
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Joonas Puura

Advanced Methods in Business Process
Deviance Mining

Master’s Thesis (30 ECTS)

Supervisors: Fabrizio Maria Maggi, PhD

Chiara Di Francescomarino, PhD

Chiara Ghidini, PhD

Tartu 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Advanced Methods in Business Process Deviance Mining

Abstract:
Business process deviance refers to the phenomenon whereby a subset of the ex-

ecutions of a business process deviate, in a negative or positive way, with respect to
its expected or desirable outcomes. Deviant executions of a business process include
those that violate compliance rules, or executions that undershoot or exceed performance
targets. Deviance mining is concerned with uncovering the reasons for deviant executions
by analyzing business process event logs.

In this thesis, the problem of explaining deviations in business processes is first
investigated by using features based on sequential and declarative patterns, and a combi-
nation of them. The explanations are further improved by leveraging the data payload of
events and traces in event logs through features based on pure data attribute values and
data-aware declare constraints. The explanations characterizing the deviances are then
extracted by direct and indirect methods for rule induction. Using synthetic and real-life
logs from multiple domains, a range of feature types and different forms of decision rules
are evaluated in terms of their ability to accurately discriminate between non-deviant and
deviant executions of a process as well as in terms of the final outcome returned to the
users.

Keywords:
Deviance mining, business process, Declare, classification

CERCS: P170: Computer science, numerical analysis, systems, control

Edasijõudnud meetodid äriprotsesside hälbe kaevandamiseks
Lühikokkuvõte:

Äriprotsessi hälve on nähtus, kus alamhulk äriprotsessi täitmistest erinevad soovitud
või ettenähtud tulemusest, kas positiivses või negatiivses mõttes. Äriprotsesside hälbega
täitmised sisaldavad endas täitmisi, mis ei vasta ettekirjutatud reeglitele või täitmised,
mis on jäävad alla või ületavad tulemuslikkuse eesmärke. Hälbekaevandus tegeleb hälbe
põhjuste otsimisega, analüüsides selleks äriprotsesside sündmuste logisid.

Antud töös lähenetakse protsessihälvete põhjuste otsimise ülesandele, esmalt kasuta-
des järjestikkudel põhinevaid või deklaratiivseid mustreid ning nende kombinatsiooni.
Hälbekaevandusest saadud põhjendusi saab parendada, kasutades sündmustes ja sünd-
musjälgede atribuutides sisalduvaid andmelaste. Andmelastidest konstrueeritakse uued
tunnused nii otsekoheselt atribuute ekstraheerides ja agregeerides kui ka andmeteadlike
deklaratiivseid piiranguid kasutades. Hälbeid iseloomustavad põhjendused ekstraheeri-
takse kasutades kaudset ja otsest meetodit reeglite induktsiooniks. Kasutades sünteetilisi
ja reaalseid logisid, hinnatakse erinevaid tunnuseid ja tulemuseks saadud otsustusreegleid
nii nende võimekuses täpselt eristada hälbega ja hälbeta protsesside täitmiseid kui ka

2

kasutajatele antud lõpptulemustes.

Võtmesõnad:
hälbekaevandus, äriprotsessid, Declare, liigitamine

CERCS: P170: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)

3

Contents
1 Introduction 6

2 Related work 8

3 Background 10
3.1 Business Processes and Logs . 10

3.1.1 Business Process . 10
3.1.2 Event log . 10

3.2 Log patterns . 13
3.2.1 Sequential Patterns . 13
3.2.2 Declare . 14
3.2.3 Data-Aware Declare Constraints 16

3.3 Classification . 17
3.3.1 Decision tree . 18
3.3.2 RIPPER . 20

4 Problem 23

5 Approach 24
5.1 Exploring Business Process Deviance with Sequential and Declarative

Patterns . 24
5.1.1 Feature Discovery . 24
5.1.2 Feature Selection . 25
5.1.3 Trace Encoding . 26
5.1.4 Model Training . 27
5.1.5 Rule Extraction . 27
5.1.6 Application . 27

5.2 Exploring Payload Features for Business Process Deviance Mining . . . 29
5.2.1 Log preprocessing . 29
5.2.2 Pure Data method of payload feature creation 29
5.2.3 Data-aware Declare constraints 32
5.2.4 Application . 34

5.3 Extraction of Results of Deviance Mining 35
5.3.1 Extraction of Rules . 35

6 Evaluation 36
6.1 Exploring Business Process Deviance with Sequential and Declarative

Patterns . 36
6.1.1 Datasets . 37

4

6.1.2 Procedure . 38
6.1.3 Results . 39

6.2 Exploring Payload Features for Business Process Deviance Mining . . . 44
6.2.1 Datasets . 44
6.2.2 Procedure . 44
6.2.3 Results . 46

6.3 Extraction of Results of Deviance Mining 56
6.3.1 Datasets . 56
6.3.2 Procedure . 56
6.3.3 Results . 57

7 Conclusions 62

References 67
II. Licence . 68

5

1 Introduction
The increasing adoption of ERP (Enterprise Resource Planning) and management ap-
plications able to track information about process executions in the so called execution
traces, has opened up the possibility of extracting knowledge from traces, collected in
event logs. Different techniques have been developed in the context of process mining
to discover models from event logs, to check conformance between an event log and a
process model, or to enhance existing process models starting from event logs. Among
the different types of knowledge that can be extracted from event logs, a crucial role is
played by the explanation of deviant cases, i.e., business process executions that deviate
in a positive or negative way from the expected outcome. Indeed, discovering why some
executions take more (less) time than others, or what characterizes the cases that end up
with a faulty (or particularly good) outcome could be very useful for business analysts in
order to understand what can be improved to reduce negative deviances and spread the
positive ones.

Business process deviance mining is a branch of process mining which aims at
analyzing event logs in order to discover and characterize business process deviances.
Deviant executions of a business process include those cases that do not reach or achieve
targets (e.g., very slow and very fast cases), or those that violate some constraints.

The input of deviance mining approaches is an event log, in which each trace is
labeled as deviant or non-deviant. The purpose is to discover a characterization of
the deviant traces that, on the one hand, allows for accurately classifying a new trace
as deviant or non-deviant and, on the other hand, is able to provide an informative
explanation of the characteristics of these deviant cases. A good characterization of
these deviant executions, expressed in terms of patterns that are easy to understand for
analysts, would indeed allow them to have an idea of the causes that have generated these
executions and hence where it is better to intervene to improve the process.

Most of the existing business process deviance mining approaches look at the problem
as a classification one. Relevant patterns describing execution traces are used as features
for encoding labeled traces. The labeled encoded traces are then used for training a
classifier that is in charge of discriminating between deviant and non-deviant executions
based on those patterns. The most obvious choice to describe execution traces [BvdA13],
which are sequences of events, is resorting to sequential patterns, that is sequences of
adjacent events.

However, other types of features can be used to describe a process case, as for
instance declarative patterns, i.e., patterns related to the validity of predefined predicates
in the case, or combinations of sequential and declarative patterns (hybrid encoding).

In addition to features extracted from control-flow perspective, it is also possible to ex-
tract additional features by making use of data attributes, which can help in characterizing
differences between deviant and non-deviant executions.

Firstly, this thesis frames the problem of investigating the impact that different types

6

of features (sequential, declarative and their combination) have on business process
deviance mining results. Secondly, it provides two different ways of using data payload
as additional features and their impact on business process deviance mining results.
Using synthetic and real-life logs from multiple domains, a range of feature types are
evaluated in terms of their ability to accurately discriminate between non-deviant and
deviant executions of a process.

Thirdly, the thesis thesis takes a look at the outcomes returned to the users by the
business process deviance mining approach. Two different methods returning decision
rules are compared both in terms of classification performance and in terms of amount and
length of decision rules (hence potentially investigate user readability). More concretely,
the two methods leverage, respectively, decision trees and a procedure for the extraction
of decision rules from the tree, and the RIPPER algorithm, which allows for direct
extraction of decision rules. The evaluation is done to investigate the trade-off between
the performance of the deviance mining approach and the complexity of the outcome
rules.

The thesis is structured in the following way.
Section 2 gives an overview of previous research related to this thesis.
Section 3 introduces the necessary background knowledge to understand the concepts

and techniques used.
In Section 4, a problem statement for business process deviance mining is given,

which serves as a motivating example for this thesis.
Section 5 contains the different approaches used within the thesis. Section 5.1

introduces the pipeline used for business process deviance mining and how sequential,
declarative and the combination of features were used. Section 5.2 gives the approach for
the use of data-payload features. Section 5.3 covers the approach for extracting business
process deviance mining outcomes in the form of decision rules.

Section 6 gives an overview on how the evaluation was carried out for each of the
approaches and reports the results. In detail, Section 6.1 reports the procedure and results
related to the impact of different types of features based on control-flow. Section 6.2
describes how the impact of the payload based features was evaluated and provides an
overview of the results. Section 6.3 describes evaluation procedure and results related to
the extraction of decision rules, returned by the deviance mining approaches.

Finally, Section 7 concludes the thesis, by giving an overview of the work done, the
obtained results and possible future work.

7

2 Related work
The main works related to business process deviance mining can be classified into
two main families: the ones using delta-analysis to (manually) identify differences
between the model discovered from deviant and non-deviant cases (e.g.,[SMW+14]) and
those based on classification techniques [SWO+13, PWS+15, BvdA09, Bv13, LKL07,
CHX11].

This work falls in the latter group. The works in this second group leverage classifi-
cation techniques to discriminate between normal and deviant cases. These approaches
usually discover patterns that are then used to build the classifier. They can be further
classified based on the type of features used for training the classifier.

In [SWO+13, PWS+15], the authors use the frequency of individual activities in
order to train classifiers in a financial and a clinical scenario, respectively. Bose and van
der Aalst in [BvdA09, Bv13] employ sequential pattern mining to discover sequential
patterns as tandem repeats, maximal repeats and alphabet repeats to be used as features
for training a classifier. Similarly, in [LRW13], association rules are used to discover co-
occurrence patterns in the context of deviant classes in a healthcare scenario. In [LKL07,
CHX11], discriminative mining is used to discover discriminative patterns, i.e., patterns
that, although not necessarily very frequent, clearly discriminate between deviant and
non-deviant cases. Differently from these works that propose new patterns to be used as
features, the aim of this thesis is investigating the impact of different types of features.

A benchmark collecting all these works and evaluating and comparing them in terms
of different feature types and classifiers is presented in [NDLR+14, NDR+16].

Different types of patterns have also been combined together in [CFGP15, CFGP16,
CFGP17]. In detail, in [CFGP15], in order to avoid the redundant representation deriving
from mixing different families of patterns, the authors propose an ensemble learning
approach in which multiple learners are trained encoding the log according to different
types of patterns. In [CFGP16], event data payloads have also been taken into account
in the discovery phase as well as in the classifier training. Finally in [CFGP17], the
authors enhance the previous work [CFGP15] by proposing an alternative multi-learning
approach probabilistically combining various classification methods. The focus of
these latter works, however, is on the individual, sequential and discriminative patterns
separately or on the combination of families of behavioral sequential patterns.

The finding of data-aware DECLARE constraints has been previously discussed in
[MDGBM13]. In that work, differently from this one, the focus is on discovery of
data-aware DECLARE models. In this thesis, the focus is on discovery of discriminating
data-aware DECLARE constraints for use in deviance mining and by taking into account
the labeling of event logs.

Differently and in addition from the previously described works this thesis:

• takes into account also a completely different and unexplored family of patterns,

8

i.e., the family of the declarative patterns;
• combines family of declarative patterns with sequential patterns (by facing the

feature redundancy problem with feature selection approaches);
• evaluates the use of payload features and two different methods of payload feature

extraction from execution logs;
• compares and evaluates two methods for extracting business process deviance

mining outcomes in the form of decision rules.

9

3 Background
This chapter gives the necessary background information needed to understand the
content of the thesis.

3.1 Business Processes and Logs
As the work in this thesis concentrates on business process event logs, this section
first gives an overview on what is a business process and secondly on how its data
representation looks like.

3.1.1 Business Process

A business process is a set of activites or events, which are performed in order to achieve
a particular goal in a business operation.

Some types of common business processes include:

• Application-to-approval, where a sequence of activities related to the approval pro-
cess, follow after the arrival of an application, with the end goal of the application
being either approved or denied. Examples on where this type of processes could
be found are in student’s application process to universities or hiring process at
companies. Typical activities here could be calling the references or scoring the
application;

• Order-to-cash, which begins with a customer wanting to purchase a product (or
use a service) and ends with the product being delivered and the payment for the
product being received by the seller. Typical activities could include checking the
inventory for stock or estimating the price quote for the customer.

Together with business processes being executed it is possible to track and store the
process execution information for further analysis by turning the activities and events
into execution traces, which are then collected in a form of event logs.

3.1.2 Event log

One of the possible data standards for storage and manipulation of event logs is XES
standard [WGV14]. XES is acronym for eXtensible Event Stream, which is an XML-
based format specialized for storage of event log data.

Figure 1 shows the UML [RJB04] diagram for the complete meta-model of XES
standard. The basic hierarchy of a XES document contains one log object. One log
object can contain any number of trace objects. Each trace can contain any number of
event objects.

All event information related to a specific process is contained within a log. Some
examples of a process could be:

10

Figure 1. Meta-model for the XES standard [WGV14]

• A medical assessment process;
• A hiring process for new workers.

A trace describes a (usually) time-ordered execution of a specific process. Going by
examples for processes, the corresponding trace examples could be:

• The specific assessment of an individual;
• The specific hiring of a worker for an organization.

An event represents an observed activity at an atomic-level. A possible event in
traces given above could respectively be:

• The completion of adding blood tests results to individual’s health records;
• The decision of hiring by a human resource specialist.

Attributes. Log, trace and event objects define the structure of XES document, but do
not contain any information in them. The relevant information is instead stored in an
arbitrary number of attributes, which describe their parent element [WGV14]. According

11

to the standard [WGV14], there are 6 elementary attribute types: String, Date, Int, Float,
Boolean, ID. Additionally the standard describes two collection type attributes List and
Container. By itself XES standard does not specify a specific set of required attributes,
but allows, by making use of the concept called extensions, to introduce commonly
understood attributes. The commonly acknowledged set of attributes can be crucial for
many event log analysis techniques [WGV14]. Some examples, which are included as
standard extensions of XES are concept, lifecycle, time and organization, which are
found in most of the logs. Additionally, for deviance mining purpose traces often have
an attribute called Label, giving information on whether the trace is considered to be
deviant or normal.

Several concepts are shown in example in Figure 2, which depicts the first events
of a trace from log Sepsis (described later in Section 6.1.1). In the example a trace has
attribute of type String with a key concept:name and a value C, which describes the
name of the trace. In the first event of the trace there are many attributes of type Boolean.
Moreover, each event has an attribute concept:name giving the name of the activity,
time:timestamp describing the date when the event occured, org:group describing to
which group/resource the event belongs to and lifecycle:transition which represents a
stage of event’s lifecycle, where "complete" states the completion of the activity.

Figure 2. An example of a portion of XES log.

12

In this work OpenXES was used, which is an open source reference implementation
of First XES standard.

3.2 Log patterns
In this section an overview of relevant pattern types, which can be used to describe
business processes event logs is given.

3.2.1 Sequential Patterns

Sequential patterns [Bv13] represent one of the pattern types that can be used to describe
event log traces. Sequential patterns are sequences of events that occur frequently or
in a non-deviant way within traces, thus capturing particular control flow relations in a
process execution trace. Among the main types of sequential patterns, we can find:

• Tandem Repeats (TR): this type of pattern denotes sequences of events that are repeated
consecutively within a trace; these sequences correspond to process loops.

• Maximal Repeats (MR): this type of pattern denotes maximal sequences of events that are
repeated in an event log; these sequences correspond to process sub-processes.

• Tandem Repeats Alphabet (TRA): this type of pattern denotes tandem repeats that share
the same activities (i.e., the alphabet of unique activities); these sequences correspond to
variations of TR taking into account process parallelism.

• Maximal Repeats Alphabet (MRA): this type of pattern denotes maximal repeats that share
the same activities (i.e., the alphabet of unique activities); these sequences correspond to
variations of MR taking into account process parallelism.

For instance, given a trace T = 〈a,b, c,a,b, c,d,a,b〉, the set of TR is {abc}, as
abc is the only pattern to be repeated two times consecutively.

For TRA ,the ordering of activities within the pattern does not matter, but the patterns
have to appear consecutively. In this case, given a trace T = 〈a,b, c, c,b,a,a,b, c〉, the
set of TRA is {abc, cb, ab, c, a} with abc being repeated 3 times in a row, ab and cb twice
in a row and a and c also twice in a row (without requiring specific order of events within
the pattern).

A pattern is considered to be maximal repeat, if it cannot be extended to left or to
right for a longer repeat covering all the subsequences of the shorter pattern. Considering
trace T = 〈a,b, c,a,b, c,d,a,b〉, the set of MR is {ab, abc} (c and bc are not maximal,
because both occurences can be extended to the left to be abc, which includes all c and
bc withing the trace). Pattern ab is a maximal repeat, because it occurs multiple times
and extending it would not cover the last occurence of ab.

For MRA, the ordering of activities within the pattern does not matter. For trace
T = 〈b,a, c,a,b, c,d,b,a〉, the set of MRA is {ab, abc}. Pattern abc occurs twice and
is therefore a repeat. Pattern ab is repeated three times and is maximal, because it cannot

13

be extended in a way that it covers all the occurences of ab. Patterns c, b are not maximal,
because all c also occur within pattern abc, and all b within pattern ab, which are both
maximal patterns. The MR and MRA in an event log are found by concatenating all
traces in the event log in a single trace.

3.2.2 Declare

DECLARE was introduced in [Pes08] as a declarative process modeling language. The
declarative approach for modeling was designed to be more flexible and able to grasp
loosely-structured processes, in comparison to imperative approaches, which require a
more rigid of a specification. A declarative approach, instead of telling users exact steps
to take, allows to shift the decision making from the system to its users [PSv07].

The basic building block of a DECLARE model is a constraint, which is a template
instantiated on a set of (atomic) activities. A template is an abstract parameterized pattern,
which is instantiated with real activities [BCDFM14].

Linear Temporal Logic (LTL) has been the main choice of a logical language for
formalizing the semantics of DECLARE templates [MPv+10]. The semantics of LTL

operators used for describing templates are provided in Table 2.
Additionally, DECLARE templates have a graphical notation, which makes them

simpler to use and interpret for an analyst. Table 1 gives an overview of more commonly
used DECLARE templates, their graphical representations, formalization in LTL and a
textual description. The parameters of a template are in capital letters and real activi-
ties within constraints are in lower-case (e.g., response(a,b) is an instantiation of the
template response and the activities a and b).

DECLARE templates can be grouped in three main categories: existence templates
(first 4 rows of the table), which involve only one event; relation templates (rows from 5
to 12), which describe a dependency between two events; and negative relation templates
(last row), which describe a negative dependency between two events.

To give some examples on constraints let’s consider the following four traces:

1. 〈a,a,b, c〉;
2. 〈b,b, c,d〉;
3. 〈a,b, c,b〉;
4. 〈a,b,a, c〉.

First consider a simple constraint on an existence template init(a). By looking at
the description of the init template in Table 1 and replacing the parameter with real
activity a we can read the description as following: "Each instance has to start with the
execution of a". In our samples we can see that it is satisfied in traces 1, 3 and 4, but not
satisfied for trace 2, since it does not start with a.

For a second example, consider a constraint based on relation template: response(a,
b). Referring to Table 1 again and replacing parameter A with a and parameter B with

14

Table 1. Graphical notation and LTL formalization of some Declare templates
[BCDFM14].

TEMPLATE FORMALIZATION NOTATION DESCRIPTION

EXISTENCE TEMPLATES

existence(n,A) ♦(A ∧◦(existence(n− 1, A)))

n..∗

A A has to occur at least n times

absence(n,A) ¬existence(n,A)
0..n

A A can happen at most n-1 times

exactly(n,A) existence(n,A) ∧ absence(n+ 1, A)

n

A A has to occur exactly n times

init(A) A
init

A
Each instance has to start
with the execution of A

RELATION TEMPLATES

resp. existence(A,B) ♦A→ ♦B A •−−−− B If A occurs,
B must occur as well

response(A,B) �(A→ ♦B) A •−−−I B If A occurs,
B must eventually follow

precedence(A,B) ¬BW A A −−−I• B B can occur only
if A has occurred before

alternate
�(A→◦(¬AU B)) A •===I B

If A occurs, B must

response(A,B) eventually follow, without
any other A in between

alternate (¬BW A)∧ A ===I• B
B can occur only if A

precedence(A,B) �(B →◦(¬BW A))
has occurred before, without
any other B in between

chain response(A,B) �(A→◦B) A •=−=−=−I B If A occurs,
B must occur next

chain precedence(A,B) �(◦B → A) A =−=−=−I• B B can occur only
immediately after A

succession(A,B) ¬BW A ∧�(A→ ♦B) A •−−I• B A occurs if and only if
B occurs after A

NEGATIVE RELATION TEMPLATES

not succession(A,B) �(A→ ¬♦B) A •−−I•‖ B A cannot occur
before B

Table 2. SEMANTICS OF LTL OPERATORS [MMV11].

operator semantics
©ϕ ϕ has to hold in the next position of a path.
�ϕ ϕ has to hold always in the subsequent positions of a path.
♦ϕ ϕ has to hold eventually (somewhere) in the subsequent positions of a path.

ϕ Uψ
ϕ has to hold in a path at least until ψ holds. ψ must hold in the current or
in a future position.

ϕ Wψ
ϕ has to hold in the subsequent positions of a path at least until ψ holds.
If ψ never holds, ϕ must hold everywhere.

b the constraint’s description is "‘If a occurs, then b must eventually follow". From
our samples we can first see that this condition is satisfied in traces 1, 2 and 3, but not
satisfied in trace 4, as the second occurrence of a is not eventually followed by a b.

Activation of a constraint. An activation of a constraint in a trace is an event, that on
appearance imposes obligations on another event (the target) in the context of same trace

15

[BCDFM14]. In constraint response(a,b) a is an activation, because the execution of
a imposes an obligation to b, forcing it to be eventually executed. Event b is a target.
Referring back to sample traces again, one can see that in traces 1, 3 and 4 a occurs
somewhere in the trace, therefore the constraint response(a,b) is activated on those
traces. Trace 2 does not include a and the constraint is therefore not activated in that
trace.

An activation of a constraint in a trace is either a fulfillment or a violation for that
constraint within the trace. If every activation of a constraint in a trace leads to a
fulfillment, then the constraint is satisfied for that trace. Taking a look at constraint
response(a,b), it was activated in traces 1, 3 and 4. For trace 1 (〈a,a,b, c〉) it is
activated twice and both occurrences of a are eventually followed by b, therefore they
are also both fulfilled. In sample trace 3, the constraint is activated and fulfilled once.
In trace 4 - 〈a,b,a, c〉, the constraint is activated twice, but the second activation a, is
not eventually followed by b and therefore leads to a violation. The trace is considered
unsatisfied for the constraint, if at least one activation leads to a violation.

Vacuous satisfaction. There exist cases in which the constraint is not activated at
all. Consider, for instance, the sample trace 2 - 〈b,b, c,d〉. The considered response
constraint is satisfied in a trivial way in this trace, due to a never occurring. In such a
case, the constraint is considered to be vacuously satisfied [KV99].

3.2.3 Data-Aware Declare Constraints

While DECLARE in its original form is mainly used to set constraints on control-flow
aspects of a process, data-aware DECLARE constraints extend DECLARE constraints so
as to include conditions on data [MCMM13]. Data-aware DECLARE sets additional
requirement on data for an activation of a constraint to happen. The difference be-
tween graphical notations and formalizations of DECLARE (see Table 1) and data-aware
constraint templates (see Table 3) is the data condition.

Activation of a data-aware constraint. For demonstration of applying data-aware
declare constraints, let’s consider the following examples of traces, which are modified
versions from the previous section on DECLARE:

1. 〈a{g = 1},a{g = 2},b, c〉;
2. 〈b{g = 1},b{g = 1}, c,d〉;
3. 〈a{g = 2},b, c,b〉;
4. 〈a{g = 1},b,a{g = 2}, c〉.

In the traces a{g = 1} stands for activity a, which has an attribute g that has a value
of 1.

16

Table 3. Graphical notation and LTL formalization of some Data-aware Declare constraint
templates [MDGBM13].

TEMPLATE FORMALIZATION NOTATION DESCRIPTION

RELATION TEMPLATES

resp. existence(A,B,Cond) ♦(A ∧ Cond)→ ♦B A
Cond•−−−− B

If A occurs and Cond holds,
B must occur as well

response(A,B,Cond) �((A ∧ Cond)→ ♦B) A
Cond
•−−−I B

If A occurs and Cond holds,
B must eventually follow

precedence(A,B,Cond) ¬(B ∧ Cond)W A A
Cond
−−−I• B

If B occurs and Cond holds,
A must have occurred before

alternate
�((A ∧ Cond)→◦(¬AU B)) A

Cond
•===I B

If A occurs and Cond holds,

response(A,B) B must eventually follow,
without any other A in between

alternate (¬(B ∧ Cond)W A)∧
A

Cond
===I• B

If B occurs and Cond holds, A

precedence(A,B,Cond) �((B ∧ Cond)→◦(¬BW A))
A must have occurred before,
without any other B in between

chain response(A,B,Cond) �((A ∧ Cond)→◦B) A
Cond
•=−=−=−I B

If A occurs and Cond holds,
B must occur next

chain precedence(A,B,Cond) �(◦(B ∧ Cond)→ A) A
Cond
=−=−=−I• B

If B occurs and Cond holds,
A must have occurred immediately before

NEGATIVE RELATION TEMPLATES

not resp.
♦(A ∧ Cond)→ ¬♦B A

Cond•−−−−‖ B
If A occurs and Cond holds,

existence(A,B,Cond) B cannot occur

not response(A,B,Cond) �((A ∧ Cond)→ ¬♦B) A
Cond
•−−−I‖ B

If A occurs and Cond holds,
B cannot eventually follow

not precedence(A,B,Cond) �(A→ ¬♦(B ∧ Cond)) A
Cond
−−−I•‖ B

If B occurs and Cond holds
a cannot have occurred before

not chain
�((A ∧ Cond)→ ¬◦B) A

Cond
•=−=−=−I‖ B

If A occurs and Cond holds,
response(A,B,Cond) B cannot occur next
not chain

�(A→ ¬◦(B ∧ Cond)) A
Cond
=−=−=−I•‖ B

If B occurs and Cond holds A
precedence(A,B,Cond) cannot occur immediately before B

Consider a data-aware constraint response(a,b,{g=1}). This constraint requires
the trace to have an activity a with an attribute g = 1 for it to be an activation. In
sample Trace 1, the first activity a is an activation but the second one is not, due the data
condition not being fulfilled. The only activation in this trace leads to a fulfillment and
therefore in that trace the constraint is satisfied. Trace 2 does not have any activations
and is therefore vacuously satisfied. In Trace 3, there are no activations either, due to
the sole activity a not having the matching data condition, which makes the constraint
vacuously sastisfied. Trace 4(〈a{g = 1},b,a{g = 2}, c〉) is activated once on the first a
and leads to a fulfillment and therefore the constraint is satisfied.

3.3 Classification
In machine learning, the aim of classification is to identify, based on a training set of
observations, in which category a previously unseen observation belongs to [Alp14]. A
classifier is an algorithm, which implements the classification procedure. In business
process deviance mining, classification techniques are widely in use (as described in
Section 2) as they allow to classify traces as normal or deviant. In this thesis they play a

17

central role in evaluating different types of features and finding characteristics, which
describe differences between deviant and normal traces.

Classification approaches are usually based on two phases: a training and an evalua-
tion phase. The training of a classifier refers to learning a mapping between observations
and their categories. A common way of training classifiers is to have your dataset split
into two non-overlapping partitions: training set and test set. When performing hyper-
parameter optimization (e.g. choosing maximum depth of a decision tree), it is often
wise to also consider a third partition, often referred to as validation set, on which the
hyperparameters are selected. The classifiers are then trained on training set, optionally
optimized by making use of a validation set and then the final performance evaluated
on a test set. Evaluation is done to measure a classifier’s performance, by calculating
different comparable metrics.

In this thesis the observations are traces, which are encoded as vectors of numbers
(encoding described in 5.1). Each trace has a category label of either being deviant or
normal. The event log is split into partitions of training and test set.

There are many different classifiers such as perceptrons, logistic regression models,
support vector machines, artificial neural networks, decision trees and rule-based learners.
In this thesis decision trees and rule-based learner RIPPER (described in Section 3.3.2)
were considered, which allow for simple extraction of interpretable classification rules.

3.3.1 Decision tree

Decision trees are one of the more popular approaches in predicting and characterizing
relationships between observations and their target values [RM08]. Decision trees can
be used for both classification and regression tasks, namely known as classification trees
and regression trees. Regression trees targets are real values (e.g. price of a property).
Classification trees target values are a classes/categories (e.g. car is a sedan or an SUV).
In this work the focus is on the task of classification and therefore classification trees are
used.

An example of a classification tree can be seen Figure 3, where a toy decision process
of either approving or disapproving a loan based on attributes of present loan application
is depicted. Internal nodes are attributes, based on which a decision at that point is made.
The decision either follows left or right path depending on the conditions shown on
the edges. The leaves show the result of classification, which in the sample is either a
rejection or an approval of a loan. For example, if an applicant has salary over 2000 and
has a credit score above 5, then the loan is approved.

Since finding an optimal decision tree is often computationally infeasible, the methods
of decision tree construction are mostly heuristic [RM08]. The input for classification
trees is a set of observations with their respective categories. Decision tree construction
algorithms mostly work recursively in a top-down and a greedy manner [RM08]. At
every iteration the algorithm picks an attribute and a corresponding condition, which best

18

split the observations according to some metric. Two more common metrics are Gini
impurity (it measures how often a randomly chosen observation is incorrectly classified
when considering the attribute) and Information gain (it measures the purity of resulting
new nodes). On each partition, which resulted from the split, the process is repeated until
some stopping criterion is fulfilled. Examples of stopping criteria are the limitation on
the maximum depth of the tree or when all the considered observations have the same
category [RM08].

Figure 3. Example of a classification tree.

Decision rule is an IF-THEN statement, which consists of a conjunction of conditions
and the target prediction. An example of a decision rule could be: IF age is above 50
AND sex is male THEN person is in a risk group. A single decision rule or a set of
decision rules can be used to make predictions. Getting a set of decision rules can either
be done in a direct or an indirect manner. Direct is when rules are extracted directly from
the data and indirect when a classifier, such as a decision tree, is first trained and then
rules are extracted.

Trained classification trees can be turned into a set of decision rules in a straight-
forward manner [RM08]. Rules can be extracted by considering all the paths from a
root of a decision tree to its leaves, by conjoining the decisions made along the path
from the root to leaves with desired labels. The category of a leaf is the same as the
majority of training observations within the leaf. The categories of the leaves will be
the predicted categories for the rules. An example rule extracted from a decision tree
depicted in Figure 3 is: IF Salary (EUR) <= 2000 AND Credit score > 8 AND Mortgage
= Yes THEN Approve loan. As this method takes a decision tree as an input, it is an
indirect method for getting decision rules.

19

3.3.2 RIPPER

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) is a propositional
rule learner first which was proposed by Cohen, W. W. as an improvement to algorithm
Incremental Reduced Error Pruning (IREP) [Coh95]. Contrary to first building a decision
tree, RIPPER learns rules directly from the data. Generalization performance of RIPPER
is very competitive with a C4.5rules algorithm [Coh95], which is based on a well known
C4.5 decision tree building algorithm [Qui93]. RIPPER is able to work with both nominal
and continuous data. A toy ruleset which resembles RIPPER output and covers same set
of rules as decision tree in Figure 3 is shown in Figure 4.

Figure 4. Sample output of RIPPER. First two lines are rules describing positive classes
(Label=1). Last line shows the default rule when none of above applies (Label=0).

Sequential covering. RIPPER is considered to be a variant of sequential covering
algorithms [Mol19], which are general procedures to learn rules one-by-one in order to
create a list of decision rules. The basic scheme of sequential covering is the following
one:

• Find a good decision rule, which covers some observations;
• Remove observations covered by the found rule;
• Repeat until rules cover all observations or another stopping criterion (e.g. the

found rule is of too low quality) is met.

The graphical overview of such procedure is shown on Figure 5.
The procedure of RIPPER is seperated into two stages: the first stage builds the initial

ruleset whileas the second stage optimizes the generated rules for better generalization
capabilities. The building of the initial ruleset is further done in two parts: growing and
pruning. In two-class classification scenarios, that is also worked with in the thesis, one
class is deemed to be positive and the other negative.

Building the set of rules. In order to grow a rule, the training set of observations
is first randomly split into two sets: a growing set and a pruning set, which is done
in 2-to-1 ratio, with 2

3
of observations in growing set and 1

3
in pruning set. Growing

of a rule is done greedily, by iteratively adding conditions, that maximize first-order
inductive learner’s (FOIL) information gain. FOIL’s information gain is calculated as

20

Figure 5. Feature space is sequentially covered with one rule at a time. After each rule,
observations (instances) covered by that rule are removed from further consideration.
[Mol19].

IG = p · (log2
p
t
− log2

P
T

), where P and p are counts of positive observations covered
by the rule before and after the addition of a condition, T and t are counts of total
observations covered before and after. Rule is grown until it is perfect - e.g. it no longer
covers negative examples (if possible).

After each rule is grown, it is immediately pruned using a procedure called reduced
error pruning (REP). Pruning is done iteratively, by deleting any final sequence of
conditions from the rule. The procedure is repeated until the pruning measure V (rule)

no longer increases. For pruning the following measure is used: V (rule) = p−n)
p+n

, where
p and n are the counts of positive and negative observations covered by the rule in the
pruning set.

Both negative and positive observations covered by the pruned rule are now removed
from the training set and the process of growing and pruning is repeated. The stopping
condition occurs when there are no more positive observations remaining, the accuracy
of the rule to be added is less than 50% or the description length of the ruleset has grown
considerably when compared to the simplest ruleset. Description length is an information
theoretical heuristic, which helps in balancing between maximizing accuracy on the train
set and minimizing the complexity of the ruleset [Qui95].

Optimizing the set of rules. In the optimization part every rule, in the same order in
which they are found, is checked as a candidate for optimization. For every rule two
alternatives are considered: one by replacement and second by revision. For replacement,

21

a new rule is grown and then pruned in such a way that it minimizes the error of the
entire set of rules. For revision, extra conditions are added to the rule. Out of three rules:
initial, replacement and revision, the one which minimizes the description length of the
entire ruleset is chosen. If after optimizing the ruleset, there are some uncovered positive
observations, new rules are built using the initial way of growing and pruning rules.
The same optimization process can be run several times in order to further optimize the
ruleset.

22

4 Problem
In this section is provided an example, motivating throughout the thesis the importance
of approaches for business process deviance mining and the advantages of exploring
different types of features. Let us consider the customer support process carried out by a
big company selling services. The support process aims at helping customers whenever a
problem occurs or when special features are requested. The process, depicted in BPMN
in Figure 6, starts when the customer support office receives a request from a client.
The customer support office registers the request and performs a first evaluation. If the
request can be easily solved, it is solved and the customer notified. In case the request is
difficult to solve, a more in-depth evaluation is carried out, a solution is developed and the
customer notified, waiting for her feedback on the proposed solution. If the customer is
not happy with the solution, the issue is evaluated again in-depth, an alternative solution
found and the customer notified again until a good solution is found. In both cases (easy
and complex requests), if the request was unknown up to that time, a report has to be
prepared documenting the request and the solutions before the request can be closed.

Figure 6. Customer support example

The company’s business process analysts have noticed that some of the executions of
the customer support process take longer than others, i.e., these executions deviate with
respect to the expected process cycle time. Analysts are hence interested in understanding
what these deviant cases are, how to characterize them and the reasons why they take
more time. This information, is indeed crucial for them to be able to improve the process
and avoid the occurrence of these delayed executions in the future.

23

5 Approach

5.1 Exploring Business Process Deviance with Sequential and Declar-
ative Patterns

Fig. 7 shows the pipeline used for experimenting the business process deviance mining
approach. The pipeline starts with discovering discriminative features from a labeled
event log. Feature discovery is carried out by using both sequential pattern discovery and
DECLARE discovery methods. Due to a large number of features that can be discovered,
the next step is to extract a subset of features that are used to encode traces. Traces
are encoded as numeric feature vectors where each element of the vector represents the
number of occurrences in the trace of each pattern selected in the previous step. The
feature vectors are used to train a decision tree (or the RIPPER model). The last step is
to extract rules from the classifier (or to query the RIPPER model), which characterize
deviant cases thus explaining the cause of the deviations.

Figure 7. High-level pipeline

5.1.1 Feature Discovery

In order to transform traces into numeric feature vectors, the first step is to discover
sequential and declarative patterns.

Sequential patterns are discovered by using the approach presented in [Bv13] to
extract TR, TRA, MR and MRA.

The initial steps for Declare pattern discovery are similar to what was done in
[MBvdA12], with the purpose of discovering declarative process models. The process
of discovering declarative patterns starts with finding frequent sets of activities within
an event log. It is done by using a procedure similar to Apriori algorithm described
in [AS], which is frequently used for association rule mining. The found frequent sets
of activities will be used to instantiate DECLARE templates in order to create a set of
candidate constraints.

An activity set (a set of activies) is frequent, if it has a support above a given activity
set support threshold suppmin. Support is a measure that assesses the relevance of the
activity set within an event log. The support of an activity set is calculated by finding the
fraction of traces in an event log, which contains all the activities in the set.

24

The scheme for finding frequent sets of activities is quite simple. The process starts
with finding a set of all unique activities in an event log, let this set be Σ. Next, consider
all single activities in Σ as activity sets of size 1. Next support is computed for all the
sets and frequent ones are kept.

Activity sets of size 2..k, where k is the largest amount of parameters any DECLARE

template in consideration accepts, can be found by considering the following iterative
procedure. Given frequent activity sets of size t− 1:

1. Create sets of size t by joining relevant frequent activity sets of size t-1;
2. Prune set by applying property that a frequent candidate set cannot contain an

infrequent subset;
3. Keep frequent sets of size t (activity sets with the support above suppmin).

The output of the procedure is the union of the activity sets of sizes 1..k,
The constraints are discovered by considering DECLARE templates together with

found activity sets. A DECLARE template with n parameters is instantiated with all
permutations of each frequent set of size n. The generation of permutations of frequent
sets is required, because for most of the templates the ordering of activities used as
parameters matters. As an example, given a frequent activity set {a, b} and template
response(a,b), two constraints are generated: �(a→ ♦b) and �(b→ ♦a).

Finally, we check if each candidate constraint is satisfied in a percentage of either
deviant or non-deviant traces that is above a given minimum constraint support threshold
(usually set as suppmin).

5.1.2 Feature Selection

The number of features generated from the previous step can turn out to be too large.
Therefore, it becomes important to remove the features that do not give much value for
training the explanatory model. Having too many features contributes to long training
times, overfitting and too complex classifiers. For this reason there is a need to perform
feature selection. In this step, first, all duplicate and constant features are removed. Then,
the features are selected by using two different methods both using Fisher score [DHS01]
as basis (refer to Equation 1). The methods differ in the way the features are chosen. In
the first method, the first k features ranked according to the Fisher score are selected.
In the second one (called coverage method, described in [Jar16]), a number of features
is selected by first ranking them according to the Fisher score. Going by the order of
ranking, features are selected until every trace is covered by at least a fixed number
(coverage threshold) of features. Feature is only chosen if it covers at least one of the
remaining traces. Note that for the hybrid encoding the feature selection is carried out by
putting sequential and declarative features together in the same ranking.

25

Fisher score for j-th feature is computed as following:

Fj =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ2
i

(1)

, where ni denotes number of data points in class i, µi and σ2
i denote mean and variance

of class i corresponding to j-th feature. µ and σ are mean and variance of all data point
corresponding to j-th feature.

5.1.3 Trace Encoding

In this step, the input log is transformed into a numeric dataset, which can then be used
to train a decision tree.

Sequential Encoding. Each trace in the log is transformed into a numeric feature
vector where each element of the vector corresponds to the number of occurrences of a
pattern (taken from the list of selected features) in the trace. This is done for TR, TRA,
MR and MRA. In our evaluation, we included in this encoding also the frequency of
each individual activity (in the log alphabet Σ) in the trace. At the end of this step, the
event log is transformed into a matrix of numerical values where each row corresponds
to a trace and each column corresponds to a feature.

Declarative Encoding. Each trace in the log is transformed into a numeric feature
vector as follows:

• a feature has value -1, if the corresponding DECLARE constraint is violated in the
trace;

• a feature has value 0, if the corresponding DECLARE constraint is vacuously
satisfied in the trace;

• a feature has value n, if the corresponding DECLARE constraint is satisfied and
activated n times in the trace.

Also in this case, the event log is transformed into a matrix of numerical values where
each row corresponds to a trace and each column corresponds to a feature.

To give an example of the above encoding scheme above consider the following
example.

For instance, given a trace T = 〈a,b, c,a,b, c,d,a,b〉:

• constraint Response(a,c) is unsatisfied, due to its third activation leading to a
violation and is therefore encoded as -1;

• constraint Response(a,b) is satisfied and activated 3 times, hence it is encoded as
3;

• constraint Response(e,b) is satisfied vacuously and encoded as 0.

26

Hybrid Encoding. In the hybrid encoding, the features are selected from a common
ranking of sequential and declarative features and each trace is encoded into a numerical
feature vector as explained in the previous two paragraphs depending on whether the
feature is sequential or declarative.

5.1.4 Model Training

For each type of encoding described, a decision tree is trained 1 to both classify new
unseen traces (thus being able to evaluate the performance of the classification) and
explain the classification with explicit rules. For this reason, decision trees, which are
“white-box” classifiers are chosen.

5.1.5 Rule Extraction

From the decision tree classifier, the rules are extracted in a way that rules are corre-
sponding to the conjunction of the atomic conditions encountered in each path from
the root of the tree to the leaves labeled as deviant (or non-deviant). The conjunction
of range conditions on the same feature is simplified by merging (when possible) the
conditions and by removing subsumed conditions related to the same feature. In Fig.
8, the conjunction of the violation of a not succession constraint, the satisfaction of a
choice constraint activated up to 3 times and a MR sequence not appearing in a trace
(sequence encoded as dL8dU3_mr) characterize the trace as non-deviant. Changing the
last condition with a condition requiring the encoded MR to exist in the trace labels the
trace as deviant.

5.1.6 Application

Consider the motivating example presented in Section 4. By applying the business
process deviance mining pipeline with sequential features, analysts would get as outcome
that deviant cases are those for which the pattern 〈ER,RCR,NC〉 is repeated more than
2 times (i.e., for which the TR occurs). However, although many of the deviant cases
seem to be captured by this explanation, it is not sufficient for characterizing all of them:
the classification accuracy is not 100%.

The analysts can then try to apply the pipeline with declarative features. The
outcome, in this setting, is different: deviant cases are those for which the activity
Resolve Simple Requests is eventually followed by the activity Document Request
(i.e., for which a response(RSR, DR) occurs). Still, this explanation is not sufficient
for capturing all the deviant cases.

1In order to reduce overfitting, the max depth of the tree is fixed to 10 and the leaves of the decision
tree are forced to be of at least size 5.

27

Figure 8. Example of a decision tree

By applying the pipeline with the hybrid features, the analysts are finally able to get
the complete picture thanks to both the sequential and the declarative explanations.

The hybrid encoding allows hence analysts to realize that there are two situations in
which the process executions take longer:

• when, in case of a difficult request, more than 2 iterations are carried out with the
customer, until the customer is satisfied.

• when customer support operators procrastinate writing reports related to easy
request resolutions. Indeed, differently from unknown complex requests, for which
operators tend to complete the documentation immediately after the resolution,
reports for easy requests tend to be delayed and the requests cannot be closed
quickly.

28

5.2 Exploring Payload Features for Business Process Deviance Min-
ing

In order to evaluate the use of payload features for deviance mining, two different
methods for the extraction and the usage of data attributes of event logs are tested. The
first method considers trace control-flow and data-attributes separately. The extracted
features using the first method are referred to as Pure data features. The second method
makes use of Data-aware Declare constraints (described in Section 3.2.3), in order to
infuse data conditions into DECLARE constraints.

The pipeline starts with log preprocessing in order to remove ambiguity from having
multiple copies of same data attributes in one set of trace or event attributes. The next
step is to discover new payload features based on the methods described in the following
subsections (i.e. pure data or data-aware DECLARE features). The found features are
added to the set of features extracted in Section 5.1 before performing feature selection.
The rest of the procedure is the same as in Section 5.1: resulting features are used to
encode traces into numeric feature vectors, the feature vectors are used to train a decision
tree and rules are extracted.

5.2.1 Log preprocessing

In some logs, it could happen that the same attribute occurs multiple times with different
indexes. In order to use labelled logs for payload extraction, the problem of attributes
appearing multiple times in the same event or in the same trace, with different attributes,
has to be solved. In this case the attribute, with highest index is kept. For example, if a
trace (or an event) has attribute in a form of {age:1 = 1}, {age:2 = 2}, then the one with
largest index is kept and the other ones sharing the same prefix age are removed. In this
case, what remains is {age: = 2}.

5.2.2 Pure Data method of payload feature creation

Among the two approaches proposed for enriching the set of features with data payload
the Pure data one is the more straightforward one. The method creates new features,
by either extracting trace attributes and event attributes from payload or by the use of
meta-information (i.e. number of events in a trace), which are then encoded into numeric
vectors. Since different events along the trace can share the same attribute with different
values, i.e. the value of an attribute can evolve along events in the trace. In order to
associate a single value to a subset of values of each event attribute, either one of the
values of the attribute is picked based on its position of or an aggregated value of its
values across different events is computed.

29

Feature extraction. The first step step is to extract attributes from event logs.

Extracting payload features from trace attributes. The extraction of trace attributes
is simple - the created features correspond to attributes occuring as a trace attribute, with
each of them having the same value as in the trace (e.g. if trace has attribute Cost=30,
then the extracted feature is exactly the same). In this thesis, for payload extraction, types
String, Int, Float and Boolean were considered

Extracting payload features from event attributes. The first way of extracting event
attributes is by considering the value held by the attribute based on the position in the
trace of the event in which it occurs. This type of (position-based) feature extraction can
be applied for any type of attribute. In detail, two methods of extraction were considered:

• Choose first - The value of the feature is the first occurence of the attribute in the
trace;

• Choose last - The value of the feature is the last occurence of the attribute in the
trace.

For example consider the trace 〈a{g = 1},a{g = 2},b{g = 3}, c〉. For attribute g
and extraction-method Choose first, the selected value for g is 1, as it is the value of its
first occurence. With Choose last, the selected value for g is 3 as the value of its last
occurence.

The second way of extracting payload from event attributes is by aggregating the
values that each attribute assumes along the trace. For aggregation, four different methods
have been considered:

• Count - A new aggregated feature is created for each value the attribute takes.
Each feature has an integer value counting how many times the attribute holds that
value in a trace. This is used for attributes of type String;

• Choose max. - A new aggregated feature is created by finding the maximum value
the attribute holds in the trace. This type of extraction is used for attributes of type
Int and Float;

• Choose min. - A new aggregated feature is created by finding the minimum value
the attribute holds in the trace. This type of extraction is used for attributes of type
Int and Float;

• Compute avg. - A new aggregated feature is created by computing the average of
values the attribute holds in the trace. This type of extraction is used for attributes
of type Int and Float.

To provide examples on aggregated features, consider again the previous trace
〈a{g = 1},a{g = 2},b{g = 3}, c〉 and attribute g. If methods Choose max and
Choose min are used, then the new feature would be g=3 and g=1 respectively. If method

30

Compute avg is used, then the new feature is created by calculating the mean of all values
that attribute g takes, in this case the new feature is g = (1 + 2 + 3)/3 = 2. In order
to give an example on Count method, consider the trace 〈a{color = white},a{color =
black},b{color = white}, c〉. In this case we have an attribute named color which takes
two different values: white and black. A new feature is created for each of the unique
value. In this situation 2 new features are created. The first feature is color:white=1
and the second feature is color:black=2. The values associated to the features 1 and 2
respectively, corresponding to how many times white and black occured for the attribute
color.

Extraction of meta-information. The third way of extracting data is by taking into
consideration meta-information, which is not specifically contained within attributes
themselves. Instead, they are created for example by calculating the total time length of
a trace or the count of events in the trace. Currently one method of meta-information
extraction was considered:

• Trace length - A new feature is created by finding the number of events in a trace.

For example, if we have a trace 〈a{g = 1},a{g = 2},b{g = 3}, c〉, then with
method Trace length, the new feature would have a value of 4 corresponding to the event
count in the trace.

Trace encoding. Given Pure data features, the traces are encoded as numeric vectors
in the following way:

• resulting features created using aggregation methods (count, max, min and avg)
are all numerical features and are encoded as they are;

• trace-attributes and attributes extracted with position-based extraction method of
type Float or Int are encoded as they are;

• trace-attributes and attributes extracted with position-based extraction method of
type Boolean are encoded as 1, if the attribute value is True and 0, if attribute value
is False.

• meta-information features are numerical and are encoded as they are;
• trace-attributes and attributes extracted with position-based extraction method of

type String are encoded into numerical features by using the one-hot encoding 2.
2One-hot encoding is a method to transform categorical data into a set of numerical features. For each

unique value the categorical feature assumes, a new binary variable is created. Each binary variable is "1",
if the original categorical value corresponds to the new binary variable and "0" otherwise. e.g. categorical
feature species with unique values of "dog" and "cat", is transformed into two features species:dog and
species:cat, if the original observation was species=dog, then new feature species:dog = 1 and species:cat
= 0.

31

5.2.3 Data-aware Declare constraints

The second method to make use of data-attributes leverages Data-aware DECLARE con-
straints described in Section 3.2.3. It is often the case, that the DECLARE constraints
do not perfectly discriminate between deviant and non-deviant cases, therefore what is
done here is to try and increase the discriminative capabilities by conditioning the con-
straints on data. The pipeline for data-aware constraints starts by discovering DECLARE

constraints as discussed in Section 5.1.1, but on a more limited set of templates, where
only one parameter acts as an activation (e.g. templates shown in Table 3). The next step
is to select discriminating constraints by applying coverage feature selection described
in Section 5.1.2. The last step focuses on increasing the discriminative capabilities of
the selected DECLARE constraints by adding data conditions. The resulting Data-aware
DECLARE constraints are then used as new features.

Discovering data-condition. For each selected DECLARE constraint, we create a data-
aware constraint with the following procedure:

1. Collect the fulfilled activations for each trace;
2. Extract the data snapshot at every fulfilled activation;
3. Divide data snapshots into two sets:

• Positive sample set, if the data snapshot belongs to an activation occurring in
a deviant trace;

• Negative sample set, if the data snapshot belongs to an activation occurring
in a non-deviant trace;

4. Encode samples into numeric vectors;
5. Learn a decision tree by using numeric vectors based on data snapshots of positive

and negative samples;
6. Create data-aware DECLARE constraint by adding data condition to the input

constraint.

Data snapshot extraction procedure. Data snapshot is a collection of attributes. To
extract data snapshot given a trace and an activation, the following is done:

1. Initialize the snapshot with trace attributes;
2. For each event in the trace (in the order of appearance) until the given activation is

found:

(a) For each event attribute:
i. If attribute exists in current state of data snapshot then update the snap-

shot’s attribute value to correspond to the current one;
ii. If attribute does not exist in the data snapshot then add the attribute with

the corresponding value to the snapshot;

32

(b) Return the current state of data snapshot.

To give an example of extraction of a data snapshot, consider the following set of trace-
attributes {cost=10, color=yellow} with the following trace 〈a{color = white},a{color =
black},b{color = white}, c{cost = 5}〉. Having a constraint response(a,b), the activa-
tions in this trace would be the first activity a at the first position and second activity a
at the second position. Given the initial set of trace-attributes, the trace is traversed, en-
countering the first event a{color = white}, the state of attributes is updated to {cost=10,
color=white} and will be the resulting data snapshot for the first activation. Encountering
the second activity a{color = black}, the state of attributes is updated to {cost=10,
color=black} for the second attribute and will be the resulting data snapshot for the
second activation.

Encoding data-snapshots into numeric vectors. To train a decision tree classifier
there is a need to turn data snapshots into numeric vectors. For each fulfilled activation,
a numeric feature vector of attribute features is built, by following the procedure:

• Each attribute in the activation data snapshot is encoded as the value corresponding
to the attribute value in the snapshot (categorical values are one-hot encoded as
was done for Pure data method);

• The encoded vector has a positive label, if the activation belonged to a deviant
trace, and a negative label, if it belonged to a normal trace.

Creation of a data-aware declare constraint. Using the set of positive and negative
samples generated by encoding data-snapshots into numeric vectors, a decision tree
is trained. The trained decision tree will be the data-condition for a new data-aware
DECLARE constraint, where the initial DECLARE constraint forms the declare part of
the constraint. For example, if the initial constraint is response(a,b) and the trained
decision tree is T, then the new data-aware DECLARE constraint is response(a,b,T).
Given the decision tree, an activity a is an activation according to the new constraint
response(a,b,T), if its data snapshot encoded to a numeric vector, given as an input to
decision tree T, classifies as positive.

Encoding trace as a numeric vector using Data-aware declare constraint. Traces
are encoded as numeric vectors by checking whether the data-aware constraints extracted
from previous teps are satisfied within traces. The trace encoding scheme using a
data-aware DECLARE constraint is similar as was for DECLARE constraint, which was
described in Section 5.1.3. The difference is in that an activity is considered to be an
activation, only, if it follows the data condition.

Each trace in the log is transformed into a numeric feature vector as follows:

33

• a feature has value -1, if the corresponding data-aware DECLARE constraint is
violated in the trace;

• a feature has value 0, if the corresponding data-aware DECLARE constraint is
vacuously satisfied in the trace;

• a feature has value n, if the corresponding data-aware DECLARE constraint is
satisfied and activated n times in the trace.

For instance, given trace T = 〈a{color:white},b, c,a,b{color:black}, c,d,a,b〉,
with no initial trace attributes (data snapshot is empty at start) and a decision tree T,
which has one path, with a rule equivalent of IF (color=white) => 1, leading to a positive
label, then:

• constraint Response(a,c,T) is satisfied and activated once, and is hence encoded
as 1. First (no attribute color within snapshot) and third a (snapshot has attribute
color:black) do not follow the data condition and are therefore not activations;

• constraint Response(a,e,T) is unsatisfied, due to first a not eventually being fol-
lowed by e and is encoded as -1;

• constraint Response(d,f,T) is satisfied vacuously and encoded as 0 (d is not an
activation, because the data snapshot for it is color:black).

With a data-aware DECLARE constraint, some traces, for which the original DECLARE

constraint was not satisfied, can end up to be vacuously or non-vacuously satisfied.
Indeed, if all previously violated activations, do not satisfy the data-condition on the
activation, while at least one fulfilled activation satisfies the data-condition, the constraint
ends up being satisfied for the trace. If, instead, all the (previous activations) do not
satisfy the data condition, the constraint ends up being vacuously satisfied for the trace.

5.2.4 Application

In Section 5.1.6, by applying the process deviance mining pipeline with hybrid encodings,
analysts found that the deviant cases are the ones for which:

• the pattern 〈ER,RCR,NC〉 was repeated more than 2 times; or
• the activity RSR is eventually followed by DR.

Let us assume now that differently from from the previous scenario in Section 5.1.6 the
discerned patterns are not able to completely separate deviant from non-deviant cases.

Analysts decide to try and add additional features based on data-attributes. After
running the pipeline with the addition of data-based features, analysts found as first
cause of deviance, the same as they found without data: pattern 〈ER,RCR,NC〉 was
repeated more than 2 times. With addition Pure data features, analysts found that
process executions, where customer service language was not English, took more time,
i.e. are the deviant cases. When adding features from data-aware DECLARE constraints,

34

analysts found that data-aware DECLARE constraint response(RSR,DR, resource=D)
characterizes a deviant case better than the initial DECLARE constraint without the data
condition, which states that if RSR was performed by a specific resource group D and it
was eventually followed by DR, the execution times were longer.

Compared to only considering control-flow features, the addition of features based
on data, helped analysts to enrich and refine the deviance causes previously identified. In
total analysts were able to find 3 situations, where process executions take considerably
longer:

• when the customer service language is not English. This can be due to the lack of
specific language speaking customer service agents;

• when a customer support operators belonging to a specific resource group (resource
group D) procrastinate writing reports related to easy request resolutions;

• when, in a case of a difficult request, more than 2 iterations are carried out with
the customer.

5.3 Extraction of Results of Deviance Mining
It is important to provide analysts a good set of rules, describing the differences between
deviant and non-deviant traces. One way get the characterizing rules is to extract decision
rules from a ’white-box’ classifier like a decision tree, for which the extraction process
was described in Section 5.1.5. Extraction of rules from a decision tree is an indirect
method of rule extraction, as it first requires an already trained classifier. There are also
direct methods, which extract rules direct from the data. One of the direct methods is
RIPPER, which was introduced in Section 3.3.2.

5.3.1 Extraction of Rules

The approach for building a decision tree and extracting rules is the same as was described
in Section 5.1.

For RIPPER, the feature discovery, selection and encoding parts remain exactly the
same. In the step of model training, instead of training a decision tree classifier, the
encodings are given as an input to RIPPER. As a result of RIPPER a set of decision rules
is got as an output.

35

6 Evaluation
In this section evaluations are provided for each of the previously described experi-
mentation approaches. All the code and results for the thesis can be found at: https:
//github.com/Abercus/devianceminingthesis. The full set of results can be found
within the same repository in ExperimentResults folder, where also included are results
of measuring the metrics on training data and standard deviations for each of the metrics.

For decision trees used in the experiments, the implementation DecisionTreeClassifier
from scikit-learn [PVG+11] was used. As an implementation for RIPPER, JRip within
Weka software [HFH+09] was chosen.

6.1 Exploring Business Process Deviance with Sequential and Declar-
ative Patterns

In order to investigate the impact of different types of features (sequential, declarative
and hybrid) on their ability to accurately discriminate between non-deviant and deviant
executions of a process, an extensive evaluation was carried out. In detail the following
research questions were considered:

RQ 1. What is the best (combination of) feature type(s) on synthetic logs generated
starting from a procedural model and labeled based on control flow information?

RQ 2. What is the best (combination of) feature type(s) on synthetic logs generated
starting from a declarative model and labeled based on control flow information?

RQ 3. What is the best (combination of) feature type(s) on real-life logs labeled based on
information not related to control flow?

RQ 4. What is the best (combination of) feature type(s) on real-life logs labeled based on
control flow information?

RQ1 evaluates different types of features on synthetic logs generated starting from a
procedural model and labeled using conditions on the presence of sequential patterns
in each trace. Symmetrically, RQ2 aims at evaluating the different types of features
on synthetic logs in which a declarative model has been used for generating the log
and declarative constraints used for defining deviant and non-deviant cases. RQ3 and
RQ4, differently from the previous ones, focus on real-life logs in which deviant and
non-deviant cases have been defined based on information not related to control flow and
on the presence of a control flow pattern.

36

https://github.com/Abercus/devianceminingthesis
https://github.com/Abercus/devianceminingthesis

6.1.1 Datasets

The evaluation has been carried out using 3 different synthetic datasets3 and 7 real-life
datasets.

The first one of the 3 synthetic datesets, the X-ray dataset (SynthXRAY), has been
generated starting from a declarative model by using the MP-Declare Log Genera-
tor [SDFGM18]. Moreover, the disjunction of three Declare constraints has been used to
label each case of the log as non-deviant (if at least one of three constraints is satisfied)
or as deviant (if all the three of them are violated).

The second (SynthMR/TR) and the third (SynthMRA/TRA) synthetic datasets were
instead generated starting from a BPMN procedural model by using the procedural log
generator PLG2 [Bur16]. The datasets were labeled using procedural constraints. For
SynthMR/TR, a trace was labeled as deviant, if a sequence of events (abc) occurred at
least twice exactly in the same order (MR/TR condition). For SynthMRA/TRA, a trace
was labeled as deviant, if a sequence of events occurred 3 times in the log, but this time
the requirement of being in specific order was not required (MRA/TRA condition), e.g.,
abc, bca.

Concerning the real-life event logs, the BPI Challenge 2011 [Van11] and the Sepsis
Cases event logs [Man16] were used. The BPI Challenge 2011 log contains data about
a Dutch Academic Hospital. Each case represents the clinical history of a patient and
events in the log are enriched with data attributes describing diagnosis and treatment
received by the patient. For this log 4 different labeling criteria based on attribute values
(provided in [NDLR+14]) were used:

• case attribute Diagnosis is “cervix cancer” (BPIC2011dCC);
• case attribute Treatment code is “101” (BPIC2011t101);
• case attribute Diagnosis code is “M13” (BPIC2011m13);
• case attribute Diagnosis code is “M16” (BPIC2011m16).

The Sepsis event log collects cases of patients with symptoms of a sepsis condition
from a Dutch hospital. The Sepsis log was labeled based on 3 different criteria: one
based on procedural patterns (SepsisProc), one based on declarative patterns (SepsisDecl)
and a third one based on temporal aspects (SepsisER)

• event sequence NC-Leucocytes-CRP exists in trace (SepsisProc);
• constraints Response:(IV Antibiotics, Leucocytes), Response:(LacticAcid, IV An-

tibiotics) and Response:(ER Triage, CRP) are non-vacuously fulfilled at the same
time (SepsisDecl);

• the patient returned to emergency room within 28 days after being released
(SepsisER).

3The models used for generating the synthetic event logs and the criteria used for labeling them in
terms of deviant or non-deviant cases are available at https://www.dropbox.com/s/wbx9vjlzdro00ej/
devianceMining2019Models.zip?dl=0.

37

https://www.dropbox.com/s/wbx9vjlzdro00ej/devianceMining2019Models.zip?dl=0
https://www.dropbox.com/s/wbx9vjlzdro00ej/devianceMining2019Models.zip?dl=0

Table 4. Overview of the datasets used in the evaluation

Dataset Number of Number of Number of Avg. trace Labeling
cases deviant cases non-deviant cases length type

SynthXRAY 1000 150 850 17 Declarative
SynthMR/TR 2517 839 1678 12 Procedural
SynthMRA/TRA 1452 484 968 19 Procedural
BPIC2011dCC 1143 277 866 131 Attribute
BPIC2011 t101 1143 368 775 131 Attribute
BPIC2011m13 1143 235 908 131 Attribute
BPIC2011m16 1143 476 667 131 Attribute
SepsisER 1050 113 937 14 Temporal
SepsisProc 1050 318 732 14 Procedural
SepsisDecl 1050 365 685 14 Declarative

Figure 9. Cross-validation pipeline

Table 4 provides an overview of the size of all the datasets used in the evaluation.
For each event log and each labeling criteria, we report the total number of cases in
the log, the number of deviant and non-deviant cases based on the labeling criteria, the
average trace length and the type of labeling used, i.e., declarative, procedural, temporal
or attribute-based.

6.1.2 Procedure

In order to evaluate and compare the different feature types on their ability to discriminate
between deviant and non-deviant cases, we measured and compared the performance
of a classifier, trained with labeled data encoded based on different feature types, in
classifying new unseen execution traces as deviant or non deviant. The encodings we
used are Individual Activities (IA), Declare, IA+TR, IA+TRA, IA+MR, IA+MRA and
Hybrid. Figure 9 summarizes the procedure carried out. For each event log and labeling
criteria, we carried out a 5-fold cross-validation 4 on the labeled event log so that, for
each step of the cross-validation, for each encoding and for each coverage thresholds
(used are 5, 15 and 25), we apply the following procedure:

1. event log is split into two sets: 80% training data and 20% testing data;

4cross-validation is a technique for assessing how classifiers perform on previously unseen samples.

38

Figure 10. Synthetic dataset X-ray results

2. features are discovered and selected (for selection coverage method was used) on
training data;

3. training data and test data is encoded according to the feature type (for declare the
original encoding scheme was used);

4. classifier is trained with (the decision tree) encoded training data;
5. three commonly used metrics aiming at evaluating of the classifier on the testing

data are computed.

At the end, for each of the three metrics, the average of the 5-fold iterations is computed.
In detail, we measured accuracy, AUC (Area Under The Curve) ROC (Receiving

Operating Characteristics) curve and F1 score. For accuracy the following standard
formula was used tp+tn

tp+tn+fp+fn
, where tp is the number of true positives, tn is the number

of true negatives and fp and fn respectively stand for false positives and false negatives.
F1-score, which is the harmonic mean of precision and recall, is defined as F1 =
2 · precision·recall

precision+recall
, where recall is defined as recall = tp

tp+fn
and precision as precision =

tp
tp+fp

. Precision corresponds to the fraction of all positively classified samples, for
which the ground truth is also positive. Recall corresponds to the fraction of how many
positive samples were classified as positive over the set of all positive samples. AUC
ROC curve, when using normalized units, is equal to the probability that the classifier
ranks randomly chosen positive observation higher than a randomly chosen negative
observation [Faw06].

6.1.3 Results

Figure 10 plots the results related to the experiments carried out on the SynthXRAY

dataset, i.e., the dataset built and labeled starting from a declarative specification, with
different (combinations of) feature types and for different coverage threshold values.
The plot shows that, as expected, the declarative and the hybrid features overcome the
individual activity and the sequential encodings on all the three metrics and for all

39

(a) Synthetic MR/TR dataset results

(b) Synthetic MRA/TRA dataset results

Figure 11. Synthetic procedural dataset results

the coverage threshold values. This analysis suggests that for “declarative” event logs,
i.e., event logs generated from a declarative model and in which deviant cases can be
described in terms of non-sequential patterns, the best types of features to be used for
encoding traces are those belonging to the declarative family or including also declarative
patterns, i.e., hybrid ones (RQ1). Moreover, by inspecting the plot, we can also observe
that for higher coverage threshold values, i.e., 15 and 25, we overall get more accurate
results.

Figure 11a and 11b report the plot of the classification results related to the SynthMR/TR

and the SynthMRA/TRA dataset, respectively, i.e., the two synthetic datasets built and
labeled starting from a procedural model. As expected, in both cases the sequential
and the hybrid approaches outperform the IA and the declarative ones. In detail, in the
SynthMR/TR, all the sequential features (IA+TR, IA+TRA, IA+MR and IA+MRA) are
able to achieve very good results (with accuracy and F1-measure close to 1) for all the
coverage threshold values. For SynthMRA/TRA, instead, the best results are achieved
by the alphabet-based (and the hybrid) feature types. This is reasonable by taking into
account how the dataset has been built. It is important to note that also with procedural-

40

generated and labeled synthetic event logs, hybrid feature type is able to best discriminate
between deviant and non-deviant cases (RQ2).

Figure 12 reports the plots related to the BPI2011 dataset, where an attribute-based
labeling had been applied. For BPI2011dcc (Fig. 12a) all the accuracy and AUC measures
were between 0.7-0.8, but F1-measure was close to or under 0.4, which indicates that
labeling does not necessarily depend on the control-flow. The best results for BPI2011dcc

results were achieved by using hybrid encoding with coverage threshold of 25. Indi-
vidually declarative and IA+TRA with threshold of 25 had the best results. For log
BPI2011m13 (Fig. 12b) sequential encoding IA + TR with coverage threshold 15 gave
the best results, with hybrid encoding with same coverage close to it. In results for log
BPI2011m16 (Fig. 12c), the results using all encodings were pretty close, with IA+MRA
and Declare encodings with a coverage threshold 25 giving best results and the results
for hybrid encoding closely behind. For log BPI2011t101 (Fig. 12d), the deviance cause
was grasped by hybrid and declarative encodings. With accuracy around 0.84, AUC 0.87
and F1-measure around 0.86, it suggests that for BPI2011t101 the attribute labeling is
pretty well explainable by the use of control-flow features. Overall, however, we can
observe that with attribute-based labelling on real-life logs the hybrid encoding mostly
provides the best or close to the best results compared with other encodings (RQ3).

Finally, Figure 13 reports the plot with the results related to the Sepsis dataset
labeled with procedural, declarative and temporal labeling. The figures show that with
a sequential labeling, the sequential and hybrid features work better than declarative.
Viceversa, with a declarative labeling declarative and hybrid features perform better than
sequential. When, instead, the log is labeled with temporal conditions, there is no clear
trend. However, on all labelings, for at least one of the coverage thresholds, the models
built using the hybrid encoding were able to perform as well as the models built with the
best one of the other encodings (RQ4).

41

(a) Results of experiments on BPI2011dCC dataset.

(b) Results of experiments on BPI2011m13 dataset

(c) Results of experiments on BPI2011m16 dataset.

(d) Results of experiments on BPI2011t101 dataset.

Figure 12. BPI2011 dataset results

42

(a) Results of experiments on SepsisProc dataset

(b) Results of experiments on SepsisDecl dataset

(c) Results of experiments on SepsisER dataset

Figure 13. Sepsis dataset results

43

6.2 Exploring Payload Features for Business Process Deviance Min-
ing

In order to explore whether the approaches for extracting and encoding data-attributes
improve classifier’s performance, a set of evaluations was performed and performance
measures collected before and after the addition of features based on payload.

RQ 5. Does adding payload features improve the performance of deviance mining with
sequential encodings on real-life logs?

RQ 6. Does adding payload features improve the performance of deviance mining with
declarative encodings on real life logs?

RQ 7. Does adding payload features improve the performance of deviance mining with
declarative encodings on real life logs?

RQ 8. What is the best combination of encodings amongst sequential (TR, MR, MRA,
TRA), Declare and Hybrid with added payload features?

6.2.1 Datasets

The event logs used for experimentation on payload features were the same as in Sec-
tion 6.1.1, but with synthetic event logs excluded. Synthetic logs are left out, because
those logs do not contain informative data payload for investigation. The logs were
BPIC2011dCC , BPIC2011m13, BPIC2011m16, BPIC2011t101 and SepsisER.

Before extracting payload features from the event logs, all data-attributes used in
the process of labeling the traces were removed. For BPI2011 datasets this includes
the removal of all Diagnosis, Diagnosis code, Treatment code and similar attributes,
based on which the traces were labeled on. Since SepsisER was labeled on a temporal
condition, it did not require the removal of any data-attributes.

6.2.2 Procedure

The procedure carried out to see, if the addition of features based on Pure data or data-
aware DECLARE constraints improves the capability of discriminating between deviant
and non-deviant cases, is done similarly as was done in Section 6.1.2. The main differ-
ence comes from the addition of features based on data-attributes. For experimenting
with Pure data features, the following encodings were used Individual Activities (IA) +
Pure Data (PD), Declare+PD, IA+TR+PD, IA+TRA+PD, IA+MR+PD, IA+MRA+PD,
Hybrid+PD. For experimenting with features on Data-aware DECLARE constraints (DAC)
the encodings used were Declare+DAC, Hybrid+DAC. Additionally, experiments were
carried out by adding both payload feature types and using a combination of the encod-
ings: Declare+PD+DAC and Hybrid+PD+DAC. For the results obtained without using
data-payload attributes, used for comparison purposes, the same set of experiments was

44

carried out using encodings: IA, Declare, IA+TR, IA+TRA, IA+MR, IA+MRA and
Hybrid.

Choice of attributes. In the feature extraction phase, attributes concept:name, lifecy-
cle:transition and Label were ignored. The attribute concept:name was ignored due to
each trace having a unique name and using concept:name would be the same as using
encoding IA as it is the name of an activity. The attribute Label was ignored, because it
is a standard attribute used for naming traces and events. Missing values were handled in
both logs by setting missing String value as "missing", Int and Float values as "0" and
Boolean as "false".

Pure data extraction methods. The following Pure data payload extraction methods
(see Section 5.2.2) were used for BPI2011 logs:

• on event attributes org:group, org:section, Producer code and Specialism code
aggregated features were created by using method Count;

• the position-based method Choose first was used for all other event attributes
(encodings depend on the attribute type);

• trace attributes, which were not ignored (see above in Choice of attributes), were
extracted as they were (e.g age) and the way of encoding depended on the attribute
type;

• a meta-information feature was created by using the method Length.

For SepsisER the following Pure data feature extraction methods were used:

• on event attribute org:group an aggregated feature was created by using method
Count;

• position-based method Choose first was used for all other event attributes (encod-
ings depend on the attribute type);

• trace attributes, which were not ignored (see above in Choice of attributes), were
extracted as they were and the way of encoding depended on the attribute type;

• a meta-information feature was created by using the method Length.

Data-aware declare constraint feature extraction. Creating features using data-
aware DECLARE constraints does not require as much configuration as when using
features based on Pure data. What suffices is the set of ignored attributes as given
previously in Choice of attributes.

As done in Section 6.1.2, a 5-fold cross validation on the labeled logs was carried out
and the same set of metrics were computed.

45

6.2.3 Results

Following, we report the results on experiments with the addition of data payload features.

Sequential encoding.

The plots in Figures 14b, 15b, 16b, 17b and 18b report accuracy, AUC and F1
measures for the BPI2011dCC , BPI2011m13, BPI2011dCC , BPI2011m16, BPI2011t101

and SepsisER, on sequential features with and without the features of the Pure data
payload, respectively.

Results plotted in Figure 14a show that with dataset BPI2011dCC , the addition of Pure
data (PD) features to sequential encodings brings a considerable increase in accuracy,
AUC and F1 metrics. The same can also be seen to happen in Figure 15a for dataset
BPI2011m13 and in Figure 17a for BPI2011t101.

For BPI2011m16 dataset (Figure 16a), the addition of Pure data to sequential encod-
ings did not have much of effect as for the other BPI2011 logs. However looking at a
single metric at a time, it can be seen that the features leading to the best F1-measure
were IA+TR+PD (coverages 15 and 25), for AUC metric the best combination was
IA+MR+PD (coverage 5) and the best for the accuracy was IA+TR+PD (coverages 15
and 25).

On SepsisER log (Figure 18a), the addition of Pure data to sequential encodings,
brought a small increase in AUC, but a decrease in F1-measure.

These experiments show that for some labelings, the addition of Pure data features
to sequential features, can increase the performance metrics of the deviance mining
approach. However, there are also logs, where the addition of data features to sequential
brings no or only a small increase in one of the metrics, while a considerable decrease in
one or several others. This can be due to a only a small or a lack of correlation between
the labeling of a log and the data (RQ 5).

Declarative encoding.

The plots in Figures 14b, 15b, 16b, 17b and 18b report accuracy, AUC and F1
measures for the BPI2011dCC , BPI2011m13, BPI2011dCC , BPI2011m16, BPI2011t101

and SepsisER, on declarative features with and without the features of the Pure data,
Data-aware declare or the combination, respectively.

For dataset BPI2011dCC (Fig. 14b), the highest accuracy and F1-measure was
achieved with Declare+PD+DAC (coverage 25). Highest AUC was achieved with
Declare+DAC on coverage 15.

On dataset BPI2011m13 (Fig. 15b), the best results were achieved with Declare+PD
to Declare. Declare+DAC and Declare+PD+DAC, also performed better than Declare,
with the exception of coverage 5, where Declare had a higher AUC.

46

Results on BPI2011m16 (Fig. 16b) are similar to the ones for BPI2011m13, with
Declare+PD giving the best results. Declare+DAC and Declare+PD+DAC also gave
better results on all metrics compared to Declare, this time without any exception. For
BPI2011t101 (Fig. 17b), Declare+PD+DAC and Declare+DAC performed the best, with
the best achieved with coverage threshold of 15.

The results obtained for SepsisER (Fig. 18b) for different coverages were not as
stable as for BPI2011 log, features Declare and Declare+PD for coverage 5, resulting
in a considerably lower F1 compared to other coverage thresholds. With coverage 15,
the best result in accuracy and F1 was with Declare+PD, highest AUC with Declare. On
coverage 25, the best results were given with Declare+DAC.

In terms of adding payload features to declarative features, there is no clear an-
swer in what always works the best but is dependent on the log. As an example,
Declare+PD+DAC had highest F1-measure for BPI2011dCC , while the highest AUC
was achieve with Declare+DAC. For BPI2011m13, the best results were achieved with
Declare+DAC and for BPI2011m13 by Declare+PD. In SepsisER, the results were even
more unstable, as with some coverage best result being Declare+DAC and in other
Declare+PD. However, in most of the experimented cases the the performance of the
deviance mining approach improved with at least one of the added payload features.
As previously, the lack of improvement from data can be due to a lack of correlation
between the data and the labeling (RQ 6).

Hybrid encoding.

The plots in Figures 14c, 15c, 16c, 17c and 18c report accuracy, AUC and F1
measures for the BPI2011dCC , BPI2011m13, BPI2011dCC , BPI2011m16, BPI2011t101

and SepsisER, on hybrid features with and without the features of the Pure data, Data-
aware declare or the combination, respectively.

With dataset BPI2011dCC (Fig. 14c) best results in terms of F-measure were achieved
by Hybrid+DAC and Hybrid+PD+DAC (coverages 15 and 25). Highest AUC was
achieved with Hybrid+PD with coverage of 25 and best accuracies with Hybrid+Data
with coverages 15 and 25.

On dataset BPI2011m13 (Fig. 15c), highest F-measure, AUC and accuracy were all
achieved with Hybrid+PD over all coverages, with coverage 25 giving the best.

Results on BPI2011m16 (Fig. 16c) again, show results similar to those of BPI2011m13,
with Hybrid+PD giving the best results with all coverages and coverage 25 giving the
best.

For BPI2011t101 (Fig. 17c), Hybrid+DAC and Hybrid+PD+DAC gave the best results
in terms of all metrics, with coverage 15 working the best.

On SepsisER (Fig. 18c), the addition of data payload features to hybrid encodings,
did not increase the performance metrics. However, the obtained performance metrics

47

are quite close with and without the data payload encoding. This can be due to a small or
no correlation between the data payload and the labeling of a log. The best F1-measure
is achieved with a coverage of 25 and with Hybrid, Hybrid+PD, Hybrid+PD+DAC, with
Hybrid+DAC close. Best AUC and accuracy were achieved with a coverage of 5 and
encodings Hybrid and Hybrid+PD.

From the results of experiments with the payload addition to Hybrid model, on
BPI2011 logs, we can assess that the payload addition increased the performance of the
deviance mining approach, while on SepsisER log the addition of data to hybrid model
did not add any extra value, which can be due to a lack of signal from data (RQ 7).

Comparison of all encodings.

The plots in Figures 14d, 15d, 16d, 17d and 18d report accuracy, AUC and F1
measures for the BPI2011dCC , BPI2011m13, BPI2011dCC , BPI2011m16, BPI2011t101

and SepsisER, on sequential features with added Pure data features, declarative and
hybrid features with and without the features of the Pure data, Data-aware declare or
the combination, respectively.

With dataset BPI2011dCC (Fig. 14d), the best combination of encodings was based
on sequential enicoding and , more specifically IA+TR+PD and IA+TRA+PD. Both have
a close results in terms of accuracy and AUC. The highest F1 resulted from IA+TRA+PD,
with IA+TR+PD close to it.

On dataset BPI2011m13 (Fig. 15d), the best results in terms of all metrics, AUC,
F-measure and accuracy, were achieved with Declare+PD and Hybrid+PD.

For dataset BPI2011m16 (Fig. 16d), the best combination with added payload features,
was based on sequential patterns. More specfically IA+TR+PD performed best in terms
of accuracy and F1, while IA+MR+PD resulted in the highest AUC.

For BPI2011t101 (Fig. 17d), the encodings based on sequential features together with
payload features, got the highest results in all three measures.

On SepsisER (Fig. 18c), the highest results in terms of F-measure and accuracy, re-
sulted from Declare+PD. Highest accuracy was got as a result of the sequential encoding
IA+MR+PD.

Having the results on all encodings and datasets, there is no clear winner in terms
of the best combination of encoding with data payload features. The choice of the best
combination varies depending on the dataset, labeling and on the chosen metrics. In
general, the impact of the payload is related to the correlation between the data and the
labeling of a log (RQ 8).

48

(a) Results with added payload features to baseline and sequential features on BPI2011dCC

dataset.

(b) Results with added payload to declarative features on BPI2011dCC dataset.

(c) Results with added payload to hybrid model on BPI2011dCC dataset.

49

(d) Comparative results of all payload additions on BPI2011dCC dataset.

Figure 14. BPI2011dcc dataset payload results

(a) Results with added payload features to baseline and sequential features on BPI2011m13

dataset.

(b) Results with added payload to declarative features on BPI2011m13 dataset.

50

(c) Results with added payload to hybrid model on BPI2011m13 dataset.

(d) Comparative results of all payload additions on BPI2011m13 dataset.

Figure 15. BPI2011m13 dataset payload results

(a) Results with added payload features to baseline and sequential features on BPI2011m16

dataset.

51

(b) Results with added payload to declarative features on BPI2011m16 dataset.

(c) Results with added payload to hybrid model on BPI2011m16 dataset.

(d) Comparative results of all payload additions on BPI2011m16 dataset.

Figure 16. BPI2011m16 dataset payload results

52

(a) Results with added payload features to baseline and sequential features on BPI2011t101
dataset.

(b) Results with added payload to declarative features on BPI2011t101 dataset.

(c) Results with added payload to hybrid model on BPI2011t101 dataset.

53

(d) Comparative results of all payload additions on BPI2011t101 dataset.

Figure 17. BPI2011t101 dataset payload results

(a) Results with added payload features to baseline and sequential features on SepsisER dataset.

(b) Results with added payload to declarative features on SepsisER dataset.

54

(c) Results with added payload to hybrid model on SepsisER dataset.

(d) Comparative results of all payload additions on SepsisER dataset.

Figure 18. SepsisER dataset payload results

55

6.3 Extraction of Results of Deviance Mining
The goal of the experiments was to compare deviance characterization capabilities of
decision trees and RIPPER by comparing them in performance measures of classification
and by looking at the complexity of output rules. The goodness of the extracted rules was
then measured by looking at different performance measures of the classifier, such as
accuracy, recall, precision, F1-score and AUC. As a measure of complexity for the rules,
what was measured and compared, was the size of the output ruleset and the average
length of the rules within the ruleset.

In detail, we are interested to investigate the following two research questions:

RQ 9. Are RIPPER classification accuracy metrics in line with decision trees?
RQ 10. Does RIPPER provide more compact explantions (i.e. less and shorter decision

rules) to explain deviances than the ones extracted from decision trees?

6.3.1 Datasets

Datasets BPIC2011dCC , BPIC2011m13, BPIC2011m16 and BPIC2011t101 were used. For
the selected datasets, same attributes were removed as was done for payload experiments
in Section 6.2.1.

6.3.2 Procedure

The chosen set of encodings for the experiments were control-flow based encodings
with Pure data features. The experimented encodings were IA+PD, MR+PD, MRA+PD,
TR+PD, TRA+PD and Hybrid+PD.

The experiments were performed similarly as in Section 6.1.2 using decision trees5

and other using RIPPER6 as classifier. Differently from previous experiments, the
resulting rules from decision trees and RIPPER were collected.

Therefore, on labeled event log, for each classification method (decision tree and
RIPPER), for each encoding, for each coverage threshold (5, 15, 25) and for each step of
5-fold cross-validation, the following procedure was carried out:

1. event log is split into two sets: 80% training data and 20% testing data;
2. features are discovered and selected (using coverage method for selection) on

training data;
3. training data and test data is encoded according to the feature type (for declare the

original encoding scheme was used);
4. classifier is trained with encoded training data;

5The max depth of the tree was fixed to 10 and the leaves of the decision tree were forced to be of at
least size 5.

6The number of optimization steps is set to 2.

56

5. five metrics aiming at evaluating the classifier on the testing data are computed;
6. decision rules are extracted from the classifier and two metrics computed on the

extracted rules.

At the end, the average of the 5-fold iterations is computed for all metrics separately for
each classification method, encoding and coverage threshold.

Classification performance is compared by using accuracy, AUC, F1-score, recall
and precision, which were described in Section 5.1.5. The compactness of the deviance
explanations was instead measured by means of two metrics: rule length and ruleset size.
Rule length is number of conditions in a specific rule. For example if a decision rule is
(A>0)&(B<0) => 1 (if A is greater than 0 and B is smaller than 0, then classify as 1),
then the rule length is 2. Ruleset size is the number of rules in resulting decision rule set.
If there are 3 rules returned after extracting them from a decision tree or as a result from
RIPPER, then the ruleset size is 3.

6.3.3 Results

The results of experiments carried out on dataset BPI2011dCC are plotted in Figure
19, showing that with some exceptions (declare and hybrid with coverage 5, IA with
coverage 25, IA+TRA with coverage 15), decision trees (DT) and RIPPER are similar in
terms of classification performance metrics. In some cases RIPPER did better in terms of
F-measure, but in a few exceptional cases failed in finding a good set of rules (listed as
exceptions before), resulting in lower averages. In the case of AUC, RIPPER has slightly
worse results compared to DT. For several encodings, RIPPER and DT had close F1, but
with RIPPER having higher precision and lower recall.

Figure 20 plots the results on dataset BPI2011m13, where DT and RIPPER again have
similar classification metrics. In this case RIPPER also resulted in higher F1 for most of
the encodings, but a smaller AUC. Is is also noticeable, that in most cases RIPPER has
higher precision, but comparable or lower recall. For dataset BPI2011m16, with results
plotted in Figure 21, the results were analogous.

On dataset BPI2011t101 (Figure 22), the results of RIPPER and DT were also pretty
similar, with RIPPER having comparable or higher F1 and lower AUC compared to DT.

In comparison between RIPPER and decision trees, RIPPER often resulted in higher
F1-measures but in a lower AUC. In some of the experiments, with some of the encodings,
using RIPPER resulted with a higher precision, but with a similar or a lower recall,
showing a probable tradeoff between recall and precision. It has to be noted though, that
in the experiments, decision trees were fixed to a specific set of hyperparameters, and the
results on decision trees might change with a change of parameters (RQ 9).

Figures 23a, 23b, 23c and 23d, plot results related to the extracted average length of
rules and sizes of extracted rules for each encoding. In all the experiments, the RIPPER
provided considerably less and shorter rules compared to those extracted from decision

57

trees. (RQ10).
However, it is possible to get shorter and fewer rules by changing hyperparameters of

decision trees. Limiting the maximum depth would also limit the length of rules and the
count of output rules. Another explanation for the length differences of decision rules is
due to differing natures of decision trees and RIPPER algorithm. Decision trees work in a
greedy manner by recursively splitting observations into two sets, which at each decision
split maximize some measure (e.g. information gain). Due to this, when extracting the
rules, all the conditions, which are deeper in the decision tree, also include the conditions
upwards the path to the root. RIPPER instead as an instance of sequential covering
algorithms, builds one rule at a time, trying to cover as many positive observations and
as little negative observations as possible. Having a fixed set of hyperparameters can
therefore be seen as a threat to validity for this set of experiments.

As an example of rules retrieved using RIPPER and Hybrid+PD for bpi2011m13
dataset:

(trace:Age|first|discrete <= 56)
and (response:(First outpatient consultation,

uterus - carc. cervical acc. werthei) >= 0)
and (choice:(squamous cell carcinoma using eia,

outpatient follow-up consultation) <= 2)
and (alternate_precedence:(administrative fee the first pol,

outpatient follow-up consultation) >= 0)
=> Label=1 (69.0/4.0)

(choice:(squamous cell carcinoma using eia, assumption laboratory) <= 1)
and (trace:Age|first|discrete <= 56)
=> Label=1 (224.0/99.0)

=> Label=0 (621.0/104.0)

An example of a single rule extracted from a decision tree with the same dataset and
encodings:

(trace:Age|first|discrete <= 54.5)
and (responded_existence:(ca-125 using meia,

squamous cell carcinoma using eia) > -0.5)
and (responded_existence:(administrative fee - the first pol,

order rate) <= 3.5)
and (trace:Age|first|discrete > 45.5)
and (not_succession:(thorax. echo kidney-urinary tract) <= 0.5)
and (responded_existence:(squamous cell carcinoma using eia,

histological examination - biopsies nno) <= -0.5)
=> Label=1 (15.0/0.0)

58

(a) JRip and DT: IA, Declare and hybrid + Pure data on BPI2011dCC dataset.

(b) JRip and DT: seq. features + Pure data on BPI2011dCC dataset.
Figure 19. JRip and DecisionTree results on BPI2011dCC dataset.

(a) JRip and DT: IA, Declare and hybrid + Pure data on BPI2011m13 dataset.

(b) JRip and DT: seq. features + Pure data on BPI2011m13 dataset.
Figure 20. JRip and DecisionTree results on BPI2011m13 dataset.

59

(a) JRip and DT: IA, Declare and hybrid + Pure data on BPI2011m16 dataset.

(b) JRip and DT: seq. features + Pure data on BPI2011m16 dataset.
Figure 21. JRip and DecisionTreeClassifier results on BPI2011m16 dataset.

(a) JRip and DT: IA, Declare and hybrid + Pure data on BPI2011t101 dataset.

(b) JRip and DT: seq. features + Pure data on BPI2011t101 dataset.
Figure 22. JRip and DecisionTreeClassifier results on BPI2011t101 dataset.

60

(a) JRip and DT: Comparing count of rules and rule length on BPI2011dCC dataset.

(b) JRip and DT: Comparing count of rules and rule length on BPI2011m13 dataset.

(c) JRip and DT: Comparing count of rules and rule length on BPI2011m16 dataset.

(d) JRip and DT: Comparing count of rules and rule length on BPI2011t101 dataset.
Figure 23. Comparison of rule lengths and ruleset sizes of JRip and DecisionTree on BPI2011
dataset.

61

7 Conclusions
This thesis has focused on approaches for uncovering and explaining (positive and
negative) deviances in business process execution traces. In detail, three different aspects
have been investigated.

Firstly, different types of features were explored, ranging from sequential to declar-
ative, up to hybrid ones for explaining deviances. Proposed features were applied to
different synthetic and real-life logs, by showing advantages and limits of each of them.
Overall, the conclusion was that hybrid encoding is preferable independently of the
nature of the process and of the labeling.

Secondly, the thesis investigated the impact of data (together with declarative and
sequential features) on the capability of existing techniques to explain process execution
deviances. Payload was included by a more straightforward attribute extraction and
aggregation method called Pure data method and by discovery of data-aware DECLARE

constraints. Results showed that the addition of payload features can increase the perfor-
mance of deviance mining approach. However, the impact of different payload features
depends on the characteristics of the log and its labeling. The lack of improvement in
performance can be due to a small or no correlation between the data and the labeling
of a log. If there is no correlation between the data and the labeling of a log, then the
addition of features based on data will not help in increasing the performance.

Thirdly, this thesis took a look at different final outcomes of business process deviance
mining process returned to the user. More concretely, two different classifiers were
evaluated (RIPPER and decision trees) in the pipeline of business process deviance
mining approaches and compared them using classification performance metrics such as
accuracy, AUC, F1-measure, and in terms of amount and length of returned decision rules.
Results show that the classification performance results of RIPPER and decision trees are
in line, while RIPPER provided shorter and less rules compared to those extracted from
decision trees. The results suggest that using RIPPER, a variant of sequential covering
methods, as a classifier for business process deviance mining is a good alternative to
decision trees when requiring more compact explanations in the form of decision rules.

For future work, there are several possible directions to go and ways to improve
the present work. One of the possible improvements would be to try out more feature
selection methods to find better alternatives to the currently used coverage method. To
further the effectiveness of data payload, the Pure data approach could be improved by
considering more features, especially features considering meta-information, with one
possibility being a feature corresponding to the total time length of a trace. In order to
assess the understandability of the returned rules, an empirical study could be carried
out on human subjects for assessing whether more compact rules are actually more
understandable.

In order to ease the finding of the best possible explanations, the hyperparameter
search should be done automatically (e.g. search of coverage, maximum tree depths) to

62

get the best explanations for a desired metric. For improvement to research in business
process deviance mining, the creation of more concrete benchmarks for comparison of
approaches is important.

Another possible direction would be to try out model-agnostic methods for describing
the important features in classification process, which could allow the use of more
complex and powerful models.

63

References
[Alp14] E. Alpaydin. Introduction to Machine Learning. Adaptive Computation

and Machine Learning series. MIT Press, 2014.

[AS] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association
Rules. In VLDB 1994, pages 487–499.

[BCDFM14] Mario Bernardi, Marta Cimitile, Chiara Di Francescomarino, and Fabrizio
Maggi. Using discriminative rule mining to discover declarative process
models with non-atomic activities. volume 8620, 08 2014.

[Bur16] Andrea Burattin. PLG2: multiperspective process randomization with
online and offline simulations. In BPM Demo Track 2016, pages 1–6,
2016.

[Bv13] R. P. J. C. Bose and W. M. P. van der Aalst. Discovering signature patterns
from event logs. In 2013 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pages 111–118, April 2013.

[BvdA09] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Abstractions
in process mining: A taxonomy of patterns. In BPM, volume 5701 of
Lecture Notes in Computer Science, pages 159–175. Springer, 2009.

[BvdA13] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Discovering
signature patterns from event logs. In CIDM, pages 111–118. IEEE, 2013.

[CFGP15] Alfredo Cuzzocrea, Francesco Folino, Massimo Guarascio, and Luigi
Pontieri. A multi-view learning approach to the discovery of deviant
process instances. In OTM 2015 Conferences, pages 146–165. Springer
International Publishing, 2015.

[CFGP16] Alfredo Cuzzocrea, Francesco Folino, Massimo Guarascio, and Luigi
Pontieri. A multi-view multi-dimensional ensemble learning approach to
mining business process deviances. In IJCNN 2016, pages 3809–3816,
2016.

[CFGP17] Alfredo Cuzzocrea, Francesco Folino, Massimo Guarascio, and Luigi
Pontieri. Extensions, analysis and experimental assessment of a proba-
bilistic ensemble-learning framework for detecting deviances in business
process instances. In ICEIS 2017, pages 162–173, 2017.

[CHX11] Ning Chen, Steven C. H. Hoi, and Xiaokui Xiao. Software process eval-
uation: A machine learning approach. In Proceedings of the 2011 26th

64

IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’11, pages 333–342. IEEE Computer Society, 2011.

[Coh95] William W. Cohen. Fast effective rule induction. In In Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123.
Morgan Kaufmann, 1995.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifica-
tion. Wiley, New York, 2 edition, 2001.

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern Recognition
Letters, 27(8):861 – 874, 2006. ROC Analysis in Pattern Recognition.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: an
update. SIGKDD Explorations, 11(1):10–18, 2009.

[Jar16] J. Jarabek. Exploring business process Deviance with Declare. Master’s
thesis, UT, 2016.

[KV99] Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal
model checking. In CHARME 1999, volume 1703, pages 82–96, 1999.

[LKL07] David Lo, Siau-Cheng Khoo, and Chao Liu. Efficient mining of iterative
patterns for software specification discovery. In 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’07, pages 460–469, 2007.

[LRW13] Geetika T. Lakshmanan, Szabolcs Rozsnyai, and Fei Wang. Investigating
clinical care pathways correlated with outcomes. In Florian Daniel, Jian-
min Wang, and Barbara Weber, editors, Business Process Management,
pages 323–338, 2013.

[Man16] Mannhardt, F. (Felix). Sepsis cases - event log, 2016.

[MBvdA12] Fabrizio M. Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der
Aalst. Efficient discovery of understandable declarative process models
from event logs. In Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, and
Stanislaw Wrycza, editors, Advanced Information Systems Engineering,
pages 270–285, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[MCMM13] Marco Montali, Federico Chesani, Paola Mello, and Fabrizio M. Maggi.
Towards data-aware constraints in declare. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, pages 1391–
1396, New York, NY, USA, 2013. ACM.

65

[MDGBM13] Fabrizio Maria Maggi, Marlon Dumas, Luciano García-Bañuelos, and
Marco Montali. Discovering data-aware declarative process models from
event logs. In Florian Daniel, Jianmin Wang, and Barbara Weber, editors,
Business Process Management, pages 81–96, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[MMv11] F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst. User-guided
discovery of declarative process models. In 2011 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pages 192–199,
April 2011.

[Mol19] Christoph Molnar. Interpretable Machine Learning. 2019. https:
//christophm.github.io/interpretable-ml-book/.

[MPv+10] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani,
Paola Mello, and Sergio Storari. Declarative Specification and Verification
of Service Choreographies. ACM Transactions on the Web, 4(1), 2010.

[NDLR+14] Hoang Nguyen, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi,
and Suriadi Suriadi. Mining business process deviance: A quest for
accuracy. In On the Move to Meaningful Internet Systems: OTM 2014
Conferences, pages 436–445. Springer Berlin Heidelberg, 2014.

[NDR+16] Hoang Nguyen, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi,
and Suriadi Suriadi. Business process deviance mining: Review and
evaluation. CoRR, abs/1608.08252, 2016.

[Pes08] M. Pesic. Constraint-Based Workflow Management Systems: Shifting
Control to Users. PhD thesis, TU/e, 2008.

[PSv07] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. Declare: Full
support for loosely-structured processes. In 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007),
pages 287–287, Oct 2007.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[PWS+15] Andrew Partington, Moe Thandar Wynn, Suriadi Suriadi, Chun Ouyang,
and Jonathan Karnon. Process mining for clinical processes: A compara-
tive analysis of four australian hospitals. ACM Trans. Management Inf.
Syst., 5(4):19:1–19:18, 2015.

66

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

[Qui95] J.R. Quinlan. Mdl and categorical theories (continued). In Armand
Prieditis and Stuart Russell, editors, Machine Learning Proceedings 1995,
pages 464 – 470. Morgan Kaufmann, San Francisco (CA), 1995.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2nd Edition). Pearson Higher
Education, 2004.

[RM08] Lior Rokach and Oded Maimon. Data Mining with Decision Trees:
Theory and Applications. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 2008.

[SDFGM18] Vasyl Skydanienko, Chiara Di Francescomarino, Chiara Ghidini, and
Fabrizio Maria Maggi. A Tool for Generating Event Logs from Multi-
Perspective Declare Models. page 5, 2018.

[SMW+14] Suriadi Suriadi, Ronny S. Mans, Moe T. Wynn, Andrew Partington,
and Jonathan Karnon. Measuring patient flow variations: A cross-
organisational process mining approach. In Chun Ouyang and Jae-Yoon
Jung, editors, Asia Pacific Business Process Management, pages 43–58,
Cham, 2014. Springer International Publishing.

[SWO+13] Suriadi Suriadi, Moe Thandar Wynn, Chun Ouyang, Arthur H. M. ter
Hofstede, and Nienke J. van Dijk. Understanding process behaviours in
a large insurance company in australia: A case study. In CAiSE 2013,
Valencia, Spain, June 17-21, 2013. Proceedings, pages 449–464, 2013.

[Van11] Van Dongen, B.F. (Boudewijn). Real-life event logs - hospital log, 2011.

[WGV14] C W Günther and E Verbeek. Xes standard definition. 03 2014.

67

II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Joonas Puura,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Advanced Methods in Business Process Deviance Mining,
(title of thesis)

supervised by Fabrizio Maria Maggi, Chiara Di Francescomarino and Chiara
Ghidini.

(supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Joonas Puura
16/05/2019

68

	Introduction
	Related work
	Background
	Business Processes and Logs
	Business Process
	Event log

	Log patterns
	Sequential Patterns
	Declare
	Data-Aware Declare Constraints

	Classification
	Decision tree
	RIPPER

	Problem
	Approach
	Exploring Business Process Deviance with Sequential and Declarative Patterns
	Feature Discovery
	Feature Selection
	Trace Encoding
	Model Training
	Rule Extraction
	Application

	Exploring Payload Features for Business Process Deviance Mining
	Log preprocessing
	Pure Data method of payload feature creation
	Data-aware Declare constraints
	Application

	Extraction of Results of Deviance Mining
	Extraction of Rules

	Evaluation
	Exploring Business Process Deviance with Sequential and Declarative Patterns
	Datasets
	Procedure
	Results

	Exploring Payload Features for Business Process Deviance Mining
	Datasets
	Procedure
	Results

	Extraction of Results of Deviance Mining
	Datasets
	Procedure
	Results

	Conclusions
	References
	II. Licence

