1,018 research outputs found

    Methods for the acquisition and analysis of volume electron microscopy data

    Get PDF

    Reconstruction of neuronal activity and connectivity patterns in the zebrafish olfactory bulb

    Get PDF
    In the olfactory bulb (OB), odors evoke distributed patterns of activity across glomeruli that are reorganized by networks of interneurons (INs). This reorganization results in multiple computations including a decorrelation of activity patterns across the output neurons, the mitral cells (MCs). To understand the mechanistic basis of these computations it is essential to analyze the relationship between function and structure of the underlying circuit. I combined in vivo twophoton calcium imaging with dense circuit reconstruction from complete serial block-face electron microscopy (SBEM) stacks of the larval zebrafish OB (4.5 dpf) with a voxel size of 9x9x25nm. To address bottlenecks in the workflow of SBEM, I developed a novel embedding and staining procedure that effectively reduces surface charging in SBEM and enables to acquire SBEM stacks with at least a ten-fold increase in both, signal-to-noise as well as acquisition speed. I set up a high throughput neuron reconstruction pipeline with >30 professional tracers that is available for the scientific community (ariadne-service.com). To assure efficient and accurate circuit reconstruction, I developed PyKNOSSOS, a Python software for skeleton tracing and synapse annotation, and CORE, a skeleton consolidation procedure that combines redundant reconstruction with targeted expert input. Using these procedures I reconstructed all neurons (>1000) in the larval OB. Unlike in the adult OB, INs were rare and appeared to represent specific subtypes, indicating that different sub-circuits develop sequentially. MCs were uniglomerular whereas inter-glomerular projections of INs were complex and biased towards groups of glomeruli that receive input from common types of sensory neurons. Hence, the IN network in the OB exhibits a topological organization that is governed by glomerular identity. Calcium imaging revealed that the larval OB circuitry already decorrelates activity patterns evoked by similar odors. The comparison of inter-glomerular connectivity to the functional interactions between glomeruli indicates that pattern decorrelation depends on specific, non-random inter-glomerular IN projections. Hence, the topology of IN networks in the OB appears to be an important determinant of circuit function

    Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration : From Circuits to Synapses and Beyond

    Get PDF
    Studying the structural alterations occurring during diseases of the nervous system requires imaging heterogeneous cell populations at the circuit, cellular and subcellular levels. Recent advancements in brain tissue clearing and expansion methods allow unprecedented detailed imaging of the nervous system through its entire scale, from circuits to synapses, including neurovascular and brain lymphatics elements. Here, we review the state-of-the-art of brain tissue clearing and expansion methods, mentioning their main advantages and limitations, and suggest their parallel implementation for circuits-to-synapses brain imaging using conventional (diffraction-limited) light microscopy -such as confocal, two-photon and light-sheet microscopy- to interrogate the cellular and molecular basis of neurodegenerative diseases. We discuss recent studies in which clearing and expansion methods have been successfully applied to study neuropathological processes in mouse models and postmortem human brain tissue. Volumetric imaging of cleared intact mouse brains and large human brain samples has allowed unbiased assessment of neuropathological hallmarks. In contrast, nanoscale imaging of expanded cells and brain tissue has been used to study the effect of protein aggregates on specific subcellular structures. Therefore, these approaches can be readily applied to study a wide range of brain processes and pathological mechanisms with cellular and subcellular resolution in a time- and cost-efficient manner. We consider that a broader implementation of these technologies is necessary to reveal the full landscape of cellular and molecular mechanisms underlying neurodegenerative diseases

    Dense 4D nanoscale reconstruction of living brain tissue

    Get PDF
    Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue

    Enabling Scalable Neurocartography: Images to Graphs for Discovery

    Get PDF
    In recent years, advances in technology have enabled researchers to ask new questions predicated on the collection and analysis of big datasets that were previously too large to study. More specifically, many fundamental questions in neuroscience require studying brain tissue at a large scale to discover emergent properties of neural computation, consciousness, and etiologies of brain disorders. A major challenge is to construct larger, more detailed maps (e.g., structural wiring diagrams) of the brain, known as connectomes. Although raw data exist, obstacles remain in both algorithm development and scalable image analysis to enable access to the knowledge within these data volumes. This dissertation develops, combines and tests state-of-the-art algorithms to estimate graphs and glean other knowledge across six orders of magnitude, from millimeter-scale magnetic resonance imaging to nanometer-scale electron microscopy. This work enables scientific discovery across the community and contributes to the tools and services offered by NeuroData and the Open Connectome Project. Contributions include creating, optimizing and evaluating the first known fully-automated brain graphs in electron microscopy data and magnetic resonance imaging data; pioneering approaches to generate knowledge from X-Ray tomography imaging; and identifying and solving a variety of image analysis challenges associated with building graphs suitable for discovery. These methods were applied across diverse datasets to answer questions at scales not previously explored

    A connectome and analysis of the adult Drosophila central brain

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain

    Modelling Neuron Morphology: Automated Reconstruction from Microscopy Images

    Get PDF
    Understanding how the brain works is, beyond a shadow of doubt, one of the greatest challenges for modern science. Achieving a deep knowledge about the structure, function and development of the nervous system at the molecular, cellular and network levels is crucial in this attempt, as processes at all these scales are intrinsically linked with higher-order cognitive functions. The research in the various areas of neuroscience deals with advanced imaging techniques, collecting an increasing amounts of heterogeneous and complex data at different scales. Then, computational tools and neuroinformatics solutions are required in order to integrate and analyze the massive quantity of acquired information. Within this context, the development of automaticmethods and tools for the study of neuronal anatomy has a central role. The morphological properties of the soma and of the axonal and dendritic arborizations constitute a key discriminant for the neuronal phenotype and play a determinant role in network connectivity. A quantitative analysis allows the study of possible factors influencing neuronal development, the neuropathological abnormalities related to specific syndromes, the relationships between neuronal shape and function, the signal transmission and the network connectivity. Therefore, three-dimensional digital reconstructions of soma, axons and dendrites are indispensable for exploring neural networks. This thesis proposes a novel and completely automatic pipeline for neuron reconstruction with operations ranging from the detection and segmentation of the soma to the dendritic arborization tracing. The pipeline can deal with different datasets and acquisitions both at the network and at the single scale level without any user interventions or manual adjustment. We developed an ad hoc approach for the localization and segmentation of neuron bodies. Then, various methods and research lines have been investigated for the reconstruction of the whole dendritic arborization of each neuron, which is solved both in 2D and in 3D images
    • …
    corecore