w
=⇒ m according to Def. 63. Applying

Prop. 23 (only if), we find w1 and w2 such that w ∈ w1‖w2, mN1 = mE|P1

w1==⇒
m|P1 , and mN2 = mE|P2

w2==⇒ m|P2 . For i = 1, 2, put Xi = {x ∈ Σ+
i |

m|Pi 6
x

=⇒} and Yi = {y ∈ Σ∗i | ∀m′ : m|Pi

y
=⇒ m′ implies m′ /∈ Ωi} ; then,

(wi, Xi, Yi) ∈ F+
fin(Ni). Consider the implication for x ∈ X we have to show:

If x1 6∈ X1, x2 6∈ X2 and x ∈ x1‖x2, we would get m x
=⇒ by Prop. 23 (if), a

contradiction. Similarly for y ∈ Y: If y1 6∈ Y1, y2 6∈ Y2 and y ∈ y1‖y2, we

would get m|Pi

yi
=⇒ mi ∈ Ωi, i = 1, 2; this implies m

y
=⇒ m1 + m2 ∈ ΩE, a

contradiction.
⊇: Given (w, X, Y) arising from (w1, X1, Y1) ∈ F+

fin(N1) and (w2, X2, Y2) ∈
F+

fin(N2) due to m1 and m2, one finds that w is a trace of E reaching m1 + m2.
To show that each x satisfying the respective implication can be refused by
m1 + m2, assume m1 + m2

x
=⇒ by contraposition. By Prop. 23 (only if), there

are x1 and x2 with x ∈ x1‖x2, m1
x1==⇒ and m2

x2==⇒, i.e. x1 /∈ X1 ∧ x2 /∈ X2.
This justifies X, and the case of Y follows a similar argumentation. �

We now consider hiding for the F+
fin-semantics.

Lemma 67 [F+
fin-semantics under hiding]

For a labeled net N and a label set A ⊆ Σ∗, we have

F+
fin(N/A) = {(φ(w), X, Y) | (w, φ−1(X), φ−1(Y)) ∈ F+

fin(N)} .

Proof. We adapt this from the F+-semantics in [246, Theorem 3.4.2], which
is preserved under hiding for labeled nets—that is, F+(N/A) = {(φ(w), X) |
(w, φ−1(X)) ∈ F+(N)}. �

68 conformance and compositional conformance

We finally combine Lem. 65, Lem. 66, and Lem. 67 to show how the F+
fin-

semantics for the composition N1 ⊕ N2 of two open nets N1 and N2 can be
determined by the F+

fin-semantics of N1 and N2.

Proposition 68 [F+
fin-semantics for open net composition]

For two composable open nets N1 and N2, we have

F+
fin(N1 ⊕ N2) ={(w, X, Y) | ∃(wi, Xi, Yi) ∈ F+

fin(Ni) for i = 1, 2 :

w ∈ w1 ⇑ w2 ∧ ∀x ∈ X, y ∈ Y :

(x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2)

∧ (y ∈ y1 ⇑ y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)} .

Proof. Lemma 66 shows that the right part of this equation—with ‖ re-
placing ⇑—is equal to F+

fin(env(N1)‖env(N2)); then, one can hide the com-
mon actions of env(N1) and env(N2), and by Lem. 67 the right hand side is
equal to F+

fin(env(N1) ⇑ env(N2)); the latter is equal to F+
fin(env(N1⊕N2)) =

F+
fin(N1 ⊕ N2) by Lem. 65. �

4.2.2 Refinement on the F+
fin-semantics

Having introduced the F+
fin-semantics for open nets, we define a refinement

relation between two open nets based on their F+
fin-semantics, and show that

this refinement relation coincides with compositional conformance.
Like for the stopdead-semantics in Sect. 4.1.2, inclusion of the F+

fin-seman-
tics of two open nets implies a refinement relation. However, in contrast to
the stopdead-semantics, inclusion of the F+

fin-semantics is a sufficient but not
a necessary criterion for compositional conformance.

For the compositional conformance relation, the fintree failures used in
the F+

fin-semantics give too detailed information about the moment of choice

in an open net: For example, the fintree failure (ε, re, ∅) ∈ F+
fin(S

′), as used
in Ex. 64, tells us already that the trace re can be refused from the initial
marking of env(S′). We remove this information by closing up under an
ordering over fintree failures: We say a fintree failure (w, X, Y) is dominated
by a fintree failure (wx, x−1X, x−1Y) for x ∈ {ε} ∪ ↓ X ∪ ↓ Y. We then define
a relation between two interface-equivalent open nets Impl and Spec not by
inclusion of their respective F+

fin-semantics but in such a way that every
fintree failure of Impl is dominated by a fintree failure of Spec. The resulting
refinement relation vF+

fin
is an adaption of the refinement relation vF+ from

Rensink and Vogler [217], incorporating the fin-refusal sets of two fintree
failures into the definition of vF+ .

Definition 69 [F+
fin-refinement]

For two action-equivalent labeled nets Impl and Spec, Impl F+
fin-refines Spec,

denoted by Impl vF+
fin

Spec, if

∀(w, X, Y) ∈ F+
fin(Impl) :

∃x ∈ {ε} ∪ ↓ X ∪ ↓ Y : (wx, x−1X, x−1Y) ∈ F+
fin(Spec) .

4.2 characterizing compositional conformance 69

For two interface-equivalent open nets Impl and Spec, we define Impl vF+
fin

Spec, if env(Impl) vF+
fin

env(Spec).

Example 70 We have (ε, ∅, (tr)∗e) ∈ F+
fin(S

′) by Ex. 64. Assume S′

F+
fin-refines S. Then there exists an x ∈ {ε} ∪ ↓ ∅ ∪ ↓ (tr)∗e such that

(x, x−1∅, x−1(tr)∗e) ∈ F+
fin(S) according to Def. 69. By the suffix closure,

we have x = e, x ∈ (tr)∗, or x ∈ (tr)∗e. We distinguish these three cases:

• If x = e, then (e, ∅, {ε}) ∈ F+
fin(S). However, we have (e, ∅, {ε}) 6∈

F+
fin(S), because we always reach the final marking [] after trace e in

env(S).

• If x ∈ (tr)∗, then (x, ∅, (tr)∗e) ∈ F+
fin(S). However, for all x ∈ (tr)∗,

we have (x, ∅, (tr)∗e) 6∈ F+
fin(S): After x, we reach any of the mark-

ings [p0], [p1, t], or [e] in env(S), from which we can always reach the
final marking [] with trace e or tre.

• If x ∈ (tr)∗e, then (x, ∅, r(tr)∗e) ∈ F+
fin(S). However, for all x ∈ (tr)∗e,

we have (x, ∅, r(tr)∗e) 6∈ F+
fin(S): After x, we are in the marking [p1]

from which we reach the final marking [] with trace re.

Thus, S′ does not F+
fin-refine S. �

Having characterized the F+
fin-semantics for an open net composition in

Prop. 68, we shall show that F+
fin-refinement is a precongruence for the open

net composition operator ⊕. First, we show the precongruence result for
labeled nets and operator ‖. Then, we show that this result is also preserved
under hiding. Finally, we combine these results to show the precongruence
for open nets and the operator ⊕.

Our definition of F+
fin-refinement in Def. 69 is an adaption of the refine-

ment relation vF+ in [217]. The refinement relation vF+ coincides with
should (or fair) testing [196, 48, 217] as proved in [217, Theorem 36], and
should testing is a precongruence for labeled net composition [217]. There-
fore, for the first and second step, we can build upon the proof ideas intro-
duced for should testing in [217, Lemma 46], where saturation conditions
like Lem. 71(1–3) below are employed. The key idea in [217] is to shift traces
from the refusal set of Impl. We apply the same proof strategy for the X-part
of the fintree failures, which is closed under suffix by Lem. 71(3). Because
this does not hold for the Y-part, we cannot directly apply this idea here.
We overcome this problem by adding the refusal set X to the fin-refusal set
Y, thereby using the fourth of the following saturation conditions on fintree
failures.

Lemma 71(1) states that, given a fintree failure (w, X, Y), the sets X and Y
can be arbitrarily decreased and the resulting triple is again a fintree failure.
Furthermore, the refusal part of F+

fin is saturated in the sense that the sets X

and Y can be extended by any set of traces z such that (wz, z−1X, z−1Y) 6∈
F+

fin(N) by Lem. 71(2). Lemma 71(3) states that the X-part is closed under

suffix, and Lem. 71(4) shows that the refusal part of F+
fin is saturated in the

sense that the refusal set X can be added to fin-refusal set Y.

70 conformance and compositional conformance

Lemma 71 [saturation conditions]
For a labeled net N, we have

1. (w, X, Y) ∈ F+
fin(N), X′ ⊆ X, Y′ ⊆ Y implies (w, X′, Y′) ∈ F+

fin(N)

2. (w, X, Y) ∈ F+
fin(N) ∧ ∀z ∈ Z : (wz, z−1X, z−1Y) 6∈ F+

fin(N) implies

(w, X ∪ Z, Y ∪ Z) ∈ F+
fin(N)

3. (w, X, Y) ∈ F+
fin(N) implies (w, ↑ X, Y) ∈ F+

fin(N)

4. (w, X, Y) ∈ F+
fin(N) implies (w, X, X ∪Y) ∈ F+

fin(N)

Proof. Items (1), (3), and (4) are obvious by Def. 63. To see item (2), assume
that some z could be performed from the marking m justifying the fintree
failure (w, X, Y). �

We have also explored the idea to encode each w ∈ Y by wX for a new
symbol X. Then, one can add the resulting traces to X and work with
something that looks like an ordinary tree failure. The hope was that this
would allow us to use the result [217, Lemma 46] instead of its proof idea,
but we have not managed to show the necessary saturation conditions for
the domain used in [217].

With the saturation conditions in Lem. 71, we prove that F+
fin-refinement

is a precongruence for labeled nets with respect to the operator ‖.

Lemma 72
F+

fin-refinement is a precongruence for labeled nets with respect to ‖.

Proof. Let Impl and Spec be two action-equivalent labeled nets, and let la-
beled net C be composable with Spec (and therefore with Impl). Let further
Impl vF+

fin
Spec. We show that Impl‖C vF+

fin
Spec‖C, following to a large ex-

tent the proof of [217, Lemma 46]. For understandability, we also show the
full proof for the case ΣSpec = ΣC here, because in this case the projection
functions in the construction of the synchronized fintree failures become the
identity over the complete alphabet and hence disappear.

Consider a fintree failure (w, XImpl ∪ XC, YImpl ∪ YC) ∈ F+
fin(Impl‖C) such

that (w, XImpl, YImpl) ∈ F+
fin(Impl) and (w, XC, YC) ∈ F+

fin(C). Define the set

W = {v | (wv, v−1XC, v−1YC) 6∈ F+
fin(C)}

which contains those traces that can be added to XC and YC according to
Lem. 71(2). We shift the traces in W from Impl to C. To this end, we define
four sets

X′Impl = XImpl \ ↑W,

Y′Impl = YImpl \ ↑W,

X′C = XC ∪ ↑W,

Y′C = YC ∪ ↑W .

We immediately see: XImpl ∪XC ⊆ X′Impl ∪X′C, YImpl ∪YC ⊆ Y′Impl ∪Y′C, and
X′Impl ∪Y′Impl ⊆ XImpl ∪YImpl ∪XC ∪YC. We have (w, X′Impl, Y′Impl) ∈ F+

fin(Impl)

4.2 characterizing compositional conformance 71

by Lem. 71(1). Due to Impl vF+
fin

Spec, there exists x ∈ {ε} ∪ ↓ X′Impl ∪ ↓ Y′Impl
such that

(wx, x−1X′Impl, x−1Y′Impl) ∈ F+
fin(Spec) . (1)

We have x /∈ ↑W. Assume the contrary: x = ε implies ε ∈ W which is a
contradiction to the construction of W; x ∈ ↓ X′Impl implies ∃x′ ∈ X′Impl : x v
x′ ∧ ∃v ∈ W : v v x v x′ which is a contradiction to the definition of X′Impl.
The same argument also applies to x ∈ Y′Impl.

From x /∈W, it follows that (wx, x−1XC, x−1YC) ∈ F+
fin(C). Further, for all

u ∈ x−1W (i.e., xu ∈W), (wxu, u−1x−1XC, u−1x−1YC) /∈ F+
fin(C).

By Lem. 71(2), (wx, x−1(XC ∪W), x−1(YC ∪W)) ∈ F+
fin(C). Consider now

the second ingredient, x−1(XC ∪W). By Lem. 71(3), this implies the fin-
tree failure (wx, ↑ x−1(XC ∪W), x−1(YC ∪W)) ∈ F+

fin(C). With Lem. 2(3),

we have ↑ x−1(XC ∪W) ⊇ x−1(XC ∪ ↑W) = x−1X′C. Now, according to
Lem. 71(1), x−1X′C can replace x−1(XC ∪W).

Consider now the third ingredient, x−1(YC ∪W). By Lem. 71(4), we ex-
tend this set to x−1(YC ∪W) ∪ x−1X′C ⊇ x−1↑W ∪ x−1YC = x−1(↑W ∪
YC) = x−1Y′C. Now, Lem. 71(1) allows that x−1Y′C can replace x−1(YC ∪W).

Combining these results, we get (wx, x−1X′C, x−1Y′C) ∈ F+
fin(C). By Lem. 66

and (1), we obtain (wx, x−1(X′Impl ∪X′C), x−1(Y′Impl ∪Y′C)) ∈ F+
fin(Spec‖C). By

Lem. 71(1), we have (wx, x−1(XImpl ∪ XC), x−1(YImpl ∪ YC)) ∈ F+
fin(Spec‖C)

where x ∈ ({ε} ∪ ↓ X′Impl ∪ ↓ Y′Impl) ⊆ ({ε} ∪ ↓ XImpl ∪ ↓ YImpl ∪ ↓ XC ∪ ↓ YC).

Now consider the general case. Let π and πC denote projections, pro-
jecting words onto the alphabets ΣSpec = ΣImpl and ΣC, respectively. We
have

π(V ∪W) = π(V) ∪ π(W) (2)

π(↑ V) ⊆ ↑ π(V) (3)

π(w−1V) ⊆ π(w)−1π(V) (4)

Consider a fintree failure (w, XImpl∪XC, YImpl∪YC) ∈ F+
fin(Impl‖C) such that

(π(w), π(XImpl), π(YImpl)) ∈ F+
fin(Impl) and (πC(w), πC(XC), πC(YC)) ∈ F+

fin(C).
Define the set

W = {v | (πC(wv), πC(v−1XC), πC(v−1YC)) 6∈ F+
fin(C)} .

We shift the traces in W from Impl to C. To this end, we define four sets

X′Impl = XImpl \ ↑W,

Y′Impl = YImpl \ ↑W,

X′C = XC ∪ ↑W,

Y′C = YC ∪ ↑W .

We immediately see: XImpl ∪ XC ⊆ X′Impl ∪ X′C, YImpl ∪ YC ⊆ Y′Impl ∪ Y′C, and
X′Impl ∪Y′Impl ⊆ XImpl ∪YImpl ∪XC ∪YC. We have (π(w), π(X′Impl), π(Y′Impl)) ∈
F+

fin(Impl) by Lem. 71(1). Because of Impl vF+
fin

Spec, there exists an x ∈
{ε} ∪ ↓ X′Impl ∪ ↓ Y′Impl such that (π(wx), π(x)−1π(X′Impl), π(x)−1π(Y′Impl)) ∈
F+

fin(Spec). Hence, we have

(π(wx), π(x−1X′Impl), π(x−1Y′Impl)) ∈ F+
fin(Spec) (5)

72 conformance and compositional conformance

due to (4) and Lem. 71(1).
Again, trace x /∈ ↑W (by the same argumentation as in the proof of the

case ΣSpec = ΣC), and we conclude that (πC(wx), πC(x−1XC), πC(x−1YC)) ∈
F+

fin(C). Further, for all u ∈ x−1W (i.e., xu ∈ W), we have the fintree failure
(πC(wxu), πC(u−1x−1XC), πC(u−1x−1YC)) /∈ F+

fin(C) due to the definition
of W. Now, (πC(wxu), πC(u)−1πC(x−1XC), πC(u)−1πC(x−1YC)) /∈ F+

fin(C)
with (4) and Lem. 71(1), and we obtain, by (2) and Lem. 71(2),

(πC(wx), πC(x−1(XC ∪W)), πC(x−1(YC ∪W))) ∈ F+
fin(C) .

Consider the second ingredient, πC(x−1(XC ∪W)) of this fintree failure.
Applying Lem. 71(3), we obtain ↑ πC(x−1(XC ∪W)) and with Lem. 71(1)
and (3), πC(↑ x−1(XC ∪W)). Because x /∈ ↑W, we can apply Lem. 2(3) and
Lem. 71(1), and we arrive at πC(x−1(XC ∪ ↑W)) = πC(x−1X′C).

For the third ingredient πC(x−1(YC ∪W)) of this fintree failure, we obtain
by Lem. 71(4) πC(x−1(YC ∪W))∪πC(x−1X′C). By (2), we can transform this
into πC(x−1(YC ∪W ∪ X′C)) and by Lem. 71(1) into πC(x−1(YC ∪ ↑W)) =
πC(x−1Y′C).

Combining these results yields (πC(wx), πC(x−1X′C), πC(x−1Y′C)) ∈ F+
fin(C).

Then, with Lem. 66 and (5), we obtain (wx, x−1(X′Impl ∪ X′C), x−1(Y′Impl ∪
Y′C)) ∈ F+

fin(Spec‖C) .

Applying Lem. 71(1) yields that (wx, x−1(XImpl ∪ XC), x−1(YImpl ∪ YC) ∈
F+

fin(Spec‖C) where x ∈ ({ε} ∪ ↓ X′Impl ∪ ↓ Y′Impl) ⊆ ({ε} ∪ ↓ XImpl ∪ ↓ YImpl ∪
↓ XC ∪ ↓ YC). �

We already remarked in [249], that the proof of Lem. 72 is not restricted to
sets of fintree failures of labeled nets, but holds for general sets of fintree fail-
ures in labeled transition systems, for which the four saturation conditions
in Lem. 71 hold.

Lemma 73
F+

fin-refinement for labeled nets is preserved under hiding.

Proof. Let Impl and Spec be two action-equivalent labeled nets such that
Impl vF+

fin
Spec, let A ⊆ Σ∗ and (w, X, Y) ∈ F+

fin(Impl/A). Consider the

fintree failure (v, φ−1(X), φ−1(Y)) ∈ F+
fin(Impl) with w = φ(v). Because

Impl F+
fin-refines Spec, there exists an x ∈ {ε} ∪ ↓ φ−1(X) ∪ ↓ φ−1(Y) with

(vx, x−1φ−1(X), x−1φ−1(Y)) ∈ F+
fin(Spec). It can be shown that φ−1(φ(x)−1X)

= x−1φ−1(X). Using this observation together with (v, φ−1(X), φ−1(Y)) ∈
F+

fin(Impl), we conclude that (φ(vx), φ(x)−1X, φ(x)−1Y) ∈ F+
fin(Spec/A) and

also (φ(v)φ(x), φ(x)−1X, φ(x)−1Y) ∈ F+
fin(Spec/A). Because φ(v) = w and

φ(x) ∈ {ε} ∪ ↓ X ∪ ↓ Y, the lemma holds. �

Lemma 72 and Lem. 73 enable us to show the first main result of this
section: F+

fin-refinement is a precongruence for the open net composition
operator ⊕. The proof idea is to translate the operator ⊕ on open nets into
the operator ⇑ on labeled nets followed by hiding.

Theorem 74 [F+
fin-refinement is a precongruence]

F+
fin-refinement is a precongruence for open nets with respect to ⊕.

4.2 characterizing compositional conformance 73

Proof. Let Impl and Spec be two interface-equivalent open nets with Impl vF+
fin

Spec, and let C be an open net composable with both. We have to show that
Impl⊕ C vF+

fin
Spec⊕ C.

By Lem. 65, F+
fin(env(Spec⊕ C)) = F+

fin(env(Spec) ⇑ env(C)). Let A de-
note the common actions of env(Spec) and env(C). Then we can replace
operator ⇑ with operator ‖ and make the hiding explicit, which results in
F+

fin(env(Spec) ⇑ env(C)) = F+
fin((env(Spec)‖ env(C))/A) by Def. 19. Like-

wise, we derive F+
fin(env(Impl ⊕ C)) = F+

fin((env(Impl)‖env(C))/A). We
have env(Impl) vF+

fin
env(Spec) by assumption and, due to the precongru-

ence results in Lem. 72 and Lem. 73, we obtain that (env(Impl)‖env(C))/A
vF+

fin
(env(Spec)‖env(C))/A. As this only depends on the F+

fin-semantics of

the two nets, we directly have Impl⊕ C vF+
fin

Spec⊕ C with Lem. 65. �

With the next theorem, we show the second main result of this section:
F+

fin-refinement coincides with the coarsest precongruence that is contained
in the conformance relation—that is, compositional conformance.

Theorem 75 [F+
fin-refinement is the coarsest precongruence]

For two interface-equivalent open nets Impl and Spec, we have

Impl vc
conf Spec iff Impl vF+

fin
Spec .

Proof. ⇐: Consider a trace w ∈ stop(Impl) (w ∈ dead(Impl)); we prove w ∈
stop(Spec) (w ∈ dead(Spec)). Then, applying Thm. 61, we get Impl vconf Spec,
and this in turn also shows the claim with Thm. 74 and the definition of
vc

conf. So let O be the set of output places of Impl and of Spec.

We have w ∈ stop(Impl) if and only if (w, O, ∅) ∈ F+
fin(Impl) by Def. 55

and Def. 63. Then, by Impl vF+
fin

Spec, there must be a suitable x ∈ {ε} ∪
O = {ε} ∪ ↓ O that satisfies the defining condition of Def. 63. We cannot
have x ∈ O because (wx, {ε}, ∅) /∈ F+

fin(Spec) by Def. 63. Thus, x = ε

and (w, O, ∅) ∈ F+
fin(Spec), implying w ∈ stop(Spec). Analogously, we have

w ∈ dead(Impl) if and only if (w, O, {ε}) ∈ F+
fin(Impl) by Def. 55. Again,

x = ε and thus (w, O, {ε}) ∈ F+
fin(Spec), implying w ∈ dead(Spec).

⇒: Suppose Impl vc
conf Spec, and let (w, X, Y) ∈ F+

fin(Impl). In addition,
consider an open net C with the new output x and the new input y. Open
net C has the empty initial marking and contains only a single transition
that can indefinitely repeat to produce a token in x while consuming a token
from place y. In addition, its final marking is the empty marking. The idea
is to construct an open net N from (w, X, Y) such that C is not a partner
of Impl⊕ N because of (w, X, Y). By Impl vc

conf Spec and because vc
conf is a

precongruence, we have Impl⊕ N vc
conf Spec⊕ N and thus Impl⊕ N vconf

Spec ⊕ N by Def. 36. Hence, C is also not a partner of Spec⊕ N, and from
this we shall conclude that (w, X, Y) is dominated by a fintree failure in
F+

fin(Spec) according to Def. 69. Then we will have proved Impl vF+
fin

Spec.

The open net N has input places I = OImpl] {x}, output places O =
IImpl] {y}, and enables a transition sequence v = t1 . . . tk. Each transition
in v is connected to an interface place of N such that the corresponding
trace of interface actions is w; that is, the net N contains net Nw as shown

74 conformance and compositional conformance

in Fig. 43a. Thus, we can essentially fire the trace w of env(N) in Impl⊕ N
and, therefore, in Impl⊕ N ⊕ C by firing v instead of the labeled transitions.
This way, we reach in Impl a marking m that refuses X in env(Impl); in N,
there is only one token in a place pε and the token in a place p has been
consumed. This token is necessary to enable transition t′ that is—together
with transition t—essential for responsiveness, because these transitions can
repeatedly communicate with C. The place p can only be marked again by
firing some transition t′x with x ∈ X, and this in turn requires the firing of a
transition sequence that—similarly to v—looks to Impl like the trace x. But
this trace cannot be fired at m. In addition, every trace y ∈ Y that cannot
lead to a final marking in Impl leads to a final marking in the tree part of
N. This construction guarantees that there is a marking reachable in the
composition Impl⊕N⊕C which is neither communicating (because place p
is not marked and hence there is no communication between C and N) nor
reaches a final marking (because if N ⊕ C is in a final marking, then Impl is
not). As a consequence, Impl⊕ N⊕ C is not responsive and, thus, C is not a
partner of Impl⊕ N.

To achieve the effect just described, the second part of the open net N
encodes the tree part for X and Y of fintree failure (w, X, Y); this second
part is a tree representing X ∪ Y. Common prefixes thereby correspond to
the same path in this part. If a path corresponds to some y ∈ Y, a token
on the place at the end of this path is a final marking of N; if for example
b ∈ Y, then the marking with just one token on the place pb is final. For a
path corresponding to some x ∈ X, a token in the respective place allows to
mark p again. Figure 47 illustrates this construction; it is an adaptation of a
construction that is used in [246, Fig. 3.19].

p0

p1

pk-1

w1

wk

pɛ

pa pb

pabpac

px

a

b

c

⁞ ...

⁞ ⁞

...

y

t1

ta tb

tac tab

tk
t

t'

t'ac

t'ab

⁞

Figure 47: Illustration of the construction of open net N; the marking [pa] can be a
final marking of N.

Let w = w1 . . . wk such that for j = 1, . . . , k, wj ∈ IImpl]OImpl. Define the
open net N = (P, T, F, mN , Ω, O, I) by

• P = {p}
] {pi | 0 ≤ i ≤ k− 1}
] {pu | u ∈ ↓ X ∪ ↓ Y ∪ {ε}}

4.3 undecidability of conformance and compositional conformance 75

• T = {t, t′}
] {ti | 1 ≤ i ≤ k}
] {tu | u ∈ ↓ X ∪ ↓ Y ∧ u 6= ε}
] {t′z | z ∈ X}

• F = {(pi, ti+1) | 0 ≤ i ≤ k− 1}
] {(ti, pi) | 1 ≤ i ≤ k− 1}
] {(x, t), (t, p), (p, t′), (t′, y), (p, tk), (tk, pε)}
] {(pu, tua) | a ∈ IImpl]OImpl ∧ ua ∈ ↓ X ∪ ↓ Y}
] {(tu, pu) | u ∈ ↓ X ∪ ↓ Y ∧ u 6= ε}
] {(pz, t′z), (t′z, p) | z ∈ X}
] {(wi, ti) | 1 ≤ i ≤ k ∧ wi ∈ OImpl}
] {(ti, wi) | 1 ≤ i ≤ k ∧ wi ∈ IImpl}
] {(a, tua) | a ∈ OImpl ∧ ua ∈ ↓ X ∪ ↓ Y}
] {(tua, a) | a ∈ IImpl ∧ ua ∈ ↓ X ∪ ↓ Y},

• mN = [p0, p], and

• Ω = {[pz] | z ∈ Y}.
As argued previously, we now have that C is not a partner of Spec⊕ N;

that is, some marking m1 can be reached in Spec ⊕ N ⊕ C where respon-
siveness is violated. Clearly, places p, x, and y must be empty in m1; thus,
v has been fired in N plus possibly some transitions in the fintree part of
the net. There is just one token in the places of inner(N), and it is in some
pu with uu′ ∈ X (resp. uu′ ∈ Y). Let m2 be the projection of m1 onto
the places of Spec. From the point of view of Spec, we have fired a trace
wu of env(Spec) reaching m2. Because in Spec⊕ N ⊕ C no t′uu′ can become
enabled and the composition cannot reach a final marking—otherwise, C
would be a partner—no u′ can be fired in env(Spec) at m2 and a final mark-
ing is not reachable. Thus, we conclude (wu, {u′ | uu′ ∈ X}, {u′ | uu′ ∈
Y}) ∈ F+

fin(Spec) and, therefore, Impl vF+
fin

Spec. �

Example 76 We already showed in Ex. 40 that for the open nets S and S′,
S′ vc

conf S does not hold. We can now confirm this with Thm. 75, because

S′ does not F+
fin-refine S by Ex. 70. �

With Thm. 61, we have characterized the conformance relation for respon-
siveness introduced in Def. 31, and with Thm. 75 the coarsest precongruence
contained in that relation (i.e., compositional conformance). However, it
turns out that both relations are not suitable for (compositional) verification:
We show their undecidability in the following section.

4.3 undecidability of conformance and compositional con-
formance

In this section, we show conformance and compositional conformance to be
undecidable by reducing both to the halting problem of Minsky’s counter
machines [178]. For the reduction, we use the trace-based characterization
of conformance in Thm. 61 and the failure-based characterization of compo-
sitional conformance in Thm. 75. We start by introducing counter machines
and their halting problem in Sect. 4.3.1. Next, we show that conformance is
undecidable in Sect. 4.3.2 and that compositional conformance is undecid-
able in Sect. 4.3.3.

76 conformance and compositional conformance

4.3.1 Counter machines and their halting problem

We define a counter machine as in [178].

Definition 77 [counter machine]
Let m, n ∈ N+. A counter machine C with m counters c1, . . . , cm (m-counter
machine for short) is a program consisting of n commands

1 : CMD1;

2 : CMD2;

. . .

n : CMDn

where CMDn is a HALT-command and CMD1, . . . , CMDn−1 are commands
of the following two types (where 1 ≤ k, k1, k2 ≤ n, 1 ≤ j ≤ m):

type 1 : cj := cj + 1; goto k

type 2 : if cj = 0 then goto k1 else (cj := cj − 1; goto k2)

Define the set BS(C) of branching states of C as BS(C) = {i ∈ N+ |
CMDi is of type 2}.

As a running example, consider the 2-counter machine ADD in Alg. 1.
The 2-counter machine ADD consists of three commands: one of each type
and the HALT-command. It expects two given integers x1 and x2 as inputs,
and returns their sum x1 + x2 stored in the counter c2. The set of branching
states of ADD is the singleton BS(ADD) = {1}, and obviously ADD halts
on any inputs.

Input : An integer x1 stored in c1, an integer x2 stored in c2
Output : The integer x1 + x2 stored in c2

1 if c1 = 0 then goto 3 else (c1 := c1 − 1; goto 2) ;
2 c2 := c2 + 1; goto 1 ;
3 HALT
Algorithmus 1 : The 2-counter machine ADD for adding two integers
x1 and x2.

In the following, we describe a basic net consisting of three labeled net
patterns—one pattern for each CMD-type and an auxiliary notion of a “def-
initely cheating” pattern—which we use to simulate a counter machine.
These patterns are an extension of the “Jančar-Patterns” [126], which we
show in Fig. 48a—Fig. 48c. In the original patterns, every transition is la-
beled with itself. For each transition t of the original patterns, we add two
transitions and two places controlling t’s firing. In addition, we shift the
label from t to the newly introduced transitions, and label t with τ. Fig-
ure 48d—Fig. 48f illustrate the extended patterns.

Definition 78 [basic net]
Let C be an m-counter machine with n commands. The basic net net(C) of
C is a labeled net constructed as follows (assuming 1 ≤ k, k1, k2 ≤ n, 1 ≤
j ≤ m):

4.3 undecidability of conformance and compositional conformance 77

si

ti

sk cj

ti

(a) Type 1

si

tZi

sk1

cj

tNi

sk2

tN
itZ

i

(b) Type 2

si

tCi
sk1

cj

tC
i

(c) dc-pattern

si

ti

sk cj

!
uivi

vi
ui'vi'

vi'

(d) Type 1

si

tZi

sk1

cj

!
yizi

zi

tNi !
mi ni

ni

sk2

yi'

mi'

zi'

ni'
zi'

ni'

(e) Type 2

si

tCi
sk1

cj

!
yi

yi'

(f) dc-pattern

Figure 48: The “Jančar-Patterns” as introduced by Jančar [126] (first row), and the
extended patterns for the constructions of net(C) in Def. 78 (second row).

1. Let c1, . . . , cm (the counter part) and s1, . . . , sn (the state part) be
places of net(C).

2. For i = 1, . . . , n− 1 add new transitions and arcs depending on the
type of the command CMDi:

type 1 : cj := cj + 1; goto k
Add places ui,u′i, transitions ti,vi,v′i, and arcs (vi, ui), (ui, ti),
(ti, u′i), (u

′
i, v′i), (si, ti), (ti, sk), and (ti, cj). For the labeling, we

set l(vi) = vi, l(v′i) = v′i, and l(ti) = τ.

type 2 : if cj = 0 then goto k1 else (cj := cj − 1; goto k2)

Add places yi, y′i, mi, m′i, transitions tZ
i , zi, z′i (to simulate the case

in which counter cj is zero) and tN
i , ni, n′i (to simulate the case in

which counter cj is not empty), and arcs (zi, yi), (yi, tZ
i), (t

Z
i , y′i),

(y′i, z′i), (ni, mi), (mi, tN
i), (tN

i , m′i), (m′i, n′i), (si, tZ
i), (tZ

i , sk1),
(si, tN

i), (cj, tN
i), and (tN

i , sk2). For the labeling, we set l(zi) = zi,
l(z′i) = z′i, l(ni) = ni, l(n′i) = n′i, and l(tZ

i) = l(tN
i) = τ.

3. Let the initial marking put just one token on s1, and let ∅ be the set
of final markings of net(C).

4. Let every unprimed transition label of net(C) (other than τ) be an
input action, and let every primed transition label of net(C) be an
output action.

Adding a dc-pattern (dc for “definitely cheating”) to net(C) for i ∈
BS(C) means adding a τ-labeled transition tC

i (a dc-transition) and arcs
(yi, tC

i), (t
C
i , y′i), (si, tC

i), (t
C
i , sk1), (cj, tC

i), (t
C
i , cj). (Note that tC

i is a copy of
tZ
i with additional arcs to/from cj.)

For the 2-counter machine ADD from Alg. 1, Fig. 49a depicts the basic
net net(ADD). The first command CMD1 of ADD is of type 2; it’s pattern
consists of the transitions tN

1 , tZ
1 , n1, n′1, z1, z′1 and we highlighted it in

Fig. 49b. The second command CMD2 of ADD is of type 1; it’s pattern
consists of the transitions t2, v2, v′2 and we highlighted it in Fig. 49c. The
counters c1 and c2 are modeled by the places c1 and c2, and the current state

78 conformance and compositional conformance

of ADD is modeled by marking one of the places s1, s2, s3. The input actions
of net(ADD) are {n1, z1, v2}, and the output actions are {n′1, z′1, v′2}.

s1

tZ1

y1

z1

c1

s3

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(a) Labeled net net(ADD)

s1

tZ1

y1

z1

c1

s3

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(b) Highlighted pattern for CMD1

s1

tZ1

y1

z1

c1

s3

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

(c) Highlighted pattern for CMD2

Figure 49: The basic net net(ADD) of the 2-counter machine ADD from Alg. 1 with
the highlighted patterns for CMD1 (which is of type 2) and CMD2 (which
is of type 1).

For any counter machine C with counters c1, . . . , cm and for any input
values x1, . . . , xm, we can “simulate” C with net(C) by adding xj tokens to
the initial marking of place cj (1 ≤ j ≤ m). However, it is possible to “cheat”
in the pattern of type 2 (see Fig. 48e): By cheating we mean that transition tZ

i
fires although the respective place cj is not empty. Also note that firing a dc-
transition has the same effect as firing the respective transition tZ

i transition
in terms of the state of C; that is, shifting a token from place si to place sk1 .

The construction of net(C) applies to any m-counter machine, but we will
consider a 2-counter machine C in the following, because already for two
counters the halting problem is undecidable [178].

Theorem 79 [halting problem [178]]
It is undecidable whether a given 2-counter machine halts on given inputs.

We proceed by reducing conformance to the halting problem of 2-counter
machines.

4.3 undecidability of conformance and compositional conformance 79

4.3.2 Conformance is undecidable

The following lemma relates the halting problem of 2-counter machines to
the inclusion of the sets of stop-traces of two constructed labeled nets. We
follow the proof strategy from [126]: For a 2-counter machine C and given
input values x1 and x2, we construct two labeled nets N1 and N2 which are
modifications of net(C) simulating C. The construction of N1 and N2 en-
sures that the only way to exhibit the noninclusion is to simulate C without
cheating and to terminate—which is possible if and only if C halts for x1
and x2.

Lemma 80 [halting problem vs. stop-inclusion]
Let C be a 2-counter machine and x1, x2 ∈ N. We can construct two action-
equivalent labeled nets N1 and N2 (as modifications of net(C)) such that
the following conditions are equivalent:

1. C does not halt for the given inputs x1 and x2.

2. N1 and N2 are bisimilar.

3. stop(N1) ⊆ stop(N2).

Proof. We construct N1 and N2 from net(C) and the input values x1 and x2
in four steps:

1. Take net(C) and extend its initial marking by x1 tokens in c1 and x2
tokens in c2.

2. Add places p, p′, o, e, transitions tp, tp′ , q, te, f , and arcs (p, tp), (tp, p),
(p′, tp′), (tp′ , p′), (tp, o), (t′p, o), (o, q), (p, te), (sn, te), (te, e), and (e, f).
Label the transitions tp, tp′ , and te with τ, transition q with the output
action q, and transition f with the output action f . Figure 50a sketches
step one and step two for ADD with inputs x1 := 1 and x2 := 1, and
Fig. 50b highlights the difference to the labeled net net(ADD) from
Fig. 49a.

3. For each branching state i ∈ BS(C) that checks counter cj, add two dc-

patterns: the τ-labeled transitions tC
i , tC

i
′, and the arcs (si, tC

i), (si, tC
i
′
),

(tC
i , sk1), (t

C
i
′, sk1), (yi, tC

i), (yi, tC
i
′
), (tC

i , y′i), (t
C
i
′, y′i) (i.e, detecting cheat-

ing on the zero-branch), (cj, tC
i), (t

C
i , cj), (cj, tC

i
′
), (tC

i
′, cj) (i.e., cheating

means cj is not empty), and (p, tC
i), (t

C
i , p′), (p′, tC

i
′
), (tC

i
′, p) (i.e., detect-

ing cheating means switching the token between p and p′). Figure 51a
sketches this step for ADD and BS(ADD) = {1}. We highlighted the
first dc-pattern in Fig. 51b. The second dc-pattern is identical to the
first dc-pattern except that it consumes a token from p′ and produces
a token on p.

4. Take two copies of the arising net. In one copy, put one token in p
yielding the labeled net N1. In the other, put one token in p′ yielding
the labeled net N2. Figure 52a and Fig. 52b indicate this for ADD, if
we ignore the dashed frame.

In every reachable marking, the places p and p′ together hold at most one
token. As long as any of the places p, p′, and o is marked, the corresponding
marking is not a stop except for inputs: The transition q is labeled with an

80 conformance and compositional conformance

s1

p'

tZ1

y1

z1

p

c1

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(a) Step one and step two

s1

p'

tZ1

y1

z1

p

c1

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(b) Difference to net(ADD) from Fig. 49a

Figure 50: Step one and step two of the auxiliary constructions for Lem. 80 and the
2-counter machine ADD.

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(a) Step three

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(b) Highlighted dc-pattern

Figure 51: Step three of the auxiliary constructions for Lem. 80 and the 2-counter
machine ADD.

output action and may fire. Thus, the only way to reach a stop except for
inputs is to empty the place o by firing q, and to have one token on p and
fire te and f .

(1) implies (2): Assume C does not halt for inputs x1 and x2. Let D
be the set of all pairs (m, m) of equal markings m of N1 and N2. Let M
be the set of all pairs (m1, m2) such that m1 and m2 are reachable by the
same correct run in N1 and N2, respectively. A run is correct if it simulates
C without cheating—that is, no dc-transition fires, and transition tZ

i (for
i ∈ BS(C)) fires only if the respective place cj is empty. We show that D]M
is a bisimulation; thus, N1 and N2 are bisimilar as (mN1 , mN2) ∈ M by the
construction of N1 and N2.

So consider a pair (m1, m2) ∈ M. As m1 and m2 is reached by the same
correct run σ in N1 and N2, respectively, m1 and m2 differ only in the places p

4.3 undecidability of conformance and compositional conformance 81

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(a) N1

s1

p'

tZ1

y1

z1

p

c1 tC1

tC1'

s3

tp' ! tp !
e

ff
te

!

s2tN1

m1

m1'

y1'

n1n1

n1'

z1'

n1'

z1

z1'

c2

!

!

!

!
t2

u2

u2'

v2

v2'

v2

v2'

!

o

qq

(b) N2

Figure 52: The labeled nets N1 and N2 (ignoring the dashed frame) for Lem. 80 and
the open nets open(N1) and open(N2) (ignoring all transitions outside the
dashed frame) for Thm. 81 and the 2-counter machine ADD from Alg. 1.

and p′, w.l.o.g., we have m1(p) = 1, m1(p′) = 0, and m2(p) = 0, m2(p′) = 1.
Thus, every transition, except te and the dc-transitions, is enabled at m1 in
N1 if and only if is enabled at m2 in N2. Transition te is never enabled,
because σ is a correct run, and C does not halt by assumption (i.e., place sn
is never marked). We distinguish two cases:

1. The firing of any transition besides tZ
i , tC

i , and tC
i
′ (for i ∈ BS(C)) at

m1 in N1 can be simulated by the firing of the same transition at m2 in
N2, and vice versa. The respective firings lead again to a marking pair
in M.

2. If cheating is possible in N1 at m1 and N1 fires tZ
i , tC

i , or tC
i
′ with i ∈

BS(C) when the respective place cj is not empty, then one transition

out of the set {tZ
i , tC

i , tC
i
′} can fire in N2 such that both nets have the

same marking m (and thus (m, m) ∈ D) afterward. In detail: If m1
tZ
i−−→

m in N1, then m2
tC
i
′

−−→ m in N2; if m1
tC
i−−→ m in N1, then m2

tZ
i−−→ m

in N2. The same argument applies if cheating is possible in N2: If

m2
tZ
i−−→ m in N2, then m1

tC
i−−→ m in N1; if m2

tC
i
′

−−→ m in N2, then

m1
tZ
i−−→ m in N1.

If N1 and N2 have the same marking (i.e., we have a pair in D), then each
can simulate the other by firing the same transition, remaining in D. Thus,
D]M is a bisimulation.

(2) implies (3): trivial
(3) implies (1): By contraposition, assume C halts for inputs x1 and x2.

Then, we construct a run mN1

σ−→ m in N1 such that σ simulates C correctly
(i.e., without cheating) and m(sn) = 1 (i.e., C reaches the HALT command):
For each command CMDi that C performs, we add three transitions to σ. If
i /∈ BS(C), we add vitiv′i to σ. If i ∈ BS(C), we add zitZ

i z′i (if the respective
counter is zero) or nitN

i n′i (otherwise) to σ. Now the trace w corresponding
to the run σte f is a stop-trace of N1, i.e., w ∈ stop(N1).

82 conformance and compositional conformance

To perform the same trace in N2, there is no choice but to perform the
same run σ (except for possibly firing tp or t′p in-between): For example, to
perform action vi one has to fire transition vi, and to perform action v′i then
one has to fire transitions tiv′i. Observe that one cannot fire tC

i z′i or t′Ci z′i to
perform action z′i because the firing of tZ

i is correct at this stage and, thus,
the respective counter (and the corresponding place) is empty. However,
after σ the transition te is not enabled in N2, because p is not marked. Thus,
w 6∈ L(N2), which implies w 6∈ stop(N2). �

The respective set of final markings of the two labeled nets that we con-
structed in the proof of Lem. 80 is empty. In the following theorem—the
main result of this section—we reduce conformance to the halting problem
of a 2-counter machine with Lem. 80, thereby exploiting that the sets of
stop- and dead-traces coincide for labeled nets with an empty set of final
markings.

Theorem 81 [undecidability of conformance]
For two interface-equivalent open nets Impl and Spec, Impl vconf Spec is
undecidable.

Proof. Let C be a 2-counter machine with input values x1 and x2. We con-
struct two interface-equivalent open nets open(N1) and open(N2) from the
labeled nets N1 and N2 from Lem. 80 by removing all transitions t that are
not τ-labeled, and interpreting t’s preset (postset) as output (input) place.
Figure 52a and Fig. 52b illustrate open(N1) and open(N2) for ADD, if we ig-
nore all transitions outside the dashed frame and the adjacent arcs. Clearly,
stop(open(N1)) = stop(N1) and stop(open(N2)) = stop(N2). As open(N1) and
open(N2) have the empty set of final markings, we have stop(open(N1)) =
dead(open(N1)) and stop(open(N2)) = dead(open(N2)). Now assume that con-
formance is decidable. Then open(N1) conforms to open(N2) if and only if
stop(open(N1)) ⊆ stop(open(N2)) by Thm. 61 if and only if C does not halt
for the given inputs x1 and x2 by Lem. 80. Thus, we can decide the halt-
ing problem for 2-counter machines, which is a contradiction to Thm. 79.
Therefore, conformance is undecidable. �

4.3.3 Compositional conformance is undecidable

In this section, we show that also the coarsest precongruence that is con-
tained in the conformance relation (i.e., compositional conformance) is un-
decidable. Here, it is essential that compositional conformance can be char-
acterized using a modification F+

fin of the F+-semantics [246, 217], as shown
in Thm. 75. With this, it is not difficult to prove the following lemma based
on the construction of two labeled nets in the proof of Lem. 80.

Lemma 82 [halting problem vs. compositional conformance]
Let C be a 2-counter machine and x1, x2 ∈ N. We can construct two action-
equivalent labeled nets N1 and N2 (as modifications of net(C)) such that

C does not halt for the given inputs x1 and x2 iff N1 vc
conf N2 .

Proof. We construct the labeled nets N1 and N2 as in the proof of Lem. 80.
⇒: N1 and N2 have no final markings by Lem. 80. Thus, for i ∈ {1, 2}

and any set Y ⊆ Σ∗i , (w, X, Y) ∈ F+
fin(Ni) if and only if (w, X, ∅) ∈ F+

fin(Ni).

4.4 conclusions 83

In other words, the Y set of any fintree failure of Ni is arbitrary. As N1
and N2 are bisimilar, we have (w, X, ∅) ∈ F+

fin(N1) if and only if (w, X, ∅) ∈
F+

fin(N2). As the Y sets are arbitrary, we conclude that N1 vF+
fin

N2 by Def. 69

and N1 vc
conf N2 by Thm. 75.

⇐: Let w ∈ L(N1). Then (w, ∅, ∅) ∈ F+
fin(N1) by Def. 63, thus (w, ∅, ∅) ∈

F+
fin(N2) by assumption, Thm. 75, and Def. 69. Therefore, w ∈ L(N2) by

Def. 63. If C halts for the inputs x1 and x2, then L(N1) 6⊆ L(N2) as shown in
the proof of Lem. 80. By contraposition, we conclude that C does not halt
for the inputs x1 and x2. �

With Lem. 82, we immediately conclude the undecidability of compo-
sitional conformance from Thm. 79 with an argument as in the proof of
Thm. 81.

Theorem 83 [undecidability of compositional conformance]
For two interface-equivalent open nets Impl and Spec, Impl vc

conf Spec is
undecidable.

4.4 conclusions

In Sect. 3.1, we formalized responsiveness as a fundamental behavioral cor-
rectness criterion for open nets. Responsiveness induces a preorder based
on partner inclusion—that is, the conformance relation.

We provided open nets with the stopdead-semantics, which is a weak ver-
sion of the semantics with the same name in [228], and showed that set-
wise inclusion of the stopdead-semantics characterizes conformance. In ad-
dition, we detailed that compositional conformance cannot be characterized
with the stopdead-semantics or, in general, a denotational semantics weaker
than standard failures semantics. Therefore, we provided open nets with
the F+

fin-semantics, which is an extension of Vogler’s F+-semantics [246].

Refinement on the F+
fin-semantics characterizes compositional conformance.

Based on the characterizations of conformance and compositional confor-
mance, we showed that both relations are undecidable. Our proofs worked
by reduction to the halting problem of 2-counter machines using a variation
of the “Jančar-Patterns” [126].

5b - C O N F O R M A N C E

This chapter is based on results published in [192, 248, 249].

In the previous chapter, we characterized conformance and analyzed it
for compositionality and decidability. It turned out that conformance

is not compositional. Thus, we also characterized the coarsest precongru-
ence that is contained in the conformance relation—that is, compositional
conformance. We showed that both conformance and compositional con-
formance are undecidable and, thus, not applicable for the verification of
open systems. As conformance and compositional conformance turn out to
be undecidable, we further explore the notion of b-responsiveness that we
already introduced in Sect. 3.2: We require the composition of two open
nets to be responsive and, additionally, to be b-bounded, where b denotes a
bound (see Conv. 3). The relation b-conformance is the conformance relation
that corresponds to b-responsiveness. In this chapter, we give a fine-grained
analysis of b-conformance. Table 2 illustrates how this chapter fits into the
structure of Part II, if we leave out Chap. 7.

relation characterization compositionality decidability

conformance Chap. 4 Chap. 4 Chap. 4

b-conformance Chap. 5 Chap. 6 Chap. 5 & Chap. 6

Table 2: The structure of Part II without Chap. 7. We highlight the current chapter
with a gray background.

The highlighted part of Fig. 53 illustrates how we analyze b-conformance.
To this end, we provide a denotational semantics for open nets, thereby ex-
tending the stopdead-semantics from Chap. 4 for b-conformance to the b-cov-
erable stopdead-semantics. Then, we show that a refinement relation based
on the b-coverable stopdead-semantics coincides with b-conformance. Based
on that characterization of b-conformance, we show that b-conformance is
decidable: We represent the trace sets of the b-coverable stopdead-semantics
by an LTS. A bisimulation relation between two LTS then decides b-confor-
mance. In addition, we develop a finite characterization of all b-partners and
of all b-conforming open nets for a given open net. These finite characteriza-
tions also serve as alternative decision procedures for b-responsiveness and
for b-conformance.

This chapter is structured as follows: We characterize b-conformance in
Sect. 5.1 and provide a decision procedure in Sect. 5.2. We elaborate an
alternative decision procedure in Sect. 5.3 and show how to characterize all
b-conforming open nets. We implemented both decision procedures and
present the implementation in Sect. 5.4. Section 5.5 concludes this chapter.

5.1 characterizing b-conformance

In this section, we characterize the b-conformance relation between two
interface-equivalent open nets Impl and Spec. To this end, we provide each

85

86 b-conformance

Implementation Specification

O
pe

n
Ne

ts -conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
-conforms to

semantics

hashas

SpecImpl

stopdead stopdead

F+
b,fin

b

b

F+
b,fin

-coverable -coverableb b

Chap. 5

Figure 53: Characterizing b-conformance using a denotational semantics for open
nets. A solid arc illustrates the relation described by the corresponding
arc label. Dashed arcs illustrate logical implication or logical equivalence,
depending on their number of heads.

open net with a trace-based semantics—this time, four sets of traces. Inclu-
sion of the four sets of traces of Impl in the four sets of traces of Spec defines
a refinement relation that coincides with b-conformance. In other words, we
provide a trace-based characterization of b-conformance.

5.1.1 The b-bounded stopdead-semantics for open nets

Our trace-based semantics for b-responsiveness of an open net N extends
the stopdead-semantics of Def. 55 by information about possible bound vio-
lations of N. A bound violation is a marking that is not b-bounded, and we
investigate the traces leading to such a bound violation, called strict boundb-
violators. A bound violation is regarded as catastrophic because it cannot be
corrected. Thus, the behavior after a bound violation does not matter, and
we will hide all possible differences by treating all strict boundb-violators
and their continuations in the same way. Technically, we achieve the hid-
ing by including all continuations of strict boundb-violators in a set boundb,
the set of boundb-violators. For the same reason, boundb is contained in the
other three components of our b-bounded stopdead-semantics: The language
of N, and the sets of stop-traces and dead-traces from the stopdead-semantics
in Def. 55. This technique is called flooding in [103].

Definition 84 [b-bounded stopdead-semantics]
Let N be a labeled net. A trace w is a strict boundb-violator of N if there exists
a marking m with mN

w
=⇒ m that is not b-bounded. Every continuation of

a strict boundb-violator is a boundb-violator of N. The b-bounded stopdead-
semantics of N is defined by the following four sets of traces

• boundb(N) = {w ∈ (I]O)∗ | w is a boundb-violator of N},

• Lb(N) = L(N) ∪ boundb(N),

• stopb(N) = stop(N) ∪ boundb(N), and

• deadb(N) = dead(N) ∪ boundb(N).

5.1 characterizing b-conformance 87

Example 85 As a running example for this chapter, consider again the
database D and its user U from Sect. 3.2. For convenience, we depict them
again in Fig. 54. Observe that after firing shutdown in env(D), transitions
process and retrieve are never enabled while there may be still pending
tokens on the places qi and do. In addition, the transitions shutdown and
forward may fire at most once in env(D). Therefore, the language of D is

L(D) = {w ∈ {s, q, d}∗ | ∀v v w : |v|d ≤ |v|q}
∪ {w f z | w, z ∈ {s, q, d}∗ ∧ ∀v v w : |v|d ≤ |v|q

∧|w|s > 0∧ |z|d ≤ |w|q − |w|d} .

To respect bound 1, after producing a first token on qi (si), env(D) may
produce a “second” token on qi (si) only after the firing of transition process
(shutdown); that is, the first token on qi (si) is consumed and qi (si) is empty
again. Otherwise, the place qi (si) may hold two tokens, which violates
bound 1. The bound1-violators of D are

bound1(D) = ↑ {w ∈ L(D) | ∃v v w : |v|d + 1 < |v|q}
∪ ↑ {w ∈ L(D) | ∃v v w : |v| f + 1 < |v|s} .

Every stop-trace of D either contains an f or does not contain an s and the
number of d’s equals the number of q’s; more precisely,

stop(D) = {w ∈ {q, d}∗ | ∀v v w : |v|d ≤ |v|q ∧ |w|d = |w|q}
∪ {w f z | w, z ∈ {s, q, d}∗ ∧ ∀v v w : |v|d ≤ |v|q

∧|w|s > 0∧ |z|d ≤ |w|q − |w|d} .

As [p0] is the only final marking of D, we have dead(D) = stop(D).
The language of U is

L(U) ={w ∈ {q, d, f }∗ | ∀v v w : |v|d + 1 ≥ |v|q} .

Observe that we can only consume a token from the place di after pro-
ducing a token on the place qo in env(U). In addition, the places qo, di

and f i are unbounded in env(U), and a token on f i cannot be removed
by any transition. To violate bound 1, it suffices to produce more tokens
on di than has been consumed from qo; for example, even the trace d of
env(U) leads to the marking [p3, qo, qo] that violates bound 1. Therefore,
the bound1-violators of U are

bound1(U) = ↑ {w ∈ L(U) | ∃v v w : |v|d > |v|q}
∪ ↑ {w ∈ L(U) | |w| f > 1} .

The markings [p3] and [p3, f i] are the only stops except for inputs of env(U)
that are reachable without violating bound 1. Therefore, in every stop-trace
of U, the number of q’s equals the number of d’s plus 1 (because transition
query is enabled at the initial marking of env(U)); more precisely,

stop(U) = {w ∈ {q, d, f }∗ | ∀v v w : |v|d + 1 ≥ |v|q ∧ |w|d + 1 = |w|q} .

Because the only final marking [] is not reachable in env(U), we have
dead(U) = stop(U). �

88 b-conformance

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

(a) Open net D

d
analyze

s

q

query

p3 p4

f

(b) Open net U

Figure 54: The open nets D and U from Sect. 3.2. In addition to the figures, we have
ΩD = {[p0]} and ΩU = {[]}.

The set of boundb-violators and the flooded language Lb is already part
of the b-bounded stopdead-semantics for deadlock freedom [227, 228]. There-
fore, we recall how these sets are calculated for a composition of two labeled
nets and a composition of two open nets.

Proposition 86 [boundb and Lb of composition]
For two composable labeled nets N1 and N2, we have

1. boundb(N1‖N2) = ↑
(
boundb(N1)‖Lb(N2)

)
∪ ↑

(
Lb(N1)‖boundb(N2)

)
,

2. Lb(N1‖N2) =
(
Lb(N1)‖Lb(N2)

)
∪ boundb(N1‖N2), and

for two composable open nets N1 and N2, we have

3. boundb(N1 ⊕ N2) = ↑
(
boundb(N1) ⇑ Lb(N2)

)
∪ ↑

(
Lb(N1) ⇑ boundb(N2)

)
,

4. Lb(N1 ⊕ N2) =
(
Lb(N1) ⇑ Lb(N2)

)
∪ boundb(N1 ⊕ N2) .

Proof. The first equation has already been proved for b = 1 in [246, Theo-
rem 3.3.3]; we can use the same considerations to show that this result can
be generalized to an arbitrary bound b ∈ N+. The second equation follows
directly from the first equation and [246, Theorem 3.1.7(4)]. The third and
the forth equation have already been proved in [228, Theorem 30]. �

The trace ε is the only trace of a closed net by Def. 17. Thus, the ques-
tion whether ε is a boundb-violator is equal to the question whether the
closed net is b-bounded. In other words, a closed net N is b-bounded if and
only if boundb(N) = ∅; otherwise—that is, N is not b-bounded—we have
boundb(N) = {ε}. Therefore, we directly conclude the following corollary
from Prop. 86.

Corollary 87 [b-boundedness vs. boundb and Lb intersection]
For two composable open nets N1 and N2 such that N1 ⊕ N2 is a closed
net, we have

N1 ⊕ N2 is b-bounded iff boundb(N1) ∩ Lb(N2) = ∅ and

Lb(N1) ∩ boundb(N2) = ∅ .

5.1 characterizing b-conformance 89

An open net C is a b-partner of an open net N if and only if C is a partner
of N and N ⊕ C is b-bounded. As we already remarked before Cor. 87, the
composition N ⊕ C of two composable open nets N and C is b-bounded if
and only if boundb(N⊕C) = ∅. Thus, we combine Cor. 87 with Prop. 59 for
the following characterization of b-responsiveness.

Proposition 88 [b-responsiveness vs. b-bounded stopdead-semantics]
For two composable open nets N1 and N2 such that N1 ⊕ N2 is a closed
net, we have

N1 and N2 are b-responsive iff boundb(N1) ∩ Lb(N2) = ∅ and

Lb(N1) ∩ boundb(N2) = ∅ and

stopb(N1) ∩ deadb(N2) = ∅ and

deadb(N1) ∩ stopb(N2) = ∅ .

Proof. ⇒: N1 ⊕ N2 is b-bounded by Def. 41, thus boundb(N1 ⊕ N2) = ∅ by
Def. 84. Therefore, boundb(N1) ∩ Lb(N2) = ∅ and Lb(N1) ∩ boundb(N2) = ∅
by Cor. 87. In addition, N1 ⊕ N2 is responsive by Def. 41, thus stop(N1) ∩
dead(N2) = ∅ and dead(N1) ∩ stop(N2) = ∅ by Prop. 59. We already have
boundb(N1)∩ boundb(N2) = ∅ by the first intersection of the right-hand side,
thus stopb(N1) ∩ deadb(N2) = ∅ and deadb(N1) ∩ stopb(N2) = ∅ by Def. 84.
⇐: N1 ⊕ N2 is b-bounded by the first two equations and Cor. 87 and

responsive by the last two equations and Prop. 59. Thus, N1 and N2 are b-
responsive by Def. 41. �

Example 89 Consider again the open net D in Fig. 54a and the open net
U in Fig. 54b. By Ex. 85, we have bound1(D) ∩ L1(U) = ∅, L1(D) ∩
bound1(U) = ∅, stop1(D) ∩ dead1(U) = ∅, and dead1(D) ∩ stop1(U) = ∅.
Thus, U is a 1-partner (and, therefore, a b-partner for all b ∈ N+) of D by
Prop. 88, which we already claimed in Ex. 45.

Now consider the second database user U′ from Sect. 3.2, which we
depict again in Fig. 55. The open net U′ is a modification of U—that
is, transition quit has been added. Observe that we can only consume a
token from the place di after producing a token on the place qo in env(U′).
Therefore, the language of U′ is

L(U′) = {w ∈ {q, d, f }∗ | ∀v v w : |v|d + 1 ≥ |v|q}
∪ {wsz | w, z ∈ {q, d, f }∗ ∧ ∀v v w : |v|d + 1 ≥ |v|q

∧|w|d ≥ |w|q ∧ |z|q ≤ |w|d − |w|q} .

The places qo, di, and f i are unbounded in env(U′) and a token on the
place f i cannot be removed by any transition. Like for the open net U,
it suffices to produce more tokens on di than has been consumed from
qo or more than one token on f i to violate the bound 1. Therefore, the
bound1-violators of U′ are

bound1(U′) = ↑ {w ∈ L(U′) | ∃v v w : |v|d > |v|q}
∪ ↑ {w ∈ L(U′) | |w| f > 1} .

90 b-conformance

In every stop-trace of U′, there exists an s, or the number of d’s is smaller
than the number of q’s because of transition query; more precisely,

stop(U′) = {w ∈ {q, d, f }∗ | ∀v v w : |v|d + 1 ≥ |v|q ∧ |w|d + 1 = |w|q}
∪ {wsz | w, z ∈ {q, d, f }∗ ∧ ∀v v w : |v|d + 1 ≥ |v|q

∧|w|d ≥ |w|q ∧ |z|q ≤ |w|d − |w|q} .

The only final marking [] of env(U) is reachable. Therefore, the set dead(U′)
is a strict subset of stop(U′), and we have

dead(U′) = {w ∈ {q, d, f }∗ | ∀v v w : |v|d + 1 ≥ |v|q ∧ |w|d + 1 = |w|q}
∪ {wsz | w, z ∈ {q, d, f }∗ ∧ ∀v v w : |v|d + 1 ≥ |v|q

∧|w|d ≥ |w|q ∧ |z|q ≤ |w|d − |w|q}
∧|wz|d > |wz|q} .

Comparing the b-bounded stopdead-semantics of U′ and of D (see Ex. 85),
we find a trace sf ∈ stop(U′) ∩ dead(D), which implies sf ∈ stopb(U

′) ∩
deadb(D) for any bound b. Thus, U′ is not a b-partner of D by Prop. 88,
which justifies our claim in Ex. 45. �

d
analyze

s

q

query

p3 p4

f

quit

Figure 55: The second database user U′ from Sect. 3.2. We have ΩU′ = { []}.

Similar to the inclusion of the stopdead-semantics, inclusion of the b-bounded
stopdead-semantics defines a refinement relation. However, inclusion of the
stopdead-semantics coincides with conformance (see Thm. 61), but inclusion
of the b-bounded stopdead-semantics gives only a necessary but not a suffi-
cient condition for b-conformance.

Theorem 90 [b-bounded stopdead-inclusion implies b-conformance]
For two interface-equivalent open nets Impl and Spec, we have

boundb(Impl) ⊆ boundb(Spec) implies Impl vb, conf Spec .

and Lb(Impl) ⊆ Lb(Spec)

and stopb(Impl) ⊆ stopb(Spec)

and deadb(Impl) ⊆ deadb(Spec)

Proof. Proof by contraposition. Consider an open net C such that Impl⊕ C
and, equivalently, Spec⊕ C are closed nets. Otherwise, C is neither a b-part-
ner of Impl nor of Spec. Assume that C is not a b-partner of Impl. Then, Impl
and C are not b-responsive by Def. 44, and we have either boundb(Impl) ∩
Lb(C) 6= ∅, Lb(Impl) ∩ boundb(C) 6= ∅, stopb(Impl) ∩ deadb(C) 6= ∅, or
deadb(Impl) ∩ stopb(C) 6= ∅ by Prop. 88. Because of the assumed inclu-
sions, we have either boundb(Spec) ∩ Lb(C) 6= ∅, Lb(Spec) ∩ boundb(C) 6= ∅,

5.1 characterizing b-conformance 91

stopb(Spec) ∩ deadb(C) 6= ∅, or deadb(Spec) ∩ stopb(C) 6= ∅. Again with
Prop. 88, we see that Spec and C are not b-responsive; that is, C is not a
b-partner of Spec and thus Impl vb, conf Spec. �

The converse of Thm. 90 does not hold in general, as we illustrate with
the following two examples.

Example 91 Consider again the patched database D′ from Sect. 3.2, which
we depict again in Fig. 56. Observe that no reachable marking of env(D′)
marks place f o. The language of D′ is

L(D′) ={w ∈ {s, q, d}∗ | ∀v v w : |v|d ≤ |v|q} .

Like D in Fig. 54a, the environment of D′ respects bound 1 if, after produc-
ing a first token on qi, env(D′) produces the next token on qi only if there
exists a token on do; that is, the first token on qi was already consumed
and qi is empty again. However, in contrast to D, transition s may fire at
most once in env(D′) in order to respect the bound 1; otherwise, the place
si may hold two tokens. Therefore, the bound1-violators of D′ are

bound1(D′) = ↑ {w ∈ L(D′) | ∃v v w : |v|d + 1 < |v|q}
∪ ↑ {w ∈ L(D′) | ∃v v w : |v|s > 1} .

Every stop-trace of D′ either contains an s and reaches the marking [], or
the number of d’s equals the number of q’s; more precisely,

stop(D′) = {w ∈ {q, d}∗ | ∀v v w : |v|d ≤ |v|q ∧ |w|d = |w|q}
∪ {wsz | w, z ∈ {s, q, d}∗ ∧ ∀v v wz : |v|d ≤ |v|q} .

As [] is the only final marking of D′, we have

dead(D′) = {w ∈ {q, d}∗ | ∀v v w : |v|d ≤ |v|q ∧ |w|d = |w|q}
∪ {wsz | w, z ∈ {s, q, d}∗ ∧ ∀v v wz : |v|d ≤ |v|q}

∧(|wz|s > 0∨ |wz|d < |wz|q)} .

Now consider the open net D in Fig. 54a. We already claimed in Ex. 49

that D′ b-conforms to D. However, comparing their respective b-bounded
stopdead-semantics from the previous paragraph and Ex. 85, we find a trace
s ∈ stop(D′) but s 6∈ stop(D) ∪ bound1(D) (and, thus, s 6∈ stopb(D)). We
cannot verify this claim with Thm. 90, but, intuitively, the trace s does not
“destroy” b-conformance of D′ and D because no b-partner of D would
send a message s, leading to a part of D which cannot be reliably used by
any b-partner. �

retrieve
d

s

q

shutdown
process

p2p1

f

Figure 56: The patched database server D′ from Sect. 3.2. We have ΩD′ = {[]}.

92 b-conformance

Example 92 For a second example that the converse of Thm. 90 does not
hold, consider again the open nets D and D′ in Fig. 54a and Fig. 56, this
time, with the empty sets of final markings. No b-partner of D′ will send
an s because this would eventually lead to firing of shutdown, yielding a
nonfinal and nonresponsive marking where neither p1 nor p2 contains a
token. Thus, we conclude that D b-conforms to D′ (remember that this
only holds because we changed their sets of final markings). However,
there exists a trace sf with sf ∈ L(D) \ L(D′) by Ex. 85 and Ex. 91, because
env(D′) cannot fire the transition f at all. Hence, Lb(D) 6⊆ Lb(D′). �

5.1.2 The b-coverable stopdead-semantics for open nets

The cause of the counterexamples in Ex. 91 and Ex. 92 and, thus, the reason
why the converse of Thm. 90 does not hold is that b-conformance ignores
those parts of open nets Impl and Spec that cannot be used reliably—that is,
those markings that cannot be covered in the composition with any b-part-
ner. In contrast, standard trace-based semantics (like the stopdead-semantics
in Def. 55 and the b-bounded stopdead-semantics in Def. 84) compare the two
open nets as a whole.

That standard language inclusion can be too strict has been observed for
a stronger criterion than b-responsiveness in [162, 43, 181]. Mooij et al. [181]
propose two solutions to overcome this problem. The first idea is to restrict
the class of open nets considered to those where every place and transition
can be covered. The second idea is to encode the covering nature of b-
conformance in the trace-based semantics. In the following, we work out
the latter idea in the present setting:

We aim to encode the covering nature of b-conformance in the b-bounded
stopdead-semantics. To achieve this, we introduce a set that captures all b-
uncoverable traces—that is, traces w that cannot be executed by (the envi-
ronment of) any b-partner of an open net N, regardless whether w can be
executed in env(N) or not.

Replacing in every trace set of the b-bounded stopdead-semantics of an
open net N the set of boundb-violators by the set of b-uncoverable traces
yields the b-coverable stopdead-semantics of N. This semantics differs from
the trace-based semantics in Def. 55 and Def. 84, as the b-uncoverable traces
are an external characterization—they quantify over all b-partners of N. The
latter does not cause a problem, because we can still calculate this set, as we
will show in Sect. 5.2.

Definition 93 [b-coverable stopdead-semantics]
Let N be an open net. A word w ∈ (I]O)∗ is a b-uncoverable trace of N
if there does not exist a b-partner C of N with w ∈ Lb(C). The b-coverable
stopdead-semantics of N is defined by the sets of traces

• uncovb(N) = {w ∈ (I]O)∗ | w is a b-uncoverable trace of N},

• uLb(N) = L(N) ∪ uncovb(N),

• ustopb(N) = stop(N) ∪ uncovb(N), and

• udeadb(N) = dead(N) ∪ uncovb(N) .

5.1 characterizing b-conformance 93

Example 94 Consider again the open nets D and D′ in Fig. 54a and Fig. 56.
No b-partner of D has a trace of D that contains an s in its language; other-
wise, D may reach the nonfinal and nonresponsive marking []. In addition,
the number of q’s a b-partner C of D sends to D never exceeds the number
of d’s already received from D plus b: For example, consider a bound of 1
and the initial state of env(D). If C sends the first q, then env(D) may still
remain in the marking [p1, qi] without firing process; if C sends a second q
(i.e., violates the mentioned condition because the number of d’s is 0 and
2 > 0 + 1), then qi contains two tokens and bound 1 is violated. Therefore,
we have

uncovb(D) = ↑ {w ∈ L(D) | |w|s > 0}
∪ ↑ {w ∈ L(D) | ∃v v w : |v|q > |v|d + b} .

We argued in Ex. 49 that D′ b-conforms to D, and observed in Ex. 91 that
s ∈ stopb(D

′) but s 6∈ stopb(D); that is, stopb-inclusion fails. By the above
considerations, we have s ∈ uncovb(D). Thus, s is in the flooded stop-set of
the b-coverable stopdead-semantics of D, i.e., s ∈ ustopb(D). �

By Prop. 88, a boundb-violator of an open net is a b-uncoverable trace of N.
So we directly conclude that the set of boundb-violators of N is contained in
the set of b-uncoverable traces of N. As a result, the b-coverable stopdead-se-
mantics extends the b-bounded stopdead-semantics by flooding more traces:
boundb-violators and b-uncoverable traces.

Corollary 95
For an open net N, we have

• boundb(N) ⊆ uncovb(N),

• Lb(N) ⊆ uLb(N),

• stopb(N) ⊆ ustopb(N), and

• deadb(N) ⊆ udeadb(N).

Inclusion of the b-uncoverable traces, the flooded language, the flooded
stop-traces, and the flooded dead-traces defines a refinement relation. We
show that an open net Impl b-conforms to an open net Spec if and only if
the respective traces of Impl’s b-coverable stopdead-semantics are included
in the respective traces of Spec’s b-coverable stop-semantics. For the proof,
we use the following lemma. The first item of Lem. 96 states that for every
trace w, which is neither a trace nor a b-uncoverable trace of an open net N,
there exists a b-partner of N containing w in its set of boundb-violators. The
second item of Lem. 96 states that for every trace w of N, which is neither
a stop-trace nor b-uncoverable, there exists a b-partner of N containing w in
its set of dead-traces. The third item of Lem. 96 is similar to the second item,
but with the stop- and dead-traces exchanged. It states that for every trace w
of N, which is neither a dead-trace nor b-uncoverable, there exists a b-partner
of N containing w in its set of stop-traces.

Lemma 96
Let N be an open net. Then

94 b-conformance

1. If w 6∈ uLb(N), then there exists a b-partner C of N with w ∈
boundb(C).

2. If w ∈ L(N) \ ustopb(N), then there exists a b-partner C of N with
w ∈ dead(C).

3. If w ∈ L(N) \ udeadb(N), then there exists a b-partner C of N with
w ∈ stop(C).

Proof. (1) Let w 6∈ uLb(N) with w = w1 . . . wk for j = 1, . . . , k, wj ∈ IN]ON .
As w 6∈ uncovb(N), there exists a b-partner C of N with w ∈ Lb(C) by Def. 93.
If w /∈ boundb(C), we construct from w and C a b-partner Nbound

w ⊕ C′ of N
with boundb-violator w as follows: In a first step, we construct an open net
Nw that basically shifts all tokens from N to (a copy of) C, and vice versa.
Moreover, Nw tracks whether a firing sequence in C is (a “permutation” of)
a prefix of w, and subsequently moving a token in Nw from an initially
marked place p0 to a place pk. Intuitively, a token on a place pj means we
already encountered (a “permutation” of) the trace w1 . . . wj. For shifting,
we introduce several transitions in Nw for each interface place in N. In a
second step, we extend Nw: If and only if the place pk is marked—that is,
we encountered (a “permutation” of) the trace w1 . . . wk = w—a “disaster”
transition tdisaster is enabled, which may put an unlimited number of tokens
onto an inner place pdisaster. The latter construction yields the open net
Nbound

w . This construction guarantees that w is a boundb-violator of Nbound
w ⊕

C′.
Let I′ = {i′ | i ∈ IC} and O′ = {o′ | o ∈ OC} be “fresh” copies of IC

and OC. We derive the open net C′ = (PC, TC, F′C, mC, I′, O′, ΩC) from C by
renaming the interface of C and adjusting the flow relation accordingly. We
define the open net Nw = (P′, T′, F′, mNw , ΩNw , ON]OC′ , IN] IC′) with

• P′ = {pi | 0 ≤ i ≤ k}
] {perr},

• T′ = {tx
i | 1 ≤ i ≤ k ∧ x ∈ ON] IN}

] {tx
err | x ∈ ON] IN}

] {terr},

• F′ = {(x, tx
i), (t

x
i , x′), (pi−1, tx

i) | 1 ≤ i ≤ k ∧ x ∈ ON}
] {(x′, tx

i), (t
x
i , x), (pi−1, tx

i) | 1 ≤ i ≤ k ∧ x ∈ IN}
] {(tx

i , pi) | 1 ≤ i ≤ k ∧ x ∈ ON] IN ∧ x = wi}
] {(tx

i , perr) | 1 ≤ i ≤ k ∧ x ∈ ON] IN ∧ x 6= wi}
] {(x, tx

err), (tx
err, x′), (perr, tx

err), (tx
err, perr) | x ∈ ON}

] {(x′, tx
err), (tx

err, x), (perr, tx
err), (tx

err, perr) | x ∈ IN}
] {(pk, terr), (terr, perr)},

• mNw = [p0], and

• ΩNw = {[p] | p ∈ P′}.
Figure 57 illustrates the construction of Nw. We have L(C) = L(Nw ⊕ C′),

boundb(C) = boundb(Nw ⊕ C′), stop(C) = stop(Nw ⊕ C′), and dead(C) =
dead(Nw ⊕ C′). Therefore, the open net Nw ⊕ C′ is, as C, a b-partner of N by
Prop. 88.

The places p0, . . . , pk, perr together always carry one token. Let m be an ar-
bitrary marking of env(Nw⊕C′) where pk is marked and all interface places

5.1 characterizing b-conformance 95

b

tb1

p0

a
ta1

p1 p2

tb2

b'

a'

ta2

perr

taerr

tberr

terrN
b

a

b'

a'

C'

Figure 57: Illustration of the construction of the open net Nw for N with IN = {a},
ON = {b}, and w = ab 6∈ uLb(N).

of Nw⊕C′ are empty. The key observation is that if a trace v of env(Nw⊕C′)
leads to m, then v 6∈ Lb(N): By the choice of m and the construction of Nw,
the Parikh vectors of v and w agree and we can transform w into v by mov-
ing wj ∈ ONw⊕C′ = IN right and wj ∈ INw⊕C′ = ON left, like in the proof
of Thm. 61. Because w 6∈ Lb(N) by assumption, moving wj ∈ IN right al-
ways results in a trace v 6∈ Lb(N): If env(N) cannot fire a run underlying
w, then env(N) cannot fire a run with an even later provision of a token on
the input place wi

j. Similarly, moving wj ∈ ON left always results in a trace
v 6∈ Lb(N): If env(N) cannot fire a run underlying w, then env(N) cannot
fire a run where a token on the output place wo

j is needed earlier.
As a generalization, we now show that v 6∈ Lb(N) for any trace v with

menv(Nw⊕C′)
v
=⇒ m and m(pk) > 0, performing an induction on the number

of tokens that m puts on the interface places of Nw ⊕ C′. The previous
observation is the base case. If a place xi is marked at m with x being an
input place of Nw ⊕ C′, then a token on xi was not needed to perform v;
thus, we can move the last x in v to the end, obtaining another trace v′

of env(Nw ⊕ C′). Now v′ = v′′x has the prefix v′′ 6∈ Lb(N) by induction.
Thus, v′ 6∈ Lb(N) and moving x ∈ ON left results in v 6∈ Lb(N) as argued
previously. If an output place xo is marked at m with x being an output
place of Nw ⊕ C′, then also vx is a trace of env(Nw ⊕ C′) and vx /∈ Lb(N) by
induction, thus, v /∈ Lb(N) because x ∈ IN can always fire in env(N).

Next, we extend Nw to an open net Nbound
w by adding a disaster transi-

tion tdisaster. The transition tdisaster may put an unlimited number of tokens
onto an inner place pdisaster of Nbound

w if and only if the place pk is marked.
Formally, we define the open net Nbound

w = (P′] {pdisaster}, T′] {tdisaster},
F′] F′′, mNw , ΩNw , ON]OC′ , IN] IC′) with F′′ = {(pk, tdisaster), (tdisaster, pk),
(tdisaster, pdisaster)}. By construction of Nbound

w ⊕ C′, a run underlying a newly
introduced strict boundb-violator v of Nbound

w ⊕ C′ (i.e., v ∈ boundb(Nbound
w ⊕

C′) \ boundb(Nw ⊕ C′)) marks place pk. Thus, by the observation from the
last paragraph, we have v 6∈ Lb(N) ⊇ stopb(N) ⊇ deadb(N) ⊇ boundb(N).
Clearly, Nbound

w ⊕ C′ is still a b-partner of N because of Prop. 88.
(2) Let w ∈ L(N) \ ustopb(N) with w = w1 . . . wk for j = 1, . . . , k, wj ∈

IN]ON . As w 6∈ uncovb(N), there exists a b-partner C of N with w ∈ Lb(C)
by Def. 93. Then w ∈ L(C) \ boundb(C); otherwise, C is not a b-partner of
N by Prop. 88. As w is no stop-trace of N, there is always some output that
menv(N) can perform after w. For each such output o ∈ ON , we conclude
that wo ∈ L(N) and wo ∈ L(C), thus, wo is not a (strict) boundb-violator of
N by Prop. 88.

96 b-conformance

Like in the proof of (1), we construct a b-partner Nw ⊕ C′ of N with dead-
trace w: We track whether a firing sequence in C is (a “permutation” of) a
prefix of w by composing C with another open net Nw, and subsequently
moving a token in Nw from an initially marked place p0 to a place pk. Later,
if and only if the place pk is marked—that is, we encountered (a “permu-
tation” of) the trace w1 . . . wk = w—we prevent any output from Nw, but
allow input to Nw. We put ΩNw = {[p] | p ∈ P′ \ {pk}}. As [pk] is not a final
marking of Nw, w will be a dead-trace. Once Nw receives one input—some
o ∈ ON as discussed above—we make Nw transparent again.

Let I′ = {i′ | i ∈ IC} and O′ = {o′ | o ∈ OC} be “fresh” copies of IC
and OC. We derive the open net C′ = (PC, TC, F′C, mC, I′, O′, ΩC) from C by
renaming the interface of C and adjusting the flow relation accordingly. We
define the open net Nw = (P′, T′, F′, mNw , ΩNw , ON]OC′ , IN] IC′) with

• P′ = {pi | 0 ≤ i ≤ k}
] {perr},

• T′ = {tx
i | 1 ≤ i ≤ k + 1∧ x ∈ ON}

] {tx
i | 1 ≤ i ≤ k ∧ x ∈ IN}

] {tx
err | x ∈ ON] IN},

• F′ = {(x, tx
i), (t

x
i , x′), (pi−1, tx

i) | 1 ≤ i ≤ k + 1∧ x ∈ ON}
] {(x′, tx

i), (t
x
i , x), (pi−1, tx

i) | 1 ≤ i ≤ k ∧ x ∈ IN}
] {(tx

i , pi) | 1 ≤ i ≤ k ∧ x ∈ ON] IN ∧ x = wi}
] {(tx

i , perr) | 1 ≤ i ≤ k ∧ x ∈ ON] IN ∧ x 6= wi}
] {(tx

k+1, perr) | x ∈ ON}
] {(x, tx

err), (tx
err, x′), (perr, tx

err), (tx
err, perr) | x ∈ ON}

] {(x′, tx
err), (tx

err, x), (perr, tx
err), (tx

err, perr) | x ∈ IN},

• mNw = [p0], and

• ΩNw = {[p] | p ∈ P′ \ {pk}}.

Figure 58 illustrates the construction of Nw.

b

tb1

p0

a
ta1

p1 p2

tb2

b'

a'

ta2

perr

taerr

tberr
tb3

N
b

a

b'

a'

C'

Figure 58: Illustration of the construction of the open net Nw for N with IN = {a},
ON = {b}, and w = ab ∈ L(N) \ ustopb(N).

The places p0, . . . , pk, perr together always carry one token. Let m be an ar-
bitrary marking of env(Nw⊕C′) where pk is marked and all interface places
of Nw⊕C′ are empty. The key observation is that if a trace v of env(Nw⊕C′)
leads to m, then v 6∈ stopb(N): By the choice of m and the construction of

5.1 characterizing b-conformance 97

Nw, the Parikh vectors of v and w agree and we can transform w into v by
moving wj ∈ ONw⊕C′ = IN right and wj ∈ INw⊕C′ = ON left, like in the
proof of (1). Thus, a marking reached by v in env(N) can also be reached by
w, and we conclude that v 6∈ stopb(N).

By the construction of Nw ⊕ C′, a run underlying a newly introduced
dead- or stop-trace v of Nw ⊕ C′ (i.e., v ∈ deadb(Nw ⊕ C′) \ deadb(C) or v ∈
stopb(Nw⊕C′) \ stopb(C)) marks place pk and leaves no token on an interface
place of Nw ⊕ C′. Thus, by the observation above, we have v 6∈ stopb(N)
and, hence, v 6∈ deadb(N). In addition, we have L(Nw ⊕ C′) ⊆ L(C) and
boundb(Nw ⊕ C′) ⊆ boundb(C) by the construction of Nw ⊕ C′. Therefore,
the open net Nw ⊕ C′ is, as C, a b-partner of N by Prop. 88.

(3) This is analogous to the proof of (2), except that we have to add several
places and transitions to Nw, yielding the open net N′w: The introduced dead-
trace w of Nw⊕C′ may be a stop-trace of N, i.e., w ∈ stop(N) \ dead(N). Thus,
after N′w recognizes (a “permutation” of) w, we buffer all messages from C′

to N′w inside N′w: For each input place x ∈ OC′ of Nw, we add a place x and
a transition tx such that •tx = {x}, t•x = {x}, x• = {tx}, and the postset of x
in N′w is the postset of x in Nw. In addition, we define all markings of N′w as
final markings. That way, we have w ∈ stopb(N′w ⊕ C′) while guaranteeing
deadb(N′w ⊕ C′) ⊆ deadb(C). �

5.1.3 Refinement on the b-coverable stopdead-semantics

With Lem. 96, we can show that b-conformance coincides with the refine-
ment relation defined by inclusion of the b-coverable stopdead-semantics.

Theorem 97 [b-conformanceandb-coverable stopdead-inclusioncoincide]
For two interface-equivalent open nets Impl and Spec, we have

Impl vb, conf Spec iff uncovb(Impl) ⊆ uncovb(Spec) and

uLb(Impl) ⊆ uLb(Spec) and

ustopb(Impl) ⊆ ustopb(Spec) and

udeadb(Impl) ⊆ udeadb(Spec) .

Proof. ⇒: Let w /∈ uncovb(Spec); that is, there exists a b-partner C of Spec
with w ∈ Lb(C) by Def. 93. Clearly, C is a b-partner of Impl by Impl vb, conf
Spec, thus w /∈ uncovb(Impl). This proves uncovb(Impl) ⊆ uncovb(Spec).

Let w ∈ uLb(Impl) \ uncovb(Impl) and assume w 6∈ uLb(Spec). There exists
a b-partner C of Spec with w ∈ boundb(C) by Lem. 96(1). Clearly, C is not a b-
partner of Impl by Prop. 88, and we have a contradiction to our assumption
that Impl vb, conf Spec. Thus, w ∈ uLb(Spec).

Let w ∈ ustopb(Impl) \ uncovb(Impl) and assume w 6∈ ustopb(Spec). Then,
w ∈ stop(Impl) ⊆ L(Impl) and w ∈ L(Spec), as uLb(Impl) ⊆ uLb(Spec)
has been shown already. We can construct a b-partner C of Spec with
w ∈ dead(C) by Lem. 96(2). Clearly, C is not a b-partner of Impl by Prop. 88,
and we have a contradiction to our assumption that Impl vb, conf Spec. Thus,
w ∈ ustopb(Spec).

Let w ∈ udeadb(Impl) \ uncovb(Impl) and assume w /∈ udeadb(Spec). Then,
w ∈ dead(Impl) ⊆ L(Impl) and w ∈ L(Spec), as uLb(Impl) ⊆ uLb(Spec) has
been shown already. We can construct a b-partner C of Spec with w ∈ stop(C)
by Lem. 96(3). Clearly, C is not a b-partner of Impl by Prop. 88, and we

98 b-conformance

have a contradiction to our assumption that Impl vb, conf Spec. Thus, w ∈
udeadb(Spec).
⇐: Proof by contraposition. Assume that the four inclusions hold and

that C is not a b-partner of Impl. We show that C is not a b-partner of Spec
either.

Impl and C are not b-responsive by Def. 44, and we have boundb(Impl) ∩
Lb(C) 6= ∅, Lb(Impl) ∩ boundb(C) 6= ∅, stopb(Impl) ∩ deadb(C) 6= ∅, or
deadb(Impl) ∩ stopb(C) 6= ∅ by Prop. 88. We consider each case separately:

• w ∈ boundb(Impl) ∩ Lb(C) : Then w ∈ boundb(Impl) ⊆ uncovb(Impl) ⊆
uncovb(Spec) by Cor. 95 and assumption, so C is not a b-partner of Spec
by Def. 93.

• w ∈ Lb(Impl)∩ boundb(C) : Then w ∈ Lb(Impl) ⊆ uLb(Impl) ⊆ uLb(Spec)
by Cor. 95 and assumption. If w ∈ L(Spec) then C is not a b-partner
of Spec by w ∈ boundb(C) and Prop. 88; otherwise, if w ∈ uncovb(Spec),
then C is not a b-partner of Spec by w ∈ boundb(C) ⊆ Lb(C) and Def. 93.

• w ∈ stopb(Impl) ∩ deadb(C) : Then, w ∈ ustopb(Impl) ⊆ ustopb(Spec) by
Cor. 95 and assumption. If w ∈ stop(Spec) then C is not a b-partner
of Spec by w ∈ deadb(C) and Prop. 88; otherwise, if w ∈ uncovb(Spec),
then C is not a b-partner of Spec by w ∈ deadb(C) ⊆ Lb(C) and Def. 93.

• w ∈ deadb(Impl)∩ stopb(C) : Then, w ∈ udeadb(Impl) ⊆ udeadb(Spec) by
Cor. 95 and assumption. If w ∈ dead(Spec) then C is not a b-partner
of Spec by Prop. 88; otherwise, if w ∈ uncovb(Spec), then C is not a b-
partner of Spec by w ∈ stopb(C) ⊆ Lb(C) and Def. 93. �

Example 98 Consider again the open nets D and D′ in Fig. 54a and Fig. 56.
We claimed in Ex. 49 that D′ b-conforms to D, but observed in Ex. 91

that s ∈ stopb(D
′) but s 6∈ stopb(D); that is, stopb-inclusion fails. However,

Ex. 94 shows that s ∈ uncovb(D) ⊆ ustopb(D). Thus, the difference between
D and D′ is hidden in the b-coverable stopdead-semantics due to flooding:
s ∈ ustopb(D) ⊆ ustopb(D

′). Therefore, with Thm. 97, we can finally show
that D′ b-conforms to D. �

Despite the external characterization of the trace set uncovb, we can com-
pute the b-coverable stopdead-semantics of an open net N; that is, we can
decide whether two interface-equivalent open nets are b-conforming. We
elaborate the corresponding decision procedure in the next section.

5.2 deciding b-conformance

To decide b-conformance, we have to check four language inclusions accord-
ing to Thm. 97. To this end, we represent each language by a finite LTS. To
ease the four inclusion checks, we subsume the four LTSs into one determin-
istic, τ-free, and finite LTS CSDb with different state labels: Each state label
of CSDb represents a partition of the language Σ∗ , and each of the four lan-
guages in Thm. 97 is a distinct union of some of these partitions. Now, one
inclusion check on CSDb coincides with the four language inclusion checks
on the LTSs that represent the languages. In other words, the constructed
LTS CSDb represents exactly the four languages of the b-coverable stopdead-
semantics. Technically, we check inclusion on CSDb by computing a bisimu-
lation and additional check the related state labels. Figure 59 illustrates the
decision procedure for b-conformance.

5.2 deciding b-conformance 99

Implementation Specification

O
pe

n
Ne

ts

bisimulation with
label checking

LT
Ss

compute compute

not
-conformingRe

su
lt

-conforming

no yes

b
b

CSDb(Impl) CSDb(Spec)

U2

3

0
U2

3

0

Impl Spec

Figure 59: Using CSDb to decide if an open net Impl b-conforms to an interface-
equivalent open net Spec.

For convenience, we demonstrate this technique in Sect. 5.2.1 on an eas-
ier case: We construct an LTS BSDb that represents the four languages of
the b-bounded stopdead-semantics in Def. 84. We prove the correctness of
our construction and show that deciding the emptiness of language inter-
section on BSDb coincides with the decision of b-responsiveness by Prop. 88.
In Sect. 5.2.2, we then construct the previously mentioned LTS CSDb from
BSDb. We prove that CSDb represents the b-coverable stopdead-semantics of
Def. 93 and show how to decide b-conformance on CSDb using Thm. 117.

5.2.1 Deciding b-responsiveness using the LTS BSDb

In the following, we construct an LTS BSDb(N) that characterizes the b-
bounded stopdead-semantics of an open net N. By Def. 84, the b-bounded
stopdead-semantics of N consists of the four languages boundb(N), deadb(N),
stopb(N), and Lb(N). When mentioned in this order, each language is a
subset of its successor. Figure 60 illustrates these subset relations as an
Euler diagram if we ignore the annotations to the right-hand side.

Although the b-bounded stopdead-semantics of N consists of four lan-
guages, we shall construct the LTS BSDb(N) with five state labels 0–4. The
resulting languages L0(BSDb(N))–L4(BSDb(N)) partition the set of all fi-
nite words Σ∗ according to the right-hand side of Fig. 60; more precisely, we
define BSDb(N) such that

• L4(BSDb(N)) = Σ∗ \ Lb(N),

• L3(BSDb(N)) = Lb(N) \ stopb(N),

• L2(BSDb(N)) = stopb(N) \ deadb(N),

• L1(BSDb(N)) = deadb(N) \ boundb(N), and

• L0(BSDb(N)) = boundb(N).

100 b-conformance

boundb

deadb

stopb

Lb

⌃⇤

L0

L1

L2

L3

L4

Figure 60: An illustration of the languages of the b-bounded stopdead-semantics from
Def. 84 and their representation as languages of the LTS BSDb from
Def. 99.

Clearly, the four languages of N’s b-bounded stopdead-semantics can be eas-
ily derived from the five languages L0(BSDb(N))–L4(BSDb(N)). Neverthe-
less, partitioning Σ∗ into L0(BSDb(N))–L4(BSDb(N)) eases the correctness
proof of our construction.

As a starting point for BSDb(N), we construct the reachability graph of the
labeled net env(N), but stop the construction whenever we reach a marking
m that violates bound b. That way, we generate only finitely many markings
of env(N) and guarantee finiteness of the constructed LTS. The initial state
of our constructed LTS is the initial marking menv(N). Each state m that
violates bound b gets the state label 0 and a loop for each transition label
in Σ. Every trace w of env(N) reaching m is a strict boundb-violator of N.
The added loops include every suffix of w into the language L0(BSDb(N))
of the constructed LTS, which, intuitively, coincides with the inclusion of
all continuations of a strict boundb-violator into the language boundb(N) by
Def. 84. We now label every unlabeled state m of the constructed LTS (i.e.,
every b-bounded marking m of env(N)) with a label 1–3, indicating whether
m is dead except for inputs (label 1), a stop but not dead except for inputs
(label 2), or not a stop except for inputs (label 3) in env(N). Intuitively,
this yields the languages L1(BSDb(N))–L3(BSDb(N)) we already mentioned
above.

The idea behind a language inclusion check in automata theory [224, 123]
is to make the automaton of the larger language deterministic (by construct-
ing the powerset automaton) and then construct the unique simulation rela-
tion between the two automata. Consequently, we make the LTS constructed
above deterministic using a variant of the powerset construction that also re-
moves all τ-transitions (i.e., ε-transitions in automata theory). The resulting
LTS is τ-free, deterministic, and finite; we refer to it as BSDb(N). Each state
Q of BSDb(N) is a set of states of the nondeterministic LTS (i.e., a set of
markings of env(N)). We label Q with the minimum label of its contained
states. In addition, each state Q of BSDb(N) has an outgoing transition
Q x−→ Q′ for each label in x ∈ Σ; if the corresponding trace was not present
in the nondeterministic LTS, then Q′ is an artificial state Q∅. The state Q∅
corresponds to the empty set of states of the nondeterministic LTS, and we
label Q∅ with the label 4. As a final simplification, we identify all states of
BSDb(N) with the label 0 into one error state U.

5.2 deciding b-conformance 101

Definition 99 [labeled transition system BSDb]
Let N be an open net. We define the LTS BSDb(N) =

(Q, δ, QBSDb(N), Σin, Σout, λ) with

• Q = {U}]Q′ with Q′ ⊆ P(Menv(N)) and U /∈ P(Menv(N)),

• δ = {(Q, x, Q′) ∈ Q′ × (I]O)×Q′ |
Q′ = {m′ | ∃m ∈ Q : m x

=⇒ m′ in env(N)} and
for all m′ ∈ Q′ : m′ is b-bounded in env(N)}

] {(Q, x, U) ∈ Q′ × (I]O)×Q |
Q′ = {m′ | ∃m ∈ Q : m x

=⇒ m′ in env(N)} and
there exists m′ ∈ Q′ : m′ is not b-bounded in env(N)}

] {(U, x, U) | x ∈ I]O},

• QBSDb(N) =

{
{m′ | menv(N)

ε
=⇒ m′}, if all these m′ are b-bounded

U, otherwise,

• Σin = I,

• Σout = O, and

• λ(Q) =



0, if Q = U

1, if ∅ 6= Q 6= U

∧ ∃m ∈ Q : m is dead except for inputs in env(N)

2, if ∅ 6= Q 6= U

∧ 6 ∃m ∈ Q : m is dead except for inputs in env(N)

∧ ∃m ∈ Q : m is a stop except for inputs in env(N)

3, if ∅ 6= Q 6= U

∧ 6 ∃m ∈ Q : m is a stop except for inputs in env(N)

4, if Q = ∅.

The state Q = ∅ is the empty state of BSDb(N), which we denote by Q∅.

The LTS BSDb(N) has three properties that directly follow from the con-
struction in Def. 99. First, BSDb(N) is always finite, τ-free, and deterministic
because of the powerset construction. Second, the language of BSDb(N) is
Σ∗ because every state (even Q∅ and U) has an outgoing x-labeled transi-
tion, for all x ∈ Σ. Third, the information captured in the label of a state
m of the nondeterministic LTS we used to construct BSDb(N) (i.e., m is a
marking of env(N)) is preserved by the label of the state Q 3 m of BSDb(N).
For example, assume that we labeled m with 2; that is, m is a stop but not
dead except for inputs in env(N). The information that we captured by la-
beling m with 2 is that the trace w leading to m in env(N) is a stop-trace
of N. This implies that w ∈ stopb(N) ⊆ Lb(N) ⊆ Σ∗ by Def. 84. By the
powerset construction applied above, all states that are reachable with w in
env(N) are merged into the state Q, and Q is the only state that is reachable by
w in BSDb(N). Thus, by labeling Q with the minimum label of its contained
states (here, m ∈ Q and, therefore, λ(Q) ≤ 2), the information that we cap-
tured about w is preserved: If λ(Q) = 2, then there exists an m′ ∈ Q (for
example, m′ = m) that is a stop but not dead except for inputs and reach-
able with w in env(N), implying w ∈ stopb(N) ⊆ Lb(N) ⊆ Σ∗. If λ(Q) < 2,
then there even exists a dead-trace w or a boundb-violator w of N. Still, this
implies w ∈ stopb(N) ⊆ Lb(N) ⊆ Σ∗.

102 b-conformance

We summarize these three properties in the following corollary. For read-
ability reasons, we write Li instead of Li(BSDb(N)), for i ∈ {0, . . . , 4}.

Corollary 100 [languages of BSDb]
For an open net N and BSDb(N), we have

1. BSDb(N) is finite, τ-free, and deterministic.

2. L0 = boundb(N)

3. L0] L1 = deadb(N)

4. L0] L1] L2 = stopb(N)

5. L0] L1] L2] L3 = Lb(N)

6. L0] L1] L2] L3] L4 = Σ∗ = L

7. L1] L2] L3] L4 = co-boundb(N)

8. L2] L3] L4 = co-deadb(N)

9. L3] L4 = co-stopb(N)

10. L4 = co-Lb(N)

Example 101 Consider again the open net D in Fig. 54a. For conve-
nience, we recall D’s 1-bounded stopdead-semantics from Ex. 85; that is,
the sets bound1(D), dead1(D) = dead(D)∪ bound1(D), stop1(D) = stop(D)∪
bound1(D), and L1(D) = L(D) ∪ bound1(D) arising from

L(D) = {w ∈ {s, q, d}∗ | ∀v v w : |v|d ≤ |v|q}
∪ {w f z | w, z ∈ {s, q, d}∗ ∧ ∀v v w : |v|d ≤ |v|q

∧|w|s > 0∧ |z|d ≤ |w|q − |w|d},
bound1(D) = ↑ {w ∈ L(D) | ∃v v w : |v|d + 1 < |v|q}

∪ ↑ {w ∈ L(D) | ∃v v w : |v| f + 1 < |v|s},
stop(D) = {w ∈ {q, d}∗ | ∀v v w : |v|d ≤ |v|q ∧ |w|d = |w|q}

∪ {w f z | w, z ∈ {s, q, d}∗ ∧ ∀v v w : |v|d ≤ |v|q
∧|w|s > 0∧ |z|d ≤ |w|q − |w|d}, and

dead(D) = stop(D) .

Figure 61 shows a part of the reachability graph of the labeled net env(D).
We do not show the complete reachability graph of env(D) because it is
too big; it consists of at least 24 relevant states for bound 1. The LTS
BSD1(D) in Fig. 62 is finite, τ-free, and deterministic. Due to the powerset
construction, a state of BSD1(D) is a set of states of RG(env(D)). For
example, the markings m4, m5, and m1 form the state Q2 of BSD1(D).
The contained markings of a state of BSD1(D) determine the state’s label
according to Def. 99. For example, the state Q2 is labeled with 3 because
m4, m5, and m1 are no stops except for inputs.

BSD1(D) encodes the 1-bounded stopdead-semantics of D according to
Cor. 100. For example, D never sends an f twice, thus, every trace of
BSD1(D) with more than one f either leads to the empty state Q∅ or is a
continuation of a trace leading to state U. Observe that the states Q4–Q9

5.2 deciding b-conformance 103

are only reachable from the states Q0–Q3 with an f -labeled transition; ei-

ther via transition Q1
f−→ Q4 or via transition Q3

f−→ Q8. An f -labeled
transition corresponds to the firing of transition f in env(D) or, equiva-
lently, to D producing a token on the output place f . The states Q4–Q9
also form a kind of a “sink”, meaning no transition from Q4–Q9 leads
back to the state Q0. In other words, the initial marking of D is no longer
reachable once a message f was send.

Furthermore, no state Q of BSD1(D) is labeled with 2; thus,
L2(BSD1(D)) = ∅ and deadb(D) = stopb(D) by Cor. 100. We observed
this already in Ex. 85 by concluding stop(D) = dead(D) from D’s final
marking. �

m0:

[p1]

m1:

[p1,do]

q

m3:

[p1,si]

retrieve

m2:

[p0]
shutdown

s

m4:

[p1,qi]

m5:

[p2]
process

d

q

m7:

[p1,qi,qi]

q

process

s

s

m6:

[p1,si,qi]

q s
q

s

s

q

s

s

q

q

forward

processshutdown

Figure 61: A part of the reachability graph of the environment of the open net D in
Fig. 54a.

Proposition 88 gives a procedure to decide whether two composable open
nets N1 and N2 are b-responsive based on intersections of their respective b-
bounded stopdead-semantics. With Cor. 100, we showed that we can encode
all four languages of the b-bounded stopdead-semantics of an open net N
using one LTS with five state labels—that is, the LTS BSDb(N). We combine
both results to develop an algorithm that decides b-responsiveness solely on
the basis of BSDb(N1) and BSDb(N2): As both LTS are deterministic and
L(BSDb(N1)) = L(BSDb(N2)) = Σ∗, there exists a unique least bisimula-
tion relation $ between them. Comparing the labels of all states that are
related with $ now gives the language intersections of Prop. 88 and, thus, b-
responsiveness; this is not hard to see.

Theorem 102 [deciding b-responsiveness with BSDb]
Let N1 and N2 be two composable open nets such that N1 ⊕ N2 is a closed
net. Then N1 is a b-partner of N2 if and only if BSDb(N1) and BSDb(N2)
are bisimilar with the least bisimulation $ such that for all (Q1, Q2) ∈ $,

λBSDb(N1)
(Q1) + λBSDb(N2)

(Q2) > 3 .

104 b-conformance

Q0:

[p1]

d,f

Q2:

[p1,qi],[p2],[p1,do]

q

Q1:

[p1,si],[p0],[fo] q

q
f

d

Q3:

[p1,qi,si],[p2,si],[p1,do,si]

[p0,do],[fo,do],[p0,qi],[fo,qi]

s

s,q

f

d

s,q,d,f

s

dQ4:

[]

f

Q8:

[do],[qi]

d

Q5:

[si]Q6:

[qi]

Q7:

[si,qi]
Q9:

[si,do],[si,qi]

s,q
q

s

s,q
q

d,f

q s

d,f

d,f
d,f

q
s

d

s

f
f

s,q,d,f UQ∅

s

1

3

3

1

3

1

1

1

1

1

04

Figure 62: The LTS BSD1 (D) encodes the 1-bounded stopdead-semantics of the open
net D in Fig. 54a. We depict the label of each state as an encircled number
in the upper right corner of that state, except for the states Q∅ and U;
their respective label is shown on the left-hand side.

Proof. ⇒: By assumption, N1 and N2 are composable and N1 ⊕ N2 is a
closed net. So with Cor. 100(6), we have L(BSDb(N1)) = L(BSDb(N2)) = Σ∗.
As BSDb(N1) and BSDb(N2) are deterministic by Cor. 100(1), we conclude
the existence of the unique least bisimulation $. Applying Prop. 88 and
Cor. 100(2)–(5), we conclude that λBSDb(N1)

(Q1) + λBSDb(N2)
(Q2) 6= 3 and, by

the inclusion of the languages of the b-bounded stopdead-semantics, it cannot
be that λBSDb(N1)

(Q1) + λBSDb(N2)
(Q2) < 3. Thus, we have λBSDb(N1)

(Q1) +
λBSDb(N2)

(Q2) > 3.
⇐: By Def. 44, we have to show that N1 and N2 are b-responsive. By

assumption and Cor. 100(2)–(5), we conclude that boundb(N1)∩ Lb(N2) = ∅,
deadb(N1) ∩ stopb(N2) = ∅, stopb(N1) ∩ deadb(N2) = ∅, and finally Lb(N1) ∩
boundb(N2) = ∅. Thus, N1 and N2 are b-responsive by Prop. 88. �

Example 103 Consider again the open nets D and U in Fig. 54a and
Fig. 54b. Figure 63 depicts the LTS BSD1(U). We already claimed in Ex. 45

that U is a 1-partner of D. Now, with Thm. 102, we verify this claim using

5.2 deciding b-conformance 105

the LTS BSD1(D) and BSD1(U): BSD1(D) and BSD1(U) are bisimilar with
the following bisimulation

$ = {(Q0, A0), (Q2, A2), (Q0, A4), (Q∅, U), (U, Q∅), (Q∅, Q∅),

(Q∅, A1), (Q∅, A3), (Q∅, A5), (Q1, Q∅), (Q3, Q∅), (Q4, Q∅),

(Q5, Q∅), (Q6, Q∅), (Q7, Q∅), (Q8, Q∅), (Q9, Q∅)} .

To see that $ is truly a bisimulation, consider the following trivial state-
ment: If a state Q of BSD1(D) is related to Q∅ or U of BSD1(U), then
every state reachable from Q in BSD1(D) is related to Q∅ or U, respec-
tively, and vice versa. In other words, once we relate Q to Q∅ or U, it
is straight forward to see which pairs we have to add to a bisimulation
relation between BSD1(D) and BSD1(U).

Now, we compare the labels of each pair of states that are related by $
according to Thm. 102. Because λ(Q∅) = 4 by Def. 99, a pair in $ contain-
ing Q∅ trivially fulfills Thm. 102. Thus, it suffices to check all pairs of $
without Q∅—that is, the pairs (Q0, A0), (Q2, A2), (Q0, A4) ∈ $. We have
λBSD1(D)(Q0) + λBSD1(U)(A0) = 3 + 1 > 3, λBSD1(D)(Q2) + λBSD1(U)(A2) =
1 + 3 > 3, and λBSD1(D)(Q0) + λBSD1(U)(A4) = 1 + 3 > 3. Therefore, U is a
1-partner of D by Thm. 102. �

A0:

[p4],[p3,qo]

s

A1:

[p4,fi],[p3,qo,fi]
f

A2:

[p3]

q d,f

s,q,d,f

s

s,q

s,q,d,f

A3:

[p3,fi]

A4:

[p3,di],[p4],[p3,qo]

A5:

[p3,fi,di],[p4,fi],[p3,fi,qo]

d

q

f

f

fs,q

sdd dq q d,fs

UQ∅ 04

33

33

11

Figure 63: The LTS BSD1 (U) encodes the 1-bounded stopdead-semantics of the open
net U in Fig. 54b. We depict the label of each state as an encircled number
in the upper right corner of that state, except for the state Q∅ , whose label
is shown on the left-hand side.

5.2.2 Deciding b-conformance using the LTS CSDb

In the following, we develop a decision procedure for b-conformance. Al-
though the LTS BSDb represents the b-bounded stopdead-semantics of an
open net in a finite manner, it is not sufficient to consider BSDb(Impl) and
BSDb(Spec) of two composable open nets Impl and Spec to decide whether
Impl b-conforms to Spec: We already explained in Ex. 91 and Ex. 92 that

106 b-conformance

the converse of Thm. 90 does not hold. As b-conformance and b-coverable
stopdead-inclusion coincide by Thm. 97, we construct an LTS CSDb similar to
BSDb that encodes the b-coverable stopdead-semantics.

As a starting point, we take the LTS BSDb(N) that represents the b-bounded
stopdead-semantics of an open net N by Cor. 100. The b-bounded stopdead-se-
mantics consists of the languages boundb(N), deadb(N), stopb(N), and Lb(N).
The b-coverable stopdead-semantics of N consists of the languages uncovb(N),
udeadb(N), ustopb(N), and uLb(N); these languages include the languages
boundb(N), deadb(N), stopb(N), and Lb(N), respectively, by Cor. 95. We
sketch the main idea for representing uncovb(N), udeadb(N), ustopb(N), and
uLb(N) by a finite LTS using the language udeadb(N) as an example: The
difference between deadb(N) and udeadb(N) results solely from b-uncov-
erable traces w of N that are not included in boundb(N)—that is, w ∈
co-boundb(N). In BSDb(N), deadb(N) is represented by the disjoint lan-
guages L0(BSDb(N)) = boundb(N) and L1(BSDb(N)) = dead(N) \ boundb(N).
If we consecutively identify such b-uncoverable traces w ∈ co-boundb(N)
and shift them into the “error” language L0(BSDb(N)), then, eventually,
L0(BSDb(N)) represents uncovb(N). That way, we may also shift traces
from L1(BSDb(N)) to L0(BSDb(N)). However, these traces are identified
as b-uncoverable traces and, therefore, also traces in udeadb(N). In other
words, the language L0(BSDb(N))] L1(BSDb(N)) eventually represents the
language udeadb(N). This strategy works equally well for L0(BSDb(N))]
L1(BSDb(N))] L2(BSDb(N)) = stopb(N) and L0(BSDb(N))] L1(BSDb(N))]
L2(BSDb(N))] L3(BSDb(N)) = Lb(N), eventually transforming them into
ustopb(N) and uLb(N). Figure 64 illustrates the idea of shifting b-uncover-
able traces into the language L0(BSDb(N)) of BSDb.

boundb

deadb

stopb

Lb

⌃⇤

L0

L1

L2

L3

L4

w

Figure 64: Shifting b-uncoverable traces w from co-boundb into the “error”language
L0(BSDb(N)). The right-hand side illustrates the languages
L0(BSDb(N))–L4(BSDb(N)) of the LTS BSDb.

Figure 65 illustrates the five languages after shifting all b-uncoverable
traces to L0(BSDb(N)): We have L0(BSDb(N)) ⊆ L0(CSDb(N)) because
L0(CSDb(N)) additionally contains all b-uncoverable traces. Because the
language L0(BSDb(N)) is included in deadb(N), stopb(N), and Lb(N), they
equally grow, yielding the languages udeadb(N), ustopb(N), and uLb(N).
The language L0(BSDb(N))] L1(BSDb(N))] L2(BSDb(N))] L3(BSDb(N))]
L4(BSDb(N)) = Σ∗ does not grow because it represents all possible traces.

In the following, we describe how to find b-uncoverable traces and how
we shift them into L0(BSDb(N)). In BSDb(N), the language L0(BSDb(N))
initially represents boundb(N). From this, we iteratively identify a b-uncov-
erable trace w in BSDb(N) by one of the following two cases:

5.2 deciding b-conformance 107

L0

L1

L2

L3

L4

uncovb

⌃⇤

udeadb

ustopb

uLb

boundb

deadb

stopb

Lb

⌃⇤

Figure 65: An illustration of how the languages of the b-bounded stopdead-semantics
(left-hand Euler diagram) compare to the languages of the b-coverable
stopdead-semantics (right-hand Euler diagram). The right-hand Euler dia-
gram derives from the left-hand Euler diagram by shifting b-uncoverable
traces into the “error” language L0(BSDb(N)), thereby eventually trans-
forming boundb into uncovb. The far right-hand side of Fig. 65 illustrates
the languages L0(CSDb(N))–L4(CSDb(N)) of the LTS CSDb.

1. If w is a dead-trace of N, then every b-partner C of N with w ∈ L(C)
must be able to send a message to N after executing w; otherwise, the
composition N ⊕ C is in a nonresponsive marking: N cannot send a
message to C, C cannot send a message to N, and no final marking is
reachable in N⊕C because w ∈ dead(N) (i.e., there is no final marking
reachable in N). However, if every continuation wx of w with x ∈ IN
leads to U—that is, wx is a b-uncoverable trace—no b-partner of N
sends a message to N after w. Thus, w must be a b-uncoverable trace
of N, too.

2. If w is a trace of N and there exists a continuation wx of w with x ∈ ON
leading to U—that is, wx is a b-uncoverable trace of N—then no b-
partner C of N may perform w, because transition x ∈ IC is always
enabled in env(C). Thus, w must be a b-uncoverable trace of N as well.
Something similar is also known as output-pruning, where w is con-
sidered erroneous if wx reaches an error state; compare, for example,
to [81, 18].

The idea for shifting b-uncoverable traces w into L0(BSDb(N)) is to merge
the state of BSDb(N) reachable by w into the “error state” U, yielding a new
LTS S1(N). That way, all continuations of w also lead to U in S1(N), just
like all continuations of a b-uncoverable trace are b-uncoverable as well. We
iteratively merge states of b-uncoverable traces into U until we reach a fix
point. We refer to the resulting LTS as CSDb(N). The state U of CSDb(N)
encodes the b-uncoverable traces of N in the same way as U in BSDb(N)
encodes the b-violators of N. The languages L0(CSDb(N))–L4(CSDb(N)) of
CSDb(N) represent the b-coverable stopdead-semantics of N as illustrated at
the right-hand side of Fig. 65.

In Thm. 115, we will prove the correctness of our construction in Def. 104;
that is, L0(CSDb(N)) represents uncovb(N) of an open net N and, thus,
CSDb(N) characterizes N’s b-coverable stopdead-semantics. For the proof,
we also introduce an LTS MPb(N) in Def. 104 that results from CSDb(N)
with the state U removed.

108 b-conformance

Definition 104 [labeled transition systems CSDb and MPb]
Let N be an open net. For i ∈ N+, we recursively define the LTS Si(N) as
follows:

• (Base): S1(N) = BSDb(N).

• (Step): Let Q ∈ QSi(N) \ {U} be a state of Si(N) such that

1. λ(Q) = 1 and for all x ∈ Σin, Q x−→ U; or

2. there exists an x ∈ Σout, Q x−→ U.

We obtain the LTS Si+1(N) from Si(N) as follows:

– If Q is the initial state of Si(N), define U as the initial state of
Si+1(N) and remove Q.

– If Q is not the initial state of Si(N), redirect every incoming
transition of Q to U and remove Q.

Thereby, the removal of Q includes the removal of its outgoing tran-
sitions and all states and transitions that become unreachable from
the initial state of Si+1(N).

We define CSDb(N) = Sj(N) for the smallest j ∈ N+ with Sj(N) =
Sj+1(N). We obtain the LTS MPb(N) from CSDb(N) by removing state
U and its outgoing transitions.

Example 105 We illustrate Def. 104 with the construction of CSD1(D) of
the open net D in Fig. 54a. Figure 62 depicts the initial labeled transition
system S1(D) = BSD1(D). Figure 66 depicts the LTS S7(D) that we ob-
tained from the LTS S1(D) by iteratively removing the states Q9, Q8, Q7,
Q6, Q5, and Q4 in this order. The states Q4–Q9 were removed because of
Def. 104(1). There are two states in S7(D)—state Q1 and state Q3—with
an outgoing f -labeled transition to state U. These states must be removed
according to Def. 104(2): No 1-partner of D can perform a trace containing
s—that is, sending a message s—as this eventually leads to a nonfinal and
nonresponsive marking in the composition with D. We already explained
this fact in detail in Ex. 45 and Ex. 94. Removing the states Q1 and Q3 from
S7(D) results in the LTS S9(D) = CSD1(D), which we depict in Fig. 67. �

In the following, we show that for any open net N, the language L0 of
CSDb(N) represents the set uncovb(N)—that is, the set of all b-uncoverable
traces of N. From this, we can easily conclude the correctness of our con-
struction in Def. 104; that is, CSDb(N) represents the b-coverable stopdead-
semantics of an open net N. As the proof is quite complex, we prove each
inclusion in a separate subsection.

5.2.2.1 Every trace that reaches the state U is a b-uncoverable trace

The next lemma shows that, for every state Q that is removed from BSDb(N)
according to Def. 104, the traces leading to Q (and their continuations) are
b-uncoverable traces of N.

Lemma 106
For an open net N, we have L0(CSDb(N)) ⊆ uncovb(N).

5.2 deciding b-conformance 109

Q0:

[p1]

d,f

Q2:

[p1,qi],[p2],[p1,do]

q

Q1:

[p1,si],[p0],[fo] q

q
f

d

Q3:

[p1,qi,si],[p2,si],[p1,do,si]

[p0,do],[fo,do],[p0,qi],[fo,qi]

s

s,q,f
d

s,q,d,f

s,f

d

s,q,d,f UQ∅

s

3

3

1

3

04

Figure 66: The LTS S7(D) which we obtained from BSD1(D) in Fig. 62 by iteratively
removing the states Q9, Q8, Q7, Q6, Q5, and Q4 in this order according
to Def. 104(1). We depict the label of each state as an encircled number in
the upper right corner of that state, except for the states Q∅ and U, whose
labels are shown on the left-hand side.

Proof. Induction over the sequence of labeled transition systems BSDb(N) =
S1(N), . . . , Sj(N) = CSDb(N) with j ∈ N+ in Def. 104.

(Base): L0(S1(N)) = boundb(N) by Cor. 100(2) and boundb(N) ⊆ uncovb(N)
by Cor. 95; thus, L0(S1(N)) ⊆ uncovb(N).

(Step): Assume L0(Si) ⊆ uncovb(N) for i ∈ N+, and let Q be the state that
is removed from Si(N) to obtain Si+1(N). Let w ∈ L0(Si+1(N)) \ L0(Si(N)),
which exists by the construction of Si+1(N). The trace w is uniquely defined
because Si(N) is deterministic. By the construction of Si+1(N) from Si(N)
and the choice of w, the run underlying w visits the state Q in Si(N)—
that is, QSi(N)

u−→ Q v−→ Q′ in Si(N) such that w = uv. We show that
u ∈ uncovb(N), which implies w ∈ uncovb(N) by Def. 93. By Def. 104, we
distinguish two cases for the choice of Q in Si:

1. Let λ(Q) = 1 and for all x ∈ Σin, Q x−→ U:

λ(Q) = 1 implies u ∈ deadb(N) by Cor. 100, thus for all b-partners C
of N, u 6∈ stopb(C) by Prop. 88. Then, for all b-partners C of N, either
u 6∈ Lb(C) or there exists an x ∈ Σin = OC such that ux ∈ Lb(C). The
latter cannot be the case, because for all x ∈ Σin, Q x−→ U implies (by

110 b-conformance

Q0:

[p1]

d,f

Q2:

[p1,qi],[p2],[p1,do]

q

s,qf

d

s,q,d,fs,q,d,f UQ∅

3

1

04

s

Figure 67: The LTS CSD1(D) encodes the 1-coverable stopdead-semantics of the open
net D in Fig. 54a. We depict the label of each state as an encircled number
in the upper right corner of that state, except for the states Q∅ and U,
whose labels are shown on the left-hand side.

induction argument) that for all x ∈ Σin, ux ∈ uncovb(N), violating the
assumption the C is a b-partner of N. Thus, for all b-partners C of N,
u 6∈ Lb(C), and, therefore, u ∈ uncovb(N).

2. Assume there exists an x ∈ Σout, Q x−→ U:

By induction argument, ux ∈ uncovb(N) and for all b-partners C of N,
ux 6∈ Lb(C). As x ∈ Σout = IC is enabled at every marking in env(C)
for a b-partner C of N, u 6∈ Lb(C), and, therefore, u ∈ uncovb(N). �

Example 107 We already explained in Ex. 94 that no 1-partner of the open
net D in Fig. 54a sends a message s; for example, s ∈ uncovb(S). This is
reflected in CSD1(S) in Fig. 67, as every s-labeled transition from a state
other than Q∅ has the state U as its target. �

5.2.2.2 Every b-uncoverable trace reaches the state U

With Lem. 106, we have shown that every trace that reaches the state U

of CSDb(N) is a b-uncoverable trace of an open net N. In this subsec-
tion, we show the converse: Every b-uncoverable trace of N is a trace of
CSDb(N) that reaches the state U. This implies—together with Lem. 106—
that L0(CSDb(N)) and uncovb(N) coincide, which in turn proves the correct-
ness of our construction in Def. 104.

The proof idea for showing the converse of Lem. 106 is simple: First, we
remove the state U from CSDb(N) and show that the remaining LTS—that
is, the LTS MPb(N) which we already defined in Def. 104—induces an open
net mpb(N) that is composable to N. Then, we show that mpb(N) has two
properties:

1. mpb(N) is a b-partner of N.

2. Every trace of MPb(N) is also a trace in the language of mpb(N).

That way, we conclude that every trace of MPb(N) is certainly not a b-un-
coverable trace of N. Intuitively, the LTS MPb(N) over-approximates the
language of any b-partner of an open net N. By contraposition, our original
statement—every b-uncoverable trace of N reaches the state U—follows.

5.2 deciding b-conformance 111

For an open net N, the LTS MPb(N) may not necessarily exist: If CSDb(N)
contains solely the state U, MPb(N) is not defined by Def. 104. However, if
MPb(N) exists, then we can relate the reachability graph of the inner of an
open net C to MPb(N), capturing the essence of [258, Lem. 1]: If inner(C) is
in a certain marking in the composition N ⊕ C, then env(N) is in a marking
contained in a state Q that is related to the marking of inner(C).

Lemma 108 [weak simulation vs. MPb]
Let N and C be two composable open nets such that N ⊕ C is a closed net
and MPb(N) exists. If RG(inner(C)) is weakly simulated by MPb(N) using
relation $, then for every reachable marking m of N⊕C, there exists a state
Q of MPb(N) such that (m|inner(C), Q) ∈ $ and m|env(N) ∈ Q.

Proof. We prove this lemma by induction over the reachable markings of
N ⊕ C.

(Base): The initial marking of N ⊕ C is menv(N) + minner(C). By Def. 5,
we have (minner(C), QMPb(N)) ∈ $ and, by Def. 99 and Def. 104, menv(N) ∈
QMPb(N).

(Step): Let m be reachable in N⊕ C and Q be a state of MPb(N) such that

(m|inner(C), Q) ∈ $ and m|env(N) ∈ Q. We assume m t−→ m′ in N ⊕ C and
distinguish three cases:

1. Let t ∈ TN : Then m|inner(C) = m′|inner(C) and (m′|inner(C), Q) ∈ $. By
Def. 17, we have l(t) = τ in env(N), thus m′|env(N) ∈ Q by Def. 99.

2. Let t ∈ Tinner(C) and l(t) = τ: Then we have m|inner(C)
τ−→ m′|inner(C)

in RG(inner(C)), and (m′|inner(C), Q) ∈ $ since MPb(N) is τ-free. By
Def. 17, m|env(N) = m′|env(N), thus m′|env(N) ∈ Q.

3. Let t ∈ Tinner(C) and l(t) 6= τ: Then m|inner(C)
l(t)−−−→ m′|inner(C) in

RG(inner(C)) and Q
l(t)−−−→ Q′ in MPb(N) and (m′|inner(C), Q′) ∈ $. By

Def. 99, m′|env(N) ∈ Q′. �

Example 109 Because CSD1(D) consists of more states than only state U,
the LTS MP1(D) exists. We obtained the LTS MP1(D) in Fig. 68b from
CSD1(D) in Fig. 67 by omitting the state U. Now consider the open net U
in Fig. 54b, which is a b-partner of D by Ex. 45. Figure 68a depicts the open
net D⊕U, and Fig. 68c depicts the inner net of U. The reachability graph
of inner(U) (whose states are markings of inner(U)) is weakly simulated
by MP1(D) with the weak simulation relation

$ = {([p4], Q0), ([p3], Q2)} .

We illustrate Lem. 108 with all reachable markings of D⊕U—that is, the
initial marking [p1, p4], and the markings [p1, p3, q], [p2, p3], and [p1, p3, d].
If inner(U) is in the marking [p4], then env(D) is in the marking [p1]. Ac-
cordingly, we have ([p4], Q0) ∈ $ and [p1] ∈ Q0. If inner(U) is in the mark-
ing [p3], then env(D) is in the marking [p1, qi], [p2], or [p1, do]. Accordingly,
we have ([p3], Q2) ∈ $ and [p1, qi], [p2], [p1, do] ∈ Q2. �

112 b-conformance

retrieve

shutdown
process

p2p1p0

forward

d

analyze

s

q

query

p3 p4

f

(a) Open net D⊕U

Q0:

[p1]

d,f

Q2:

[p1,qi],[p2],[p1,do]

q

f

d

s,q,d,fQ∅

3

1

4

(b) LTS MP1(D)

analyze

query

p3 p4

q

d

(c) Labeled net inner(U)

Figure 68: The open net D⊕U from Fig. 31c, the LTS MP1(D) derived from CSD1(D)
in Fig. 67, and the inner net of the open net U from Fig. 54b. We depict the
label of each state as an encircled number in the upper right corner of that
state, except for the state Q∅, whose label is shown on the left-hand side.
In addition to the figures, we have ΩD⊕U = {[p0]} and Ωinner(U) = {[]}.

In the following, we define the open net mpb(N) of an open net N which
we already motivated at the beginning of this subsection. If MPb(N) exists,
then we derive mpb(N) from a labeled net that is induced by MPb(N).

Definition 110 [open net mpb]
Let N be an open net such that the LTS MPb(N) =

(Q, δ, QMPb(N), Σin, Σout, λ) exists. Then MPb(N) induces a labeled
net N′ = (Q, δ, F′, mN′ , ΩN′ , Σout, Σin, l) with

• F′ = {(Q, (Q, x, Q′)), ((Q, x, Q′), Q′) | Q, Q′ ∈ Q∧ (Q, x, Q′) ∈ δ},

• mN′ = [QMPb(N)],

• ΩN′ = {[Q] | Q ∈ Q∧ λ(Q) = 2}, and

• l((Q, x, Q′)) = x.

We define mpb(N) as the open net whose inner net is the labeled net N′.

Example 111 Figure 69 illustrates the construction in Def. 110. The left
part of Fig. 69 sketches a part of MPb(N) for an open net N with three
states Q, R, S, an o-labeled transition from Q to R, and an i-labeled transi-
tion from Q to S. We have o ∈ ON = Σout and i ∈ IN = Σin, and λ(Q) = 2,

5.2 deciding b-conformance 113

λ(R) = 1, and λ(S) = 3. The right part of Fig. 69 sketches the result-
ing part of the inner net of mpb(N): Each state induces a place, and each
transition in MPb(N) induces a transition connecting two places in (the
inner of) mpb(N). Thereby, [Q] is a final marking of (the inner of) mpb(N),
and the labels of the inner of mpb(N) are reversed compared to N—that is,
o ∈ Σout = Impb(N) and i ∈ Σin = Ompb(N). �

Q

(Q,o,R) (Q,i,S)io

SR

)
Q

SR

o i

1 3

2

Figure 69: A sketch of the construction in Def. 110. We depict the label of each state
as an encircled number in the upper right corner of that state.

If mpb(N) exists for an open net N, then mpb(N) is a b-partner of N.

Lemma 112 [mpb is a b-partner]
Let N be an open net such that MPb(N) exists. Then mpb(N) is a b-partner
of N.

Proof. By the construction of mpb(N) in Def. 110, N and mpb(N) are com-
posable, N ⊕mpb(N) is a closed net, and RG(inner(mpb(N))) and MPb(N)
are bisimilar with the bisimulation $. It remains to show that every reach-
able marking m = m|env(N)+m|inner(mpb(N)) of N⊕mpb(N) is b-bounded and
responsive.

As RG(inner(mpb(N))) and MPb(N) are bisimilar, $ is also a (weak) sim-
ulation of RG(inner(mpb(N))) by MPb(N). With Lem. 108, there exists a
state Q of MPb(N) such that (m|inner(mpb(N)), Q) ∈ $ and m|env(N) ∈ Q. Each
node of MPb(N) is a set of b-bounded markings of env(N) by Def. 104,
thus m|env(N) is b-bounded in env(N). The marking m|inner(mpb(N)) is even 1-
bounded by the construction of mpb(N) in Def. 110. Thus, m is b-bounded
in N ⊕mpb(N).

We show that m is responsive by distinguishing two cases:

1. Let m|env(N) be a stop except for inputs in env(N). We can exclude
λ(Q) = 0 by b-boundedness, thus λ(Q) = 1 or λ(Q) = 2 by Def. 99.

a) If λ(Q) = 1: Then there exist an x ∈ Σin and a state Q′ such that
Q x−→ Q′ in MPb(N) by the construction of MPb(N) in Def. 104.
Then m|inner(mpb(N))

x
=⇒ in inner(mpb(N)) by the construction of

mpb(N) in Def. 110 and m is responsive in N ⊕mpb(N) because
x ∈ Ompb(N).

b) If λ(Q) = 2: Then m|env(N) is not dead except for inputs in env(N)
by Def. 99, thus there exists a final marking m′ of env(N) such
that m|env(N)

ε
=⇒ m′. In addition, m|inner(mpb(N)) is a final marking

of inner(mpb(N)) by Def. 110. Therefore, the final marking m′ +
m|inner(mpb(N)) of N ⊕mpb(N) is reachable from m in N ⊕mpb(N)
and, thus, m is responsive.

114 b-conformance

2. If m|env(N) is not a stop except for inputs in env(N): Then there ex-

ists an x ∈ ON = Σout such that m|env(N)
x
=⇒ in env(N) by Def. 55,

which implies there exists a state Q′ such that Q x−→ Q′ in MPb(N)

by the construction of MPb(N) in Def. 104. Thus, m|inner(mpb(N))
x
=⇒ in

inner(mpb(N)) by the construction of mpb(N) in Def. 110. We can re-
peat this step only a finite number of times, as the number of all tokens
on former interface places of N is bounded in m|env(N). Thus, there is
a marking m′ reachable from m in N ⊕mpb(N) such that m′|env(N) is a
stop except for inputs in env(N), and m′ is responsive in N ⊕mpb(N)
by the previously handled case. As m′ is reachable from m, m is re-
sponsive as well.

We showed that every reachable marking m of N ⊕ C is b-bounded and
responsive, thus C is a b-partner of N. �

Example 113 Consider again the LTS MP1(D) from Fig. 68b, which we
rearranged in Fig. 70a to emphasize its similarity to mp1(D). Figure 70b
shows its induced open net mp1(D) according to Def. 110, and Fig. 70c
shows the composition D⊕mp1(D). The place p3 corresponds to the state
Q∅, the place p4 corresponds to the state Q0, and the place p5 corresponds
to the state Q2. The place p4 is initially marked because Q0 is the initial
state of MP1(D). The set of final markings of mp1(D) is empty, because no
state of MP1(D) is labeled with 2.

As the place p3 corresponds to the state Q∅ of MP1(D), no reachable
marking of D⊕mp1(D) marks p3 by Lem. 108. Thus, the transitions t3 to
t8 never fire in D⊕mp1(D). Clearly, D⊕mp1(D) is 1-bounded and D and
mp1(D) are responsive, perpetually communicating over the places q and
d. Thus, mp1(D) is a 1-partner of D. �

Knowing that the open net mpb(N) is a b-partner of N, we have the ingre-
dients to prove the converse of Lem. 106.

Lemma 114
For an open net N, we have L0(CSDb(N)) ⊇ uncovb(N).

Proof. We distinguish two cases:

1. If MPb(N) does not exist, then CSDb(N) consists solely of state U

with an x-labeled self-loop for each x ∈ I] O by Def. 104. Thus,
L0(CSDb(N)) = Σ∗ ⊇ uncovb(N).

2. If MPb(N) exists, we have L(MPb(N)) = L(inner(mpb(N))) by Def. 110.
As each trace of inner(mpb(N)) is a trace of env(mpb(N)) by Def. 15, we
have L(MPb(N)) ⊆ Lb(mpb(N)). The open net mpb(N) is a b-partner
of N by Lem. 112, thus uncovb(N) ⊆ Σ∗ \ L(MPb(N)) = L0(CSDb(N))
by Def. 104. �

With Lem. 106 and Lem. 114, we have shown that the language L0 of
CSDb(N) coincides with uncovb(N).

Theorem 115 [CSDb represents uncovb]
For an open net N, we have L0(CSDb(N)) = uncovb(N).

The next corollary states that the LTS CSDb(N) of an open net N repre-
sents N’s b-coverable stopdead-semantics. It follows directly from Thm. 115

5.2 deciding b-conformance 115

Q0:

[p1]
d,f

q

f

d

s,q,d,f Q∅
Q2:

[p1,qi],[p2],[p1,do]

314

(a) LTS MP1(D)

d
t2

s

q

t1

p4 p5

f

t7

t8

p3

t3

t4

t5

t6 t9

(b) Open net mp1(D)

d

t2

s

q

t1

p4 p5

f

t7

t8

p3

t3

t4

t5

t6 t9

retrieve

shutdown
process

p2p1p0

forward

(c) Open net D⊕mp1(D)

Figure 70: The rearranged LTS MP1(D) from Fig. 68b, the open net mp1(D) that we
derived from MP1(D) in Fig. 68b according to Def. 110, and its composi-
tion D⊕mp1(D) with the open net D from Fig. 54a. We depict the label of
each state of MP1(D) as an encircled number in the upper right corner of
that state. In addition to the figures, we have Ωmp1(D) = ΩD⊕mp1(D) = ∅.

and the construction of CSDb(N) in Def. 104. For readability reasons, we
write Li instead of Li(CSDb(N)), for i ∈ {0, . . . , 4}.

Corollary 116 [languages of CSDb]
For an open net N and CSDb(N), we have

1. CSDb(N) is finite, τ-free, and deterministic.

2. L0 = uncovb(N)

3. L0] L1 = udeadb(N)

4. L0] L1] L2 = ustopb(N)

5. L0] L1] L2] L3 = uLb(N)

6. L0] L1] L2] L3] L4 = Σ∗ = L

7. L1] L2] L3] L4 = co-uncovb(N)

8. L2] L3] L4 = co-udeadb(N)

116 b-conformance

9. L3] L4 = co-ustopb(N)

10. L4 = co-uLb(N)

Finally, we can prove the main claim of this section: We can decide
whether an open net Impl b-conforms to an open net Spec on their labeled
transition systems CSDb(Impl) and CSDb(Spec). The idea is to check for the
language inclusions from Thm. 97 using the least bisimulation relation $ be-
tween CSDb(Impl) and CSDb(Spec): If two states QImpl and QSpec are related
by $, then intuitively they represent the same set of words; we can decide
which language of the b-coverable stopdead-semantics contains these words
using the state labels of QImpl and QSpec and Cor. 116.

Theorem 117 [deciding b-conformance with CSDb]
For any two interface-equivalent open nets Impl and Spec, Impl b-conforms
to Spec if and only if CSDb(Impl) and CSDb(Spec) are bisimilar with the
least bisimulation $ such that for all (QImpl, QSpec) ∈ $,

λCSDb(Impl)(QImpl) ≥ λCSDb(Spec)(QSpec) .

Proof. ⇒: By interface-equivalence of Impl and Spec and Cor. 116(6), we
have L(CSDb(Impl)) = L(CSDb(Spec)) = Σ∗. As CSDb(Impl) and CSDb(Spec)
are deterministic by Cor. 116(1), we conclude the existence of the bisimula-
tion $. With Thm. 97 and Cor. 116(2)–(5), we conclude that λCSDb(Impl)(QImpl) ≥
λCSDb(Spec)(QSpec).
⇐: By assumption and Cor. 116(2)–(5), we conclude that uncovb(Impl) ⊆

uncovb(Spec), udeadb(Impl) ⊆ udeadb(Spec), ustopb(Impl) ⊆ ustopb(Spec), and
uLb(Impl) ⊆ uLb(Spec). Thus, Impl b-conforms to Spec by Thm. 97. �

Example 118 Consider again the patched database D′ from Fig. 56. We
already showed in Ex. 98 that D′ b-conforms to D from Fig. 54a, but D does
not b-conform to D′. Figure 67 depicts the LTS CSD1(D) and Fig. 71 depicts
the LTS CSD1(D′). The difference of CSD1(D′) to CSD1(D) is caused by
the absence of transition forward in D′: At the initial marking [p1], D′ may
fire transition shutdown after receiving an s, yielding the final marking [].
In contrast to D, D′ can leave its final marking only by receiving another
s or a q. CSD1(D′) reflects this with the 2-labeled state Q′1—a state not
present in CSD1(D).

There exists a least bisimulation relation $ between CSD1(D) and
CSD1(D′)

$ = {(Q0, Q′0), (Q2, Q′2), (Q∅, Q∅), (U, Q′1), (U, U), (U, Q∅)} ,

which is uniquely defined because both LTS are deterministic. We have

λCSD1(D)(Q0) = 1 = 1 = λCSD1(D′)(Q
′
0),

λCSD1(D)(Q2) = 3 = 3 = λCSD1(D′)(Q
′
2),

λCSD1(D)(Q∅) = 4 = 4 = λCSD1(D′)(Q∅),

λCSD1(D)(U) = 0 < 2 = λCSD1(D′)(Q
′
1),

λCSD1(D)(U) = 0 = 0 = λCSD1(D′)(U), and

λCSD1(D)(U) = 0 < 4 = λCSD1(D′)(Q∅) .

5.2 deciding b-conformance 117

Thus, D′ b-conforms to D and D does not b-conform to D′ according to
Thm. 117, which we already showed in Ex. 98 arguing about their b-cover-
able stopdead-semantics’. �

Q'0:

[p1]

d,f

Q'2:

[p1,qi],[p2],[p1,do]

q

Q'1:

[p1,si],[]

s

s,q
f

d

d,f

s,q,d,f

s,q

s,q,d,fQ∅4 U0

2

1

3

Figure 71: The LTS CSD1 (D′) encoding the 1-coverable stopdead-semantics of the
open net D′ in Fig. 56. We depict the label of each state as an encircled
number in the upper right corner of that state, except for the states Q∅
and U, whose labels are shown on the left-hand side.

For the sake of completeness, we also derive the following easy corollary:
Every open net with at least one b-partner has a b-partner whose inner net
is τ-free. This fact directly follows from Lem. 112, because the inner net of
mpb(N) is τ-free by construction.

Corollary 119
If there exists a b-partner of an open net N, then there exists a b-partner of
N whose inner net is τ-free.

We complete this section with a short complexity analysis of the decision
procedures for b-responsiveness and b-conformance outlined in Sect. 5.2.1
and Sect. 5.2.2.

5.2.3 Analyzing the computational complexity

Theorem 102 induces an algorithm for deciding whether two given com-
posable open nets N1 and N2 are b-partners: First, we compute BSDb(N1)
and BSDb(N2). Second, we build the least bisimulation for BSDb(N1) and
BSDb(N2) and check if the labels of related states satisfy the condition in
Thm. 102. Figure 72 illustrates this algorithm.

Algorithm 2 lists an algorithm to compute the LTS BSDb(N) from a given
open net N, which is a straight-forward implementation of Def. 99. In the
following, we analyze its computational complexity. Let I and O be fixed
with s = |I]O| and let N = (P, T, F, mN , Ω, I, O) be an open net. Let n be
the number of reachable b-bounded markings in env(N). The construction
of the LTS S in line 1 yields at most n + 1 = O(n) states—one state for each
b-bounded marking of env(N) and the state U.

118 b-conformance

O
pe

n
Ne

ts
bisimulation with
label checking

LT
Ss

compute

BSDb(N2)BSDb(N1)

compute

no
-partnersRe

su
lt

-partners

no yes

b
b

U2

3

0

1

U2

3

0

1

N1 N2

O(n1
2 · 2n1) O(n2

2 · 2n2)

O(2n1+n2)

Figure 72: Using BSDb to decide if two composable open nets N1 and N2 are b-part-
ners. We highlighted the complexity of each part of the decision algo-
rithm.

We can compute the closure sets in line 2 by employing the Floyd-Warshall-
algorithm [95] onto S, thereby setting the weights of all τ-labeled transitions
in S to 0 and the weights of all other transitions to 1: The set closure(m)
consists of all states within distance 0 from m. The runtime of the Floyd-
Warshall-algorithm on S is O(n3). As closure(m) consists of O(n) states for
each state m, every lookup in closure (e.g., lines 3, 6, 7, etc.) takes O(n) time.
Therefore, we can compute the status of each marking (lines 4–11) in O(n3).

The powerset construction in lines 15 to 36 yields at most 2n + 1 = O(2n)
states—one state for each subset of Menv(N),b and the state U—and s · (2n +
1) = O(2n) transitions. For each transition (Q, x, Q′) of BSDb(N), Q consists
of at most O(n) markings m ∈ Q (line 20). Because env(N) has exactly one
x-labeled transition, there exists at most one marking m′ that is reachable
from m in S via an x-labeled transition (line 21). For each marking m′ in turn,
we have to consider its closure closure(m′) (lines 22–29), which are at most
O(n) markings. Thus, the time complexity for each transition of BSDb(N) is
O(n2). Notice that the loop in line 18 is constant because s = |Σ| is constant.
We touch each of the O(2n) transition at most once, yielding a worst case
complexity of O(n3) + O(n2 · 2n) = O(n2 · 2n) for computing BSDb(N).

Algorithm 3 lists an algorithm to compute the least bisimulation between
two LTS BSDb(N1) and BSDb(N2) and check their related state-labels accord-
ing to Thm. 102. Let ni be the number of reachable b-bounded markings in
env(Ni) for i ∈ {1, 2}. In the worst case, we have to consider each pair of
states of BSDb(N1) and BSDb(N2)—that is, O(2n1 · 2n2) = O(2n1+n2) states.
The check for each pair requires O(s). Therefore, the algorithm in Alg. 3 has
a worst case complexity of O(2n1+n2).

By Thm. 102, we can combine Alg. 2 and Alg. 3 to decide whether two
open nets N1 and N2 are b-partner. Let ni be the number of reachable b-
bounded markings in env(Ni) for i ∈ {1, 2}. Then, the worst case com-
plexity to decide b-responsiveness is O(n1

2 · 2n1) + O(n2
2 · 2n2) + O(2n1+n2).

Figure 72 also illustrates the complexity of the parts of the decision algo-
rithm.

5.2 deciding b-conformance 119

Input : open net N
Output : LTS BSDb(N)

1 construct LTS S = (QS, δS, qS, IN , ON , ΩS) from RG(env(N)) but stop
at each bound-violation and merge them into the state U ∈ QS

2 compute closure(m) = {m′ | m ε
=⇒ m′} in S for all m ∈ QS

3 if U ∈ closure(qS) then return ({U}, ∅, U, IN , ON , λ)
4 foreach m ∈ QS do
5 if ∀m′ ∈ closure(m) : ∀x ∈ ON : m′ 6 x−→ in S then
6 if ∀m′ ∈ closure(m) : m′ 6∈ ΩS then set status(m) = dead
7 else set status(m) = stop
8 else
9 set status(m) = no-stop

10 end
11 end
12 let BSDb(N) = (Q, δ, QBSDb(N), Σin, Σout, λ) where
Q = {QBSDb(N), U, Q∅}, δ = ∅, QBSDb(N) = closure(qs), Σin = IN ,
Σout = ON , and λ(QBSDb(N)) = 3, λ(U) = 0, λ(Q∅) = 4

13 if ∃m ∈ QBSDb(N) : status(m) = stop then set λ(QBSDb(N)) = 2
14 if ∃m ∈ QBSDb(N) : status(m) = dead then set λ(QBSDb(N)) = 1
15 push QBSDb(N) onto empty Stack
16 repeat
17 pop Q from Stack
18 foreach x ∈ Σ do
19 set Q′ = ∅ and λ(Q′) = 4
20 foreach m ∈ Q do
21 if ∃m′ with m x−→ m′ in S then
22 if U ∈ closure(m′) then
23 add transition (Q, x, U) to δ
24 continue with next outer foreach loop
25 else
26 add closure(m′) to Q′

27 if ∃m′′ ∈ closure(m′) : status(m′′) = stop then set
λ(Q′) = 2

28 if ∃m′′ ∈ closure(m′) : status(m′′) = dead then set
λ(Q′) = 1

29 end
30 end
31 end
32 if Q′ 6= ∅ and λ(Q′) = 4 then set λ(Q′) = 3
33 if Q′ 6∈ Q then add Q′ to Q and push Q′ on Stack
34 add transition (Q, x, Q′) to δ

35 end
36 until Stack is empty

Algorithmus 2 : Computing BSDb(N) from N.

120 b-conformance

Input : LTS BSDb(N1) and LTS BSDb(N2)
Output : true or false

1 if λBSDb(N1)
(QBSDb(N1)

) + λBSDb(N2)
(QBSDb(N2)

) ≤ 3 then
2 return false
3 end
4 mark (QBSDb(N1)

, QBSDb(N2)
) as visited and push on empty Stack

5 repeat
6 pop pair (P, Q) from Stack
7 foreach x in Σ do
8 let P x−→ P′ in BSDb(N1) and Q x−→ Q′ in BSDb(N2)
9 if pair (P′, Q′) was not visited then

10 if λBSDb(N1)
(P′) + λBSDb(N2)

(Q′) ≤ 3 then
11 return false
12 end
13 mark (P′, Q′) as visited and push on Stack
14 end
15 end
16 until Stack is empty
17 return true

Algorithmus 3 : Deciding b-responsiveness using BSDb.

Proposition 120 [complexity of deciding b-responsiveness with BSDb]
Let N1 and N2 be two composable open nets such that N1 ⊕ N2 is a closed
net. Let ni be the number of reachable b-bounded markings in env(Ni),
for i ∈ {1, 2}. Then, we can decide whether N1 is a b-partner of N2 in
O(n1

2 · 2n1) + O(n2
2 · 2n2) + O(2n1+n2).

We proceed with a short complexity analysis of the decision procedure in
Thm. 117. Theorem 117 induces an algorithm for deciding whether an open
net Impl b-conforms to an interface-equivalent open net Spec, which we al-
ready illustrated in Fig. 59: First, we compute CSDb(Impl) and CSDb(Spec).
Second, we check if CSDb(Impl) and CSDb(Spec) are bisimilar and if the
labels of related states satisfy the condition in Thm. 117. This decision algo-
rithm is similar to the algorithm to decide b-responsiveness in Fig. 72 except
that we use CSDb instead of BSDb and check the state labels differently.

Let I and O be fixed with s = |I]O| and let N = (P, T, F, mN , Ω, I, O)
be an open net. Let n be the number of reachable b-bounded markings
in env(N). We already showed that we can compute BSDb(N) with O(2n)
states and O(2n) transitions in time O(n2 · 2n). To compute CSDb(N) from
BSDb(N) according to Def. 104, we iteratively remove states from BSDb(N)
until we reach a fixed point (i.e., the LTS CSDb(N)). Algorithm 4 lists an
algorithm for computing CSDb(N), which is, in essence, an inverse breadth-
first-search. Checking whether we have to remove a state in Alg. 4 (lines 4

and 14) can be done in O(s) = O(1) and we have to remove at most O(2n)
states from BSDb(N). Therefore, the worst case complexity of Alg. 4 is O(2n).
By combining Alg. 2 and Alg. 4, we can compute CSDb(N) (and MPb(N) by
Def. 104) from N in time proportional to O(n2 · 2n) + O(2n) = O(n2 · 2n).

By Thm. 117, deciding b-conformance for two interface-equivalent open
nets Impl and Spec boils down to computing the least bisimulation relation
between CSDb(Impl) and CSDb(Spec) and check the related state labels. Al-
gorithm 5 lists the corresponding algorithm, which is a minor modification

5.3 an alternative decision procedure for b-conformance 121

Input : LTS BSDb(N) = (Q, δ, QBSDb(N), Σin, Σout, λ)
Output : LTS CSDb(N)

1 let Queue be empty
2 foreach (Q, x, U) ∈ δ do
3 if (Q is not in Queue) then

4 if (λ(Q) = 1 and ∀y ∈ Σin : Q
y−→ U) or (x ∈ Σout) then

5 enqueue Q in Queue
6 end
7 end
8 end
9 repeat

10 dequeue Q′ from Queue
11 foreach (Q, x, Q′) ∈ δ do
12 if Q is not in Queue then
13 remove (Q, x, Q′) from δ and add (Q, x, U) to δ

14 if (λ(Q) = 1 and ∀y ∈ Σin : Q
y−→ U) or (x ∈ Σout) then

15 enqueue Q in Queue
16 end
17 end
18 end
19 until Queue is empty
20 remove unreachable states, transitions, and labels
21 return (Q, δ, QBSDb(N), Σin, Σout, λ)

Algorithmus 4 : Computing the LTS CSDb(N) from the LTS BSDb(N).

of Alg. 3: We adjust lines 1 and 10 to the condition in Thm. 117. Let n1 be
the number of reachable b-bounded markings in env(Impl) and let n2 be the
number of reachable b-bounded markings in env(Spec). Then, the algorithm
in Alg. 5 has, like Alg. 3, a worst case complexity of O(2n1+n2).

We can decide b-conformance for two given interface-equivalent open nets
Impl and Spec by combining Alg. 2, Alg. 4, and Alg. 5. Let n1 be the number
of reachable b-bounded markings in env(Impl) and let n2 be the number of
reachable b-bounded markings in env(Spec). Then, we can decide b-confor-
mance in O(n1

2 · 2n1) + O(n2
2 · 2n2) + O(2n1+n2). Figure 73 illustrates the

complexity of the parts of the decision algorithm.

Proposition 121 [complexity of deciding b-conformance with CSDb]
Let Impl and Spec be two interface-equivalent open nets. Let n1 be the num-
ber of reachable b-bounded markings in env(Impl) and let n2 be the num-
ber of reachable b-bounded markings in env(Spec). Then, we can decide
whether Impl b-conforms to Spec in O(n1

2 · 2n1) + O(n2
2 · 2n2) + O(2n1+n2).

In the following section, we motivate and elaborate an alternative decision
procedure for b-partner and b-conformance.

5.3 an alternative decision procedure for b-conformance

The decision procedure for b-conformance that we illustrated in Fig. 59 al-
ways requires to compute the LTS CSDb for both given open nets Impl and
Spec. In this section, we elaborate on a decision procedure for b-conformance

122 b-conformance

Input : LTS CSDb(Impl) and LTS CSDb(Spec)
Output : true or false

1 if λCSDb(Impl)(QCSDb(Impl)) < λCSDb(Spec)(QCSDb(Spec)) then
2 return false
3 end
4 mark (QCSDb(Impl), QCSDb(Spec)) as visited and push on empty Stack
5 repeat
6 pop pair (P, Q) from Stack
7 foreach x in Σ do
8 let P x−→ P′ in CSDb(Impl) and Q x−→ Q′ in CSDb(Spec)
9 if pair (P′, Q′) was not visited then

10 if λCSDb(Impl)(P′) < λCSDb(Spec)(Q′) then
11 return false
12 end
13 mark (P′, Q′) as visited and push on Stack
14 end
15 end
16 until Stack is empty
17 return true

Algorithmus 5 : Deciding b-conformance using CSDb. We highlight
the difference to Alg. 3.

Implementation Specification

O
pe

n
Ne

ts

bisimulation with
label checking

LT
Ss

compute compute

not
-conformingRe

su
lt

-conforming

no yes

b
b

CSDb(Impl) CSDb(Spec)

U2

3

0
U2

3

0

Impl Spec

O(n1
2 · 2n1) O(n2

2 · 2n2)

O(2n1+n2)

Figure 73: Using CSDb to decide if an open net Impl b-conforms to an interface-
equivalent open net Spec. We highlighted the complexity of each part
of the decision algorithm.

that requires to compute only one LTS from Spec, but no LTS from Impl. The
alternative decision procedure checks b-conformance, with a method called
matching, directly on the state-space of Impl and the LTS that we computed
from Spec. Regarding worst case complexity, matching is slightly more ex-
pensive than computing the bisimulation with label checking in Fig. 59 but

5.3 an alternative decision procedure for b-conformance 123

avoids computing CSDb(Impl) and operates directly on the state-space of
Impl. This state-space is in general much smaller than CSDb(Impl).

In Sect. 5.3.1, we first demonstrate the idea of matching by elaborating an
alternative decision procedure for b-responsiveness. Then, we extend this
decision procedure for b-responsiveness to an alternative decision procedure
for b-conformance in Sect. 5.3.2.

5.3.1 Deciding b-responsiveness using matching

In Thm. 102, we showed that we can decide whether two given open nets N
and C are b-partners by comparing their LTS BSDb(N) and BSDb(C). The
idea for an alternative decision procedure is to compute BSDb (or, more pre-
cisely, an artifact derived from BSDb) only for one open net instead of for
both. This artifact shall be the LTS MPb(N) from Def. 104: We already estab-
lished in Lem. 108 a relation between MPb(N) and the inner of a composable
open net C of N. In addition, MPb(N) represents (parts of) the b-coverable
stopdead-semantics of N by Cor. 116, which, in turn, over-approximates the b-
bounded stopdead-semantics of N by Cor. 95. Figure 74 illustrates this idea.

O
pe

n
Ne

ts

matching

LT
Ss

NC

compute

no
-partnersRe

su
lt

-partners

no yes

b
b

MPb(N)
2

3

Figure 74: Using matching to decide if two given open nets N and C are b-partners.

For deciding whether C is a b-partner of N, we shall introduce a weak
simulation relation with additional requirements, called matching, between
(the inner of) C and MPb(N). The idea of matching exploits that MPb(N) is
an over-approximation of the b-bounded stopdead-semantics of a b-partner
C:

Lemma 122 [MPb over-approximates b-bounded stopdead-semantics]
Let N and C be two composable open nets. If N and C are b-partners, then

• boundb(C) ⊆ co-uLb(N),

• deadb(C) ⊆ co-ustopb(N),

• stopb(C) ⊆ co-udeadb(N), and

• Lb(C) ⊆ co-uncovb(N).

124 b-conformance

Proof. We have boundb(C) ⊆ deadb(C) ⊆ stopb(C) ⊆ Lb(C) ⊆ co-uncovb(N)
by Def. 84 and Def. 93. Then the inclusions follow from Prop. 88. �

The four languages co-uLb(N), co-ustopb(N), co-udeadb(N), and co-uncovb(N)
in Lem. 122 are represented in MPb(N) by Cor. 116(7–10). However, these
languages do not always correspond to the b-bounded stopdead-semantics
of a b-partner of N; they are only over-approximations. Therefore, we have
to exclude some of the open nets C whose b-bounded stopdead-semantics is
characterized by MPb(N): The first inclusion in Lem. 122 implies that every
boundb-violator of C (and, therefore, of inner(C)) must reach the empty state
of MPb(N), as co-uLb(N) is solely represented by L4(MPb(N)). The second
inclusion in Lem. 122 restricts the dead-traces of C: A dead-trace w must
reach a state Q of MPb(N) such that λ(Q) 6= 1 and λ(Q) 6= 2. There must
exist an outgoing x-labeled transition of Q with x ∈ ON and C must be able
to receive that message x; otherwise, N and C cannot “progress”. The third
inclusion in Lem. 122 restricts the stop-traces of C in a similar way as the sec-
ond inclusion, but additionally allows for mutual termination by reaching
a final marking. In other words, whenever C internally stops (i.e., reaches
a stop except for inputs in inner(C)), then either C must reach a marking
from which it can receive a message that was sent by N or N and C inter-
nally reach a final marking. In other words, The last inclusion in Lem. 122

implies that env(C) (and, therefore, inner(C)) must be weakly simulated by
L(MPb(N)).

Definition 123 [matching]
Let N be an open net such that MPb(N) exists. An open net C matches with
MPb(N) if

1. IC = Σout and OC = Σin, and

2. RG(inner(C)) is weakly simulated by MPb(N) with the least weak
simulation relation $ such that for all (m, Q) ∈ $:

a) If m is not b-bounded in inner(C), then Q = Q∅.

b) If m is a stop except for inputs in inner(C), then for all mQ ∈ Q:

i. there exists a final marking m′Q of env(N) such that mQ
ε
=⇒

m′Q in env(N), or

ii. there exists an x ∈ ON such that m x
=⇒ in inner(C) and

mQ
x
=⇒ in env(N).

c) If m is dead except for inputs in inner(C), then for all mQ ∈ Q,
there exists an x ∈ ON such that m x

=⇒ in inner(C) and mQ
x
=⇒

in env(N).

We refer to $ as the matching relation.

Example 124 The open net U in Fig. 54b matches with MP1(D) of the open
net D in Fig. 54a: The reachability graph of the inner net of U (depicted
in Fig. 68c) is weakly simulated by MP1(D) (depicted in Fig. 68b) with the
weak simulation relation

$ = {([p4], Q0), ([p3], Q2)} ,

which we already detailed in Ex. 109. Every marking of inner(U) is b-
bounded, thus Def. 123(2a) holds trivially. The only final marking of

5.3 an alternative decision procedure for b-conformance 125

inner(U) is [], thus [p3] is dead except for inputs in inner(U). Neverthe-

less, we have d ∈ OD such that [p3]
d
=⇒ in inner(U) and m d

=⇒ in env(D) for
every m ∈ Q2, thus Def. 123(2) holds and U matches with D. �

With the next theorem, we show that matching gives a necessary and
sufficient condition for deciding whether an open net C is a b-partner of
an open net N. For the proof, we frequently employ that, for all open
nets N, the b-bounded stopdead-semantics of inner(N) is included in the b-
bounded stopdead-semantics of env(N). Recall that the b-bounded stopdead-
semantics of inner(N) is well-defined by Def. 84, as inner(N) is a labeled
net. Therefore, we directly conclude the following corollary from Def. 15,
Def. 17, and Def. 84.

Corollary 125
For an open net N, we have

• boundb(inner(N)) ⊆ boundb(N),

• Lb(inner(N)) ⊆ Lb(N),

• stopb(inner(N)) ⊆ stopb(N), and

• deadb(inner(N)) ⊆ deadb(N).

Theorem 126 [characterizing all b-partners]
Let N be an open net such that MPb(N) exists. Then an open net C matches
with MPb(N) iff C is a b-partner of N.

Proof. ⇒: By Def. 123(1), N and C are composable and N ⊕ C is a closed
net. Let m = m|env(N) + m|inner(C) be a reachable marking in N ⊕ C, and let
$ denote the matching relation. Then there exists a state Q of MPb(N) such
that (m|inner(C), Q) ∈ $ and m|env(N) ∈ Q by Lem. 108. It remains to show
that m is b-bounded and responsive.

Each state of MPb(N) is a (possibly empty) set of b-bounded markings
of env(N) by Def. 104, thus m|env(N) ∈ Q is b-bounded in env(N). Assume
m|inner(C) is not b-bounded in inner(C). Then Q = Q∅ by Def. 123(2a), which
contradicts m|env(N) ∈ Q. Thus, m|inner(C) is b-bounded in inner(C) and m is
b-bounded in N ⊕ C.

We show by Noetherian induction on the number of tokens on ON that m
is responsive by distinguishing all possible cases in depth:

1. If m|inner(C) is not a stop except for inputs in inner(C):
Then m is trivially responsive in N ⊕ C by Def. 15 and Def. 41.

2. If m|inner(C) is a stop except for inputs in inner(C):

a) Assume that m|inner(C) is not dead except for inputs in inner(C)

and there exists a final marking m1 of env(N) such that m|env(N)
ε
=⇒

m1 in env(N):
Because m|inner(C) is not dead except for inputs in inner(C), there

exists a final marking m2 of inner(C) such that m|inner(C)
ε
=⇒ m2

in inner(C) by Def. 84. Then m1 + m2 is a final marking of N ⊕ C
and m1 + m2 is reachable from m in N ⊕ C, thus m is responsive
by Def. 41.

126 b-conformance

b) If m|inner(C) is dead except for inputs in inner(C) or there does not

exist a final marking m1 of env(N) such that m|env(N)
ε
=⇒ m1 in

env(N):
In either case, there exists an x ∈ ON and a marking m′ of N ⊕
C such that m|inner(C)

x
=⇒ m′|inner(C) in inner(C) and m|env(N)

x
=⇒

m′|env(N) in env(N) by Def. 123(2b) and Def. 123(2c). These can be

combined to show m ε
=⇒ m′ in N ⊕ C. Either, a token was put

onto ON along m|env(N)
x
=⇒ m′|env(N) and we are done, or a token

is removed from x and we are done by induction.

We showed that every reachable marking m of N ⊕ C is b-bounded and
responsive, thus C is a b-partner of N.
⇐: C is a b-partner of N, thus Def. 123(1) holds trivially. With Lem. 122

and Cor. 116(7), we have Lb(C) ⊆ L(MPb(N)) and hence the weak simu-
lation $ of RG(inner(C)) by MPb(N) exists; $ is uniquely defined because
MPb(N) is deterministic. For the rest of the proof, let (m, Q) ∈ $. We
show that items (2a), (2b), and (2c) of Def. 123 hold. Let minner(C)

w
=⇒ m in

inner(C).

• Assume m is not b-bounded in inner(C), thus w ∈ boundb(C) by Def. 84

and Cor. 125. Then w ∈ co-uLb(N) by Lem. 122 and Q = Q∅ by
Cor. 116(10), which implies Def. 123(2a).

• Assume m is a stop except for inputs in inner(C), thus w ∈ stopb(C) ⊆
co-udeadb(N) by Cor. 125 and Lem. 122, and λ(Q) = 2, λ(Q) = 3, or
λ(Q) = 4 by Cor. 116(8). Assume there exists a marking mQ ∈ Q of
env(N) violating Def. 123(2b).

1. In the case mQ is a stop except for inputs in env(N):
Then mQ is dead except for inputs in env(N) as Def. 123(2bi) is
violated, thus λ(Q) = 1 by Def. 99, a contradiction.

2. In the case mQ is not a stop except for inputs in env(N):
Then there exists an x ∈ ON such that mQ

x
=⇒ in env(N), but

for all x ∈ ON with mQ
x
=⇒ in env(N), m 6 x

=⇒ in inner(C) as
Def. 123(2bii) is violated. Then there exists a word w′ ∈ {x ∈
ON | mQ

x
=⇒ in env(N)}+ such that ww′ ∈ stopb(N) (because the

number of tokens on former output places of N in mQ is bounded
and the firing of an x-transition in env(N) does not enable other
transitions) and ww′ ∈ deadb(C) (because m is a stop except for
inputs, env(C) cannot use/remove the tokens produced along w′

since m 6 x
=⇒ in inner(C), and all final markings of env(C) have

empty interface places). This contradicts Prop. 88, thus no mark-
ing mQ ∈ Q violates Def. 123(2b).

• Assume m is dead except for inputs in inner(C), thus w ∈ deadb(C) ⊆
co-ustopb(N) by Cor. 125 and Lem. 122, and λ(Q) = 3 or λ(Q) = 4
by Cor. 116(9). Thus, any mQ ∈ Q is not a stop except for inputs in
env(N), and we are done by the previous paragraph. �

Example 127 We already showed in Ex. 124 that the open net U in Fig. 54b
matches with MP1(D) of the open net D in Fig. 54a. Thus, by Thm. 126, U
is a 1-partner of D, which we already detailed in Ex. 89. �

5.3 an alternative decision procedure for b-conformance 127

5.3.2 Deciding b-conformance using matching

In this section, we extend the decision procedure for b-responsiveness from
the previous section to a decision procedure for b-conformance. To this end,
we develop a finite characterization of all b-conforming open nets. For char-
acterizing all open nets that b-conform to an open net N, we introduce the
notion of a maximal b-partner maxb(N) of N. We later show that every b-
partner of maxb(N) b-conforms to N. Thus, matching with MPb(maxb(N))
characterizes all open nets that b-conform to N. Finally, we show how
maxb(N) can be constructed from MPb(N).

Intuitively, a b-partner M of N is maximal if the trace sets of M’s b-
bounded stopdead-semantics are maximal with respect to the trace-sets of
all b-partners of N.

Definition 128 [maximal b-partner]
Let X ∈ {boundb, deadb, stopb, Lb} be a trace set of the b-bounded stopdead-
semantics from Def. 84. A b-partner M of an open net N is X-maximal, if
for all b-partners C of N: X(C) ⊆ X(M). A b-partner M is maximal if M is
X-maximal for all X ∈ {boundb, deadb, stopb, Lb}.

In [258, 226], an Lb-maximal b-partner of N is called “most-permissive”,
as it allows for the most behavior of all b-partners of N.

A maximal b-partner M of an open net N characterizes all open nets that
b-conform to N; that is, every b-partner of M b-conforms to N and every
open net that b-conforms to N is a b-partner of M.

Theorem 129 [characterizing all b-conforming open nets]
Let M be a maximal b-partner of an open net Spec. Then for every open
net Impl, Impl is a b-partner of M if and only if Impl b-conforms to Spec.

Proof. ⇒: As Impl is a b-partner of M and M is a b-partner of Spec, Impl
and Spec are interface-equivalent by Def. 44. We show that Impl b-conforms
to Spec by showing the inclusions of their b-coverable stopdead-semantics
according to Thm. 97.

• Let w ∈ uncovb(Impl). Then w 6∈ Lb(M) because M is a b-partner of
Impl. As M is Lb-maximal, there does not exist a b-partner C of Spec
with w ∈ Lb(C). Thus, w ∈ uncovb(Spec).

• Let w ∈ udeadb(Impl) = dead(Impl) ∪ uncovb(Impl) by Def. 93. If w ∈
uncovb(Impl), then w ∈ uncovb(Spec) ⊆ udeadb(Spec) by the first item.
Thus, we assume w ∈ dead(Impl). Then w 6∈ stopb(M) by Prop. 88. As
M is stopb-maximal, there does not exist a b-partner C of Spec with w ∈
stopb(C). Then either w 6∈ L(Spec) or w ∈ udeadb(Spec) by Lem. 96(3).
If w ∈ udeadb(Spec), we are done. Otherwise, w 6∈ uLb(Spec) because
w 6∈ uncovb(Spec), and there exists a b-partner C of Spec with w ∈
boundb(C) by Lem. 96(1) and w ∈ stopb(C). This contradicts that M is
stopb-maximal, thus w ∈ udeadb(Spec).

• Let w ∈ ustopb(Impl) = stop(Impl) ∪ uncovb(Impl) by Def. 93. If w ∈
uncovb(Impl), then w ∈ uncovb(Spec) ⊆ ustopb(Spec) by the first item.
Thus, we assume w ∈ stop(Impl). Then w 6∈ deadb(M) by Prop. 88. As
M is deadb-maximal, there does not exist a b-partner C of Spec with w ∈
deadb(C). Then either w 6∈ L(Spec) or w ∈ ustopb(Spec) by Lem. 96(2).
If w ∈ ustopb(Spec), we are done. Otherwise, w 6∈ uLb(Spec) because

128 b-conformance

w 6∈ uncovb(Spec), and there exists a b-partner C of Spec with w ∈
boundb(C) by Lem. 96(1) and w ∈ deadb(C). This contradicts that M is
deadb-maximal, thus w ∈ ustopb(Spec).

• Let w ∈ uLb(Impl) = L(Impl) ∪ uncovb(Impl) by Def. 93. If w ∈
uncovb(Impl), then w ∈ uncovb(Spec) ⊆ uLb(Spec) by the first item.
Thus, we assume w ∈ L(Impl). Then w 6∈ boundb(M) by Prop. 88. As
M is boundb-maximal, there does not exist a b-partner C of Spec with
w ∈ boundb(C). Then w ∈ uLb(Spec) by Lem. 96(1).

⇐: As Impl b-conforms to Spec and M is a b-partner of Spec, M is a b-
partner of Impl by Def. 47 and Impl is a b-partner of M by Def. 44. �

In the rest of this section, we construct a maximal b-partner of an open
net N. As the starting point, we take the b-partner mpb(N) from Def. 110,
which is already boundb-maximal and Lb-maximal.

Lemma 130 [mpb is boundb-maximal and Lb-maximal]
Let N be an open net such that MPb(N) exists. Then mpb(N) is a boundb-
maximal and Lb-maximal b-partner of N.

Proof. As MPb(N) exists, the open net mpb(N) is a b-partner of N by Lem. 112.
In addition, the state Q∅ exists in MPb(N) by the construction of MPb(N).
Let C be a b-partner of N. Then

• boundb(C) ⊆ co-uLb(N) = L4(MPb(N)) ⊆ boundb(mpb(N)):
The first inclusion holds by Prop. 88 and boundb(C) ∩ uncovb(N) = ∅,
the equation by Cor. 116(10), and the second inclusion holds by the
construction of mpb(N) in Def. 110: The open net mpb(N) has at least
one output place o and an internal transition t such that •t = {Q∅}
and t• = {Q∅, o}. In other words, once the place Q∅ is marked, t may
produce an unlimited number of tokens on o. Therefore, every trace w
to state Q∅ in MPb(N) (i.e., w ∈ L4(MPb(N))) is a boundb-violator of
mpb(N). Thus, mpb(N) is a boundb-maximal b-partner of N.

• Lb(C) ⊆ co-uncovb(N) = L(MPb(N)) ⊆ Lb(mpb(N)):
The first inclusion holds by Def. 93. By Cor. 116(7) and the construc-
tion of MPb(N) in Def. 104, we have co-uncovb(N) = L(CSDb(N)) \
L0(CSDb(N)) = L(MPb(N)). The second inclusion holds by the con-
struction of mpb(N) from MPb(N) in Def. 110 and by Cor. 125. Thus,
mpb(N) is an Lb-maximal b-partner of N. �

Because mpb(N) is already boundb- and Lb-maximal, we slightly mod-
ify the construction of mpb(N) from MPb(N) to get a maximal b-partner
maxb(N) of N. The idea for the construction of maxb(N) is to shift every
non-dead-trace w of N to the dead-traces of maxb(N): If mmpb(N)

w
=⇒ [Q] in

env(mpb(N)) (recall that every state of MPb(N) is a place of mpb(N)), we
introduce an internal transition that shifts the token from Q to a new place
Q′ such that every output transition enabled at [Q] is not enabled at [Q′]. In
addition, if w is also a stop-trace of N, we add [Q′] to the final markings of
maxb(N); that way, w is not a dead- but a stop-trace of maxb(N).

Definition 131 [open net maxb]
Let N be an open net such that MPb(N) exists. We modify the induced
labeled net of MPb(N) (see Def. 110) as follows: For every place Q where

5.3 an alternative decision procedure for b-conformance 129

1. λ(Q) 6= 1, and

2. there exists an x ∈ IN with Q x−→ in MPb(N),

we add a fresh place Q′ and a fresh τ-labeled transition t such that •t =
{Q} and t• = {Q′}. We add [Q′] to the final markings if λ(Q) = 2. In
addition, for every x-labeled transition t ∈ Q• with x ∈ ON , we add a fresh
transition t′ such that •t′ = {Q′} and t′• = t•.

We define maxb(N) as the open net whose inner net is the modified
labeled net induced by MPb(N).

Example 132 Figure 75 illustrates the construction in Def. 131. The left
part of Fig. 75 sketches a part of MPb(N) for an open net N: That part
of MPb(N) has three states Q, R, S; an o-labeled transition from Q to R;
and an i-labeled transition from Q to S. We have o ∈ IN and i ∈ ON , and
λ(Q) = 2, λ(R) = 1, and λ(S) = 1. The right part of Fig. 75 sketches
the resulting part of the inner net of maxb(N): As in Def. 110, each state
induces a place, each transition in MPb(N) induces a transition connecting
two places in (the inner of) maxb(N), and o ∈ Omaxb(N) and i ∈ Imaxb(N).

Because λ(Q) 6= 1 (i.e., no marking in Q is dead except for inputs in
Q by Def. 99) and Q o−→, we add the place Q′ and the transitions t and
t′. That way, we shift every trace w that reaches the state Q in MPb(N)
(i.e., w is not a dead-trace of N) to the set of dead-traces of maxb(N), thereby
maximizing the set of dead-traces of maxb(N).

By applying this construction only in the case of λ(Q) 6= 1, we guaran-
tee that the shifted trace w is not a dead-trace of N. However, w may be a
stop-trace of N. In this case, shifting w to the dead-traces of maxb(N) fails
to produce a b-partner by Prop. 88. If w could be a stop-trace of N, then
λ(Q) = 2 like in our example in Fig. 75. Therefore, we add the final mark-
ing [Q′] to maxb(N), which implies w ∈ stop(maxb(N)) \ dead(maxb(N)). In
other words, we shift w to the set of stop-traces of maxb(N) instead. �

Q

(Q,o,R) (Q,i,S)io

t

Q'

t'

SR

!
i)

Q

SR

o i

1

2

1

Figure 75: A sketch of the construction in Def. 131. We depict the label of each
state as an encircled number in the upper right corner of that state. The
marking [Q′] is a final marking of the resulting open net.

Note that the modification in Def. 131 applies to all states Q of MPb(N)
that fulfill both requirements (i.e., λ(Q) 6= 1 and there exists an x ∈ IN

with Q x−→), including the empty state Q∅. Also note that the second
requirement in Def. 131 is not compulsory to construct a maximal b-part-
ner; it merely hinders the duplication of places for traces that are already
stop-traces in mpb(N): Recall that every outgoing transition of a state Q in
MPb(N) becomes a transition in mpb(N) by Def. 110. A transition of mpb(N)

that derives from Q x−→ with x ∈ IN = Ompb(N) has the output place x in its

130 b-conformance

postset. If no such transition exists for the place Q in mpb(N) (as required
by Def. 131(2)), then every trace w of mpb(N) that marks place Q is trivially
a stop-trace of mpb(N). Therefore, w is also a stop-trace of maxb(N) even
without the modified construction in Def. 131.

The next theorem shows that the construction in Def. 131 yields a maximal
b-partner.

Theorem 133 [maxb is a maximal b-partner]
Let N be an open net such that MPb(N) exists. Then maxb(N) is a maximal
b-partner of N.

Proof. As MPb(N) exists, the open net mpb(N) is a b-partner of N by Lem. 112

and mpb(N) is boundb-maximal and Lb-maximal by Lem. 130. The construc-
tion of maxb(N) in Def. 131 preserves every trace of mpb(N), and no addi-
tional trace or boundb-violator is introduced. Thus, we have boundb(mpb(N)) =
boundb(maxb(N)) and Lb(mpb(N)) = Lb(maxb(N)). The construction of
maxb(N) ensures that

• every trace w of maxb(N) is a stop-trace of maxb(N) except w is a dead-
trace of N (i.e., w leads to a state Q with λ(Q) = 1 in MPb(N) by
Cor. 116(2)), and

• every stop-trace w of maxb(N) is a dead-trace of maxb(N) except w is a
stop-trace of N (i.e., w leads to a state Q with λ(Q) = 2 in MPb(N) by
Cor. 116(3))

Thus, maxb(N) is a b-partner of N by Prop. 88, and maxb(N) is even maximal
by the construction of MPb(N). �

Example 134 The open net max1(D) in Fig. 76a is a maximal b-partner of
the open net D in Fig. 54a. We obtained max1(D) from MP1(D) in Fig. 70a
according to Def. 131: place p3 is induced by Q∅, place p4 is induced by
Q0, and place p5 is induced by Q2. The nine transitions t1–t9 derive from
the nine transitions of MP1(D). The place p′3 is a duplicate of p3 because
λ(Q∅) 6= 1 and Q∅

s−→ with s ∈ ID in MP1(D)—that is, Q∅ fulfills the
criterion in Def. 131. Likewise, we also added the three transitions t10, t11,
and t12.

For the state Q2 in MP1(D), we have λ(Q2) 6= 1 but there does not exist
an x ∈ ID such that Q2

x−→ in MP1(D): The only two outgoing transitions
of Q2 are labeled with d and f , respectively, and we have d, f ∈ OD. Thus,
Q2 does not fulfill the second requirement in Def. 131 and every trace of
mp1(D) that marks the place p5 (i.e., the place induced by Q2) is already
a stop-trace of mp1(D) in Fig. 70b. Therefore, w is also a stop-trace of
max1(D).

Compared to the b-partner mp1(D) of D, max1(D) differs only in the
place p′3 and the transitions t10, t11, and t12. We illustrate this difference in
Fig. 76b. These four nodes add additional stop- and dead-traces to max1(D):
For example, d 6∈ stopb(mp1(D)) because of the transitions t3 and t4, but
d ∈ stopb(max1(D)) and d ∈ deadb(max1(D)). �

Finally, we combine Thm. 126, Thm. 129 and Thm. 133 to finitely charac-
terize all b-conforming open nets for a given open net N.

5.3 an alternative decision procedure for b-conformance 131

d
t2

s

q

t1

p4 p5

f

t7

t8

p3

t3

t4

t5

t6 t9

t10p3'

t11

t12

(a) Open net max1(D)

d
t2

s

q

t1

p4 p5

f

t7

t8

p3

t3

t4

t5

t6 t9

t10p3'

t11

t12

(b) Difference of max1(D) to mp1(D) from Fig. 70b

Figure 76: The open net max1(D) that we obtained from the LTS MP1(D) in Fig. 70a
according to Def. 131, and its difference to the open net mp1(D) from
Fig. 70b. In addition to the figure, we have Ωmax1(D) = ∅.

Proposition 135 [characterizing all b-conforming open nets]
Let Spec be an open net such that MPb(Spec) exists. For every open net
Impl, Impl matches with MPb(maxb(Spec)) if and only if Impl b-conforms to
Spec.

Example 136 Figure 77a depicts the LTS MP1(max1(D)), which character-
izes all open nets that b-conform to the open net D in Fig. 54a due to
Prop. 135. We already claimed in Ex. 49 that the open net D′ in Fig. 56

1-conforms to D. According to Prop. 135, we have to check whether D′

matches with max1(D).
The reachability graph of the inner net of D′ (depicted in Fig. 77b) is

weakly simulated by MP1(max1(D)) with the weak simulation relation

$ = {([p1], Q0), ([p2], Q2), ([p1], Q3), ([], Q∅)} .

Every marking of inner(D′) is b-bounded, thus Def. 123(1) holds trivially.
The only final marking of inner(D′) is [], thus [p1] and [] are stops except
for inputs and [p1] is dead except for inputs in inner(D′). For [], Def. 123(2)

holds trivially. For [p1], we have q ∈ OMP1(max1(D)) such that [p1]
q
=⇒

in inner(D′) and m
q
=⇒ in env(max1(D)) for every m ∈ Q0 ∪ Q3, thus

Def. 123(2) holds and D′ matches with MP1(max1(D)) and D′ 1-conforms
to D. �

132 b-conformance

Q0:

[p4],[p5,qo]
s

Q2:

[p5]

q

s,qs,q,d,f

Q3:

[p5,di],[p4],[p5,qo]

d
q

s

Q∅ 4

3

1

3

(a) LTS MP1(max1(D))

retrieve

shutdown
process

p2p1

d

q

s

(b) Labeled net inner(D′)

Figure 77: The LTS MP1(max1(D)) derived from max1(D) in Fig. 76a, and the inner
net of the open net D′ from Fig. 56. We depict the label of each state as
an encircled number in the upper right corner of that state. In addition to
the figures, we have Ωinner(D′) = {[]}.

5.3.3 Analyzing the computational complexity

We complete this section with a short complexity analysis of the alterna-
tive decision procedures. Theorem 126 induces an algorithm for deciding
whether two given open nets C and N are b-partners. Let n1 be the num-
ber of reachable b-bounded markings in inner(C) and let n2 be the number
of reachable b-bounded markings in env(N). First, we compute MPb(N)
in O(n2

2 · 2n2). Second, we check if C matches with MPb(N). We already
illustrated this algorithm in Fig. 74.

Algorithm 6 lists an algorithm to check if C matches with MPb(N), which
is a straight-forward implementation of Def. 123. Let I and O be fixed with
s = |I] O| and let N = (P, T, F, mN , Ω, I, O) be an open net. The con-
struction of the LTS S in line 2 yields at most O(n1) states. As in Alg. 2,
we can compute the closure sets in line 3 by applying the Floyd-Warshall-
algorithm [95] to S with runtime O(n1

3). Every lookup in closure (e.g., lines
5 and 6) takes O(n1) time. Therefore, we can compute the status of each
marking (lines 4–11) in O(n1

3). The LTS MPb(N) has O(2n2) states, as we
already described in Sect. 5.2.3. Thus, the least weak simulation relation ρ
of RG(inner(C)) (i.e., S) by MPb(N) consists of at most O(n1 · 2n2) pairs. We
consider each pair (m, Q) at most once (lines 13–31). Notice that whenever
Q = Q∅, Q will not change in the reachable pairs due to the self-loops of
Q∅ in MPb(N) and, thus, Def. 123(2) will be vacuously true. Therefore, we
never consider a pair (m, Q∅): For the initial pair (minner(C), QMPb(N)) in line
12, QMPb(N) 6= Q∅ because of the initial marking of env(N), and we never
enqueue an unvisited pair (m′, Q∅) in line 27. For each pair (m, Q) ∈ ρ
with Q 6= Q∅, we immediately abort if m is not b-bounded in inner(C) (line
15) because of Def. 123(2a). If m is b-bounded in inner(C) in turn, we have
to check each marking mQ ∈ Q (lines 17–19 and lines 21–23) according to
Def. 123(2b) and Def. 123(2c)—that is, at most O(n2) markings. Thereby, the
checks in lines 18 and 22 can be done in constant time: We can already com-
pute the reachability of a final marking from mQ in env(N) and the possible
outputs of mQ while computing MPb(N). In addition, the possible inputs of
m in inner(C) can be computed during the Floyd-Warshall-algorithm in line
3. Therefore, we can decide whether an open net C matches with MPb(N)
in O(n1

3) + O(n1 · n2 · 2n2).

5.3 an alternative decision procedure for b-conformance 133

Input : open net C and LTS MPb(N) = (Q, δ, QMPb(N), Σin, Σout, λ)
Output : true or false

1 if IC 6= Σout or OC 6= Σin then return false
2 construct LTS S = (QS, δS, qS, IC, OC, ΩS) from RG(inner(C)) but

stop at each bound-violation
3 compute closure(m) = {m′ | m ε

=⇒ m′} in S for all m ∈ QS
4 foreach m ∈ QS do
5 if ∀m′ ∈ closure(m) : ∀x ∈ ON : m′ 6 x−→ in S then
6 if ∀m′ ∈ closure(m) : m′ 6∈ ΩS then set status(m) = dead
7 else set status(m) = stop
8 else
9 set status(m) = no-stop

10 end
11 end
12 mark (qS, QMPb(N)) as visited and enqueue in empty Queue
13 repeat
14 dequeue (m, Q) from Queue
15 if m not b-bounded in inner(C) then return false
16 if status(m) = stop then
17 foreach mQ ∈ Q do
18 if ∀m′Q with mQ

ε
=⇒ m′Q in env(N) : m′Q 6∈ Ωenv(N) and

{x ∈ Σout | m x
=⇒ in inner(C) ∧mQ

x
=⇒ in env(N)} = ∅

then return false
19 end
20 else if status(m) = dead then
21 foreach mQ ∈ Q do
22 if {x ∈ Σout | m x

=⇒ in inner(C) ∧mQ
x
=⇒ in env(N)} = ∅

then return false
23 end
24 end
25 foreach m′ ∈ QS and x ∈ Σ] {τ} with m x−→ m′ in S do
26 if x = τ then let Q′ = Q else let Q′ : Q x−→ Q′ in MPb(N)
27 if Q′ 6= Q∅ and (m′, Q′) not visited then
28 mark (m′, Q′) as visited and enqueue in Queue
29 end
30 end
31 until Queue is empty
32 return true

Algorithmus 6 : Deciding b-responsiveness using matching.

134 b-conformance

By combining Alg. 2, Alg. 4, and Alg. 6, we can decide whether two given
open nets C and N are b-partners in O(n2

2 · 2n2)+O(n1
3)+O(n1 · n2 · 2n2) =

O(n1
3) + O((n1 + n2) · n2 · 2n2). Figure 78 also illustrates the complexity of

the parts of the decision algorithm.

Proposition 137 [complexityofdeciding b-responsivenesswithmatching]
Let N1 and N2 be two composable open nets such that N1 ⊕ N2 is a
closed net. Let n1 (n2) be the number of reachable b-bounded markings
in inner(N1) (env(N2)). Then, we can decide whether N1 is a b-partner of
N2 in O(n1

3) + O((n1 + n2) · n2 · 2n2).

O
pe

n
Ne

ts

matching

LT
Ss

NC

compute

no
-partnersRe

su
lt

-partners

no yes

b
b

MPb(N)
2

3

O(n2
2 · 2n2)

O(n1
3)+

O(n1 · n2 · 2n2)

Figure 78: The complexity of the parts of the decision procedure illustrated in Fig. 74.

Deciding b-responsiveness with BSDb takes O(n1
2 · 2n1) + O(n2

2 · 2n2) +
O(2n1+n2) = O(n1

2 · 2n1) + O((2n1 + n2
2) · 2n2) time by Prop. 120. Thus, de-

ciding b-responsiveness using matching is computationally more efficient.
Note that n1 in Prop. 120 refers to the number of reachable b-bounded mark-
ings in env(N1). In contrast, n1 in Prop. 137 refers to the number of reach-
able b-bounded markings in inner(N1), which is in general much smaller
than n1 in Prop. 120, making the decision procedure using matching even
more efficient.

We can use matching also to decide whether a given open net Impl b-con-
forms to an interface-equivalent open net Spec: First, we compute maxb(Spec).
Then, we compute MPb(maxb(Spec)) and check whether Impl matches with
MPb(maxb(Spec)). Figure 79 illustrates this algorithm.

Let I and O be fixed with s = |I] O| and let Impl and Spec be two
interface-equivalent open nets with s interface places, respectively. Let n1
be the number of reachable b-bounded markings in inner(Impl) and let n2
be the number of reachable b-bounded markings in env(Spec). We already
showed in Sect. 5.2.3 that we can compute MPb(Spec) with O(2n2) states
and O(2n2) transitions in time O(n2

2 · 2n2). By Def. 131, the labeled net
env(maxb(Spec)) has at most (b+ 1)s ·O(2n2) = O(2n2) reachable b-bounded
markings. Thus, we can compute MPb(maxb(Spec)) with O(22n2) states and
O(22n2) transitions in O(2n2 2 · 22n2) and decide whether Impl matches with
MPb(maxb(Spec)) in O(n1

3) + O(n1 · 2n2 · 22n2).

5.4 implementation and experimental results 135

Implementation Specification

O
pe

n
Ne

ts

matching

LT
Ss

compute

not
-conformingRe

su
lt

-conforming

no yes

b
b

2

3

maxb(Spec)

2

3

MPb(maxb(Spec))

LT
Ss

O
pe

n
Ne

ts

compute

construct

SpecImpl

MPb(Spec)

Figure 79: Using the maximal partner and matching to decide if a given open net
Impl b-conforms to an interface-equivalent open net Spec.

In contrast to the alternative decision procedure for b-responsiveness, the
alternative decision procedure for b-conformance is practically much worse
than the decision procedure in Sect. 5.2 regarding worst case complexity.
However, n1 refers to the much smaller LTS inner(Impl) compared to the
approach with Thm. 117, where n1 refers to env(Impl). Consequently, the
alternative decision procedure for b-conformance might be more feasible
in practice for an implementation Impl with a very large state-space and a
specification Spec with a very small state-space.

5.4 implementation and experimental results

We showed how to decide whether an open net C is a b-partner of an open
net N and whether an open net Impl b-conforms to an open net Spec using
the LTSs BSDb and CSDb in Sect. 5.2 and Sect. 5.3. Both the construction
algorithm for BSDb in Alg. 2 and the construction algorithm for CSDb in
Alg. 4 have been implemented in the tool Chloe [115], which we developed
in the course of this thesis. For implementing the construction algorithm for
BSDb(N), Chloe relies on the tool LoLa [257]—a general-purpose Petri net

136 b-conformance

model checking tool—to generate the bounded state-space of env(N) (see
line 1 in Alg. 2). The algorithms to check whether two given open nets are
b-partners in Alg. 3 or b-conforming in Alg. 5 have been implemented in the
tool Delain [78]. The tools Chloe and Delain are free open source software
and were implemented in C++. Both tools were developed following a “one
tool - one purpose” policy, which has been proven helpful in implementing
a theory of correctness for open systems [155].

As a proof of concept, we calculate the LTSs BSDb and CSDb of our run-
ning examples D and U (Fig. 54), D′ (Fig. 56), U′ (Fig. 55), and five open
systems of industrial size. These open systems are services [201]. Each pro-
cess was modeled in WS-BPEL [130] and models a communication protocol
or a business process. The services “Loan Approval” and “Purchase Order”
are taken from the WS-BPEL specification [130], and the other three exam-
ples are industrial service models provided by a consulting company. To
apply the algorithms of this chapter, we first translated the WS-BPEL pro-
cesses into open nets using the compiler BPEL2OWFN [149]. Table 3 gives
an overview of the characteristics of the derived open nets. We see that the
open nets derived from the WS-BPEL processes have up to 90 places and
123 transitions. The interfaces of the open nets consist of up to 11 interface
places.

open net (abbreviation) |P| |I| |O| |T| |F|
Database (D) 3 2 2 4 11
Patched Database (D′) 2 2 2 3 8
First User (U) 2 2 2 2 6
Second User (U′) 2 2 2 3 7
Contract Negotiation (CN) 76 4 7 98 294
Loan Approval (LA) 34 3 3 17 60
Purchase Order (PO) 74 4 6 96 290
Reservations (RS) 38 2 8 33 83
Ticket Reservation (TR) 90 3 6 123 363

Table 3: The size of the derived open nets.

We compute BSDb and CSDb for each of the nine open nets and check for
b-conformance with itself (which should hold naturally), using the standard
options of Chloe and Delain and bound values of 1 and 2. All computations
in this section are conducted on a MacBook Air model A1466 [21] with one
Intel Core i5 1.3 GHz CPU with 2 independent processor cores and 8 GiB of
memory. The MacBook Air is weak in terms of computing power compared
to existing business servers; for example, a standard IBM Blade server model
HX5 [125] has up to four Intel Xeon 2.4 GHz CPUs with 10 independent
processor cores each (i.e., 20 times as many cores as the MacBook Air which
are, in addition, faster) and 256 GiB of memory (i.e., 32 times as many
memory as the MacBook Air). However, we conduct all experiments on
the MacBook Air to demonstrate the feasibility of our implementation on
today’s average (personal) computers.

Table 4 shows the size of the resulting LTSs BSD1 and BSD2, the time for
computing them, and the memory consumption. We can see that computing
BSD1 is feasible with time consumptions from 0 to 13 seconds and memory
consumption of up to 107 MiB (which is approx. 1

75 of the available 8 GiB
memory). Even computing the much larger LTS BSD2 (which is up to six
times larger than BSD1) is feasible with time consumptions from 0 to 63 sec-

5.4 implementation and experimental results 137

onds and memory consumption of up to 501 MiB (which is still only approx.
1

16 of the available 8 GiB memory). However, in cases where b > 2, comput-
ing BSDb might be too time consuming if we have to compute it twice for
every b-responsiveness check using the algorithm in Fig. 72. Therefore, the
alternative algorithm in Fig. 74 might perform better for those examples.

LTS |Q| |δ| |Σin| |Σout| time (s) memory (KiB)

BSD1(D) 12 48 2 2 0 1, 424
BSD1(D′) 6 24 2 2 0 1, 412
BSD1(U) 8 32 2 2 0 1, 412
BSD1(U′) 12 48 2 2 0 1, 420
BSD1(CN) 2, 050 22, 550 4 7 13 106, 784
BSD1(LA) 66 396 3 3 0 2, 028
BSD1(PO) 1, 026 10, 260 4 6 3 33, 028
BSD1(RS) 1, 026 10, 260 2 8 0 4, 352
BSD1(TR) 460 4, 140 3 6 2 24, 256

BSD2(D) 29 116 2 2 0 1, 476
BSD2(D′) 11 44 2 2 0 1, 440
BSD2(U) 17 68 2 2 0 1, 432
BSD2(U′) 32 128 2 2 0 1, 464
BSD2(CN) 10, 370 114, 070 4 7 63 501, 344
BSD2(LA) 218 1, 308 3 3 0 3, 140
BSD2(PO) 5, 186 51, 860 4 6 15 133, 644
BSD2(RS) 2, 306 23, 060 2 8 0 7, 344
BSD2(TR) 2, 594 23, 346 3 6 9 89, 236

Table 4: The size of BSD1 and BSD2 generated with the tool Chloe, including the
used memory and time.

The tool Chloe outputs the computed LTS in the graph description lan-
guage DOT [101]. We can easily visualize DOT files with Graphviz [90, 91],
which is a heterogeneous collection of open source graph drawing tools. As
an example, Fig. 80 shows the LTS CSD1(D) as computed by the tool Chloe
and visualized by the tool dot from the Graphviz collection. The LTS in
Fig. 80 coincides with the LTS we derived by hand in Fig. 67.

Table 5 shows the size of the resulting LTSs CSD1 and CSD2, the time
for computing them, and the memory consumption. We can see that CSD1
has considerably fewer states than BSD1, ranging from 4 to 578 compared
to 6 to 2, 050. This difference in size of BSDb and CSDb becomes even more
apparent if we consider CSD2 and BSD2: The number of states of CSD2
ranges from 5 to 578 whereas the number of states of BSD2 ranges from 11
to 10, 370. In addition, constructing CSD1 and CSD2 results in nearly no
additional time and memory consumption compared to the time and mem-
ory we need to construct BSD1 and BSD2, respectively. Still, computing
CSD1 and CSD2 is feasible with time consumptions from 0 to 61 seconds
and memory consumption of up to 501 MiB. Interestingly, four out of five
industrial open systems (namely CN, LA, PO, and RS) seem to be designed
for a bound of 1, as for them CSD1 is identical to CSD2. Only for the indus-
trial open system TR, CSD1 differs from CSD2. In all cases, the respective
checks for 1-conformance and 2-conformance performed instantly, therefore
we did not include them in Tab. 5.

We conclude this section by comparing our approach to compute a maxi-
mal b-partner with two existing approaches from literature. Mooij et al. [180,

138 b-conformance

Figure 80: The LTS CSD1(D) as computed by the tool Chloe and visualized by the
tool dot from the Graphviz collection. It coincides with the LTS in Fig. 67

which derived manually.

LTS |Q| |δ| |Σin| |Σout| time (s) memory (KiB)

CSD1(D) 4 16 2 2 0 1, 424
CSD1(D′) 5 20 2 2 0 1, 412
CSD1(U) 8 32 2 2 0 1, 412
CSD1(U′) 6 24 2 2 0 1, 420
CSD1(CN) 578 6, 358 4 7 13 106, 784
CSD1(LA) 22 132 3 3 0 2, 028
CSD1(PO) 170 1, 700 4 6 4 33, 028
CSD1(RS) 371 3, 710 2 8 0 4, 352
CSD1(TR) 112 1, 008 3 6 2 24, 256

CSD2(D) 5 20 2 2 0 1, 476
CSD2(D′) 6 24 2 2 0 1, 444
CSD2(U) 17 68 2 2 0 1, 432
CSD2(U′) 6 24 2 2 0 1, 464
CSD2(CN) 578 6, 358 4 7 61 501, 344
CSD2(LA) 22 132 3 3 0 3, 140
CSD2(PO) 170 1, 700 4 6 15 133, 644
CSD2(RS) 371 3, 710 2 8 0 7, 376
CSD2(TR) 182 1, 638 3 6 9 89, 236

Table 5: The size of CSD1 and CSD2 generated with the tool Chloe, including the
used memory and time.

179] construct a finite maximal b-partner—called maximal controller—for a
conformance relation—called accordance [226, 11]—that preserves b-bounded
deadlock freedom. In essence, their construction algorithm “unfolds” the
operating guideline of Lohmann et al. [153] into a single service automaton,
which results in an exponential blowup of the size of the maximal b-partner
compared to the size of the operating guideline. Parnjai [203] lifts this con-
struction algorithm to a conformance relation based on a notion of respon-
siveness that is weaker than ours. In contrast, our construction of a maximal

5.5 conclusions 139

b-partner maxb from the LTS CSDb in Sect. 5.3 at most doubles the size of
maxb compared to the size of CSDb. As the size of CSDb is comparable to
the size of an operating guideline (see Sect. 5.2), our maximal b-partner is
in general drastically smaller than the maximal controllers in [180, 179, 203].
In [203], Parnjai advocates to construct an additional “compact canonical”
maximal b-partner: In essence, the compact maximal b-partner in [203] is a
maximal b-partner from [179] reduced under some failure-semantics (called
“responsive failures” in [203]). In contrast, we showed in Sect. 5.3 that a
maximal b-partner needs to be maximal only with respect to a trace-based
semantics. Therefore, our approach should still yield a smaller maximal b-
partner in most cases than the approach in [203], while being more general
in terms of the considered responsiveness notion.

In the following, we compare the approaches in [179] and [203] with our
approach by computing a maximal 1-partner for each of the nine previ-
ously mentioned open nets. Although our setting is more general (i.e., the
approaches in [179] and [203] only consider internally bounded open nets
whereas we consider arbitrary open nets), the size of the resulting maxi-
mal 1-partners should give an impression of the approaches’ effectiveness.
The tool Chloe [115] computes a maximal b-partner according to our ap-
proach; the tool Maxis [204] computes a maximal b-partner according to the
approaches in [179] and [203]. Table 6 shows the size of the resulting max-
imal 1-partners. In eight cases, our approach results in a smaller maximal
1-partner than the approaches in [179] and [203]; only for the open net U,
the maximal 1-partner of [203] is smaller than ours. In two cases, Maxis was
only able to compute the maximal 1-partner as a service automaton but not
as an open net. Therefore, we give the number of states of the respective
service automaton as lower bound on the size of the resulting open net.

5.5 conclusions

In this chapter, we investigated the b-conformance relation that arises from
b-responsiveness—that is, a variant of responsiveness where the number of
pending messages never exceeds a previously known bound b. We investi-
gated b-conformance because conformance and compositional conformance
turned out to be undecidable in Chap. 4. Although respecting a bound b
may seem restricting, the notion of b-conformance is still practically rele-
vant: Distributed systems operate on a middleware with buffers that are of
bounded size. The actual buffer size can be the result of a static analysis of
the underlying middleware or of the communication behavior of an open
system, or simply be chosen sufficiently large.

We gave a trace-based characterization for b-conformance, thereby adapt-
ing and combining results from conformance in Chap. 4 and work on traces
that cannot be used reliably by any partner [162]. Due to the latter traces,
b-conforming systems may violate language inclusion. Giving an answer to
an open question, we showed that b-conformance is not a precongruence.

In contrast to conformance, b-conformance is decidable. Thus, we elab-
orated a decision procedure for b-conformance. For a given open net, we
additionally developed a finite characterization of all b-partners and all b-
conforming open nets. These finite characterizations serve as an alterna-
tive decision procedure for b-conformance. We implemented the decision
procedure for b-conformance in the tools Chloe [115] and Delain [78] and
evaluated it using open nets of industrial size.

140 b-conformance

using
the

approach
in

Sect.
5.

3
using

the
approach

in
[
1

7
9,

2
0

5]
using

the
approach

in
[
2

0
3]

open
net

|P|
|I|

|O|
|T|

|F|
|P|

|I|
|O|

|T|
|F|

|P|
|I|

|O|
|T|

|F|
m

ax
1 (D

)
4

2
2

12
35

48
2

2
132

350
12

2
2

19
47

m
ax

1 (D
′)

5
2

2
15

44
69

2
2

196
522

15
2

2
24

60
m

ax
1 (U

)
10

2
2

30
87

53
2

2
142

376
14

2
2

22
55

m
ax

1 (U
′)

6
2

2
16

47
54

2
2

142
376

16
2

2
25

63
m

ax
1 (C

N
)

1,011
7

4
8,331

24,559
>

497,500
7

4
>

497,500
>

497,500
3,003

7
4

7,275
19,409

m
ax

1 (LA
)

27
3

3
108

318
692

3
3

2,476
6,756

67
3

3
131

346
m

ax
1 (PO

)
259

6
4

1,812
5,346

49,830
6

4
252,902

709,054
741

6
4

1,745
4,672

m
ax

1 (R
S
)

489
8

2
4,154

12,343
>

221,851
8

2
>

221,851
>

221,851
2,327

8
2

6,197
16,643

m
ax

1 (TR
)

150
6

3
1,004

2,973
20,937

6
3

101,034
282,284

455
6

3
1,147

3,105

Table
6:The

size
of

the
resulting

m
axim

al1-partners.

6C O M P O S I T I O N A L b - C O N F O R M A N C E

This chapter is based on results published in [248, 249].

In Chap. 5, we analyzed the b-conformance relation that is—in contrast
to conformance—decidable and therefore suitable for verification. How-

ever, we also showed in Chap. 5 that the b-conformance relation is still not
preserved under the open net composition operator. Consequently, we use
this chapter to investigate the coarsest precongruence that is contained in
the b-conformance relation—that is, compositional b-conformance. Table 2

illustrates how this chapter fits into the structure of Part II.

relation characterization compositionality decidability

conformance Chap. 4 Chap. 4 Chap. 4

b-conformance Chap. 5 Chap. 6 Chap. 5 & Chap. 6

Table 7: The structure of Part II without Chap. 7. We highlight the current chapter
with a gray background.

In this chapter, we characterize compositional b-conformance and show
that it is—in contrast to compositional conformance in Chap. 4—decidable.
The highlighted part of Fig. 53 illustrates how we achieve this. We introduce
a new denotational semantics for open nets based on failures in Sect. 6.1.
The new semantics extends the F +

fin-semantics from Chap. 4 by information

about boundb-violations, which is why we refer to it as b-bounded F +
fin-se-

mantics. We show that a refinement relation build upon the b-bounded F +
fin-

semantics, to which we subsequently refer to as F +
b, fin-refinement, charac-

terizes compositional b-conformance. In essence, F +
b, fin-refinement extends

the F +
fin-refinement from Chap. 4 by including (the inclusion of) the boundb-

violators. We elaborate a decision procedure for compositional b-confor-
mance in Sect. 6.2. To this end, we show that F +

fin-refinement is decidable

for two finite LTSs. Next, we reduce F +
b, fin-refinement under the assump-

tion of boundb-inclusion to F +
fin-refinement on two finite LTSs. We already

showed in Chap. 5 how to decide boundb-inclusion. That way, we conclude
decidability of compositional b-conformance. We finish this chapter with a
conclusion in Sect. 6.3.

6.1 characterizing compositional b-conformance

To characterize compositional b-conformance, we introduce in Sect. 6.1.1
a failure-based semantics for open nets similar to the F +

fin-semantics in

Sect. 4.2. We refer to the new semantics as b-bounded F +
fin-semantics. We

show that the b-bounded F +
fin-semantics of a composition of two compos-

able open nets can be derived from the b-bounded F +
fin-semantics of the

composed open nets. In Sect. 6.1.2, we show that a refinement relation
build upon the b-bounded F +

fin-semantics coincides with compositional b-

141

142 compositional b-conformance

Implementation Specification

O
pe

n
Ne

ts -conforms to

de
no

ta
tio

na
l

Se
m

an
tic

s

semantics semantics

refines semantics

refines

compositionally
-conforms to

semantics

hashas

SpecImpl

stopdead stopdead

F+
b,fin

b

b

F+
b,fin

-coverable -coverableb b

Chap. 6

Figure 81: Characterizing compositional b-conformance using a denotational seman-
tics for open nets. A solid arc illustrates the relation described by the
corresponding arc label. Dashed arcs illustrate logical implication or logi-
cal equivalence, depending on their number of heads.

conformance. In other words, we provide a failure-based characterization
of compositional b-conformance.

6.1.1 The b-bounded F+
fin-semantics for open nets

In Sect. 4.2, we used the F+
fin-semantics to characterize the coarsest precon-

gruence that is contained in the conformance relation. So it suggests itself
that the F+

fin-semantics is closely related to the new semantics. To charac-
terize the coarsest precongruence that is contained in b-conformance, we
need to cope with the restriction to a b-bounded composition N ⊕ C of two
open nets N and C in Def. 41. We therefore add information about boundb-
violators to the F+

fin-semantics in Def. 63. The resulting b-bounded F+
fin-

semantics consists of the set of b-violators from Def. 84 and the F+
fin-seman-

tics extended with all fintree failures (w, X, Y), where w is a trace of boundb
and X and Y are (almost) arbitrary languages over the alphabet. That way,
we are flooding the set of fintree failures F+

fin in the same way we have been
flooding the sets of stop- and dead-traces in the b-bounded stopdead-semantics
in Def. 84.

Definition 138 [b-bounded F+
fin-semantics]

Let N be a labeled net. We define the set of finboundb-violators of N by
finboundb(N) = boundb(N)×P(Σ+)×P(Σ∗). The b-bounded F+

fin-semantics
of N is defined by the sets

• boundb(N), and

• F+
b, fin(N) = F+

fin(N) ∪ finboundb(N).

Example 139 Consider the open net D in Fig. 82a and the open net D′

in Fig. 82b, which we already used as running examples in Chap. 5. We
detailed their 1-bounded stopdead-semantics in Ex. 85 and Ex. 91, which

6.1 characterizing compositional b-conformance 143

contains their set of bound1-violators and their (flooded) language. The
language and the bound1-violators of D are

L(D) = {w ∈ {s, q, d}∗ | ∀v v w : |v|d ≤ |v|q}
∪ {w f z | w, z ∈ {s, q, d}∗ ∧ ∀v v w : |v|d ≤ |v|q

∧|w|s > 0∧ |z|d ≤ |w|q − |w|d} ,

bound1(D) = ↑ {w ∈ L(D) | ∃v v w : |v|d + 1 < |v|q}
∪ ↑ {w ∈ L(D) | ∃v v w : |v| f + 1 < |v|s} ,

and the language and the bound1-violators of D′ are

L(D′) = {w ∈ {s, q, d}∗ | ∀v v w : |v|d ≤ |v|q} ,

bound1(D′) = ↑ {w ∈ L(D′) | ∃v v w : |v|d + 1 < |v|q}
∪ ↑ {w ∈ L(D′) | ∃v v w : |v|s > 1} .

Thus, the set of finbound1-violators of D is

finbound1(D) = bound1(D)×P({s, q, d, f }+)×P({s, q, d, f }∗) ,

and the set of finbound1-violators of D′ is

finbound1(D
′) = bound1(D′)×P({s, q, d, f }+)×P({s, q, d, f }∗) .

As an example for the fintree failures of the 1-bounded F+
fin-semantics of

D and D′, consider the trace s. After executing the trace s, env(D) reaches
the marking [p1, si], [p0], or [f o]. In all three markings, env(D) cannot
refuse the trace f . In contrast, after executing the trace s, env(D′) reaches
either the marking [p1, si] or the marking []. In both markings, it can refuse
the trace f because no reachable marking of env(D′) enables transition f .
The trace s is neither a bound1-violator of D nor a bound1-violator of D′, and
the empty set ∅ is a fin-refusal set of every marking of env(D) and env(D′).
Thus, we can distinguish D and D′ by their 1-bounded F+

fin-semantics: We

have (s, { f }, ∅) 6∈ F+
1, fin(D) but (s, { f }, ∅) ∈ F+

1, fin(D
′), for instance. �

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

(a) Open net D

retrieve
d

s

q

shutdown
process

p2p1

f

(b) Open net D′

Figure 82: The open nets D and D′ from Fig. 54a and Fig. 56 modeling a database
server and a patched database server. In addition to the figures, we have
ΩD = { [p0]} and ΩD′ = { []}.

Like the F+
fin-semantics in Lem. 65, the composition of two composable

open nets N1 and N2 has the same b-bounded F+
fin-semantics as the parallel

composition of their respective environments, env(N1) ⇑ env(N2).

144 compositional b-conformance

Lemma 140 [b-bounded F+
fin-semantics for open net composition]

For two composable open nets N1 and N2, we have

F+
b, fin(env(N1 ⊕ N2)) = F+

b, fin(env(N1) ⇑ env(N2)) .

Proof. Follows directly from Lem. 30: If one net has a boundb-violator w
due to marking m, then the other net can reach an agreeing marking m′

with trace w; thus w is also a boundb-violator for the other net. Likewise, by
applying the same argumentation as in the proof of Lem. 65, we conclude
that if one net has a fintree failure (w, X, Y) so does the other net. �

In the remainder of this section, we shall show that the b-bounded F+
fin-

semantics is compositional; that is, the b-bounded F+
fin-semantics of a com-

position N1 ⊕ N2 of two composable open nets N1 and N2 can be derived
solely from the b-bounded F+

fin-semantics of N1 and N2. To this end, we

characterize the b-bounded F+
fin-semantics for labeled net composition and

hiding and finally combine these results to determine the b-bounded F+
fin-

semantics for open net composition. First, we consider the b-bounded F+
fin-

semantics for the composition of two labeled nets.

Lemma 141 [b-bounded F+
fin-semantics for labeled net composition]

For two composable labeled nets N1 and N2, we have

F+
b, fin(N1‖N2) = {(w, X, Y) | ∃(wi, Xi, Yi) ∈ F+

b, fin(Ni) for i = 1, 2 :

w ∈ w1‖w2 ∧ ∀x ∈ X, y ∈ Y :

(x ∈ x1‖x2 implies x1 ∈ X1 ∨ x2 ∈ X2)

∧ (y ∈ y1‖y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)}
∪ finboundb(N1‖N2) .

Proof. We write E for N1‖N2.
⊆: Let (w, X, Y) ∈ F+

b, fin(E). If w is not a boundb-violator, then (w, X, Y) ∈
F+

fin(E) by Def. 138, and we conclude with Lem. 66 and Def. 138 that it is
contained in the first set on the right hand side. If w is a boundb-violator of
E, then (w, X, Y) ∈ finboundb(N1‖N2) by Def. 138.
⊇: Let (w, X, Y) arise from (wi, Xi, Yi) ∈ F+

b, fin(Ni) for i = 1, 2. If both

(wi, Xi, Yi) ∈ F+
fin(Ni), then (w, X, Y) ∈ F+

fin(E) by Lem. 66 and F+
fin(E) ⊆

F+
b, fin(E) by Def. 138. Assume now that at least one fintree failure (wi, Xi, Yi)

is not contained in the respective F+
fin-semantics. Then trace wi is a boundb-

violator by Def. 138 and so is w by Prop. 86(1), because w3−i ∈ Lb(N3−i)
by Def. 138. Thus, (w, X1 ∪ X2, Y1 ∪ Y2) ∈ finboundb(E) ⊆ F+

b, fin(E) due to
Def. 138. �

Next, we consider hiding for the b-bounded F+
fin-semantics on a labeled

net.

6.1 characterizing compositional b-conformance 145

Lemma 142 [b-bounded F+
fin-semantics under hiding]

For a labeled net N and a label set A ⊆ Σ∗, we have

F+
b, fin(N/A) = {(φ(w), X, Y) | (w, φ−1(X), φ−1(Y)) ∈ F+

b, fin(N)} .

Proof. Follows from Lem. 67. �

We finally combine Lem. 140, Lem. 141, and Lem. 142 to show how the
b-bounded F+

fin-semantics for the composition N1 ⊕ N2 of two open nets N1

and N2 can be determined from the b-bounded F+
fin-semantics of N1 and N2.

Proposition 143 [b-bounded F+
fin-semantics for open net composition]

For two composable open nets N1 and N2, we have

F+
b, fin(N1 ⊕ N2) = {(w, X, Y) | ∃(wi, Xi, Yi)∈ F+

b, fin(Ni) for i = 1, 2 :

w ∈ w1 ⇑ w2 ∧ ∀x ∈ X, y ∈ Y :

(x ∈ x1 ⇑ x2 implies x1 ∈ X1 ∨ x2 ∈ X2)

∧ (y ∈ y1 ⇑ y2 implies y1 ∈ Y1 ∨ y2 ∈ Y2)}
∪ finboundb(N1 ⊕ N2) .

Proof. Let F(N1, N2) denote the first set on the right-hand side in Lem. 141.
According to Lem. 140, we can consider F+

b, fin(env(N1) ⇑ env(N2)) instead

of F+
b, fin(N1⊕ N2). Because ⇑ is ‖ followed by hiding, we can determine the

set F+
b, fin(env(N1) ⇑ env(N2)) by applying hiding (according to Lem. 142)

to the right-hand side of Lem. 141. As a result, F(N1, N2) turns into the
first set in the present proposition, just as Prop. 68 results from Lem. 66

with Lem. 67. More easily, finboundb(N1‖N2) is analogously translated into
finboundb(N1 ⊕ N2) according to Prop. 86(3). �

In this section, we presented the b-bounded F+
fin-semantics for open nets,

as an extension of the F+
fin-semantics for open nets from Sect. 4.2. In the

following section, we define a refinement relation between two open nets
based on their b-bounded F+

fin-semantics that characterizes compositional b-
conformance.

6.1.2 Refinement on the b-bounded F+
fin-refinment

In this section, we define a refinement relation between two open nets based
on their b-bounded F+

fin-semantics and prove that this refinement relation
coincides with compositional b-conformance.

The F+
b, fin-refinement relation combines boundb-inclusion from Thm. 90

and the F+
fin-refinement relation from Def. 69.

146 compositional b-conformance

Definition 144 [F+
b, fin-refinement]

For two action-equivalent labeled nets Impl and Spec, Impl F+
b, fin-refines Spec,

denoted by Impl vF+
b, fin

Spec, if

1. boundb(Impl) ⊆ boundb(Spec), and

2. ∀(w, X, Y) ∈ F+
b, fin(Impl) :

∃x ∈ {ε} ∪ ↓ X ∪ ↓ Y : (wx, x−1X, x−1Y) ∈ F+
b, fin(Spec) .

For two interface-equivalent open nets Impl and Spec, we define Impl vF+
b, fin

Spec, if env(Impl) vF+
b, fin

env(Spec).

Example 145 Consider again the open nets D and D′ in Fig. 82. For
any bound b, we have (s, { f }, ∅) ∈ F+

b, fin(D
′): After trace s, env(D′) is

either in marking [p1, si] or in marking []. In both cases, env(D′) can
refuse f because env(D′) cannot fire transition f at all. However, we have
(s, { f }, ∅) 6∈ F+

b, fin(D) and (sf , {ε}, ∅) 6∈ F+
b, fin(D), because env(D) can

never refuse f after the trace s, and (sf , {ε}, ∅) is not a fintree failure by
Def. 138. Therefore, D does not F+

b, fin-refine D′ according to Def. 144. �

If two open nets are in the F+
b, fin-refinement relation, then this implies

inclusion of their flooded languages, stopb-traces, and deadb-traces.

Lemma 146 [F+
b, fin-refinement implies Lb-, stopb-, deadb-inclusion]

For two action-equivalent labeled nets Impl and Spec, we have

1. Impl vF+
b, fin

Spec implies Lb(Impl) ⊆ Lb(Spec).

2. Impl vF+
b, fin

Spec implies stopb(Impl) ⊆ stopb(Spec).

3. Impl vF+
b, fin

Spec implies deadb(Impl) ⊆ deadb(Spec).

Proof. (1) Let w ∈ Lb(Impl). Then (w, ∅, ∅) ∈ F+
b, fin(Impl) by Def. 138

and (w, ∅, ∅) ∈ F+
b, fin(Spec) by Def. 144, which immediately implies w ∈

Lb(Spec) by Def. 138.
(2) Let w ∈ stopb(Impl). Then we use the proof of (the reverse implication

of) Thm. 75 by replacing stop by stopb to conclude that w ∈ stopb(Spec).
(3) Similar argumentation as for (2). �

In the remainder of this section, we shall show that F+
b, fin-refinement is a

precongruence on open nets for the composition operator ⊕, just like F+
fin-

refinement is a precongruence on open nets for ⊕ by Thm. 74. As for the
proof of Thm. 74, we first show the precongruence result for labeled nets and
operator ‖ (cf. Lem. 72). Then, we show that this result is also preserved
under hiding (cf. Lem. 73). Finally, we combine these results to show the
precongruence for open nets and the operator ⊕.

First, we show with Lem. 148 that F+
b, fin-refinement is a precongruence

for labeled nets and operator ‖, thereby using the precongruence result for
F+

fin-refinement from Lem. 72. For the proof of Lem. 148, we shall use that

6.1 characterizing compositional b-conformance 147

the following four saturation conditions, which hold for the F+
fin-semantics

(cf. Lem. 71), also hold for the b-bounded F+
fin-semantics:

Lemma 147 [saturation conditions]
For a labeled net N, we have

1. (w, X, Y) ∈ F+
b, fin(N), X′ ⊆ X, Y′ ⊆ Y implies (w, X′, Y′) ∈ F+

b, fin(N)

2. (w, X, Y) ∈ F+
b, fin(N) ∧ ∀z ∈ Z : (wz, z−1X, z−1Y) 6∈ F+

b, fin(N) im-

plies (w, X ∪ Z, Y ∪ Z) ∈ F+
b, fin(N)

3. (w, X, Y) ∈ F+
b, fin(N) implies (w, ↑ X, Y) ∈ F+

b, fin(N)

4. (w, X, Y) ∈ F+
b, fin(N) implies (w, X, X ∪Y) ∈ F+

b, fin(N)

Proof. To see these conditions, consider first some (w, X, Y) ∈ F+
fin(N) ⊆

F+
b, fin(N). Then, items (1)—(4) follow directly from Lem. 72. Now, consider

a fintree failure (w, X, Y) with w ∈ boundb(N); here, all four conditions are
immediate because (w, X′, Y′) ∈ F+

b, fin(N) for any X′ ∈ P((I]O)+) and
Y′ ∈ P((I]O)∗). �

Lemma 148
F+

b, fin-refinement is a precongruence for labeled nets with respect to ‖.

Proof. Let F(N1, N2) denote the first set on the right-hand side in Lem. 141.
The precongruence result for F+

fin-refinement in Lem. 72 holds for general
sets of fintree failures (see the remark below Lem. 72). We make use of this,
although this defining equation does not match Lem. 141, but just gives
F(N1, N2). Now let Impl vF+

b, fin
Spec and C be a composable labeled net for

Impl and Spec. We have to check the two items of Def. 144 to prove that
Impl‖C vF+

b, fin
Spec‖C.

The first item of Def. 144 follows from Prop. 86(1) (which holds for labeled
nets in general) because our assumption implies boundb(Impl) ⊆ boundb(Spec)
as well as—due to Lem. 146(1)—Lb(Impl) ⊆ Lb(Spec).

For the second item, we first consider some (w, X, Y) ∈ F(Impl, C). We ob-
serve that, due to Def. 144, F+

b, fin(Impl) is related to F+
b, fin(Spec) in the sense

of F+
fin-refinement. So by Lem. 72, ∃x ∈ {ε}∪↓ X∪↓ Y : (wx, x−1X, x−1Y) ∈

F(Spec, C) ⊆ F+
b, fin(Spec‖C). Second, we consider a fintree failure (w, X, Y) ∈

finboundb(Impl‖C). This time, due to boundb(Impl‖C) ⊆ boundb(Spec‖C), we
even have (w, X, Y) ∈ finboundb(Spec‖C) ⊆ F+

b, fin(Spec‖C); that is, Def. 144(2)
is satisfied taking x = ε. �

Next, we show that F+
b, fin-refinement for labeled nets is preserved under

hiding.

Lemma 149
F+

b, fin-refinement for labeled nets is preserved under hiding.

Proof. Let Impl and Spec be two labeled nets such that Impl vF+
b, fin

Spec,

and A ⊆ Σ∗. Then Lem. 142 directly implies Def. 144(1) for Impl/A and

148 compositional b-conformance

Spec/A. Furthermore, the characterization in Lem. 142 corresponds to the
defining equation for hiding in Lem. 73, so Def. 144(2) is inherited from the
precongruence result in Lem. 73 for F+

fin-refinement and hiding. �

Lemma 148 and Lem. 149 enable us to show the first main result of this
section: F+

b, fin-refinement is a precongruence for the open net composition
operator ⊕. As for the precongruence result in Thm. 74, the proof idea is to
translate the operator ⊕ for open nets into the operator ⇑ for labeled nets
followed by hiding.

Theorem 150 [F+
b, fin-refinement is a precongruence]

F+
b, fin-refinement is a precongruence for open nets with respect to ⊕.

Proof. This is now completely analogous to the proof of Thm. 74, except
that here the semantics associates two sets with a net and we use Lem. 148

and Lem. 149 on the basis of Lem. 72 and Lem. 73. �

With the next theorem, we show the second main result of this section:
F+

b, fin-refinement coincides with the coarsest precongruence that is contained
in the b-conformance relation—that is, compositional b-conformance.

For the implication of the proof, we show, amongst others, that compo-
sitional b-conformance implies boundb- and Lb-inclusion. This illustrates an
inherent difference to the characterization of the b-conformance preorder
in Thm. 97, which does not imply Lb-inclusion but only uLb-inclusion (see
Thm. 90 and Ex. 91 and Ex. 92 for a more detailed explanation).

Lemma 151 [vc
b, conf implies boundb- and Lb-inclusion]

For two interface-equivalent open nets Impl and Spec, we have

1. Impl vc
b, conf Spec implies boundb(Impl) ⊆ boundb(Spec).

2. Impl vc
b, conf Spec implies Lb(Impl) ⊆ Lb(Spec).

Proof. (1) Let Impl vc
b, conf Spec. We show boundb(Impl) ⊆ boundb(Spec) by

contradiction. So assume there exists a trace w ∈ boundb(Impl) \ boundb(Spec).
Then we can construct an open A such that A and Spec (and equivalently
Impl) are composable, w ∈ Lb(A), and A⊕ Spec is a b-bounded closed net
(like the open net Nw in the proof of Thm. 61). By Prop. 86(3), we have
ε ∈ boundb(A⊕ Impl), thus A⊕ Impl is not b-bounded. Then the construc-
tion in Fig. 83 shows that open net B in Fig. 83b is a b-partner of Spec⊕ A′

but not of Impl⊕ A′. This contradicts that Impl vc
b, conf Spec by Def. 47.

x

y

p0

t1

t0

p1A

(a) Open net A′

x
t3

y
t2

p2 p3

(b) Open net B

Figure 83: Construction of the open nets A′ and B for the proof of Lem. 151.

6.2 deciding compositional b-conformance 149

(2) Similar argumentation as for (1), but we construct A such that w ∈
boundb(A) (like the open net C in the proof of Lem. 96(1)). �

Because compositional b-conformance implies boundb- and Lb-inclusion
by Lem. 151, there is no need to incorporate b-uncoverable traces into the b-
bounded F+

fin-semantics in Def. 138. In contrast, we could characterize b-con-
formance only after incorporating b-uncoverable traces into the b-bounded
stopdead-semantics in Def. 93.

For the reverse implication of the proof, we explicitly rely on Thm. 90

by showing that F+
b, fin-refinement implies inclusion of their bounded lan-

guages, stop-traces, and dead-traces.

Theorem 152 [F+
b, fin-refinement is the coarsest precongruence]

For two interface-equivalent open nets Impl and Spec, we have

Impl vc
b, conf Spec iff Impl vF+

b, fin
Spec .

Proof. ⇒: Let Impl vc
b, conf Spec. The first item of Def. 144 follows directly

from Lem. 151(1).
For the second item of Def. 144, let (w, X, Y) ∈ F+

b, fin(Impl) such that
w /∈ boundb(Impl). Otherwise, w ∈ boundb(Impl) ⊆ boundb(Spec) by the pre-
viously shown boundb-inclusion, and (w, X, Y) ∈ F+

b, fin(Spec) by Def. 138.
We use net N in Fig. 47 as in the proof of Thm. 75. Following the argu-
mentation in the proof of Thm. 75, we have that if an open net C is not a
b-partner of Impl⊕ N so it is not a b-partner of Spec⊕ N. We distinguish
three cases: If w ∈ boundb(Spec), then (w, X, Y) ∈ F+

b, fin(Spec) by Def. 138. If

wu ∈ boundb(Spec) with u ∈ ↓ X ∪ ↓ Y, then (wu, u−1X, u−1Y) ∈ F+
b, fin(Spec)

by Def. 138. Otherwise, we use the argumentation in the proof of Thm. 75

to conclude that (w, X, Y) ∈ F+
b, fin(Spec).

⇐: Let Impl vF+
b, fin

Spec. We conclude boundb-inclusion by Def. 144(1)

and Lb-, stopb-, and deadb-inclusion by Lem. 146. Now Thm. 90 implies
Impl vb, conf Spec, and this, in turn, also shows that Impl vF+

b, fin
Spec implies

Impl vc
b, conf Spec with Thm. 150 and the definition of vc

b, conf. �

Example 153 We already showed in Ex. 50 that for the open nets S and
S′, S′ vc

b, conf S does not hold. We can now confirm this with Thm. 152,

because S′ does not F+
b, fin-refine S by Ex. 145. �

With Thm. 97, we have characterized the b-conformance relation for a vari-
ant of responsiveness (i.e., b-responsiveness) as introduced in Def. 41, and
with Thm. 152 the coarsest precongruence that is contained in that relation
(i.e., compositional b-conformance). In contrast to conformance and compo-
sitional conformance, b-conformance and compositional b-conformance are
decidable. We already developed a decision procedure for b-conformance
in Sect. 5.2. In the following section, we present a decision procedure for
compositional b-conformance.

6.2 deciding compositional b-conformance

In this section, we show that compositional b-conformance is decidable. As
a first step, we show in Sect. 6.2.1 how to decide F +

fin-refinement for two

150 compositional b-conformance

finite LTSs, thereby generalizing the construction of Rensink and Vogler [217,
Theorem 61] for deciding F +-refinement. In the second step in Sect. 6.2.2,
we encode the set of fintree failures F +

b, fin of a labeled net N into a finite LTS
BEHb(N). To this end, we combine the decision procedure from Sect. 5.2
with deciding whether the finite LTS BEHb(Impl) F +

fin-refines the finite LTS

BEHb(Spec). That way, we can conclude decidability of F +
b, fin-refinement.

6.2.1 Deciding F+
fin-refinement for finite LTSs

For an LTS S with final states, we can define F+
fin(S) and F+

fin-refinement in
the same way as for labeled nets in Def. 63 and Def. 69. We already showed
in Sect. 4.3 that F+

fin-refinement is in general undecidable for labeled nets.

However, in this section, we show that F+
fin-refinement is decidable for two

finite LTSs.
We assume two finite LTSs Impl and Spec with identical alphabet Σ and

initial states p0 and q0 such that L(Impl) ⊆ L(Spec). For convenience, and
only in the remainder of this chapter, we speak of a finite automaton instead
of a finite LTS because the automata-theoretic notion of language coincides
with our notion of the language of an LTS if we regard the transition label τ
as the empty word ε and consider all states as accepting states (see Sect. 2.2
for more details). For an automaton A with some state s (we write s ∈ A),
LA(s) denotes the language of the automaton if we change the initial state
to s. We call a state productive, if it lies on a path from the initial state to
some accepting state—that is, if it is used by the automaton when accepting
a word.

As a first step, we extend Impl to an automaton of automata pairs AA
by adding a family of pairs of deterministic automata (A1

p, A2
p), p ∈ Impl,

such that for every p ∈ Impl the language of A1
p is the set Σ∗ \ LImpl(p) of

traces that Impl cannot perform from p, and the language of A2
p is the set

Σ∗ \ LΩ
Impl(p) with LΩ

Impl(p) = {w | p w
=⇒ p′ ∧ p′ ∈ ΩImpl}. The following

holds by Def. 63:

(w, X, Y) ∈ F+
fin(Impl) iff ∃p0

w
=⇒AA p : X ⊆ L(A1

p) ∧Y ⊆ L(A2
p) .

The automaton AA represents some fintree failures (w, X, Y) ∈ F+
fin(Impl)

directly in the sense that there is a p ∈ Impl with p0
w
=⇒AA p and X = L(A1

p)

and Y = L(A2
p); in particular, it represents all maximal fintree failures—

that is, all those (w, X, Y) ∈ F+
fin(Impl) where extending X or Y cannot

give another element in F+
fin(Impl). Note that in a finite LTS Impl, there

exists for each fintree failure (v, X′, Y′) ∈ F+
fin(Impl) a maximal fintree fail-

ure (v, X, Y) ∈ F+
fin(Impl) with X′ ⊆ X and Y′ ⊆ Y.

Example 154 As an example, consider the LTS Impl in Fig. 84a. It consists
of five states p0 to p4, among them the only final state p4, and four transi-
tions. If we extend Impl to the automaton AA described above, then AA has
the same structure as Impl except that every state p of AA is an accepting
state and consists of two finite, deterministic automata A1

p and A2
p. For the

initial state p0 of AA, we depict its two automata A1
p0

and A2
p0

in Fig. 84b
and Fig. 84c. The automaton AA encodes the set of fintree failures F+

fin of

Impl. For example, we have (ε, {aa}, {aa, ab}) ∈ F+
fin(Impl): Impl refuses

6.2 deciding compositional b-conformance 151

the word aa after ε (i.e., from its initial state p0). In addition, neither aa nor
ab leads to a final state of Impl from p0; while aa cannot be performed at
all, ab leads to the nonfinal state p3. From the initial state p0, Impl cannot
refuse ab. Consequently, aa is an accepted word of both A1

p0
and A2

p0
, but

ab is only accepted by A2
p0

and not by A1
p0

. �

p0

p1

p3

p2

p4

a a

cb

(a) LTS Impl

r0

r1

r3

r2

a

b,c

a,b,c

b,c

a,b,c

a

(b) Automaton A1
p0

s0

s1

s3

s2

a

b,c

a,b,c

c

a,b,c
a,b

(c) Automaton A2
p0

Figure 84: Sketch of the construction of the automaton A A for the LTS Impl. We
depict a final state of an LTS and an accepting state of an automaton by a
doubled frame.

Similarly, we construct an automaton of automata pairs for Spec, but this
time, we additionally make Spec deterministic more or less by the usual
powerset construction on automata [224, 123]. This results in a determin-
istic automaton of automata pairs BB, which is a deterministic automaton
extended with a family BBQ, Q ∈ BB. For each state Q (being a set of states
of Spec), BBQ is a set of pairs of deterministic automata (B1

q , B2
q), q ∈ Q, with

L(B1
q) = Σ∗ \ LSpec(q) and L(B2

q) = Σ∗ \ LΩ
Spec(q).

More in detail, the automaton part of BB is defined as follows: The initial
state of BB is Q0 = {q | q0

τ
=⇒Spec q}; the transition relation is defined by

Q a−→BB Q′ (a ∈ Σ) if Q′ = {q′ | ∃q ∈ Q : q a
=⇒Spec q′}. We restrict BB to the

nonempty states reachable from Q0 and let each state of BB be accepting.
As a consequence, all states of BB are productive and L(BB) = L(Spec). This
way, we have

Q0
w
=⇒BB Q iff Q = {q | q0

w
=⇒Spec q} for all w ∈ Σ∗

and

(w, X, Y) ∈ F+
fin(Spec) iff ∃Q0

w
=⇒BB Q, (B1

q , B2
q) ∈ BBQ :

X ⊆ L(B1
q) ∧Y ⊆ L(B2

q) .

First, we construct the following partial product automaton S, which can
also be seen as the minimal simulation relation from AA to BB. It is well-
defined because BB is deterministic by construction:

• (p0, Q0) ∈ S is the initial state of S, and all states are accepting.

• If (p, Q) ∈ S, a ∈ Σ and p a−→AA p′, then by language inclusion and
definition of BB, there is a unique Q′ ∈ BB such that Q a−→BB Q′; we
add (p′, Q′) and the transition (p, Q)

a−→ (p′, Q′) to S.

• If (p, Q) ∈ S and p τ−→AA p′, then we add (p′, Q) and the transition
(p, Q)

τ−→ (p′, Q) to S (recall that BB is τ-free).

152 compositional b-conformance

Checking F+
fin-refinement in Def. 69 on LTSs entails checking whether for

all (w, X, Y) ∈ F+
fin(Impl) with X ∪ Y 6= ∅, we have (wu, u−1X, u−1Y) ∈

F+
fin(Spec) for some u ∈ ↓ (X ∪Y). Recall that by language inclusion we do

not have to check triples (w, ∅, ∅). We have to check for each (p, Q) ∈ S
and each pair (X, Y) with X ⊆ L(A1

p), Y ⊆ L(A2
p), and X ∪Y 6= ∅ that

∃u ∈ ↓ (X ∪Y), Q′ ∈ BB, (B1
q′ , B2

q′) ∈ BBQ′ : (1)

Q u
=⇒BB Q′ ∧ u−1X ⊆ L(B1

q′) ∧ u−1Y ⊆ L(B2
q′) .

Let us fix (p, Q); we now show how to check (1) for all suitable (X, Y).
This means that we have to compare runs in A1

p or A2
p, for u in (1), with

runs of BB. To do this, we construct another (partial) product automaton
P, similar to the previous one, but this time between the automata A1

p, A2
p

(whose initial states we also denote by p) and BB where the initial state is
changed to Q. Another difference with the previous case is that, this time,
we do not necessarily have L(A1

p) ∪ L(A2
p) ⊆ LBB(Q)—that is, BB might not

be able to simulate both, A1
p and A2

p—but still we want to represent all of
L(A1

p) ∪ L(A2
p) to check the inclusion in (1). Furthermore, P (as also the

derived subautomata R below) has two types of accepting states, called 1-
accepting and 2-accepting. With Li(P), we denote the language of P when
i-accepting states are considered to be accepting states, for i = 1, 2.

Therefore, P is constructed as follows (here ∗ is a dummy element, not
appearing anywhere else):

• (p, p, Q) ∈ P is the initial state;

• if (p1, p2, Q′) ∈ P and p1
a−→A1

p
p′1 or p2

a−→A2
p

p′2 (implying p1 6=
∗ 6= p′1 or p2 6= ∗ 6= p′2), we add state (p′′1 , p′′2 , Q′′) and the transition
(p1, p2, Q′) a−→ (p′′1 , p′′2 , Q′′) where

– p′′i is p′i if pi
a−→Ai

p
p′i and ∗ otherwise (in particular if pi = ∗) for

i = 1, 2

– Q′′ satisfies Q′ a−→BB Q′′ (in particular, Q′ 6= ∗) or is ∗ otherwise

• (p1, p2, Q′) is i-accepting if pi is accepting in Ai
p, i = 1, 2.

Because the Ai
p and BB are deterministic, P is also deterministic, and we

have Li(P) = L(Ai
p) for i = 1, 2 by construction. We will call R a productive

subautomaton of P, if R is obtained from P by restricting all components (in
particular also the accepting states) to a subset M of the state set such that
each state of R is productive in R. We will show that (1) is satisfied for all
suitable (X, Y) if and only if for each productive subautomaton R of P

∃(p1, p2, Q′) ∈ R, Q′ ∈ BB, (B1
q′ , B2

q′) ∈ BBQ′ : (2)

Li
R((p1, p2, Q′)) ⊆ L(Bi

q′), for i = 1, 2 .

The latter is clearly decidable because the number of productive subau-
tomata R of P is finite and, thus, we have to check only finitely many inclu-
sions on finite automata in (2). Because (2) is decidable, it then follows that
F+

fin-refinement of two finite LTSs is decidable, too. Note that Q′ ∈ BB in (2)
is equivalent to Q′ 6= ∗.

So assume (1) is satisfied for all suitable (X, Y) and, thus, in particular
for (L(A1

p), L(A2
p)). If R is a productive subautomaton, then L1(R) ⊆ L1(P)

6.2 deciding compositional b-conformance 153

and L2(R) ⊆ L2(P) and L1(R) ∪ L2(R) 6= ∅. Hence, due to (1) and the
construction of P, there exists a u ∈ ↓ L1(R) ∪ ↓ L2(R), Q′ ∈ BB, (B1

q′ , B2
q′) ∈

BBQ′ such that Q u
=⇒BB Q′ and u−1Li(R) ⊆ L(Bi

q′), for i = 1, 2. Then

(p, p, Q)
u
=⇒R (p1, p2, Q′) for some p1, p2. Because R is deterministic, the

state (p1, p2, Q′) is uniquely determined by u and, therefore, u−1Li(R) =
Li

R((p1, p2, Q′)), for i = 1, 2. Thus, we have (p1, p2, Q′) and (B1
q′ , B2

q′) are the
state and automaton pair whose existence is asserted in (2).

Vice versa, assume that (2) holds for each productive subautomaton R and
take some X ⊆ L(A1

p) and Y ⊆ L(A2
p) with X ∪Y 6= ∅. The set of states that

are needed in P to accept the words of X ∪ Y (recall the construction of P)
defines a productive subautomaton R with X ⊆ L1(R) and Y ⊆ L2(R). Take
(p1, p2, Q′) ∈ R and (B1

q′ , B2
q′) ∈ BBQ′ that satisfy (2). Then there is some

u ∈ ↓ X ∪ ↓ Y with (p, p, Q)
u
=⇒R (p1, p2, Q′) by choice of R and Q u

=⇒BB Q′

by construction of P and because Q′ ∈ BB. Now u−1X ⊆ u−1L1(R) =
L1

R((p1, p2, Q′)) and u−1Y ⊆ u−1L2(R) = L1
R((p1, p2, Q′)) by determinism

of R, and we can conclude that u−1X ⊆ L(B1
q′) and u−1Y ⊆ L(B2

q′).
Therefore, we have shown:

Proposition 155
Checking F+

fin-refinement for two finite LTSs is decidable.

Next, we reduce F+
b, fin-refinement of two labeled nets to F+

fin-refinement
on two finite LTS.

6.2.2 Reducing the decision of compositional b-conformance to F+
fin-refinement

In this section, we shall prove decidability of F+
b, fin-refinement (and there-

fore compositional b-conformance by Thm. 152) for two interface-equivalent
open nets Impl and Spec.

Checking F+
b, fin-refinement entails checking both items of Def. 144. The

first item of Def. 144—that is, checking boundb-inclusion—is decidable be-
cause we can represent the language boundb(N) of an open net N as a fi-
nite LTS BSDb(N) by Cor. 100. Thus, we can check whether boundb(Impl) ⊆
boundb(Spec) by checking L0(BSDb(Impl)) ⊆ L0(BSDb(Spec)), which is clearly
decidable.

To decide refinement of the fintree failures in F+
b, fin—that is, the second

item of Def. 144—it suffices to reduce this to checking F+
fin-refinement for

two finite LTS, which is decidable by Prop. 155. The LTS BSDb(N) is not suit-
able for representing F+

b, fin(N) of an open net N: Although BSDb(N) repre-
sents, among others, the language Lb(N) by Cor. 100, we cannot distinguish
the boundb-violators that can be performed (i.e., boundb-violators in Lb(N))
from those that have only been added as continuations. Thus, BSDb(N)
cannot properly represent the refusal and fin-refusal sets of N. Therefore,
we propose a finite-state representation of F+

b, fin(Impl) and F+
b, fin(Spec), re-

spectively, on which checking F+
fin-refinement coincides with checking F+

b, fin-

refinement for Impl and Spec. A finite-state representation of F+
b, fin(N) of an

open net N is the essential behavior of N.

154 compositional b-conformance

Definition 156 [labeled transition system BEHb]
Let N be a labeled net such that mN is b-bounded. We define the labeled
transition system BEHb(N) = (Q, δ, mN , Σin, Σout, Ω) with

• Q = {U1, U2}]Q′ where Q′ = {m ∈ MN | m is b-bounded in N},

• δ = {(m, x, m′) ∈ Q′ × (Σ] {τ})×Q′ |
∃t ∈ TN : m t−→ m′ ∧ l(t) = x}

] {(m, x, U1), (m, x, U2) ∈ Q′ × (Σ] {τ})× {U1, U2} |
∃t ∈ TN : ∃m′ ∈ MN \Q′ : m t−→ m′ ∧ l(t) = x}

] {(U1, x, U1), (U1, x, U2) | x ∈ Σ}, and

• Ω = {m ∈ Q′ | m ∈ ΩN}] {U1}.

We restrict BEHb(N) to the states and transitions that are reachable
from the initial state mN . For an open net N, we define BEHb(N) =
BEHb(env(N)).

For a labeled net N, BEHb(N) comprises the reachability graph RG(N)
but merges all markings of N that are reachable by a boundb-violator of N
into the state U1. That way, BEHb(N) is finite but, in contrast to BSDb(N)
in Def. 99, not τ-free. The state U1 has a loop for every symbol of N’s
alphabet; intuitively, U1 models the boundb-violators of N. The state U1 and
its incoming transitions are then duplicated to the state U2 and its incoming
transitions, except for U1’s self-loops. Therefore, the state U2 also models
the set boundb(N). The set of final states of BEHb(N) consists of the set
of (unmerged) final markings of N and the state U1; the state U2 is not
a final state of BEHb(N). We can distinguish strict boundb-violators from
boundb-violators of N in BEHb(N): Every trace of BEHb(N) that reaches U2
without passing through U1 is a strict boundb-violator of N, and all boundb-
violators of N are prefixes of these strict boundb-violators. We can identify
strict boundb-violators because U2 refuses any set of traces.

Example 157 Figure 85 sketches the construction of BEH1(D′) from the
open net D′ in Fig. 82b. The set of final markings of D′ is {[]}; thus,
BEH1(D′) has the final states [] and U1. We already detailed in Ex. 139 that
(s, { f }, ∅) ∈ F+

1, fin(D
′). The fintree failure (s, { f }, ∅) is also reflected in

BEH1(D′): After the trace s, BEH1(D′) can refuse f (because no transition
in BEH1(D′) is labeled with f) and fin-refuse ∅.

Not all fintree failures of the 1-bounded F+
fin-semantics of D′ are

captured by BEH1(D′): As an example, consider the fintree failure
(q, {q f }, {q}) ∈ F+

b, fin(D
′). Using trace q, BEH1(D′) always reaches the

state [p1, qi]. BEH1(D′) can refuse the trace q f because no transition of
BEH1(D′) is labeled with f . However, BEH1(D′) cannot fin-refuse q from
[p1, qi] because the final state U1 is reachable. Note that q is not a bound1-
violator of D′. In fact, the reason why (q, {q f }, {q}) is not captured by
BEH1(D′) is that qq (i.e., a continuation of q with a trace from the fin-
refusal set) is a strict bound1-violator of D′ and, therefore, always reaches
the final state U1. �

The next lemma gives four observations about BEHb(N) of a labeled net
N. The first item states that the states U1 and U2 model boundb(N)—that is,
an observation we already explained after Def. 156. The second item states
that every finboundb-violator (w, X, Y) of N is a fintree failure of BEHb(N).

6.2 deciding compositional b-conformance 155

[p1] s

[p1,qi]

q

[p2]

[p2,qi]

q

[p1,do] d

[p1,qi,do]

q

d

[p2,do]

!

!

[p2,qi,do]

q

! !

U1

q

!

!q q

q

d

d

s,q,d,f

s

s

s

s

s

s

s

U2
s,q,d,f

q

q

!

!q

q

[][p1,si] !
q

[qi]

q

[si]
s

[qi,si]
s

q

q

q

ss
s

q q s

s

s

Figure 85: Sketch of the finite LTS BEH1(D′) from the open net D′ in Fig. 82b. The
two final states U1 and [] are depicted with a thick frame. In general, a
transition without sink leads to a state not shown, with the exception that
dashed transitions always lead to state U2.

This directly follows from U2 modeling boundb(N), because we can reach
U2 with w and U2 can refuse and fin-refuse everything. Note that it is
not possible to model every finboundb-violator of N with U1 in BEHb(N)
because U1 is a final state of BEHb(N). The third item states that every
fintree failure of BEHb(N)’s F+

fin-semantics is also a fintree failure of N’s b-

bounded F+
fin-semantics. Finally, the fourth item states that the only fintree

failures (w, X, Y) of N’s b-bounded F+
fin-semantics that are not captured by

BEHb(N) are “prefixes” of N’s boundb-violators. That way, we can conclude
that (w, X, Y) is dominated by some fintree failure captured by BEHb(N) be-
cause of U2 modeling boundb(N) and refusing (fin-refusing) everything. An
example for such fintree failures is (q, {q f }, {q}) ∈ F+

b, fin(D
′) from Ex. 157.

Lemma 158
Let N be a labeled net such that mN is b-bounded. Then the following facts
hold for BEHb(N):

1. w ∈ boundb(N) iff mN
w
=⇒ U1 iff mN

w
=⇒ U2.

2. finboundb(N) ⊆ F+
fin(BEHb(N)).

3. F+
fin(BEHb(N)) ⊆ F+

b, fin(N).

156 compositional b-conformance

4. Let (w, X, Y) ∈ F+
b, fin(N) \ F+

fin(BEHb(N)). Then there exists an u ∈
(↓ X ∪ ↓ Y) \ X such that wu ∈ boundb(N).

Proof. (1) follows immediately from the definition of BEHb(N), and (2) is
an implication of (1) because U2 can refuse all X ⊆ Σ+ and fin-refuse all
Y ⊆ Σ∗.

(3) The sets agree on the fintree failures (w, X, Y) ∈ finboundb(N) by (2).
So consider w /∈ boundb(N). If (w, X, Y) ∈ F+

fin(BEHb(N)) due to mN
w
=⇒

m, then we also have mN
w
=⇒ m in N with the same underlying run. In

BEHb(N), m could only have more traces (possibly to final states) due to
runs using U1, so it can only refuse and fin-refuse less. Thus, (w, X, Y) ∈
F+

fin(N) and inclusion follows.

(4) If (w, X, Y) ∈ F+
b, fin(N) due to m, but (w, X, Y) /∈ F+

fin(BEHb(N)),
then this must be due to a transition sequence from m that passes through
U1; assume this happens for the first time after u 6= ε; that is, we have

mN
w
=⇒ m u

=⇒ U1
u′
=⇒ with uu′ ∈ X ∪ Y. Thus, wu ∈ boundb(N) by (1) and

u ∈ ↓ X ∪ ↓ Y. Because mN
w
=⇒ m u

=⇒ also in N, we further have u /∈ X. �

With the next lemma, we show that deciding F+
b, fin-refinement for two

interface-equivalent open nets Impl and Spec reduces to checking F+
fin-refine-

ment of the LTSs BEHb(Impl) and BEHb(Spec). The proof idea incorporates
that checking boundb-inclusion is decidable using, for example, BSDb(Impl)
and BSDb(Spec) from Chap. 5. Based on boundb-inclusion, it is easy to
see that every finboundb-violator of Impl is also a finboundb-violator of Spec.
Then, we show that every “true” (i.e., not in finboundb(Impl)) fintree failure
of Impl’s b-bounded F+

fin-semantics is either captured by BEHb(Impl) (and,
therefore, dominated by a fintree failure in BEHb(Spec)) or not captured by
BEHb(Impl) (and, therefore, dominated by a finboundb-violator of Spec). In
either case, this implies a domineering fintree failure in Spec’s b-bounded
F+

fin-semantics.

Lemma 159
For two interface-equivalent open nets Impl and Spec with boundb(Impl) ⊆
boundb(Spec), we have

Impl vF+
b, fin

Spec iff BEHb(Impl) vF+
fin

BEHb(Spec) .

Proof. ⇒: Let (w, X, Y) ∈ F+
fin(BEHb(Impl)). We have (w, X, Y) ∈ F+

b, fin(Impl)
by Lem. 158(3) and (w, X, Y) is dominated by a fintree failure of Spec by
Def. 144: There exists x ∈ {ε} ∪ ↓ X ∪ ↓ Y such that (wx, x−1X, x−1Y) ∈
F+

b, fin(Spec). If (wx, x−1X, x−1Y) ∈ F+
fin(BEHb(Spec)), we are done. So as-

sume otherwise and consider u ∈ (↓ x−1X ∪ ↓ x−1Y) \ x−1X with wxu ∈
boundb(Spec) according to Lem. 158(4). Then xu ∈ (↓ X ∪ ↓ Y) \ X by set
theory. Therefore, (wxu, (xu)−1X, (xu)−1Y) ∈ F+

fin(BEHb(Spec)) by Def. 63

and ε /∈ (xu)−1X. Hence, the fintree failure (w, X, Y) is dominated by
(wxu, (xu)−1X, (xu)−1Y) and, thus, BEHb(Impl) vF+

fin
BEHb(Spec).

⇐: Let (w, X, Y) ∈ F+
b, fin(Impl). If (w, X, Y) ∈ F+

fin(BEHb(Impl)), then

(w, X, Y) is dominated by some (wx, x−1X, x−1Y) ∈ F+
fin(BEHb(Spec)) with

6.3 conclusions 157

x ∈ {ε} ∪ ↓ X ∪ ↓ Y by assumption. We also have (wx, x−1X, x−1Y) ∈
F+

b, fin(Spec) by Lem. 158(3), and therefore Impl vF+
b, fin

Spec. So consider

(w, X, Y) ∈ F+
b, fin(Impl)\ F+

fin(BEHb(Impl)). By Lem. 158(4), there exists u ∈
(↓ X ∪ ↓ Y) \ X such that wu ∈ boundb(Impl). Because of boundb-inclusion
and ε /∈ u−1X, we have u ∈ {ε} ∪ ↓ X ∪ ↓ Y and (wu, u−1X, u−1Y) ∈
F+

b, fin(Spec) Def. 138. Thus, Impl vF+
b, fin

Spec. �

With Lem. 159, the fact that boundb-inclusion is decidable, and Prop. 155,
we have shown the main result of this section: We can decide whether an
open net Impl b-refines an open net Spec, and, thus, decide whether Impl
compositionally b-conforms to Spec by Thm. 152.

Theorem 160 [F+
b, fin-refinement is decidable]

For two interface-equivalent open nets Impl and Spec, checking whether
Impl vF+

b, fin
Spec is decidable.

The construction of the labeled transition system BEHb(N) in Def. 156,
the lemmata Lem. 158 and Lem. 159, and Thm. 160 can be generalized from
a labeled net N with a given bound b to certain enhanced LTSs S: The state
set of S is partitioned into Q] B(S) with a finite set Q of states (i.e., the
set of b-bounded markings of N as in Def. 156) and a possibly infinite set
B(S) of bad states (i.e., the set of markings of N only reachable via bound
b violations); the states in Q are reachable from the initial state qS (i.e., mN
in N) without entering B(S). For such an enhanced LTS S, we can define
F+

fin(S), F+
fin-refinement, boundb(S), finboundb(S), F+

b, fin(S) and F+
b, fin-refine-

ment as for labeled nets in Def. 63, Def. 69, Def. 84, Def. 138 and Def. 144.
Still, Thm. 160 holds; that is, F+

b, fin-refinement for two enhanced LTSs is

decidable by reducing it to F+
fin-refinement for two finite LTSs. In this con-

text, the reachability graph RG(N) of a labeled net N together with the set
B(N) ⊆ MN of all markings that are reachable only via bound b violations
of N—that is, the essence of Def. 156—is just a special case. Nevertheless,
for readability reasons and because the generalization is straight-forward,
we only presented the special case in this section.

6.3 conclusions

In this chapter, we investigated the coarsest precongruence that is contained
in the b-conformance relation—that is, compositional b-conformance. We
characterized compositional b-conformance providing a failure-based seman-
tics for open nets. To this end, we added information about boundb-violations
to the coarsest precongruence that is contained in the conformance relation.
Based on our characterization, we prove compositional b-conformance to be
decidable: The problem could be reduced to deciding should testing [217],
if we refine the proof in [217] by further details. The decision procedure
presented in this chapter does not depend on Petri nets but is independent
from the concrete model.

7C O N C L U S I O N S A N D R E L AT E D W O R K

In this chapter, we summarize the results from Part II. We compare the
compositional conformance and compositional b-conformance and clas-

sify both into the linear time - branching time spectrum of known preorders
between systems in Sect. 7.2. Finally, we review related work in Sect. 7.3.

7.1 overview of the results

We studied a conformance preorder describing whether an open system can
safely be replaced by another open system, thereby guaranteeing respon-
siveness of the overall system. The latter guarantees the permanent possibil-
ity to either mutually communicate or mutually terminate. In Chap. 3, we
showed that responsiveness can be seen as a minimal correctness criterion
for open systems. It implies deadlock freedom but does not imply weakly
termination. Besides responsiveness, we also investigated b-responsiveness.
The latter requires responsiveness and additionally b-boundedness of the
composition due to maintaining a previously known message bound b. The
resulting conformance preorder for each variant of responsiveness is the
conformance relation and the b-conformance relation, respectively.

Our goal was to analyze the conformance relation and the b-conformance
relation for compositionality and decidability. To facilitate this analysis, we
characterized both relations using certain denotational semantics for open
nets. Figure 86 illustrates the general schema we employed: First, we pro-
vided a denotational semantics for open nets and a refinement relation upon
this semantics. Then, we showed that this refinement relation coincides with
the respective conformance relation. That way, we developed a characteriza-
tion of the conformance relation.

Implementation Specification

O
pe

n
Ne

ts

conformance relation

de
no

ta
tio

na
l

Se
m

an
tic

s

refines semanticssemantics

hashas

SpecImpl

Figure 86: The general schema we employed to characterize a conformance relation
using denotational semantics for open nets. A solid arc illustrates the re-
lation described by the corresponding arc label. The dashed arc illustrates
logical equivalence.

Table 8 recalls the structure of Part II. For each variant of the confor-
mance preorder, we presented a characterization based on a denotational
semantics of open nets. For conformance in Chap. 4, the semantics, called
stopdead-semantics, consist of two sets collecting completed traces and un-
successfully completed traces. For b-conformance in Chap. 5, we had to add
the language and a set of uncoverable traces collecting catastrophic traces

159

160 conclusions and related work

that cannot be used reliably. The resulting semantics was the b-coverable
stopdead-semantics.

relation characterization compositionality decidability

conformance Chap. 4 Chap. 4 Chap. 4

b-conformance Chap. 5 Chap. 6 Chap. 5 & Chap. 6

Table 8: The structure of Part II without this chapter.

We showed that neither conformance nor b-conformance is a precongru-
ence and characterized the coarsest precongruence that is contained in the
respective preorder—that is, compositional conformance in Chap. 4 and
compositional b-conformance in Chap. 6. In the unbounded setting, we
showed in Chap. 4 that conformance and compositional conformance are
undecidable. This motivates our focus on b-responsiveness instead of re-
sponsiveness. For the latter, we proved decidability of b-conformance in
Chap. 5 and compositional b-conformance in Chap. 6. In addition, we elabo-
rate a finite characterization of all b-conforming open nets for a given open
net in Chap. 5.

7.2 classifying compositional conformance and compositional

b-conformance

In this section, we study the relation between compositional conformance
and compositional b-conformance. We already showed in Sect. 3.3.2 that
conformance and b-conformance are incomparable. In the following, we
use two examples to show that also compositional conformance and com-
positional b-conformance are incomparable. The first example is used to
show that compositional conformance does not imply compositional b-con-
formance.

Example 161 Figure 87 shows the two open nets N4 and N5 from
Sect. 3.3.2. Every fintree failure of the F+

fin-semantics of N4 is also a fin-

tree failure of the F+
fin-semantics of N5, because every transition sequence

of env(N4) is also a transition sequence in env(N5), leading to the same
markings of env(N4) and env(N5) except for the place p0. A token on p0,
in turn, does not enable or hinder any further transition. In other words,
we have F+

fin(N4) ⊆ F+
fin(N5) and, thus, N4 compositionally conforms to

N5 by Def. 69 and Thm. 75. In contrast, N4 does not compositionally b-con-
form to N5: We have ε 6∈ boundb(N5) but ε ∈ boundb(N4) because the place
p0 is unbounded in the composition of N4 with any open net. Thus, N4
does not F+

b, fin-refine N5 by Def. 144, and Thm. 152 shows the statement.�

With the second example, we show that compositional b-conformance
does not imply compositional conformance.

Example 162 Consider the open net N6 in Fig. 87c. As in Ex. 54, we de-
fine the open net N7 as the open net N6 in Fig. 87c but with ΩN7 =
{m ∈ Bags(PN7) | ∀p ∈ PN7 \ {p0, p1} : m(p) = 0} as its set of fi-
nal markings. The open net N6 compositionally b-conforms to N7: We
have boundb(N6) = boundb(N7) and finboundb(N6) = finboundb(N7) be-
cause N6 and N7 differ only in their set of final markings. Thus, ev-

7.2 classifying compositional conformance and compositional b-conformance 161

t2
b

a
t0

t1

p2p1

p0

(a) Open net N4

t2
b

a
t0

t1

p2p1

(b) Open net N5

t3
c

a

b

t0

t2

p3p2

p0

p1

t1

(c) Open net N6

Figure 87: Three open nets from Fig. 38 proving that compositional conformance
and compositional b-conformance are incomparable. In addition to the
figures, we have ΩN4 = ΩN5 = ΩN6 = {[]}.

ery fintree failure (w, X, Y) of the b-bounded F+
fin-semantics of N6 that

is not a fintree failure of the b-bounded F+
fin-semantics of N7 contains a

trace w ∈ Y that reaches a final marking of N7. By construction, a final
marking of N7 is only reachable by a boundb-violator of N7. Therefore,
(w, X, Y) ∈ F+

b, fin(N6) \ F+
b, fin(N7) implies (w, X, Y) ∈ finboundb(N7) and,

thus, F+
b, fin(N6) = F+

b, fin(N7). Consequently, N6 F+
b, fin-refines N7 and N6

compositionally b-conforms to N7 by Thm. 152.
However, N6 does not compositionally conform to N7. As an example,

consider the fintree failure (a, ∅, {ε}) ∈ F+
fin(N6). We have (a, ∅, {ε}) 6∈

F+
fin(N7) because we reach the final marking [p0] with trace a in env(N7).

Therefore, N6 does not F+
fin-refine N7 and does not compositionally con-

form to N7 by Thm. 75. �
With Ex. 161 and Ex. 162, we showed that compositional conformance

and compositional b-conformance are incomparable. In the remainder of
this section, we show how compositional conformance and compositional b-
conformance relate to the known preorders from the linear time - branching
time spectrum [104, 105].

Figure 88 depicts some of the known preorders from the linear time -
branching time spectrum and the relations between them: bisimulation [202]
(B), ready simulation [36] (RS), must testing [72] (MT), should (or fair) test-
ing [196, 48, 217] (ST), completed trace (CT) and trace (T) preorder. An
arrow (and a sequence of arrows) between two preorders denotes the inclu-
sion relation; for example, the bisimulation preorder implies (is finer than)
the ready simulation preorder. An absent arrow (or sequence of arrows) be-
tween two preorders indicates that the inclusion does not hold; for example,
the should testing preorder is not finer than the must testing preorder.

B

RS MT CT T

ST

Figure 88: Some known preorders from the linear time - branching time spectrum.

Figure 89 depicts the classification of compositional conformance and
compositional b-conformance into the linear time - branching time spec-
trum from Fig. 88. Compositional conformance is the should testing pre-
order [217] extended with traces that do not lead to a final marking. For

162 conclusions and related work

compositional b-conformance, we had to extend the should testing preorder
by information about bound violations, which make compositional b-confor-
mance incomparable to compositional conformance.

B

RS MT CT T

ST = vc
conf

vc
b,conf

Figure 89: (Compositional) conformance and (compositional) b-conformance classi-
fied into the linear time - branching time spectrum.

If we extend bisimulation in Def. 5 to respect final states (i.e., two states q1
and q2 in a bisimulation relation have to satisfy: q1 is a final state if and only
if q2 is a final state), then bisimulation implies compositional b-conformance.
Compositional b-conformance does not imply trace-inclusion (i.e., the trace
preorder): Consider the open nets N8 and N9 in Fig. 90. Every boundb-
violator of N8 is also a boundb-violator of N9, and every trace w ∈ L(N8) \
L(N9) is a boundb-violator of N9. In addition, N9 can refuse more traces
than N8 because of the missing transition t2. Therefore, N8 compositionally
b-conforms to N9, but we have, for example, ab ∈ L(N8) and ab 6∈ L(N9).

a

b

t0

t2

p0

p1

t1

(a) Open net N8

a

b

t0
p0

p1

t1

(b) Open net N9

Figure 90: Two open nets proving that compositional b-conformance does not imply
trace-inclusion. In addition to the figures, we have ΩN8 = ΩN9 = ∅.

7.3 related work

In this section, we review work related to conformance checking, our deno-
tational semantics for open nets, and the undecidability results.

The idea of assigning a formal semantics to a program for verification
purposes was introduced by Floyd [96] and Hoare [118]. The intuition be-
hind conformance checking derives from program refinement calculi [80,
184, 182, 24]. Other names for a conformance relation found in literature are
refinement relation [256, 37], implementation relation [119, 72, 143, 238], con-
formation relation [81], preorder relation [68], accordance relation [226, 11],
and subcontract relation [141, 44], for instance.

7.3.1 Work based on process algebra and declarative models

work of ramajani and rehof Rajamani and Rehof [213] define a
conformance relation in a bisimulation-like style for the process algebra
CCS [177]. Although they use a formal model different than ours, they also
investigate asynchronous communication. Rajamani and Rehof [213] investi-

7.3 related work 163

gate stuck-freeness—that is, the behavioral correctness property that guaran-
tees that a message sent by a sender will not get stuck without some receiver
ever receiving it, and that a receiver waiting for a message will not get stuck
without some sender ever sending it. In contrast, we consider responsive-
ness and b-responsiveness, which are incomparable to stuck-freeness: On
the on hand, a message may get stuck on a channel without being received
for responsiveness, as long as the sender and the receiver continue commu-
nicating over other channels. On the other hand, stuck-freeness does not
imply responsiveness because it allows to avoid getting stuck by repeatedly
following internal transitions, which does not imply perpetual communica-
tion as needed for responsiveness.

work of fournet et al . Fournet et al. [97] continue the work of Ra-
jamani and Rehof [213] and present with stuck-free conformance a precon-
gruence that excludes deadlocks. Their precongruence, like compositional
conformance and compositional b-conformance, is based upon a variation
of failures semantics rather than traces. However, stuckness is more discrim-
inative than deadlock freedom by taking orphan messages into account. In
contrast, responsiveness and b-responsiveness allow for orphaned messages
if communication continues otherwise (i.e., over other channels).

work of padovani et al . Padovani et al. [141, 59] introduce the sub-
contract preorder for CCS-like [177] processes without τ-actions. In con-
trast, our model for open systems may contain internal transitions (i.e., τ-
actions). Their subcontract preorder is equivalent to must testing [72] and
therefore incomparable to compositional conformance and compositional b-
conformance (see Fig. 89). As an additional difference, their subcontract
preorder is an asymmetric notion; that is, it is focusing only on a success-
ful termination of the test (i.e., the system’s environment), rather than on
the system under test. In contrast, our notions of responsiveness and b-re-
sponsiveness are symmetric notions where both composed systems have to
terminate successfully.

work of bravetti et al . Bravetti and Zavattaro [46] extend their pre-
vious work in [43, 44, 45] to asynchronously communicating processes and
define the subcontract preorder which preserves weak termination. Our no-
tions of conformance and b-conformance do not preserve weak termination—
that is, our preorders are coarser. The model in [46] is a modified version
of Milner’s CCS [177] with one unbounded but ordered message queue. In
contrast, we use Petri nets with interface places (i.e., open nets) as a model,
and each interface place models an unbounded unordered message queue.

work of dill Trace-based semantics like ours (in particular the b-bound-
ed stopdead-semantics and the b-coverable stopdead-semantics in Chap. 5)
where the language is flooded with error traces go back to the work of Dill
[81]. Errors in [81] arise from communication mismatches and are simi-
lar to our boundb-violators. Dill’s semantics can be seen as a declarative
model and Dill’s refinement relations, to which he refers as conformation,
are trace inclusions like our characterizations of the conformance and b-con-
formance preorders. In contrast to our asynchronous (i.e., buffered) setting,
Dill considers a synchronous (i.e., an unbuffered) setting. Similar decision
procedures for preorders other than b-conformance have also been studied
in [47].

164 conclusions and related work

7.3.2 Work based on automata

work of de alfaro and henzinger Interface automata, as defined
by de Alfaro and Henzinger [18], take up the same ideas as Dill [81] but
on an operational (i.e., automaton) model instead on a declarative one. In
contrast to a refinement relation based on trace inclusions (like the refine-
ment relations of Dill [81] and the refinement relation we used to charac-
terize conformance and b-conformance in Chap. 4 and Chap. 5), refinement
of interface automata is characterized by an alternating simulation relation
similar to the refinement of modal transition systems [142]. Alternating
simulation is conceptually more complex than refinement based on trace
containment. Further, alternating simulation is overly strong in compari-
son to our refinements based on the stopdead-semantics and the b-coverable
stopdead-semantics, which are the weakest preorders preserving responsive-
ness and b-responsiveness.

work of chilton et al . Chilton et al. [62] (a preliminary version
appeared as [61]) formulate a theory for components based on I/O au-
tomata [160, 129] augmented by an inconsistency predicate on states. I/O
automata are conceptually similar to interface automata by de Alfaro and
Henzinger [18] except that each state is required to be input-enabled. Like
in our setting, system models in [62] can be specified operationally (in our
case with open nets, in their case by means of I/O automata), or in a purely
declarative manner by means of traces. They consider with quiescent traces
a kind of stop traces and their refinement involves trace containment. The
precongruence defined in [61] is based on traces but in a synchronous set-
ting. In contrast, our precongruences are variants of the should testing pre-
order [217] in an asynchronous setting. Moreover, our notion of divergence
(i.e., “infinite internal chatter”) is different from the one in [62]: If two open
systems indefinitely interact with each other, then they are responsive and,
hence, we do not treat such a trace as problematic, but Chen et al. [61] do.
The reason is that, intuitively, we assume a stronger notion of fairness.

Common for the synchronous setting of Dill [81], de Alfaro and Hen-
zinger [18], and Chen et al. [61] is that they all have to apply some kind
of output pruning (whereas we have not): In the composition of two open
systems, if a sequence of output transitions leads to an error state, these
transitions and the states involved have to be removed. We avoid pruning
by introducing the notion of b-uncoverable traces in Chap. 5.

work of stahl et al . Stahl et al. [226, 11] consider a conformance
relation—called accordance—which preserves deadlock freedom on service
automata (see Sect. 2.7). The notion of accordance has been first introduced
in [10]. However, the decision procedure for accordance in [10] was limited
to acyclic finite state services. Accordance for deadlock freedom is strictly
weaker than our conformance relation for responsiveness, because respon-
siveness implies deadlock freedom (see Sect. 3.3 for a detailed comparison).
Based on the accordance relation, Lohmann et al. [152] introduce a single
service that encodes a set of services. This motivates the notion of a max-
imal b-partner in Sect. 5.3. With Thm. 129, we showed how the notion of
a maximal b-partner can be used to decide b-conformance. The notion of
a maximal partner is related to the notion of a canonical dual from [59].
Castagna et al. [59] propose a trivial construction method (based on mirror-

7.3 related work 165

ing the message channels) for their restricted setting that does not apply to
our setting.

work of lohmann et al . Lohmann and Wolf [156] present a deci-
sion procedure for the responsiveness in [258], but on an automaton model
and for a less general variant of responsiveness (see Sect. 3.4 for more de-
tailed comparison to our variants of responsiveness). More generally, we
deal with open nets that are responsive in some open net compositions but
not in others. Responsiveness in [258, 156] is mainly motivated by algorith-
mic considerations for deciding the respective conformance preorder, but
without characterizing the latter semantically or studying compositionality.
Although we are more general, our decision procedure for b-conformance
in Chap. 5 has the same worst case complexity as the decision procedure
for responsiveness in [156]: Lohmann and Wolf [156] propose to compute
the operating guideline (i.e., a finite representation of all b-partners) of both
Impl and Spec. Then, they check for a weak simulation relation of OG(Impl)
by OG(Spec) that relates certain state labels of these OG’s (i.e., bits represent-
ing sets of states in [156]). In contrast, we propose to compute CSDb(Impl)
and CSDb(Spec) and check for a bisimulation between them that respects
the state annotations. Computing CSDb(N) is at most as expensive as com-
puting OG(N) for any open net N.

work of mooij et al . Mooij et al. [180, 179] construct a finite maximal
b-partner—called maximal controller—for the accordance relation of Stahl
et al. [226, 11] (i.e., for deadlock freedom). In essence, their construction
algorithm “unfolds” the operating guideline of Lohmann et al. [153] into a
single service automaton, which results in an exponential blowup of the size
of the maximal b-partner compared to the size of the operating guideline.
Parnjai [205, 203] lifts this construction algorithm to an accordance relation
based on a notion of responsiveness that is weaker than ours. In contrast,
our construction of a maximal b-partner maxb from the LTS CSDb in Sect. 5.3
at most doubles the size of maxb compared to the size of CSDb. As the size of
CSDb is comparable to the size of an operating guideline (see the previous
paragraph), our maximal b-partner is in general drastically smaller than the
maximal controllers in [180, 179, 205, 203]. van Hee et al. [114] show how to
compute maximal controllers for weak termination [181, 162, 44], but only
for a subclass of open nets and without providing an implementation.

7.3.3 Work based on Petri nets

work of vogler Vogler [246] presents a few tens of equivalences to
support the modular construction of Petri nets. The setting of his work is
more general than ours, as he studies asynchronously communicating (i.e.,
by fusing places) and synchronously communicating (i.e., by fusing transi-
tions) Petri nets. As a difference, in the setting of Vogler [246], the interface
is not separated into input and output places and interface places may be
unbounded (like in the stopdead-semantics in Chap. 4). For open nets with
an empty set of final markings, our definitions of responsiveness and con-
formance yields an equivalence, which is similar to P-deadlock equivalence
in [246]. Vogler presents the notion of IR-equivalence for open nets that co-
incides with should (or fair) testing (called PF++-equivalence in [246]) and,
thus, is essentially compositional conformance by Sect. 7.2. However, IR-

166 conclusions and related work

equivalence is, as the subcontract preorder of Laneve and Padovani [141],
an asymmetric notion, whereas our notion of conformance is symmetric.

Our decidability result for compositional b-conformance builds upon the
decidability of should testing by Rensink and Vogler [217]. We showed how
to decide F+

fin-refinement for two finite LTSs, generalizing the construction
of Rensink and Vogler [217, Theorem 61] for deciding F+-refinement. In
the second step, we reduced F+

b, fin-refinement under a precondition (i.e.,

boundb-inclusion) to F+
fin-refinement for two finite LTSs. That way, we can

conclude decidability of compositional b-conformance as it coincides with
F+

b, fin-refinement.

work of van der aalst and basten Van der Aalst and Basten [30, 7]
introduce the notion of projection inheritance for a subclass of Petri nets—
that is, workflow nets (WFNs) [1]. WFNs are subject to several syntactic
restrictions and therefore less general than open nets. The notion of projec-
tion inheritance is based on branching bisimulation and relates two WFNs
if they can be substituted. As a difference, the projection inheritance ap-
proach assumes a synchronous communication model (i.e., by fusing transi-
tion) and considers soundness as a correctness criterion. Soundness implies
weak termination and, thus, our notions of conformance are strictly coarser
than projection inheritance.

work of martens Martens [163, 164] presents a refinement notion for
workflow modules—that is, for a Petri net formalism similar to WFNs. As
WFNs, workflow modules are less general than open nets. To decide re-
finement of acyclic workflow modules, Martens introduces a data structure
called communication graph and a simulation relation on these graphs. In
essence, a communication graph represents the communication behavior of
an open system and can be compared with a reduced version of our LTS
CSDb without any state labels. Due to the limitations of workflow modules
and the loss of information in communication graphs compared to our LTS
CSDb, his simulation relation on communication graphs is only sufficient
for the accordance notion of Stahl et al. [226, 11].

work of bonchi et al . Bonchi et al. [40] model the behavior of ser-
vices using Consume-Produce-Read Nets; another variant of Petri nets. For
their model, they present saturated bisimulation as a refinement relation.
However, saturated bisimulation is too restrictive to allow reordering of
sending messages and is, therefore, not suitable for a refinement relation
based on asynchronous communication.

work of stahl and vogler Our trace-based semantics—the stopdead-
semantics of an open net—is an adaption of a trace-based semantics with the
same name in [227, 228]. A stop except for inputs we introduced in Sect. 4.1
is, in essence, a silent marking [187] defined on the composition of two open
nets instead on the environment of one open net. Compared to the work
of Stahl and Vogler [228] for characterizing conformance with respect to
deadlock freedom, finer trace sets are required to characterize the preorders
based on responsiveness. While traces are adequate for the precongruence
dealing with deadlock freedom [228], they do not suffice to characterize the
coarsest precongruence for responsiveness, and we had to use some kind
of failures instead. Standard failure semantics was introduced by Brookes
et al. [50]. By characterizing compositional conformance and compositional

7.3 related work 167

b-conformance, we use an extension of Vogler’s F+-semantics [246] (which
Voorhoeve and Mauw [250] later introduced as impossible futures). The
corresponding precongruence—that is, compositional conformance—is in
essence the should testing preorder [196, 48, 217].

The construction of the LTS BSDb in Sect. 5.2 is based on a construction
with the same name in [228]. In contrast to Stahl and Vogler [228], our
BSDb represents five languages that partition the language Σ∗ and are not
included in each other. This is because the empty state Q∅ also arises in the
construction of BSDb in [228], but is not distinguished (in terms of the state
labels) from nonempty states.

7.3.4 Work related to the undecidability results

Our undecidability result in Sect. 4.3 is an extract of [193], where we showed
undecidability for the unbounded preorders and precongruences with re-
spect to deadlock freedom, responsiveness, and weak termination. The re-
sults in [193] suggest that the subcontract preorder of Bravetti and Zavattaro
[46] is undecidable, although we have no formal proof for this conjecture.

Our proofs in Sect. 4.3 work by reduction from the halting problem of 2-
counter machines using a variation of the “Jančar-Patterns” [126]. Counter
machines and their halting problem were introduced by Minsky [178]. The
halting problem for counter machines can be used very naturally to show
the undecidability of other problems related to Petri nets, such as bisimilar-
ity and language inclusion [126, 92].

The controllability problem for responsiveness [258, 156]—that is, the
question whether a given open net has at least one partner—is decidable:
There always exists a trivial partner with a loop in which messages are sent
without waiting for an answer. As the corresponding preorder—that is, the
conformance relation—is undecidable, we conclude that conformance is a
more difficult problem than controllability.

Part III

T H E L O G - M O D E L S C E N A R I O

8T E S T I N G F O R b - C O N F O R M A N C E

This chapter is based on results published in [190].

A s explained in Chap. 1, we consider two scenarios in this thesis: the
model-model scenario and the log-model scenario. In the model-model

scenario, we assume that both the specification and the implementation of
an open system are given as formal models. In the log-model scenario how-
ever, we assume the specification of an open system to be given as a formal
model, but no formal model of the implementation is available. This is
often a more realistic and practically relevant assumption than assuming
the availability of a formal model of the implementation as we do in the
model-model scenario. In practice, often no formal model of the implementation
is available because the implementation is too complex to be formally mod-
eled or people lack the skills to clearly state the precise behavior. Even if
there exists a formal model of the implemented system, it can differ signif-
icantly from the actual implementation: the formal model may have been
implemented incorrectly, or the implementation may have been changed
over time. As the implementation itself is unknown (i.e., a black box), we
cannot translate the implementation into a formal model. Instead, we are
given some kind of observed behavior of the implementation, to which we
refer as event log. In practice, an event log may be extracted from databases,
message logs, or audit trails [8]. Figure 91 illustrates our assumptions for
the log-model scenario.

Event
Log

provides

Implementation
(unknown)

conforms to

Specification
(e.g., WS-BPEL)

Re
al

ity
O

pe
n

Ne
ts

modelstranslates

SpecImpl

modelstranslates

(unavailable)

conforms to

Figure 91: The log-model scenario

In Part III, we investigate how to use the event log to check conformance
of the unknown implementation to the given specification. An event log is
inherently incomplete: It is unlikely that every behavior of the unknown im-
plementation was observed and recorded in the event log; it is even impos-
sible, if the unknown implementation contains at least one loop that allows
for an infinite set of traces. Therefore, an event log captures, in general, only
parts of the behavior of an implementation. This incompleteness hinders the
application of traditional verification techniques like conformance checking
in the log-model scenario. Still, testing for conformance may be applicable,

171

172 testing for b-conformance

which we investigate in this chapter. Another idea is to support the design
of responsive open systems in the log-model scenario by discovering a formal
model of the unknown implementation based on the given event log. We
investigate this idea in Chap. 9. In the final chapter of Part III, Chap. 10, we
summarize our results and review related work.

In the remainder of this chapter, we present a testing approach for con-
formance. Testing for conformance means that if there is some erroneous
behavior captured by the given event log, we can conclude that the un-
known implementation does not conform to the specification. However, if
there is no erroneous behavior captured by the event log, we cannot make
any statement whether the implementation conforms to the specification.
Our notion of testing solely relies on the given specification and the ob-
served behavior recorded by the event log; we have no control over the test
case (i.e., the open system that communicates with the unknown implemen-
tation and from whose communication the provided event log originates).
Our notion of testing is also called monitoring [219] or passive testing [239].
Passive testing is opposed to active testing, where a tester has active control
over the test environment and especially a set of predefined tests that are
executed [239, 49]. For our testing approach, we consider only the b-con-
formance relation because b-conformance is, in contrast to the conformance
relation in Chap. 4, decidable.

Figure 92 illustrates our testing approach in the log-model scenario. A
formal model of the implementation is unknown, but the implementation
provides an event log instead. We assume that we are given a formalization
Log of the provided event log. Again we focus on control flow, so Log is a
multiset of traces that abstracts for example from captured resource or tim-
ing information. For our testing approach, we present a necessary condition
for deciding b-conformance: We analyze whether there exists a b-conform-
ing implementation which can “replay” Log—that is, whether there exists an
implementation which may produce the behavior seen in Log without any
mismatch. Thereby, we use the finite characterization of all b-conforming
open nets that we developed in the model-model scenario. If there does not
exist a b-conforming implementation that can replay Log, then the implemen-
tation, which provided the given event log, is certainly not b-conforming to
the specification.

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

can be
replayed

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

Figure 92: An illustration of conformance testing in the log-model scenario. A solid
arc illustrates the relation described by the corresponding arc label. The
dashed arc illustrates logical implication.

8.1 formalizing observed behavior 173

We formalize a given event log and show how to replay that formalization
on an open net in Sect. 8.1. In Sect. 8.2, we develop an algorithm to test
for b-conformance, and in Sect. 8.3, we implement that algorithm using the
decision algorithm for b-conformance from Chap. 5. We evaluate our testing
approach using industrial-sized specifications and event logs in Sect. 8.4 and
finish this chapter with a conclusion in Sect. 8.5.

8.1 formalizing observed behavior

In this section, we start by formalizing the notion of an event log in Sect. 8.1.1.
In Sect. 8.1.2, we show how an event log can be replayed on a labeled net,
and in Sect. 8.1.3 we extend the replay approach to open nets. Figure 93

illustrates the focus of this section.

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

can be
replayed

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

Figure 93: The focus of Sect. 8.1

8.1.1 Events, event traces, and event logs

In this section, we formalize observed behavior in terms of event traces. An
event trace describes an observed communication sequence between two
open systems in a particular case in terms of a sequence of events (i.e., sent
and received messages). We describe an event as a label (i.e., a symbol) and
abstract from extra information, such as the message content and resource
or timing information of the message.

Technically, an event in an event trace and an action of a labeled Petri net
coincide: Both are ordinary labels. However, we distinguish them linguis-
tically because of their different origins. An event derives from an event
trace and represents something that was observed—that is, the sending or
receiving of a message—whereas an action derives from a labeled Petri net
and describes the possibility to send or receive a message. In other words,
an event is an observed action. As the internal, invisible action τ represents
an action that cannot be observed in a labeled Petri net, τ is not an event.

Convention 8 For the remainder of this thesis, we assume a set E of events
that may have been captured in an event log. We assume τ 6∈ E . �

In general, it is always possible to observe behavior that was already ob-
served before. Therefore, we formalize an event log as a multiset of event
traces instead of a set of event traces.

174 testing for b-conformance

Definition 163 [event trace and event log]
An event trace w ∈ E∗ is a sequence of events, and an event log Log ∈
Bags(E∗) is a multiset of event traces.

Example 164 As a running example for this chapter, consider the event
log DLog in Tab. 9. The event log DLog contains information on 210 traces.
There are three types of traces: qd, qqd, and sfd. Formally, DLog is the
multiset [qd, . . . , qd, qqd, . . . , qqd, sfd, . . . , sfd] that contains the event trace qd
100 times, the event trace qqd 100 times, and the event trace sfd 10 times. �

cardinality event trace

100 qd
100 qqd
10 sfd

Table 9: The event log DLog

8.1.2 Replaying an event log on a labeled net

We want to compare a (discovered) model (i.e., a labeled net N) with a given
event log (i.e., a multiset Log of event traces). To this end, we use a replay
technique [15, 5] from the area of process mining [2]. The idea is to relate
each event trace w ∈ Log to a run v of N that can be executed from N’s
initial marking. We refer to this relation as an alignment, which, in turn,
consists of a sequence of moves. There are three types of moves: log moves,
model moves, and synchronous moves. Log moves and model moves formalize
“mismatches” between w and v by relating a unique symbol� (“no move”)
to an event of w or a transition of v, respectively. A synchronous move
formalizes a “match” by relating an event of w to a transition of v.

Definition 165 [move]
Let Log be an event log, and let N be a labeled net. A move is a pair
(x, y) ∈

(
(E] {�})× (T] {�})

)
\ {(�,�)}. A move (x, y) is

• a log move if x 6=� and y =�;

• a model move if x =� and y 6=�, and a silent (model) move if, addi-
tionally, l(y) = τ;

• a synchronous move if x 6=� and y 6=�.

Definition 166 [alignment]
Let Log be an event log, and let N be a labeled net. An alignment of an
event trace w ∈ Log to N is a sequence γ = (x1, y1) . . . (xk, yk) of moves
such that

1. Restricting γ’s first component to E yields the event trace w, i.e.,
(x1 . . . xk)|E = w;

2. Restricting γ’s second component to T yields a run v of N from N’s
initial marking mN , i.e., (y1 . . . yk)|T = v such that mN

v−→ in N;

8.1 formalizing observed behavior 175

3. Events and transition labels coincide for all synchronous moves, i.e.,
for all 1 ≤ i ≤ k, if xi 6=� and yi 6=�, then l(yi) = xi.

We denote by trace(γ) ∈ Σ∗ the trace of N that is obtained from the run v,
i.e., trace(γ) is obtained from v by replacing each transition with its label
and removing all τ labels.

Graphically, we denote an alignment γ of an event trace w = w1 . . . wn to
an open net N with transitions t1, . . . , tm and labeling function l as follows:

γ =

w1 w2 � . . . wn

l(t1) � l(t2) . . . l(tm)

t1 t2 . . . tm

The top row of γ corresponds to the event trace w = w1 . . . wn in Log and
the bottom two rows correspond to the labeled net N. There are two bottom
rows because multiple transitions of N may have the same label; the upper
bottom row consists of transition labels, and the lower bottom row consists
of transitions. For a log move, the symbol � (“no move”) appears in the
upper bottom row and, as no transition has been fired, the lower bottom
row is empty. For a model move, the symbol� (“no move”) appears in the
top row.

Example 167 Consider again the database D from Sect. 3.2. For conve-
nience, we depict D and its environment env(D) again in Fig. 94. For
the trace sfd in DLog from Tab. 9 and the labeled net env(D), we have
sf ∈ L(env(D)) but sfd 6∈ L(env(D)); that is, sfd deviates from sf by
adding an additional event d. Thus, an alignment of sfd to env(D) is
γ1 = (s, s)(�, shutdown)(�, forward)(f , f)(d,�) or graphically

γ1 =

s � � f d
s τ τ f �
s shutdown forward f

The move (d,�) is a log move, because env(D) cannot fire transition d
without a token on the place do. The move (�, shutdown) is a model move.
In addition, (�, shutdown) is a silent move because the transition shutdown
is labeled with τ. All in all, the alignment γ1 consists of two synchronous
moves, two silent moves, and one log move.

In general, there exist many alignments of an event trace to a labeled
net. For example, the alignment γ1 is not the only alignment of sfd to
env(D). Another alignment of sfd to env(D) is γ2 = (s, s)(�, shutdown)
(�, forward)(f ,�)(�, f)(d,�) or graphically

γ2 =

s � � f � d
s τ τ � f �
s shutdown forward f

The alignment γ2 contains a log move (f ,�) and a model move (�, f)
instead of a synchronous move (f , f) as in the alignment γ1. All in all, γ2
consists of one synchronous move, two silent moves, two log moves, and
one model move. �

Intuitively, synchronous and silent moves in an alignment model that the
event trace “fits” to the labeled net, whereas log and model moves in an

176 testing for b-conformance

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

(a) Open net D

retrieve do

si

qi

shutdown
process

p2p1p0

fo
forward

s

q

d

f!
!

!
!

q

s

d

f

(b) Labeled net env(D)

Figure 94: The open net D and the labeled net env(D) from Sect. 3.2. In addition to
the figures, we have ΩD = {[p0]} and Ωenv(D) = {[p0]}.

alignment model that the event trace deviates from (a trace of) the labeled
net. The idea of the replay technique [15, 5] is to align every event trace w
of a given event log to the labeled net N such that w fits “best” to N; that
is, an alignment of w to N has as many synchronous and silent moves as
possible. To choose such an alignment, we use a cost function on moves to
find an alignment with the least costs—that is, a cost-minimal alignment.

Definition 168 [cost function and cost-minimal alignment]
Let γ = (x1, y1) . . . (xk, yk) be an alignment of an event trace w ∈ Log to a
labeled net N. A cost function κ assigns to each move (xi, yi) (for 1 ≤ i ≤ k)
a cost κ((xi, yi)) such that every synchronous and silent move has cost 0,
and all other types of moves have cost greater than 0. The cost of γ is
κ(γ) = ∑k

i=1 κ((xi, yi)); γ is cost-minimal if, for all alignments γ′ of w to N,
κ(γ) ≤ κ(γ′).

Convention 9 To simplify future notations that are based on the cost of an
alignment, we assume in the remainder of this thesis that a cost function κ
is given every time an event log is given. For the examples in the remainder
of this thesis, we assume that κ assigns cost of 1 to each log move and to
each non-silent model move, and cost of 0 to each synchronous move and
to each silent model move. Van der Aalst et al. [5] also refer to this cost
function as “standard distance function”. �

Example 169 Consider again the alignments γ1 and γ2 from Ex. 167. Both
alignments align the event trace sfd of DLog in Tab. 9 to the labeled net
env(D) in Fig. 94b. We can distinguish γ1 and γ2 by their costs: γ1 consists
of two synchronous moves, two silent moves, and one log move. Thus,
we have κ(γ1) = 2 · 0 + 2 · 0 + 1 · 1 = 1. In contrast, γ2 consists of one
synchronous move, two silent moves, two log moves, and one model move,
yielding κ(γ2) = 1 · 0+ 2 · 0+ 2 · 1+ 1 · 1 = 3. Thus, we prefer γ1 over γ2.�

For every event trace w of a given event log Log and every labeled net
N, there exists at least one cost-minimal alignment γ of w to N. However,
γ is in general not unique; that is, there may exist multiple cost-minimal
alignments of w to N. We show this with the following example.

8.1 formalizing observed behavior 177

Example 170 Consider again the event log DLog in Tab. 9 and the labeled
net env(D) in Fig. 94b. For the trace qqd ∈ DLog, an alignment of qqd to
env(D) is γ3 = (q, q)(q, q)(�, process)(�, retrieve)(d, d) or graphically

γ3 =

q q � � d
q q τ τ d
q q process retrieve d

The alignment γ3 consists of three synchronous moves and two silent
moves. Thus, we have κ(γ3) = 3 · 0 + 2 · 0 = 0, and, therefore, γ3 is
clearly a cost-minimal alignment of qqd to env(D). However, there exist
other cost-minimal alignments of qqd to env(D). As an example, consider
the following alignment γ4 of qqd and env(D):

γ4 =

q � � q d
q τ τ q d
q process retrieve q d

The alignment γ4 consists, as γ3, of three synchronous moves and two
silent moves. Thus, κ(γ4) = κ(γ3) = 0 and γ4 is also a cost-minimal
alignment of qqd to env(D). �

Example 170 shows that there may exist more than one cost-minimal align-
ment of an event trace w to a labeled net N. As our goal is to align event
traces in the event log to traces of the model such that they “fit best”, we se-
lect an arbitrary cost-minimal alignment. To this end, we use a deterministic
“oracle” function which gives, for each event trace w of an event log Log and
a labeled net N, a cost-minimal alignment of w to N. It is always possible to
create such a function based on some predefined precedences—for example,
by establishing a partial order over the moves of alignments.

Definition 171 [oracle function for cost-minimal alignments]
Let Log be an event log and let N be a labeled net. Then ON is an oracle
function if for all w ∈ Log, ON(w) is a cost-minimal alignment of w to N.

The alignments produced by the oracle function ON can be used to re-
play an event log on the labeled net N and to quantify (in terms of costs)
the mismatch between them. By Conv. 9, we can also derive the following
corollary.

Corollary 172 [language vs. cost-minimal alignments]
For any labeled net N and w ∈ E∗, w ∈ L(N) if and only if κ(ON(w)) = 0.

In the next section, we lift the replay approach to event logs and open
nets.

8.1.3 Replaying an event log on an open net

In this section, we describe two viewpoints of an event log and how we can
replay an event log on an open net depending on the viewpoint taken.

Assume an open net N that communicates with its environment—that
is, other open nets—and an event log Log that captures the communication
between N and its environment. The event log Log may take one out of
two viewpoints with respect to N depending on what or when events are

178 testing for b-conformance

recorded in Log [190]: If events are recorded when N consumes (produces)
a message from (for) its environment, then Log takes the viewpoint of N. In
contrast, if events are recorded when the environment consumes (produces)
a message from (for) N, then Log takes the viewpoint of N’s environment.
Figure 95 illustrates the two different viewpoints of Log.

N

viewpoint
of N

viewpoint
of N's environment

Figure 95: The viewpoint of an event log depends on what or when events are ob-
served: An event log Log can take the viewpoint of an open net N (i.e.,
an event in Log represents N sending or receiving a message) or the view-
point of N’s environment (i.e., an event in Log represents N’s environment
sending or receiving a message).

For replaying an event log Log on an open net N, we have to consider
Log’s viewpoint. If Log takes the viewpoint of N, we can use the inner
net inner(N) for replaying Log on N. This changes if Log takes the view-
point of N’s environment. We cannot use inner(N) because of the assumed
asynchronous communication, and we cannot use a concrete model of N’s
environment because such a model is, in general, not available. Therefore,
we may be forced to use the labeled net env(N) for replaying Log on N:
The labeled net env(N) “simulates” asynchronous communication from the
viewpoint of the environment of N. Example 167 and Ex. 170 use the latter
viewpoint. We formalize the usage of inner(N) and env(N) depending on
which viewpoint Log takes by introducing the notion of a replay environment
of Log and N.

Definition 173 [replay environment]
Let Log be an event log and let N be an open net. The replay environment
replay(Log, N) of Log and N is a labeled net defined by

replay(Log, N) =


env(N), if Log takes the viewpoint of the

environment of N
inner(N), if Log takes the viewpoint of N .

Convention 10 To simplify the notation in Def. 173, we do not mention the
event log Log as a parameter of the replay environment and write replay(N)
instead of replay(Log, N); the concrete event log Log will be always clear
from the context. �

Example 174 Consider again the open net D in Fig. 94a. Figure 94b illus-
trates the environment env(D) of D. If DLog in Tab. 9 takes the viewpoint
of D’s environment, we have to consider the actions of any open net that
can be composed with D. Such an open net may send a message s or a
message q to D at any time. Therefore, each reachable marking of env(N)
enables the s-labeled and the q-labeled transition. All internals of D, such

8.2 the testing procedure 179

as receiving a message s (e.g., firing the transition shutdown at the mark-
ing [p1, si] yielding the marking [p0]) or sending a message d (e.g., firing
the transition retrieve at the marking [p2] yielding the marking [p1, do]), are
hidden by labeling the respective transitions with τ. If DLog takes the
viewpoint of D’s environment, then γ1 from Ex. 167 is an alignment of the
event trace sfd to replay(D) and γ3 from Ex. 170 is an alignment of qqd to
replay(D).

It may also be possible that DLog takes the viewpoint of D instead of
the environment of D. Then, we have replay(D) = inner(D), which we
depict in Fig. 96. The open net D cannot receive a message s or a message
q at any time. For example, D cannot receive s after receiving q because
D has to send a message d first. Therefore, after firing transition process
in inner(D), we first have to fire transition retrieve to enable transitions
shutdown and process again. Consequently, we cannot align the event trace
qqd to replay(D) with a log move if DLog takes the viewpoint of D, in
contrast to the alignment γ3 of qqd to replay(D) if DLog takes the viewpoint
of D’s environment. An alignment of qqd to replay(D) is, for example, the
following alignment γ5:

γ5 =

q q d
q � d

process retrieve

The alignment γ5 of qqd to replay(D) has costs of κ(γ5) = 1 and is cost-
minimal. In contrast, if DLog takes the viewpoint of D’s environment, then
γ3 is a cost-minimal alignment of qqd to replay(D) with costs of κ(γ3) = 0.�

retrieve

shutdown
process

p2p1p0

forward

q

s

d

f

Figure 96: The labeled net inner(D). We have Ωinner(D) = { [p0]}.

8.2 the testing procedure

In this section, we present a testing approach for b-conformance that is based
on a simple necessary condition: If an event log Log contains observed be-
havior of the unknown implementation Impl, and Impl b-conforms to the
known specification Spec, then there exists at least one open net (viz., Impl)
that b-conforms to Spec and on which Log can be replayed without any mis-
match. In other words, if we can show that Log cannot be replayed without
any mismatch on any open net that b-conforms to Spec, then Impl cannot b-
conform to Spec: Log contains observed behavior of Impl and, thus, can be
certainly replayed on Impl without any mismatch. Figure 97 illustrates the
focus of this section; note that the dashed arc in Fig. 97 illustrates logical
implication.

180 testing for b-conformance

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

can be
replayed

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

Figure 97: The focus of Sect. 8.2

For our testing approach, we have to decide whether there exists a b-
conforming open net to Spec which can replay Log without any mismatch.
To this end, we construct the open net mpb(maxb(Spec)) and show that
mpb(maxb(Spec)) represents the language of all open nets that b-conform
to Spec. The existence of mpb(maxb(Spec)) relies on the existence of two spe-
cific b-partners of any open net N: a maximal b-partner maxb(N) from Def. 131

and an Lb-maximal b-partner mpb(N) from Def. 110. In this chapter, we re-
fer to the open net mpb(N) as most-permissive b-partner. A maximal b-partner
maxb(N) is maximal with respect to the b-conformance relation; that is, ev-
ery b-partner of maxb(N) b-conforms to N by Thm. 129. A most-permissive
b-partner mpb(N), in turn, is maximal with respect to its flooded language;
that is, every b-partner of N has at most the traces and boundb-violators of
mpb(N) by Lem. 130. For technical details of maximal and most-permissive
b-partners, we refer to Sect. 5.2; here, we only employ the results of the
theory presented in that section.

Because replaying an event log on an open net N only refers to the lan-
guage of N, we employ a slight modification of Lem. 130: The open net
mpb(N) is also maximal with respect to its language L(mpb(N)). In other
words, N can visit all markings in the composition with mpb(N) that can be
visited in the composition with any b-partner of N.

Lemma 175 [mpb is maximal with respect to its language]
Let N be an open net such that MPb(N) exists. Then for all b-partner C of
N, L(C) ⊆ L(mpb(N)).

Proof. As MPb(N) exists, the open net mpb(N) is a b-partner of N by Lem. 112.
Let C be a b-partner of N. Then L(C) ⊆ Lb(C) ⊆ co-uncovb(N) by Def. 84 and
Def. 93. By Cor. 116(7) and the construction of MPb(N) in Def. 104, we have
co-uncovb(N) = L(CSDb(N)) \ L0(CSDb(N)) = L(MPb(N)), thus L(C) ⊆
L(MPb(N)). By the construction of mpb(N) from MPb(N) in Def. 110 and
by Def. 15, we have L(MPb(N)) = L(inner(mpb(N))) ⊆ L(mpb(N)), thus
L(C) ⊆ L(mpb(N)). �

Given an open net Spec, the open net maxb(Spec) is a b-partner of Spec
and the open net mpb(maxb(Spec)) is a b-partner of maxb(Spec). In addition,
mpb(maxb(Spec)) b-conforms to Spec. Figure 98 illustrates the relationship
between the three open nets Spec, maxb(Spec), and mpb(maxb(Spec)). In the
following, we show that mpb(maxb(Spec)) is a canonical open net that rep-
resents the language of all open nets Impl that b-conform to Spec. In other

8.2 the testing procedure 181

words, a word w is a trace of mpb(maxb(Spec)) if and only if there exists a b-
conforming open net Impl of Spec such that w is also a trace of Impl.

Spec

mpb(maxb(Spec))

maxb(Spec)

b-conforming open nets -partnersb

Figure 98: The relationship between the three open nets Spec, maxb(Spec), and
mpb(maxb(Spec)). The two circles form an Euler diagram. The left circle
illustrates the set of b-conforming open nets of Spec, and the right circle
illustrates the set of b-partners of Spec. A dashed arc illustrates which
open net we construct from which other open net and, in addition, the b-
partner relation.

Lemma 176 [language of the open net mpb(maxb)]
Let Spec be an open net such that MPb(Spec) exists. For all words w ∈ E∗,
we have

w ∈ L(mpb(maxb(Spec))) iff there exists an open net Impl such that

Impl vb, conf Spec and w ∈ L(Impl) .

Proof. ⇒: Because MPb(Spec) exists, the open net maxb(Spec) exists by
Def. 131. The open net maxb(Spec) is a b-partner of the open net Spec by
Thm. 133. By Def. 44, Spec is also a b-partner of maxb(Spec) and, thus, the
LTS MPb(maxb(Spec)) exists by Def. 104 and Thm. 115. Therefore, the open
net mpb(maxb(Spec)) exists by Def. 110. The open net mpb(maxb(Spec)) is
a b-partner of maxb(Spec) by Lem. 112. By Thm. 129, mpb(maxb(Spec)) b-
conforms to Spec and, by assumption, we have w ∈ L(mpb(maxb(Spec))).
⇐: Assume there exists an open net Impl such that Impl vb, conf Spec and

w ∈ L(Impl). Because MPb(Spec) exists, the open net maxb(Spec) exists by
Def. 131. By Thm. 129 and Thm. 133, Impl is a b-partner of maxb(Spec).
Then, the LTS MPb(maxb(Spec)) exists by Def. 104 and Thm. 115, and, thus,
the open net mpb(maxb(Spec)) exists by Def. 110. By Lem. 175, we have
w ∈ L(Impl) ⊆ L(mpb(maxb(Spec))). �

Technically, we can show Lem. 176 also with maxb(maxb(N)) instead of
mpb(maxb(N)) for an open net N, because Lem. 175 holds for maxb(N), too
(see also Thm. 133 and Def. 128 for relating mpb(N) and maxb(N)). However,
we use mpb(maxb(N)) because mpb(N) has at most as many places and tran-
sitions as maxb(N) by construction (see Def. 110 and Def. 131). Although the
construction of mpb(N) and maxb(N) is equally complex, the smaller size of
mpb(N) becomes handy for implementing our testing approach.

Lemma 176 gives a necessary condition for the question whether the un-
known implementation Impl b-conforms to the given specification Spec: If an
event log Log derives from Impl, then we must be able to replay Log on the
labeled net env(mpb(maxb(Spec))) without any mismatch, because we have
L(mpb(maxb(Spec))) = L(env(mpb(maxb(Spec)))) by Conv. 6.

182 testing for b-conformance

Based on this necessary condition for b-conformance, we develop a testing
approach as illustrated in Fig. 99 (ignoring the three groups at the moment):
We compute the open net mpb(maxb(Spec)) and replay the given event log
Log on the labeled net env(mpb(maxb(Spec))). If Log cannot be replayed on
the labeled net env(mpb(maxb(Spec))) without any mismatch, then Log can-
not be replayed without any mismatch on any open net that b-conforms to
Spec by Lem. 176. Because Log contains observed behavior of Impl and, thus,
can be certainly replayed on Impl without any mismatch, the unknown im-
plementation Impl cannot b-conform to Spec. However, if Log can be replayed
on the labeled net env(mpb(maxb(Spec))) without any mismatch, we cannot
make any statement whether the unknown implementation Impl conforms
to Spec: There exists an open net that b-conforms to Spec by Lem. 176, but
we do not know whether this open net coincides with Impl.

compute
most-permissive

partner of
maximal partnerStart

open net open net

compute
environment

labeled net

event log

replay event log
on environment

End
(may

conform)Locretia ProMChloe

End
(not

conform)

mismatch

no
mismatch

Figure 99: A BPMN diagram that illustrates the testing approach. The three groups
indicate which tool implements which activity.

Theorem 177 [testing for b-conformance with mpb(maxb)]
Let Impl and Spec be two interface-equivalent open nets such that
MPb(Spec) exists. Let Log be an event log such that Log ⊆ L(replay(Impl)).

If there exists an event trace w ∈ Log such that
κ(Oenv(mpb(maxb(Spec)))(w)) > 0, then Impl does not b-conform to Spec.

Proof. Assume there exists w ∈ Log such that κ(Oenv(mpb(maxb(Spec)))(w)) > 0.
If Log takes the viewpoint of the environment of Impl, we have replay(Impl) =
env(Impl) by Def. 173 and, therefore, w ∈ L(Impl). If Log takes the view-
point of Impl, we have replay(Impl) = inner(Impl) by Def. 173 and, therefore,
w ∈ L(inner(Impl)) ⊆ L(Impl). In both cases, we have have w ∈ L(Impl).

By Cor. 172, the assumption κ(Oenv(mpb(maxb(Spec)))(w)) > 0 implies w 6∈
L(env(mpb(maxb(Spec)))) = L(mpb(maxb(Spec))). Therefore, Impl does not b-
conform to Spec by Lem. 176. �

The converse of Thm. 177 does not hold: If Impl does not b-conform to
Spec, then there may exist a trace w ∈ L(replay(Impl)) that cannot be re-
played on env(mpb(maxb(Spec))) without any mismatch; still, that does not
imply w ∈ Log. In other words, if there is no erroneous behavior captured
by Log (e.g., the trace w), then we cannot make any statement whether the
implementation Impl b-conforms to Spec.

8.3 implementation 183

Note that neither the construction of the open net mpb(maxb(Spec)) nor
the replay of the given event log Log on env(mpb(maxb(Spec))) according
to Thm. 177 depends on the viewpoint of Log: Our formalization of the
language of an open net via its environment in Conv. 6 implicitly covers
both viewpoints of Log by Def. 173.

Also note that Thm. 177 does not make any assumption about the relation
between the given event log Log and the labeled net env(mpb(maxb(Spec)))
on which we replay Log. In contrast, replay techniques from the area of pro-
cess mining implicitly assume that Log only contains traces w of a labeled
net N that lead to a final marking of N (cf. [219, 15, 5]). Replaying w on
N without any mismatch but without reaching a final marking of N is con-
sidered erroneous in [219, 15, 5]. As we do not make this assumption, our
approach even works with event logs of low quality [6], e.g., event logs with
incomplete event traces.

In the next section, we describe the implementation of our testing ap-
proach.

8.3 implementation

In the log-model scenario, we cannot check whether an implementation Impl
b-conforms to a specification Spec as in Chap. 5, because the open net Impl
is simply not available. Instead, we use a testing approach based on ob-
served behavior Log of Impl: We compute the open net mpb(maxb(Spec))
from Spec, and then test whether we can replay Log on the environment of
mpb(maxb(Spec)) without any mismatch, as illustrated in Fig. 99.

For computing the open net mpb(maxb(Spec)) (the first activity in Fig. 99),
we rely on the theory about most-permissive and maximal b-partners in
Chap. 5: In Sect. 5.4, we presented the tool Chloe [115], which can compute
the LTS CSDb(N) for any open net N. Thereby, CSDb(N) represents the
b-coverable stopdead-semantics of N. Both open nets mpb(N) and maxb(N)
can be constructed from CSDb(N) according to Def. 110 and Def. 131. Con-
sequently, we reuse the existing implementation and extend Chloe to also
construct mpb(N) and maxb(N) for any open net N. In addition, we can
compile an open net N into the labeled net env(N) (the second activity in
Fig. 99) using the tool Locretia [116].

For replaying an event log on a labeled net (the third activity in Fig. 99)
according to Sect. 8.1.2, we use the existing package “PNetReplayer” of the
tool ProM [212]. ProM is an extensible framework that supports a wide vari-
ety of process mining techniques. The package “PNetReplayer” implements
the A∗-algorithm [15] and is part of the current ProM release version 6.3.

The tools Chloe and Locretia are free and open source software licensed
under the GNU Affero General Public License; the tool ProM is free and
open source software licensed under the GNU Public License. Therefore, we
can test for b-conformance by completely relying on free and open source
software.

In the next section, we show that mpb(maxb(N)) can actually be computed
for open nets N of industrial size. Based on that computation, we show that
our testing approach is applicable for industrial-sized event logs.

8.4 evaluation and experimental results

Testing for b-conformance, as illustrated in Fig. 99, can be done using the
three tools Chloe [115], Locretia [116], and ProM [212]. In this section, we

184 testing for b-conformance

evaluate these tools with real-life models and artificial event logs. We de-
scribe our evaluation process and prepare the real-life models in Sect. 8.4.1.
In Sect. 8.4.2, we evaluate our testing approach using artificial event logs of
unknown implementations that 1-conform to their respective specification;
in Sect. 8.4.3, we use artificial event logs of non 1-conforming implementa-
tions instead.

8.4.1 Preparing the evaluation process

Figure 100 illustrates our evaluation process in detail. First, we compute
nine open nets as specifications from nine industrial (service) models. Then,
for each computed open net N, we artificially create two event logs: (1)
an event log Succeed(N) of an unknown implementation that 1-conforms
to N, and (2) an event log Fail(N) of an unknown implementation that
does not 1-conform to N. Finally, we test both unknown implementations
for 1-conformance to N using our testing approach: Replaying Succeed(N)
on env(mp1(max1(N))) should yield costs of 0 (i.e., there is no mismatch
and the test succeeds), and replaying Fail(N) on env(mp1(max1(N))) should
yield costs that are greater than 0 (i.e., there is at least one mismatch and
the test fails).

translate
to open

net EndStart

WS-BPEL open net

compute
most-permissive

partner of
maximal partner

create
event log of

non-conforming
implementation

open net

event log

create
event log of
conforming

implementation

event log

test for
conformance
(should fail)

test for
conformance

(should suceeed)

compute
environ-

ment

labeled net

Chloe LocretiaBPEL2OWFN ProM

Figure 100: A BPMN diagram that illustrates the evaluation process. The four
groups indicate which tool we use for which activity.

We use our running examples D, D′, U, U′, and the five industrial open
systems CN, LA, PO, RS, and TR from Sect. 5.4 as specifications. Because CN,
LA, PO, RS, and TR are services [201] that are specified in WS-BPEL [130],

8.4 evaluation and experimental results 185

we translate them into open nets using the compiler BPEL2OWFN [149].
Table 10 lists the characteristics of the resulting open nets from Sect. 5.4. As
in Sect. 5.4, we conduct all computations in this section on a MacBook Air
model A1466 [21] with one Intel Core i5 1.3 GHz CPU with 2 independent
processor cores and 8 GiB of memory to demonstrate the feasibility of our
implementation on today’s average (personal) computers.

open net (abbreviation) |P| |I| |O| |T| |F|
Database (D) 3 2 2 4 11
Patched Database (D′) 2 2 2 3 8
First User (U) 2 2 2 2 6
Second User (U′) 2 2 2 3 7
Contract Negotiation (CN) 76 4 7 98 294
Loan Approval (LA) 34 3 3 17 60
Purchase Order (PO) 74 4 6 96 290
Reservations (RS) 38 2 8 33 83
Ticket Reservation (TR) 90 3 6 123 363

Table 10: The size of the derived open nets.

We compute max1(N) and mp1(max1(N)) for each of the nine open nets N
in Tab. 10 using the tool Chloe. Thereby, we compute max1(N) from the LTS
CSD1(N) by Def. 131 and mp1(max1(N)) from the LTS CSD1(max1(N)) by
Def. 110; CSD1(N) and CSD1(max1(N)) represent the 1-coverable stopdead-
semantics of N and max1(N), respectively. Table 11 shows the size of
CSD1(N) and CSD1(max1(N)). In three cases (namely CN, LA, and PO),
CSD1(N) and CSD1(max1(N)) are of equal size. In the remaining six cases,
CSD1(max1(N)) is up to three times larger than CSD1(N) (1, 171 states ver-
sus 371 states). However, computing CSD1(max1(N)) is feasible for all ex-
amples on an average computer with a runtime up to 747 seconds (approx.
12.5 minutes) and 616, 776 KiB of used memory (which is only approx. 1

16
of the available memory).

Table 12 shows the size of the open nets max1(N) and mp1(max1(N)) that
we generate from CSD1(N) and CSD1(max1(N)), respectively. In two of
nine cases, max1(N) is smaller than mp1(max1(N)), but in seven of nine
cases, max1(N) is larger than mp1(max1(N)). Therefore, it is not clear how
the size of max1(N) and mp1(max1(N)) compare to each other in general.

In the next section, we create an artificial event log Succeed(N) of an un-
known implementation that 1-conforms to N, for each open net N in Tab. 10.
Based on Succeed(N), we then test whether the unknown implementation 1-
conforms to N using our testing approach.

8.4.2 Testing 1-conforming implementations

For each open net N in Tab. 10, we create an artificial event log Succeed(N)
of an unknown implementation that 1-conforms to N using the tool Locre-
tia [116] and the open net mp1(max1(N)) (because mp1(max1(N)) represents
all traces of a 1-conforming implementation according to Lem. 176). Each
such event log Succeed(N) takes the viewpoint of a 1-partner of N (i.e., N’s
environment), is free of noise, and consists of 400 event traces with about
3, 239–3, 724 events; see Tab. 13 for an overview over the size of the gener-
ated event logs. The size of our generated event logs coincides with the
size of event logs that were successfully applied to evaluate process min-

186 testing for b-conformance

LTS |Q| |δ| |Σin| |Σout| time (s) memory (KiB)

CSD1(D) 4 16 2 2 0 1, 424
CSD1(D′) 5 20 2 2 0 1, 412
CSD1(U) 8 32 2 2 0 1, 412
CSD1(U′) 6 24 2 2 0 1, 420
CSD1(CN) 578 6, 358 4 7 13 106, 784
CSD1(LA) 22 132 3 3 0 2, 028
CSD1(PO) 170 1, 700 4 6 4 33, 028
CSD1(RS) 371 3, 710 2 8 0 4, 352
CSD1(TR) 112 1, 008 3 6 2 24, 256

CSD1(max1(D)) 5 20 2 2 0 1, 448
CSD1(max1(D′)) 6 24 2 2 0 1, 464
CSD1(max1(U)) 10 40 2 2 0 1, 528
CSD1(max1(U′)) 8 32 2 2 0 1, 468
CSD1(max1(CN)) 578 6, 358 7 4 747 616, 776
CSD1(max1(LA)) 22 132 3 3 0 2, 492
CSD1(max1(PO)) 170 1, 700 6 4 23 103, 084
CSD1(max1(RS)) 1, 171 11, 710 8 2 138 288, 388
CSD1(max1(TR)) 144 1, 296 6 3 5 40, 672

Table 11: The size of the LTSs CSD1(N) and CSD1(max1(N)) generated with
the tool Chloe, including the used memory and time. CSD1(N) and
CSD1(max1(N)) represent the 1-coverable stopdead-semantics of N and
max1(N), respectively.

open net |P| |I| |O| |T| |F|
max1(D) 4 2 2 12 35
max1(D′) 5 2 2 15 44
max1(U) 10 2 2 30 87
max1(U′) 6 2 2 16 47
max1(CN) 1, 011 7 4 8, 331 24, 559
max1(LA) 27 3 3 108 318
max1(PO) 259 6 4 1, 812 5, 346
max1(RS) 489 8 2 4, 154 12, 343
max1(TR) 150 6 3 1, 004 2, 973

mp1(max1(D)) 4 2 2 11 33
mp1(max1(D′)) 5 2 2 13 39
mp1(max1(U)) 9 2 2 24 72
mp1(max1(U′)) 7 2 2 20 60
mp1(max1(CN)) 577 4 7 3, 899 11, 697
mp1(max1(LA)) 21 3 3 84 252
mp1(max1(PO)) 169 4 6 1, 066 3, 198
mp1(max1(RS)) 1, 170 2 8 6, 092 18, 276
mp1(max1(TR)) 143 3 6 730 2, 190

Table 12: The size of max1(N) and mp1(max1(N)) generated with the tool Chloe. We
do not including the used memory and time because every open net could
be generated instantly from the given LTS CSD1(N) and CSD1(max1(N)),
respectively.

ing techniques: For example, Buijs et al. [53] evaluate workflow discovery

8.4 evaluation and experimental results 187

algorithms with real-life event logs that were extracted from information
systems of municipalities participating in the CoSeLoG project [4]. The ex-
tracted event logs in [53] contain 100–444 event traces and 590–3, 269 events.

event log event traces events events per event trace

Succeed(D) 400 3, 239 8.10
Succeed(D′) 400 3, 481 8.70
Succeed(U) 400 3, 724 9.31
Succeed(U′) 400 3, 421 8.55
Succeed(CN) 400 3, 414 8.54
Succeed(LA) 400 3, 415 8.54
Succeed(PO) 400 3, 310 8.28
Succeed(RS) 400 3, 409 8.52
Succeed(TR) 400 3, 418 8.55

Table 13: The size of the event logs that we generated using the tool Locretia. Each
event log Succeed(N) takes the viewpoint of N ’s environment and contains
observed behavior from an unknown implementation that 1-conforms to
N .

Example 178 Consider again our running example of this chapter, the
open net D from Fig. 94a. Using Locretia, we generate an event log
Succeed(D) from a 1-conforming implementation of D. The generated event
log Succeed(D) contains 400 event traces and 3, 239 events by Tab. 13. Fig-
ure 101 shows a screenshot of ProM visualizing the event log Succeed(D).
In ProM, a “case” refers to an event trace, which results in the previously
mentioned 400 event traces and 3, 239 events (visualized in the top left box
of Fig. 101 under “key data”). The length of the event traces of Succeed(D)
is equally distributed between 1 and 16. �

For each of the nine open nets mp1(max1(N)) in Tab. 12, we compute
the labeled net env(mp1(max1(N))) using the tool Locretia [116]. We test
for 1-conformance of an unknown implementation (i.e., an open net that
may produce the event log Succeed(N)) to N by replaying Succeed(N) on
env(mp1(max1(N))). For replaying an event log on a labeled net, we use the
package “PNetReplayer” of the tool ProM. All settings of “PNetReplayer”
were left to the standard settings except for the cost function: As already
detailed in Conv. 9, we use a cost function that assigns cost of 1 to each log
move and to each non-silent model move, and cost of 0 to all other moves.

Table 14 shows the results of these tests: In each case, the cost for replay-
ing the event log Succeed(N) on the labeled net env(mp1(max1(N))) are 0
(i.e., the test succeeds). Therefore, by Thm. 177, we cannot make any state-
ment whether the unknown implementation 1-conforms to the specification
N, which is exactly the result that we expected. The runtime of replaying
Succeed(N) on env(mp1(max1(N))) using the A∗-algorithm [15] is between
0.452 and 3, 874.521 seconds (approx. 1 hour). As testing for b-conformance
is not time-critical, we conclude that our testing approach is feasible on
today’s average computers.

8.4.3 Testing non 1-conforming implementations

In this section, we slightly alter the procedure from Sect. 8.4.2: We create an
artificial event log Fail(N) of an unknown implementation that does not 1-

188 testing for b-conformance

Figure 101: The “dashboard” view in ProM visualizes the event log Succeed(D) of an
unknown implementation that 1-conforms to D.

event log labeled net replay costs time (s)

Succeed(D) env(mp1(max1(D))) 0 1.260
Succeed(D′) env(mp1(max1(D′))) 0 0.452
Succeed(U) env(mp1(max1(U))) 0 0.616
Succeed(U′) env(mp1(max1(U′))) 0 0.616
Succeed(CN) env(mp1(max1(CN))) 0 687.388
Succeed(LA) env(mp1(max1(LA))) 0 1.175
Succeed(PO) env(mp1(max1(PO))) 0 65.072
Succeed(RS) env(mp1(max1(RS))) 0 3, 874.521
Succeed(TR) env(mp1(max1(TR))) 0 53.081

Table 14: The time and cost ProM reported for replaying the event log Succeed(N) on
the labeled net env(mp1(max1(N))). We used the standard settings of the
package “PNetReplayer” and the cost function from Conv. 9.

conform to N, for each open net N in Tab. 10, and subsequently test for 1-
conformance using our testing approach.

For each open net N in Tab. 10, we create the event log Fail(N) by modify-
ing the already created event log Succeed(N): We manually add an average-
length trace that models the consecutively sending of two identical messages
from N to its environment (i.e., N puts two tokens on an output place).
As a consequence, any implementation exhibiting the observed behavior in
Fail(N) certainly violates the bound 1. In other words, the event log Fail(N)
clearly derives from an unknown implementation that does not 1-conform
to N, and replaying Fail(N) on env(mp1(max1(N))) should always result in
costs higher than 0. Table 15 gives an overview over the size of the resulting
event logs.

8.4 evaluation and experimental results 189

event log event traces events events per event trace

Fail(D) 401 3, 247 8.10
Fail(D′) 401 3, 489 8.70
Fail(U) 401 3, 733 9.31
Fail(U′) 401 3, 429 8.55
Fail(CN) 401 3, 422 8.53
Fail(LA) 401 3, 423 8.54
Fail(PO) 401 3, 318 8.27
Fail(RS) 401 3, 417 8.52
Fail(TR) 401 3, 426 8.54

Table 15: The size of the event logs that we created by modifying the event logs from
Tab. 13. Each event log Fail(N) takes the viewpoint of N’s environment
and contains observed behavior from an unknown implementation that
does not 1-conform to N.

Example 179 Consider again the open net D from Fig. 94a. In Sect. 8.4.2,
we generated the event log Succeed(D) that contains 400 event traces and
3, 239 events of an unknown implementation that 1-conforms to D; the
average length of an event trace in Succeed(D) is 8. We manually add the
trace qdddqddd of length 8 as an event trace to Succeed(D), yielding the
event log Fail(D) with 401 event traces and 3, 247 events. The event trace
qdddqddd “breaks” the bound 1 of any open net that 1-conforms to D, as
already argued in Ex. 94. Therefore, Fail(D) certainly contains observed
behavior from an implementation that does not 1-conform to D. �

For each of the nine open nets N in Tab. 10, we test whether an unknown
implementation—that is, an open net that may exhibit behavior captured in
the event log Fail(N)—1-conforms to N by replaying Fail(N) on the labeled
net env(mp1(max1(N))). As in Sect. 8.4.2, we use the package “PNetRe-
player” of the tool ProM with standard settings and the cost function from
Conv. 9. Table 16 shows the results of these tests: In each case, the cost
for replaying the event log Fail(N) on the labeled net env(mp1(max1(N))) is
greater than 0. Therefore, by Thm. 177, we can conclude that the tested im-
plementation does not 1-conform to the specification in each case, which
is exactly the result we expected. The runtime of replaying Fail(N) on
env(mp1(max1(N))) is, except for one case, slightly higher than the runtime
of replaying the event log Succeed(N) on env(mp1(max1(N))) in Sect. 8.4.2.

Example 180 Figure 102 depicts the open net mp1(max1(D)) and its envi-
ronment, the labeled net env(mp1(max1(D))). In Ex. 179, we added the
event trace qdddqddd to the event log Fail(D). An alignment of qdddqddd
to env(mp1(max1(D))) is, for example, the following alignment γ6:

γ6 =

� � q � d � d � d � q d . . .
s τ q τ d τ d τ d τ q d . . .
s t1 q t9 d t9 d t9 d t9 q d . . .

The alignment γ6 of qdddqddd to env(mp1(max1(D))) has costs of κ(γ6) = 1
and is cost-minimal. Because the costs of κ(γ6) are greater than 0, we
conclude by Thm. 177 that any open net which may produce Fail(D) does
not 1-conform to the open net D.

190 testing for b-conformance

event log labeled net replay costs time (s)

Fail(D) env(mp1(max1(D))) 0.0024 1.288
Fail(D′) env(mp1(max1(D′))) 0.0199 1.181
Fail(U) env(mp1(max1(U))) 0.0224 1.432
Fail(U′) env(mp1(max1(U′))) 0.0199 0.894
Fail(CN) env(mp1(max1(CN))) 0.0199 688.702
Fail(LA) env(mp1(max1(LA))) 3.1172 1.256
Fail(PO) env(mp1(max1(PO))) 0.0199 70.266
Fail(RS) env(mp1(max1(RS))) 0.0579 3, 701.107
Fail(TR) env(mp1(max1(TR))) 0.0200 55.380

Table 16: The time and cost ProM reported for replaying the event log Fail(N) on
the labeled net env(mp1(max1(N))). We used the standard settings of the
package “PNetReplayer” and the cost function from Conv. 9.

Figure 103 shows a screenshot of ProM visualizing the alignments
of Fail(D) to env(mp1(max1(D))). The alignment γ6 of qdddqddd to
env(mp1(max1(D))) is depicted in the middle of the screen: All non-silent
model moves are shown in violet, and all synchronous moves are shown
in green. We can even recognize the first move of γ6: a non-silent model
move using the s-labeled transition of env(mp1(max1(D))). �

dt8

s

qt5

p2 p3

f

t2

p0

t0

t6
t9t10

t3

p1

t1

t7

t4

(a) Open net mp1(max1(D))

do
t8

si

qit5

p2 p3

fo

t2

p0

t0

t6

t9t10

t3

p1

t1

t7

t4

s

q

d

f

q

!

s

d

f

!!

!

!!

!
!

!

!
!

(b) Labeled net env(mp1(max1(D)))

Figure 102: The open net mp1(max1(D)) that we obtained from the open net D in
Fig. 94a using the tool Chloe, and its environment. In addition to the
figures, we have Ωmp1(max1(D)) = Ωenv(mp1(max1(D))) = ∅.

Like traditional model checking [67], our testing approach also presents
a counterexample if a test fails: Any event trace w whose replay costs on
env(mpb(maxb(N))) are greater than 0 may be analyzed for log moves or
non-silent model moves (i.e., any move with costs greater than 0). The

8.5 conclusions 191

Figure 103: Visualizing the alignments of Fail(D) to env(mp1(max1(D))) in ProM.
The alignment γ6 from Ex. 180 is depicted in the middle of the screen:
All non-silent model moves are shown in violet, and all synchronous
moves are shown in green.

problem can be diagnosed by highlighting the prefix of w which leads to a
trace that is not in the language of any open net that b-conforms to N.

Example 181 For our running example, consider again the alignment γ6
of qdddqddd to env(mp1(max1(D))) from Ex. 180: γ6 maps qdddqddd to a
trace of env(mp1(max1(D))) that breaks the bound 1 by producing more
than 1 token in the place qi. From this, we can conclude that any open net
that may produce qdddqddd does not 1-conform to D because of a possible
bound-violation. �

8.5 conclusions

Given a formal model of the specification of an open system and observed
behavior of its running but unavailable implementation in the form of an
event log, testing for conformance can show that the implementation does
not conform to the specification if the event log contains some erroneous
behavior. In this chapter, we presented a testing approach for the b-con-
formance relation from Chap. 5. To this end, we elaborated a necessary
condition for b-conformance of the implementation Impl to the specification
Spec based on the open net mpb of the maximal b-partner of Spec: If the
event log cannot be replayed on env(mpb(maxb(Spec))), then Impl does not b-
conform to Spec. We showed the existence of the open net mpb(maxb(Spec))
and demonstrated that it can be automatically constructed, thereby using
the theory and tools of Chap. 5. Our tool chain completely relied on free
and open source software (i.e., the tools Chloe [115], Locretia [116], and
ProM [212]) and proved to be feasible on a normal (personal) computer.

9D I S C O V E R I N G A M O D E L O F A b - C O N F O R M I N G S Y S T E M

This chapter is based on results published in [191].

In the previous chapter, we presented our first contribution to the log-
model scenario: We elaborated a testing approach for b-conformance; that

is, if there is some erroneous behavior captured by the given event log, we
can conclude that the unknown implementation does not b-conform to the
given specification and provide meaningful diagnostics. In this chapter, we
further support the design of responsive open systems in the log-model sce-
nario by discovering a formal model of the unknown implementation based
on the given event log. The discovered formal model may help to explain
and understand the running implementation, to further study its interac-
tion with other open systems, to make predictions about its behavior [102],
and to analyze its performance by simulation [220] or Markov-chain analy-
sis [131, 82], for example.

Figure 104 illustrates our approach to discover a formal model Impl of the
unknown implementation from the given event log (i.e., its formalization
Log), assuming that the unknown implementation b-conforms to its specifi-
cation. As in Chap. 8, we consider only the b-conformance relation because
b-conformance is, in contrast to the conformance relation in Chap. 4, decid-
able. To judge the discovered model we consider two aspects:

1. b-conformance (i.e., Impl b-conforms to the model Spec of the given
specification), and

2. model quality (i.e., the ability of Impl to describe the observed behavior
in Log well according to different quality dimensions).

In other words, we search for a high-quality model in the set of all b-con-
forming open nets to the given specification. Thereby, our search space—the
set of all b-conforming open nets—is in general infinite, and measuring the
quality of a model with respect to an event log is a highly complex task.

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

discover

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

models
with high
quality

Figure 104: Discovering a high-quality model of the implementation in the log-
model scenario.

We employ the finite characterization of all b-conforming open nets that
we developed in Chap. 5 to elaborate a discovery procedure in Sect. 9.1.

193

194 discovering a model of a b-conforming system

Thereby, we also formalize and measure model quality with respect to an
event log. In Sect. 9.2, based on this finite characterization, we additionally
provide a suitable abstraction technique to improve the discovery proce-
dure. We use the implemented decision algorithm for b-conformance from
Chap. 5 to develop a genetic algorithm to discover a high-quality model of
the implementation in Sect. 9.3. We evaluate the implemented algorithm
with industrial-sized specifications and event logs in Sect. 9.4 and finish this
chapter with a conclusion in Sect. 9.5.

9.1 the discovery procedure

Given an open net Spec and an event log Log, discovery aims to produce an
open net Impl that (1) b-conforms to Spec and (2) adequately captures what
was observed in Log. We address both requirements in the following.

9.1.1 Discovering a b-conforming open net

In this section, we show how to discover a b-conforming open net Impl to a
given open net Spec. Figure 105 illustrates the focus of this section.

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

discover

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

models
with high
quality

Figure 105: The focus of Sect. 9.1.1.

Given an open net Spec, checking whether some interface-equivalent open
net Impl b-conforms to Spec reduces to checking whether Impl matches with
MPb(maxb(Spec)) by Prop. 135. We can compute MPb(maxb(Spec)) and check
for b-conformance as illustrated in Fig. 79. As a consequence, the search
space for our discovery procedure reduces to all b-conforming open nets
to Spec rather than any interface-equivalent open net of Spec. However, the
search space is still infinite due to internal, unobservable actions: If an open
net N has at least one b-conforming open net, then there exist infinitely
many open nets that b-conform to N—a fact, which we already discussed in
Chap. 3.

9.1.2 Discovering a high-quality open net

In the previous section, we restricted the search space for our discovery
procedure to the open nets that b-conform to Spec. Next, we are interested
in a b-conforming open net of highest quality. In this section, we formalize
measures for the quality of an open net with respect to a given event log.
Figure 106 illustrates the focus of this section.

9.1 the discovery procedure 195

Event
Log

provides

Implementation
(unknown)

-conforms to

Specification
(e.g., WS-BPEL)

R
ea

lit
y

M
od

el
s

models

discover

translates

-conforms toset of all
 -conforming

open nets

abstracts

SpecImplLog
b

b

b

models
with high
quality

Figure 106: The focus of Sect. 9.1.2.

We adapt the idea of quantifying quality by measuring quality dimensions:
Van der Aalst [2] describes four quality dimensions for general process mod-
els with respect to an event log in the area of process mining:

1. fitness (i.e., the discovered model should allow the behavior seen in the
event log),

2. simplicity (i.e., the discovered model should be as simple as possible),

3. generalization (i.e., the discovered model should avoid overfitting by
generalizing the example behavior seen in the event log), and

4. precision (i.e., the discovered model should avoid underfitting by not
allowing behavior completely unrelated to what was seen in the event
log).

These quality dimensions may compete with each other, as visualized in
Fig. 10. For example, to improve the fitness of a model one may end up with
a substantially more complex—that is, less simple—model. In addition, a
more general model usually means a less precise model.

generalization
"avoid overfitting model"

simplicity
"avoid overly complex models"

fitness
"avoid models that do not

allow for observed behavior"

precision
"avoid underfitting model"

quality

Figure 107: The different quality dimensions for model discovery.

In the area of process mining, numerous measures for the four quality
dimensions have been developed [219, 5, 16]. In the following, we lift mea-
sures for fitness, simplicity, generalization, and precision from process mod-
els to models of open systems (i.e., open nets), and briefly compare them
with the state-of-the-art in process mining. Thereby, whenever we measure a
quality dimension between an event log and a labeled net, we automatically
lift this definition to any open net via the open net’s replay environment.

196 discovering a model of a b-conforming system

Convention 11 Throughout the remainder of this thesis, each quality mea-
sure between an event log Log and a labeled net is implicitly extended to
any open net N via replay(N). �

9.1.2.1 Measuring fitness

Fitness indicates how much of the behavior in the event log is captured by
the model. A labeled net N with good fitness allows for most of the behav-
ior seen in the event log Log. We redefine the cost-based fitness measure
from [5] for labeled nets: We quantify fitness as the total costs of aligning
Log to N compared to the worst costs of aligning Log to N. Thereby, we com-
pute the costs of aligning Log to N using the optimal alignment provided by
the oracle function ON from Def. 171. The worst costs of aligning Log to N
are bounded by the costs of the worst alignments—that is, just moves in the
log and no moves in the model, for all event traces in Log. For the moves
in the log only, we consider the “least expensive path” because an optimal
alignment will always try to minimize costs [5], as formalized in Def. 168.

Definition 182 [fitness]
We define the fitness of an event log Log and a labeled net N as

fit(Log, N) = 1− cost(Log, N)

move(Log)
, where

• cost(Log, N) = ∑w∈Log
(
Log(w) · κ(ON(w))

)
are the total costs of

aligning Log to N, and

• move(Log) = ∑w∈Log
(
Log(w) ·∑v∈Σ∗∧x∈Σ∧vxvw κ((x,�))

)
are the to-

tal costs of moving through Log without ever moving in N.

We illustrate the fitness measure from Def. 182 and all following mea-
sures for the other three quality dimensions by measuring the quality of the
database D and the patched database D′ from Sect. 3.2. For convenience, we
depict D and D′ again in Fig. 108.

Example 183 As a running example for this chapter, consider again the
event log DLog from Chap. 8; for convenience, we depict it again in Tab. 17.
The event log DLog contains information on 210 traces. There are three
types of traces: qd (100 times), qqd (100 times), and sfd (10 times). For all
examples in this chapter, we assume that DLog takes the viewpoint of D
and D′, thus replay(D) = inner(D) and replay(D′) = inner(D′). Figure 108

also depicts the replay environments of D and D′.
There exist the following three cost-minimal alignments of the event

traces qd, qqd, and sfd in DLog to replay(D):

γ1 =

q d
q d

process retrieve

γ2 =

q q d
q � d

process retrieve

9.1 the discovery procedure 197

retrieve
d

s

q

shutdown
process

p2p1p0

fforward

(a) Open net D

retrieve

shutdown
process

p2p1p0

forward

q

s

d

f

(b) Labeled net inner(D)

retrieve
d

s

q

shutdown
process

p2p1

f

(c) Open net D′

retrieve

shutdown
process

p2p1

d

q

s

(d) Labeled net inner(D′)

Figure 108: The open nets D and D′ and the labeled nets inner(D) and inner(D′) from
Sect. 3.2. In addition to the figures, we have ΩD = Ωinner(D) = {[p0]}
and ΩD′ = Ωinner(D′) = {[]}.

γ3 =

s f d
s f �

shutdown forward

We have κ(γ1) = 0, κ(γ2) = 1, and κ(γ3) = 1. Therefore, the total costs
of aligning DLog to replay(D) are cost(DLog, replay(D)) = 100 · 0 + 100 · 1 +
10 · 1 = 110. The total costs of moving through DLog without ever moving
in replay(D) are move(DLog) = 100 · 2 + 100 · 3 + 10 · 3 = 530 (worst-case
scenario). Thus, the fitness of DLog and replay(D) is fit(DLog, replay(D)) =
1− 110

530 ≈ 0.7925. �

cardinality event trace

100 qd
100 qqd

10 sfd

Table 17: The event log DLog.

Example 184 For the patched database D′, there exist the following three
cost-minimal alignments of the event traces qd, qqd, and sfd in DLog to
replay(D′):

γ4 =

q d
q d

process retrieve

198 discovering a model of a b-conforming system

γ5 =

q q d
q � d

process retrieve

γ6 =

s f d
s � �

shutdown

We have κ(γ4) = 0, κ(γ5) = 1, and κ(γ6) = 2. Therefore, the total costs of
aligning DLog to replay(D′) are cost(DLog, replay(D′)) = 100 · 0 + 100 · 1 +
10 · 2 = 120. The total costs of moving through DLog without ever moving
in replay(D′) are move(DLog) = 100 · 2 + 100 · 3 + 10 · 3 = 530 (worst-case
scenario). Thus, the fitness of DLog and replay(D′) is fit(DLog, replay(D′)) =
1− 120

530 ≈ 0.7736 < fit(DLog, replay(D)). In other words, DLog fits better to
replay(D) than to replay(D′) because of the trace sfd. �

9.1.2.2 Measuring simplicity

Simplicity refers to open nets minimal in structure, which clearly reflect
the log’s behavior. This dimension is related to Occam’s Razor [9], which
states that “one should not increase, beyond what is necessary, the number
of entities required to explain anything.” There exist various techniques
to quantify model complexity and, therefore, simplicity; see [173] for an
overview. We define the simplicity of an open net by the size of its state-
space, i.e., the number of states and transitions of the reachability graph in
the underlying inner net. Remember that we always discover an open net
Impl that b-conforms to an open net Spec. Thus, we measure the difference
in size between Impl and a minimal open net C with the same behavior as
Impl (i.e., C also b-conforms to Spec). A minimal open net C with the same
behavior as Impl also matches with MPb(maxb(Spec)); the size of the reacha-
bility graph of C’s inner net is the smallest subsystem G of MPb(maxb(Spec))
such that RG(inner(Impl)) is weakly simulated by G.

Definition 185 [simplicity]
We define the simplicity of an open net Impl that b-conforms to an open net
Spec as

sim(Impl, Spec) =


|QG |+|δG |

|Pinner(Impl) |+|Tinner(Impl) | , if |QG |+|δG |
|Pinner(Impl) |+|Tinner(Impl) | ≤ 1

1, otherwise,

where G is the smallest LTS such that G ⊆ MPb(maxb(Spec)) and
RG(inner(Impl)) is weakly simulated by G.

By comparing the size of the subsystem G in Def. 185 with the size of
inner(Impl) (i.e., a labeled net) instead of comparing the size of G with the
size of RG(inner(Impl)) (i.e., an LTS), we implicitly incorporate the following
idea: The complexity of an open net arises not only from the size of the
reachability graph of its inner net, but also from its own size in terms of
places and transitions. Two different open nets N1 and N2 with identical
reachability graph of their inner net, respectively, can be compared and are,

9.1 the discovery procedure 199

in general, not equally simple. The difference between N1 and N2 may arise
because of τ-labeled and/or duplicated transitions, for example.

Example 186 Remember that D′ b-conforms to D, but D does not b-con-
form to D′. For our running example, we consider D as the specification,
and aim to discover an open net that 1-conforms to D while simultane-
ously exhibiting high quality with respect to DLog. Figure 109 depicts
again the LTS MP1(max1(D)) from Sect. 5.3. For the open net D, we depict
RG(inner(D)) in Fig. 110a and highlight the smallest LTS G such that G ⊆
MP1(max1(D)) and RG(inner(D)) is weakly simulated by G in Fig. 110b.
We have |QG|+ |δG| = 4 + 6 = 10 and |Pinner(D)|+ |Tinner(D)| = 3 + 4 = 7.
Thus, sim(D, D) = 1. For the open net D′, we depict RG(inner(D′)) in
Fig. 110c and highlight the smallest LTS G such that G ⊆ MP1(max1(D))
and RG(inner(D′)) is weakly simulated by G in Fig. 110d. We have
|QG| + |δG| = 4 + 5 = 9 and |Pinner(D′)| + |Tinner(D′)| = 2 + 3 = 5. Thus,
sim(D′, D) = 1. In other words, both labeled nets inner(D) and inner(D′)
are simpler than a (state-machine) labeled net with equal reachability
graph that we can construct from a subsystem of MP1(max1(D)). �

Q0:

[p4],[p5,qo]
s

Q2:

[p5]

q

s,qs,q,d,f

Q3:

[p5,di],[p4],[p5,qo]

d
q

s

Q∅ 4

3

1

3

Figure 109: The LTS MP1(max1(D)) from Sect. 5.3. We depict the label of each state
as an encircled number in the upper right corner of that state.

9.1.2.3 Measuring precision

Precision indicates whether a labeled net is not underfitting, i.e., by allow-
ing for behavior unrelated to the behavior observed. To avoid underfitting,
we prefer labeled nets with minimal behavior to represent the behavior ob-
served in the event log as closely as possible. We redefine the alignment-
based precision measures from [16] for labeled nets. This measure relies on
building a tree-like LTS AA(Log, N) that captures traces of a labeled net N
that were used to align an event log Log to N. A state of AA(Log, N) encodes
a sequence of (labels of) transitions of N. For AA(Log, N), the state labeling
function λ serves as a weight function: We define the weight λ(q) of each
state q as the number of times a trace of Log was aligned to q. We shall use
AA(Log, N) also for measuring the generalization dimension later on.

Definition 187 [labeled transition system AA]
Let Log be an event log, and let N be a labeled net. We define the LTS
AA(Log, N) = (Q, δ, qAA(N), Σin, Σout, λ) with

• Q = ↓ {trace(ON(w)) | w ∈ Log},

200 discovering a model of a b-conforming system

m1:
[p1]

q

m0:
[p0]

s

m3:
[p2]

d

m2:
[]

f

(a) LTS RG(inner(D))

Q0:

[p4],[p5,qo]
s

Q2:

[p5]

q

s,qs,q,d,f

Q3:

[p5,di],[p4],[p5,qo]

d
q

s

Q∅ 4

3

1

3

(b) LTS that simulates RG(inner(D))

m1:
[p1]

q

m0:
[p0]

s

m3:
[p2]

d

(c) LTS RG(inner(D′))

Q0:

[p4],[p5,qo]
s

Q2:

[p5]

q

s,qs,q,d,f

Q3:

[p5,di],[p4],[p5,qo]

d
q

s

Q∅ 4

3

1

3

(d) LTS that simulates RG(inner(D′))

Figure 110: The reachability graphs of D and D′, and the smallest subsystem G
of the LTS MP1(max1(D)) from Fig. 109 such that G weakly simulates
RG(inner(D)) and RG(inner(D′)), respectively. The two LTSs on the right-
hand side differ only in the f -labeled transition from the state Q∅ to the
state Q∅.

• δ = {(q, x, qx) ∈ Q× Σ×Q | ∃w ∈ Log : qx v trace(ON(w))},

• qAA(N) = ε, and

• λ(q) = ∑w∈Log∧qvtrace(ON(w)) Log(w) for all q ∈ Q.

Example 188 The event log DLog aligns to replay(D) with the alignments
γ1 to γ3 from Ex. 183. Thus, Fig. 111a depicts the LTS AA(DLog, replay(D)).
In contrast, DLog aligns to replay(D′) with the alignments γ4 to γ6 from
Ex. 184. Thus, Fig. 111b depicts the LTS AA(DLog, replay(D′)). The LTS
AA(DLog, replay(D′)) differs from the LTS AA(DLog, replay(D)) by the state
sf because sf ∈ L(replay(D)) but sf 6∈ L(replay(D′)), and sf is used in
alignment γ3. �

For measuring precision, we relate executed and available actions after an
aligned trace q of the event log with the help of AA(Log, N). Thereby, we
measure the executed actions after q as the number of unique actions that
were observed at leaving state q—that is, the number of outgoing transitions
of the state q of AA(Log, N). We measure the available actions after q as the

9.1 the discovery procedure 201

s

q
q

qd

s sf

d

f
10

210
200 200

10

(a) LTS AA(DLog, replay(D))

s

q
q

qd

s

d

10

210
200 200

(b) LTS AA(DLog, replay(D′))

Figure 111: The LTSs AA(DLog, replay(D)) and AA(DLog, replay(D′)) for the event
log DLog from Tab. 17 and the labeled nets replay(D) and replay(D′) from
Fig. 108. We depict the label of each state as an encircled number over
or under that state.

number of continuations (with one letter x ∈ Σ) of q that are available as
traces of N.

Definition 189 [precision]
Let Log be an event log and let N be a labeled net. Let AA(Log, N) =
(Q, δ, qAA(N), Σin, Σout, λ). We define the precision of Log and N as

pre(Log, N) =
∑q∈Q

(
λ(q) · |{qx ∈ L(AA(Log, N)) | x ∈ Σ}|

)
∑q∈Q

(
λ(q) · |{qx ∈ L(N) | x ∈ Σ}|

) .

Example 190 Consider again the LTSs AA(DLog, replay(D)) and
AA(DLog, replay(D′)) in Fig. 111. For the open net D in Fig. 108a,
we have pre(DLog, replay(D)) = 210·2+10·1+10·0+200·1+200·0

210·2+10·1+10·0+200·1+200·2 = 630
1030 ≈ 0.6117.

The low precision of DLog and replay(D) results from the loop in replay(D):
Transitions process and retrieve can fire infinitely often in replay(D).

For the open net D′ in Fig. 108c, we have pre(DLog, replay(D′)) =
210·2+10·0+200·1+200·0
210·2+10·0+200·1+200·2 = 620

1020 ≈ 0.6078. As for pre(DLog, replay(D)), the low
precision of DLog and replay(D′) results from the loop in replay(D′) over
the transitions process and retrieve. �

9.1.2.4 Measuring generalization

Generalization penalizes overly precise open nets which overfit the given
log. In general, a labeled net should not restrict behavior to just the behav-
ior observed in the event log. Often only a fraction of the possible behavior
has been observed. For the generalization dimension, we developed a new
measure for an event log Log and a labeled net N: We combine the gener-
alization measure from [5] with the LTS AA(Log, N). The idea is to use the
estimated probability π(x, y) that a next visit to a state q of AA(Log, N) will
reveal a new trace that was not observed before: x is the number of unique
actions observed at leaving state q (defined over the outgoing transitions
of q in AA(Log, N) as in Def. 189), and y = λ(q) is the number of times q
was visited by the event log. We employ an estimator for π(x, y), which is
inspired by [38].

202 discovering a model of a b-conforming system

Definition 191 [generalization]
Let Log be an event log and let N be a labeled net. Let AA(Log, N) =
(Q, δ, qAA(N), Σin, Σout, λ). We define the generalization of Log and N as

gen(Log, N) = 1−
(1
|Q| ∑

q∈Q
π(|{qx ∈ L(AA(Log, N)) | x ∈ Σ}|, λ(q))

)
,

where π(x, y) can be approximated [5] by

π(x, y) =

{ x(x+1)
y(y−1) , if y ≥ x + 2

1, otherwise.

Example 192 Consider again the LTSs AA(DLog, replay(D)) and
AA(DLog, replay(D′)) in Fig. 111. For the open net D in Fig. 108a,
we have gen(DLog, replay(D)) = 1− 1

5 ·
(
π(2, 210) + π(1, 10) + π(0, 10) +

π(1, 200) + π(0, 200)
)
= 1− 1

5 ·
(
0.0001 + 0.00005 + 0 + 0.00005 + 0

)
≈ 1.

For the open net D′ in Fig. 108c, we have gen(DLog, replay(D′)) =
1 − 1

5 ·
(
π(2, 210) + π(0, 10) + π(1, 200) + π(0, 200)

)
= 1 − 1

5 ·
(
0.0001 +

0 + 0.00005 + 0
)
≈ 1. Thus, both open nets D and D′ generalize the ob-

served behavior in the event log DLog by allowing for a large amount of
unobserved behavior: For example, replay(D) and replay(D′) additionally
contain the traces qdqd and qdqdqd by generalizing the event trace qd from
DLog to a loop. �

9.1.2.5 Valuing quality

To balance the four conflicting quality dimension, we also assume for each of
the four quality dimensions a weight ωfit, ωsim, ωpre, and ωgen to be specified
by a user. With these four weights, we can actually search for a b-conforming
open net that has high or even highest quality. In general, there does not
exist a process model that has the highest value for every dimension.

Definition 193 [quality]
Let Log be an event log and let Impl and Spec be two interface-equivalent
open nets. Let ωall = ωfit + ωsim + ωpre + ωgen. The quality of Log, Impl,
and Spec is defined by

Q(Log, Impl, Spec) =
ωfit

ωall
fit(Log, replay(Impl))

+
ωsim
ωall

sim(Impl, Spec)

+
ωpre

ωall
pre(Log, replay(Impl))

+
ωgen

ωall
gen(Log, replay(Impl)) .

Example 194 For our running examples, we assume weights of 1 for each
quality dimension. The open net D in Fig. 108a always serves as the speci-
fication. For the open net D as implementation, we have Q(DLog, D, D) =
1
4 · 0.7925 + 1

4 · 1 + 1
4 · 0.6117 + 1

4 · 1 ≈ 0.8511.

9.2 improving the discovery procedure with b-subnets 203

For the open net D′ in Fig. 108c as implementation, we have
Q(DLog, D′, D) = 1

4 · 0.7736 + 1
4 · 1 + 1

4 · 0.6078 + 1
4 · 1 ≈ 0.8454. Hence,

we conclude that the quality of DLog and D is slightly better than the qual-
ity of DLog and D′. In other words, the open net D explains better than the
open net D′ what we have seen in the event log DLog. �

In the following section, we elaborate an abstraction technique for improv-
ing the discovery process.

9.2 improving the discovery procedure with b-subnets

Given an open net Spec, the search space for system discovery is infinite: Ev-
ery open net Impl that b-conforms to Spec is a possible solution. For further
improving the discovery procedure, we can restrict the search space to a fi-
nite number of open nets. To this end, we consider the LTS MPb(maxb(Spec))
and restrict ourselves to open nets that match with MPb(maxb(Spec)) and,
in addition, whose inner net’s reachability graph is an initialized subsystem
of MPb(maxb(Spec)). We refer to such an open net as a b-subnet of Spec.

Definition 195 [b-subnet]
Let Impl and Spec be two interface-equivalent open nets such that
MPb(Spec) exists. Then Impl is a b-subnet of Spec if

1. Impl matches with MPb(maxb(Spec)),

2. RG(inner(Impl)) is an initialized subsystem of MPb(maxb(Spec)), and

3. Impl is structurally minimal, i.e., if we remove a place or a transition
from Impl, then RG(inner(Impl)) changes.

Because of item (3) in Def. 195, there exists at most one b-subnet Impl of
Spec for each initialized subsystem G of MPb(maxb(Spec)); that is, inner(Impl)
is the state-machine labeled net of G. As the LTS MPb(maxb(Spec)) is finite,
the number of initialized subsystems of MPb(maxb(Spec)) is finite and, there-
fore, the number of b-subnets of Spec is finite, too. So instead of investigating
any open net that b-conforms to Spec, we only consider b-subnets of Spec as
possible solutions.

Intuitively, a b-subnet Impl of Spec represents an equivalence class of open
nets: For every open net N that b-conforms to Spec, there exists a small-
est initialized subsystem G of MPb(maxb(Spec)) such that RG(inner(N)) is
weakly simulated by G; a fixed initialized subsystem G of MPb(maxb(Spec))
(and, thus, Impl with RG(inner(Impl)) = G) represents all such N.

Subsequently, we discuss the implications of this restriction to b-subnets.
By Prop. 135, this directly implies that a b-subnet Impl b-conforms to Spec.

Proposition 196 [b-subnet]
Any b-subnet Impl of an open net Spec b-conforms to Spec.

As a second implication, a b-subnet Impl of an open net Spec is internally
bounded, i.e., RG(inner(Impl)) is always finite because MPb(maxb(Spec)) is
always finite.

In the following, we restricted the search space for system discovery
to the finite set of b-subnets of Spec. This finite abstraction comes at a
price: We may have excluded open nets that b-conform to Spec and have

204 discovering a model of a b-conforming system

a higher quality than any b-subnet of Spec. Basically, we exclude open nets
whose inner net’s reachability graph contains an unfolding of a cycle of
MPb(maxb(Spec)).

Example 197 Consider again the open nets D and D′ in Fig. 108. We al-
ready showed, for example in Ex. 98, that D′ 1-conforms to D. However,
D′ is not a 1-subnet of D: The reachability graph RG(inner(D′)) is not an
initialized subsystem of MP1(max1(D)) in Fig. 109. In other words, by re-
stricting the search space for system discovery to 1-subnets of D, we cannot
discover D′. Now consider the open net N1 in Fig. 112a: N1 1-conforms
to D because every 1-partner of D perpetually communicates by sending
a message q and subsequently receiving a message d (as we already de-
tailed for D′ and D in Ex. 49). In contrast to D′, the reachability graph
RG(inner(N1)) in Fig. 112c is an initialized subsystem of MP1(max1(D)):
The states m1 and Q0, m1 and Q2, and m2 and Q3 coincide, respectively.

The difference between D′ and N1 illustrates how restricting the search
space to b-subnets effects the structure of the discovered open nets in gen-
eral: Rather than having a “furled” loop over some states (e.g., the states
m1 and m3 in RG(inner(D′))), the reachability graph of the inner of a b-
subnet may contain an “unrolling” of this loop instead (e.g., the states m0,
m1, and m2 in RG(inner(N1))). Such an unrolling is, in essence, a sequence
of states reaching the same (or an even greater) loop as the original one. �

t2
d

s

q

t0 t1

p2p1p0

f

(a) Open net N1

t2

t0 t1

p2p1p0

d

q

q

(b) Labeled net inner(N1)

m1:
[p1]

q

m0:
[p0]

q

m2:
[p2]

d

(c) LTS RG(inner(N1))

Figure 112: The open net N1, the labeled net inner(N1), and its reachability graph
RG(inner(N1)). In addition to the figures, we have ΩN1 = Ωinner(N1) =
{[]}.

In what follows, we discuss the impact of these “unfolded” b-conform-
ing open nets on the quality of the discovered open nets with respect to a
given event log Log. We illustrate the discussions with a series of technical
examples like the open net N1 in Fig. 112a.

9.2.1 Impact on the fitness dimension

From Def. 182, we conclude that fitness is preserved by the restriction to b-
subnets: For every open net Impl that b-conforms to an open net Spec, we
can construct a b-subnet Impl′ of Spec such that Impl′ has at least the fitness
of Impl with respect to any event log.

9.2 improving the discovery procedure with b-subnets 205

Lemma 198 [impact of b-subnets on fitness]
Let Log be an event log and let Impl and Spec be two interface-equivalent
open nets such that Impl b-conforms to Spec. Then there exists a b-subnet
Impl′ of Spec such that fit(Log, replay(Impl)) ≤ fit(Log, replay(Impl′)).

Proof. If Impl is a b-subnet of Spec, then the statement follows trivially, thus
we assume Impl is not a b-subnet of Spec. Let G denote the smallest sub-
system of MPb(maxb(Spec)) such that RG(inner(Impl)) is weakly simulated
by G. The LTS G exists because Impl matches with MPb(maxb(Spec)) by
Prop. 135 (i.e., there exists a weak simulation relation of RG(inner(Impl))
by MPb(maxb(Spec)) according to Def. 123), and G is uniquely defined be-
cause MPb(maxb(Spec)) is deterministic. We can construct an open net Impl′

from G in the sense of Def. 110, i.e., we have RG(inner(Impl′)) = G, and
in the same sense of Lem. 112, we can show that Impl′ is a b-partner of
maxb(Spec). Thus, Impl′ is a b-subnet of Spec. Because RG(inner(Impl))
is weakly simulated by G = RG(inner(Impl′)), every trace of inner(Impl)
is also a trace of inner(Impl′). Therefore, we have fit(Log, replay(Impl)) ≤
fit(Log, replay(Impl′)) by Def. 182. �

In other words, it suffices to consider only b-subnets of an open net Spec
for discovering a highly fitting open net that b-conforms to Spec by Lem. 198.

Example 199 Consider again the open net D′ in Fig. 108c, which is not a 1-
subnet of the open net D in Fig. 108a. The reachability graph RG(inner(D′))
of its inner net inner(D′) is weakly simulated by the LTS G in Fig. 110d.
Like in the proof of Lem. 198, we can construct an open net N2 such
that N2 is a 1-subnet of D and RG(inner(N2)) = G. We depict the
resulting open net N2 together with is inner net inner(N2) in Fig. 113.
Clearly, N2 1-conforms to D because no 1-partner of D sends a mes-
sage s, as we already detailed in Ex. 49. By comparing their inner nets
inner(D′) and inner(N2), we see that L(inner(D′)) ⊆ L(inner(N2)). Thus,
fit(Log, replay(D′)) ≤ fit(Log, replay(N2)) for every event log Log. �

t4 d

s

q

t2
t3

p2p1p0

f

t0
t1

(a) Open net N2

t4

t2
t3

p2p1p0

t0
t1

q
q

d

s
s

(b) Labeled net inner(N2)

Figure 113: The open net N2 and the labeled net inner(N2). In addition to the figures,
we have ΩN2 = Ωinner(N2) = {[]}.

9.2.2 Impact on the simplicity dimension

Technically, simplicity from Def. 185 is also preserved by the restriction to b-
subnets.

206 discovering a model of a b-conforming system

Lemma 200 [impact of b-subnets on simplicity]
Let Impl and Spec be two interface-equivalent open nets such that Impl
b-conforms to Spec. Then there exists a b-subnet Impl′ of Spec such that
sim(Impl, Spec) ≤ sim(Impl′, Spec).

Proof. The open net Impl′ that we constructed in Lem. 198 is a b-subnet
of Spec and the reachability graph of its inner net inner(Impl′) is identical
to the smallest subsystem G of MPb(maxb(Spec)) such that RG(inner(Impl))
is weakly simulated by G. Thus, we always have sim(Impl′, Spec) = 1 by
Def. 185. �

By Lem. 200, it suffices to consider only b-subnets of an open net Spec
for discovering a simple open net that b-conforms to Spec. However, this
is a mere sleight of hand: In essence, simplicity in Def. 185 compares the
size of the open net Impl with the size of a constructed b-subnet Impl′ of
Spec in terms of the reachability graph of their respective inner net. Thereby,
the inner net of Impl′ is a subsystem of MPb(maxb(Spec)) and seen as the
reference point, i.e., the minimal size of any open net that b-conforms to
Spec with the same language as Impl. However, there may exist already
“unrolled” loops in MPb(maxb(Spec)) that limit the size of Impl′. In other
words, we exclude b-conforming open nets from the search space which
are obviously simpler, i.e., smaller in size, although the simplicity metric
in Def. 185 does not reflect this. It is future work to modify the simplicity
metric such that this discrepancy is taken into account.

Example 201 Consider again the open nets D′ and N2 in Fig. 108c and
Fig. 113a. Both D′ and N2 are 1-conforming to the open net D in
Fig. 108a. However, N2 is a 1-subnet of D, whereas D′ is not. In ad-
dition, RG(inner(N2)) is the smallest subsystem G of MP1(max1(Spec))
that weakly simulates RG(inner(D′)) (cf. Fig. 110d). Obviously, D′ is
much smaller in size than N2. However, they both have a simplicity
value of 1: For measuring the simplicity of D′, we have to compare
the size of RG(inner(D′)) with the size of G according to Def. 185. As

|QG |+|δG |
Pinner(D′)+Tinner(D′)

= 4+5
2+3 > 1, we have sim(D′, D) = 1. On the other hand,

as G is the reachability graph of inner(N2) and simulates itself, we have
sim(N2, D) = 1. �

9.2.3 Impact on the precision dimension

In contrast to fitness and simplicity, precision from Def. 189 is not preserved
by the restriction to b-subnets. We illustrate this with the following technical
example:

Example 202 Consider the open net D in Fig. 108a, which of course 1-
conforms to itself. However, D is not a 1-subnet of D, as RG(inner(D))
in Fig. 110a is not a subsystem of MP1(max1(D)) Fig. 109; rather,
RG(inner(D)) is weakly simulated by a subsystem G of MP1(max1(D)) as
illustrated in Fig. 110b. The open net N3 in Fig. 114a represents G: the
reachability graph of inner(N3) in Fig. 114b coincides with G. In other
words, N3 is the 1-subnet of D that comes closest to D’s behavior.

The open nets D and N3 do not have the same LTS AA, and D has
a higher precision than N3: RG(inner(D)) has an unfolded cycle of

9.2 improving the discovery procedure with b-subnets 207

RG(inner(N3)) and thus RG(inner(N3)) has more transitions enabled at
the state after an event trace s f (i.e., the f -labeled transition may fire). �

t4 d

s

q

t2
t3

p3p2p1

f

t0 t1

t5

p0

(a) Open net N3

t4

t2
t3

p3p2p1

t0 t1

t5

p0

s
s

q

d

q

f

(b) Labeled net inner(N3)

Figure 114: The open net N3 and the labeled net inner(N3). In addition to the figures,
we have ΩN3 = Ωinner(N3) = { []}.

Consequently, we may have excluded highly precise open nets that b-con-
form to an open net Spec by restricting our search space for discovery to b-
subnets of Spec only.

9.2.4 Impact on the generalization dimension

Like precision, also generalization (see Def. 191) is not preserved by the
restriction to b-subnets: The LTS AA used for measuring generalization is
not the same for D and N3 for some event log, which is the sole basis for
our generalization metric.

We summarize the findings from Sect. 9.2.1 to Sect. 9.2.4 with the follow-
ing corollary:

Corollary 203 [abstracting to b-subnets]
Restricting the search space of our discovery process to b-subnets preserves
only fitness and simplicity.

Example 204 As a final example for the impact of b-subnets on the qual-
ity, consider the open net N4 and its inner net inner(N4) in Fig. 115; N4
is a 1-subnet of the open net D in Fig. 108a because N4 matches with
MP1(max1(D)) in Fig. 109 and RG(inner(N4)) is an initialized subsystem
of MP1(max1(D)). In the following, the event log DLog in Tab. 17 contains
the observed behavior and D serves as the specification: We then compare
the quality of N4 as implementation with the quality of the implementa-
tions D and D′ from Ex. 194.

There exist the following three cost-minimal alignments of the event
traces qd, qqd, and sfd from DLog to replay(N4) = inner(N4):

γ7 =

q d
q d
t2 t4

γ8 =

q q d
q q d
t2 t1 t5

208 discovering a model of a b-conforming system

γ9 =

s f d
s � d
t0 t5

We have κ(γ7) = 0, κ(γ8) = 0, and κ(γ9) = 1. Therefore, the total
costs of aligning DLog to replay(N4) are cost(DLog, replay(N4)) = 100 · 0 +
100 · 0 + 10 · 1 = 10. The total costs of moving through DLog without
ever moving in replay(N4) are move(DLog) = 100 · 2 + 100 · 3 + 10 · 3 =
530 (worst-case scenario). Thus, the fitness of DLog and replay(N4) is
fit(DLog, replay(N4)) = 1− 10

530 ≈ 0.9811, which is higher than the fitness of
fit(DLog, replay(D)) ≈ 0.7925 in Ex. 183 and fit(DLog, replay(D′)) ≈ 0.7736
in Ex. 184. This is because N4 contains more observed behavior from DLog
(i.e., more event traces) than D and D′.

As N4 is a 1-subnet of D, we have sim(N4, D) = 1 by Def. 185; this
coincides with the simplicity sim(D, D) = sim(D′, D) = 1 in Ex. 186.

Figure 116 depicts the LTS AA(DLog, replay(N4)). We have
pre(DLog, replay(N4)) = 210·2+10·1+10·0+200·2+100·1+100·0+100·0

210·2+10·1+10·1+200·2+100·1+100·1+100·1 = 930
1140 ≈

0.8158. Therefore, N4 has a higher precision than D and D′

in Ex. 190, whose precision is pre(DLog, replay(D)) ≈ 0.6117 and
pre(DLog, replay(D′)) ≈ 0.6078, respectively. Despite this difference in pre-
cision, N4 still has a high generalization: We have gen(DLog, replay(N4)) =
1− 1

7 ·
(
π(2, 210) +π(1, 10) +π(0, 10) +π(2, 200) +π(1, 100) +π(0, 100) +

π(0, 100)
)
≈ 0.9968, which is nearly as high as the generalization of D and

D′ with gen(DLog, replay(D)) ≈ 1 and gen(DLog, replay(D′)) ≈ 1 in Ex. 192,
respectively.

Using a weight of 1 for each quality dimension as in Ex. 194, we have
Q(DLog, N4, D) = 1

4 · 0.9811 + 1
4 · 1 + 1

4 · 0.8158 + 1
4 · 0.9968 ≈ 0.9484 com-

pared to Q(DLog, D, D) ≈ 0.8511 and Q(DLog, D′, D) ≈ 0.8454 in Ex. 194.
In other words, the open net N4, which is a 1-subnet of D, explains better
than the open nets D and D′ what we have seen in the event log DLog. �

t4 d

s

qt2 t3

p3p2p1

f

t0 t1

t5

p0

(a) Open net N4

t4

t2 t3

p3p2p1

t0 t1

t5

p0

s

d

q

q q

d

(b) Labeled net inner(N4)

Figure 115: The open net N4 and the labeled net inner(N4). In addition to the figures,
we have ΩN4 = Ωinner(N4) = { []}.

9.3 implementation

In this section, we describe the implementation of our discovery approach.
Given an open net Spec and an event log Log recording behavior between

Spec and its environment, we aim to discover an open net Impl that b-con-
forms to Spec and has high quality with respect to Spec and Log. As moti-

9.3 implementation 209

s

q
q

qq

s sd

q

d
10

210
200 100

10

qd

qqdd
d 100

100

Figure 116: The LTS AA(DLog, replay(N4)) for the event log DLog from Tab. 17 and
the labeled net replay(N4) from Fig. 115b. We depict the label of each
state as an encircled number over or under that state.

vated at the beginning of this chapter, the search space (i.e., the number of
open nets that b-conform to Spec) is infinite. Even if we further improve the
discovery process by restricting the search space to b-subnets (see Sect. 9.2),
it may still be too large to search for an optimal candidate exhaustively.
We illustrate the enormous size of the search space restricted to b-subnets
with the following example: Consider the industrial-sized open net LA with
34 places (3 input places, 3 output places) and 17 transitions that we de-
rived from the WS-BPEL process “Loan Approval” in Sect. 5.4 and Sect. 8.4.
Counting the number of 1-subnets of LA can be reduced to a propositional
model counting problem by encoding the structure of MP1(LA) and Def. 195

into a propositional formula. Propositional model counting, also known as
#SAT, is the problem of counting the number of models (i.e., satisfying truth
assignments) of a given propositional formula [242]. Using the sharpSAT
solver [237], we find that there exist 119, 803, 403, 352, 641, 974, 351 1-subnets
of LA. In other words, if we unrealistically assume that we can evaluate
the quality of one billion 1-subnets of LA per second (with respect to some
event log Log), we still need over 3, 798 years to exhaustively search for the 1-
subnet of LA that has the highest quality with respect to Spec and Log. Note
that the open net LA is the smallest of the five industrial-sized examples
used in Sect. 5.4 and Sect. 8.4.

Because of the huge search space, we are using a search heuristic in form
of a genetic algorithm [89] to discover an open net Impl that has a high but
possibly not the maximal quality with respect to Log. Genetic algorithms
have been successfully applied to discover process models [171, 52, 53].

A genetic algorithm evolves a population of candidate solutions (i.e., the
individuals) step-wise (i.e., in generations) toward better solutions of an opti-
mization problem. In our setting, an individual is either an open net that
matches with MPb(maxb(Spec)) (in the discovery process without the im-
provement from Sect. 9.2) or a b-subnet of Spec (in the discovery process
with the improvement from Sect. 9.2). In both cases, the quality of a candi-
date solution is determined by the quality (see Def. 193) with respect to Log
and Spec, as every b-subnet of Spec is an open net as well.

Our algorithm employs the general procedure of genetic algorithms [89],
which we depict in Fig. 117:

1. Choose the initial population (i.e., the first generation) of individu-
als. These are randomly generated individuals (either open nets that
match with MPb(maxb(Spec)), or b-subnets of Spec). The size of the
initial population is part of the input parameters of the algorithm.

210 discovering a model of a b-conforming system

2. The algorithm repeats the following steps until a termination criterion
is satisfied:

a) Compute the quality of each individual in this generation, using
Def. 193.

b) Elitism: Directly shift a proportion of the individuals with the
highest quality into the next generation.

c) Select all individuals of the current generation for breeding: Cre-
ate new individuals (called children) through crossover, mutation,
and replacement operations. The crossover operation randomly
exchanges parts between two given individuals. The mutation
operation randomly adds or removes a transition or a final state
from a given individual. The replacement operation replaces a
randomly chosen individual by a new, randomly generated indi-
vidual. The probabilities for each operation are part of the input
parameters of the algorithm.

d) Evaluate the quality of each newly breed individuals.

e) Replace the individuals with the least quality in the current gener-
ation with high-quality newly breed individuals. They, together
with the initially shifted elite individuals, form the new genera-
tion.

3. If at least one termination criterion is satisfied, return the individual
with the highest quality of the latest generation.

EndStart

populationrandomly
generate

individuals

replace
individuals with

least quality

evaluate
quality

return
individual with
highest quality

evaluate
termination

criteria

shift
elite

create
children

Figure 117: A BPMN diagram that illustrates the genetic algorithm.

We employ a combination of four different termination criteria to deter-
mine when to terminate evolution:

1. A time limit stops the evolution after a certain amount of time, regard-
less how far the individuals have been evolved.

2. A generation count stops the evolution after a certain number of gen-
erations.

3. A stagnation count stops the evolution after a certain number of gen-
erations without finding better candidate models than the best one
found thus far.

4. A sufficient quality criterion stops the evolution if the quality of the
current generation’s highest-quality individual exceeds a specified thresh-
old.

9.3 implementation 211

We have implemented the genetic algorithm, both with and without the
improvement from Sect. 9.2, in Java as a ProM plug-in [188]. ProM [212]
is an extensible framework that supports a wide variety of process mining
techniques; we already used the PNetReplayer plug-in in ProM for our test-
ing approach in Sect. 8.3. Our implementation uses the Watchmaker frame-
work [87], which is a free and open source framework for implementing
platform-independent genetic algorithms in Java. Thus, our implementa-
tion completely relies on free and open source software.

For merely technical reasons—that is, to avoid storing the set of mark-
ings of each state of MPb(maxb(Spec))—the implementation stores the neces-
sary information for matching an open net Impl with MPb(maxb(Spec)) into
Boolean formulae with whom we annotate every state of MPb(maxb(Spec)).
The resulting state-annotated LTS technically resembles the operating guide-
lines of Lohmann et al. [153, 156].

Definition 205 [MPb with Boolean annotation]
Let N be an open net such that MPb(N) exists. The Boolean annotation of
MPb(N) is a function φ that assigns to each state Q of MPb(N) a Boolean
formula over the propositions Σout] {final} with:

φ(Q) =
∧

m∈Q

(∨
x∈Σout :m

x
=⇒ in env(N)

x
∨

m′∈Ω:m
ε

=⇒m′ in env(N)

final
)

.

For an open net C, a marking m of inner(C) models φ(Q) if φ(Q) evaluates
to true with the following assignment β to the propositions:

• Let β(final) be true iff ∃m′ ∈ Ωinner(C) : m ε
=⇒ m′ in inner(C).

• For other propositions x ∈ Σout, let β(x) be true iff m x
=⇒ in inner(C).

Definition 206 [matching with Boolean annotation]
Let N be an open net such that MPb(N) exists. An open net C matches with
MPb(N) and its Boolean annotation φ if

1. IC = Σout and OC = Σin, and

2. RG(inner(C)) is weakly simulated by MPb(N) with relation $ such
that for all (m, Q) ∈ $:

a) If m is not b-bounded in inner(C), then Q = Q∅.

b) If m is a stop except for inputs in inner(C), then m models φ(Q).

Intuitively, the Boolean formula φ(Q) of a state Q of MPb(N) represents
items (2b) and (2c) of Def. 123: Let mQ ∈ Q and let m be a marking of
inner(C). Then β(final) is false if m is dead except for inputs in inner(C),
and there must exist an x ∈ ON = Σout such that m x

=⇒ in inner(C) (i.e., β(x)
is true) and mQ

x
=⇒ in env(N) (i.e., β models φ(Q)) in order to fulfill item

(2c) of Def. 123. Fulfilling item (2b) of Def. 123 works accordingly.
Therefore, we directly conclude from Thm. 126.

Corollary 207 [matching with Boolean annotation]
Let N be an open net such that MPb(N) exists. Then an open net C matches
with MPb(N) and its Boolean annotation φ iff C is a b-partner of N.

212 discovering a model of a b-conforming system

Computing the Boolean annotation φ of a given LTS MPb(N) is also im-
plemented in the tool Chloe [115].

Summing up, our implementation for discovering a high-quality open net
that b-conforms to a given open net Spec takes the following inputs:

• the LTS MPb(maxb(Spec)) with its Boolean annotation φ,

• an event log Log of an open net that b-conforms to Spec,

• the weights for the quality dimensions, and

• the parameters and termination criteria for the genetic algorithm.

The output of our implementation is an open net Impl that b-conforms to
Spec and has high quality with respect Log and Spec.

Example 208 Figure 118 shows the first screen after providing the event
log DLog in Tab. 17 and the LTS MP1(max1(D)) in Fig. 109 with its Boolean
annotation as inputs to the implemented ProM plug-in. Here, the user has
to provide the parameters of the genetic algorithm and the termination
criteria; the predefined standard parameters are an initial population of
100 individuals with 30 elite individuals, 1 crossover point, and a muta-
tion/crossover/replacement probability of 0.1. The standard termination
criteria are a maximal runtime of 300 seconds, maximal 1, 000 generations
with at most 750 generations of stagnation, and a sufficient quality of 0.999.
In a following, second screen, the user has to provide weights for the four
quality dimensions and may chose to use the abstraction to b-subnets; the
standard setting is a weight of 1 for each quality dimension and the ab-
straction to b-subnets enabled.

Figure 119 shows a screenshot of the running ProM plug-in. As an
example, we use the plug-in to discover a high-quality open net that 1-
conforms to the open net D in Fig. 108a using DLog, MP1(max1(D)) with
its Boolean annotation, and all standard settings. The discovered open net
is the open net N4 from Ex. 204 with 4 inner places, 6 transitions, and a
quality of Q(DLog, N4, D) ≈ 0.9484. We already showed in Ex. 204 that N4
has a higher quality than, for example, the open nets D and D′ in Fig. 108.�

9.4 evaluation and experimental results

In this section, we evaluate our implementation from Sect. 9.3 with real-
life models and artificial event logs. We describe our evaluation process
and the necessary preparations in Sect. 9.4.1. In Sect. 9.4.2, we perform the
evaluation process and statistically interpret the results.

9.4.1 Preparing the evaluation process

Figure 120 illustrates our evaluation process. To this end, we compute nine
open nets as specifications of nine industrial open systems. For each open
net Spec, we artificially create an event log Log(Spec) that captures observed
communication behavior of an open net that 1-conforms to Spec. Finally, we
discover an open net Impl that 1-conforms to Spec and has high quality with
respect to Log(Spec) and Spec.

We evaluate our implementation using the running examples D, D′, U, U′,
and the five industrial open systems CN, LA, PO, RS, and TR from Sect. 8.4

9.4 evaluation and experimental results 213

Figure 118: The first screen of the ProM plug-in asks for the parameters of the ge-
netic algorithm and the termination criteria. Visualized are the standard
parameters: An initial population of 100 individuals with 30 elite indi-
viduals, 1 crossover point, and a mutation/crossover/replacement prob-
ability of 0.1. In addition, the user has to provide the termination criteria;
the standard termination criteria are a maximal runtime of 300 seconds,
maximal 1, 000 generations with at most 750 generations of stagnation,
and a sufficient quality of 0.999.

Figure 119: The running ProM plug-in discovers the open net N4 in Fig. 115a as a
high-quality open net that 1-conforms to the open net D in Fig. 108a.

214 discovering a model of a b-conforming system

translate
to open

net EndStart

WS-BPEL

open net

compute MP with
annotation of

maximal partner

open net

LTS

discover
conforming
open net

event log

BPEL2OWFN

compute
most-permissive

partner of
maximal partner

create
event log of
conforming

implementation

Chloe Locretia ProM

Figure 120: A BPMN diagram that illustrates the evaluation process. The four
groups indicate which tool we use for which activity.

on a MacBook Air model A1466 [21]. For an overview over the characteris-
tics of the nine open nets N and the LTSs MP1(max1(N)), we refer back to
Tab. 10 and Tab. 11. For each open net Spec in Tab. 10, we use the reachability
graph of mp1(max1(Spec)) to generate a random event log Log(Spec). That
way, we guarantee that there exists at least one open net that 1-conforms
to Spec and exhibits the observed behavior in Log(Spec) while simultane-
ously leaving a maximal degree of freedom in generating Log(Spec), because
mp1(max1(Spec)) is L1-maximal by Lem. 130. We generate Log(Spec) with
the viewpoint of Spec (i.e., assuming replay(Spec) = inner(Spec) by Def. 173)
using the tool Locretia [116]. Each such event log Log(Spec) is noise-free
and consists of 400 event traces with about 3, 209–3, 585 events; see Tab. 18

for the characteristics of the generated event logs. As in Sect. 8.4, the size
of our generated event logs coincides with the size of event logs that were
successfully applied to evaluate process mining techniques, e.g., in [53].

event log event traces events events per event trace

Log(D) 400 3, 469 8.67
Log(D′) 400 3, 445 8.61
Log(U) 400 3, 510 8.77
Log(U′) 400 3, 496 8.74
Log(CN) 400 3, 585 8.96
Log(LA) 400 3, 366 8.41
Log(PO) 400 3, 488 8.72
Log(RS) 400 3, 252 8.13
Log(TR) 400 3, 209 8.02

Table 18: The size of the event logs of a 1-conforming implementation that we gen-
erated with the tool Locretia.

We use our implementation from Sect. 9.3 to discover an open net Impl
that 1-conforms to Spec and has high quality with respect to Log(Spec). As

9.4 evaluation and experimental results 215

parameters for the genetic algorithm, we use an initial population of 100
individuals, a mutation/crossover/replacement probability of 0.3 with at
most 1 crossover point, and elitism of 0.3, i.e., the 30 individuals with the
highest quality are directly shifted to the next generation. The computation
of a new generation stops after 1, 000 generations, if the highest quality stag-
nates for 750 generations, if a quality of 0.999 is reached, or if the algorithm
ran for 60 minutes. To take into account that a discovered open net can be
smaller than the LTS to be compared with (see Sect. 9.1), we chose a weight
of 1 for simplicity and a weight of 2 for all other quality dimensions.

To the best of our knowledge, there does not exist any other discovery
implementation with which we can compare our algorithm. Therefore, we
perform three different experiments on the open nets Spec in Tab. 10. In
the first experiment, we randomly generate open nets that 1-conform to the
given open net Spec. Note that because of the restriction to 1, 000 genera-
tions, our genetic algorithm generates at most 70, 100 different individuals:
100 individuals for the initial population, and 100 − 30 = 70 individuals
(because of elitism) for each generation. Thus, for comparability, we ran-
domly generate 71, 100 1-conforming open nets in the first experiment, or
stop the random generation after 60 minutes (whatever appears first). The
generated open net with the highest quality is the experiment result. In the
second experiment, we discover open nets that match with MP1(max1(Spec))
using our genetic algorithm without the abstraction technique. In the third
experiment, we discover 1-subnets of Spec using our genetic algorithm with
the abstraction technique, as explained in Sect. 9.2.

9.4.2 Discovering 1-conforming open nets

In this section, we perform multiple runs of each of the three experiments
that we described in Sect. 9.4.1. We statistically interpret the results of these
runs to evaluate our discovery algorithm, because a genetic algorithm in-
herently involves randomness due to mutation, crossover, and replacement
operations.

We start by formulating three hypotheses about our discovery algorithm
based on one run of each of the three experiments. Table 19 shows the result
of one run of Experiment 1. For each open net Spec in Tab. 10, Tab. 19 gives
the size of the discovered 1-conforming open net (columns 2, 3, and 4), the
values of its quality and of the individual quality dimensions (columns 5–
9), and the time to discover this open net (last column). The quality of the
randomly discovered open nets range from 0.52 to 0.80 with a mean quality
of 0.65. The discovery process terminates in all cases because it exceeds
the time limit of one hour; in some cases, the discovery process took even
significantly longer than one hour. The reason for this is that we check
whether a termination criterion (e.g., the runtime of the algorithm) is met
after each successful generation of a random open net that 1-conforms to
Spec. Consequently, if we randomly generate a very large open net right
before we would reach the time limit, the total runtime of the discovery
algorithm may significantly exceed the time limit.

Table 20 shows the results for our discovery algorithm without the abstrac-
tion technique from Sect. 9.2—that is, one run of Experiment 2. The quality
of the discovered open nets range from 0.55 to 0.80 with a mean quality
of 0.71. In all cases except for U′, the quality of the discovered open nets
in Experiment 2 is higher than the quality of the discovered open nets in
Experiment 1, while simultaneously their size (measured in terms of places,

216 discovering a model of a b-conforming system

discovered Impl quality

Spec |P| |T| |F| Q fit sim pre gen time in s

D 17 20 60 0.71 0.40 0.41 1 0.87 3, 653.8
D′ 90 94 282 0.72 0.51 0.10 1 0.96 3, 631.7
U 65 82 246 0.69 0.50 0.22 0.99 0.80 3, 603.8
U′ 6 9 27 0.80 0.31 1 1 1 3, 600.2
CN 526 1, 313 3, 939 0.52 0.46 0.75 0.82 0.17 3, 975.3
LA 21 52 156 0.77 0.46 1 0.98 0.75 3, 795.9
PO 414 818 2, 454 0.52 0.47 0.50 0.85 0.23 3, 928.5
RS 122 208 624 0.63 0.33 0.85 0.96 0.50 3, 784.4
TR 457 653 1, 959 0.52 0.37 0.19 0.93 0.42 3, 822.4
mean 0.65
sum 33, 796.0

Table 19: Experiment 1: Randomly discover an open net Impl that 1-conforms to
the given open net Spec, and measure the quality of Impl w.r.t. Spec and
Log(Spec).

transitions, and arcs) is smaller (except for the open net that we discovered
from the specification U′). However, the runtime of Experiment 2 is nearly
as high as the runtime of Experiment 1. This can be explained by the general
procedure of genetic algorithms [89]: Genetic algorithms like ours evaluate
all given termination criteria (e.g., the runtime of the algorithm) after creat-
ing a new generation out of the old generation; creating a new generation
out of the old one may take a significant amount of time. In our case, creat-
ing a new generation also involves a replacement operation that replaces an
individual with low quality by a randomly created individual. The replace-
ment operation may be invoked several times for each generation, and each
invocation may take—similar to the random creation in Experiment 1—a
significant amount of time.

discovered Impl quality

Spec |P| |T| |F| Q fit sim pre gen time in s

D 4 6 18 0.79 0.34 1 1 0.94 3, 668.1
D′ 9 11 33 0.80 0.42 0.80 1 1 3, 682.6
U 9 20 60 0.73 0.45 0.97 0.99 0.66 3, 746.7
U′ 9 10 30 0.80 0.38 0.89 1 1 3, 603.2
CN 173 554 1, 662 0.55 0.37 0.99 0.85 0.21 3, 817.4
LA 23 45 135 0.80 0.43 0.91 1 0.92 3, 668.9
PO 102 293 879 0.59 0.46 1 0.87 0.22 4, 002.0
RS 18 20 60 0.71 0.21 0.84 1 0.84 3, 621.6
TR 68 176 528 0.62 0.40 0.97 0.92 0.38 3, 800.1
mean 0.71
sum 33, 610.6

Table 20: Experiment 2: Discover an open net Impl that 1-conforms to the given open
net Spec using the genetic algorithm, and measure the quality of Impl w.r.t.
Spec and Log(Spec).

Table 21 shows the results for our discovery algorithm with the abstrac-
tion technique from Sect. 9.2—that is, one run of Experiment 3. The results

9.4 evaluation and experimental results 217

in Tab. 20 show that discovered open nets in Experiment 2 are more com-
plex than the ones in Experiment 3 because 1-subnets are obviously smaller
than arbitrary open nets that 1-conform to the given open net. This explains
the higher computation time in Experiment 2 by a factor of 1–11 compared
to Experiment 3: Smaller candidates enable the genetic algorithm to com-
pute more generations in less time. For the same reason, Experiment 3

produced, in general, open nets with higher fitness. The simplicity values
are by Def. 185 higher for Experiment 3. In all examples, the discovered
open nets in Experiment 3 have slightly higher precision values than the
discovered open nets in Experiment 2. Only one out of nine examples has a
slightly lower generalization value. Restricting the search space to 1-subnets
is an abstraction, which neither preserves precision nor generalization by
Cor. 203. Therefore, we expected lower precision and generalization val-
ues for the open nets discovered in Experiment 3, although our experiment
shows that the precision and generalization values actually are higher. De-
spite the (theoretical) loss of preservation of the abstraction, the overall qual-
ity of the respective open net discovered in Experiment 3 is in all examples
better. The quality of the discovered open nets range from 0.59 to 0.84 with
a mean quality of 0.77, compared to a mean quality of 0.65 in Experiment 1

and a mean quality of 0.71 in Experiment 2.

discovered Impl quality

Spec |P| |T| |F| Q fit sim pre gen time in s

D 4 5 15 0.81 0.39 1 1 0.94 337.0
D′ 5 7 21 0.81 0.45 1 1 0.89 394.9
U 9 15 45 0.80 0.47 1 0.99 0.83 831.2
U′ 7 10 30 0.82 0.40 1 1 0.98 803.7
CN 68 189 567 0.59 0.28 1 0.90 0.39 3, 641.8
LA 19 48 144 0.84 0.46 1 1 0.99 2, 573.9
PO 56 122 366 0.74 0.40 1 0.96 0.72 3, 624.0
RS 12 13 39 0.79 0.27 1 1 0.99 3, 601.3
TR 35 68 204 0.77 0.38 1 0.98 0.82 3, 601.1
mean 0.77
sum 19, 408.9

Table 21: Experiment 3: Discover an open net Impl that 1-conforms to the given open
net Spec using the genetic algorithm with the abstraction technique to 1-
subnets, and measure the quality of Impl w.r.t. Spec and Log(Spec).

Based on Tab. 19, Tab. 20, and Tab. 21, we formulate three scientific hy-
potheses:

1. Our approach of using a search heuristic in form of a genetic algorithm
is better than guessing: The quality of an open net discovered by our
discovery algorithm without the abstraction technique is better than
the quality of a randomly discovered open net.

2. Using the abstraction technique from Sect. 9.2, we can discover open
nets with a better quality than without the abstraction technique.

3. Using the abstraction technique from Sect. 9.2, we can discover high-
quality open nets in less time than without the abstraction technique.

We show these three hypotheses and, thus, evaluate our discovery algo-
rithm using two-sample unpooled t-tests [113]. Thereby, a sample is a set of

218 discovering a model of a b-conforming system

runs of an experiment (called observations) that we described in Sect. 9.4.1.
The two-sample unpooled t-test (using Welch’s test statistic) is used to de-
termine if two sample means are equal; a common application is to test if
a new procedure is superior to a current procedure [113]. We can apply a
two-sample unpooled t-test if the following three assumptions are met: (1)
the two samples derive from normal populations or their combined sample
size is greater than 40, (2) the observations in each sample are independent,
and (3) the standard deviations of the two samples are unequal or unknown.
In our setting, the second assumption holds because two runs of an experi-
ment do not influence each other. The third assumption holds, because we
have no information about the standard deviations of the discovered open
nets’ quality or the time needed to discover an open net. Because of the first
assumption, we use samples that consist of 30 runs of an experiment each;
as a two-sample unpooled t-test compares two samples (that is, two exper-
iments), the combined sample size is 30 + 30 = 60 for each t-test, which is
greater than 40.

As specifications for the experiments, we only use the five industrial open
systems CN, LA, PO, RS, and TR from Sect. 8.4. The running examples D,
D′, U, and U′ are all smaller than the industrial open systems and, therefore,
we do not expect significant differences between their runs. With three
experiments, five specifications, and 30 runs per sample, we perform 3 · 5 ·
30 = 450 runs in total.

Figure 121 to Fig. 125 show the quality of the discovered 1-conforming
open net (on the left-hand side) and the time needed to discover that open
net (on the right-hand side), for each of the Experiments 1 to 3, for each of
the 30 runs, and for each of the specifications CN, LA, PO, RS, and TR. In
the majority of runs, the quality of the discovered open net in Experiment 2

is better than the quality of the discovered open net in Experiment 1: that is
the case in 28 runs for CN, 27 runs for LA, 25 runs for PO, 30 runs for RS, and
29 runs for TR, which sums up to 139 out of 150 runs. In nearly all runs, the
quality of the discovered open net in Experiment 3 is better than the quality
of the discovered open net in Experiment 2: that is the case in 28 runs for
CN, and all 30 runs for LA, PO, RS, and TR. Simultaneously, discovering an
open net in Experiment 3 takes less time than in Experiment 2: that is the
case in 25 runs for CN, and all 30 runs for LA, PO, RS, and TR.

We proceed by statistically testing our three hypotheses using two-sample
unpooled t-tests. Table 22 shows the results of five tests comparing the
quality of the discovered 1-conforming open net in Experiment 1 (the first
sample) with the quality of the discovered 1-conforming open net in Exper-
iment 2 (the second sample), for each of the specifications CN, LA, PO, RS,
and TR. Using Welch’s test statistic (column 6) and the computed degrees
of freedom (column 7) for the two samples, we compute a p-value (column
8) for each t-test [113]. The p-value is the probability of obtaining a test
statistic at least as extreme as the one that was actually observed, assuming
that the null hypothesis (that is, the means of the two samples are equal)
is true. In all five tests, we can reject the null hypothesis even under the
revised standards for statistical evidence [128], which mandate the conduct
of tests at the 0.005 (“significant”) or 0.001 (“very significant”) level of sig-
nificance. In other words, as the p-value is smaller than 0.001 in each t-test,
we conclude that the quality of an open net discovered by our genetic dis-
covery algorithm is very significantly better than the quality of a randomly
discovered open net. This confirms our first hypothesis.

9.4 evaluation and experimental results 219

●
●

● ●

●
●

●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ●

●

● ● ●

● ●
●

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(a) Quality per run for CN
(higher is better)

●

●
●

●

●

●

●

●

●
●

●

●

● ●

● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

5000

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(b) Time in s per run for CN
(lower is better)

Figure 121: The quality of a discovered open net that 1-conforms to CN, and the time
needed to discover it. We repeated the Experiments 1 to 3 thirty times.

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(a) Quality per run for LA
(higher is better)

●
● ●

●

●

● ●
●

● ●
●

●

●

●

● ●
●

● ● ● ● ● ●

●

●

●

● ●
● ●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

5000

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(b) Time in s per run for LA
(lower is better)

Figure 122: The quality of a discovered open net that 1-conforms to LA, and the time
needed to discover it. We repeated the Experiments 1 to 3 thirty times.

Table 23 shows the results of five tests comparing the quality of the dis-
covered open net in Experiment 2 (the first sample) with the quality of the
discovered open net in Experiment 3 (the second sample), for each of the
specifications CN, LA, PO, RS, and TR. As in Tab. 22, the p-value is smaller
than 0.001 in each t-test. Thus, we reject the null hypothesis and conclude
that the quality of an open net discovered by our genetic discovery algo-
rithm with the abstraction technique from Sect. 9.2 is very significantly bet-
ter than the quality of an open net that we discovered without that abstrac-
tion technique. This confirms our second hypothesis.

Finally, Tab. 24 shows the results of five tests comparing the time needed
to discover a 1-conforming open net in Experiment 2 (the first sample) with
the time needed to discover a 1-conforming open net in Experiment 3 (the
second sample), for each of the specifications CN, LA, PO, RS, and TR.
Again, the p-value is smaller than 0.001 in each t-test; therefore, we re-
ject the null hypothesis and conclude that our genetic algorithm with the

220 discovering a model of a b-conforming system

●

●
●

●

● ●

●
●

●
●

●

● ●
●

●
●

●

●
● ●

●

●

●
● ●

●

●

● ● ●

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(a) Quality per run for PO
(higher is better)

● ●

●
● ●

●

●

●
● ●

●

●
●

●

●

●

●

● ● ●
●

●
●

●
●

●

●

● ●

●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

5000

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(b) Time in s per run for PO
(lower is better)

Figure 123: The quality of a discovered open net that 1-conforms to PO, and the time
needed to discover it. We repeated the Experiments 1 to 3 thirty times.

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ● ● ●

●
● ●

●

●

●
●

●

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(a) Quality per run for RS
(higher is better)

●

●

●
●

●

●

●
●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●
● ●

●
●

● ● ●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

5000

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(b) Time in s per run for RS
(lower is better)

Figure 124: The quality of a discovered open net that 1-conforms to RS, and the time
needed to discover it. We repeated the Experiments 1 to 3 thirty times.

abstraction technique from Sect. 9.2 is very significantly faster than our ge-
netic discovery algorithm without that abstraction technique. This confirms
our third and last hypothesis.

Summing up, our experimental results validate that, in general, the ge-
netic discovery algorithm produces significantly better results on a finite
abstraction of the search space than on the complete search space, while
taking significantly less time. Although the abstraction technique only pre-
serves fitness and simplicity, the values of the precision and the generaliza-
tion dimensions as well as the quality are high and, in general, higher than
without that abstraction technique.

9.5 conclusions 221

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●
●

●

●

●
●

● ●

●
●

●
●

●

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(a) Quality per run for TR
(higher is better)

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

● ●
●

●
●

● ●

●

●

●

0 5 10 15 20 25 30

0

1000

2000

3000

4000

5000

● Experiment 1: Random Discovery
Experiment 2: Genetic Discovery without Abstraction
Experiment 3: Genetic Discovery with Abstraction

(b) Time in s per run for TR
(lower is better)

Figure 125: The quality of a discovered open net that 1-conforms to TR, and the time
needed to discover it. We repeated the Experiments 1 to 3 thirty times.

Experiment 1 Experiment 2

Spec size mean size mean t d.f. p-value

CN 30 0.5237 30 0.5417 −6.5842 57.395 7.604 · 10−9

LA 30 0.7171 30 0.7815 −5.5609 39.595 1.008 · 10−6

PO 30 0.5647 30 0.5917 −5.1132 34.805 5.775 · 10−6

RS 30 0.6090 30 0.7039 −11.8367 56.951 < 2.2 · 10−16

TR 30 0.5943 30 0.6446 −9.9478 49.028 1.19 · 10−13

Table 22: Comparing the quality of the discovered 1-conforming open nets in the Ex-
periments 1 and 2 using two-sample unpooled t-tests for equal means with
null hypothesis “equal means” and alternative hypothesis “true difference
in means is less than 0” (i.e., the open nets discovered in Experiment 2

are of better quality than the open nets discovered in Experiment 1, which
corresponds to our first hypothesis).

Experiment 2 Experiment 3

Spec size mean size mean t d.f. p-value

CN 30 0.5417 30 0.5726 −8.0556 44.872 1.46 · 10−10

LA 30 0.7815 30 0.8425 −13.2035 29.042 4.193 · 10−14

PO 30 0.5917 30 0.7135 −40.3245 48.544 < 2.2 · 10−16

RS 30 0.7039 30 0.7863 −13.4608 30.508 1.131 · 10−14

TR 30 0.6446 30 0.7746 −39.0412 52.514 < 2.2 · 10−16

Table 23: Comparing the quality of the discovered 1-conforming open nets in the Ex-
periments 2 and 3 using two-sample unpooled t-tests for equal means with
null hypothesis “equal means” and alternative hypothesis “true difference
in means is less than 0” (i.e., the open nets discovered in Experiment 3

are of better quality than the open nets discovered in Experiment 2, which
corresponds to our second hypothesis).

9.5 conclusions

In this chapter, we presented a technique to discover a system model of an
open system Impl from a given system model Spec and observed behavior

222 discovering a model of a b-conforming system

Experiment 2 Experiment 3

Spec size mean size mean t d.f. p-value

CN 30 4, 153 30 3, 665 6.3216 29.678 2.987 · 10−7

LA 30 3, 788 30 2, 710 24.5849 51.849 < 2.2 · 10−16

PO 30 3, 866 30 3, 615 6.6908 29.114 1.196 · 10−7

RS 30 3, 905 30 3, 620 8.6104 30.127 6.375 · 10−10

TR 30 3, 871 30 3, 605 9.5494 29.077 9.051 · 10−11

Table 24: Comparing the time (in seconds) needed to discover a 1-conforming open
net in the Experiments 2 and 3 using two-sample unpooled t-tests for
equal means with null hypothesis “equal means” and alternative hypoth-
esis “true difference in means is greater than 0” (i.e., it takes less time to
discover an open net in Experiment 3 than in Experiment 2, which corre-
sponds to our third hypothesis).

of Impl interacting with its environment. Our technique produces a sys-
tem model for Impl that b-conforms to Spec and, in addition, balances the
four conflicting quality dimensions (i.e., fitness, simplicity, precision, and
generalization). As an additional improvement, we proposed an abstrac-
tion technique to reduce the infinite search space to a finite one. As an
exhaustive search to find an optimal solution may still be intractable, we
implemented our technique as a genetic algorithm. In a prototypical imple-
mentation, we experimented with several system models of industrial size.
Our results showed that the algorithm finds (nearly) optimal solutions in
acceptable time on a computer with average computing power.

It is worth mentioning that although we evaluated our approach using
service models, the approach is not restricted to service models but can dis-
cover arbitrary open systems. In addition, we can also apply our approach
to discover a b-partner C of an open net N such that C has, among the set of
all b-partners of N, high or even the highest quality with respect to a given
event log Log: The set of all b-partners of N is equally well represented by
the LTS MPb(N) as the set of all b-conforming open nets is represented by
the LTS MPb(maxb(N)). Thus, we can also use the technique presented in
this chapter to discover a b-partner.

10C O N C L U S I O N S A N D R E L AT E D W O R K

In this chapter, we summarize the results from Part III. In addition, we
review work that is related to conformance testing in Sect. 10.2 and work

that is related to open system discovery in Sect. 10.3.

10.1 overview of the results

We studied a conformance relation between two open systems in the log-
model scenario. In the log-model scenario, the formal model of only one
open system—the specification—is given, but no formal model of the second
open system—the implementation—is available. Instead of a formal model
of the implementation, we use the observed behavior of the implementation
as input. We referred to the latter as the event log. Figure 126 illustrates
again our assumptions for the log-model scenario.

Event
Log

provides

Implementation
(unknown)

conforms to

Specification
(e.g., WS-BPEL)

Re
al

ity
O

pe
n

Ne
ts

modelstranslates

SpecImpl

modelstranslates

(unavailable)

conforms to

Figure 126: The log-model scenario

In the log-model scenario, we followed two goals. Our first goal was to
investigate how to use the event log to check b-conformance of the unknown
implementation to the given specification. To this end, we proposed a test-
ing approach based on a necessary condition for b-conformance in Chap. 8.
We analyzed whether there exists a b-conforming implementation which
may produce the behavior seen in the event log without any mismatches.
Thereby, we used the finite characterization of all b-conforming open nets,
in the form of a maximal b-partner, that we developed in Part II. We demon-
strated our testing approach using industrial-sized specifications and event
logs, and the tools from Part II.

Our second goal was to support the design of b-responsive open systems
in the log-model scenario by discovering a formal model of the unknown
implementation based on the given event log. To this end, we presented a
discovery technique in Chap. 9. We produced a system model for Impl that
b-conforms to Spec and, in addition, balances the four conflicting quality di-
mensions fitness, simplicity, precision, and generalization. As an additional
improvement, we proposed an abstraction technique to reduce the infinite
search space to a finite one, and evaluated the discovery algorithm with and

223

224 conclusions and related work

without the abstraction technique using industrial-sized specifications and
event logs.

10.2 work related to conformance testing

In this section, we review work related to our conformance testing approach
in Chap. 8.

Our conformance testing approach assumes recorded behavior (i.e., an
event log) of the implementation to be given, and employs this recorded
behavior to test for conformance of the unknown implementation to the
known specification. Here, techniques are adapted from process mining [2].
Process mining techniques focus on extracting process models from event
logs (“process discovery”), comparing normative models with the reality
recorded in event logs (which is also called “conformance testing” [218] or
“conformance checking” [12, 9, 219, 15, 5]), and extending models based
on event logs (“extension”). In the following, we give a brief overview of
conformance checking in process mining.

The goal of conformance checking in process mining is to find common-
alities and discrepancies between the modeled behavior and the observed
behavior of a process [2]. Cook and Wolf [71] compare event traces with
process models to measure their similarity. The similarity of an event trace
w and a process model N is quantified by the number of insertions and dele-
tions that are necessary to transform w into a trace of N; this is, in essence,
the idea behind the alignments [15, 5] that we used in Chap. 8 and Chap. 9.
Later, Cook et al. [70] extended their approach to also consider time aspects.
Rozinat et al. [218, 219] propose a token-based replay approach to measure
the fitness of an event trace w and a labeled net N: w is replayed on N by
adding necessary tokens (i.e., missing tokens in the preset of a transition)
and removing superfluous tokens (i.e., remaining tokens in the postset of
a transition). A fitness metric is then calculated based on the number of
added, superfluous, produced, and consumed tokens. In contrast to align-
ments, the fitness metric in [219] is sensitive to the structure of N. Goedertier
et al. [106] augment an event trace w with artificial negative events before
comparing w to a labeled net N in a way similar to [219]; negative events
are then used to quantify the precision of w and N. Adriansyah et al. [15, 5]
compute alignments between an event trace and a labeled net using the A∗

algorithm and sophisticated heuristics. Based on these alignments, they also
introduce the precision measure [16] that we employ in Chap. 9.

All approaches in [71, 70, 219, 106, 15, 5] focus on a closed system by relat-
ing observed process behavior (i.e., executed activities) to a process model.
In contrast, we consider the interaction between (multiple) open systems,
and relate observed interaction behavior (i.e., sent or received messages,
possibly from two different viewpoints) to an open system model. In addi-
tion, replaying an event trace w on a labeled N without any mismatch but
without reaching a final marking of N is considered erroneous in [219, 15, 5];
in other words, [219, 15, 5] implicitly assume w to reach a final marking of N.
In contrast, we do not make any assumptions about w and N. Therefore, ex-
isting replay techniques require event logs of higher quality [6] (e.g., event
logs with complete event traces), whereas our approach also works with
event logs of lower quality (e.g., event logs with incomplete event traces).

In our setting, Van der Aalst et al. [9] map a service contract specified
in WS-BPEL [130] onto a workflow net [1] (which, in that case, can be seen
as the inner net resembling the replay environment) and employ confor-

10.3 work related to open system discovery 225

mance checking techniques from process mining [219] on this workflow net.
In contrast, we can measure the deviation of an implementation from its
specification with respect to all possible b-conforming implementations; if
there exists a deviation, then the implementation does not b-conform to the
specification. In addition, the approach in [9] does not allow for a finite char-
acterization of all implementations—in contrast to the maximal b-partner in
Chap. 5.

Comuzzi et al. [69] investigate online conformance checking (that is, con-
formance checking with incomplete event traces) using a weaker refinement
notion than our notion of b-conformance. Different conformance relations
on a concurrency-enabled model have been studied by Ponce de León et al.
[148]. As their considered conformance relations differ from b-conformance,
their work is not applicable in our setting. Also, maximal partners have not
been studied yet in the setting of [148].

Motahari-Nezhad et al. [186] investigate event correlation; that is, they try
to find relationships between events that belong to the same process execu-
tion instance. In contrast to event correlation, we do not vary the system
instances, but consider a conformance relation of an unknown implementa-
tion to the known specification.

Our notion of conformance testing is also called monitoring [219] or pas-
sive testing [239]: We solely rely on the given specification and the observed
behavior recorded by the event log, and have no control over the test case
(i.e., the open system that communicates with the unknown implementation
and from whose communication the provided event log originates). Our
passive testing approach is opposed to active testing, where a tester has
active control over the test environment and especially a set of predefined
tests that are executed [239, 49]. For example, Kaschner [132] constructs test
cases from the operating guideline that we described in Sect. 7.3 to actively
test for conformance of asynchronously communicating services.

Brinksma and Tretmans [49] present an annotated bibliography of test
theory that is based on labeled transition systems. Another approach for
formal testing is based on Mealy finite state machines [170] (also known as
the FSM-approach); for overviews of the FSM-approach see [144, 207]. The
link between the FSM-approach and test theory based on labeled transition
systems is studied by Tan [231].

Note that our testing approach is not restricted to b-conformance; in gen-
eral, we can test for every conformance relation that allows to compute a
finite maximal partner.

10.3 work related to open system discovery

In this section, we review work related to our discovery approach in Chap. 9.
Discovering a formal model from observed behavior recorded in event

logs is studied in the area of process mining [2], as already explained in
Sect. 10.2. There exists a variety of discovery algorithms; for example, the
α-algorithm [13], the ILP-miner [254], the heuristics miner [253], and genetic
discovery algorithms [171, 52]. These discovery algorithms are all tailored
toward closed systems. They discover a formal process model from an event
log that recorded process activities. In contrast, the presented discovery
algorithm in Chap. 9 operates in the setting of open systems. We discover a
formal open system model from an event log that recorded communication
behavior between two running open systems.

226 conclusions and related work

In the area of service-oriented computing [201], the term “discovery” is
ambiguous: On the one hand, discovery describes techniques for producing
a service model from observed communication behavior of services [6], and
one the other hand, discovery describes techniques for finding a service
model in a service repository in service-oriented architectures [201]. Process
mining research has been focused on processes but during the last few years,
process mining techniques have also been applied to services resulting in the
term “service mining”. Van der Aalst [3] reviews service mining research
and identifies two main challenges regarding the discovery of services: (1)
the correlation of instances of a service with instances of another service
(e.g., [32, 186]), and (2) the discovery of services based on observed behavior
(e.g., [86, 23, 232, 195, 185]). A service can be seen as an open system, thus
Chap. 9 contributes to the second challenge.

Dustdar and Gombotz [86] discover workflow models from service inter-
action. The authors of [23, 232] discover workflow models from interaction
patterns. However, these approaches can only discover parts of a (complex)
service in the form of service composition pattern, whereas our discovery
algorithm produces a complete (service) model.

Musaraj et al. [195] correlate messages from an event log without correla-
tion information and use this information in their discovery algorithm. In
contrast, we abstract from correlation information and assume cases to be
independent. Another difference is that our discovered model b-conforms to
a given open system model Spec and it balances the four conflicting quality
dimensions with respect to a given event log, guided by user preferences.

Motahari-Nezhad et al. [185] present a user-driven refinement approach
for discovering service models. In essence, their approach considers the fit-
ness and the precision dimension, but ignores generalization and simplicity
of the discovered service model. Like Musaraj et al. [195], Motahari-Nezhad
et al. [185] do not assume a service model to be given and, thus, they can-
not guarantee that their produced service model can interact correctly (i.e.,
b-responsively) with its environment.

The idea of using a genetic algorithm for discovery is inspired by the work
of de Medeiros et al. [171]. Buijs et al. [52, 53] use a genetic algorithm to dis-
cover sound workflow models while balancing the four conflicting quality
dimensions. In Sect. 9.1, we discussed the relation of our measures for these
four quality dimensions and the measures used in [52, 53]. For the simplic-
ity measure, we used the structure of the LTS CSDb(maxb), which does not
exist for workflow models. Correctness in our setting is b-responsiveness,
which is a weaker criterion than soundness in [53]; soundness additionally
requires proper termination. To deal with b-responsiveness in the setting of
open systems, we assume an open system Spec to be given and we discover,
from observed behavior of Spec and its environment, an open system Impl
that is guaranteed to b-conform to Spec.

Part IV

C L O S U R E

11A P P LY I N G T H E T H E S I S R E S U LT S

In the previous two parts, we developed algorithms for verifying respon-
siveness for open systems by means of conformance checking in two dis-

tinct scenarios: the model-model scenario and the log-model scenario. In
the model-model scenario (Part II), we decided whether an open system
Impl b-conforms to an open system Spec based on a formal model of Impl
and a formal model of Spec. In the log-model scenario (Part III), we tested
whether Impl b-conforms to Spec based on an event log of Impl and a formal
model of Spec. In addition, we discovered a formal model of Impl—under
the assumption that Impl b-conforms to Spec—from an event log of Impl and
a formal model of Spec. So far, we presented the theory and evaluated the
developed algorithms using industrial-sized formal models and event logs.
In this chapter, we present a practical use case and apply the previously de-
veloped approaches. We specify—both informally and formally—the emer-
gency ward of a hospital as an open system. Thereby, the emergency ward
is part of a stroke unit for treating stroke patients [199]. Our specification
is inspired by a BPMN [63] model of the stroke treatment process that we
modeled at the Charité Berlin [85], which is one of the largest university
hospitals in Europe. We implement two variants of the emergency ward
service in the industrial language WS-BPEL [130]; one implementation that
1-conforms to the specification, and one implementation that does not. We
then demonstrate the developed approaches using these two implementa-
tions and the specification. For the model-model scenario, we automatically
translate the WS-BPEL models into open nets and check for 1-conformance;
this demonstrates the applicability of the approach in Part II. For the log-
model scenario, we deploy the WS-BPEL models using a WS-BPEL engine
and derive event logs from example executions. We then test for 1-confor-
mance with the derived event logs and the specification, and discover a
formal model of the 1-conforming implementation; this demonstrates the
applicability of the approaches in Part III.

We specify the emergency ward service and its two implementations in
Sect. 11.1. In Sect. 11.2 and Sect. 11.3, we demonstrate the applicability
of the techniques and analysis tools for the model-model scenario and the
log-model scenario, respectively. Section 11.4 conclude this chapter with a
discussion.

11.1 the emergency ward service in a stroke unit

In this section, we present the emergency ward service as the running ex-
ample of this chapter. We informally describe the specification of the emer-
gency ward service in Sect. 11.1.1 and subsequently formalize (parts of) the
specification as an open net in Sect. 11.1.2. In Sect. 11.1.3, we present two
implementations in WS-BPEL.

11.1.1 An informal specification

A stroke is the loss of brain function due to disturbance in the blood sup-
ply to the brain [140]. A stroke can be classified either as ischemic or as

229

230 applying the thesis results

hemorrhagic: An ischemic stroke is the most frequently occurring kind of
stroke; it is characterized by the interruption of the blood supply due to a
clot blocking or narrowing one of the blood vessels that supply blood to
the brain. The hemorrhagic stroke is characterized by the accumulation of
blood anywhere within the skull vault due to the rupture of a blood vessel
or an abnormal vascular structure. A stroke can lead to severe neurological
deficits or death; cerebrovascular diseases associated with strokes were the
second leading cause of death worldwide in 2004 [168].

An ischemic stroke is typically treated with thrombolysis therapy, which
breaks down the clot and normalizes the blood flow to the brain [109].
Whether thrombolysis therapy can be applied depends on various factors:
First, thrombolysis therapy is only permitted within the first three hours
after the stroke symptoms started. Second, thrombolysis therapy cannot be
applied to hemorrhagic strokes, as this would increase the accumulation of
blood. A cerebral hemorrhage can be excluded via a CT scan. Last, throm-
bolysis therapy cannot be applied if the stroke patient is on blood thinning
medication, which can be checked by analyzing the patient’s blood in a lab-
oratory. In general, the faster the thrombolysis therapy is started, the less
damage is caused to the brain (“time is brain”) [109].

To assure a time-efficient care of stroke patients, many hospitals operate
a stroke unit [199]. A stroke unit is a special ward for stroke patients where
nursing staff and doctors from different specializations and hospital units
cooperate to stabilize and normalize the physiological functions and to initi-
ate therapy. Five hospital units are involved in the stroke unit at the Charité
Berlin: The emergency ward, the radiology unit, the neurology unit, the
transport unit, and the hospital laboratory. In the following, we solely focus
on the emergency ward; a more detailed description of the stroke unit at the
Charité Berlin can be found in [85].

Figure 127 shows the BPMN [63] model of the emergency ward that we
recorded by observing several stroke patients and by interviewing the in-
volved staff and doctors [85]. The numbered message flows model the inter-
action with the other hospital units that are involved in the stroke unit.

If a stroke patient arrives at the emergency ward (start event “patient
admission”), she is immediately examined by the nursing staff (activity “ex-
amination by nursing staff”). If the stroke patient exhibits stroke symptoms
(i.e., is apoplectiform), the nursing staff triggers the stroke alarm [199] (activ-
ity “trigger stroke alarm”); otherwise, the patient is transfered to a different
hospital unit or dismissed. The stroke alarm alerts the neurology unit, the
transport unit, and the radiology unit (message flows 1, 2, and 5). Then, the
emergency ward process concurrently waits for a transport service, a neu-
rologist, and a phone call from the radiology unit to arrive (message flows
3, 4, and 6). The phone call from the radiology queries the patient infos
(intermediate event “patient info queried”); the nursing staff reports the pa-
tient infos (activity “report patient info”) and receives the number of a free
CT (intermediate event “CT# received”). Concurrently, an internist and the
nursing staff continue to examine the stroke patient (activity “examination
by internist”), take a blood sample for the laboratory unit (activity “send
blood sample to lab” and message flow 7), and compile the examination
results into an internal medicine report (activity “create internal medicine
report”). When a neurologist arrives, she performs a neurological examina-
tion of the patient to confirm the diagnosis and to determine the nature of
the stroke (activity “examination by neurologist”); the results are compiled
into a neurological report (activity “create neurological report”). Based on

11.1 the emergency ward service in a stroke unit 231

Emergency Ward

E
m

er
g
en

cy
 W

ar
d

Pa
ti
en

t
ad

m
is

si
on

E
xa

m
in

at
io

n
b
y

n
u
rs

in
g

st
af

f

Tr
ig

g
er

st
ro

ke
al

ar
m

E
xa

m
in

at
io

n
b
y

in
te

rn
is

t
S
en

d
 b

lo
od

sa
m

p
le

 t
o

la
b

C
re

at
e

in
te

rn
al

m
ed

ic
in

e
re

p
or

t

E
xa

m
in

at
io

n
b
y

n
eu

ro
lo

g
is

t
N

eu
ro

lo
g
i

st
 a

rr
iv

es

R
ep

or
t

p
at

ie
n
t

in
fo

Pa
ti
en

t
in

fo
q
u
er

ie
d

C
re

at
e

n
eu

ro
lo

g
ic

al
re

p
or

t

C
an

ce
l

p
ro

ce
ss

Pa
ti
en

t
re

tu
rn

s

M
on

it
or

in
g

In
fo

rm
ra

d
io

lo
g
y

Tr
an

sp
or

t
se

rv
ic

e
ar

ri
ve

s

Tr
an

sp
or

t
p
at

ie
n
t

to
ra

d
io

lo
g
y

C
T
 #

re
ce

iv
ed

n
ot

 a
p
op

le
ct

if
or

m

1
.

2
.

3
.

4
.

5
.

6
.

7
.

n
o

ac
u
te

 t
re

at
m

en
t

8
.

1
0
.

9
.

1
1
.

1
2
.

Fi
gu

re
1

2
7
:T

he
em

er
ge

nc
y

w
ar

d
in

th
e

C
ha

ri
té

st
ro

ke
un

it
(t

ak
en

fr
om

[8
5
])

.

232 applying the thesis results

the internal medicine report and the neurological report, the internist and
the neurologist decide whether the patient can receive acute treatment or
not. If the patient should not receive acute treatment, the nursing staff in-
forms the radiology unit and cancels the (whole stroke unit) process. If the
patient should receive acute treatment, the process proceeds as soon as the
transport service (upper branch) and the CT number (lower branch) have
arrived. Then, the transport service takes the stroke patient to the CT ma-
chine (activity “transport patient to radiology”), along with the neurologist,
the thrombolytic drugs and all relevant medical files (message flow 11). At
the radiology unit, a CT scan of the patient’s brain reveals whether there
exists a cerebral hemorrhage. If all prerequisites are met (i.e., the stroke is
not hemorrhagic, the patient is not on blood thinning medication, and the
stroke symptoms appeared at most three hours ago), the neurologist begins
the thrombolysis therapy while still at the radiology unit. The ischemic
stroke patient is then transported back to the emergency ward along with
the neurologist (intermediate event “patient returns” and message flow 12).
Finally, the stroke patient is monitored (activity “monitoring”) until she can
be moved to another hospital unit (end event).

11.1.2 A formal model of the specification

We formalize (parts of) the informal specification of the emergency ward
from the previous section: Figure 128 depicts the resulting open net ew.
We abstract from the communication with the transport unit (the outer left
branch in Fig. 127) and the CT unit requesting patient information (the
outer right branch in Fig. 127): The control flow of the open net ew already
branches internally into two branches after the transition “send alarm”; a
third and a fourth branch would only result in an increased size of ew with-
out providing additional insights into the approaches that we are going to
demonstrate on ew (and its implementations) in this chapter. In addition,
we explicitly specify the continuation of the patient’s treatment: Regardless
whether the stroke patient receives acute treatment via the thrombolysis
therapy or not, we compile information about the further therapy and send
them to the environment (i.e., other hospital units) via the transition “send
further_therapy” and the output place “further_therapy”.

There exist tools like the “BPMN to Petri net transformer” [79] to automat-
ically derive Petri net models from BPMN models like the one in Fig. 127.
However, here we do not use any tool but derive the specification ew manu-
ally to incorporate the above mentioned design decisions—that is, abstract-
ing from the communication with the transport unit and the CT unit, and
additionally compiling a patient’s further therapy.

In the following section, we implement the specification of the emergency
ward service (i.e., the open net ew) as executable WS-BPEL process. We
present two slightly different implementations: the WS-BPEL process ID
that does not conform to the specification ew, and the WS-BPEL process
MCT that conforms to the specification ew. Subsequently, we use the WS-
BPEL processes ID and MCT to demonstrate the approaches from this thesis,
each with a negative and a positive example.

11.1.3 Two implementations in WS-BPEL

The Web Services Business Process Execution Language Version 2.0 (WS-
BPEL) [130] is a language for specifying business process behavior based on

11.1 the emergency ward service in a stroke unit 233

new_patient
receive

new_patient

p1

alarm

take
patient data

send
alarm

internistic
examination

receive
neurologist

p2

p3 p4

p5 p6

p7 p8

send
blood

neurological
examination

create
reports

neurologist

blood

p9

send
abort

send
to_ct

p10

receive
ischemic_stroke

p12

send
further_therapy

p13

p0

to_ct

ischemic_stroke

further_therapy

abort

monitoring

p11

Figure 128: The specification ew. In addition to the figure, we have Ωew = {[p13]}.

web services. This makes WS-BPEL a language for the programming in the
large paradigm [75]. A WS-BPEL process implements one web service by
specifying its interactions with other web services exclusively through their
interfaces. Thereby, WS-BPEL provides language features for advanced busi-
ness process concepts such as instantiation, complex exception handling,
and compensation of long running transactions. In the following, we briefly
introduce the basic language constructs of WS-BPEL that are relevant for
the remainder of this chapter. For a more in-depth treatment, we refer to
the official WS-BPEL specification [130] or one of the detailed introductions,
e.g., [252].

For specifying a business process, WS-BPEL provides basic and structured
activities. A basic activity models an elementary action in the process; it can

234 applying the thesis results

communicate with other web services by exchanging messages (“invoke”,
“receive”, and “reply” activity), manipulate or validate data (“assign”, or
“validate” activity), wait for a period of time (“wait” activity) or do nothing
(“empty” activity), signal faults (“throw” activity), invoke a compensation
handler (through a “compensationHandler” wrapper for activities), or end
the entire process instance (“exit” activity). A structured activity defines a
causal order on (basic or structured) activities in the process. The structured
activities include sequential or parallel execution (“sequence”, or “flow”
activity), data-dependent branching (“if” activity), timeout- or message-
dependent branching (“pick” activity), and repeated execution (“repeatUn-
til”, “while”, and “forEach” activity). In addition, the structured activity
“scope” links fault, compensation, termination, and event handling to an ac-
tivity. For communicating with other web services, a WS-BPEL process ad-
ditionally defines partner links and port types with operations. In essence, a
partner link models the interaction between two WS-BPEL processes (called
“partners” in [130]), and a port type and its operations specify the involved
message channels. Thereby, a WS-BPEL process represents all partners and
interactions with these partners in terms of abstract WSDL [64] interfaces
(i.e., the port types and operations).

WS-BPEL is intended as exchange and documentation format; it is based
on XML and provides no graphical representation. Hence, many vendors
of WS-BPEL development tools introduce their own graphical notations.
In this thesis, we develop WS-BPEL processes using the free and open
source software Eclipse BPEL Designer [235]. The Eclipse BPEL Designer
adds comprehensive support for the definition, authoring, editing, deploy-
ing, testing and debugging of WS-BPEL processes to the well-known inte-
grated development environment (IDE) Eclipse [236]. Therefore, we also
use the graphical notation of the Eclipse BPEL Designer, as illustrated with
Fig. 129. The WS-BPEL process in Fig. 129 implements the specification
ew from Fig. 128. The implemented service starts—within the scope activity
“emergencyward_main” of the whole process—with a receive activity receiv-
ing new patients (receive activity “emergencyward_receive_new_patient”).
Then, the service manipulates data (assign activity “emergencyward_take_
patient_data”) and invokes the neurology service by sending an alarm mes-
sage (invoke activity “emergencyward_send_alarm”). The service contin-
ues with a flow activity, concurrently sending a blood sample to the lab-
oratory service (invoke activity “emergencyward_send_blood” inside the
left sequence activity) and receiving the alarmed neurologist (invoke activ-
ity “emergencyward_receive_neurologsit” inside the right sequence activ-
ity). Just as specified in Fig. 128, the implemented service in Fig. 129 pro-
ceeds with a data-dependent branching (if activity “emergencyward_if”):
In the left branch, the service decides against acute treatment of the stroke
patient by sending an abort message to a documentation service (invoke ac-
tivity “emergencyward_send_abort”), in the right branch, the service sends
the stroke patient for an acute treatment to the CT service (invoke activity
“emergencyward_send_to_ct” and receive activity “emergencyward_receive_
ischemic_stroke”). In each case, the service in Fig. 129 finishes by compil-
ing the further therapy for the stroke patient (assign activity “emergency-
ward_compile_further_therapy”) and returning this to other hospital ser-
vices (reply activity “emergencyward_send_further_therapy”).

For demonstrating the approaches that we developed in this thesis, we
present two different implementations of ew, which are slight modifications
of the WS-BPEL process in Fig. 129: Figure 130 illustrates the first imple-

11.1 the emergency ward service in a stroke unit 235

Figure 129: A straightforward implementation of the specification ew from Fig. 128

as a WS-BPEL process in Eclipse BPEL Designer.

mentation ID of ew as a WS-BPEL process. The service ID consists of the
same activities as the WS-BPEL process in Fig. 129 except that we change
their causal order: Rather than concurrently sending a blood sample to the
laboratory service and receiving the alerted neurologist before making a de-
cision about the patient’s acute treatment, the service ID concurrently sends
a blood sample to the laboratory and makes a decision about the patient’s acute
treatment while receiving the alerted neurologist. In other words, ID imple-
ments an emergency ward service where the decision for or against acute
treatment is made solely by the treating internist rather than by the internist
and the neurologist together. This clearly contradicts the regulations we out-
lined at the beginning of this section and in our specification ew. Therefore,
ID should not 1-conform to ew.

Figure 131 illustrates the second implementation MCT of ew as a WS-BPEL
process. The service implemented by MCT augments the service imple-
mented by Fig. 129 by allowing for a second invocation: MCT may receive
an ischemic stroke patient directly from the start (pick activity “emergency-

236 applying the thesis results

Figure
1

3
0:The

W
S-BPEL

process
ID

as
an

im
plem

entation
of

our
specification

ew
in

Fig.
1

2
8

that
does

not
1-conform

to
ew

.

11.2 the model-model scenario 237

ward_pick” and receive activity “ischemic_stroke”). The received ischemic
stroke patient is then monitored (assign activity “emergencyward_monitor_
the_patient”), a blood sample is send to the laboratory service (invoke activ-
ity “emergencyward_send_blood”), and the further therapy is compiled (as-
sign activity “emergencyward_compile_ further_therapy”) and subsequently
send to other hospital services (reply activity “emergencyward_send_further_
therapy”). MCT takes account of the recent development of “mobile stroke
units” [93, 251]: A mobile stroke unit is a specialized ambulance containing
a mobile CT unit and specialized staff, among others an internist and a neu-
rologist. This allows to confirm an ischemic stroke and to directly start the
acute treatment while the patient is delivered to the next emergency ward.
As MCT additionally contains the behavior of ew (i.e., the left branch of MCT
coincides with the WS-BPEL process in Fig. 129), MCT should 1-conform to
the specification ew.

In the remainder of this chapter, we use the two implementations ID and
MCT and the specification ew to demonstrate the approaches that we devel-
oped in this thesis.

11.2 the model-model scenario

In this section, we demonstrate our approach for conformance checking
in the model-model scenario (see Chap. 5). Because of the model-model
scenario, we assume the open net ew as specification and the two WS-BPEL
processes ID and MCT as two implementations from Sect. 11.1 to be given.

For checking whether an implementation (e.g., the WS-BPEL process ID)
1-conforms to the specification (i.e., the open net ew), we have to take the
following two steps:

1. Derive a formal model (i.e., an open net id) from the WS-BPEL process
ID.

2. Compute the LTSs CSD1(id) and CSD1(ew) by Def. 104 and check
CSD1(id) and CSD1(ew) according to Thm. 117.

In the following, we present each of the two steps in detail. As a con-
vention for the remainder of this chapter, we easily distinguish a WS-BPEL
process from its derived open net by writing the WS-BPEL process (e.g., ID)
in uppercase letters and its derived open net (e.g, id) in lowercase letters. As
in Part II and Part III, all computations are done on a MacBook Air model
A1466 [21].

11.2.1 Step 1: Deriving formal models

For automatically deriving an open net from a WS-BPEL process, the free
open source software BPEL2OWFN [149] implements a features-complete
Petri nets semantics of WS-BPEL.

Figure 132 depicts the open net id that we derived automatically from
ID using BPEL2OWFN. The transitions t6 and t7 visualize that deciding
whether a stroke patient receives acute treatment or not is solely done
by the internist; this contradicts what we specified by the open net ew in
Sect. 11.1. Therefore, id does not 1-conform to ew: For example, the trace
(new_patient) (alarm) (blood) (abort) is in L(id) ⊆ uL1(id) but neither in
L(ew) ⊆ uL1(ew) nor in uncov1(ew) ⊆ uL1(ew). This implies that id does
not 1-conform to ew by Thm. 97.

238 applying the thesis results

Figure
1

3
1:The

W
S-BPEL

process
ID

as
an

im
plem

entation
of

our
specification

ew
in

Fig.
1

2
8

that
1-conform

s
to

ew
.

11.2 the model-model scenario 239

new_patient
t0

p1

alarm

t1

t3

t4 t5

p2

p4 p5

p6 p7

p8

t6

neurologist

blood

t8 t9

p10

t10

p12

t13

p14

p0

to_ct

ischemic_stroke

further_therapy

abort

t11

p11

t2

p3

t7

p9

t12

p13

Figure 132: The open net id that we derived from the WS-BPEL process ID from
Fig. 130. In addition to the figure, we have Ωid = {[p14]}.

Figure 133 depicts the open net mct that we automatically derived from
MCT using BPEL2OWFN. The control flow of mct immediately branches
from the initial marking because of the transitions t0 and t6: In the left
branch, mct resembles the open net ew from Fig. 128 and the left branch of
MCT. In the right branch, an ischemic stroke patient from a mobile CT is
received and subsequently treated, which refers to the right branch of MCT.
The open net mct 1-conforms to ew. Each trace of mct that is not a trace of ew
starts with ischemic_stroke, and every trace starting with ischemic_stroke is in

240 applying the thesis results

uncov1(ew) because of the transitions “send abort” and “send to_ct”: If a 1-
partner C of ew puts a token onto the interface place ischemic_stroke without
receiving a token from to_ct first, ew may fire transition “send abort”. Then,
the token on ischemic_stroke cannot be removed and the final marking of ew
is no longer reachable, which hinders 1-responsiveness of ew and C. Thus,
mct 1-conforms to ew.

new_patient
t0

p1

alarm

t1

t2

t4 t5

p2

p3

p5

p6 p7

t7

neurologist

blood

p9

t12 t13

p14

t15

p16

t17

p17

p0

to_ct

ischemic_stroke

further_therapy

abort

t16

p15

t3

p4

t9 t10

p11 p12

t6

t8

p8

p10

t11

t14

p13

Figure 133: The open net mct that we derived from the WS-BPEL process MCT from
Fig. 131. In addition to the figure, we have Ωmct = {[p17]}.

Table 25 gives an overview over the characteristics of the open nets id and
mct that we derived from the WS-BPEL processes ID and MCT. The size of

11.3 the log-model scenario 241

id and mct is between the size of the running examples from Part II and the
industrial-sized open nets we used to evaluate our approach in Sect. 5.4.

open net |P| |I| |O| |T| |F|
ew 22 3 5 13 36
id 23 3 5 14 38
mct 26 3 5 18 49

Table 25: The size of the open net ew from Sect. 11.1, and the open nets id and mct that
we generated using the tool BPEL2OWFN. We do not include the memory
usage and time because id and mct could be generated instantly from the
given WS-BPEL processes ID and MCT, respectively.

11.2.2 Step 2: Checking for 1-conformance

We compute the LTSs CSD1(ew), CSD1(id), and CSD1(mct) using the tool
Chloe [115]. All three LTSs can be computed instantly; Tab. 26 gives an
overview over the size of the LTSs. Using the tool Delain [78], we check
for 1-conformance by relating CSD1(id) and CSD1(ew), and CSD1(mct) and
CSD1(ew), respectively, according to Thm. 117. Both checks can be per-
formed instantly; Fig. 134 shows a screenshot of the two conformance checks
using Delain. As a result, id does not 1-conform to ew and mct 1-conforms
to ew, as we have already argued in the previous step.

LTS |Q| |δ| |Σin| |Σout| time (s) memory (KiB)

CSD1(ew) 32 256 3 5 0 2, 044
CSD1(id) 44 352 3 5 0 2, 268
CSD1(mct) 34 272 3 5 0 2, 076

Table 26: The size of CSD1 generated with the tool Chloe, including the used mem-
ory and time.

Figure 134: A screenshot of the tool Delain checking for 1-conformance of id and ew,
and mct and ew, respectively, by using the LTSs CSD1(ew), CSD1(id), and
CSD1(mct) that we previously computed using the tool Chloe.

11.3 the log-model scenario

In this section, we assume the specification ew to be given, but the WS-
BPEL processes ID and MCT from Sect. 11.1 and their derived open nets id
and mct from Sect. 11.2 are unavailable. Instead, we assume that ID and
MCT are running in a WS-BPEL engine from which we are given observed
behavior in the form of two event logs. In Sect. 11.3.1, we show the validity
of this assumption by demonstrating how to deploy the WS-BPEL processes

242 applying the thesis results

into Apache ODE [233] and subsequently derive event logs. We test both
unknown implementations for 1-conformance to ew based on the generated
event logs in Sect. 11.3.2, and discover a high-quality open net of the 1-
conforming implementation mct in Sect. 11.3.3.

For testing whether an unknown implementation (e.g., the open net id
from the WS-BPEL process ID) 1-conforms to the specification (i.e., the open
net ew) and—if id 1-conforms to ew—for discovering a high-quality formal
model of ID, we have to take the following three steps:

1. Deploy ID using a WS-BPEL engine and derive an event log IDLog
from observed example interactions between ID and its environment.

2. Compute the open net mp1(max1(ew)) by Def. 131 and Def. 110 and
test for 1-conformance of the unknown id to ew by replaying IDLog on
env(mp1(max1(ew))) according to Thm. 177.

3. If the unknown id 1-conforms to ew, we can discover a high-quality
formal model id′ from IDLog and ew using the genetic algorithm from
Sect. 9.3.

In the following, we present each of the three steps in detail.

11.3.1 Step 1: Deriving event logs

As already explained at the beginning of this chapter, we assume that ID
and MCT are running in a WS-BPEL engine. We demonstrate the validity
of this assumption by deploying ID and MCT into Apache ODE [233] and
subsequently deriving two event logs IDLog and MCTLog from observed
example interactions.

Apache ODE is a widely used free and open source WS-BPEL engine; it
executes processes which have been expressed in WS-BPEL by communicat-
ing with other (web) services, manipulating data, and handling exceptions.
Apache ODE is a top-level project at the Apache Software Foundation [233]
and is incorporated in various open source enterprise services buses (ESBs).
Among several available open source WS-BPEL engines, Apache ODE has
particular high compliance [111] to the WS-BPEL standard [130]. Although
Apache ODE is open source, it is on par with proprietary WS-BPEL engines
in terms of compliance to the WS-BPEL standard, performance, and lan-
guage expressiveness in terms of workflow pattern support [112]. In the
following setting, we run Apache ODE version 1.3.6 on a local Apache Tom-
cat server version 8.0.3, which is a free open source software implementation
of the Java Servlet and JavaServer Pages technologies [234].

For deriving event logs from observed example interactions, we use ODE’s
event mechanism: Apache ODE produces detailed information about pro-
cess executions (among others, the sending and receiving of messages) and
persistently stores them in an internal database. Thereby, Apache ODE
allows the registration of an event listener, which may catch and analyze
all produced events before they are stored. An own event listener can be
used by implementing the org.apache.ode.bpel.iapi.BpelEventListener interface
of the Apache ODE API. For our setting, we implement a custom event
listener [189] that exports sent or received messages from the viewpoint
of the WS-BPEL process together with the identifier of the correspond-
ing WS-BPEL process instance and a timestamp into comma-separated val-
ues. Comma-separated values in turn can be imported as event logs into
ProM [212].

11.3 the log-model scenario 243

For generating example interactions with the deployed WS-BPEL pro-
cesses ID and MCT, we use the existing tool SoapUI [225]. SoapUI is a
free and open source web service testing application for service-oriented ar-
chitectures. Its functionality covers web service inspection, invoking, devel-
opment, simulation and mocking, functional testing, load and compliance
testing [225]. Load testing is performed to determine a web service’s be-
havior under load conditions by generating a high number of interactions
between the web service and its environment. For our setting, we use two
load tests with the standard (random) settings and a runtime of 60 seconds
to generate example interactions between ID and its environment (i.e., Soa-
pUI), and MCT and its environment, respectively.

In the following, we abbreviate the messages new_patient by patient, to_ct
by ct, ischemic_stroke by ischemic, and further_therapy by therapy. For ID,
we derive the event log IDLog in Tab. 27, which contains 405 event traces
and 2700 events. Thereby, all event traces of IDLog start with the event
patient. We can clearly recognize the event traces patient alarm blood ct
ischemic neurologist therapy, patient alarm blood abort neurologist therapy, and
patient alarm blood ct neurologist ischemic therapy that violate (1-)conformance
of ID to ew: In all three cases, the decision whether the stroke patient re-
ceives acute treatment (i.e., the patient is sent to the CT) or not (i.e., the
abort message is sent) is done before the neurologist arrives. For MCT, we
derive the event log MCTLog in Tab. 28, which contains 354 event traces and
2327 events. In contrast to the event log IDLog, there exist event traces in
MCTLog that do not start with the event patient: the event traces ischemic
blood therapy representing the interaction with the mobile CT. Nevertheless,
these traces should not hinder (1-)conformance of MCT to ew, as we already
explained in Sect. 11.2. Both event logs IDLog and MCTLog have a size com-
parable to the size of the event logs we used to evaluate our approaches in
Chap. 8 and Chap. 9.

cardinality event trace

177 patient alarm neurologist blood ct ischemic therapy
81 patient alarm neurologist blood abort therapy
45 patient alarm blood neurologist ct ischemic therapy
42 patient alarm blood ct ischemic neurologist therapy
30 patient alarm blood neurologist abort therapy
24 patient alarm blood abort neurologist therapy

6 patient alarm blood ct neurologist ischemic therapy

Table 27: The event log IDLog that we derived by observing example interactions
between the WS-BPEL process ID and its environment while taking the
viewpoint of ID. We abbreviate the messages new_patient (patient), to_ct
(ct), ischemic_stroke (ischemic), and further_therapy (therapy).

11.3.2 Step 2: Testing for 1-conformance

For testing whether the unknown implementation id of ID 1-conforms to
ew, we have to compute the open net mp1(max1(ew)) and replay the de-
rived event log IDLog on env(mp1(max1(ew))) (see Chap. 8). If IDLog cannot
be replayed on env(mp1(max1(ew))) (i.e., the costs of replaying IDLog on
env(mp1(max1(ew))) exceed 0), then id does not 1-conform to ew. The same

244 applying the thesis results

cardinality event trace

152 patient alarm neurologist blood ct ischemic therapy
78 patient alarm blood neurologist ct ischemic therapy
77 patient alarm neurologist blood abort therapy
38 patient alarm blood neurologist abort therapy

9 ischemic blood therapy

Table 28: The event log MCTLog that we derived by observing example interactions
between the WS-BPEL process MCT and its environment while taking the
viewpoint of MCT. We abbreviate the messages new_patient (patient), to_ct
(ct), ischemic_stroke (ischemic), and further_therapy (therapy).

approach allows to test whether the unknown implementation mct of MCT
1-conforms to ew, too.

We compute the maximal 1-partner max1(ew) and the most-permissive 1-
partner mp1(max1(ew)) of the open net ew using the tool Chloe [115]. The
resulting open net mp1(max1(ew)) is too big to be shown here; it consists of
51 places, 174 transitions, and 514 arcs. We then test for 1-conformance of
the unknown implementations id and mct to ew by replaying the event logs
IDLog and MCTLog on the labeled net env(mp1(max1(ew))), respectively. Re-
playing an event log on a labeled net can be done using ProM [212]. We use
the package “PNetReplayer” that implements the A∗-algorithm [15] and
that is part of the current ProM release version 6.3 [212]. All settings of
“PNetReplayer” were left to the standard settings except for the cost func-
tion: As already detailed in Conv. 9, we use a cost function that assigns cost
of 1 to each log move and to each non-silent model move, and cost of 0 to
all other moves.

Table 29 shows the results: Replaying IDLog on env(mp1(max1(ew))) re-
sults in costs greater than 0; thus, the unknown implementation id of ID
cannot 1-conform to ew by Thm. 177. Figure 135 shows a screenshot of
ProM visualizing the alignments of IDLog to env(mp1(max1(ew))). The align-
ment in the middle contains a log move that is shown in yellow: This log
move corresponds to the event to_ct preceding the event neurologist; in other
words, sending the stroke patient to the CT is not allowed by the labeled net
env(mp1(max1(ew))) at the corresponding state of the process. In the upper
right, ProM outputs the costs (labeled “Raw Fitness Cost”) for replaying the
whole event log on env(mp1(max1(ew))).

Replaying MCTLog on env(mp1(max1(ew))) yields costs 0. Therefore, at
least with respect to the observed behavior captured in MCTLog, we cannot
make any statement whether the unknown implementation mct of MCT 1-
conforms to ew. In other words, there is no erroneous behavior captured by
the event log MCTLog. The runtime of replaying the event logs IDLog and
MCTLog on the labeled net env(mp1(max1(ew))) using the A∗-algorithm [15]
was 0.002 and 0.107 seconds, respectively, which is nearly instantaneously.

labeled net event log replay costs time (s)

env(mp1(max1(ew))) IDLog 0.1778 0.107
env(mp1(max1(ew))) MCTLog 0 0.002

Table 29: The time and cost ProM reported for replaying the event logs IDLog and
MCTLog on the labeled net env(mp1(max1(ew))). We used the standard
settings of the package “PNetReplayer” and the cost function from Conv. 9.

11.3 the log-model scenario 245

Figure 135: Visualizing the alignments of IDLog to env(mp1(max1(ew))) in ProM.

Note that it is not possible to infer whether id or mct 1-conform to ew by
solely examining IDLog and ew, or MCTLog and ew, respectively: Both event
logs IDLog and MCTLog contain traces that are not in the language of the
labeled net env(ew)—for example, the trace patient alarm blood ct neurologist
ischemic therapy of IDLog and the trace ischemic blood therapy of MCTLog. In
other words, the distinction between the unknown implementations id and
mct (i.e., id does not 1-conform to ew, but mct does) is not obvious in IDLog
and MCTLog; this again illustrates that Thm. 177 is nontrivial.

11.3.3 Step 3: Discovering a high-quality model of a 1-conforming implementa-
tion

In Sect. 11.3.2, we showed that the unknown implementation id cannot 1-
conform to the specification ew, whereas mct may 1-conform to ew. In this
final step, we assume that the unknown implementation mct 1-conforms
to ew; in practice, this assumption may be justified by the previous (non-
negative) testing result. Then, we discover a high-quality open net mct′

from MCTLog and ew that 1-conforms to ew. In other words, mct′ may
serve—instead of mct—as a formal model of MCT.

For discovering mct′ from MCTLog and ew, we use our discovery approach
from Chap. 9 with the following four inputs:

• The LTS MP1(max1(ew)) with its Boolean annotation φ, which we can
compute from ew using the tool Chloe [115].

• An event log MCTLog of an open net that 1-conforms to ew, which we
already generated in the first step using Apache ODE [233], a custom
event listener, and the testing tool SoapUI [225].

• The weights for the four quality dimensions, which we set to 1 for sim-
plicity and to 2 for all other quality dimensions as we did in Chap. 9.

246 applying the thesis results

• The parameters and termination criteria for the genetic algorithm: Like
in Chap. 9, we use an initial population of 100 individuals, a muta-
tion/crossover/replacement probability of 0.3 with at most 1 crossover
point, and elitism of 0.3. The computation of a new generation stops
after 1, 000 generations, if the highest quality stagnates for 750 gener-
ations, if a quality of 0.999 is reached, or if the algorithm ran for 60

minutes.

We employ the abstraction technique from Sect. 9.2, because this, in gen-
eral, produces significantly better results while taking significantly less time
(cf. Sect. 9.4). Note that this implies mct′ 6= mct, i.e., we cannot discover
mct from MCTLog and ew: The open net mct is not a 1-subnet of ew, and by
using the abstraction technique, we restrict our search space to 1-subnets of
ew only. Nevertheless, mct may serve as a benchmark of the quality of the
discovered open net mct′. The open net mct has a fitness value of 1.0 (i.e.,
every event trace of MCTLog can be replayed on inner(mct)), a simplicity
value of 0.6944, a precision value of 1.0, and a generalization value of 0.9970
with respect to MCTLog and ew. Thus, the quality of mct with respect to
MCTLog and ew is approx. 0.9555.

The output of our implementation is an open net mct′ that 1-conforms to
ew and has high quality with respect MCTLog and ew; Fig. 136 depicts the
discovered open net mct′. Discovering mct′ took approx. 33 seconds. The
open net mct′ has a fitness value of 1.0 (i.e., every event trace of MCTLog can
be replayed on inner(mct′)), a simplicity value of 1.0 (because it is a 1-subnet
of ew), a precision value of 0.8963 and a generalization value of 0.9970 with
respect to MCTLog and ew. Thus, the quality of mct′ with respect to MCTLog
and ew is approx. 0.9695.

The quality of mct′ is higher than the quality of mct with respect to
MCTLog and ew, mainly because mct′ is simpler than mct. The open net mct′

is smaller than mct and, in contrast to mct, τ-free. This is because inner(mct′)
derives from (an initialized subsystem of) the LTS MP1(max1(ew)), which in
turn is τ-free by construction. Compared to the unknown open net mct,
mct′ explicitly allows for the neurologist to arrive before the alarm message
was send (i.e., the neurologist may stay at the emergency ward). This also
illustrates why the open net mct′ is likely not discovered using traditional
discovering techniques from the area of process mining [2]: An event trace
w = neurologist patient alarm blood ct ischemic therapy was never observed
in MCTLog in Tab. 28. Nevertheless, every open net that 1-conforms to ew
must allow for w, as neurologist is an input place of ew and consuming a
token from neurologist may be delayed due to the asynchronous communi-
cation.

Figure 137 highlights the specification ew from Fig. 128 inside the discov-
ered open net mct′. Clearly, mct′ allows for more traces than ew; for example,
the trace ischemic blood therapy.

11.4 conclusions

In this chapter, we demonstrated the applicability of the techniques and
analysis tools that we developed in Part II and Part III on a real-life exam-
ple: We formally specified the emergency ward of a hospital as an open
system in form of a (web) service and checked two slightly different WS-
BPEL implementations for 1-conformance to this specification. In addition,
we showed how to derive event logs from the implementations using the
well-known and widely used Apache ODE engine. Based on the derived

11.4 conclusions 247

new_patient
t0

p1

alarm
t2

t4 t5

p3

p5 p6

t8

neurologist

blood

p7

t12 t13

p10

t15

p11

t16

p12

p0

to_ct

ischemic_stroke

further_therapy

abort

t14

p9

t9

t11

p8 t10

t7

p13

t1

p2

t6

t3

p4

Figure 136: The open net mct′ that we discovered from the event log MCTLog and the
LTS MP1(max1(ew)) with Boolean annotation. In addition to the figure,
we have Ωmct = {[p8], [p11], [p13]}.

event logs, we tested both implementations for 1-conformance and discov-
ered a high-quality formal model of the conforming implementation. All
tools used in this chapter—either developed in the context of this thesis, or
already existing tools—are free and open source software.

248 applying the thesis results

new_patient
t0

p1

alarm
t2

t4 t5

p3

p5 p6

t8

neurologist

blood

p7

t12 t13

p10

t15

p11

t16

p12

p0

to_ct

ischemic_stroke

further_therapy

abort

t14

p9

t9

t11

p8 t10

t7

p13

t1

p2

t6

t3

p4

Figure 137: Highlighting the specification ew from Fig. 128 inside the discovered
open net mct′ from Fig. 136.

12T H E S I S C O N C L U S I O N S A N D O U T L O O K

This final chapter concludes our thesis. We summarize the main contri-
butions of our approach for verifying responsiveness for open systems

by means of conformance checking in Sect. 12.1. In Sect. 12.2, we discuss
open research questions of this approach and theoretical and practical limi-
tations of the presented results. Finally, Sect. 12.3 sketches ideas for future
research.

12.1 summary of contributions

The central research topic of this thesis was to verify responsiveness for open
systems by means of conformance checking. Responsiveness ensures mutual ter-
mination or perpetual communication between two systems. It is a funda-
mental behavioral correctness criterion for open systems; a nonterminating
composition of two open systems that do not have the possibility to com-
municate is certainly ill-designed. In Chap. 3, we motivated two variants of
responsiveness—responsiveness and b-responsiveness—and compared them
to other behavioral correctness criteria for open systems. The notion of b-
responsiveness is a variant of responsiveness where the number of pending
messages never exceeds a previously known bound b. Although respecting
a bound b may seem restricting, b-responsiveness is practically relevant: Dis-
tributed systems operate on a middleware with buffers that are of bounded
size. The actual buffer size can be the result of a static analysis of the under-
lying middleware or of the communication behavior of an open system, or
simply be chosen sufficiently large.

A conformance relation for responsiveness describes when one open sys-
tem (i.e., the specification) can be safely replaced by another open sys-
tem (i.e., the implementation) without affecting responsiveness with an un-
known environment (i.e., other open systems called partners). We defined
the conformance relations for responsiveness and b-responsiveness—that
is, conformance and b-conformance—and the coarsest precongruences con-
tained therein—that is, compositional conformance and compositional b-
conformance.

We aimed to verify responsiveness by means of conformance checking
in two distinct scenarios—the model-model scenario and the log-model
scenario—each of which we investigated in a separate part of this thesis.

12.1.1 The model-model scenario

For the model-model scenario, we assume that both the specification and
the implementation of an open system are given as formal models. Then,
we can verify responsiveness by checking for conformance between the two
formal models.

In Chap. 4, we analyzed conformance and compositional conformance
in detail. We provided open nets with the stopdead-semantics and showed
that set-wise inclusion of the stopdead-semantics characterizes conformance.
In addition, we detailed that compositional conformance cannot be charac-
terized with the stopdead-semantics or, in general, a denotational semantics

249

250 thesis conclusions and outlook

weaker than standard failures semantics. Therefore, we provided open nets
with the F+

fin-semantics (i.e., an extension of standard failure semantics) and

showed that refinement on the F+
fin-semantics characterizes compositional

conformance. Based on the characterizations of conformance and composi-
tional conformance, we showed that both relations are undecidable.

In Chap. 5, we investigated the b-conformance relation. We provided open
nets with a trace-based semantics—the b-coverable stopdead-semantics—and
showed that set-wise inclusion of the b-coverable stopdead-semantics charac-
terizes b-conformance. Giving an answer to an open question, we showed
that b-conformance is strictly larger than compositional b-conformance (i.e.,
b-conformance is a preorder but not a precongruence).

In contrast to conformance, b-conformance is decidable. Thus, we elabo-
rated a decision procedure to decide whether an open net Impl b-conforms
to an open net Spec based on two LTSs CSDb(Impl) and CSDb(Spec). For
a given open net, we additionally developed a finite characterization of all
b-conforming open nets based on the notion of a maximal b-partner; this
finite characterization serves as an alternative decision procedure for b-con-
formance.

In Chap. 6, we investigated compositional b-conformance—that is, the
coarsest precongruence that is contained in the b-conformance relation. We
provided open nets with a failure-based semantics (the b-bounded F+

fin-se-

mantics) and showed that refinement on the b-bounded F+
fin-semantics char-

acterizes compositional b-conformance. Based on our characterization, we
proved compositional b-conformance to be decidable by reducing it to de-
ciding should testing. Thereby, the decision procedure presented in Chap. 6

does not depend on open nets but is independent from the concrete model.

12.1.2 The log-model scenario

For the log-model scenario, we assume the specification of an open system
to be given as a formal model, but no formal model of the implementation
is available. Instead, we assume that observed behavior of the running but
unavailable implementation is given in the form of an event log.

In Chap. 8, we presented a testing approach for b-conformance. Test-
ing for b-conformance can show that the implementation does not b-con-
form to the specification if the event log contains some erroneous behav-
ior. To this end, we elaborated a necessary condition for b-conformance
of the implementation Impl to the specification Spec based on the open net
mpb(maxb(Spec)) of the specification Spec: If the event log cannot be replayed
on the environment of mpb(maxb(Spec)), then Impl does not b-conform to
Spec. We showed the existence of the open net mpb(maxb(Spec)) and demon-
strated that it can be automatically constructed.

In Chap. 9, we presented a technique to discover a system model of an
unknown implementation from a given system model Spec and observed
behavior of that implementation interacting with its environment. Our tech-
nique produces an open net Impl that b-conforms to Spec and, in addition,
balances four conflicting quality dimensions: fitness, simplicity, precision,
and generalization. As an additional improvement, we proposed an abstrac-
tion technique to reduce the infinite search space to a finite one. We can also
apply our approach to discover a b-partner C of an open net N such that C
has, among the set of all b-partners of N, high quality with respect to N and
a given event log.

12.1 summary of contributions 251

12.1.3 Tool support

We proposed several algorithms in this thesis: For the model-model sce-
nario, we defined verification algorithms to decide b-conformance. For the
log-model scenario, we defined a testing algorithm and a discovery algo-
rithm. All algorithms of this thesis have been prototypically implemented
in software tools. These tools follow a “one tool - one purpose” policy,
which has been proven helpful in implementing a theory of correctness for
open systems [155]. In this thesis, we used the following tools:

chloe is a tool to represent the semantics of an open net N. It represents
the b-bounded stopdead-semantics and the b-coverable stopdead-seman-
tics of N by computing the LTSs BSDb(N) and CSDb(N), respectively
(see Chap. 5). As a side-effect of computing CSDb(N), Chloe can out-
put the LTS MPb(N) with or without Boolean annotation, the most-
permissive b-partner mpb(N), and the maximal b-partner maxb(N) of
N; these three artifacts serve as a basis for conformance testing (see
Chap. 8) and system discovery (see Chap. 9). We use version 2.0 [115],
which is licensed under the GNU Affero General Public License.

delain is a tool to decide whether an open net Impl b-conforms to an open
net Spec. To this end, Delain checks for set-wise language inclusion
of their respective b-coverable stopdead-semantics using the previously
computed LTS CSDb(Impl) and CSDb(Spec) (see Chap. 5). We use ver-
sion 0.3 [78], which is licensed under the GNU Affero General Public
License.

locretia is a tool to randomly create an artificial event log Log from an
open net N, using either the viewpoint of N or the viewpoint of N’s
environment (see Chap. 8). We used artificial event logs for evaluating
our approaches for conformance testing (see Chap. 8) and system dis-
covery (see Chap. 9). As a side-effect, Locretia can output the labeled
nets env(N) and inner(N) for any open net N. We use version 1.1 [116],
which is licensed under the GNU Affero General Public License.

service discovery is a tool for open system discovery: Given an open
net Spec and an event log Log with observed behavior of an unknown
implementation of Spec, we can discover an open net Impl that b-con-
forms to Spec and, in addition, has high or even highest quality with
respect to Log and Spec (see Chap. 9). Service Discovery [188] is a
ProM plug-in licensed under the GNU Public License.

csvexport is an event listener for Apache ODE [233]. CSVExport out-
puts sent or received messages from the viewpoint of a deployed WS-
BPEL process together with the identifier of the corresponding pro-
cess instance and a timestamp into comma-separated values. Comma-
separated values in turn can be imported as event logs into ProM [212].
CSVExport [189] is licensed under the Apache License version 2.

eclipse bpel designer adds comprehensive support for the definition,
authoring, editing, deploying, testing and debugging of WS-BPEL pro-
cesses to the well-known integrated development environment (IDE)
Eclipse [236]. We use version 1.0.3 [235], which is licensed under the
Eclipse Public License.

252 thesis conclusions and outlook

bpel2owfn is a tool to translate WS-BPEL processes to open nets [149].
We use version 2.4, which is licensed under the GNU Affero General
Public License.

apache ode executes WS-BPEL processes by communicating with other
(web) services, manipulating data, and handling exceptions. We use
Apache ODE version 1.3.6 [233] on an Apache Tomcat server version
8.0.3 [234]; both are licensed under the Apache License version 2.

soapui is a web service testing application for service-oriented architec-
tures. Its functionality covers web service inspection, invoking, devel-
opment, simulation, mocking, functional testing, and load and compli-
ance testing. We use version 4.6.4 [225], which is licensed under the
GNU Lesser General Public License.

prom is an extensible plugin-based framework that supports a wide variety
of process mining techniques. Replaying an event log on a labeled net
can be done with the plug-in “PNetReplayer” that implements the A∗-
algorithm [15]. We use version 6.3 [212], which is licensed under the
GNU Public License.

The first five tools (Chloe, Delain, Locretia, Service Discovery, and CSVEx-
port) were originally developed to conduct the experiments presented in this
thesis. These experiments proved the basic applicability of the results of this
thesis (see Sect. 5.4, Sect. 8.4, Sect. 9.4, and Chap. 11) using open nets and
event logs of industrial size on a computer with average computing power.
Table 30 relates the used tools and their purpose. Existing tools are mainly
used to derive the inputs to the proposed algorithms (e.g., open nets and
event logs), whereas the originally developed tools primarily implement the
algorithms.

purpose original tools reused tools

derive open nets
BPEL Designer,

BPEL2OWFN

derive event logs
CSVExport Apache ODE,

SoapUI

decide b-conformance (Chap. 5)
Chloe,
Delain

test for b-conformance (Chap. 8)
Chloe, ProM

Locretia

high-quality discovery (Chap. 9)
Chloe, ProM

Service Discovery

Table 30: The tools used in the thesis.

All tools used in this thesis—either developed under the course of this
thesis, or existing tools—are free and open source software. This greatly
eases the usage of the presented approaches. An integration of the devel-
oped tools into industrial modeling tools and acceptance tests are out of
scope of this thesis.

12.2 limitations and open questions 253

12.2 limitations and open questions

In this section, we discuss open research questions of our approach and the
theoretical and practical limitations of the presented results.

12.2.1 Incomplete or unsound specifications

In this thesis, we focused on verifying responsiveness for open systems by
means of conformance checking in two different scenarios: In the model-
model scenario, we assumed that both the specification and the implemen-
tation of an open system are given as formal models, and in the log-model
scenario, we assumed that the specification is given as a formal model and
we have observed behavior of the unknown implementation in form of an
event log. Thus, in both scenarios, we are given a formal specification. The
inherent assumption of conformance checking is that this formal specifica-
tion is valid with respect to the system we want to implement: We assume
that the specification represents exactly the intended system design, and we
then verify that the implementation is an intended system design by check-
ing whether the implementation conforms to the specification.

However, the assumption of a valid specification may not hold for com-
plex specifications. Like other engineering processes, constructing a formal
specification is a difficult and error-prone task [139]. Errors in the formal
specification Spec can lead to two flaws: (1) A specification may be incomplete;
that is, it allows for implementations Impl that do not represent the intended
system design. (2) A specification may be unsound; that is, it disallows im-
plementations Impl that actually do represent intended system design. As
conformance checking inherently relies on the validity of the specification,
we cannot decide whether Impl is an actual intended design or not by veri-
fying that Impl conforms to Spec. However, this is not a specific limitation of
conformance checking, but a general limitation of formal methods [110, 241].
Somewhere in system development, the link to the informal reality (i.e., the
intended system) has to be made, and the validity of this link (that is, the
formal specification represents the intended system design) can only be as-
sumed, not proved. The challenges of incomplete and unsound specifica-
tions have been already addressed before in various ways and there exists a
rich body of literature, e.g., [133, 261, 209, 66, 108, 65, 139].

A recent approach to circumvent this problem is the notion of quality of
an implementation to its specification [19]: Here, the traditional Boolean ver-
ification problem (e.g., Impl either conforms to Spec, or not) is substituted by
a multi-valued problem by introducing a quantitative aspect to verification
(e.g., to which extend Impl conforms to Spec).

12.2.2 Measuring quality is subjective

Given a specification Spec and an event log Log, our discovery approach in
Chap. 9 computes an open net Impl that b-conforms to Spec and has high
quality with respect to Log and Spec. The quality of Impl with respect to
Log and Spec is the weighted average over the four quality dimensions fit-
ness, simplicity, precision, and generalization. For measuring simplicity, we
compare the size of inner(Impl) with the size of the smallest subsystem G of
MPb(maxb(Spec)) that weakly simulates RG(inner(Impl)). However, this sim-
plicity metric is not precise enough: There exist cases in which inner(Impl) is
even smaller than G due to “unrolled loops” in MPb(maxb(Spec)) (see also

254 thesis conclusions and outlook

Sect. 9.2). Then, Impl is not distinguished in terms of simplicity from an
open net Impl′ that b-conforms to Spec and whose inner net’s size is equal
to G; both Impl and Impl′ have simplicity 1.

One idea to address this limitation is to change the simplicity metric
such that the size of inner(Impl) is compared with the smallest subsys-
tem G of MPb(maxb(Spec)) that weakly simulates RG(inner(Impl)) and is
reduced modulo b-conformance. That way, we could ensure that inner(Impl)
(and, therefore, Impl) cannot be smaller than the respective subsystem of
MPb(maxb(Spec)). However, it is an open question how to do this. Another
idea is to consider concurrency in the simplicity metric. To this end, we have
to transform the LTS G into a Petri net and somehow compare it to Impl.
However, transforming G into a Petri net may come at the price of drasti-
cally increasing runtimes, even when applying state-of-the-art tools [58].

12.2.3 Abstraction only preserves fitness and simplicity

We showed Chap. 9 that, in general, our genetic discovery algorithm pro-
duces better results (i.e., a higher quality of the discovered open net in less
time) on the finite abstraction of the search space (i.e., using b-subnets of
Spec) than on the complete search space (i.e., using arbitrary open nets that
b-conform to Spec). However, our proposed abstraction technique—the b-
subnets of Spec—only preserves fitness and simplicity; the values of the pre-
cision and the generalization dimensions may be higher for arbitrary open
nets that b-conform to Spec. It is an open question how the abstraction tech-
nique based on b-subnets can be improved such that it preserves all four
quality dimensions, and how a more precise abstraction technique would
influence the quality of the discovered open nets.

An idea to circumvent the problem of excluding open nets with high gen-
eralization and precision from the search space (by restricting the search
space to b-subnets) is to post-process the discovered b-subnet Impl of Spec.
By Def. 195, Impl may not have the highest precision due to a “furled” loop
in its inner net’s reachability graph. The idea is to subsequently (i.e., after
discovering Impl) unroll that loop to increase precision, thereby transform-
ing the b-subnet Impl to an open net Impl′ that is no longer a b-subnet of
Spec but still b-conforms to Spec. This post-processing may increase the pre-
cision of Impl′ while preserving its fitness, simplicity, and generalization; in
other words, the quality of Impl′ may be higher than the quality of Impl with
respect to Spec and the given event log.

12.3 future work

In this section, we sketch directions for possible extensions of the work pre-
sented.

12.3.1 Refined conformance relations

In this thesis, we motivated and fixed responsiveness as a fundamental be-
havioral correctness criterion for interacting open systems. Once correctness
with respect to responsiveness is established for an implementation, one
can easily think of additional criteria that should hold: An example is Mi-
crosoft’s asynchronous event driven programming language P [76], which—
in addition to responsiveness—requires that no message in any message chan-
nel is ignored forever. However, this additional criterion induces a confor-

12.3 future work 255

mance relation that is different from the ones considered in this thesis. An-
other issue is the minimal requirement weak termination (e.g., [181, 162, 44]):
Reaching a final state should always be possible. This criterion is very close
to the idea of should testing, but it is not clear how to characterize the re-
spective conformance relation (which is a precongruence itself). In contrast,
we characterized precongruences related to responsiveness—that is, com-
positional conformance and compositional b-conformance—with semantical
ideas that also worked for should testing. Another idea is to extend respon-
siveness to also consider communication over ports (e.g., as for web service
interfaces defined in WSDL [64]) in the sense that, for every port P, it should
always be possible to communicate over P.

In a more general view, we imagine arbitrary correctness criteria that are
described as temporal formulae, e.g., in CTL* [210], and which should hold
in the composition of two open systems. It is an interesting research ques-
tion whether the approaches for conformance checking in this thesis can be
generalized to deal with behavioral correctness criteria formulated as tem-
poral formulae.

12.3.2 Improved algorithms

In Chap. 5, we showed how to decide whether an open net Impl b-conforms
to an open net Spec based on the LTSs CSDb(Impl) and CSDb(Spec), or with
help of the maximal b-partner maxb(Spec) of Spec. Although we showed that
computing CSDb is feasible for open nets of industrial size (see Sect. 5.4), the
construction algorithm, in general, suffers from the state-space explosion
problem [243]. There exist several effective state-space reduction techniques
for verification [243]. It is an interesting research question how these tech-
niques can be employed to speed up the construction of CSDb or maxb(Spec).

12.3.3 Compositionality in the log-model scenario

In Chap. 8, we presented a passive testing approach for b-conformance:
Given a specification Spec and an event log Log that derives from an imple-
mentation Impl, we can construct an open net mpb(maxb(Spec)) and showed
that if Log cannot be replayed on mpb(maxb(Spec)), then Impl does not b-
conform to Spec. In Chap. 9, we presented a system discovery approach
for b-conformance: Given a specification Spec and an event log Log, who
showed how to compute an open net Impl that b-conforms to Spec and has
high or even highest quality with respect to Log and Spec. Thereby, the pre-
sented implementation depends on several inputs, among others the LTS
MPb(maxb(Spec)) that we can compute from Spec. In other words, both ap-
proaches in Chap. 8 and Chap. 9 rely on the maximal b-partner maxb(Spec)
of Spec; this is because maxb(Spec) finitely characterizes all b-conforming
open nets of Spec (see Chap. 5). Therefore, both approaches in Chap. 8 and
Chap. 9 are currently limited to b-conformance and cannot be applied to
compositional b-conformance: It is an open and interesting research ques-
tion whether there exists a “maximal” b-partner of Spec that finitely char-
acterizes all open nets Impl that compositionally b-conform to Spec. Such a
b-partner may also serve as an alternative to decide compositional b-confor-
mance, just like the maximal b-partner maxb serves as an alternative decision
procedure for b-conformance (see Sect. 5.3).

256 thesis conclusions and outlook

12.3.4 Refined discovery

In Chap. 9, we steer the genetic discovery algorithm by user-given weights to
the four quality dimensions fitness, simplicity, precision, and generalization.
These four quality dimensions compete with each other and their interplay
is of a complex nature, as shown in [53]. Consequently, it is an interesting
research question to study the impact of different weights of the quality
dimensions on the quality of the discovered b-conforming open net.

Another problem is that there are certain disadvantages to measuring
the quality of the discovered b-conforming open net Impl by assigning user
weights to the quality dimensions and aggregating them into a single quality
measure: For example, determining the weights upfront is difficult if struc-
tural changes on Impl have unknown or too complex effects on the value of
a single quality dimension. Another disadvantage is that by returning only
Impl, the user is not provided with any insights in the trade-offs between
the quality dimensions. One idea to overcome these problems is to return
a Pareto front of n discovered b-conforming open nets {Impl1, . . . , Impln}
instead of a single open net Impl: A Pareto front is a set of mutually non-
dominating open nets, whereas an open net Impli dominates an open net
Implj (for i, j ∈ N) if, for all quality dimensions, the quality of Impli is equal
to or higher than the quality of Implj, and for one quality dimension, the
quality of Impli is strictly higher than the quality of Implj [245]. Recently,
this idea was successfully employed to a discovery algorithm in the area of
process mining [54].

12.3.5 Introducing additional aspects

In this thesis, we entirely focused on the communication protocol of an
open system and abstracted from other aspects such as the location of the
open system, the underlying middleware, instantiation of the open system
and the correlation of messages, the content of messages, or nonfunctional
properties (e.g., time). Especially the abstract concept of time is crucial
for many real-world systems; hence, there exist numerous approaches to
incorporate time for example in workflow systems [35], web services [84],
or any kind of protocol [211]. These aspects are not considered during
conformance checking, and their integration into our conformance checking
approach would broaden the applicability of our results.

B I B L I O G R A P H Y

[1] van der Aalst, W.M.P.: The Application of Petri Nets to Workflow
Management. Journal of circuits, systems, and computers 8(01), 21–66

(1998) (Cited on pages 37, 166, and 224.)

[2] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer (2011) (Cited on
pages 10, 14, 174, 195, 224, 225, and 246.)

[3] van der Aalst, W.M.P.: Service Mining: Using Process Mining to Dis-
cover, Check, and Improve Service Behavior. IEEE Transactions on
Services Computing (99), 1 (2012). doi: 10.1109/TSC.2012.25 (Cited
on page 226.)

[4] van der Aalst, W.M.P.: Configurable Services for Local Governments
(CoSeLoG), project description available at http://www.win.tue.nl/

coselog/ (2013). Last accessed June 16, 2014 (Cited on page 187.)

[5] van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying
History on Process Models for Conformance Checking and Perfor-
mance Analysis. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 2(2), 182–192 (2012). doi: 10.1002/widm.1045

(Cited on pages 174, 176, 183, 195, 196, 201, 202, and 224.)

[6] van der Aalst, W.M.P., Adriansyah, A., de Medeiros, A.K.A., Arcieri,
F., Baier, T., Blickle, T., Bose, J.C., Brand, P., Brandtjen, R., Buijs, J.,
Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costan-
tini, N., Curbera, F., Damiani, E., de Leoni, M., Delias, P., van Don-
gen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D., Gaaloul,
W., Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., Hofst-
ede, A., Hoogland, J., Ingvaldsen, J., Kato, K., Kuhn, R., Kumar, A.,
Rosa, M., Maggi, F., Malerba, D., Mans, R., Manuel, A., McCreesh, M.,
Mello, P., Mendling, J., Montali, M., Motahari-Nezhad, H., Muehlen,
M., Munoz-Gama, J., Pontieri, L., Ribeiro, J., Rozinat, A., Seguel Pérez,
H., Seguel Pérez, R., Sepúlveda, M., Sinur, J., Soffer, P., Song, M., Sper-
duti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner,
C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R.,
Wang, J., Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard,
M., Wynn, M.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) Lecture Notes in Business Information Processing 99,
pp. 169–194. Springer Berlin Heidelberg (2012) (Cited on pages 183,
224, and 226.)

[7] van der Aalst, W.M.P., Basten, T.: Inheritance of Workflows: An Ap-
proach to Tackling Problems Related to Change. Theoretical Com-
puter Science 270(1-2), 125–203 (2002). doi: 10.1016/S0304-3975(00)
00321-2 (Cited on page 166.)

[8] van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L.,
Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Is-
sues and Approaches. Data & Knowledge Engineering 47(2), 237–267

(2003) (Cited on pages 10 and 171.)

257

http://www.win.tue.nl/coselog/
http://www.win.tue.nl/coselog/

258 bibliography

[9] van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek,
E.: Conformance Checking of Service Behavior. ACM Transactions on
Internet Technology 8(3), 1–30 (2008). doi: 10.1145/1361186.1361189

(Cited on pages 10, 198, 224, and 225.)

[10] van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.:
From Public Views to Private Views – Correctness-by-Design for Ser-
vices. In: Dumas, M., Heckel, R. (eds.) Lecture Notes in Computer
Science 4937, pp. 139–153. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2008). doi: 10.1007/978-3-540-79230-7_10 (Cited on page 164.)

[11] van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf,
K.: Multiparty Contracts: Agreeing and Implementing Interorgani-
zational Processes. The Computer Journal 53(1), 90–106 (2009). doi:
10.1093/comjnl/bxn064 (Cited on pages 4, 138, 162, 164, 165, and 166.)

[12] van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining and Se-
curity: Detecting Anomalous Process Executions and Checking Pro-
cess Conformance. Electronic Notes in Theoretical Computer Science
121, 3–21 (2005). doi: 10.1016/j.entcs.2004.10.013 (Cited on pages 10

and 224.)

[13] van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on
Knowledge and Data Engineering 16(9), 1128–1142 (2004). doi: 10.
1109/TKDE.2004.47 (Cited on page 225.)

[14] Acciai, L., Boreale, M.: Responsiveness in Process Calculi. Theoretical
Computer Science 409(1), 59–93 (2008). doi: 10.1016/j.tcs.2008.08.017

(Cited on page 52.)

[15] Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Confor-
mance Checking Using Cost-Based Fitness Analysis. In: EDOC
’11: Proceedings of the 2011 IEEE 15th International Enterprise Dis-
tributed Object Computing Conference. IEEE Computer Society (2011)
(Cited on pages 10, 174, 176, 183, 187, 224, 244, and 252.)

[16] Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F.,
van der Aalst, W.M.P.: Alignment Based Precision Checking. In: Rosa,
M., Soffer, P. (eds.) Lecture Notes in Business Information Process-
ing 132, pp. 137–149. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013). doi: 10.1007/978-3-642-36285-9_15 (Cited on pages 195, 199,
and 224.)

[17] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless
Sensor Networks: A Survey. Computer networks 38(4), 393–422 (2002)
(Cited on page 5.)

[18] de Alfaro, L., Henzinger, T.A.: Interface Automata. ACM SIGSOFT
Software Engineering Notes 26(5), 109–120 (2001). doi: 10.1145/
503209.503226 (Cited on pages 37, 107, and 164.)

[19] Almagor, S., Boker, U., Kupferman, O.: Formalizing and Reasoning
about Quality. In: ICALP’13: Proceedings of the 40th international
conference on Automata, Languages, and Programming. Springer-
Verlag (2013) (Cited on page 253.)

bibliography 259

[20] Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence
Charts. Software Engineering, IEEE Transactions on 29(7), 623–633

(2003). doi: 10.1109/TSE.2003.1214326 (Cited on page 37.)

[21] Apple Inc.: MacBook Air brochure, available at http://www.apple.

com/macbook-air/specs.html (2013). Last accessed June 16, 2014

(Cited on pages 136, 185, 214, and 237.)

[22] Arbab, F.: Computing and Interaction. In: Goldin, D., Smolka, S.A.,
Wegner, P. (eds.) Interactive Computation, pp. 9–23. Springer Berlin
Heidelberg (2006). doi: 10.1007/3-540-34874-3_2 (Cited on page 5.)

[23] Asbagh, M.J., Abolhassani, H.: Web Service Usage Mining: Mining
for Executable Sequences 7, 266–271 (2007) (Cited on page 226.)

[24] Back, R.J.R., Wright, J.: Refinement Calculus, Part I: Sequential Non-
deterministic Programs. In: Bakker, J.W., Roever, W.P., Rozenberg,
G. (eds.) Lecture Notes in Computer Science 430, pp. 42–66. Springer
Berlin Heidelberg (1990) (Cited on pages 5 and 162.)

[25] Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W.,
Rozenberg, G. (eds.) Lecture Notes in Computer Science 1491, pp.
529–586. Springer Berlin Heidelberg, Berlin, Heidelberg (1998). doi:
10.1007/3-540-65306-6_22 (Cited on pages 9 and 38.)

[26] Baeten, J., Weijland, W.P.: Process Algebra, Volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press
Cambridge, UK (1990) (Cited on page 36.)

[27] Baeten, J.C.: A Brief History of Process Algebra. Theoretical Computer
Science 335(2), 131–146 (2005) (Cited on page 36.)

[28] Baier, C., Katoen, J.P.: Principles of Model Checking, vol. 26202649.
MIT press Cambridge (2008) (Cited on pages 5, 9, 18, and 38.)

[29] Banavar, G., Chandra, T., Strom, R., Sturman, D.: A Case for Message
Oriented Middleware. In: Jayanti, P. (ed.) Lecture Notes in Computer
Science 1693, pp. 1–17. Springer Berlin Heidelberg, Berlin, Heidelberg
(1999). doi: 10.1007/3-540-48169-9_1 (Cited on page 6.)

[30] Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. The Journal
of Logic and Algebraic Programming 47(2), 47–145 (2001). doi: 10.
1016/S1567-8326(00)00004-7 (Cited on page 166.)

[31] Basu, S., Bultan, T., Ouederni, M.: Synchronizability for Verification
of Asynchronously Communicating Systems. In: Kuncak, V., Ry-
balchenko, A. (eds.) Lecture Notes in Computer Science 7148, pp.
56–71. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi:
10.1007/978-3-642-27940-9_5 (Cited on page 36.)

[32] Basu, S., Casati, F., Daniel, F.: Toward Web Service Dependency
Discovery for SOA Management. In: Services Computing, 2008.
SCC ’08. IEEE International Conference on, pp. 422–429 (2008). doi:
10.1109/SCC.2008.45 (Cited on page 226.)

[33] Berardi, D., Calvanese, D., Giacomo, G., Lenzerini, M., Mecella, M.:
Automatic Composition of E-services That Export Their Behavior. In:

http://www.apple.com/macbook-air/specs.html
http://www.apple.com/macbook-air/specs.html

260 bibliography

Orlowska, M., Weerawarana, S., Papazoglou, M., Yang, J. (eds.) Lec-
ture Notes in Computer Science 2910, pp. 43–58. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2003). doi: 10.1007/978-3-540-24593-3_4

(Cited on page 37.)

[34] Bergstra, J.A., Klop, J.W., Tucker, J.V.: Process Algebra with Asyn-
chronous Communication Mechanisms. Seminar on Concurrency pp.
76–95 (1985) (Cited on page 36.)

[35] Bettini, C., Wang, X.S., Jajodia, S.: Temporal Reasoning in Workflow
Systems. Distributed and Parallel Databases 11(3), 269–306 (2002)
(Cited on page 256.)

[36] Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation Can’t Be Traced. Jour-
nal of the ACM 42(1), 232–268 (1995). doi: 10.1145/200836.200876

(Cited on page 161.)

[37] Bochmann, G., Sunshine, C.: Formal Methods in Communication Pro-
tocol Design. IEEE Transactions on Communications 28(4), 624–631

(1980). doi: 10.1109/TCOM.1980.1094685 (Cited on pages 4, 6, 36,
and 162.)

[38] Boender, C.G.E., Kan, A.H.G.R.: A Bayesian Analysis of the Number
of Cells of a Multinomial Distribution. Journal of the Royal Statistical
Society. Series D (The Statistician) 32(1/2), 240–248 (1983) (Cited on
page 201.)

[39] de Boer, F.S., Klop, J.W., Palamidessi, C.: Asynchronous Communica-
tion in Process Algebra. In: Logic in Computer Science, 1992. LICS
’92., Proceedings of the Seventh Annual IEEE Symposium on, pp. 137–
147 (1992). doi: 10.1109/LICS.1992.185528 (Cited on page 36.)

[40] Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congru-
ence for Web Services. In: Arbab, F., Sirjani, M. (eds.) Lecture Notes in
Computer Science 4767, pp. 240–256–256. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007). doi: 10.1007/978-3-540-75698-9_16 (Cited
on page 166.)

[41] Boudol, G.: Asynchrony and the Pi-calculus. Tech. Rep. RR-1702,
MEIJE - INRIA Sophia Antipolis (1992) (Cited on page 37.)

[42] Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines.
Journal of the ACM 30(2), 323–342 (1983). doi: 10.1145/322374.322380

(Cited on page 37.)

[43] Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Com-
position. In: Arbab, F., Sirjani, M. (eds.) Lecture Notes in Computer
Science 4767, pp. 207–222. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2007). doi: 10.1007/978-3-540-75698-9_14 (Cited on pages 92

and 163.)

[44] Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for
Multi-party Service Composition. Fundamenta Informaticae 89(4),
451–478 (2008) (Cited on pages 4, 49, 162, 163, 165, and 255.)

[45] Bravetti, M., Zavattaro, G.: Contract-Based Discovery and Compo-
sition of Web Services. In: Bernardo, M., Padovani, L., Zavat-
taro, G. (eds.) Lecture Notes in Computer Science 5569, pp. 261–
295. Springer Berlin Heidelberg, Berlin, Heidelberg (2009). doi:
10.1007/978-3-642-01918-0_7 (Cited on page 163.)

bibliography 261

[46] Bravetti, M., Zavattaro, G.: Contract Compliance and Choreography
Conformance in the Presence of Message Queues. In: Web Ser-
vices and Formal Methods, pp. 37–54. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009). doi: 10.1007/978-3-642-01364-5_3 (Cited
on pages 37, 163, and 167.)

[47] Brinksma, E.: A Theory for the Derivation of Tests. University of
Twente, Department of Computer Science (1988) (Cited on page 163.)

[48] Brinksma, E., Rensink, A., Vogler, W.: Fair Testing. In: Lee, I.,
Smolka, S. (eds.) Lecture Notes in Computer Science 962, pp. 313–
327. Springer Berlin Heidelberg, Berlin, Heidelberg (1995). doi:
10.1007/3-540-60218-6_23 (Cited on pages 69, 161, and 167.)

[49] Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated
Bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M. (eds.) Lecture
Notes in Computer Science, pp. 187–195. Springer Berlin Heidelberg
(2001) (Cited on pages 18, 172, and 225.)

[50] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communi-
cating Sequential Processes. Journal of the ACM 31(3), 560–599 (1984).
doi: 10.1145/828.833 (Cited on pages 64, 65, and 166.)

[51] Broy, M.: Compositional Refinement of Interactive Systems. Journal
of the ACM 44(6), 850–891 (1997) (Cited on pages 7 and 12.)

[52] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A Genetic
Algorithm for Discovering Process Trees. Evolutionary Computation
(CEC), 2012 IEEE Congress on pp. 1–8 (2012). doi: 10.1109/CEC.2012.
6256458 (Cited on pages 209, 225, and 226.)

[53] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the
Role of Fitness, Precision, Generalization and Simplicity in Process
Discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma,
S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S.,
Cruz, I. (eds.) Lecture Notes in Computer Science 7565, pp. 305–
322. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi:
10.1007/978-3-642-33606-5_19 (Cited on pages 186, 187, 209, 214, 226,
and 256.)

[54] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Discovering
and Navigating a Collection of Process Models using Multiple Quality
Dimensions. to appear in Workshop proceedings of BPM 2013 (2013)
(Cited on page 256.)

[55] Bultan, T.: Analyzing Interactions of Asynchronously Communicat-
ing Software Components. In: Beyer, D., Boreale, M. (eds.) Lecture
Notes in Computer Science 7892, pp. 1–4. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013). doi: 10.1007/978-3-642-38592-6_1 (Cited
on page 6.)

[56] Bultan, T., Fu, X., Hull, R., Su, J.: Conversation Specification: A
new Approach to Design and Analysis of E-service Composition.
In: WWW ’03: Proceedings of the 12th international conference on
World Wide Web. ACM (2003). doi: 10.1145/775152.775210 (Cited on
page 36.)

262 bibliography

[57] Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi,
F.: Automatic Service Composition and Synthesis: The Roman Model.
IEEE Data Eng. Bull. 31(3), 18–22 (2008) (Cited on page 37.)

[58] Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A Tool for the
Synthesis and Mining of Petri Nets. In: 2009 Ninth International Con-
ference on Application of Concurrency to System Design (ACSD), pp.
181–185. IEEE (2009). doi: 10.1109/ACSD.2009.6 (Cited on page 254.)

[59] Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for
Web Services. ACM Transactions on Programming Languages and
Systems 31(5), 1–61 (2009). doi: 10.1145/1538917.1538920 (Cited on
pages 163 and 164.)

[60] Charette, R.N.: This Car runs on Code. IEEE Spectrum 46(3), 3 (2009)
(Cited on pages 4 and 5.)

[61] Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Composi-
tional Specification Theory for Component Behaviours. In: Seidl,
H. (ed.) Lecture Notes in Computer Science 7211, pp. 148–168.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012). doi: 10.1007/
978-3-642-28869-2_8 (Cited on page 164.)

[62] Chilton, C., Jonsson, B., Kwiatkowska, M.: An Algebraic Theory of In-
terface Automata. Tech. Rep. CS-RR-13-02 (2013) (Cited on page 164.)

[63] Chinosi, M., Trombetta, A.: BPMN: An Introduction to the Standard.
Computer Standards & Interfaces 34(1), 124–134 (2012). doi: 10.1016/
j.csi.2011.06.002 (Cited on pages 38, 229, and 230.)

[64] Christensen, E., Curbera, F., Meredith, G.: Web Services Description
Language (WSDL) 1.1 (2001) (Cited on pages 234 and 255.)

[65] Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic Infor-
mation for Realizability. In: Logozzo, F., Peled, D., Zuck, L. (eds.) Lec-
ture Notes in Computer Science 4905, pp. 52–67. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008). doi: 10.1007/978-3-540-78163-9_9

(Cited on page 253.)

[66] Claessen, K.: A Coverage Analysis for Safety Property Lists. Formal
Methods in Computer Aided Design, 2007. FMCAD ’07 pp. 139–145

(2007). doi: 10.1109/FAMCAD.2007.32 (Cited on page 253.)

[67] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press
Cambridge (1999) (Cited on pages 5, 9, and 190.)

[68] Cleaveland, R., Sokolsky, O.: Equivalence and Preorder Checking for
Finite-State Systems. Handbook of Process Algebra pp. 391–424 (2001)
(Cited on pages 4 and 162.)

[69] Comuzzi, M., Vonk, J., Grefen, P.: Measures and Mechanisms for Pro-
cess Monitoring in Evolving Business Networks. Data & Knowledge
Engineering 71(1), 1–28 (2012). doi: 10.1016/j.datak.2011.07.004 (Cited
on page 225.)

[70] Cook, J.E., He, C., Ma, C.: Measuring Behavioral Correspondence to
a Timed Concurrent Model. In: Software Maintenance, 2001. Pro-
ceedings. IEEE International Conference on, pp. 332–341 (2001). doi:
10.1109/ICSM.2001.972746 (Cited on page 224.)

bibliography 263

[71] Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively
Measuring the Correspondence of a Process to a Model. ACM Transac-
tions on Software Engineering and Methodology 8(2), 147–176 (1999).
doi: 10.1145/304399.304401 (Cited on page 224.)

[72] De Nicola, R., Hennessy, M.C.B.: Testing Equivalences for Processes.
Theoretical Computer Science 34(1-2), 83–133 (1984). doi: 10.1016/
0304-3975(84)90113-0 (Cited on pages 4, 161, 162, and 163.)

[73] Debian: SLOCCount Web for Debian Lenny, available at http://

debian-counting.libresoft.es/lenny/index.php?menu=Statistics

(2009). Last accessed June 16, 2014 (Cited on page 4.)

[74] Decker, G., Barros, A., Kraft, F., Lohmann, N.: Non-desynchronizable
Service Choreographies. In: Bouguettaya, A., Krueger, I., Mar-
garia, T. (eds.) Lecture Notes in Computer Science 5364, pp. 331–
346. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). doi:
10.1007/978-3-540-89652-4_26 (Cited on page 36.)

[75] DeRemer, F., Kron, H.H.: Programming-in-the-large versus
Programming-in-the-small. Software Engineering, IEEE Transactions
on (2), 80–86 (1976) (Cited on pages 5 and 233.)

[76] Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey,
D.: P: Safe Asynchronous Event-Driven Programming. In: PLDI
’13: Proceedings of the 34th ACM SIGPLAN conference on Pro-
gramming language design and implementation. ACM (2013). doi:
10.1145/2491956.2462184 (Cited on pages 8, 52, and 254.)

[77] Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Infor-
matica 33(4), 297–315 (1996) (Cited on pages 9 and 38.)

[78] Dewender, J., Müller, R.: Deciding Language Inclusions (Delain) tool,
available at http://service-technology.org/delain (2014). Last ac-
cessed June 16, 2014 (Cited on pages 12, 14, 136, 139, 241, and 251.)

[79] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of
Business Process Models in BPMN. Information and Software tech-
nology 50(12), 1281–1294 (2008) (Cited on pages 38 and 232.)

[80] Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communications of the ACM 18(8), 453–457

(1975) (Cited on page 162.)

[81] Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. Ph.D. thesis, MIT press Cambridge
(1989) (Cited on pages 4, 107, 162, 163, and 164.)

[82] Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: A Tool for the Perfor-
mance Evaluation of Generalised Stochastic Petri Nets. SIGMETRICS
Performance Evaluation Review 36(4) (2009). doi: 10.1145/1530873.
1530881 (Cited on page 193.)

[83] Duffy, D.A.: Principles of Automated Theorem Proving. John Wiley &
Sons, Inc. (1991) (Cited on page 5.)

[84] Duske, K., Müller, R.: A Survey on Approaches for Timed Services.
In: Schönberger, A., Kopp, O., Lohmann, N. (eds.) Proceedings of the

http://debian-counting.libresoft.es/lenny/index.php?menu=Statistics
http://debian-counting.libresoft.es/lenny/index.php?menu=Statistics
http://service-technology.org/delain

264 bibliography

4th Central-European Workshop on Services and their Composition
(ZEUS 2012), CEUR Workshop Proceedings, vol. 847, pp. 1–8. CEUR-
WS.org, Bamberg, Germany (2012) (Cited on page 256.)

[85] Duske, K., Müller, R., Prüfer, R., Stöhr, D.: A BPMN Model of
the Charité Stroke Treatment Process. Technical report, Humboldt-
Universität zu Berlin (2014). To be published (Cited on pages 229, 230,
and 231.)

[86] Dustdar, S., Gombotz, R.: Discovering Web Service Workflows using
Web Services Interaction Mining. International Journal of Business
Process Integration and Management 1(4), 256–266 (2006) (Cited on
page 226.)

[87] Dyer, D.W.: Watchmaker Framework for Evolutionary Computation,
available at http://watchmaker.uncommons.org (2013). Last accessed
June 16, 2014 (Cited on page 211.)

[88] Ebert, C., Jones, C.: Embedded Software: Facts, Figures, and Future.
Computer 42(4), 42–52 (2009). doi: 10.1109/MC.2009.118 (Cited on
page 3.)

[89] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing,
vol. 2. Springer Berlin (2010) (Cited on pages 209 and 216.)

[90] Ellson, J., Gansner, E., Koutsofios, L., North, S., Woodhull, G.:
Graphviz— Open Source Graph Drawing Tools. In: Mutzel, P., Jünger,
M., Leipert, S. (eds.) Lecture Notes in Computer Science 2265, pp. 483–
484. Springer Berlin Heidelberg (2002). doi: 10.1007/3-540-45848-4_57

(Cited on page 137.)

[91] Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.:
Graphviz and Dynagraph — Static and Dynamic Graph Drawing
Tools. In: Jünger, M., Mutzel, P. (eds.) Mathematics and Visualization,
pp. 127–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
doi: 10.1007/978-3-642-18638-7_6 (Cited on page 137.)

[92] Esparza, J.: Decidability and Complexity of Petri Net Problems—An
Introduction. Lectures on Petri Nets I: Basic Models pp. 374–428 (1998)
(Cited on page 167.)

[93] Fassbender, K., Walter, S., Liu, Y., Muehlhauser, F., Ragoschke, A.,
Kuehl, S., Mielke, O.: "Mobile Stroke Unit" for Hyperacute Stroke
Treatment. Stroke 34(6), e44–e44 (2003). doi: 10.1161/01.STR.
0000075573.22885.3B (Cited on page 237.)

[94] Fenton, N.E., Neil, M.: Software Metrics: Successes, Failures and New
Directions. Journal of Systems and Software 47(2-3), 149–157 (1999).
doi: 10.1016/S0164-1212(99)00035-7 (Cited on page 4.)

[95] Floyd, R.W.: Algorithm 97: Shortest Path. Communications of the
ACM 5(6), 345 (1962). doi: 10.1145/367766.368168 (Cited on pages 118

and 132.)

[96] Floyd, R.W.: Assigning Meanings to Programs. Mathematical aspects
of computer science 19(19-32), 1 (1967) (Cited on page 162.)

http://watchmaker.uncommons.org

bibliography 265

[97] Fournet, C., Hoare, T., Rajamani, S., Rehof, J.: Stuck-Free Confor-
mance. In: Alur, R., Peled, D. (eds.) Lecture Notes in Computer
Science 3114, pp. 242–254. Springer Berlin Heidelberg (2004) (Cited
on pages 37 and 163.)

[98] Fromm, J.: The Emergence of Complexity. Kassel university press
Kassel (2004) (Cited on page 5.)

[99] Fu, X., Bultan, T., Su, J.: Synchronizability of Conversations among
Web Services. Software Engineering, IEEE Transactions on 31(12),
1042–1055 (2005). doi: 10.1109/TSE.2005.141 (Cited on page 36.)

[100] Gamboni, M., Ravara, A.: Responsive Choice in Mobile Processes.
In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) Lecture Notes
in Computer Science 6084, pp. 135–152. Springer Berlin Heidelberg
(2010) (Cited on page 52.)

[101] Gansner, E., North, S.: The Specification of the DOT Language, avail-
able at http://www.graphviz.org/content/dot-language (2013). Last
accessed June 16, 2014 (Cited on page 137.)

[102] Gershenfeld, N.A.: The Nature of Mathematical Modeling. Cam-
bridge University Press Cambridge, UK (1999) (Cited on page 193.)

[103] Glabbeek, R.J.: The Coarsest Precongruences Respecting Safety and
Liveness Properties. In: Calude, C., Sassone, V. (eds.) IFIP Advances
in Information and Communication Technology, pp. 32–52. Springer
Berlin Heidelberg (2010) (Cited on page 86.)

[104] Glabbeek, R.J.v.: The Linear Time - Branching Time Spectrum. In:
Baeten, J.C.M., Klop, J.W. (eds.) Lecture Notes in Computer Science
458, pp. 278–297. Springer Berlin Heidelberg (1990). doi: 10.1007/
BFb0039066 (Cited on page 161.)

[105] Glabbeek, R.J.v.: The Linear Time-Branching Time Spectrum II pp. 66–
81 (1993) (Cited on page 161.)

[106] Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process
Discovery with Artificial Negative Events. The Journal of Machine
Learning Research 10, 1305–1340 (2009) (Cited on page 224.)

[107] Grimson, J., Grimson, W., Hasselbring, W.: The SI Challenge in Health
Care. Communications of the ACM 43(6), 48–55 (2000) (Cited on
page 5.)

[108] Grosse, D., Kuhne, U., Drechsler, R.: Estimating Functional Cover-
age in Bounded Model Checking. In: Design, Automation & Test in
Europe Conference & Exhibition, 2007. DATE ’07, pp. 1–6. EDA Con-
sortium (2007). doi: 10.1109/DATE.2007.364454 (Cited on page 253.)

[109] Hacke, W.: Neurologie. Springer Medizin Verlag (2010) (Cited on
page 230.)

[110] Hall, A.: Seven Myths of Formal Methods. Software, IEEE 7(5), 11–19

(1990). doi: 10.1109/52.57887 (Cited on page 253.)

[111] Harrer, S., Lenhard, J., Wirtz, G.: BPEL Conformance in Open Source
Engines. In: Service-Oriented Computing and Applications (SOCA),
2012 5th IEEE International Conference on, pp. 1–8 (2012). doi: 10.
1109/SOCA.2012.6449467 (Cited on page 242.)

http://www.graphviz.org/content/dot-language

266 bibliography

[112] Harrer, S., Lenhard, J., Wirtz, G.: Open Source versus Proprietary Soft-
ware in Service-Orientation: The Case of BPEL Engines. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) Lecture Notes in Computer Sci-
ence 8274, pp. 99–113. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013). doi: 10.1007/978-3-642-45005-1_8 (Cited on page 242.)

[113] Hedderich, J., Sachs, L.: Angewandte Statistik: Methodensammlung
mit R. Springer (2012) (Cited on pages 217 and 218.)

[114] van Hee, K.M., Mooij, A.J., Sidorova, N., van der Werf, J.M.E.M.:
Soundness-Preserving Refinements of Service Compositions. In:
Bravetti, M., Bultan, T. (eds.) Lecture Notes in Computer Science
6551, pp. 131–145–145. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011). doi: 10.1007/978-3-642-19589-1_9 (Cited on page 165.)

[115] Heiden, S., Müller, R.: Characterizing Languages of Open Net Envi-
ronments (Chloe) tool, available at http://service-technology.org/
chloe (2013). Last accessed June 16, 2014 (Cited on pages 12, 14, 135,
139, 183, 191, 212, 241, 244, 245, and 251.)

[116] Heiden, S., Müller, R.: Log Creator I Am (Locretia) tool, available
at http://service-technology.org/locretia (2013). Last accessed
June 16, 2014 (Cited on pages 183, 185, 187, 191, 214, and 251.)

[117] Herrero-Perez, D., Martinez-Barbera, H.: Modeling Distributed Trans-
portation Systems Composed of Flexible Automated Guided Vehicles
in Flexible Manufacturing Systems. Industrial Informatics, IEEE Trans-
actions on 6(2), 166–180 (2010). doi: 10.1109/TII.2009.2038691 (Cited
on page 5.)

[118] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Com-
munications of the ACM 12(10), 576–580 (1969). doi: 10.1145/363235.
363259 (Cited on page 162.)

[119] Hoare, C.A.R.: Communicating Sequential Processes. Communica-
tions of the ACM 21(8), 666–677 (1978) (Cited on pages 4, 36, and 162.)

[120] Hoare, C.A.R., Misra, J., Leavens, G.T., Shankar, N.: The Verified
Software Initiative. ACM Comput Surv 41(4), 1–8 (2009). doi:
10.1145/1592434.1592439 (Cited on page 4.)

[121] Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Com-
munication. In: America, P. (ed.) Lecture Notes in Computer Sci-
ence 512, pp. 133–147. Springer Berlin Heidelberg, Berlin/Heidelberg
(1991). doi: 10.1007/BFb0057019 (Cited on page 37.)

[122] Honda, K., Tokoro, M.: On Asynchronous Communication Seman-
tics. In: Tokoro, M., Nierstrasz, O., Wegner, P. (eds.) Lecture Notes in
Computer Science 612, pp. 21–51. Springer Berlin Heidelberg, Berlin,
Heidelberg (1992). doi: 10.1007/3-540-55613-3_2 (Cited on page 37.)

[123] Hopcroft, J.E., Motwani, J.E., Ullman, J.D.: Introduction to Automata
Theory, Languages, and Computation. 3rd edn. Prentice Hall (2006)
(Cited on pages 19, 100, and 151.)

[124] Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services. In: the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium, pp. 1–
14. ACM Press, New York, New York, USA (2003). doi: 10.1145/
773153.773154 (Cited on page 37.)

http://service-technology.org/chloe
http://service-technology.org/chloe
http://service-technology.org/locretia

bibliography 267

[125] IBM Systems and Technology Group: IBM BladeCenter brochure,
available at http://public.dhe.ibm.com/common/ssi/ecm/en/

blb03002usen/BLB03002USEN.PDF (2013). Last accessed June 16, 2014

(Cited on page 136.)

[126] Jančar, P.: Undecidability of Bisimilarity for Petri Nets and some Re-
lated Problems. Theoretical Computer Science 148(2), 281–301 (1995)
(Cited on pages 76, 77, 79, 83, and 167.)

[127] Jobs, S.: Apple WWDC Keynote, available at http://www.engadget.

com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/ (2006).
Last accessed June 16, 2014 (Cited on page 4.)

[128] Johnson, V.E.: Revised Standards for Statistical Evidence. Proceedings
of the National Academy of Sciences 110(48), 19,313–19,317 (2013). doi:
10.1073/pnas.1313476110/-/DCSupplemental (Cited on page 218.)

[129] Jonsson, B.: Compositional Specification and Verification of Dis-
tributed Systems. ACM Transactions on Programming Languages and
Systems (TOPLAS) 16(2), 259–303 (1994). doi: 10.1145/174662.174665

(Cited on page 164.)

[130] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C.,
Bloch, B., Curbera, F., Ford, M., Goland, Y.: Web Services Business
Process Execution Language Version 2.0. OASIS Standard 11, 1–264

(2007) (Cited on pages 8, 38, 136, 184, 224, 229, 232, 233, 234, and 242.)

[131] Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G., Conte, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc.
(1994) (Cited on page 193.)

[132] Kaschner, K.: Conformance Testing for Asynchronously Communi-
cating Services. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.
(eds.) Lecture Notes in Computer Science 7084, pp. 108–124. Springer
Berlin Heidelberg (2011). doi: 10.1007/978-3-642-25535-9_8 (Cited on
page 225.)

[133] Katz, S., Grumberg, O., Geist, D.: ”Have I Written Enough Proper-
ties?” - A Method of Comparison Between Specification and Imple-
mentation. In: Pierre, L., Kropf, T. (eds.) Lecture Notes in Computer
Science 1703, pp. 280–297. Springer Berlin Heidelberg, Berlin, Heidel-
berg (1999). doi: 10.1007/3-540-48153-2_21 (Cited on page 253.)

[134] Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of Communica-
tion Models in Web Service Compositions. In: the 15th international
conference, pp. 267–276. ACM Press, New York, New York, USA
(2006). doi: 10.1145/1135777.1135819 (Cited on pages 6 and 36.)

[135] Kernighan, B.W., Ritchie, D.M., Ejeklint, P.: The C Programming Lan-
guage (1988) (Cited on pages 9 and 38.)

[136] Kindler, E.: A Compositional Partial Order Semantics for Petri Net
Components. In: Azéma, P., Balbo, G. (eds.) Lecture Notes in Com-
puter Science 1248, pp. 235–252. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997). doi: 10.1007/3-540-63139-9_39 (Cited on page 37.)

[137] Kobayashi, N.: A Type System for Lock-Free Processes. Information
and Computation 177(2), 122–159 (2002). doi: 10.1006/inco.2002.3171

(Cited on page 52.)

http://public.dhe.ibm.com/common/ssi/ecm/en/blb03002usen/BLB03002USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/blb03002usen/BLB03002USEN.PDF
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote/

268 bibliography

[138] Kokol, P., Podgorelec, V., Cardoso, A.I., Dion, F.: Assessing the State
of the Software Process Development using the Chaos Theory. ACM
SIGSOFT Software Engineering Notes 25(3), 41–43 (2000) (Cited on
page 4.)

[139] Könighofer, R., Hofferek, G., Bloem, R.: Debugging Formal Specifica-
tions: A Practical Approach using Model-based Diagnosis and Coun-
terstrategies. International Journal on Software Tools for Technology
Transfer 15(5-6), 563–583–583 (2013). doi: 10.1007/s10009-011-0221-y
(Cited on page 253.)

[140] Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C.: Robbins and Co-
tran Pathologic Basis of Disease, Professional Edition: Expert Consult-
Online. Elsevier Health Sciences (2009) (Cited on page 229.)

[141] Laneve, C., Padovani, L.: The Must Preorder Revisited. In: Caires,
L., Vasconcelos, V. (eds.) Lecture Notes in Computer Science 4703, pp.
212–225. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). doi:
10.1007/978-3-540-74407-8_15 (Cited on pages 4, 162, 163, and 166.)

[142] Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) Lecture Notes
in Computer Science 407, pp. 232–246. Springer Berlin Heidelberg,
Berlin, Heidelberg (1990). doi: 10.1007/3-540-52148-8_19 (Cited on
page 164.)

[143] Leduc, G.: A Framework Based on Implementation Relations for Im-
plementing LOTOS Specifications. Computer networks and ISDN sys-
tems 25(1), 23–41 (1992) (Cited on pages 4 and 162.)

[144] Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite
State Machines-A Survey. Proceedings of the IEEE 84(8), 1090–1123

(1996). doi: 10.1109/5.533956 (Cited on page 225.)

[145] Lee, E.A.: Embedded Software. pp. 55–95. Elsevier (2002). doi: 10.
1016/S0065-2458(02)80004-3 (Cited on page 3.)

[146] Lee, K.W., Ko, B.J., Calo, S.: Adaptive Server Selection for Large Scale
Interactive Online Games. Computer networks 49(1), 84–102 (2005).
doi: 10.1016/j.comnet.2005.04.006 (Cited on page 5.)

[147] Lenic, M., Zorman, M., Povalej, P., Kokol, P.: Alternative Measurement
of Software Artifacts. In: Computational Cybernetics, 2004. ICCC
2004. Second IEEE International Conference on, pp. 231–235 (2004).
doi: 10.1109/ICCCYB.2004.1437715 (Cited on page 4.)

[148] Ponce de León, H., Haar, S., Longuet, D.: Conformance Relations
for Labeled Event Structures. In: Brucker, A., Julliand, J. (eds.) Lec-
ture Notes in Computer Science 7305, pp. 83–98. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012). doi: 10.1007/978-3-642-30473-6_8

(Cited on page 225.)

[149] Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL
2.0. In: Dumas, M., Heckel, R. (eds.) Lecture Notes in Computer Sci-
ence 4937, pp. 77–91. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). doi: 10.1007/978-3-540-79230-7_6 (Cited on pages 8, 38, 136,
185, 237, and 252.)

bibliography 269

[150] Lohmann, N.: Communication Models for Services. Proceedings of
the 2nd Central-European Workshop on Services and their Composi-
tion pp. 9–16 (2010) (Cited on pages 6 and 36.)

[151] Lohmann, N.: Correctness of Services and their Composition. Ph.D.
thesis, Technische Universiteit Eindhoven (2010) (Cited on page 38.)

[152] Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Inter-
acting WS-BPEL Processes using Flexible Model Generation. Data &
Knowledge Engineering 64(1), 38–54 (2008). doi: 10.1016/j.datak.2007.
06.006 (Cited on page 164.)

[153] Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-
State Services. In: Kleijn, J., Yakovlev, A. (eds.) Lecture Notes in Com-
puter Science 4546, pp. 321–341. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007). doi: 10.1007/978-3-540-73094-1_20 (Cited on
pages 8, 24, 27, 37, 38, 138, 165, and 211.)

[154] Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations
for Business Processes – A Survey. In: Jensen, K., van der Aalst,
W.M.P. (eds.) Lecture Notes in Computer Science 5460, pp. 46–63.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009). doi: 10.1007/
978-3-642-00899-3_3 (Cited on page 38.)

[155] Lohmann, N., Wolf, K.: How to Implement a Theory of Correctness in
the Area of Business Processes and Services. In: Hull, R., Mendling,
J., Tai, S. (eds.) Lecture Notes in Computer Science 6336, pp. 61–77.
Springer Berlin Heidelberg (2010) (Cited on pages 136 and 251.)

[156] Lohmann, N., Wolf, K.: Compact Representations and Efficient Al-
gorithms for Operating Guidelines. Fundamenta Informaticae 108(1),
43–62 (2011) (Cited on pages 165, 167, and 211.)

[157] Lorenz, R., Mauser, S., Juhas, G.: How to Synthesize Nets from Lan-
guages - A Survey. In: Simulation Conference, 2007 Winter, pp. 637–
647 (2007). doi: 10.1109/WSC.2007.4419657 (Cited on pages 9 and 38.)

[158] Loveland, D.W.: Automated Theorem Proving: A Logical Basis. Fun-
damental Studies in Computer Science (1978) (Cited on page 5.)

[159] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
(Cited on page 37.)

[160] Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Au-
tomata (1988) (Cited on page 164.)

[161] Mahoney, M.S.: The Roots of Software Engineering. CWI Quarterly
3(4), 325–334 (1990) (Cited on page 5.)

[162] Malik, R., Streader, D., Reeves, S.: Conflicts and Fair Testing. Inter-
national Journal of Foundations of Computer Science 17(04), 797–813

(2013). doi: doi:10.1142/S012905410600411X (Cited on pages 49, 92,
139, 165, and 255.)

[163] Martens, A.: Verteilte Geschäftsprozesse. Ph.D. thesis, Humboldt-
Universität zu Berlin (2004) (Cited on pages 37 and 166.)

270 bibliography

[164] Martens, A.: Analyzing Web Service Based Business Processes. In:
Cerioli, M. (ed.) Lecture Notes in Computer Science 3442, pp. 19–33–
33. Springer Berlin Heidelberg, Berlin, Heidelberg (2005). doi: 10.
1007/978-3-540-31984-9_3 (Cited on page 166.)

[165] Massuthe, P.: Operating Guidelines for Services. Ph.D. thesis, Hum-
boldt University of Berlin (2009) (Cited on pages 37 and 38.)

[166] Massuthe, P., Reisig, W., Wolf, K.: An Operating Guideline Approach
to the SOA. Annals of Mathematics, Computing & Teleinformatics pp.
35–43 (2005) (Cited on pages 37, 38, and 49.)

[167] Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I Find a Part-
ner? Undecidability of Partner Existence for Open Nets. Information
Processing Letters 108(6), 374–378 (2008). doi: 10.1016/j.ipl.2008.07.
006 (Cited on pages 37 and 49.)

[168] Mathers, C.D., Boerma, T., Ma Fat, D.: Global and Regional Causes of
Death. British Medical Bulletin 92(1), 7–32 (2009). doi: 10.1093/bmb/
ldp028 (Cited on page 230.)

[169] McIlroy, M.D.: Mass-produced Software Components. Proceedings of
the 1st International Conference on Software Engineering pp. 88–98

(1968) (Cited on page 5.)

[170] Mealy, G.H.: A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal 34(5), 1045–1079 (1955) (Cited on pages 37

and 225.)

[171] de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.:
Genetic Process Mining: An Experimental Evaluation. Data Min-
ing and Knowledge Discovery 14(2), 245–304 (2007). doi: 10.1007/
s10618-006-0061-7 (Cited on pages 209, 225, and 226.)

[172] Menasce, D.: MOM vs. RPC: Communication Models for Distributed
Applications. Internet Computing, IEEE 9(2), 90–93 (2005). doi: 10.
1109/MIC.2005.42 (Cited on pages 6 and 36.)

[173] Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding
the Occurrence of Errors in Process Models Based on Metrics. In:
Meersman, R., Tari, Z. (eds.) Lecture Notes in Computer Science 4803,
pp. 113–130. Springer Berlin Heidelberg (2007) (Cited on page 198.)

[174] Merlin, P.M.: Specification and Validation of Protocols. Communica-
tions, IEEE Transactions on 27(11), 1671–1680 (1979). doi: 10.1109/
TCOM.1979.1094323 (Cited on pages 6 and 36.)

[175] Meyer, B.: Object-Oriented Software Construction. Prentice Hall New
York (1988) (Cited on page 5.)

[176] Microsoft: A History of Windows, available at http://windows.

microsoft.com/en-US/windows/history (2001). Last accessed June 16,
2014 (Cited on page 4.)

[177] Milner, R.: Communication and Concurrency. Prentice Hall (1989)
(Cited on pages 20, 36, 162, and 163.)

[178] Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-
Hall, Inc (1967) (Cited on pages 75, 76, 78, and 167.)

http://windows.microsoft.com/en-US/windows/history
http://windows.microsoft.com/en-US/windows/history

bibliography 271

[179] Mooij, A., Parnjai, J., Stahl, C., Voorhoeve, M.: Constructing Replace-
able Services Using Operating Guidelines and Maximal Controllers.
In: Bravetti, M., Bultan, T. (eds.) Lecture Notes in Computer Science
6551, pp. 116–130–130. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011). doi: 10.1007/978-3-642-19589-1_8 (Cited on pages 138, 139,
140, and 165.)

[180] Mooij, A., Voorhoeve, M.: Proof Techniques for Adapter Generation.
In: Bruni, R., Wolf, K. (eds.) Lecture Notes in Computer Science
5387, pp. 207–223–223. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009). doi: 10.1007/978-3-642-01364-5_13 (Cited on pages 137, 139,
and 165.)

[181] Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating Fair Testing and Accor-
dance for Service Replaceability. The Journal of Logic and Algebraic
Programming 79(3-5), 233–244 (2010). doi: 10.1016/j.jlap.2009.12.001

(Cited on pages 49, 92, 165, and 255.)

[182] Morgan, C.: The Specification Statement. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 10(3), 403–419 (1988)
(Cited on page 162.)

[183] Morris, F.L., Jones, C.B.: An Early Program Proof by Alan Turing.
IEEE Annals of the History of Computing 6(2), 139–143 (1984) (Cited
on page 4.)

[184] Morris, J.M.: A Theoretical Basis for Stepwise Refinement and the
Programming Calculus. Science of Computer programming 9(3), 287–
306 (1987) (Cited on page 162.)

[185] Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: De-
riving Protocol Models from Imperfect Service Conversation Logs.
IEEE Transactions on Knowledge and Data Engineering 20(12), 1683–
1698 (2008) (Cited on page 226.)

[186] Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.:
Event Correlation for Process Discovery from Web Service Interac-
tion Logs. The VLDB Journal 20(3), 417–444 (2010). doi: 10.1007/
s00778-010-0203-9 (Cited on pages 225 and 226.)

[187] Müller, R.: On the Notion of Deadlocks in Open Nets. In: Schwarick,
M., Heiner, M. (eds.) Proceedings of the 17th German Workshop on
Algorithms and Tools for Petri Nets (AWPN 2010), CEUR Workshop
Proceedings, vol. 643, pp. 130–135. CEUR-WS.org, Cottbus, Germany
(2010) (Cited on pages 52 and 166.)

[188] Müller, R.: Service Discovery ProM plugin, available at http://www.

promtools.org/prom6/ (2013). Last accessed June 16, 2014 (Cited on
pages 14, 211, and 251.)

[189] Müller, R.: CSVExport Event Listener for Apache ODE, available at
https://bitbucket.org/richardmueller/csvexport (2014). Last ac-
cessed June 16, 2014 (Cited on pages 242 and 251.)

[190] Müller, R., van der Aalst, W.M.P., Stahl, C.: Conformance Check-
ing of Services Using the Best Matching Private View. In: Beek,
M.H., Lohmann, N. (eds.) Web Services and Formal Methods, Lecture

http://www.promtools.org/prom6/
http://www.promtools.org/prom6/
https://bitbucket.org/richardmueller/csvexport

272 bibliography

Notes in Computer Science, vol. 7843, pp. 49–68. Springer Berlin Heidel-
berg (2013). doi: 10.1007/978-3-642-38230-7_4 (Cited on pages 171

and 178.)

[191] Müller, R., Stahl, C., van der Aalst, W.M.P., Westergaard, M.: Ser-
vice Discovery from Observed Behavior while Guaranteeing Deadlock
Freedom in Collaborations. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) Service-Oriented Computing, Lecture Notes in Computer Sci-
ence, vol. 8274, pp. 358–373. Springer Berlin Heidelberg (2013). doi:
10.1007/978-3-642-45005-1_25 (Cited on page 193.)

[192] Müller, R., Stahl, C., Vogler, W.: Deciding Conformance for Bounded
Responsiveness (2014). Invited to a special issue of Science of Com-
puter Programming, submitted on February 15, 2014 (Cited on
page 85.)

[193] Müller, R., Stahl, C., Vogler, W.: Undecidability of Accordance for
Open Systems with Unbounded Message Queues (2014). Accepted
for publication in Information Processing Letters on April 26, 2014

(Cited on pages 55 and 167.)

[194] Murata, T.: Petri Nets: Properties, Analysis and Applications. In:
Proceedings of the IEEE, pp. 541–580 (1989). doi: 10.1109/5.24143

(Cited on page 37.)

[195] Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.S., Casati, F., Benatallah,
B.: Message Correlation and Web Service Protocol Mining from Inac-
curate Logs. In: Web Services (ICWS), 2010 IEEE International Con-
ference on, pp. 259–266 (2010). doi: 10.1109/ICWS.2010.104 (Cited on
page 226.)

[196] Natarajan, V., Cleaveland, R.: Divergence and Fair Testing. In: Fülöp,
Z., Gécseg, F. (eds.) Lecture Notes in Computer Science 944, pp. 648–
659. Springer Berlin Heidelberg, Berlin, Heidelberg (1995). doi: 10.
1007/3-540-60084-1_112 (Cited on pages 69, 161, and 167.)

[197] National Institute of Standards and Technology: Software Errors
Cost U.S. Economy $ 59.5 Billion Annually, available at http://www.

nist.gov/director/planning/upload/report02-3.pdf (2002). Last
accessed June 16, 2014 (Cited on page 3.)

[198] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer (1999) (Cited on pages 9 and 38.)

[199] Nolte, C.H., Malzahn, U., Kühnle, Y., Ploner, C.J., Müller-Nordhorn, J.,
Möckel, M.: Improvement of Door-to-Imaging Time in Acute Stroke
Patients by Implementation of an All-Points Alarm. Journal of Stroke
and Cerebrovascular Diseases 22(2), 149–153 (2013). doi: 10.1016/j.
jstrokecerebrovasdis.2011.07.004 (Cited on pages 229 and 230.)

[200] Padovani, L.: From Lock Freedom to Progress using Session Types.
PLACES 2013 p. 2 (2013) (Cited on page 52.)

[201] Papazoglou, M.: Web Services: Principles and Technology. Pearson
Education (2008) (Cited on pages 5, 8, 136, 184, and 226.)

[202] Park, D.: Concurrency and Automata on Infinite Sequences. In:
Deussen, P. (ed.) Lecture Notes in Computer Science 104, pp. 167–183.

http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf

bibliography 273

Springer Berlin Heidelberg, Berlin/Heidelberg (1981). doi: 10.1007/
BFb0017309 (Cited on pages 20 and 161.)

[203] Parnjai, J.: Behavioral Service Substitution: Analysis and Synthesis.
Ph.D. thesis, Berlin, Humboldt Universität zu Berlin, Diss., 2013 (2013)
(Cited on pages 38, 138, 139, 140, and 165.)

[204] Parnjai, J.: Maxis tool, available at http://svn.gna.org/viewcvs/

service-tech/trunk/maxis/ (2013). Last accessed June 16, 2014

(Cited on page 139.)

[205] Parnjai, J., Stahl, C., Wolf, K.: A Finite Representation of all Substi-
tutable Services and its Applications. ZEUS (2009) (Cited on pages 140

and 165.)

[206] Parrow, J.: An Introduction to the π-Calculus. In: Bergstra, Ponse,
Smolka (eds.) Handbook of Process Algebra, pp. 1–72 (2013) (Cited
on page 37.)

[207] Petrenko, A.: Fault Model-Driven Test Derivation from Finite State
Models: Annotated Bibliography. In: Cassez, F., Jard, C., Rozoy, B.,
Ryan, M. (eds.) Lecture Notes in Computer Science 2067, pp. 196–
205–205. Springer Berlin Heidelberg, Berlin, Heidelberg (2001). doi:
10.1007/3-540-45510-8_10 (Cited on page 225.)

[208] PHP: Hypertext Preprocessor 5.4.20, available at http://www.php.net
(2013). Last accessed June 16, 2014 (Cited on pages 9 and 38.)

[209] Pill, I., Semprini, S., Cavada, R., Rovers, M., Bloem, R., Cimatti, A.:
Formal Analysis of Hardware Requirements. In: Design Automation
Conference, 2006 43rd ACM/IEEE, pp. 821–826 (2006). doi: 10.1109/
DAC.2006.229231 (Cited on page 253.)

[210] Pnueli, A.: The Temporal Logic of Programs. Foundations of Com-
puter Science, 1977., 18th Annual Symposium on pp. 46–57 (1977).
doi: 10.1109/SFCS.1977.32 (Cited on page 255.)

[211] Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and Ap-
plications of Timed Service Protocols. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 19(4), 11 (2010). doi:
10.1145/1734229.1734230 (Cited on page 256.)

[212] Process Mining Group, Eindhoven Technical University: ProM Pro-
cess Mining Workbench, available at http://www.promtools.org/

prom6/ (2013). Last accessed June 16, 2014 (Cited on pages 15, 183,
191, 211, 242, 244, 251, and 252.)

[213] Rajamani, S.K., Rehof, J.: Conformance Checking for Models of Asyn-
chronous Message Passing Software. In: Computer Aided Verification,
pp. 166–179. Springer Berlin Heidelberg, Berlin, Heidelberg (2002).
doi: 10.1007/3-540-45657-0_13 (Cited on pages 162 and 163.)

[214] Reed, J.N., Roscoe, A.W., Sinclair, J.E.: Responsiveness and Stable Re-
vivals. Formal Aspects of Computing 19(3), 303–319–319 (2007). doi:
10.1007/s00165-007-0032-9 (Cited on page 52.)

[215] Reisig, W.: The Synthesis Problem. In: Jensen, K., van der Aalst,
W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Lecture Notes in Com-
puter Science 7480, pp. 300–313. Springer Berlin Heidelberg (2013)
(Cited on pages 9 and 38.)

http://svn.gna.org/viewcvs/service-tech/trunk/maxis/
http://svn.gna.org/viewcvs/service-tech/trunk/maxis/
http://www.php.net
http://www.promtools.org/prom6/
http://www.promtools.org/prom6/

274 bibliography

[216] Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies. Springer (2013) (Cited on pages 8, 21, 22, 37,
and 49.)

[217] Rensink, A., Vogler, W.: Fair Testing. Information and Computation
205(2), 125–198 (2007). doi: 10.1016/j.ic.2006.06.002 (Cited on pages 68,
69, 70, 82, 150, 157, 161, 164, 166, and 167.)

[218] Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring
the Fit and Appropriateness of Event Logs and Process Models. In:
Bussler, C., Haller, A. (eds.) Lecture Notes in Computer Science 3812,
pp. 163–176. Springer Berlin Heidelberg, Berlin, Heidelberg (2006).
doi: 10.1007/11678564_15 (Cited on pages 10 and 224.)

[219] Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Pro-
cesses Based on Monitoring Real Behavior. Information Systems 33(1),
64–95 (2008). doi: 10.1016/j.is.2007.07.001 (Cited on pages 10, 172, 183,
195, 224, and 225.)

[220] Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering
Simulation Models. Information Systems 34(3), 305–327 (2009). doi:
10.1016/j.is.2008.09.002 (Cited on page 193.)

[221] Rushby, J.M.: Automated Formal Methods Enter the Mainstream. J.
UCS 13(5), 650–660 (2007) (Cited on page 4.)

[222] Sharygina, N., Chaki, S., Clarke, E., Sinha, N.: Dynamic Component
Substitutability Analysis. In: Fitzgerald, J., Hayes, I., Tarlecki, A. (eds.)
Lecture Notes in Computer Science 3582, pp. 512–528. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005). doi: 10.1007/11526841_34

(Cited on pages 9 and 38.)

[223] Sharygina, N., Kröning, D.: Model Checking with Abstraction for Web
Services. In: Baresi, L., Nitto, E. (eds.) Test and Analysis of Web Ser-
vices, pp. 121–145–145. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007). doi: 10.1007/978-3-540-72912-9_5 (Cited on pages 9 and 38.)

[224] Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thom-
son Course Technology Boston (2006) (Cited on pages 18, 19, 37, 100,
and 151.)

[225] SmartBear Software: SoapUI, available at http://www.soapui.org

(2013). Last accessed June 16, 2014 (Cited on pages 243, 245, and 252.)

[226] Stahl, C., Massuthe, P., Bretschneider, J.: Deciding Substitutability of
Services with Operating Guidelines. In: Jensen, K., van der Aalst,
W.M.P. (eds.) Lecture Notes in Computer Science 5460, pp. 172–191.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009). doi: 10.1007/
978-3-642-00899-3_10 (Cited on pages 4, 37, 38, 127, 138, 162, 164, 165,
and 166.)

[227] Stahl, C., Vogler, W.: A Trace-Based View on Operating Guidelines.
In: Hofmann, M. (ed.) Lecture Notes in Computer Science 6604, pp.
411–425. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). doi:
10.1007/978-3-642-19805-2_28 (Cited on pages 88 and 166.)

[228] Stahl, C., Vogler, W.: A Trace-Based Service Semantics Guaranteeing
Deadlock Freedom. Acta Informatica 49(2), 69–103 (2012). doi: 10.
1007/s00236-012-0151-5 (Cited on pages 34, 57, 83, 88, 166, and 167.)

http://www.soapui.org

bibliography 275

[229] Stroustrup, B.: after a quote in http://www.stroustrup.com/

Programming/1-2_programming.ppt (2003). Last accessed June 16,
2014 (Cited on page 3.)

[230] Szyperski, C.: Component Software: Beyond Object-oriented Pro-
gramming. Pearson Education (2002) (Cited on page 5.)

[231] Tan, Q.M.: On Conformance Testing of Systems Communicating by
Rendezvous. Ph.D. thesis, Universite de Montreal (1998) (Cited on
page 225.)

[232] Tang, R., Zou, Y.: An Approach for Mining Web Service Composition
Patterns from Execution Logs. Web Systems Evolution (WSE), 2010

12th IEEE International Symposium on pp. 53–62 (2010). doi: 10.1109/
WSE.2010.5623568 (Cited on page 226.)

[233] The Apache Software Foundation: Apache ODE (Orchestration Direc-
tor Engine) software, available at http://ode.apache.org (2013). Last
accessed June 16, 2014 (Cited on pages 242, 245, 251, and 252.)

[234] The Apache Software Foundation: Apache Tomcat software, avail-
able at http://tomcat.apache.org (2013). Last accessed June 16, 2014

(Cited on pages 242 and 252.)

[235] The Eclipse Foundation: Eclipse BPEL Designer Project, available at
http://www.eclipse.org/bpel/ (2013). Last accessed June 16, 2014

(Cited on pages 234 and 251.)

[236] The Eclipse Foundation: Eclipse IDE, available at https://www.

eclipse.org (2013). Last accessed June 16, 2014 (Cited on pages 234

and 251.)

[237] Thurley, M.: sharpSAT – Counting Models with Advanced Compo-
nent Caching and Implicit BCP. In: Biere, A., Gomes, C. (eds.) Lec-
ture Notes in Computer Science 4121, pp. 424–429. Springer Berlin
Heidelberg (2006) (Cited on page 209.)

[238] Tretmans, J.: Conformance Testing with Labelled Transition Systems:
Implementation Relations and Test Generation. Computer networks
and ISDN systems 29(1), 49–79 (1996) (Cited on pages 4 and 162.)

[239] Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In:
Baeten, J.M., Mauw, S. (eds.) Lecture Notes in Computer Science 1664,
pp. 46–65. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). doi:
10.1007/3-540-48320-9_6 (Cited on pages 172 and 225.)

[240] Tretmans, J., Belinfante, A.: Automatic Testing with Formal Methods.
EuroSTAR’99: 7th European Int Conference on Software Testing, Anal-
ysis & Review pp. 8–12 (1999) (Cited on page 4.)

[241] Tretmans, J., Wijbrans, K., Chaudron, M.: Software Engineering with
Formal Methods: The Development of a Storm Surge Barrier Control
System Revisiting Seven Myths of Formal Methods. Formal Methods
in System Design 19(2), 195–215–215 (2001) (Cited on page 253.)

[242] Valiant, L.G.: The Complexity of Enumeration and Reliability Prob-
lems. SIAM Journal on Computing 8(3), 410–421 (1979) (Cited on
page 209.)

http://www.stroustrup.com/Programming/1-2_programming.ppt
http://www.stroustrup.com/Programming/1-2_programming.ppt
http://ode.apache.org
http://tomcat.apache.org
http://www.eclipse.org/bpel/
https://www.eclipse.org
https://www.eclipse.org

276 bibliography

[243] Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozen-
berg, G. (eds.) Lecture Notes in Computer Science 1491, pp. 429–
528. Springer Berlin Heidelberg, Berlin, Heidelberg (1998). doi:
10.1007/3-540-65306-6_21 (Cited on page 255.)

[244] Valmari, A.: External Behaviour of Systems of State Machines with
Variables. In: Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M.,
Wolf, K. (eds.) Lecture Notes in Computer Science 7480, pp. 255–299.
Springer Berlin Heidelberg (2013) (Cited on page 36.)

[245] Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Computation and
Convergence to a Pareto Front. Morgan Kaufmann pp. 221–228 (1998)
(Cited on page 256.)

[246] Vogler, W.: Modular Construction and Partial Order Semantics of
Petri Nets, vol. 625. Lecture notes in computer science edn. Springer-
Verlag Berlin (1992) (Cited on pages 8, 24, 28, 30, 33, 37, 38, 65, 67, 74,
82, 83, 88, 165, and 167.)

[247] Vogler, W., Stahl, C., Müller, R.: A Trace-Based Semantics for Respon-
siveness. In: 12th International Conference on Application of Con-
currency to System Design (ACSD 2012), pp. 42–51. IEEE (2012). doi:
10.1109/ACSD.2012.10 (Cited on pages 52 and 55.)

[248] Vogler, W., Stahl, C., Müller, R.: Trace- and Failure-Based Semantics
for Bounded Responsiveness. In: Canal, C., Villari, M. (eds.) Advances
in Service-Oriented and Cloud Computing, Communications in Com-
puter and Information Science, vol. 393, pp. 129–143. Springer Berlin Hei-
delberg (2013). doi: 10.1007/978-3-642-45364-9_12 (Cited on pages 85

and 141.)

[249] Vogler, W., Stahl, C., Müller, R.: Trace- and Failure-Based Semantics
for Responsiveness (2014). Accepted for publication in Acta Informat-
ica on April 5, 2014 (Cited on pages 52, 55, 72, 85, and 141.)

[250] Voorhoeve, M., Mauw, S.: Impossible Futures and Determinism.
Information Processing Letters 80(1), 51–58 (2001). doi: 10.1016/
S0020-0190(01)00217-4 (Cited on pages 65 and 167.)

[251] Weber, J.E., Ebinger, M., Rozanski, M., Waldschmidt, C., Wendt, M.,
Winter, B., Kellner, P., Baumann, A., Fiebach, J.B., Villringer, K.: Pre-
hospital Thrombolysis in Acute Stroke Results of the PHANTOM-S
Pilot Study. Neurology 80(2), 163–168 (2013) (Cited on page 237.)

[252] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.:
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging and More. Prentice
Hall PTR (2005) (Cited on page 233.)

[253] Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Work-
flow Models from Event-based Data using Little Thumb. Inte-
grated Computer-Aided Engineering 10(2), 151–162 (2003) (Cited on
page 225.)

[254] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik,
A.: Process Discovery using Integer Linear Programming. Funda-
menta Informaticae 94(3), 387–412 (2009) (Cited on page 225.)

bibliography 277

[255] Wiels, V., Delmas, R., Doose, D., Garoche, P.L., Cazin, J., Durrieu,
G.: Formal Verification of Critical Aerospace Software. AerospaceLab
Journal (4) (2012) (Cited on page 4.)

[256] Wirth, N.: Program Development by Stepwise Refinement. Commu-
nications of the ACM 14(4), 221–227 (1971) (Cited on pages 4, 5,
and 162.)

[257] Wolf, K.: Generating Petri Net State Spaces. In: Kleijn, J., Yakovlev,
A. (eds.) Lecture Notes in Computer Science 4546, pp. 29–42. Springer
Berlin Heidelberg (2007) (Cited on page 135.)

[258] Wolf, K.: Does My Service Have Partners? Transactions on Petri Nets
and Other Models of Concurrency II (2009) (Cited on pages 49, 51, 52,
111, 127, 165, and 167.)

[259] Wolf, K., Stahl, C., Weinberg, D., Ott, J., Danitz, R.: Guaranteeing
Weak Termination in Service Discovery. Fundamenta Informaticae
108(1-2) (2011) (Cited on page 49.)

[260] Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Meth-
ods. ACM Comput Surv 41(4), 1–36 (2009). doi: 10.1145/1592434.
1592436 (Cited on page 4.)

[261] Yoshiura, N.: Finding the Causes of Unrealizability of Reactive System
Formal Specifications. In: Software Engineering and Formal Meth-
ods, 2004. SEFM 2004. Proceedings of the Second International Con-
ference on, pp. 34–43 (2004). doi: 10.1109/SEFM.2004.1347501 (Cited
on page 253.)

[262] Zhivich, M., Cunningham, R.K.: The Real Cost of Software Errors.
Security & Privacy, IEEE 7(2), 87–90 (2009) (Cited on page 3.)

I N D E X

∅, 17

[], 17

], 17

vb, conf, 47

vc
b, conf, 48

vF+
b, fin

, 146

vconf, 42

vc
conf, 43

vF+
fin

, 68

AA(Log, N), 199

accordance relation, 4

ACP, 36

action-equivalence, 19, 23

agreement, 34

alignment, 174

alphabet, 18, 19, 23

Apache ODE, 242

asynchronous communication, 36

automaton, 19

b-bounded deadlock freedom, 49

b-bounded F+
fin-semantics, 142

b-bounded stopdead-semantics, 86

b-bounded weak termination, 49

b-boundedness, 22

b-conformance, 47

b-coverable stopdead-semantics, 92

b-partner, 46

b-responsiveness, 45

b-subnet, 203

b-uncoverable trace, 92

Bags(A), 17

basic activity, 233

basic net, 76

boundb-violator, 86

behavior, 22

behavioral correctness, 8

BEHb(N), 154

bisimulation, 161

bisimulation relation, 20

Boolean annotation, 211

boundb(N), 86

boundb-maximal b-partner, 127

BPEL2OWFN, 136

BPMN, 230

branching states, 76

BSDb(N), 100

CCS, 36

Chloe, 135

closed net, 25

communication, 6

communication protocol, 6

complement, 18

completed trace preorder, 161

components, 5

composable, 26, 30

composition, 26

compositional b-conformance, 48

compositional conformance, 43

compositional conformance relation,
6

compositionality, 5

conformance, 42

conformance checking, 4

conformance relation, 4

conformation relation, 4

continuation, 18

correctness criterion, 4

correctness-by-construction, 4

correctness-by-verification, 4

cost, 176

cost-function, 176

cost-minimal alignment, 176

counter machine, 76

crossover operation, 210

CSDb(N), 108

CSP, 36

CSVExport, 242

dc-pattern, 77

dead(N), 57

dead except for inputs, 57

dead-trace, 57

deadb(N), 86

deadb-maximal b-partner, 127

deadlock freedom, 22, 49

decidability, 103, 116, 157

Delain, 136

denotational semantics, 12

determinism, 19

discovery, 10, 194

dominated, 68

E , 173

Eclipse BPEL Designer, 234

elitism, 210

279

280 index

empty state, 101

empty word, 18

enabled transition, 22

environment, 5, 28

equivalence, 17

error state, 100

event log, 9, 174

event trace, 174

events, 173

F+
b, fin(N), 142

F+
b, fin-refinement, 146

F+
fin(N), 65

F+
fin-refinement, 68

F+
fin-semantics, 65

failure, 65

fair testing, 161

fin-refusal set, 65

final marking, 21

finboundb-violator, 142

finboundb(N), 142

finiteness, 19

fintree failure, 65

firing, 22

fitness, 196

flow relation, 21

formal methods, 4

formal model, 8

functions, 5

generalization, 202

genetic algorithm, 209

halting problem, 78

hiding, 30

I/O automaton, 37

implementation, 4

implementation relation, 4

individual, 209

initial marking, 21

initial state, 18

inner net, 27

input action, 19, 23

input place, 24

interaction, 5

interface, 6

interface automaton, 37

interface place, 25

interface-equivalent, 25

internal action, 19, 23

internal place, 25

Jančar-Patterns, 76

κ(γ), 176

label, 19

labeled net, 23

labeled transition relation, 18

labeled transition system, 18

labeling function, 23

language, 18, 19, 23

Lb(N), 86

Lb-maximal b-partner, 127

linear time - branching time spec-
trum, 161

Locretia, 183

log move, 174

log-model scenario, 9

LoLa, 135

marked place, 22

marking, 21

matching, 124

matching relation, 124

maximal b-partner, 127

model move, 174

model-model scenario, 9

modularization, 5

modules, 5

monitoring, 172

most-permissive b-partner, 127

move, 174

MPb(N), 108

mpb(N), 112

multiset, 17

must testing, 161

mutation operation, 210

N, 17

N+, 17

net, 21

objects, 5

ON(w), 177

open net, 24

open system, 5

oracle function, 177

output action, 19, 23

output place, 24

P(A), 17

parallel composition, 30

with hiding, 31

Parikh vector, 23

partial order, 17

partner, 41

parts, 5

passive testing, 172

index 281

place, 21

population, 209

postset, 22

precision, 201

precongruence, 17

prefix, 18

prefix closure, 18

preorder, 17

preorder relation, 4

preset, 22

procedures, 5

process mining, 10

productive state, 150

productive subautomaton, 152

projection, 18

ProM, 183

Q∅, 101

qualitative correctness, 8

quality, 202

reachability graph, 22

reachable marking, 22

reachable state, 19

ready simulation, 161

refinement relation, 4

refusal set, 65

remainder, 18

replacement operation, 210

replay environment, 178

responsiveness, 41

restricted language, 19

run, 19, 22

saturation conditions, 70, 147

semantical correctness, 8

sequentially communicating, 25

ServiceDiscovery ProM plugin, 211

services, 5

set, 17

should testing, 161

silent move, 174

simplicity, 198

simulation relation, 20

SoapUI, 243

specification, 4

state, 18

state labeling function, 19

stop(N), 57

stop except for inputs, 57

stop-trace, 57

stopb(N), 86

stopb-maximal b-partner, 127

stopdead-semantics, 57

strict boundb-violator, 86

stroke unit, 230

strong agreement, 34

structured activity, 233

subcontract relation, 4

subsystem, 19

suffix closure, 18

synchronous communication, 36

synchronous move, 174

syntactical correctness, 7

τ-freeness, 19, 23

termination criteria, 210

testing, 4, 179

trace, 19, 23

trace preorder, 161

trace(γ), 175

transition, 21

tree failure, 65

U, 100

udeadb(N), 92

uLb(N), 92

uncovb(N), 92

undecidability, 82, 83

ustopb(N), 92

verification, 4

viewpoint, 177

weak bisimulation relation, 20

weak simulation relation, 20

weak termination, 22, 49

word, 18

workflow net, 37

WS-BPEL, 232

A C K N O W L E D G E M E N T S

I would not have finished this thesis without the help of various people. In
the following I am going to express my gratitude to them.

First of all, I want to thank Wolfgang Reisig for introducing me to the
scientific world. Without him I would have never thought about pursuing
a Ph.D. at all. He taught me that presentation does matter and gave me the
freedom to pursue my own research interests. Second, I thank Wil van der
Aalst for his supervision within the binational Ph.D. program. He taught me
to always look at the bigger picture and to strive for results that are actually
usable in practice. I am grateful for his invaluable feedback, his encouraging
stimulation, and the opportunity to finish my thesis while living one year
in Eindhoven.

I would have not written this thesis without the support of my co-promotor
Christian Stahl. His research led me to my thesis topic and his encourage-
ment made me never lose sight of it. Thank you very much for all the
discussions, for all the constructive critique, for the warm welcome in Eind-
hoven, and your time invested in reading several drafts of this thesis as well
as in the co-supervision as a whole. I also thank Walter Vogler for the de-
tailed theoretical discussions and the numerous collaborations. Most of the
results of this thesis are joint work with him and Christian Stahl. It was a
real pleasure and I learned a lot!

I thank Johann-Christoph Freytag, Jan Friso Groote, and Uwe Nestmann
for their service as committee members and their valuable feedback.

I thank my colleagues from the Theory of Programming group in Berlin
and from the graduate school SOAMED for all the support over the last
years. I really enjoyed the warm and pleasant working atmosphere, our pro-
ductive discussions, and the spirit of critically evaluating a presentation. I
also would like to thank all colleagues from the Architecture of Information
Systems group in Eindhoven and from the Theory of Programming Lan-
guages and Programming group in Rostock. Thank you for the discussions
and hints concerning my work and for the pleasant and familiar atmosphere
in general.

Many thanks I would like to address to the secretaries in Berlin and Eind-
hoven Birgit Heene, Sabrina Melchert, Diana Walter, Riet van Buul, and Ine
van der Ligt for their help and support in so many administrative things.

Finally, I thank my loving family and all of my friends for their kind
support over the past four years and for making my life more pleasant, more
interesting and more fun than I ever imagined. You are too numerous to be
mentioned here explicitly without me running the risk of unintentionally
omitting someone, which I would rather not. Thanks to you all.

283

C U R R I C U L U M V I TÆ

October 18, 1984 Born in Dresden, Germany

09/1991 – 08/1997 Primary School “Bernhard Grzimek” in Berlin, Germany

09/1997 – 06/2004 Grammar School “Georg Forster” in Berlin, Germany; uni-
versity entrance exam

10/2004 – 09/2005 Voluntary Conscript at the 352nd Military Police Battalion
in Potsdam, Germany

10/2005 – 07/2010 Studies of Computer Science with minor subject Business
Administration at the Humboldt-Universität zu Berlin, Ger-
many; Specialization in modeling, specification, and verifica-
tion of distributed systems, formal methods; degree Diplom-
Informatiker

04/2007 – 09/2007 Trainee and Working Student at Exozet Games GmbH
in Berlin, Germany; developer for artificial intelligence,
JavaME applications and games

04/2008 – 07/2010 Working Student at the Humboldt-Universität zu Berlin,
Germany; DFG-Project “Synthesis of Behavioral Adapters”
and Theory of Programming Group (Prof. Dr. Wolfgang
Reisig)

since 07/2010 binational Ph.D. Student in Computer Science at the
Humboldt-Universität zu Berlin, Germany, and the Eind-
hoven University of Technology, The Netherlands; Mem-
ber of the B.E.S.T-Project (Berlin-Rostock-Eindhoven Service
Technology)

07/2010 – 07/2013 Research Associate at the Humboldt-Universität zu Berlin,
Germany; Graduate School SOAMED (“Service-oriented Ar-
chitectures for the Integration of Software-based Processes,
exemplified by Health Care Systems and Medical Technol-
ogy”) and Theory of Programming Group (Prof. Dr. Wolf-
gang Reisig)

since 07/2013 Research Associate at the Eindhoven University of Technol-
ogy, The Netherlands; Architecture of Information Systems
Group (Prof.dr.ir. Wil M.P. van der Aalst)

285

TA B E L L A R I S C H E R L E B E N S L A U F

18. Oktober 1984 geboren in Dresden, Deutschland

09/1991 – 08/1997 Bernhard-Grzimek-Grundschule in Berlin, Deutschland

09/1997 – 06/2004 Georg-Forster-Gymnasium mit mathematisch-
naturwissenschaftlichem Profil in Berlin, Deutschland;
Abitur

10/2004 – 09/2005 Freiwillig Wehrdienstleistender im Feldjägerbataillon 352 in
Potsdam, Deutschland

10/2005 – 07/2010 Studium der Informatik mit Nebenfach Betriebswirtschafts-
lehre an der Humboldt-Universität zu Berlin, Deutschland;
Studienschwerpunkte: Modellierung, Spezifikation und Ve-
rifikation verteilter Systeme, formale Methoden; Abschluss
als Diplom-Informatiker

04/2007 – 09/2007 Praktikant und Werkstudent bei der Exozet Games GmbH
in Berlin, Deutschland; Entwickler für Künstliche Intelli-
genz, JavaME Anwendungen und Spiele

04/2008 – 07/2010 Werkstudent an der Humboldt-Universität zu Berlin,
Deutschland; DFG-Project “Synthese von Verhaltensadap-
tern” und am Lehrstuhl Theorie der Programmierung (Prof.
Dr. Wolfgang Reisig)

seit 07/2010 binationaler Promotionsstudent in Informatik an der
Humboldt-Universität zu Berlin, Deutschland, und an der
Eindhoven University of Technology, Niederlande; Mitglied
im B.E.S.T-Projekt (Berlin-Rostock-Eindhoven Service Tech-
nology)

07/2010 – 07/2013 Wissenschaftlicher Mitarbeiter an der Humboldt-Universität
zu Berlin, Deutschland; Graduiertenkolleg SOAMED
(“Service-orientierte Architekturen zur Integration Software-
gestützter Prozesse am Beispiel des Gesundheitswesens und
der Medizintechnik”) und Lehrstuhl Theorie der Program-
mierung (Prof. Dr. Wolfgang Reisig)

seit 07/2013 Wissenschaftlicher Mitarbeiter an der Eindhoven Universi-
ty of Technology, Niederlande; Architecture of Information
Systems Group (Prof.dr.ir. Wil M.P. van der Aalst)

287

S E L B S T S T Ä N D I G K E I T S E R K L Ä R U N G

Ich erkläre hiermit, dass

• ich die vorliegende Dissertationsschrift “Verifying Responsiveness For
Open Systems By Means Of Conformance Checking” selbstständig
und ohne unerlaubte Hilfe angefertigt habe;

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben ha-
be oder einen solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät II der Humboldt-Universität zu Berlin bekannt ist (veröffent-
licht im Amtlichen Mitteilungsblatt Nr. 34/2006).

Berlin, den 9. April 2014

Richard Müller

289

	Contents
	Introduction
	1 About this thesis
	1.1 Background
	1.1.1 Designing correct systems using conformance checking
	1.1.2 Conformance checking for open systems

	1.2 Problem statement and research questions
	1.3 Contributions
	1.4 Thesis overview

	2 Preliminaries
	2.1 Basic mathematical notions
	2.2 Labeled transition systems
	2.3 Petri nets
	2.4 Open nets and their composition
	2.5 Open net environments and their composition
	2.6 Relating open nets and open net environments
	2.7 Conclusions and related work
	2.7.1 Formalism based on process algebras
	2.7.2 Formalism based on automata
	2.7.3 Formalism based on Petri nets
	2.7.4 Why do we chose open nets?

	3 Responsiveness for open systems
	3.1 Formalizing responsiveness and conformance
	3.2 Formalizing b-responsiveness and b-conformance
	3.3 Classifying both formalizations
	3.3.1 Classifying responsiveness and b-responsiveness
	3.3.2 Comparing conformance and b-conformance

	3.4 Conclusions and related work

	The model-model scenario
	4 Conformance and compositional conformance
	4.1 Characterizing conformance
	4.1.1 The stopdead-semantics for open nets
	4.1.2 Refinement on the stopdead-semantics

	4.2 Characterizing compositional conformance
	4.2.1 The F+fin-semantics for open nets
	4.2.2 Refinement on the F+fin-semantics

	4.3 Undecidability of conformance and compositional conformance
	4.3.1 Counter machines and their halting problem
	4.3.2 Conformance is undecidable
	4.3.3 Compositional conformance is undecidable

	4.4 Conclusions

	5 b-conformance
	5.1 Characterizing b-conformance
	5.1.1 The b-bounded stopdead-semantics for open nets
	5.1.2 The b-coverable stopdead-semantics for open nets
	5.1.3 Refinement on the b-coverable stopdead-semantics

	5.2 Deciding b-conformance
	5.2.1 Deciding b-responsiveness using the LTS BSDb
	5.2.2 Deciding b-conformance using the LTS CSDb
	5.2.3 Analyzing the computational complexity

	5.3 An alternative decision procedure for b-conformance
	5.3.1 Deciding b-responsiveness using matching
	5.3.2 Deciding b-conformance using matching
	5.3.3 Analyzing the computational complexity

	5.4 Implementation and experimental results
	5.5 Conclusions

	6 Compositional b-conformance
	6.1 Characterizing compositional b-conformance
	6.1.1 The b-bounded F+fin-semantics for open nets
	6.1.2 Refinement on the b-bounded F+fin-refinment

	6.2 Deciding compositional b-conformance
	6.2.1 Deciding F+fin-refinement for finite LTSs
	6.2.2 Reducing the decision of compositional b-conformance to F+fin-refinement

	6.3 Conclusions

	7 Conclusions and related work
	7.1 Overview of the results
	7.2 Classifying compositional conformance and compositional b-conformance
	7.3 Related work
	7.3.1 Work based on process algebra and declarative models
	7.3.2 Work based on automata
	7.3.3 Work based on Petri nets
	7.3.4 Work related to the undecidability results

	The log-model scenario
	8 Testing for b-conformance
	8.1 Formalizing observed behavior
	8.1.1 Events, event traces, and event logs
	8.1.2 Replaying an event log on a labeled net
	8.1.3 Replaying an event log on an open net

	8.2 The testing procedure
	8.3 Implementation
	8.4 Evaluation and experimental results
	8.4.1 Preparing the evaluation process
	8.4.2 Testing 1-conforming implementations
	8.4.3 Testing non 1-conforming implementations

	8.5 Conclusions

	9 Discovering a model of a b-conforming system
	9.1 The discovery procedure
	9.1.1 Discovering a b-conforming open net
	9.1.2 Discovering a high-quality open net

	9.2 Improving the discovery procedure with b-subnets
	9.2.1 Impact on the fitness dimension
	9.2.2 Impact on the simplicity dimension
	9.2.3 Impact on the precision dimension
	9.2.4 Impact on the generalization dimension

	9.3 Implementation
	9.4 Evaluation and experimental results
	9.4.1 Preparing the evaluation process
	9.4.2 Discovering 1-conforming open nets

	9.5 Conclusions

	10 Conclusions and related work
	10.1 Overview of the results
	10.2 Work related to conformance testing
	10.3 Work related to open system discovery

	Closure
	11 Applying the thesis results
	11.1 The emergency ward service in a stroke unit
	11.1.1 An informal specification
	11.1.2 A formal model of the specification
	11.1.3 Two implementations in WS-BPEL

	11.2 The model-model scenario
	11.2.1 Step 1: Deriving formal models
	11.2.2 Step 2: Checking for 1-conformance

	11.3 The log-model scenario
	11.3.1 Step 1: Deriving event logs
	11.3.2 Step 2: Testing for 1-conformance
	11.3.3 Step 3: Discovering a high-quality model of a 1-conforming implementation

	11.4 Conclusions

	12 Thesis conclusions and outlook
	12.1 Summary of contributions
	12.1.1 The model-model scenario
	12.1.2 The log-model scenario
	12.1.3 Tool support

	12.2 Limitations and open questions
	12.2.1 Incomplete or unsound specifications
	12.2.2 Measuring quality is subjective
	12.2.3 Abstraction only preserves fitness and simplicity

	12.3 Future work
	12.3.1 Refined conformance relations
	12.3.2 Improved algorithms
	12.3.3 Compositionality in the log-model scenario
	12.3.4 Refined discovery
	12.3.5 Introducing additional aspects

	Bibliography
	Index
	Acknowledgements
	Curriculum vitæ
	Declaration

