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Abstract—Federation of geo-distributed cloud services is a
trend in cloud computing which, by spanning multiple data
centers at different geographical locations, can provide a cloud
platform with much larger capacities. Such a geo-distributed
cloud is ideal for supporting large-scale social media streaming
applications (e.g., YouTube-like sites) with dynamic contents and
demands, owing to its abundant on-demand storage/bandwidth
capacities and geographical proximity to different groups of
users. Although promising, its realization presents challenges on
how to efficiently store and migrate contents among different
cloud sites (i.e. data centers), and to distribute user requests to
the appropriate sites for timely responses at modest costs. These
challenges escalate when we consider the persistently increasing
contents and volatile user behaviors in a social media application.
By exploiting social influences among users, this paper proposes
efficient proactive algorithms for dynamic, optimal scaling of
a social media application in a geo-distributed cloud. Our
key contribution is an online content migration and request
distribution algorithm with the following features: (1) future
demand prediction by novelly characterizing social influences
among the users in a simple but effective epidemic model; (2) one-
shot optimal content migration and request distribution based
on efficient optimization algorithms to address the predicted
demand, and (3) a ∆(t)-step look-ahead mechanism to adjust the
one-shot optimization results towards the offline optimum. We
verify the effectiveness of our algorithm using solid theoretical
analysis, as well as large-scale experiments under dynamic
realistic settings on a home-built cloud platform.

I. INTRODUCTION
The cloud computing paradigm of late enables rapid on-

demand provisioning of server resources to applications with
minimal management efforts. Most existing cloud systems,
e.g., Amazon EC2 and S3, Microsoft Azure, Google App
Engine, organize their shared pool of servers from one or a few
data centers, and serve their users using different virtualization
technologies. The services provided by one individual cloud
provider are typically limited to one or a few geographic re-
gions, prohibiting it from serving application demands equally
well from all over the globe. To truly fulfill the promise of
cloud computing, a rising trend is to federate disparate cloud
services (in separate data centers) from different providers, i.e.,
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from Guangdong Bureau of Science and Technology under the contract
GDST11EG06.

interconnecting them based on common standards and policies
to provide a universal environment for cloud computing [1],
[2]. The aggregate capabilities of a federated cloud would
appear to be limitless and can serve a wide range of demands
over a much larger geographic span [2].
A geo-distributed federated cloud is ideal for supporting

large-scale social media streaming applications. Social net-
work applications (e.g., Facebook, Twitter, Foursquare) are
dominating the Internet today, and they are uniting with
conventional applications, such as multimedia streaming, to
produce new social media applications, e.g., YouTube-like
sites. Compared with traditional Internet video services, social
media applications feature highly dynamic contents and de-
mands, and typically more stringent requirements on response
latency in serving viewing requests—since most of their videos
are short, e.g., several minutes, a latency of more than a few
tens of seconds would be intolerable to a viewer. It is therefore
challenging to design and scale a social media application
that is most cost-effective. The conventional approaches use
dedicated servers owned by the application providers (i.e., pri-
vate clouds), or to outsource to a content distribution network
(CDN). Geo-distributed clouds provide a much more economic
solution: “infinite” on-demand cloud resources meet well with
the ever-increasing demand for storage and bandwidth, while
capable of absorbing frequent surges of viewing demands on
the fly; cloud sites situated in different geographic locations
offer efficient services to groups of users in their proximity;
elastic charging models of the clouds can significantly cut
down operational costs of the application providers.
To realize the potentials of geo-distributed federated clouds,

in supporting social media applications, challenges remain to
be resolved: How should the social media contents be stored
and migrated across different cloud sites, and viewing requests
be distributed, such that the response delays and the opera-
tional costs are minimized? It may not be too hard to design
optimal strategies for the case where the number of contents
and the scale of user requests are fixed, which is what a CDN
or a cache network is most capable in handling. What is really
challenging is to design an online algorithm that can make use
of cloud resources to accommodate dynamic contents/demands
on the fly, and further pursue the optimality achieved by
an optimal offline solution with complete knowledge of the
system over a long time.
Our work proposes such an online algorithm for dynamic,
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optimal scaling of a social media application in a geo-
distributed cloud. Our contributions are as follows:
First, we enable proactive content migration, by predicting

future demand based on social influence among the users
and correlation across videos. More specifically, a simple but
effective epidemic model is built to capture propagation of
video views along both social connections (i.e., people view
the videos posted or retweeted by their friends) and interest
correlations (e.g., people watched a French Open clip may
view another one from the Wimbledon).
Second, to serve the predicted demands, we decide on the

one-shot optimal content migration and the request distribu-
tion strategy by formulating the problem as a mixed integer
program. We show that efficient solutions to the problem exist,
using dual decomposition and linear programming techniques.
Third, a ∆(t)-step look-ahead mechanism is proposed to

adjust the one-shot optimization results towards the offline
optimality, which gives rise to the online algorithm. We
prove the effectiveness of the algorithm using solid theoretical
analysis, and demonstrate how the algorithm can be practically
implemented in a real-world geo-distributed cloud with low
costs.
Finally, performance of our algorithm is evaluated via large-

scale experiments under dynamic realistic settings conducted
on a home-built cloud platform. The results show that using
our online algorithm, high-performance social media applica-
tions can be effectively supported by a geo-distributed cloud
with minimum operational cost.
The remainder of this paper is organized as follows. We dis-

cuss related work in Sec. II, and present the system model and
the offline optimal content migration and request distribution
problem in Sec. III. We predict viewing demands and solve
the one-shot optimization in Sec. IV. The design of the online
algorithm with ∆(t)-step look-ahead is given in Sec. V, for
which we discuss the evaluation results in Sec. VI. Sec. VII
concludes the paper.

II. RELATED WORK

Federation of geo-distributed cloud services is a recent
development of cloud computing technologies. The open data
center alliance [2], for instance, aims to provide solutions to
unify cloud resources from different providers to produce a
global scale cloud platform. The current literature focus on
designing inter-connecting standards and APIs [1] [3] [4],
while our study here explores utilization of a geo-distributed
cloud platform for efficient application support.
There were a few proposals on migrating applications from

conventional private server clusters to the new public cloud
platforms. Hajjat et al. [5], Sharma et al. [6], and Zhang et
al. [7] advocate migrating enterprise IT applications to exploit
the computation and storage capacities of a cloud. Wu et al. [8]
and Li et al. [9] discuss migration of VoD services onto a
cloud platform, by exploring demands and user patterns in a
conventional VoD application. Pujol et al. [10] and Xu et
al. [11] investigate migration of social network applications,
focusing on user profile replication on cloud servers according
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Fig. 1. The geo-distributed cloud model.

to their social connections. Different from all these work,
our study is the first to explore dynamic migration of the
novel social media applications, and to use social influence
among users for viewing demand prediction; and we target at
a solution with over-time optimality guarantee.
A substantial body of literature has been devoted to con-

tent replication and scheduling in a CDN or cache network
[12][13]. Our work differs from those work in that we focus
on a geo-distributed cloud platform, with significantly different
charging models and elastic “pay-per-use” usage patterns,
which calls for a more flexible online algorithm.

III. SYSTEM MODEL

A. The Geo-distributed Cloud

We consider a geo-distributed cloud infrastructure which
consists of multiple disparate cloud sites distributed in dif-
ferent geographical locations, and owned by one or multiple
cloud service providers. Each cloud site resides in one data
center, and contains a collection of interconnected and vir-
tualized servers. A representative structure of servers inside
each data center is as follows [14]: There are two categories
of servers, storage servers to store data files and computing
servers to support the running and provisioning of virtual
machines (VMs); all computing and storage servers inside a
cloud site are inter-connected with high speed switches and
LAN buses. Different cloud sites are connected over a WAN.
We investigate the IaaS (Infrastructure as a Service) mode of
cloud computing in this work [15].
We assume the computing (storage) servers inside a cloud

site have similar hardware configurations, and charge the same
prices for usage. Hardware configurations and usage charges
are likely to be different across different cloud sites. We take
into account the following three types of charges to a cloud
consumer: storage cost to keep data on the storage servers,
rental fee of VMs to run the application, and charges for
incoming/outgoing traffic to/from each cloud site. The former
two are charged by usage time on a per unit time rate, and the
last one is by traffic volume on a per byte rate. These follow
the representative charging models of leading commercial
cloud products, such as Amazon EC2 [16] and S3[17].
The cloud architecture is illustrated in Fig. 1.
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B. The Social Media Application

In a social media streaming application, registered users
generate and upload videos to the servers, and download and
view videos uploaded by others. The videos are assumed to be
short clips of a few tens or hundreds of mega bytes. Users of
the application are interconnected in a social network: besides
video browsing and watching, a platform is provided where
each user can add other users as friends, post microblogs to
comment on videos, and follow microblogs of their friends to
watch a video. On the other hand, the system can recommend
videos to users (e.g., by listing recommended videos alongside
the video currently played) based on such parameters as user
location, video types, metadata (tags), top hits, etc. A concrete
example of social media application is YouTube enhanced by
social networking functions, i.e., a combination of YouTube
and twitter (which is an emerging move for YouTube-like
applications [18]).

C. The Offline Optimal Content Migration and Request Dis-
tribution Problem

The conventional approach to provisioning for this social
media application is to use a private server cluster (the
application provider’s private cloud). We advocate migrating
the application into the geo-distributed cloud infrastructure, for
better scalability, lower management overhead, and proximity
to users. The private cloud can be or not be part of the
federated cloud. As a cloud consumer, the application provider
deploys its web service on the VMs on the computing servers,
and video files in the storage servers.
Our objective is to design an online algorithm to optimally

replicate videos onto cloud sites with different charges and
proximities to users, and dispatch video requests to the sites
such that timely responses at the lowest cost is achieved. We
first formulate an offline optimization problem which gives the
“ideal” optimal strategies for content replication and request
dispatching, assuming complete information of the system
over the entire time span is known.
Suppose that time is slotted into equal intervals, where t = 0

indicates the initial state. Let C(t) denote the set of videos in
the social media application at time slot t. We assume that all
videos in the system have the same unit size, and the length
of a time slot is sufficient for downloading one video at the
video playback rate. Let F denote the set of regions that the
cloud infrastructure spans, i.e., one region hosts one cloud
site. D(c)

f (t) represents the set of users in region f (f ∈ F )1,
who choose to view video c (c ∈ C(t)) in time slot t, and
let d(c)f (t) = |D(c)

f (t)| be the number of requests for video c
from region f at t.
Let !y and !α be the optimal decision variables: Binary

variable y
(c)
f (t) indicates whether a copy of video c should

be stored on the cloud site in region f (referred to as cloud
site f hereinafter) in time slot t; α(c)

jf (t) ∈ [0, 1] is the portion

1Users residing in regions without deployed cloud sites are considered in
sets D(c)

f (t) of regions f ∈ F that they are geographically closest to.

of d(c)j (t) (the total number of requests for content c from
region j at t), to be dispatched to and served by cloud site f .
On cloud site f , pf is the storage cost per unit size per

time slot, mf is the rental cost of one VM per time slot, and
bf is the outgoing bandwidth cost per unit size. We model
the cost incurred for using the cloud platform as follows: (1)
The storage cost in time slot t for video c on cloud site f

is y
(c)
f (t) × pf . (2) Suppose the number of requests a VM

on cloud site f can serve per time slot is nf . The cost for
cloud site f to serve requests from region j for video c in t

includes (i) VM rental cost α
(c)
jf

(t)×d
(c)
j (t)

nf
×mf and (ii) upload

bandwidth cost α(c)
jf (t) × d

(c)
j (t) × bf . Let vf = mf

nf
+ bf

denote the unit cost to serve each request on cloud site f . The
cost above can be simplified to α

(c)
jf (t)× d

(c)
j (t)× vf . (3) Let

ϕf denote the migration cost to move one video into cloud
site f ,2 which includes bandwidth cost and other management
overheads; therefore, [y(c)f (t) − y

(c)
f (t − 1)]+ × ϕf is the

potential migration cost for moving video c into cloud site f at
t, where [y(c)f (t)−y

(c)
f (t−1)]+ = max{y(c)f (t)−y

(c)
f (t−1), 0}.

The offline optimization to minimize the overall operational
cost of the social media application on the geo-distributed
cloud over a possibly long time interval, i.e., [1, T ], is for-
mulated as follows:

min H(!y, !α) =
∑T

t=1(
∑

c∈C(t)

∑

f∈F y
(c)
f (t)× pf

+
∑

c∈C(t)

∑

j∈F

∑

f∈F α
(c)
jf (t)× d

(c)
j (t)× vf

+
∑

c∈C(t)

∑

f∈F [y
(c)
f (t)− y

(c)
f (t− 1)]+ × ϕf )

(1)

subject to: (repeat each constraint for t = 1, . . . , T )

(a)
∑

f∈F y
(c)
f (t) ≥ 1, ∀c ∈ C(t),

(b) y
(c)
f (t) ∈ {0, 1}, ∀c ∈ C(t),∀f ∈ F,

(c) α
(c)
jf (t) ≤ y

(c)
f (t), ∀c ∈ C(t),∀j ∈ F,∀f ∈ F,

(d)
∑

j∈F

∑
f∈F α

(c)
jf

(t)×d
(c)
j (t)×rjf

∑
j∈F d

(c)
j (t)

≤ R, ∀c ∈ C(t),

(e)
∑

c∈C(t)

∑

j∈F α
(c)
jf (t)× d

(c)
j (t) ≤ Uf , ∀f ∈ F,

(f)
∑

f∈F α
(c)
jf (t) = 1, ∀j ∈ F,∀c ∈ C(t),

(g) 0 ≤ α
(c)
jf (t) ≤ 1, ∀j ∈ F,∀f ∈ F, ∀c ∈ C(t).

Constraints (a) and (b) indicate that at least one copy of each
video should be stored in the cloud at any time. Constraints (c),
(f) and (g) guarantee that requests would only be dispatched to
a cloud site that stores the required video. In constraint (d), rjf
represents the round-trip delay between region j and region f
(reflecting proximity in between), and R is the upper bound
of average response delay per request, set by the application
provider; this constraint ensures that the average response
delay meets the QoS target. (e) is the bandwidth constraint
at each cloud site, where Uf denotes the maximum reserved
bandwidth for this application at cloud site f , in terms of the
number of requests to serve. We will address the bandwidth
reserving problem as an orthogonal topic in our future work.
In our model, storage and VM capacity limits are not

considered at each cloud site, as it is reasonable to assume
2We assume that there is permanent storage owned by the social media

application provider to store one authentic copy of each video, and video
replica will be copied from this storage to different cloud sites.
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TABLE I
NOTATION

Symbol Definition
F Set of regions the geo-distributed cloud spans
C(t) Set of videos in the social media application at t
y
(c)
f (t) binary variable: to store video c at cloud site f at t (1) or not (0)
α
(c)
jf (t) Portion of the total number of requests for video c from region j

at t, to be dispatched to cloud site f
D

(c)
f (t) Set of users in region f requesting video c at t

d
(c)
f (t) The number of users in D

(c)
f (t)

pf Storage cost per unit size per time slot on cloud site f
vf Cost to serve each request on cloud site f (VM rental+bandwidth)
rjf Round-trip delay between region j and region f
ϕf Migration cost to move one video into cloud site f
R Maximum average response delay per request
Uf Maximum reserved bandwidth at cloud site f
H(!y, !α) Objective function of the offline optimization problem in (1)
F(!y(t), Objective function of the one-shot optimization problem in (2) at
!α(t)) time slot t
t
(c)
0 Uploading time of video c

o(c) Uploader of video c

s(c)(t) Number of potential viewers of video c at t
A(c)(t) Set of users who have not watched video c by the end of t
L(c)(t) Set of users that video c is recommended to at t
E(c)(t) Set of users who comment on video c at t
Ω Set of all registered users
N(i) User i’s set of friends
η Initial popularity of a video
γc Decreasing speed of video c’ popularity

that these capacities can be provisioned on demand to the
application.
To derive optimal solution to the offline optimization (1),

complete knowledge about the system over the entire time span
is needed, which is apparently not feasible. We seek to design
an online algorithm that pursues this optimal solution (referred
to as offline optimal solution or offline optimum hereinafter) on
the fly, with only limited predicted information into the future.
In particular, optimization (1) can be decomposed into possibly
many one-shot optimization problems, each to minimize the
operational cost occurred in one time slot. Our idea is to
solve the one-shot optimization problem in each time slot,
and adjust the derived solutions towards the offline optimum
using predicted demands in ∆(t) time slots in the future.
In what follows, we discuss efficient solutions to the one-

shot optimization in Sec. IV, and propose strategies to adjust
the one-shot optimum in Sec. V. Important notations in the
paper are summarized in Table I for ease of reference.

IV. ONE-SHOT OPTIMIZATION

The one-shot optimization problem from the offline opti-
mization (1) is as follows, for time slot t:

min F(!y(t), !α(t)) =
∑

c∈C(t)

∑

f∈F y
(c)
f (t)pf

+
∑

c∈C(t)

∑

j∈F

∑

f∈F α
(c)
jf (t)d

(c)
j (t)vf

+
∑

c∈C(t)

∑

f∈F [y
(c)
f (t)− y

(c)
f (t− 1)]+ϕf

subject to: Constraints (a) — (g) in (1),

(2)

where !y(t) = (y(c)f (t), ∀c ∈ C(t), ∀f ∈ F ) and !α(t) =

(α(c)
jf (t), ∀c ∈ C(t), ∀f ∈ F, ∀j ∈ F ). In time slot t − 1, we

predict the number of upcoming requests for different videos
from different regions, i.e., d(c)j (t), for the next time slot t,
and solve the above one-shot optimization to derive the best
content migration and request distribution strategies for t. This
proactive approach is adopted in order to deploy videos in a

timely fashion to serve the upcoming requests. We next discuss
efficient methods to predict the demand and to solve the one-
shot optimization, respectively.

A. Predicting the Number of Viewing Requests
Based on our social media application model in Sec. III-B,

potential viewers of video c at t mainly come from two
sources: (i) the friends of a user who has watched and
commented on the video in her microblog before t, and (ii) the
users to whom the system has recommended the video before
t, when they are watching other videos. We predict the number
of viewing requests for a video by modeling the propagation
of video viewing among users using a model similar to the
SIR epidemic model [19].
Let t(c)0 denote the time video c is uploaded by user o(c).

s(c)(t) is the number of all potential viewers of video c at
time t. d(c)(t) =

∑
f∈F d

(c)
f (t) denotes the number of users

who request and view video c at t in the entire system, and
D(c)(t) is this set of users. Note that d(c)(t) is different from
s(c)(t), in that the latter counts all users who may possibly
issue a viewing request (since they belong to category (i) or
(ii) above), while the former includes the actually issued ones.
Let A(c)(t) be the set of users who have not watched video c
by the end of time slot t. Ω represents the set of all registered
users in the system, and N(i) is user i’s set of friends3. L(c)(t)
represents the set of users to whom the system recommends
video c in t. E(c)(t) is the set of users who comment on video
c on her microblog in t.
Measurements of video sharing sites have shown that pop-

ularity of a video is typically the highest when it is a new
upload, and decreases over time [9] [20]. We employ an
exponential decreasing model to describe this phenomenon:
we use η×γ

(t−t
(c)
0 )

c to represent the probability that a potential
viewer of video c may actually watch the video at t, where
factor η ∈ [0, 1] and γc ∈ [0, 1] correspond to the initial value
and the decreasing speed of video c’s popularity, respectively.
Without loss of generality, we assume that a user will not

issue viewing requests again for a video that she has requested
before, and the first batch of viewing requests come at t(c)0 +1,
but not in t

(c)
0 when the video is newly shared. The epidemic

model to describe the propagation of video viewing in the
system is as follows, where t > t

(c)
0 :















































s(c)(t(c)0 ) = 0,

d(c)(t(c)0 ) = 0,

A(c)(t(c)0 ) = Ω\{o(c)},
s(c)(t) = s(c)(t− 1)− d(c)(t− 1)
+| ∪i∈E(c)(t−1) (N(i) ∩A(c)(t− 1)) ∪ L(c)(t− 1)|,

d(c)(t) = s(c)(t)× η × γ
(t−t

(c)
0 )

c ,

A(c)(t) = A(c)(t− 1)\D(c)(t).
(3)

The rationale is as follows: When video c is uploaded at
t
(c)
0 , no other users than o(c) have watched it (Eqn. 1—3 in
(3)). The potential set of viewers at t is derived in Eqn. 4 by

3We only consider fixed friendship graph and ignore newly registered users.
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excluding those who have viewed video c at t − 1 from the
previous set of potential viewers (s(c)(t−1)−d(c)(t−1)), and
adding the newly emerged potential viewers, i.e., the friends
of those commented on c at t− 1, who have not yet viewed it
(∪i∈E(c)(t−1)N(i) ∩ A(c)(t− 1)), and users that the system
recommends c to at t − 1 (L(c)(t − 1)). Since a potential
viewer may not actually watch the video, in Eqn. 5 the number
of actual viewers is estimated by multiplying the number of
potential viewers by probability η × γ

(t−t
(c)
0 )

c . Finally, the set
of users who have never watched the video by the end of t
will be reduced by the set who have viewed it at t (Eqn. 6).
Predict all viewing requests: We predict the total number of

actual viewers for video c in the system, i.e., d(c)(t), based on
Eqn. 4 and 5, using known information at t−1: the number of
potential viewers (s(c)(t − 1)), the number of actual viewing
requests (d(c)(t − 1)), the users who comment on video c
(E(c)(t − 1)) and their neighbors who have not viewed the
video, as well as the users receiving system recommendation
(L(c)(t− 1)).
Map to geographic regions: Next, we calculate the number

of potential viewers in region f , s(c)f (t), using an equation
similar to Eqn. 4, which only counts users in f in each term:
s
(c)
f (t) = s

(c)
f (t− 1)− d

(c)
f (t − 1) + | ∪i∈E(c)(t−1) (Nf (i) ∩

A(c)(t− 1)) ∪ L
(c)
f (t − 1)|, where Nf (i) and L

(c)
f (t − 1)

represent i’s neighbors in region f and users receiving sys-
tem recommendation in region f , respectively. We can then
estimate the number of actual viewing requests for video c

from region f as d(c)f (t) =
s
(c)
f (t)

s(c)(t)
× d(c)(t).

B. Solving the One-Shot Optimization
Define

pf (t) =

{

pf , if y
(c)
f (t− 1) = 1,

pf + ϕf , if y
(c)
f (t− 1) = 0,

∀f ∈ F.

When y(c)f (t−1) (video replication in t−1) is given, pf (t) is a
constant. We can rewrite one-shot optimization (2) as follows:

min F(!y(t), !α(t)) =
∑

c∈C(t)

∑

f∈F y
(c)
f (t)pf (t)

+
∑

c∈C(t)

∑

j∈F

∑

f∈F α
(c)
jf (t)d(c)j (t)vf

s.t.







!y(t) ∈ C1,
!α(t) ∈ C2,

α
(c)
jf (t)− y

(c)
f (t) ≤ 0,∀c ∈ C(t),∀j ∈ F,∀f ∈ F,

(4)

where C1 is the set defined by constraints (a) and (b) in
(1), and C2 is the set defined by linear constraints (d)—(g)
in (1). This optimization problem is a mixed integer program.
Nevertheless, we next show that an efficient solution indeed
exists through dual decomposition [21].
We derive the dual problem of (4) by relaxing its last

constraint group. Associating dual variables !λ(t) = (λ(c)
jf (t))

with those constraints, the Lagrangian is:

L(!y(t), !α(t),!λ(t))

=
∑

c∈C(t)

∑

f∈F y
(c)
f (t)(pf (t)−

∑

j∈F λ
(c)
jf )

+
∑

c∈C(t)

∑

j∈F

∑

f∈F α
(c)
jf (t)(d(c)j (t)vf + λ

(c)
jf ).

(5)

The dual function is then as follows, which is separable:
g(!λ(t)) = g1(!λ(t)) + g2(!λ(t))

TABLE II
ALGORITHM SKETCH TO SOLVE ONE-SHOT OPTIMIZATION IN (2)

Repeat
Solve subproblems (A) and (B) (in parallel)
Find optimal content replication !y(t) that solves g1(!λ(t))
Find optimal request distribution !α(t) that solves g2(!λ(t))

Update dual variables by λ(c)
jf (t) := λ

(c)
jf (t)+βk(α

(c)
jf (t)−y

(c)
f (t)),

∀c ∈ C(t),∀j ∈ F,∀f ∈ F

where
g1(!λ(t)) = min

∑

c∈C(t)

∑

f∈F y
(c)
f (t)(pf (t)−

∑

j∈F λ
(c)
jf )

s.t. !y(t) ∈ C1,
(A)

g2(!λ(t)) = min
∑

c∈C(t)

∑

j∈F

∑

f∈F α
(c)
jf (t)(d

(c)
j (t)vf + λ

(c)
jf )

s.t. !α(t) ∈ C2.
(B)

The dual problem is: max g(!λ(t)) s.t. !λ(t) ' 0.
The dual problem can be solved by the subgradient algo-

rithm [21], which gives the optimal primal variable values as
well (i.e., the optimal solution to one-shot optimization (2)).
The sketch of the subgradient algorithm is given in Table. II,
which has a nice intuitive interpretation as follows:
We start with any initial non-negative dual variable values

λ
(c)
jf (0). In the kth iteration, given current values of λ

(c)
jf (t)’s,

we solve the optimal content replication subproblem (A) and
the optimal request dispatching subproblem (B) independently,
and derive the content replication and request dispatching
strategies, i.e., y(c)f (t)’s and α

(c)
jf (t)’s, respectively. Subprob-

lem (B) is a linear program and can be solved efficiently using
polynomial-time algorithms [22]. Integer program (A) can be
solved efficiently too: we relax the integer constraints y(c)f (t) ∈

{0, 1} in C1 to 0 ≤ y
(c)
f (t) ≤ 1 (∀c ∈ C(t), ∀f ∈ F ), and

prove that the optimal solution to the resulting linear program
is the optimal solution to the integer program in Lemma 1.

Lemma 1. The optimal solution to the relaxed linear program
of integer subproblem (A) is integral, i.e., the optimal solution
of the relaxed linear program is the optimal solution to the
integer program.

The lemma is proved by showing the total unimodularity
[22] of the constraint matrix of integer program (A). Readers
are referred to our technical report [23] for detailed proof.
In Table II, after efficiently solving the two subproblems, we

update the value of dual variables. Here, βk = 1
k , which is a

step size used in the kth iteration. λ(c)
jf can be seen as the price

of violating constraint α(c)
jf (t) − y

(c)
f (t) ≤ 0. If it is violated,

i.e., the solution to subproblem A indicates that requests for
video c are to be dispatched to region f (α(c)

jf (t) > 0) while the
solution to subproblem B states that video c is not to be stored
in region f (y(c)f (t) = 0), then λ

(c)
jf is increased, such that

content replication and request dispatching will be adjusted in
the next iteration towards satisfaction of this constraint.
The steps repeat until converging to the optimal decisions

which satisfy all constraints and minimize the aggregate op-
erational cost in time slot t in (2). We have therefore derived
an efficient algorithm to solve the one-shot optimization.
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V. ONLINE ALGORITHM WITH ∆(t)-STEP LOOK-AHEAD

Although one-shot optimal decisions can be efficiently made
in any single time slot, they do not guarantee the optimality
of the offline optimization (1) over a possibly long time.
Let !y∗ = (y∗(c)f (t), ∀c ∈ C(t), ∀f ∈ F, t = 1, . . . ,∞) and
!α∗ = (α∗(c)

jf (t), ∀c ∈ C(t), ∀f, j ∈ F, t = 1, . . . ,∞) denote
the offline optimal solution for (1). For example, suppose
video c is stored in region f at t − 1, and removing c from
f is cost-optimal at t (y(c)f (t) = 0) according to the one-
shot optimization (e.g., because the demand for c in f drops
significantly at t); however, it is possible that c should remain
in f at t and for a number of following time slots in the offline
optimum (y∗(c)f (t) = 1), since the demand for the video in the
region will rise again soon, and keeping video c there could
have saved the migration cost.
We next explore dependencies among video replication

decisions across consecutive time slots, and design an online
algorithm to improve solutions towards offline optimum.

A. Pursuing Offline Optimality with ∆(t)-step Look-ahead

At t − 1, we solve the one-shot optimization (2) for the
next time slot t, and then adjust the one-shot optimal solution
towards the offline optimum. In the following discussions, we
focus on content replication strategy (y(c)f (t)’s), knowing that
request distribution strategy (α(c)

jf (t)’s) can be determined ac-
cordingly by solving (2), given the content replication strategy.
There are two possible replication decisions for video c in
region f at t: y(c)f (t) = 1 (caching the video) and y

(c)
f (t) = 0

(not caching the video), respectively.
(i) If y(c)f (t) = 1 is the derived one-shot optimal decision,

we argue that it is also offline optimal to store c in f at t:

Lemma 2. Given replication decisions at t−1, i.e., !y∗(t−1),
if solving one-shot optimization (2) for t gives y(c)f (t) = 1, i.e.,
video c should be stored in region f at t, then in the offline
optimal solution, we have y

∗(c)
f (t) = 1.

The rationale is intuitive: If one-shot optimization gives
y
(c)
f (t) = 1, it shows that caching c in f is desirable to address
requests at t, even if storage and possibly migration cost would
be incurred. In the offline optimum where future demands are
considered, if c is still needed in f in later time slots, storing
c there at t is more cost-effective than removing it; even if c
is not needed in f later, caching it there is the best strategy
for t at least — in both cases, y∗(c)f (t) = 1. Detailed proof
can be found in [23].
(ii) If y(c)f (t) = 0 according to the one-shot optimization, we

need to be more cautious, judge whether it is offline optimum
by looking ahead for a few time slots, and adjust the decision if
we are (almost) sure that it is not. Our adjustment mechanism
below focuses on cases that the effect of changing y

(c)
f (t) is

isolated, i.e., it does not affect video c’s deployment in other
regions f ′(*= f) in t+1 after solving the one-shot optimization
for t + 1, as in these cases we can prove the correctness of
our adjustment.

Let ∆(t) ≥ 0 denote the number of look-ahead time slots
beyond t, whose viewing demands we need to learn in order
to decide whether adjusting y

(c)
f (t) from 0 to 1 is more cost

beneficial over time. We will show how we set ∆(t) soon.
Suppose the number of viewing requests in those ∆(t) time
slots can be predicted4 or known, e.g., based on summarized
daily patterns. According to y

(c)
f (t) = 0, we calculate the

one-shot optimal solutions in t + 1, t + 2, . . . , by solving
(2) for the respective times. Suppose after δt intervals, the
one-shot optimum y

(c)
f (t+ δt) becomes 1, i.e., demands arise

and video c should be cached in f at t + δt. If we use
!y
(c)
f [t, δt] = (y(c)f (t), . . . , y(c)f (t + δt)) to denote replication
decision variables of video c in region f during t to t+δt, then
strategy sequence !y0(c)f [t, δt] = (0, 0, . . . , 0, 1) corresponds to
one-shot optimal solutions during t to t+δt when y(c)f (t) = 0.
If we adjust y(c)f (t) from 0 to 1 and solve one-shot opti-

mization in the subsequent δt time slots, we can obtain another
strategy sequence !y1(c)f [t, δt]. We argue that y1(c)f (t+ δt) = 1
in this sequence based on the following lemma.

Lemma 3. Given replication decisions of other videos and
video c in other regions, if one-shot optimal solution is to
cache c in f in t, i.e., y(c)f (t) = 1, by assuming c is not there
in t− 1, i.e., y(c)f (t− 1) = 0, then y

(c)
f (t) = 1 is the one-shot

optimum no matter whether y(c)f (t− 1) is indeed 0 or 1.

Proof of Lemma 3 is given in [23]. Since y0(c)f (t+δt) = 1

is the one-shot optimum at t+ δt when y
0(c)
f (t+ δt− 1) = 0,

then y
1(c)
f (t+ δt) = 1 no matter whether y1(c)f (t+ δt− 1) is

1 or 0. Therefore, at most δt time slots after adjusting y
(c)
f (t)

from 0 to 1, the replication strategy sequences !y
0(c)
f [t, δt]

and !y
1(c)
f [t, δt] merge. In fact, the two sequences may merge

sooner, i.e., δt′(< δt) slots after the adjustment, if it turns out
y
1(c)
f (t+ δt′) = 0, and then all subsequent y1(c)f (t+ δt′ + 1),
. . . , y1(c)f (t + δt − 1) will be 0. Hence, when evaluating the
impact of y(c)f (t)’s adjustment on cost change, we only need
to compare the change of total cost during t to t+min(δt, δt′),
when the two replication strategy sequences diverge, but not
afterwards when they merge. The number of look-ahead time
slots, ∆(t), is then set to be min(δt, δt′).
Let G(c)

f (!y1(c)f [t,∆(t)], !y0(c)f [t,∆(t)]) denote the cost dif-
ference during t to t + ∆(t) when adopting the above two
replication strategy sequences, respectively. It can be calcu-
lated as

G
(c)
f (!y1(c)

f [t,∆(t)], !y0(c)
f [t,∆(t)])

=
t+∆(t)
∑

τ=t

{F(y1(c)
f (τ ))− F(y0(c)

f (τ ))}.

If G
(c)
f (!y1(c)f [t,∆(t)], !y0(c)f [t,∆(t)]) < 0, adjusting y

(c)
f (t)

from 0 to 1 reduces the cost in the long run; otherwise, we
should retain y

(c)
f (t) = 0.

We note that ∆(t) could be quite large or it is possible that

4The prediction can be done following our epidemic model in (3), or using
other regression techniques [24].
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Algorithm 1 An online algorithm with ∆(t)-step Look-ahead
Input: !y(t− 1), D(t− 1), L(t− 1), E(t− 1).
Output:!y(t), !α(t).
1: Estimate number of viewers d(c)j (t), ∀j ∈ F, ∀c ∈ C(t);
2: Derive the one-shot optimum y

(c)
f (t) and α(c)

jf (t), ∀j, f ∈ F, c ∈
C(t);

3: for video c ∈ C(t) do
4: Form subset of regions Ψ = {f |y(c)

f (t) = 0};
5: for region f ∈ Ψ do
6: ∆(t) = 1;
7: while ∆(t) ≤ Wthresh do
8: Derive one-shot optimum y

(c)
f ′ (t + ∆(t)), ∀f ′ )= f ,

based on y
(c)
f (t) = 0 and y

(c)
f (t) = 1, respectively;

9: if y(c)
f ′ (t+∆(t)) derived in the two cases are different

for any f ′ )= f then
10: break;
11: end if
12: if y0(c)

f (t+∆(t)) = y
1(c)
f (t+∆(t)) then

13: if G(!y1(c)[t,∆(t)], !y0(c)[t,∆(t)]) < 0 then
14: Set y(c)

f (t) = 1;
15: end if
16: break;
17: end if
18: ∆(t) + +;
19: end while
20: Derive α

(c)
jf (t),∀j ∈ F, f ∈ F , based on adjusted

y
(c)
f (t)’s;

21: end for
22: end for

y
0(c)
f (t+δt) = 1 never happens when δt → ∞. To handle both
cases, we set a thresholdWthresh to the number of look-ahead
steps: if sequences !y0(c)f (t,Wthresh) and !y1(c)f (t,Wthresh) still
diverge after Wthresh steps, we will just retain y

(c)
f (t) = 0.

An online algorithm in Algorithm 1 is designed to adjust
one-shot optimal solutions towards offline optimum, following
the above discussions. Theorem 1 guarantees that Algorithm
1 can derive a solution closer to the offline optimum, than a
solution that consists of one-shot optimum in individual time
slots, with detailed proof given in [23].
Theorem 1. Given the number of viewing requests within the
next ∆(t) time slots that are predicted/learned, Algorithm 1
adjusts the one-shot optimal solution at time slot t towards
the offline optimum.

B. Practical Implementation
We briefly discuss how our online Algorithm 1, together

with demand prediction and one-shot optimization modules,
can be practically implemented in a real-world system. The
algorithm can be deployed on the tracker server(s) in the social
media application, which is (are) responsible for receiving
users’ requests and dispatching them to the cloud cites. Key
modules of the algorithm are illustrated in Fig. 2.
During each interval t, the Collector collects the number

of requests for each video from received viewing requests,
the friend relationship among users and their geographic
distribution, as well as the list of users that the social media
system recommends a video to. All these are stored in a social
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Fig. 2. Key modules in online algorithm implementation.

information table, as shown in Fig. 2. Based on statistics
collected over time, the collector also adjusts the estimates for
γc and η introduced in Sec. IV-A. The summarized statistics
are fed into the Prediction Engine, which estimates the number
of viewing requests for each video in the upcoming time slot.
With the demand prediction from the prediction engine and
current video replication status from the replica information
table, the One-Shot Optimization Solver solves the one-shot
optimization (2). The Look-ahead Mechanism reads in the
solution from the one-shot solver and adjusts them towards
offline optimality following Algorithm 1. The resulting content
replication decisions are sent to the cloud sites, for them to
pre-deploy videos and VMs in cases of increased demands and
remove videos with decreased demands; request distribution
strategies are employed by the social media application to
dispatch upcoming requests to different cloud sites.
A number of practical concerns may arise when running the

algorithm in real-world social media platforms:
Update frequency. Our algorithm runs periodically. As

hourly resource rental is commonly supported in cloud systems
[16], the algorithm can be run at intervals of a few hours.
Initial deployment of videos. For a newly uploaded video,

a default strategy is to store it in the cloud site closest to the
uploader. From this time onwards, the video is included in
calculation of the optimal replication strategies.
Large numbers of videos. Social media application may

host a large number of videos, which increases over time.
Though all videos are included in our optimization formula-
tions, our algorithm is flexible in the set of videos to attend to
in each run: A closer investigation of optimization (1) reveals
that the replication decisions of one video is largely decoupled
from those of other videos. Therefore, we can optimize the
replication of a subset of videos in each time slot, but not
necessarily all of them. For example, viewing demands of
popular videos may expand quickly across regions; we may
update their replication at higher frequencies, while dealing
with unpopular videos at longer intervals.
Accuracy of multi-step prediction. Our algorithm requires

∆(t)-step prediction. In fact, as long as the prediction can
roughly estimate the evolution trend of viewer populations
(e.g., in cases of apparent daily patterns shown by many mea-
surements [25] [26]), our algorithm provides nice guidelines
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for optimal pre-deployment of videos.

VI. PERFORMANCE EVALUATION
We evaluate the performance of our online algorithm, using

a home-built cloud system under realistic settings.
A. Prototype Implementation and Experimental Settings
We have built a cloud infrastructure using 50+ commodity

computers (Intel(R) Pentium(R) 4 CPU 2.80GHz, 1G RAM,
and 80G hard drive), interconnected via IBM 8275 Ethernet
switches. On this platform, we emulate a geo-distributed cloud
across 10 regions (San Francisco, New Orleans, Ottawa, Rio
de Janerio, London, Berlin, Bengaluru, Singapore, Hong Kong,
and Tokyo), with one data center in each. The round-trip delays
(RTT) between each pair of cloud sites are emulated using
manually injected delays in programs following the formula
RTT (ms) = 0.02×Distance(km)+5 from [27]. Computers
belonging to one cloud site are divided into computing servers
and storage servers, installed with Xen VMs and NFS file
systems, respectively. Different charges are applied in the 10
cloud sites, as given in Table III. The prices are set based on
the charging model of Amazon Web Services[16][17], with
minor adjustments.
10 additional PCs are used to simulate user groups located in

different regions, which produce viewing requests to dispatch
to the cloud sites. The RTT between a user and a cloud
site is 20ms if they are in the same region, or calculated
using the above formula otherwise. The targeted maximal
average response delay per request, R, is set to 150 ms, since
a latency up to 200ms will deteriorate the user experience
significantly [28]. Another computer is set up as the tracker
server, implementing the Collector, Prediction Engine, One-
Shot Optimization Solver, and Look-ahead Mechanism dis-
cussed in Sec. V.
In our experiments, there are 10, 000 users in the applica-

tion. The number of friends of each user follows a lognormal
distribution [29] with an average of 10, 80% of which are from
the same region where the user resides. Each video is 100M-
byte long. Initially there are 60 videos in the system. Then in
each round of our online algorithm (1 hour), two new videos
will be uploaded by two randomly picked users located in an
‘active’ region — where the local time is between 9am and
9pm in a day. We emulate evolution of the popularity of each
video by setting η around 0.5 and γc chosen in [0.9, 0.99999].
The videos are evenly divided into four types, and each video
is recommended by the system to 50 users in each hour, who
have recently watched a video of the same type. Each viewer
of a video will immediately comment on the video, in our
system. We emulate the running of the system over 100 hours.

B. Prediction accuracy
We first investigate effectiveness of our epidemic model

for forecasting future viewing demands. In Fig. 3, the solid
curve plots the actual viewing request number for a video
in our system over an 18-hour span, which replays YouTube
measurements from the literature [11]. The dotted curves
correspond to predicted demands: the red curve represents the

prediction done at t = 0 for the next 6 time slots; similarly,
the other two curves correspond to prediction done at t = 6
and t = 12, for the next 6 hours, respectively. We can observe
that predicted numbers using our epidemic model follow the
actual numbers quite well, especially within a 4-hour look-
ahead window. In our following experiments, we will use a
look-ahead window size Wthresh = 2 as the default.
C. Performance on Cost and Delay
We compare the performance of our algorithm with an

algorithm using one-shot optimal solutions in each time slot,
and a simple algorithm which replicates a copy of each video
in each cloud site at all times. Fig. 4 shows that the overall
operational cost of the system achieved with our algorithm
is smaller than those incurred by the other two algorithms,
verifying the effectiveness of our look-ahead mechanism. In
Fig. 5, we observe that all three algorithms achieve similar
satisfactory response latencies (below 150 ms) at all times,
which fulfils our service quality target.
D. Impact of Look-ahead Window Size
We also investigate the performance improvement when

different look-ahead window sizes are employed in our online
algorithm. Fig. 6 plots cost savings, i.e., cost incurred with
one-shot optimal solutions minus cost with our online algo-
rithm, in each time slot when different maximal window sizes
Wthresh are used in our look-ahead mechanism. We observe
that a larger window may give larger cost savings, but the gap
decreases with the increase of window size, e.g.,Wthresh = 2
or 3 achieve very similar cost saving. All these promise that
a small look-ahead window is enough to achieve good cost
savings in realistic environments.

VII. CONCLUDING REMARKS
This paper introduces a proactive, online algorithm to scale

social media streaming applications for operating in geo-
distributed clouds. Exploiting the underlying social influences
among the users, we build a simple, effective epidemic
model to predict future viewing demands for proactive service
deployment. Aiming at operational cost minimization with
service delay guarantees, we formulate an optimal content
migration and request distribution problem, with long-time and
one-shot flavors, respectively. Efficient methods are proposed
to solve the one-shot optimization, and a novel∆(t)-step look-
ahead mechanism is designed with guarantees to adjust the
one-shot optimum to the offline optimum, which is based on
solid theoretical analysis. Our large-scale evaluations on an
emulated distributed cloud under realistic settings confirm the
superiority of our online algorithm in pursuing the ultimate
optimal replication and request dispatching solutions, using
limited information within small look-ahead windows.
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