1,136 research outputs found

    Effective connectivity gateways to the Theory of Mind network in processing communicative intention

    Get PDF
    An Intention Processing Network (IPN), involving the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, and temporoparietal junctions, plays a fundamental role in comprehending intentions underlying action goals. In a previous fMRI study, we showed that, depending on the linguistic or extralinguistic (gestural) modality used to convey the intention, the IPN is complemented by activation of additional brain areas, reflecting distinct modality-specific input gateways to the IPN. These areas involve, for the linguistic modality, the left inferior frontal gyrus (LIFG), and for the extralinguistic modality, the right inferior frontal gyrus (RIFG). Here, we tested the modality-specific gateway hypothesis, by using DCM to measure inter-regional functional integration dynamics between the IPN and LIFG/RIFG gateways. We found strong evidence of a well-defined effective connectivity architecture mediating the functional integration between the IPN and the inferior frontal cortices. The connectivity dynamics indicate a modality-specific propagation of stimulus information from LIFG to IPN for the linguistic modality, and from RIFG to IPN for the extralinguistic modality. Thus, we suggest a functional model in which the modality-specific gateways mediate the structural and semantic decoding of the stimuli, and allow for the modality-specific communicative information to be integrated in Theory of Mind inferences elaborated through the IPN

    Effective connectivity gateways to the Theory of Mind network in processing communicative intention

    Get PDF
    An Intention Processing Network (IPN), involving the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, and temporoparietal junctions, plays a fundamental role in comprehending intentions underlying action goals. In a previous fMRI study, we showed that, depending on the linguistic or extralinguistic (gestural) modality used to convey the intention, the IPN is complemented by activation of additional brain areas, reflecting distinct modality-specific input gateways to the IPN. These areas involve, for the linguistic modality, the left inferior frontal gyrus (LIFG), and for the extralinguistic modality, the right inferior frontal gyrus (RIFG). Here, we tested the modality-specific gateway hypothesis, by using DCM to measure inter-regional functional integration dynamics between the IPN and LIFG/RIFG gateways. We found strong evidence of a well-defined effective connectivity architecture mediating the functional integration between the IPN and the inferior frontal cortices. The connectivity dynamics indicate a modality-specific propagation of stimulus information from LIFG to IPN for the linguistic modality, and from RIFG to IPN for the extralinguistic modality. Thus, we suggest a functional model in which the modality-specific gateways mediate the structural and semantic decoding of the stimuli, and allow for the modality-specific communicative information to be integrated in Theory of Mind inferences elaborated through the IPN

    Neuronal Coherence Agent for Shared Intentionality : A Hypothesis of Neurobiological Processes Occurring during Social Interaction

    Get PDF
    Funding Information: No foundation that funded this research. Publisher Copyright: © 2021 by the author.The present interdisciplinary study discusses the physical foundations of the neurobiological processes occurring during social interaction. The review of the literature establishes the difference between Intentionality and Intention, thereby proposing the theoretical basis of Shared Intentionality in humans. According to the present study, Shared Intentionality in humans (Goal-directed coherence of biological systems), which is the ability among social organisms to instantly select just one stimulus for the entire group, is the outcome of evolutionary development. Therefore, this interaction modality should be the preferred, archetypal, and most propagated modality in organisms, attributed to the Model of Hierarchical Complexity Stage 3. This characteristic of biological systems facilitates the training of the new members of the group and also ensures efficient cooperation among the members of the group without requiring communication. In humans, Shared Intentionality contributes to the learning of newborns. The neurons of a mature organism may teach the neonate neurons regarding the fitting reactions to the excitatory inputs of the specific structural organization. This enables the neonate neurons to develop a Long-Term Potentiation that links particular stimuli with specific embodied sensorimotor neural networks. The present report discusses three possible neuronal coherence agents that could involve quantum mechanisms in cells, thereby enabling the distribution of the quality of goal-directed coherence in biological systems (Shared Intentionality in humans). Recently reported case studies conducted online with the task of conveying the meaning of numerosity to the children of age 18–33 months revealed the occurrence of Shared Intentionality in mother-child dyads in the absence of sensory cues between the two, which promoted cognitive development in the children. The findings of these case studies support the concept of physical foundations and the hypothesis of the neurophysiological process of social interaction proposed in the present study.publishersversionPeer reviewe

    Aging, sex and cognitive Theory of Mind: a transcranial direct current stimulation study

    Get PDF
    Aging is accompanied by changes in cognitive abilities and a great interest is spreading among researchers about aging impact on social cognition skills, such as the Theory of Mind (ToM). Transcranial direct current stimulation (tDCS) has been used in social cognition studies founding evidence of sex-related different effects on cognitive ToM task in a young people sample. In this randomized, double-blind, sham-controlled study, we applied one active and one sham tDCS session on the medial prefrontal cortex (mPFC) during a cognitive ToM task, including both social (i.e., communicative) and nonsocial (i.e., private) intention attribution conditions, in sixty healthy aging individuals (30 males and 30 females). In half of the participants the anode was positioned over the mPFC, whereas in the other half the cathode was positioned over the mPFC. The results showed that: (i) anodal tDCS over the mPFC led to significant slower reaction times (vs. sham) for social intention attribution task only in female participants; (ii) No effects were found in both females and males during cathodal stimulation. We show for the first time sex-related differences in cognitive ToM abilities in healthy aging, extending previous findings concerning young participants

    Differences in functional brain organization during gesture recognition between autistic and neurotypical individuals

    Get PDF
    Persons with and without autism process sensory information differently. Differences in sensory processing are directly relevant to social functioning and communicative abilities, which are known to be hampered in persons with autism. We collected functional magnetic resonance imaging (fMRI) data from 25 autistic individuals and 25 neurotypical individuals while they performed a silent gesture recognition task. We exploited brain network topology, a holistic quantification of how networks within the brain are organized to provide new insights into how visual communicative signals are processed in autistic and neurotypical individuals. Performing graph theoretical analysis, we calculated two network properties of the action observation network: local efficiency, as a measure of network segregation, and global efficiency, as a measure of network integration. We found that persons with autism and neurotypical persons differ in how the action observation network is organized. Persons with autism utilize a more clustered, local-processing-oriented network configuration (i.e., higher local efficiency), rather than the more integrative network organization seen in neurotypicals (i.e., higher global efficiency). These results shed new light on the complex interplay between social and sensory processing in autism

    Theory of mind performance predicts tdcs-mediated effects on the medial prefrontal cortex: A pilot study to investigate the role of sex and age

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) has become an increasingly promising tool for understanding the relationship between brain and behavior. The purpose of this study was to investigate whether the magnitude of sex-and age-related tDCS effects previously found in the medial prefrontal cortex (mPFC) during a Theory of Mind (ToM) task correlates with social cognition performance; in particular, we explored whether different patterns of activity would be detected in high-and low-performing participants. For this, young and elderly, male and female participants were categorized as a low-or high-performer according to their score on the Reading the Mind in the Eyes task. Furthermore, we explored whether sex-and age-related effects associated with active tDCS on the mPFC were related to cognitive functioning. We observed the following results: (i) elderly participants experience a significant decline in ToM performance compared to young participants; (ii) low-performing elderly females report slowing of reaction time when anodal tDCS is applied over the mPFC during a ToM task; and (iii) low-performing elderly females are characterized by lower scores in executive control functions, verbal fluency and verbal short-term memory. The relationship between tDCS results and cognitive functioning is discussed in light of the neuroscientific literature on sex-and age-related differences

    Deep Brain Stimulation of the subthalamic nucleus does not negatively affect social cognitive abilities of patients with Parkinson's disease

    Get PDF
    Abstract Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a treatment option for patients with advanced idiopathic PD successful at alleviating disabling motor symptoms. Nevertheless, the effects of STN-DBS on cognitive functions remain controversial and few studies have investigated modification of social cognitive abilities in patients with PD treated with STN-DBS. Here we expanded the typically-investigated spectrum of these abilities by simultaneously examining emotion recognition, and both affective and cognitive Theory of Mind (ToM). By means of a cross-sectional study, 20 patients with PD under dopaminergic replacement therapy, 18 patients with PD treated with STN-DBS, and 20 healthy controls performed the Ekman 60-Faces test, the full version of the Reading the Mind in the Eyes test, and the Protocol for the Attribution of Communicative Intentions. There were no differences between the PD groups (treated and not treated with STN-DBS) on any of the social cognitive tests. Our results suggest that patients with PD who are treated with STN-DBS do not experience detrimental effects on their social cognitive abilities. The present study, the first one examining a wide spectrum of social cognitive abilities after DBS of the STN, suggests that this surgical procedure can be considered safe from this standpoint
    corecore