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A B S T R A C T   

Background and objectives: The Epiretinal Membrane (ERM) is an ocular disease that can cause visual distortions 
and irreversible vision loss. Patient sight preservation relies on an early diagnosis and on determining the 
location of the ERM in order to be treated and potentially removed. In this context, the visual inspection of the 
images in order to screen for ERM signs is a costly and subjective process. 
Methods: In this work, we propose and study three end-to-end fully-automatic approaches for the simultaneous 
segmentation and screening of ERM signs in Optical Coherence Tomography images. These convolutional ap
proaches exploit a multi-task learning context to leverage inter-task complementarity in order to guide the 
training process. The proposed architectures are combined with three different state of the art encoder archi
tectures of reference in order to provide an exhaustive study of the suitability of each of the approaches for these 
tasks. Furthermore, these architectures work in an end-to-end manner, entailing a significant simplification of the 
development process since they are able to be trained directly from annotated images without the need for a 
series of purpose-specific steps. 
Results: In terms of segmentation, the proposed models obtained a precision of 0.760 ± 0.050, a sensitivity of 
0.768 ± 0.210 and a specificity of 0.945 ± 0.011. For the screening task, these models achieved a precision of 
0.963 ± 0.068, a sensitivity of 0.816 ± 0.162 and a specificity of 0.983 ± 0.068. The obtained results show that 
these multi-task approaches are able to perform competitively with or even outperform single-task methods 
tailored for either the segmentation or the screening of the ERM. 
Conclusions: These results highlight the advantages of using complementary knowledge related to the segmen
tation and screening tasks in the diagnosis of this relevant pathology, constituting the first proposal to address 
the diagnosis of the ERM from a multi-task perspective.   

1. Introduction 

Recent years have seen significant advances in the development of 
new and more efficient Computer-Aided Diagnosis (CAD) systems. The 
advent of modern artificial intelligence algorithms based on deep 
learning, coupled with the growth in computing capacity, is enabling 
enormous progress in the field of medical image analysis (Kim et al., 
2018; Shen et al., 2017; Litjens et al., 2017). Current deep learning ar
chitectures allow for an efficient extraction of visual features from 
medical images. With these features, deep learning-based CAD systems 
are able to aid clinicians by performing tasks such as the automatic 
screening of patients (Cheung et al., 2019; Nielsen et al., 2019) or the 

segmentation of pathological or anatomical structures that are relevant 
for the diagnosis and treatment of several diseases (Fu et al., 2018; Liu 
et al., 2021; Morano et al., 2021). These systems have demonstrated that 
their performance can be on par with or even better than that of medical 
experts (Litjens et al., 2017; Fauw et al., 2018; Gulshan et al., 2016; Ting 
et al., 2017; Lee et al., 2020). 

In the context of medical imaging, Optical Coherence Tomography 
(OCT) is a non-invasive imaging technique that allows the visualisation 
of cross-sectional images of tissue at high resolution (Huang et al., 
1991). To generate these images, an OCT scanning platform sweeps the 
tissue with low coherence light, obtaining a depth-wise reading or 
A-Scan at each point. These readings or samples can be averaged and 
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combined to form the B-Scans, tomograms or cross-sectional images of 
the tissue, showing its histological structure. These can be further 
composed laterally to form three-dimensional C-Scans or OCT volumes 
that contain a complete visualisation of the analysed tissue (Figure 1). 
Due to its non-invasiveness and the fact that it uses light to capture 
images, OCT is an especially valuable technique to study macular 
structures and diseases (Puliafito et al., 1995). Among its applications, 
OCT imaging can be used to diagnose different relevant ocular pathol
ogies such as age-related macular degeneration (Kermany et al., 2018; 
Lee et al., 2017), the leading cause of permanent vision loss in the 
elderly; diabetic macular oedema (de Moura et al., 2020; Dysli et al., 
2019), the leading cause of blindness in the diabetic population; glau
coma (Triolo and Rabiolo, 2020; Mohammadzadeh et al., 2020), the 
global leading cause of irreversible blindness; or the Epiretinal Mem
brane (ERM), among others. 

The ERM, alternatively known as cellophane maculopathy or mac
ular pucker, is an ocular condition in which a thin, fibrocellular layer 
develops over the eye retina. It appears over the boundary region be
tween the vitreous humour and the retina. This region is known as the 
Inner Limiting Membrane (ILM). When the ERM layer starts to harden 
and contract, it exerts traction over the macula, producing wrinkles or 
puckers which may translate into a blurring or deformation of the vision, 
also known as metamorphopsia (Matsumoto et al., 2003). These de
formations may also cause a thickening of the macular tissue or even the 
disappearance of the foveal pit. The key cause for its appearance is the 
retraction of the vitreous gel from the macula, a process known as 
posterior vitreous detachment (Johnson, 2010; Snead et al., 2008). 
Alternatively, the ERM can also appear as a secondary factor to other 
related ocular diseases, such as diabetic macular oedema (Diabetic 
Retinopathy Clinical Research Network, 2010; Ophir et al., 2010; Flaxel 
et al., 2010; Yamamoto et al., 2001; Ghazi et al., 2007), which has a high 
prevalence of related ERM appearance; or macular hole (Lee et al., 2015; 
Messmer et al., 1998; Akiba et al., 1996). Treatment for symptomatic 
ERM presence involves its extraction via pars plana vitrectomy. This 
surgery can help to preserve the sight of the patients. However, many of 
the deformations caused by ERM contraction may be irreversible, 
causing permanent vision loss in patients who receive a late diagnosis. 
Thus, an early diagnosis is paramount in preserving patient vision 
(Massin et al., 2000; Suh et al., 2009; Rahman and Stephenson, 2014). 

The ERM is mostly transparent. Because of this, it is difficult to spot 
in eye fundus images. In many cases, it cannot be detected until its ef
fects start to develop. In OCT images, however, the ERM appears as a 
bright layer over the ILM. The appearance of the ERM in OCT images is 
illustrated in Figure 2. This makes it possible to detect its presence 
before it starts to deform the macula of the patient and cause irreversible 

damage. Thanks to this, OCT has become a standard imaging technique 
used for the diagnosis and detection of the ERM, allowing an early 
detection and assessment of its presence, as can be seen in several 
clinical studies, (for reference (Zhang et al., 2021; Poornachandra et al., 
2020; Menteş and Nalçací, 2020). OCT is also used for the pre-operative 
and post-operative management of patients, helping to predict and 
explain the visual outcomes from surgery (Goldberg et al., 2014). 
Furthermore, several studies highlight the relevance of this imaging 
technique for surgical decision making, planning and assessment in 
relation to this pathology (Do et al., 2007; Hirano et al., 2010; 
Falkner-Radler et al., 2010). These studies outline the relevance of 
detecting the ERM in OCT images in order not only to provide an early 
diagnosis, but also to study its progression, to estimate the visual out
comes from surgery and, overall, to determine the way it may have an 
impact on patient care (Chua et al., 2022). 

The process of detecting the ERM in OCT images is typically per
formed by an ophthalmology expert visually inspecting each image. This 
tedious and time-consuming task can also lead to subjectivity in the 
diagnosis. Additionally, the existence of a bright spot over the ILM in an 
OCT image does not univocally mean the presence of ERM, since the 
effects of the backwards and forwards scattering of light in this imaging 
technique have a tendency to cause visual artefacts. These commonly 
take the appearance of speckle noise and bright spots in the images. 
Because of this, the correct identification of the ERM is a non-trivial 
matter that requires a careful analysis of the signs of the disease at 
different scales. 

The challenge presented by the objective detection of the ERM in 
OCT images can be taken as an opportunity for the application of CAD 
systems that can provide support for the clinicians in performing an 
early and accurate diagnosis, implying the appropriate treatment. 
Because of the relevance of a disease such as the ERM, different works 
have addressed its analysis in the literature. The earlier works, such as 
the proposal by Wilkins et al. (Wilkins et al., 1996) were semi-automatic 
and based around the refinement of a manual annotation made by the 
expert who had to visually inspect the images. 

More recent studies have introduced automatic methods, over
coming the reliance on an initial expert annotation. For reference, with 
regards to the screening of the ERM, Fang et al. (2017) proposed the 
classification of multiple macular lesions including the ERM in OCT 

Fig. 1. Composition of OCT scans. One dimensional A-Scans containing infor
mation relative to the light backscattering measurements can be represented as 
picture elements and laterally combined into an array forming two dimensional 
B-Scans or tomograms. B-Scans can be composed by stacking them to form OCT 
volumes or C-Scans. 

Fig. 2. OCT slice showing ERM presence. Yellow: attached ERM. Magenta: de
tached ERM. Cyan: deformation caused by ERM contraction. 
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images. For their detection, they performed a conventional feature 
extraction in segmented regions of interest. These features were then 
used to classify these regions by a machine learning-based system. In the 
work by Lu et al. (2018), they used deep learning techniques to detect 
four different pathologies, also including ERM. The authors trained a 
Convolutional Neural Network (CNN) to classify images into a single 
pathology and compared their results with those obtained by two ex
perts. The authors reported that the system achieved results comparable 
to or better than those of the human experts. Kuwayama et al. (2019) 
studied the application of CNN models for the classification of OCT 
images. These images showed signs of different retinal diseases, with the 
ERM being one of them. The convolutional models were able to classify 
the images into the different pathologies that were considered. The 
study by Lo et al. (2020) proposed the use of a Residual Neural Network 
architecture (He et al) for the screening of the ERM in cross-sectional 
OCT images. The authors reported that the model performed slightly 
better than non-retinal specialised ophthalmologists. In their work, 
Sonobe et al. (2018) compared the performance of Support Vector Ma
chines (SVMs) and deep learning methods for the detection of ERM cases 
in OCT volumes. Their results showed that the deep learning models 
performed much better than the SVMs. Parra-Mora et al. (2021) used 
four classifying convolutional neural network architectures for the 
detection of the ERM in OCT slices. Their results showed high perfor
mance in discriminating positive and negative ERM cases. Finally, the 
works by Baamonde et al. (2017a,b), Baamonde et al. (2019a,b) propose 
a series of methods for the characterisation of the ERM in OCT images by 
means of the classification of a series of conventional features. 

Conversely, fewer works have addressed the segmentation of the 
ERM. In Baamonde et al. (2019b), the authors were able to automati
cally segment the ERM in OCT images by extracting a set of 452 con
ventional visual features (texture-based, intensity-based and 
domain-related) from a pre-segmented region of interest and then 
using the Spatial Uniform ReliefF algorithm to select the ones that 
contributed the most to the classification process. In their work, they 
compare the results of using random forest, k-nearest neighbours and 
SVMs for the classification of different sets of selected features. 

In Gende et al. (2021), the segmentation of the ERM by means of the 
classification of a series of windows extracted around the ILM is pro
posed. This process involves a set of three steps starting with the seg
mentation of the region of interest and the extraction of the windows, 
their classification and the reconstruction of the segmentation. A 
Densely Connected Convolutional Network (Huang et al., 2017) is used 
to classify each of these windows. These classifications are then used to 
reconstruct a segmentation map of the whole eye fundus. The deep 
learning model showed a greater ability to integrate the surrounding 
visual information when classifying each window than the classical 
machine learning methods explored by Baamonde et al. (2019b). 

Overall, the works in the literature have shown promising results for 
the application of deep learning models in the detection of the ERM. 
Most of these works, however, are limited in their scope to the classi
fication of whole OCT slices into whether the ERM is present or not, with 
only (Baamonde et al. 2019b) and (Gende et al., 2021) providing a 
segmentation of the pathological region in the OCT volumes. These two 
works depend upon a sequence of steps in order to restrict the region to 
be analysed, effectively obtaining the segmentation by means of a series 
of patch classifications and a reconstruction of each of the slices. These 
steps need to be adjusted and may be unreliable when presented with 
various artefacts or anatomical structures present in macular OCT im
ages. Moreover, due to their reliance on a classification of a series of 
sliding windows extracted from the images, these methods limit the area 
to be scanned overall, since the edges of the images cannot be analysed 
properly. To date, no end-to-end methods for the ERM segmentation 
have been proposed. Furthermore, there have been no proposals for the 
diagnosis of the ERM in OCT images that employ multi-task learning. 

In this work, we present a study in the application of multi-task deep 
learning techniques for the joint segmentation and screening of the ERM 

in OCT images. In a set of experiments, we compare a series of end-to- 
end approaches that take advantage of inter-task complementarity in 
different ways in order to provide an objective and accurate segmenta
tion and screening of the ERM. The first of these approaches leverages 
the potential of the innermost, highest-level features of the segmentation 
encoder for the screening of the ERM. This allows the classification head 
to exploit the most refined visual feature maps that are used in the 
segmentation. The second approach is based on the use of the complete 
set of visual feature maps extracted from the images for the classifica
tion. This way, taking an extensive approach to the multi-task context by 
making all of the visual information that is propagated for the seg
mentation at different levels available to the screening task. Finally, the 
third approach restricts the ERM screening task to only employ the 
output maps produced by the segmentation task. This proposal takes the 
opposite approach to the second one, taking on a restrictive focus and 
only allowing the visual information that is common to both tasks to be 
propagated to the classification head. Each of these approaches is tested 
with three different encoder configurations, representative of the state 
of the art in medical image classification and segmentation. These ar
chitectures make use of deep learning and the ability of convolutional 
neural networks to be trained directly from the annotated data. This 
way, the models are able to implicitly learn to extract and select the 
visual features that are relevant to the task. This eliminates the necessity 
of performing this process manually through conventional hand-crafted 
features or the use of feature selection strategies. Since these models 
function in an end-to-end manner, they are able to produce the seg
mentation and the classification of the ERM from the images without the 
need for a delicate series of fine-tuned intermediate steps. Not only does 
this provide a more reliable and robust system, but it also entails a 
considerable speedup with regards to the existing methods for the seg
mentation of the ERM. This also greatly simplifies the development of 
CAD systems that make use of these approaches, without relying on the 
tuning and adjustment of each of the steps, conferring them significant 
advantages during training and inference over the OCT slices. To the 
extent of our knowledge, this work is the first in the literature to tackle 
ERM detection using end-to-end multi-task approaches. 

This manuscript is structured as follows: In Section 2 we describe the 
materials and the convolutional architectures employed in this work. 
Section 3 presents the experimental results and their discussion. Finally, 
in Section 4 we present the conclusions that were reached and describe 
possible future lines of work. 

2. Materials and methods 

In this section, we provide a description of the resources that were 
used in this study. In particular, the reader will find information about 
the dataset that was used (Subsection 2.1), as well as the base segmen
tation architecture that was selected (Subsection 2.2), a detailed 
description of each of the proposed approaches (Subsection 2.3), the 
different encoder configurations that were combined with the proposed 
approaches (Subsection 2.4), the software and hardware resources 
employed (Subsection 2.5) and finally a detailed explanation of the 
training and evaluation strategy that was followed (Subsection 2.6). 

2.1. Dataset 

For the development of this study, an anonymized set of 20 OCT 
volumes obtained from 20 different patients was used. All the OCT 
volumes were acquired using a CIRRUS™ HD-OCT Carl Zeiss Meditec 
confocal scanning laser ophthalmoscope. These images were acquired in 
accordance with the Declaration of Helsinki, as approved by the local 
Ethics Committee of Investigation from A Coruña/Ferrol (2014/437) the 
24th of November 2014. 

Out of the 20 OCT volumes, 8 of them present ERM, while the 
remaining 12 belong to healthy eyes. These volumes were formed from a 
total of 2.427 2D B-Scans. 809 of these B-Scans displayed symptoms of 
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ERM, while the remaining 1.618 showed no signs of ERM. All of the OCT 
tomograms were manually labelled by an expert, indicating the position 
of the ILM and the presence of the ERM. A total of 1.308.160 image 
columns were annotated with ILM position, 251.994 of them showed 
ERM-related lesions and 1.056.166 contained healthy tissue. These an
notations were used as the ground truth for the segmentation and clas
sification process. These B-Scans originally ranged between 
479 × 501–693 × 676 pixels of resolution, before being resized to a 
standard 512 × 512 pixels. Figure 3 displays some examples of OCT 
slices and their corresponding annotations. 

2.2. Network architecture 

In this work, we study the application of different end-to-end multi- 
task deep neural network architectural approaches for the detection of 
the ERM. These approaches are based on the Feature Pyramid Network 
(FPN) model (Lin et al., 2017), adapted for semantic segmentation. The 
FPN models allow for the extraction of visual features at different scales, 
building high-level semantic feature maps and making predictions at 
each of them. Feature maps at different scales have proven to be useful 
for detection and segmentation tasks in medical imaging, and several 
variations of the original FPN can be found in the literature (for refer
ence (Dimitrakopoulos et al., 2019; Shao et al., 2019; Geng et al., 2020; 
Cao et al; Chen and Liu). These can be used for the characterisation of 
the different signs of ERM presence in OCT images at different scale 
levels, such as its appearance as a hyper-reflective layer, the thickening 
of the macular tissue or the deformations it causes around the fovea. The 
basic structure of an FPN adapted for segmentation can be found in  
Figure 4. 

2.3. End-to-end multi-task approaches 

The base architecture was extended into three different approaches 
specifically designed in order to leverage the advantages that inter-task 
commonality may provide via multi-task learning for the screening and 
segmentation of the ERM. These architectures approach the multi-task 
learning in different ways, with the aim of exploring in which way the 
visual features that are relevant for each of the individual tasks can be of 
use for the other. These approaches are described as follows:  

• Multi-task via the inner features: The first approach consists of a 
classification head that accepts the innermost features of the encoder 
of the FPN and returns a classification into whether the image dis
plays ERM symptoms or not. This way, the innermost, highest level 
features can be employed for the classification task, taking advantage 
of the progressive feature refining of the encoder. This classification 

head consists of an adaptive average pooling layer followed by a fully 
connected layer with two outputs. This structure can be found in 
other multi-task segmentation and classification neural network ar
chitectures (for reference (Amyar et al., 2020; Zhou et al., 2021; 
Playout et al., 2019). Figure 5 shows a diagram illustrating this 
variant.  

• Multi-task via the decoder features: The second approach uses all 
of the decoder features for the classification. In this structure, all the 
features employed for the ERM segmentation map are used as inputs 
in the screening task. The complete set of features is fed to a classi
fication head analogous to the one used in the first approach by 
employing an additional encoder. In this way, features extracted at 
different scale levels can be combined with each other in order to 
obtain an accurate ERM screening. By providing the complete set of 
feature maps used for segmentation to the screening task, this 
additional encoder can take advantage of all the visual information 
that may be relevant to this task, contrasting with the limitation that 
the first base approach imposes on using only the highest level fea
tures. This architecture takes an extensive approach to multi-task 
learning. Figure 6 summarises this approach.  

• Multi-task via the segmentation maps: The final approach consists 
of using the output segmentation maps as an input for the screening 
task. Since the two outputs of the multi-task model are closely 
related, we can leverage the segmentation maps as refined features 
for the ERM classification. As with the second approach, an addi
tional encoder head is used to analyse these maps and produce a 
classification output. This approach takes a different focus for 
exploiting multi-task learning. Instead of expanding the feature set to 
the entirety of the feature maps used for the segmentation, this third 
approach limits the information that can be employed for the 
screening to only the output of the segmentation. This way, the 
screening task is closely guided by the segmentation task, 
approaching multi-task learning by focusing on the restriction to 
inter-task commonality. A summary of the structure of this approach 
can be found in Figure 7. 

Regarding the outputs of these approaches, the classification head of 
each model was tasked with classifying the input B-Scans into whether 
they display ERM-related tissue or not. Meanwhile, the segmentation 
heads return two masks with an identical resolution to the original 
image. These masks display the ILM position and ERM presence, akin to 
what is shown in Figure 3. The reason for the addition of this ILM-related 
output mask to the models is twofold. First, due to the overwhelming 
imbalance that exists in the images between diseased tissue and back
ground. This imbalance is caused by multiple factors, among them, the 
relative thinness of the ERM when compared to the image height, the 

Fig. 3. Images belonging to the dataset, with corresponding annotations. 1st row: ERM annotation. 2nd row: ILM annotation. 3rd row: original OCT B-Scan.4th row: 
Composition of the original image with its annotations. 
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fact that much of the surface of an eye presenting ERM is otherwise 
healthy and the existing imbalance between healthy and ERM eyes in 
the dataset. ERM-related positive cases represented around 0.02% of the 
total pixels in the dataset. Second, by instructing the network to return 
domain-relevant features, such as the ILM is for ERM segmentation, 
these can be propagated forward through the network, instead of being 
regarded in the same way as actual image background such as speckle 
noise in the vitreous humour. 

2.4. Encoder configurations 

Each of these approaches weas tested with three different encoders, 
conforming nine different configurations. Due to the need for an addi
tional encoder for the 2nd and 3rd approaches, the same architecture 
used to encode the segmentation features was used for screening. In 
order to perform an exhaustive analysis, these encoders conform a 
representative set of neural network architectures commonly applied in 
similar domains in the existing literature (Gende et al., 2021; Khan et al., 
2019; Nibali et al., 2017; Apostolopoulos et al. 2020; Samala et al. 
2019): . 

Fig. 4. Basic structure of a FPN architecture adapted for segmentation. At each scale level, a 1 × 1 convolution operation is applied to the features before they are 
upscaled and concatenated with those of higher levels. These features are then upscaled and fed to a segmentation head which produces the outputs. 

Fig. 5. First Approach: Multi-task via the inner features. The innermost features of the encoder network are used for the classification. This way, the combination of 
the segmentation encoder and the classification head form a classifier model. 

Fig. 6. Second Approach: Multi-task via the decoder features. An additional encoder is used before the classification head. All the feature maps of the network 
decoder are used for the screening task. 
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• Densely Connected Convolutional Network (Huang et al., 2017): 
These networks are based on dense blocks, and the progressive 
concatenation of the features of earlier layers in order to propagate 
them ahead. For this work, a DenseNet-121 model was used. Den
seNet models consist of four dense blocks, with a transition layer 
between each of them consisting of a 1 × 1 convolutional layer and 
2 × 2 max-pooling. For a DenseNet-121 model, these dense blocks 
are formed by 6, 12, 24 and 16 sets of convolutions each of them 
formed by a 1 × 1 followed by a 3 × 3 convolution. Rectified Linear 
Unit is used for activation at each layer.  

• Residual Neural Network (He et al., 2016): ResNet networks 
formulate layers as residual functions, similarly propagating features 
forward by means of identity skip connections. A ResNet-34 model 
was selected. This model starts with a 7 × 7 convolutional layer, 
followed by a 3 × 3 max-pooling. After this initial layer, this archi
tecture is comprised of four convolutional blocks of 3, 4, 6 and 3 
3 × 3 convolutional layers. Rectified Linear Unit is used for activa
tion after every skip connection.  

• Google Inception Network (Szegedy et al., 2015): Inception networks 
make use of the network in network concept (Lin et al., 2014), 
replacing deeper convolutional layers with inception blocks that 
perform convolutions using different filter sizes. For this study, the 
Inception-v4 architecture was selected. This architecture uses a stem 
block followed by four Inception-A blocks, seven Inception-B blocks 
and three Inception-C blocks. Each of these Inception blocks is 
formed by a series of parallel convolutions which are concatenated at 
the end before using Rectified Linear Unit for activation. For more 
details of the structure of each Inception block, please refer to the 
original paper Szegedy et al. (Szegedy et al., 2017). 

A summary of the layer configurations, the memory footprint and the 
number of trainable parameters of each of the proposed approaches 
combined with each of the aforementioned encoder configurations can 
be found in Table 1. For the specific configuration of each encoder ar
chitecture, please refer to the original papers. 

2.5. Software and hardware resources 

This work was developed using Python (version 3.7.7) due to the 
flexibility that it allows. Moreover, it allows the use of the PyTorch 
(Paszke et al., 2019) machine learning library (version 1.7.1), which was 
used for the training and validation of the models. The implementations 
for the encoders were obtained from the Segmentation Models PyTorch 
library (Yakubovskiy, 2020). For image processing and data augmen
tation needs, OpenCV (version 3.4.8) and Numpy (version 1.15.0) were 
used. With regards to hardware, the training and evaluation process was 
carried out using an Intel Xeon E5–2640 CPU, an NVIDIA GeForce 
TITAN X GPU and 64 GB of RAM. 

2.6. Training details 

To study and compare the different approaches and their applica
bility for the ERM detection, we partitioned the original dataset 
following 4-fold cross-validation at the eye level, ensuring that each eye 
appears in the test set one time. This way, a model was trained for each 
of the three approaches, using each of the three considered encoder 
configurations, on each of the four data partitions, for a total of 36 
trained models. 

With regards to the training process, the encoder models were first 
initialised with a pre-training on the ImageNet dataset (Deng et al., 
2009). This way, making the most of the available data and allowing the 
convolutional models to be initialised with common visual feature pat
terns that may be useful for the tasks. Then, each complete model was 
trained in our dataset for a maximum of 75 epochs, choosing for testing 
the model at the epoch which produced the smallest validation loss. To 
balance the more numerous healthy samples, these were undersampled 
during the training. Binary cross-entropy loss, commonly used for seg
mentation tasks in the literature (for reference, (Liu et al., 2021; Morano 
et al., 2021), was employed as segmentation loss 1. 

Fig. 7. Third Approach: Multi-task via the segmentation maps. The output segmentation maps of the network are used as inputs for the screening task.  

Table 1 
Summary of the activation functions, the estimated memory footprint and the amount of trainable parameters for the proposed approaches with each of the encoder 
configurations.   

Encoder activation 
function 

Classification activation 
function 

Encoder 
architecture 

Estimated memory footprint 
(MB) 

Total 
parameters 

First Approach Multi-task via Inner 
Features 

Rectified Linear Unit Sigmoid DenseNet-121 1091.81 9301,892    

ResNet-18 371.22 13,048,388    
Inception-v4 1091.80 43,573,796 

Second Approach Multi-task via Decoder 
features 

Rectified Linear Unit Sigmoid DenseNet-121 1177.89 16,647,748    

ResNet-18 396.24 16,222,660    
Inception-v4 1195.36 59,536,164 

Third Approach Multi-task via 
Segmentation Maps 

Rectified Linear Unit Sigmoid DenseNet-121 2026.63 16,252,612    

ResNet-18 579.47 15,827,524    
Inception-v4 1790.94 59,499,876  
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ℓseg,c(outs, tars) = mean({l1,c, ..., lN,c}
⊤

)

ln,c = −wn,c

[
pctars

n,c⋅log σ(outs
n,c) +

(
1 − tars

n,c

)
⋅log

(
1 − σ(outs

n,c)
) ] (1)  

where outs is the segmentation output and tars the segmentation ground 
truth, with pc, the weight for the positive cases of each class, being 1 for 
the ILM and 2 for the ERM pixels. Preliminary trials showed that 
weighing the ERM segmentation loss twice over the ILM provided a good 
balance between over- and under-segmentation of the ERM. For the 
screening task, cross-entropy loss was used (Eq. 2). 

ℓcla(outc, tarc) = − outc[tarc] + log
(∑

j
exp(outc[j])

)
(2)  

where outc is the output class vector and tarc the ground truth class. 
These two losses contributed equally in training (Eq. 3). 

ℓtotal = ℓseg + ℓcla (3)  

For all of the models, optimisation was done using Adaptive Moment 
Estimation (Adam) (Kingma and Ba, 2015), with a learning rate of 
1 × 10−5, β1 = 0.9 and β2 = 0.999. During the training process, online 
augmentation was used for the training images. This augmentation 
consisted of random vertical and horizontal shear operations, horizontal 
flips, rotations and changes to overall image brightness. A summary of 
the training conditions that were employed can be found in Table 2. 

After training, the models were tested on their corresponding test set 
according to different statistical metrics commonly reported for similar 
medical imaging tasks in the literature. The Accuracy (Eq. 4); Sensi
tivity, or Recall (Eq. 5); Specificity (Eq. 6); Precision (Eq. 7); Dice co
efficient, or F-Score (Eq. 8) and Jaccard Index (Eq. 9) of each approach 
and encoder combination was computed and compared. For the seg
mentation task, these metrics were evaluated with respect to the anno
tated columns of the dataset. For the classification task, these metrics 
were evaluated at the image level, where a positive is an image showing 
ERM signs. 

Accuracy =
TP + TN

TP + TN + FP + FN
(4)  

Sensitivity = Recall =
TP

TP + FN
(5)  

Specificity =
TN

TN + FP
(6)  

Precision =
TP

TP + FP
(7)  

Dice = F -Score =
2 × TP

2 × TP + FP + FN
(8)  

Jaccard =
TP

TP + FP + FN
(9) 

Finally, these proposed approaches were compared with single-task 
segmentation and screening methods. 

3. Results and discussion 

In this section, we cover all the results that were acquired throughout 

the evaluation of the different multi-task approaches. Additionally, we 
provide a discussion of said results and a comparison with other single- 
task methods for ERM segmentation and screening. 

3.1. Segmentation results 

Regarding the segmentation task, Figure 8 displays the Receiver 
Operating Characteristic (ROC) and Precision-Recall (PR) curves for all 
the approaches proposed in this work including the areas under each of 
the curves. Values for each of the considered metrics can be found in  
Table 3. 

The performed evaluation shows that the proposed approaches 
achieve satisfactory results in terms of segmentation. The first approach, 
using the encoder inner features obtained positive results, with the best 
overall segmentation Dice coefficient of 0.757 ± 0.1 being achieved by 
the ResNet-18 encoder using this approach. The second and third ap
proaches fared comparatively worse, while still achieving competitive 
results. Since these approaches use, respectively, all of the feature maps 
and the output segmentation maps as inputs for the classification task, 
the segmentation task seems to be more affected during the multi-task 
training process. In this sense, the first approach which acquires the 
features used for classification from an earlier layer obtained the highest 
results in terms of Dice score. Figure 9 displays some examples of the 
segmentation produced by the best performing model. Overall, howev
er, while differences exist between the results of the proposed ap
proaches, most of the configurations using the DenseNet and ResNet 
encoders describe similar Precision-Recall curves, which are less biased 
towards the existing imbalances in the dataset. Those configurations 
that use the Inception-v4 encoder, however, produced comparatively 
worse results. 

3.2. Screening results 

With regards to the ERM screening task, ROC and PR curves can be 
found in Figure 10. Table 4 shows the test results for each of the ap
proaches in terms of the metrics considered. 

The results that were obtained for the ERM screening were also 
satisfactory. Contrasting with the segmentation task, the best overall 
results were achieved by the second and third approaches using the 
DenseNet-121 encoder, with F-Scores of 0.881 ± 0.108 and 0.881 
± 0.110, respectively. Between these two approaches, the third 
approach which restricted the classification inputs to only the segmen
tation output maps seems to provide more consistent results. This could 
be indicative that guiding the two tasks closely by restricting the shared 
features only to that which is common to the two can provide more 
benefits than sharing all of the inner features as is done in the second 
proposed approach. The first approach, which only shared the inner, 
most refined features of the segmentation encoder for the classification 
task, also achieved close results, with the ResNet-18 configuration 
achieving an F-Score of 0.847 ± 0.106. Overall, all three approaches 
achieved satisfactory results when using the DenseNet-121 encoder, 
while results for the Inception-v4 encoder were generally lower. 

3.3. Discussion 

These results show that the proposed end-to-end multi-task ap
proaches can provide significant advantages for the diagnosis of the 
ERM in OCT images. While some of the configurations fared compara
tively better than others, all of the proposed approaches were able to 
perform on par with or even better than the single-task methods in 
comprehensive metrics. 

For the segmentation task, a comparison can be made with the 
existing state of the art (Gende et al., 2021). This method uses a series of 
three steps and obtains the segmented area via the classification of a set 
of windows extracted from a pre-segmented ILM. In order to provide a 
fair comparison, a window was extracted for each of the ILM pixels and 

Table 2 
Training and augmentation parameters.  

Image size 512 × 512 Loss Cross-entropy 
Shear aug. [ − 15o, 15o] Max. epochs 75 
Rotation aug. [ − 15o, 15o] Optimiser Adam 
Brightness aug. [ × 0.75, × 1.25] Learning rate 1 × 10−5 

Horizontal rotation p = 0.5 β1, β2 0.9, 0.999  
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the segmentation results were obtained by classifying each of these 
windows. This way, both the proposed approaches and the 
classification-based approach share a common segmentation ground 
truth. 

All of the proposed approaches were able to achieve very similar 
results to the single-task, multi-step method of sliding window classifi
cation performed by the state of the art (Table 5), with the first approach 
obtaining better results than the single-task method. These approaches 

also entail a considerable simplification of the development process, 
since they are able to be trained directly from annotated data, while the 
single-task method relies on a set of ad hoc, fine-tuned steps that involve 
the detection of the region of interest via active contour models. This 
reliance on a pre-segmentation step based on active contour models also 
means that the state of the art method would not be able to correctly 
analyse the ILM whenever the contour is not adjusted correctly, which 
can happen due to many of the different visual artefacts that may be 

Fig. 8. Receiver operating characteristic and precision recall curves for the ERM segmentation task.  

Table 3 
ERM segmentation task results. In bold, the best result for Jaccard index and dice coefficient.   

Encoder Accuracy Sensitivity Specificity Precision Jaccard Dice 

First approach Multi-task via inner features DenseNet-121 0.906 ± 0.023 0.659 ± 0.161 0.965 ± 0.027 0.831 ± 0.079 0.568 ± 0.095 0.721 ± 0.080  
ResNet-18 0.910 ± 0.047 0.768 ± 0.210 0.945 ± 0.011 0.760 ± 0.050 0.622 ± 0.165 0.757 ± 0.140  
Inception-v4 0.870 ± 0.054 0.703 ± 0.314 0.910 ± 0.050 0.646 ± 0.080 0.503 ± 0.201 0.649 ± 0.204 

Second approach Multi-task via decoder features DenseNet-121 0.883 ± 0.048 0.643 ± 0.281 0.943 ± 0.045 0.742 ± 0.081 0.506 ± 0.199 0.652 ± 0.202  
ResNet-18 0.904 ± 0.041 0.674 ± 0.213 0.960 ± 0.014 0.796 ± 0.039 0.571 ± 0.167 0.715 ± 0.149  
Inception-v4 0.884 ± 0.063 0.725 ± 0.166 0.920 ± 0.045 0.693 ± 0.134 0.557 ± 0.157 0.705 ± 0.137 

Third approach Multi-task via segmentation maps DenseNet-121 0.890 ± 0.053 0.704 ± 0.141 0.937 ± 0.027 0.725 ± 0.111 0.562 ± 0.132 0.712 ± 0.118  
ResNet-18 0.906 ± 0.042 0.673 ± 0.241 0.965 ± 0.016 0.823 ± 0.063 0.573 ± 0.187 0.713 ± 0.170  
Inception-v4 0.820 ± 0.093 0.454 ± 0.238 0.933 ± 0.051 0.699 ± 0.026 0.382 ± 0.172 0.525 ± 0.178  

Fig. 9. Examples of the ERM segmentation outputs produced by the first proposed approach with a ResNet-18 encoder overlaid on the original OCT slices.  
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present in the OCT images. Furthermore, since the proposed approaches 
can analyse each OCT image as a whole, they do not suffer from the 
limitations that the sliding windows pose with regard to dealing with 
image borders. 

When compared to other approaches that make use of classical ma
chine learning techniques by classifying a selected set of features (Baa
monde et al., July 2019a), we can see that the accuracies of 0.910, 0.904 
and 0.906 achieved by each of the proposed end-to-end architectures are 
higher than those reported by the single task method when using 
Random Forests (0.894), Naive Bayes (0.855), Multi-layer Perceptrons 
(0.869) or k-Nearest Neighbours (0.890). Compared to the Support 
Vector Machines used for the segmentation in Baamonde et al. (2019b), 
which achieved the best results out of the classical machine learning 
techniques that were compared for the classification of image windows, 
the proposed methodologies achieved better results than the classical 
ones in terms of Dice Score (0.757 vs 0.670) and Jaccard Index (0.622 vs 
0.515), metrics that are less biased towards the existing imbalance in 
this problem. These results highlight the advantages of using deep 

learning to obtain the segmentation of the ERM in a straightforward 
manner, without the need for intermediate steps combined with classical 
machine learning techniques. 

From a technical point of view, the proposed approaches also achieve 
a considerable speedup when compared with the ones existing in the 
literature, as shown in Table 6. The proposed approaches are able to take 
advantage of deep learning and their end-to-end structure to directly 
analyse the images, resulting in a drastic reduction of inference times by 
omitting the pre-processing, region-of-interest detection and feature 
extraction stages. Furthermore, the omission of this delicate series of 
stages confers these models greater reliability and flexibility. By not 
needing an initial segmentation of the ILM to restrict the problem to a 
region of interest and an extraction of windows, these approaches are 
able to provide an accurate segmentation and classification of the ERM 
even in cases where these stages would be unsuccessful. 

In terms of architecture complexity, the simpler models seem to 
perform better than the more complex ones, with the configurations that 
used Inception-v4 as an encoder achieving comparatively worse results 

Fig. 10. Receiver operating characteristic and precision recall curves for the classification task.  

Table 4 
ERM screening task results. In bold, the best results in terms of F-Score.   

Encoder Accuracy Sensitivity Specificity Precision F-Score 

First approach Multi-Task via inner features DenseNet-121 0.894 ± 0.066 0.835 ± 0.105 0.929 ± 0.116 0.887 ± 0.164 0.847 ± 0.075  
ResNet-18 0.927 ± 0.053 0.816 ± 0.162 0.983 ± 0.033 0.963 ± 0.068 0.874 ± 0.106  
Inception-v4 0.686 ± 0.332 0.950 ± 0.035 0.561 ± 0.507 0.644 ± 0.362 0.733 ± 0.252 

Second approach multi-task via decoder features DenseNet-121 0.928 ± 0.061 0.852 ± 0.147 0.965 ± 0.042 0.922 ± 0.085 0.881 ± 0.108  
ResNet-18 0.809 ± 0.271 0.838 ± 0.220 0.795 ± 0.399 0.825 ± 0.322 0.785 ± 0.243  
Inception-v4 0.826 ± 0.205 0.911 ± 0.098 0.787 ± 0.270 0.753 ± 0.294 0.806 ± 0.210 

Third approach multi-task via segmentation maps DenseNet-121 0.919 ± 0.078 0.888 ± 0.083 0.934 ± 0.085 0.878 ± 0.143 0.881 ± 0.110  
ResNet-18 0.897 ± 0.112 0.855 ± 0.223 0.917 ± 0.141 0.870 ± 0.185 0.842 ± 0.172  
Inception-v4 0.899 ± 0.088 0.832 ± 0.180 0.930 ± 0.110 0.880 ± 0.160 0.840 ± 0.134  

Table 5 
Comparison between the state of the art and the results from the best performing encoder from each of the proposed approaches for the ERM segmentation task.   

Encoder Accuracy Sensitivity Specificity Precision Jaccard Dice 

State of the art (Gende et al., 2021) DenseNet-121 0.883 ± 0.003 0.824 ± 0.072 0.895 ± 0.022 0.656 ± 0.102 0.577 ± 0.098 0.728 ± 0.079 
1st Approach: Inner Features ResNet-18 0.910 ± 0.047 0.768 ± 0.210 0.945 ± 0.011 0.760 ± 0.050 0.622 ± 0.165 0.757 ± 0.140 
2nd Approach: Feature Maps ResNet-18 0.904 ± 0.041 0.674 ± 0.213 0.960 ± 0.014 0.796 ± 0.039 0.571 ± 0.167 0.715 ± 0.149 
3rd Approach: Segmentation Maps ResNet-18 0.906 ± 0.042 0.673 ± 0.241 0.965 ± 0.016 0.823 ± 0.063 0.573 ± 0.187 0.713 ± 0.170  
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than the others. For ease of comparison, please refer to Table 1 for the 
number of parameters in each of the proposed architectures. 

Regarding the screening task, a comparison was made between the 
proposed multi-task approaches and single-task methods. For this 
comparison, we include the results of two single-task, classification-only 
approaches (Table 7). The first of these approaches consists of a classi
fier that receives the original OCT slices as inputs and classifies them 
into whether they contain diseased tissue or not. The second approach 
uses the segmentation maps produced by another model as inputs. The 
models that were employed to obtain these maps were those based on 
the first proposed approach, multi-task via inner features with a ResNet- 
18 encoder, which were selected based on the results obtained in the 
Dice Coefficient and Jaccard Index segmentation metrics. Both of the 
single-task methods were tested with the DenseNet-121 and the ResNet- 
18 architectures. 

All of the proposed approaches were able to achieve better results 
than the single-task classification methods, indicating the advantages of 
multi-task learning. Furthermore, both of the single-task direct classifi
cation configurations that relied on the OCT slices failed to produce 
satisfactory results, proving unable to classify the positive test samples 
while all of the proposed approaches can provide an accurate end-to-end 
screening of ERM-positive images. Additionally, although the second 
single-task approach that used the segmentation maps as inputs were 
also able to classify the ERM-positive images, all of the proposed multi- 
task approaches were able to obtain better results. This test can serve as 
an indication of the potential of multi-task training. Additionally, these 
single-task models rely on an additional architecture to provide the 
segmentation maps. This comparison shows that multi-task learning can 
provide significant advantages over the single-task screening of ERM 
images, enabling the models to directly classify OCT slices and achieving 
better results than the two-stage classification of segmentation maps. 

Overall, among the proposed configurations, the results for the 

different approaches are similar for both tasks. The first proposed 
approach, using the inner encoder features for the classification task, 
proved generally more stable, especially with regards to the segmenta
tion task, in which it achieved the best results. The second approach 
obtained more variable results between the different encoder configu
rations and tasks. This approach made all of the visual feature maps 
available for the classification task, which could explain the increased 
variability since the loss of both tasks affect the feature maps more 
directly. Finally, the third proposed approach achieved the highest and 
most stable overall results in the classification task, at the cost of 
generally lower segmentation results. This approach guides the 
screening of the ERM more closely than the other two, by only using the 
segmentation output as information in order to classify the images. 
While this simplifies the screening task, it increases the impact of the 
classification loss on the segmentation output. Regarding the best per
forming configuration, the multi-task via the inner features approach 
combined with a ResNet-18 encoder provided a satisfactory balance 
between segmentation and classification results, with a segmentation 
Dice coefficient of 0.757 ± 0.140, compared to the 0.728 ± 0.079 ach
ieved by the state of the art, as well as a classification F-Score of 0.874 
± 0.106, compared to the best result achieved by the single-task Den
seNet-121 classifier of 0.800 ± 0.163, which also depended on another 
segmentation model to perform its task. While the absence of an ERM- 
focused public dataset prevents a direct comparison, these proposed 
approaches can achieve performance results that are competitive with 
other single-task, state of the art proposals, which were trained and 
evaluated on different private datasets. Moreover, the approaches pro
posed in this work also constitute the first multi-task end-to-end pro
posal able to provide a simultaneous ERM segmentation and screening 
in the literature. 

4. Conclusions 

In this work, we propose three different approaches for the end-to- 
end multi-task simultaneous segmentation and classification of the 
ERM in OCT images. These approaches can automatically perform a 
screening over the OCT slices, helping to identify images that may 
contain signs of the ERM presence as well as to detect and show such 
signs as a segmentation mask over said images. These can be employed 
to facilitate the diagnosis and monitoring process of patients with ERM. 

The models proposed in this work approach the multi-task segmen
tation and classification of the ERM in three different ways: first, using 
the innermost, highest-level encoder features for the classification; 
second, classifying by using the whole set of feature maps employed in 
the decoder; and finally, using the output segmentation maps as inputs 
of the classification head, while propagating the classification loss in a 
multi-task manner. These three approaches exploit the complementarity 
of the ERM segmentation and screening tasks in different ways, by 
employing the highest-order information of the segmentation task, by 
leveraging all the relevant features that are contained in the feature 
maps or by limiting the information used in the classification to only that 
which is relevant to the segmentation, respectively for each of the three 
approaches. These approaches were also combined with four different 
state of the art encoder configurations, in order to comprehensively 

Table 6 
Inference times for the analysis of a single image, calculated as the average of 
100 images. Note the inference time for (Baamonde et al., 2019b) and (Gende 
et al., 2021) include the time for each of the steps of the feature extraction 
methodology.   

Encoder 
Architecture 

Inference 
Time (GPU) 

Inference 
Time (CPU) 

Hand-crafted features ( 
Baamonde et al., 2019b) 

– –  116.651 

Deep learning (Gende et al., 
2021) 

DenseNet-121 22.108  67.493 

First approach Multi-task 
via inner features 

DenseNet-121 0.047  0.461  

ResNet-18 0.018  0.211  
Inception-v4 0.098  0.682 

Second approach Multi-task 
via decoder features 

DenseNet-121 0.076  0.560  

ResNet-18 0.021  0.243  
Inception-v4 0.126  0.772 

Third approach Multi-task 
via segmentation maps 

DenseNet-121 0.086  0.767  

ResNet-18 0.025  0.305  
Inception-v4 0.152  1.090  

Table 7 
Comparison between the single-task classification methods and the results from the best performing encoder from each of the proposed approaches for the ERM 
screening task.   

Encoder Accuracy Sensitivity Specificity Precision F-Score 

OCT slice single-task classification ResNet-18 0.605 ± 0.139 0.040 ± 0.053 0.886 ± 0.229 0.276 ± 0.485 0.050 ± 0.058  
DenseNet-121 0.697 ± 0.029 0.088 ± 0.176 0.990 ± 0.013 0.222 ± 0.444 0.126 ± 0.252 

Output maps single-task classification ResNet-18 0.767 ± 0.269 0.887 ± 0.086 0.707 ± 0.368 0.710 ± 0.335 0.761 ± 0.240  
DenseNet-121 0.857 ± 0.128 0.850 ± 0.117 0.860 ± 0.134 0.761 ± 0.198 0.800 ± 0.163 

1st approach: Inner features ResNet-18 0.927 ± 0.053 0.816 ± 0.162 0.983 ± 0.033 0.963 ± 0.068 0.874 ± 0.106 
2nd approach: Feature maps DenseNet-121 0.928 ± 0.061 0.852 ± 0.147 0.965 ± 0.042 0.922 ± 0.085 0.881 ± 0.108 
3rd approach: Segmentation maps DenseNet-121 0.919 ± 0.078 0.888 ± 0.083 0.934 ± 0.085 0.878 ± 0.143 0.881 ± 0.110  
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evaluate their behaviour on each of the tasks. 
The obtained results show that these multi-task approaches were 

able to outperform single-task segmentation and classification methods, 
indicating the potential of combining different related tasks into a single 
architecture and taking advantage of task complementarity in multi-task 
training. Additionally, it should be noted that these end-to-end models 
are able to provide both the segmentation and classification outputs 
directly from the OCT images, without relying on a set of ad hoc steps 
tailored to the specific tasks. By bypassing the feature extraction and 
selection process, these models can be trained directly from the data, 
simplifying the development of CAD systems and considerably speeding 
up training and inference times. Furthermore, their independence from 
intermediate stages such as the extraction of the ILM and the acquisition 
of the classifiable windows allows these models to work even when these 
stages would fail to adjust correctly. Overall, the proposed approaches 
demonstrated the significant advantages of the end-to-end multi-task 
training for ERM detection and segmentation, helping to provide 
robustness and objectivity to the diagnosis of such a relevant eye 
condition. 

Regarding future work, current plans include taking advantage of the 
3-dimensional relation of OCT slices in order to explore the use of 3D 
CNN architectures for the volumetric segmentation of the ERM. 
Furthermore, a separation in the different forms that the ERM may 
present can be incorporated into the classification and segmentation 
process, such as its attachment or detachment from the macula or the 
different stages it may be in. By doing this, more information about the 
state of the patient can be provided so that it can be used to aid in the 
treatment of this and other ocular diseases. 
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