2,385 research outputs found

    AUTOMATIC RECOGNITION OF DENTAL PATHOLOGIES AS PART OF A CLINICAL DECISION SUPPORT PLATFORM

    Get PDF
    The current work is done within the context of Romanian National Program II (PNII) research project "Application for Using Image Data Mining and 3D Modeling in Dental Screening" (AIMMS). The AIMMS project aims to design a program that can detect anatomical information and possible pathological formations from a collection of digital imaging and communications in medicine (DICOM) images. The main function of the AIMMS platform is to provide the user with the opportunity to use an integrated dental support platform, using image processing techniques and 3D modeling. From the literature review, it can be found that for the detection and classification of teeth and dental pathologies existing studies are in their infancy. Therefore, the work reported in this article makes a scientific contribution in this field. In this article it is presented the relevant literature review and algorithms that were created for detection of dental pathologies in the context of research project AIMMS

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    End-To-End Multi-Task Learning Approaches for the Joint Epiretinal Membrane Segmentation and Screening in OCT Images

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Background and objectives The Epiretinal Membrane (ERM) is an ocular disease that can cause visual distortions and irreversible vision loss. Patient sight preservation relies on an early diagnosis and on determining the location of the ERM in order to be treated and potentially removed. In this context, the visual inspection of the images in order to screen for ERM signs is a costly and subjective process. Methods In this work, we propose and study three end-to-end fully-automatic approaches for the simultaneous segmentation and screening of ERM signs in Optical Coherence Tomography images. These convolutional approaches exploit a multi-task learning context to leverage inter-task complementarity in order to guide the training process. The proposed architectures are combined with three different state of the art encoder architectures of reference in order to provide an exhaustive study of the suitability of each of the approaches for these tasks. Furthermore, these architectures work in an end-to-end manner, entailing a significant simplification of the development process since they are able to be trained directly from annotated images without the need for a series of purpose-specific steps. Results In terms of segmentation, the proposed models obtained a precision of 0.760 ± 0.050, a sensitivity of 0.768 ± 0.210 and a specificity of 0.945 ± 0.011. For the screening task, these models achieved a precision of 0.963 ± 0.068, a sensitivity of 0.816 ± 0.162 and a specificity of 0.983 ± 0.068. The obtained results show that these multi-task approaches are able to perform competitively with or even outperform single-task methods tailored for either the segmentation or the screening of the ERM. Conclusions These results highlight the advantages of using complementary knowledge related to the segmentation and screening tasks in the diagnosis of this relevant pathology, constituting the first proposal to address the diagnosis of the ERM from a multi-task perspective.This research was funded by Instituto de Salud Carlos III, Government of Spain, [grant number DTS18/00136]; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, [grant number RTI2018-095894-B-I00]; Ministerio de Ciencia e Innovación, Government of Spain through the research project with [grant number PID2019-108435RB-I00]; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, [grant number ED431C 2020/24], Predoctoral grant [grant number ED481A 2021/161] and Postdoctoral grant [grant number ED481B 2021/059]; Axencia Galega de Innovación (GAIN), Xunta de Galicia, [grant number IN845D 2020/38]; CITIC, Centro de Investigación de Galicia [grant number ED431G 2019/01], receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%). The funding sources had no role in the development of this work. Funding for open access charge: Universidade da Coruña/CISUGXunta de Galicia; ED431C 2020/24Xunta de Galicia; ED481A 2021/161Xunta de Galicia; ED481B 2021/059Xunta de Galicia; IN845D 2020/38Xunta de Galicia; ED431G 2019/0

    Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors

    Get PDF
    In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients’ mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning

    Computational processing and analysis of ear images

    Get PDF
    Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore