44,642 research outputs found

    ENERGY EFFICIENT LOAD BALANCING FOR CLOUD DATA CENTER

    Get PDF
    Cloud computing is the latest trend in large-scale distributed computing. It provides diverse services on demand to distributive resources such asservers, software, and databases. One of the challenging problems in cloud data centers is to manage the load of different reconfigurable virtual machines over one another. Thus, in the near future of cloud computing field, providing a mechanism for efficient resource management will be very significant. Many load balancing algorithms have been already implemented and executed to manage the resources efficiently and adequately. The objective of this paper is to analyze shortcomings of existing algorithms and implement a new algorithm which will give optimized load balancingresult

    Scaling social media applications into geo-distributed clouds

    Get PDF
    TS51: Cloud/Grid computing and networks 3Federation of geo-distributed cloud services is a trend in cloud computing which, by spanning multiple data centers at different geographical locations, can provide a cloud platform with much larger capacities. Such a geo-distributed cloud is ideal for supporting large-scale social media streaming applications (e.g., YouTube-like sites) with dynamic contents and demands, owing to its abundant on-demand storage/bandwidth capacities and geographical proximity to different groups of users. Although promising, its realization presents challenges on how to efficiently store and migrate contents among different cloud sites (i.e. data centers), and to distribute user requests to the appropriate sites for timely responses at modest costs. These challenges escalate when we consider the persistently increasing contents and volatile user behaviors in a social media application. By exploiting social influences among users, this paper proposes efficient proactive algorithms for dynamic, optimal scaling of a social media application in a geo-distributed cloud. Our key contribution is an online content migration and request distribution algorithm with the following features: (1) future demand prediction by novelly characterizing social influences among the users in a simple but effective epidemic model; (2) oneshot optimal content migration and request distribution based on efficient optimization algorithms to address the predicted demand, and (3) a Δ(t)-step look-ahead mechanism to adjust the one-shot optimization results towards the offline optimum. We verify the effectiveness of our algorithm using solid theoretical analysis, as well as large-scale experiments under dynamic realistic settings on a home-built cloud platform. © 2012 IEEE.published_or_final_versionThe 31st Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL., 25-30 March 2012. In IEEE Infocom Proceedings, 2012, p. 684-69

    Optimization and Management Techniques for Geo-distributed SDN-enabled Cloud Datacenters\u27 Provisioning

    Get PDF
    Cloud computing has become a business reality that impacts technology users around the world. It has become a cornerstone for emerging technologies and an enabler of future Internet services as it provides on-demand IT services delivery via geographically distributed data centers. At the core of cloud computing, virtualization technology has played a crucial role by allowing resource sharing, which in turn allows cloud service providers to offer computing services without discrepancies in platform compatibility. At the same time, a trend has emerged in which enterprises are adopting a software-based network infrastructure with paradigms, such as software-defined networking, gaining further attention for large-scale networks. This trend is due to the flexibility and agility offered to networks by such paradigms. Software-defined networks allow for network resource sharing by facilitating network virtualization. Hence, combining cloud computing with a software-defined network architecture promises to enhance the quality of services that are delivered to clients and reduces the operational costs to service providers. However, this combined architecture introduces several challenges to cloud service providers, including resource management, energy efficiency, virtual network provisioning, and controller placement. This thesis tackles these challenges by proposing innovative resource provisioning techniques and developing novel frameworks to improve resource utilization, power efficiency, and quality of service performance. These metrics have a direct impact on the capital and operational expenditure of service providers. In this thesis, the problem of virtual computing and network provisioning in geographically distributed software-defined network-enabled cloud data centers is modeled and formulated. It proposes and evaluates optimal and sub-optimal heuristic solutions to validate their efficiency. To address the energy efficiency of cloud environments that are enabled for software-defined networks, this thesis presents an innovative architecture and develops a comprehensive power consumption model that accurately describes the power consumption behavior of such environments. To address the challenge of the number of software-defined network controllers and locations, a sub-optimal solution is proposed that combines unsupervised hierarchical clustering. Finally, betweenness centrality is proposed as an efficient solution to the controller placement problem

    Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

    Full text link
    [EN] Computer clusters are widely used platforms to execute different computational workloads. Indeed, the advent of virtualization and Cloud computing has paved the way to deploy virtual elastic clusters on top of Cloud infrastructures, which are typically backed by physical computing clusters. In turn, the advances in Green computing have fostered the ability to dynamically power on the nodes of physical clusters as required. Therefore, this paper introduces an open-source framework to deploy elastic virtual clusters running on elastic physical clusters where the computing capabilities of the virtual clusters are dynamically changed to satisfy both the user application's computing requirements and to minimise the amount of energy consumed by the underlying physical cluster that supports an on-premises Cloud. For that, we integrate: i) an elasticity manager both at the infrastructure level (power management) and at the virtual infrastructure level (horizontal elasticity); ii) an automatic Virtual Machine (VM) consolidation agent that reduces the amount of powered on physical nodes using live migration and iii) a vertical elasticity manager to dynamically and transparently change the memory allocated to VMs, thus fostering enhanced consolidation. A case study based on real datasets executed on a production infrastructure is used to validate the proposed solution. The results show that a multi-elastic virtualized datacenter provides users with the ability to deploy customized scalable computing clusters while reducing its energy footprint.The results of this work have been partially supported by ATMOSPHERE (Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing), funded by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154.Alfonso Laguna, CD.; Caballer Fernández, M.; Calatrava Arroyo, A.; Moltó, G.; Blanquer Espert, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing. 17(1):191-204. https://doi.org/10.1007/s10723-018-9449-zS191204171Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013). https://doi.org/10.1016/j.future.2012.08.014Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011). https://doi.org/10.1145/2007477.1952709 . http://dl.acm.org/citation.cfm?id=2007477.1952709Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing systems. Clust. Comput. 16(1), 3–15 (2013). https://doi.org/10.1007/s10586-011-0171-xDe Alfonso, C., Caballer, M., Hernández, V.: Efficient power management in high performance computer clusters. In: Proceedings of the 1st International Multi-conference on Innovative Developments in ICT, Proceedings of the International Conference on Green Computing 2010 (ICGreen 2010), 39–44 (2010)OpenNebula: OpenNebula Cloud Software https://opennebula.org/ . [Online; accessed 12-June-2017]OpenStack: OpenStack Cloud Software. http://openstack.org . [Online; accessed 12 June 2017]VMWare: VMWare vCenter Server. https://www.vmware.com/products/vcenter-server.html . [Online; accessed 12 June 2017]De Alfonso, C., Blanquer, I.: Automatic consolidation of virtual machines in on-premises cloud platforms. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1070–1079 (2017). https://doi.org/10.1109/CCGRID.2017.128Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC ’03, p 90. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.cfm?id=822087.823392Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp 652–657 (2011). https://doi.org/10.1109/CloudCom.2011.101Wei, X., Wang, H., Li, H., Zou, L.: Dynamic deployment and management of elastic virtual clusters. In: 2011 Sixth Annual Chinagrid Conference (ChinaGrid), pp 35–41 (2011). https://doi.org/10.1109/ChinaGrid.2011.31de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pp 141–150. ACM, New York (2009). https://doi.org/10.1145/1551609.1551635 . http://doi.acm.org/10.1145/1551609.1551635Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 43–52 (2010). https://doi.org/10.1109/CCGRID.2010.80Niu, S., Zhai, J., Ma, X., Tang, X., Chen, W.: Cost-effective cloud hpc resource provisioning by building semi-elastic virtual clusters. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 56:1–56:12. ACM, New York (2013). https://doi.org/10.1145/2503210.2503236 . http://doi.acm.org/10.1145/2503210.2503236Bialecki, A., Cafarella, M., Cutting, D., Omalley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware. Tech. rep. Apache Hadoop. http://hadoop.apache.org (2005)MIT: StarCluster Elastic Load Balancer. http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.htmlAppliance, C.C.S.: Creating elastic virtual clusters. http://cernvm.cern.ch/portal/elasticclusters (2015)Research project, T.G.: The games research project. http://www.green-datacenters.eu (2013)Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., Kipp, A.: Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169 (2011). https://doi.org/10.1109/ISPDC.2011.32Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 500–507 (2014). https://doi.org/10.1109/PDP.2014.109Masoumzadeh, S., Hlavacs, H.: Integrating vm selection criteria in distributed dynamic vm consolidation using fuzzy q-learning. In: 2013 9th International Conference on Network and Service Management (CNSM), pp 332–338 (2013). https://doi.org/10.1109/CNSM.2013.6727854Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: 2011 12th IEEE/ACM International Conference on Grid Computing (GRID), pp 26–33 (2011). https://doi.org/10.1109/Grid.2011.13Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pp 41:1–41:7. ACM, New York (2012). https://doi.org/10.1145/2254129.2254180Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: Proceedings of the 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11, pp 1–6. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/WoWMoM.2011.5986483Ghafari, S., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-mmt: A load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp 76–80 (2013). https://doi.org/10.1109/IC3.2013.6612165Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International CMG Conference, pp. 399–406. Computer Measurement Group (2007)Verma, A., Ahuja, P., Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp 243–264. Springer, New York (2008)Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28 (5), 755–768 (2012). https://doi.org/10.1016/j.future.2011.04.017Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated power and performance management of green cloud computing systems. In: Proceedings of the First International Conference on Energy Efficient Data Centers, E2DC’12, pp 81–92. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33645-4_8Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp 000,009–000,015 (2013). https://doi.org/10.1109/ISCC.2013.6754915Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, p 1. ACM Press, New York (2013). https://doi.org/10.1145/2494621.2494627Dawoud, W., Takouna, I., Meinel, C.: Elastic vm for cloud resources provisioning optimization. In: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 190, pp 431–445. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22709-7_43Tasoulas, E., Haugerund, H.R., Begnum, K.: Bayllocator: a proactive system to predict server utilization and dynamically allocate memory resources using Bayesian networks and ballooning. In: Proceedings of the 26th International Conference on Large Installation System Administration: Strategies, Tools, and Techniques, pp. 111–122. USENIX Association (2012)Hines, M.R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., Ben-Yehuda, M.: Applications know best: performance-driven memory overcommit with Ginkgo. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 130–137. IEEE. https://doi.org/10.1109/CloudCom.2011.27 (2011)Litke, A.: Manage resources on overcommitted KVM hosts. Tech. rep. IBM. http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/ (2011)De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004Moltó, G., Caballer, M, de Alfonso, C.: Automatic memory-based vertical elasticity and oversubscription on cloud platforms. Futur. Gener. Comput. Syst. 56, 1–10 (2016). https://doi.org/10.1016/j.future.2015.10.002Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur. Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 . http://authors.elsevier.com/sd/article/S0167739X16300024 , http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM integration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Calatrava, A., Caballer, M., Moltó, G., Pérez, A.: Virtual Elastic Clusters in the EGI LToS with EC3. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.: The grid workloads archive. Futur. Gener. Comput. Syst. 24(7), 672–686 (2008). https://doi.org/10.1016/j.future.2008.02.003 . http://www.sciencedirect.com/science/article/pii/S0167739X08000125Nordugrid dataset, the grid workloads archive (Online; accessed 27-March-2017). http://gwa.ewi.tudelft.nl/datasets/gwa-t-3-nordugrid/report/Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C: Dynamic Management of Virtual Infrastructures. J. Grid Comput. 13, 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 . http://link.springer.com/article/10.1007/s10723-014-9296-

    Real-time agreement and fulfilment of SLAs in Cloud Computing environments

    Full text link
    A Cloud Computing system must readjust its resources by taking into account the demand for its services. This raises the need for designing protocols that provide the individual components of the Cloud architecture with the ability to self-adapt and to reach agreements in order to deal with changes in the services demand. Furthermore, if the Cloud provider has signed a Service Level Agreement (SLA) with the clients of the services that it offers, the appropriate agreement mechanism has to ensure the provision of the service contracted within a specified time. This paper introduces real-time mechanisms for the agreement and fulfilment of SLAs in Cloud Computing environments. On the one hand, it presents a negotiation protocol inspired by the standard WSAgreement used in web services to manage the interactions between the client and the Cloud provider to agree the terms of the SLA of a service. On the other hand, it proposes the application of a real-time argumentation framework for redistributing resources and ensuring the fulfilment of these SLAs during peaks in the service demand.This work is supported by the Spanish government Grants CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2011-27652-C03-01, TIN2012-36586-C03-01 and TIN2012-36586-C03-03.De La Prieta, F.; Heras Barberá, SM.; Palanca Cámara, J.; Rodríguez, S.; Bajo, J.; Julian Inglada, VJ. (2014). Real-time agreement and fulfilment of SLAs in Cloud Computing environments. AI Communications. 1-24. doi:10.3233/AIC-140626S124[1]V. Aleven and K.D. Ashley, Teaching case-based argumentation through a model and examples, empirical evaluation of an intelligent learning environment, in: Artificial Intelligence in Education, AIED-97, Frontiers in Artificial Intelligence and Applications, Vol. 39, IOS Press, 1997, pp. 87–94.[2]M. Alhamad, W. Perth, T. Dillon and E. Chang, Conceptual SLA framework for cloud computing, in: 4th IEEE International Conference on Digital Ecosystems and Technologies (DEST), IEEE Press, 2010, pp. 606–610.Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., … Rabkin, A. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50. doi:10.1145/1721654.1721672Ashley, K. D. (1991). Reasoning with cases and hypotheticals in HYPO. International Journal of Man-Machine Studies, 34(6), 753-796. doi:10.1016/0020-7373(91)90011-u[6]P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, Xen and the art of virtualization, in: 9th ACM Symposium on Operating Systems Principles (SOSP-03), ACM Press, 2003, pp. 164–177.Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755-768. doi:10.1016/j.future.2011.04.017[8]A. Beloglazov and R. Buyya, Energy efficient allocation of virtual machines in cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 577–578.[9]A. Beloglazov and R. Buyya, Energy efficient resource management in virtualized cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 826–831.Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97-143. doi:10.1016/s0004-3702(03)00108-5[11]T.J. Bench-Capon, Specification and implementation of Toulmin dialogue game, in: International Conferences on Legal Knowledge and Information Systems, JURIX-98, Frontiers of Artificial Intelligence and Applications, IOS Press, 1998, pp. 5–20.[12]R. Buyya, R. Ranjan and R.N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, in: 10th International Conference on Algorithms and Architectures for Parallel Processing – Volume Part I, ICA3PP’10, Springer-Verlag, 2010, pp. 13–31.[13]R. Buyya, C.S. Yeo and S. Venugopal, Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities, in: High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference, September 2008, IEEE, 2008, pp. 5–13.Chen, C., Li, S. S., Chen, B., & Wen, D. (2011). Agent Recommendation for Agent-Based Urban-Transportation Systems. IEEE Intelligent Systems, 26(6), 77-81. doi:10.1109/mis.2011.94[15]Y.Y. Cheng, M. Low, S. Zhou, W. Cai and C.S. Choo, Evolving agent-based simulations in the clouds, in: 3rd International Workshop on Advanced Computational Intelligence (IWACI), 2010, pp. 244–249.[16]F. Dignum and H. Weigand, Communication and Deontic Logic, in: Information Systems – Correctness and Reusability. Selected Papers from the IS-CORE Workshop, R. Wieringa and R. Feenstra, eds, World Scientific Publishing Co., 1995, pp. 242–260.Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE Software, 26(2), 4-6. doi:10.1109/ms.2009.31[19]J.O. Fitó, I. Goiri and J. Guitart, SLA-driven elastic cloud hosting provider, in: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE Computer Society, 2010, pp. 111–118.Fuentes-Fernández, R., Hassan, S., Pavón, J., Galán, J. M., & López-Paredes, A. (2012). Metamodels for role-driven agent-based modelling. Computational and Mathematical Organization Theory, 18(1), 91-112. doi:10.1007/s10588-012-9110-5Heras, S., Botti, V., & Julián, V. (2009). Challenges for a CBR framework for argumentation in open MAS. The Knowledge Engineering Review, 24(4), 327-352. doi:10.1017/s0269888909990178Heras, S., Jordán, J., Botti, V., & Julián, V. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 54(1), 82-108. doi:10.1016/j.ijar.2012.06.005[24]M. Jensen, J. Schwenk, N. Gruschka and L. Iacono, On technical security issues in cloud computing, in: IEEE International Conference on Cloud Computing, IEEE Press, 2009, pp. 109–116.Kakas, A., Maudet, N., & Moraitis, P. (2005). Modular Representation of Agent Interaction Rules through Argumentation. Autonomous Agents and Multi-Agent Systems, 11(2), 189-206. doi:10.1007/s10458-005-2176-4[26]M.J. Kim, H.G. Yoon and H.K. Lee, MAV: An intelligent Multi-agent model based on Cloud computing for resource virtualization, in: Computers, Networks, Systems, and Industrial Engineering, Studies in Computational Intelligence, Vol. 365, Springer, 2011, pp. 99–111.Kraus, S., Sycara, K., & Evenchik, A. (1998). Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 104(1-2), 1-69. doi:10.1016/s0004-3702(98)00078-2[28]W.-Y. Lin, G.-Y. Lin and H.-Y. Wei, Dynamic auction mechanism for cloud resource allocation, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 591–592.[29]S. Liu, G. Quan and S. Ren, On-line scheduling of real-time services for cloud computing, in: 6th World Congress on Services, SERVICES’10, IEEE Computer Society, 2010, pp. 459–464.Navarro, M., Heras, S., Botti, V., & Julián, V. (2013). Towards real-time agreements. Expert Systems with Applications, 40(10), 3906-3917. doi:10.1016/j.eswa.2012.12.087Ontañón, S., & Plaza, E. (2011). An argumentation framework for learning, information exchange, and joint-deliberation in multi-agent systems1. Multiagent and Grid Systems, 7(2-3), 95-108. doi:10.3233/mgs-2011-0169Palanca, J., Navarro, M., García-Fornes, A., & Julian, V. (2013). Deadline prediction scheduling based on benefits. Future Generation Computer Systems, 29(1), 61-73. doi:10.1016/j.future.2012.05.007[33]C. Pautasso, O. Zimmermann and F. Leymann, Restful web services vs. “big”’ web services: making the right architectural decision, in: Proceedings of the 17th International Conference on World Wide Web, WWW’08, ACM, New York, NY, USA, 2008, pp. 805–814.[34]J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang and Q. Li, Comparison of several cloud computing platforms, in: 2nd International Symposium on Information Science and Engineering, ISISE’09, IEEE Computer Society, 2009, pp. 23–27.Prakken, H., & Sartor, G. (1998). Artificial Intelligence and Law, 6(2/4), 231-287. doi:10.1023/a:1008278309945[36]I. Rahwan and G. Simari, eds, Argumentation in Artificial Intelligence, Springer, 2009.Ross, J. W., & Westerman, G. (2004). Preparing for utility computing: The role of IT architecture and relationship management. IBM Systems Journal, 43(1), 5-19. doi:10.1147/sj.431.0005Schaffer, H. E. (2009). X as a Service, Cloud Computing, and the Need for Good Judgment. IT Professional, 11(5), 4-5. doi:10.1109/mitp.2009.112[39]K.M. Sim, Agent-based cloud commerce, in: IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Press, 2009, pp. 717–721.Soh, L.-K., & Tsatsoulis, C. (2005). A Real-Time Negotiation Model and A Multi-Agent Sensor Network Implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215-271. doi:10.1007/s10458-005-0539-5Talia, D. (2012). Clouds Meet Agents: Toward Intelligent Cloud Services. IEEE Internet Computing, 16(2), 78-81. doi:10.1109/mic.2012.28Tolchinsky, P., Modgil, S., Atkinson, K., McBurney, P., & Cortés, U. (2011). Deliberation dialogues for reasoning about safety critical actions. Autonomous Agents and Multi-Agent Systems, 25(2), 209-259. doi:10.1007/s10458-011-9174-5[44]A. Toniolo, T. Norman and K. Sycara, An empirical study of argumentation schemes in deliberative dialogue, in: 20th European Conference on Artificial Intelligence, ECAI-12, Frontiers in Artificial Intelligence and Applications, Vol. 242, IOS Press, 2012, pp. 756–761.[45]W.-T. Tsai, Q. Shao, X. Sun and J. Elston, Real-time service-oriented cloud computing, in: IEEE 6th World Congress on Services, SERVICES’10, IEEE Press, 2010, pp. 473–478.[46]D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press, 2008.[47]L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer and W. Karl, Scientific cloud computing: Early definition and experience, in: 10th IEEE International Conference on High Performance Computing and Communications (HPCC-08), IEEE Press, 2008, pp. 825–830.[48]Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti and Y. Coady, Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis, in: IEEE 3rd International Conference on Cloud Computing (CLOUD), IEEE Computer Society, 2010, pp. 91–98.[49]Y. Yu, S. Ren, N. Chen and X. Wang, Profit and penalty aware (pp-aware) scheduling for tasks with variable task execution time, in: ACM Symposium on Applied Computing, SAC’10, ACM, 2010, pp. 334–339

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape
    • …
    corecore