7,215 research outputs found

    Block 4 receiver tracking loop performance in the presence of a CW RFI

    Get PDF
    A model that allows one to predict the tracking performance of the Block 4 receiver in the presence of a continuous wave radio frequency interference is discussed. Experimental and analytical results are provided for a typical Deep Space Network operational mode. Simulation and experimental results show good agreement with theoretical prediction for the static phase error and out-of-lock values. Predicted phase jitter is consistently lower than the experimental and simulated results by a factor of one-half for small interference to signal ratio (ISR) when the offset frequency is small. For large ISR, good agreement is observed. The analytical model assumes a noiseless condition, which is valid only when the loop is operated at strong signal levels. Experimental data indicate, however, that even at the minimum operating signal level of 10-dB carrier margin, reasonably good prediction can still be obtained. A curve of protection criteria that extends the current recommendation is also presented

    The Impact of Interference on GNSS Receiver Observables – A Running Digital Sum Based Simple Jammer Detector

    Get PDF
    A GNSS-based navigation system relies on externally received information via a space-based Radio Frequency (RF) link. This poses susceptibility to RF Interference (RFI) and may initiate failure states ranging from degraded navigation accuracy to a complete signal loss condition. To guarantee the integrity of the received GNSS signal, the receiver should either be able to function in the presence of RFI without generating misleading information (i.e., offering a navigation solution within an accuracy limit), or the receiver must detect RFI so that some other means could be used as a countermeasure in order to ensure robust and accurate navigation. Therefore, it is of utmost importance to identify an interference occurrence and not to confuse it with other signal conditions, for example, indoor or deep urban canyon, both of which have somewhat similar impact on the navigation performance. Hence, in this paper, the objective is to investigate the effect of interference on different GNSS receiver observables in two different environments: i. an interference scenario with an inexpensive car jammer, and ii. an outdoor-indoor scenario without any intentional interference. The investigated observables include the Automatic Gain Control (AGC) measurements, the digitized IF (Intermediate Frequency) signal levels, the Delay Locked Loop and the Phase Locked Loop discriminator variances, and the Carrier-to-noise density ratio (C/N0) measurements. The behavioral pattern of these receiver observables is perceived in these two different scenarios in order to comprehend which of those observables would be able to separate an interference situation from an indoor scenario, since in both the cases, the resulting positioning accuracy and/or availability are affected somewhat similarly. A new Running Digital Sum (RDS) -based interference detection method is also proposed herein that can be used as an alternate to AGC-based interference detection. It is shown in this paper that it is not at all wise to consider certain receiver observables for interference detection (i.e., C/N0); rather it is beneficial to utilize certain specific observables, such as the RDS of raw digitized signal levels or the AGC-based observables that can uniquely identify a critical malicious interference occurrence

    A TDM synchronization system for multiple access satellite communication

    Get PDF
    Time Division Multiple Access /TDMA/ system for satellite communication with ground station syste

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Creating high dimensional time-bin entanglement using mode-locked lasers

    Full text link
    We present a new scheme to generate high dimensional entanglement between two photonic systems. The idea is based on parametric down conversion with a sequence of pump pulses generated by a mode-locked laser. We prove experimentally the feasibility of this scheme by performing a Franson-type Bell test using a 2-way interferometer with path-length difference equal to the distance between 2 pump pulses. With this experiment, we can demonstrate entanglement for a two-photon state of at least dimension D=11. Finally, we propose a feasible experiment to show a Fabry-Perot like effect for a high dimensional two-photon state.Comment: 5 pages, 5 figure

    Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth

    Full text link
    We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135^\circ phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications

    Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity

    Get PDF
    A novel, simple, and inexpensive calibration scheme for a continuous-wave difference frequency spectrometer is presented, based on the stabilization of an open transfer cavity by locking onto the output of a polarization stabilized HeNe laser. High frequency, acoustic fluctuations of the transfer cavity length are compensated with a piezoelectric transducer mounted mirror, while long term drift in cavity length is controlled by thermal feedback. A single mode Ar+ laser, used with a single mode ring dye laser in the difference frequency generation of 2–4 µm light, is then locked onto a suitable fringe of this stable cavity, achieving a very small long term drift and furthermore reducing the free running Ar+ linewidth to about 1 MHz. The dye laser scan provides tunability in the difference frequency mixing process, and is calibrated by marker fringes with the same stable cavity. Due to the absolute stability of the marker cavity, precise frequency determination of near infrared molecular transitions is achieved via interpolation between these marker fringes. It is shown theoretically that the residual error of this scheme due to the dispersion of air in the transfer cavity is quite small, and experimentally that a frequency precision on the order of 1 MHz per hour is routinely obtained with respect to molecular transitions. Review of Scientific Instruments is copyrighted by The American Institute of Physics
    corecore