3,011 research outputs found

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    A new programmable low noise all digital phase-locked loop architecture

    Get PDF
    In the electronics industry today almost without exception there are phase-locked loops (PLL) implemented within each system and often within each integrated circuit (IC). In fact, most PLL\u27s are implemented monolithically within ICs without any or with very few external components. Additionally, most are implemented as Analog PLL\u27s utilizing only a digital phase detector. This is also evident in the majority of recent publications which focus on PLL structures with on-chip voltage controlled oscillators using charge pumps and ring or LC oscillators. However, the problem with most on-chip VCO\u27s is that they are far noisier than the external crystal types. The noise in the integrated oscillators forces designers to use larger loop bandwidths than would be required with less noisy VCO\u27s; subsequently they have poor noise filtering capabilities. Additionally, analog PLL\u27s are usually fixed in nature. Loop components such as charge-pumps and loop filters are implemented as analog components with little or no flexibility. The focus of this thesis is the design and implementation of a very low cost, low noise Programmable All Digital PLL (ADPLL) which utilizes a low cost digital to analog converter (DAC), a voltage controlled crystal oscillator (VCXO), and a field programmable gate array (FPGA). The use of FPGA technology for digital design implementation is universal in the industry and provides benefits far beyond the implementation of ADPLL\u27s. In fact, in almost every system today, an FPGA already exists. Therefore, the inclusion of a DPLL within existing system components would be at little or no cost. The implementation of the PLL digitally not only allows us to implement it within an FPGA, but also allows us to adapt and configure the PLL for many applications and tune it for best performance. Digital circuits also have increased noise margin and are not affected by the same noise issues associated with Analog PLL\u27s such as temperature, voltage and noise coupled from other signals or circuits. The DPLL developed is flexible and can be configured to operate as a clock and data recovery circuit (CDR), clock multiplier, clock synthesizer, or noise filtering PLL. Using an external VCXO provides a very low noise basis for the PLL and such that we can implement very low bandwidths without sacrificing the quality of its output. In this thesis we will present the theory, architecture, design, hardware and implementation of the ADPLL in addition to the results of the testing of the prototype ADPLL that was built

    Pulse-Shape Analysis of PDM-QPSK Modulation Formats for 100 and 200 Gb/s DWDM transmissions

    Get PDF
    Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlinear optical impairments: amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fiber Kerr nonlinearities. RZ formats with a low duty cycle value reduce pulse-to-pulse interaction obtaining a higher tolerance to CD, PMD and intrachannel nonlinearities

    PAM4 Transmitter and Receiver Equalizers Optimization for High-Speed Serial Links

    Get PDF
    As the telecommunications markets evolves, the demand of faster data transfers and processing continue to increase. In order to confront this demand, the peripheral component interconnect express (PCIe) has been increasing the data rates from PCIe Gen 1(4 Gb/s) to PCIe Gen 5(32 Gb/s). This evolution has brought new challenges due to the high-speed interconnections effects which can cause data loss and intersymbol interference. Under these conditions the traditional non return to zero modulation (NRZ) scheme became a bottle neck due to bandwidth limitations in the high-speed interconnects. The pulse amplitude modulation 4-level (PAM4) scheme is been implemented in next generation of PCIe (PCIe6) doubling the data rate without increasing the channel bandwidth. However, while PAM4 solve the bandwidth problem it also brings new challenges in post silicon equalization. Tuning the transmitter (Tx) and receiver (Rx) across different interconnect channels can be a very time-consuming task due to multiple equalizers implemented in the serializer/deserializer (SerDes). Typical current industrial practices for SerDes equalizers tuning require massive lab measurements, since they are based on exhaustive enumeration methods, making the equalization process too lengthy and practically prohibitive under current silicon time-to-market commitments. In this master’s dissertation a numerical method is proposed to optimize the transmitter and receiver equalizers of a PCIe6 link. The experimental results, tested in a MATLAB simulation environment, demonstrate the effectiveness of the proposed approach by delivering optimal PAM4 eye diagrams margins while significantly reducing the jitter.ITESO, A.C

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    All-optical 2R regeneration with a vertical microcavity based saturable absorber

    No full text
    International audienceThis paper gives an overview of recent demonstrations of optical 2R regeneration achieved by vertical microcavity mirror based multiple-quantum-well Saturable Absorber (SA). The potential of the device to perform WDM regeneration is firstly demonstrated through the first pigtailed saturable absorber chip implemented with 8 independent fibres using a cost effective coupling technique. The cascadability and wavelength tunability assessment of this module associated to a power limiter fibre-based function has been experimentally demonstrated at 42.6 Gbit/s. Because this method of power limiting is not a suitable solution for all-optical multichannel 2R regeneration, a new SA structure allowing a power limiting function was proposed. We describe and characterize such a structure in this paper. This new SA opens the door to a complete passive all-optical 2R regeneration relying upon a single technology, as shown in this paper through the use of two SA: SA.0 for extinction ratio enhancement and SA.1 for power level equalization allowing receiver sensitivity (up to 3.5 dB) and Q factor (up to 1.4 dB) improvement for a RZ signal at 42.6 Gbit/s. The limitation of SA.1 when the regenerator must be cascaded a large number of times is also described, leading to the observation that SA.1 should be more suitable for phase encoded formats which are more spectrally efficient than OOK formats. A SA.1 used as a phase-preserving amplitude regenerator in a 42.6 Gbit/s RZ-DPSK transmission system is therefore assessed. A fibre launched power margin of 2 dB and a receiver sensitivity improvement of 5.5 dB are obtained. Finally, we use, for the first time an SA.1 as a phase-preserving amplitude regenerator of RZ DQPSK signals. The regenerator is assessed in a recirculating loop at 28 Gbaud. The system tolerance to nonlinear phase noise is enhanced by 3 dB and the distance improvement factor was 1.3 for a BER=10-4

    Study On All-Optical Signal Processing by Semiconductor Optical Amplifiers for Ultra-High-Speed Optical Fiber Communications

    Get PDF
    制度:新 ; 報告番号:乙2307号 ; 学位の種類:博士(工学) ; 授与年月日:2011/2/25 ; 早大学位記番号:新564

    40-Gb/s systems on G.652 fibers: comparison between periodic and all-at-the-end dispersion compensation

    Get PDF
    In the literature, two system solutions have been proposed to overcome high dispersion problems typical of G.652 fibers at high bit rates (40 Gb/s): they are periodic and all-at-the-end dispersion compensation. We carry out an exhaustive comparison between the two methods that, up to this moment, have been studied separately. In the first part, we introduce a simplified model on strong dispersion management (DM) with intrachannel four-waves mixing (IFWM) and intrachannel cross-phase modulation (IXPM). We then carry out extensive numerical simulations of a complete system in order to verify the results as a function of the input average power and of the input pulsewidth. Finally, we tackle a typical system aspect, i.e., the influence of nonlinear effects on dispersion compensating fibers (DCFs)

    WIMAX LINK PERFORMANCE ANALYSIS FOR WIRELESS AUTOMATION APPLICATIONS

    Get PDF
    Wireless broadband access technologies are rapidly growing and a corresponding growth in the demand of its applicability transcends faster internet access, high speed file download and different multimedia applications such as voice calls, video streaming, teleconferencing etc, to industrial operations and automation. Industrial and automation systems perform operations that requires the transmission of real time information from one end to another through high-performance wireless broadband communication links. WiMAX, based on IEEE 802.16 standard is one of the wireless broadband access technologies that has overcome location, speed, and access limitations of the traditional Digital Subscriber Line and Wireless Fidelity, and offers high efficient data rates. This thesis presents detailed analysis of operational WiMAX link performance parameters such as throughput, latency, jitter, and packet loss for suitable applicability in wireless automation applications. The theoretical background of components and functionalities of WiMAX physical and MAC layers as well as the network performance features are presented. The equipment deployed for this field experiment are Alvarion BreeZeMAX 3000 fixed WiMAX equipment operating in the 3.5 GHz licensed band with channel bandwidth of 3.5 MHz. The deployed equipment consisting of MBSE and CPE are installed and commissioned prior to field tests. Several measurements are made in three link quality scenarios (sufficient, good and excellent) in the University of Vaasa campus. Observations and results obtained are discussed and analyzed.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A development study for a short range, low capacity digital microwave link

    Get PDF
    Includes bibliographical references.A specific request for development of a short-range, low capacity digital microwave transmission system has been received from the South African Dept. Posts and Telecommunications. The aim of this project is to initiate development work by determining the optimum system configuration and modulation technique to meet the design specifications. In addition, it is proposed to develop and construct an I.F. modulator/demodulator module using which simulation tests chosen modulation application may be performed in order to assess the scheme's feasibi1ity in this specific application
    corecore