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Abstract

Understanding how the brain works is, beyond a shadow of doubt, one of the greatest

challenges for modern science. Achieving a deep knowledge about the structure,

function and development of the nervous system at the molecular, cellular and net-

work levels is crucial in this attempt, as processes at all these scales are intrinsically

linked with higher-order cognitive functions.

The research in the various areas of neuroscience deals with advanced imaging tech-

niques, collecting an increasing amounts of heterogeneous and complex data at

different scales. Then, computational tools and neuroinformatics solutions are re-

quired in order to integrate and analyze the massive quantity of acquired information.

Within this context, the development of automatic methods and tools for the study

of neuronal anatomy has a central role. The morphological properties of the soma

and of the axonal and dendritic arborizations constitute a key discriminant for the

neuronal phenotype and play a determinant role in network connectivity. A quantita-

tive analysis allows the study of possible factors influencing neuronal development,

the neuropathological abnormalities related to specific syndromes, the relationships

between neuronal shape and function, the signal transmission and the network con-

nectivity. Therefore, three-dimensional digital reconstructions of soma, axons and

dendrites are indispensable for exploring neural networks.

This thesis proposes a novel and completely automatic pipeline for neuron recon-

struction with operations ranging from the detection and segmentation of the soma

to the dendritic arborization tracing. The pipeline can deal with different datasets

and acquisitions both at the network and at the single scale level without any user

interventions or manual adjustment. We developed an ad hoc approach for the

localization and segmentation of neuron bodies. Then, various methods and re-

search lines have been investigated for the reconstruction of the whole dendritic

arborization of each neuron, which is solved both in 2D and in 3D images.
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Introduction

The word brain appears as the first recorded statement in the Edwin Smith Surgical

Papyrus, an ancient Egyptian medical text written in the 17th century BC. Since this

period of the ancient Egyptian mummifications to 18th century scientific research

on "globules" and neurons, there is evidence of neuroscience practice throughout

the early periods of man history. Since then, the brain research holds a leading

role in the scientific community from Greek philosophers-scientists’ works, through

Leonardo Da Vinci’s studies during the Renaissance, till the Modern Era [Gross, 1999].

Neuroscience is really old but, to the detriment of thousands years of studies, most

of brain mechanisms and functions still remain unknown: the brain remains the

most formidably complex and the most uncovered system in biology. This fact is

confirmed by the activity in this research area suggesting that there is still a large

amount of knowledge to be discovered.

Brain processing involves a huge number of cells with heterogeneous phenotypes

that are structurally and functionally organized in a complex architecture at multiple

scales. This complicated network is responsible of mental processes, starting from

basic sensorimotor tasks to cognitive and executive functions. Thanks to recent

improvements in data acquisition technology, such as advanced imaging modalities

with sophisticated microscopes and Magnetic Resonance Imaging (MRI), an ever-

increasing amount of data has become available for analysis. The massive quantity

of acquired information requires powerful computational capabilities and advanced

processing algorithms to overcome the poor scalability/reliability of manual mea-

surements and visual evaluation. So, the comprehension of the brain demands the

attention of different research fields, from psychology, biology and neuroscience to

computer science, mathematics and engineering.

In the last decades a big effort has been put forward to investigate the so called

connectome, defined as "a comprehensive structural description of the network of

elements and connections forming the human brain" [Sporns et al., 2005], with

3



Introduction

fundamental insights for health and disease. The term connectomics identifies a

wide scope, ranging over different connectivity scales: at the microscale describing

single neuron interplays; at the mesoscale reconstructing the neuronal population

connectivity; at the macroscale depicting the pathways at the brain regions level

[Leergaard et al., 2012]. The first step through the comprehension of the connectome

has been done into the direction of the structural connectivity that is how the neural

elements are physically connected, providing an anatomical description of networks

nodes, such as neurons (microscale) or brain regions (macroscale). Then, beside the

structural connectome, the functional connectome is referred to functional connec-

tivity, which is mainly viewed as an undirected statistical measure between neural

elements over time. In particular, the functional connectivity measures the activity of

neurons or brain areas from the study of synchronous patterns of neuronal activation

[Rykhlevskaia et al., 2008]. Interestingly, thanks to the multimodal analysis, structure

and function reveal to be highly related.

Looking at the microscale interactions, we can observe that the functional properties

of each neuron are strongly driven by their soma morphology, dendritic arborizations,

synaptic distributions and anatomical interconnections with other cells [Baden et al.,

2016].

Regarding neuronal network studies, there is a growing interest in the scientific com-

munity towards the structural and functional organization of the retina. The retina

is a photosensitive membranous tissue lying at the back of the eye. Its role is to pro-

cess the light stimuli and to transmit the information to the brain through the optic

nerve. Although it is often compared to a photographic film on which the images

are imprinted and encoded into electrical signals with a columnar processing, the

retina has a very complex function and structure, composed of several layers of cells

in a tangled network [Gregory, 2015]: photoreceptors feed into bipolar and amacrine

cells, which pass the input to an assorted set of retinal ganglion cells (RGCs). Recent

studies show that retina performs sophisticated non-linear computation, extracting

spatio-temporal visual features with high selectivity. This is reflected by the fact that

distinct RGC types have been found to encode specific visual features for transmis-

sion to the brain [Neumann and H 2016]. According to the current knowledge, there

is a correlation between RGC morphology and function and this is usually studied at

the single cell level [Berson et al., 2010]. Recently, an intense debate is rising around

the importance of studying the retina at the circuit level and the actual challenge

is to tackle the problem at a different scale, analyzing populations of neurons at a

network level [Roska et al., 2006], [Kim et al., 2010]. Several studies are trying to

model responses of RGC populations heading to a better understanding of the role of

RGCs [Baden et al., 2016]. To support neuroscientists in this study, automated tools

4
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for the large-scale segmentation of neuron structures are required.

This thesis addresses this challenge by proposing a combined pipeline for detecting

and segmenting neurons at the population level. In this way, this can help in the

neuronal cell functional classification based on their morphology [Torben-Nielsen

et al., 2007]. Multimodal studies on structure-function find a growing field thanks

to recent imaging acquisition technologies that can capture neuronal anatomy and

physiology at multiple scales and at unprecedented resolution [Feldt et al., 2011].

Attempts in this direction have mostly concerned the macroscopic study of functional

and structural connectomics at the brain-area level. However, macroscale approaches

are not suitable for single-neuron resolution as they deal with large regions, involving

billions of neurons, that make any fine-grained analysis impracticable. On the other

hand, microscale studies achieves good resolution by focusing on single cells, but

looses the information on the topology and interplays of the full network. The gap

of knowlegde between micro and macro can be filled by the so-called mesoscale.

Mesoscale connectomics studies connectivity at the level of neuronal networks and

populations with a micrometric spatial resolution [Sporns, 2011]. Moreover, many of

the stratified complex mechanisms underlying brain processing can be particularly

observed at this scale. Therefore, it becomes important to capture how neurons play

in a network to accomplish the simple tasks on top of which high-level functions -

such as learning and memory - rest on [Jimbo et al., 1999], [Marom and Eytan, 2005].

The advent of multi-electrode array technology (MEA) allows a further step to char-

acterize the connections between patterns describing a mesoscale for studying neu-

ronal networks [Spira and Hai, 2013]. In particular, novel generations of active Micro

Electrode Arrays (MEAs), such as the High-Density MEA (HD-MEA) chips [Berdondini

et al., 2009], can record the electrical activity of neuronal networks from thousands of

electrodes at sub-millisecond resolution and approach the granularity of the single

cell. The multimodal acquisition of such an high-resolution functional data with fluo-

rescence microscopy imaging can enable an unprecedented mapping of both activity

and structure of neural populations at a cellular scale. Indeed, relatively sparse neu-

ronal assemblies, grown on-chip by seeding few thousand cells, and retinal samples

(as in our case studies) provide to acquire detailed spatio-temporal acquisitions of

neuronal activations and topological distribution of cells with respect to the electrode

grid. This allows a chance of correlating functional activity with neuronal topography

over large assemblies. Within this framework, new computational challenges come

from the acquisition of highly-complex multimodal datasets that require innovative

methods for their analysis.
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Goals and Contributions

Aim of this thesis is to provide automated computational tools for studying the mor-

phology of neurons both at the single and at the network scale. This problem is

addressed by developing an automatic pipeline for the anatomical analysis of fluores-

cence images, focusing on a whole reconstruction of the neuron: from the detection

of neuronal cells to the segmentation of their body and dendritic tree. This morpho-

logical reconstruction represents the necessary step towards a full structural and

functional integration.

Neuronal datasets are complex for different reasons. First of all, there is an high

heterogeneity of samples across different acquisitions. Images show high cell density

and shape variety and there is a low contrast at the neuron boundaries. Indeed, the

fluorescence expressed is non-uniform: it has higher values into the soma and leads

to fragmentation and gaps into dendrite appearance.

To overcome these challenging features, ad hoc processing steps are crucial to im-

prove the quality of images, for example through a background suppression and an

enhancement of the structures of interest, while lowering the contribution of other

elements in the images.

The first part of the work aims at the detection and segmentation of neuron bodies

developing an ad hoc approach that can deal with different datasets and acquisitions

without any user interventions or manual adjustment. Within this framework, we

propose a new multiscale blob enhancement filter that detects neuronal bodies, both

in images of population and of single neurons. Then, we perform the segmentation

by a localizing region-based active contour which finds the contour of cells and of

group of cells and by a watershed transform that separates contiguous somas.

The second part of the work proposes various methods and research lines for the

reconstruction of the whole dendritic arborization of each neuron, which is done

both in the 2D than in the 3D images. In the 2D case, segmented somas are used as

initialization seeds to start the reconstruction of attached processes. To solve this task,

we designed a level set propagation with local phase and with Hessian eigenvalues

information. In order to automatically trace the 3D volume of neurons, an innovative

pipeline that overcomes the challenging and problematic features of the datasets is

then developed. During a preprocessing step, a ROI mask of the dendrite structures

is designed by the Frangi Filter. This mask is used for driving a tracker using the prin-

cipal directions extracted in each voxel. The inspiration comes from Neuroimaging,

where a similar idea has been developed for deteministic MRI tractography. After

this point, we have investigated different solutions in order to create a continuous

tracing starting from the tracked fibers. First, a geometrical approach is developed.

6



Introduction

Then, a more precise reconstruction is performed by an active contour segmentation

initialized by all traces and also by the most representative ones chosen as centroids

of clusters computing by a Dominant Set Clustering Approach.

Content Overview

The content of the thesis is organized in four main chapters as follows.

First of all, a brief biological background about neurons and retina is provided in

Chapter 1 to introduce the basic concepts about the neurobiology of the subjects of

our reseach with the related state of art studies.

In Chapter 2, the acquisition process of fluorescent images is described. It follows

a summary about the HD −ME A recordings that allows the multimodal analysis.

Then, the datasets used for our studies and researches are illustrated and shown in

the remain of the chapter.

The central core of the thesis is revealed in the Chapter 3 and in the Chapter 4.

Chapter 3 presents the part of the pipeline related to the detection and segmentation

of cell bodies. First, the state-of-art is provided focusing the attention on how this type

of dataset is peculiar and discusses the importance of having completely automatic

methods for the analysis. Then, it introduces our approach dealing with the detection

of the soma and its segmentation [Baglietto et al., 2017a]. It is fully automatic and it

has been tested on two datasets showing good results for images of both single cells

and neuron populations.

Chapter 4 deals with the dendritic arborization reconstruction. Once the neuron

has been localized and its soma has been segmented, the dendritic tracing is required

in order to obtain the whole neuron morphology. After a summary about the exis-

tent methods, our solution is proposed starting from 2D images. Using the soma

localization and segmentation, a pipeline is developed with an improved level set

model obtaining encouraging results on 2D images. The second part of the Chapter

is related to the same problem on 3D images. We propose different solutions that we

have explored in order to find the best results in a so complex framework [Baglietto

et al., 2017b].

Finally, conclusions are exposed opening possible directions for future investiga-

tions.
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1 Background

In this Thesis, computer science is connected to biology and neurobiology. This

Chapter presents an overview on some basic biological concepts about neurons,

retina and their relative studies in order to link the biological background with our

works.

1.1 Neurons

Neurons are one of the most important cell types of any organism and they are the

elementary functional units of the brain tissue. The key numbers of the human

brain are very impressive. They underline the difficulties into the understanding of

how the brain works. The avarage human brain has about 100 billions of neurons.

Every neuron has on average up to 10000 synapses. The total number of synapses

of a human, adult brain is estimated to be in the range of 1014 to 5×1014 synapses.

Although the brain presents a great diversity and quantity of neuronal cells, they all

share a common fundamental architecture enabling their communication in a rapid

and precise way [Kandel et al., 2000].

For their neuron studies, Camillo Golgi and Santiago Ramòn y Cajal (shared Nobel

Prize in Medicine in 1906) are considered as the founders of modern neuroscience

[De Carlos and Borrell, 2007]. In 1873, Golgi had developed a sparse staining method

for brain tissue, which was further improved and extensively used by Cajal. Fig.

1.1 shows a drawing by Cajal made in 1899 of nerve cells in pigeon cerebellum. The

Golgi’s method can stain only a small subset of cells, but if a cell is stained, it is stained

in its entirety. Based on this observations, Cajal states that the nervous system is

composed of individual cells ("neurons"), as opposed to a diffuse network as claimed
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by Golgi and others.

Figure 1.1 – Drawing of Purkinje cells (A) and granule cells (B) from pigeon cerebellum
by Santiago Ramòn y Cajal, 1899. Instituto Santiago Ramòn y Cajal, Madrid, Spain.

A neuron has a cell body called soma, that is the metabolic center of the neuron.

From the soma, two types of processes, dendrites and axons (collectively called neu-

rites), depart, being in charge of delivering electrical impulses to other target neurons.

The soma typically gives rise to multiple dendrites, which branch in a tree-like shape

in the area near the soma. While the density of dendrites ensures the interconnection

of a neuron to a great number of other neurons, the axonal connection allows rapid

signal propagation over very large distances [Dayan et al., 2003]. At its end, the axon

branches into terminals (presynaptic terminals) forming the communication sites -

called synapses - with other nerve cells (postsynaptic neurons).

Neurons can be classified according to their functional behavior in three main

classes: sensors, motors and interneurons. Sensor and motor neurons are in charge of

- respectively - delivering perceptive information from the periphery to the brain and

motor commands from the brain to muscles and glands. Instead, the interneuronal

neurons cover the rest of brain nerve cells and can interact on a local basis with

short-range axons or extend over considerable distances conveying signals from one

brain region to another.

10



1.1. Neurons

Figure 1.2 – Image from [Wikipedia, ] showing the different part of a neuron and its
connections with the attached neurons.

At resting state, neurons have negative electrical potentials inside their cell mem-

brane. This state is called polarization. When an incoming stimulus arrives (receptor

potential), the neuron starts depolarizing, i.e. its potential changes to less nega-

tive or even positive values. If the sum of all converging potentials is above some

threshold, this rapid change in the potential across the cell membrane generates an

action potential, i.e. an all-or-nothing electrical impulse which can travel along axon

over large distances without any attenuation. Action potentials - also called spikes -

represent how neuronal signaling takes place, i.e. the way the brain accomplishes its

tasks of receiving, analyzing and conveying information [Kandel et al., 2000]. A se-

quence of action potentials occurring together is called a spike train. When an action

potential reaches the presynaptic terminals, this impulse stimulates the emission

of neurotransmitter molecules from their containers, the vesicles. These molecules

bind to the synaptic receptors generating a synaptic potential and stimulating the

postsynaptic neuron. This relation was studied for the first time by Otto Loewi and

11



Chapter 1. Background

Henry Dale (Nobel Prize 1936), who found evidence that information can be sent

between neurons by chemical means: neurotransmitter molecules are released in

one cell and sensed by another [Seung, 2012]. Synapses connect directly one presy-

naptic cell with one or several postsynaptic cells. Synaptic potentials can assume an

inhibitory or excitatory effect, according with the type of receptors in the postsynaptic

cell. On the contrary to excitatory receptors, inhibitory receptors generate a decrease

in the membrane potential - called hyperpolarization - which makes the postsynaptic

neuron less likely to generate action potentials.

Even if spike signals can differ in amplitude, shape and duration, only two features

are considered to bring information: the number of action potentials and the time

between them, i.e. their frequency, which defines the amount of transmitter released

at the synaptic gate. For this reason, spikes are typically considered as binary events,

i.e. they are only described by the time when they occurred. Consequently, the

temporal evolution of a neuron’s electrophysiological signal is expressed as a set of

time instants corresponding to its spiking events. In this setting, the information

encoding is carried by the temporal pattern of the spikes, i.e. number and frequency

of action potentials.

Most of the neuronal synapses can be classified into electrical or chemical by their

structure. In the first case, pre and postsynaptic neurons are physically connected:

the current generated by an action potential directly flows from one to the other; the

second case is represented by a cleft separating the two connected cells. Here, a neu-

rotransmitter from the axon terminal is released in order to transmit the signal from

the pre-synaptic to the post-synaptic neuron. The neurotransmitter moves across the

cleft and reaches the target neuron by binding with local receptor molecules placed

in the neuronal membrane. Such a binding process allows the current to propagate

through the synapse causing inhibition or excitation in the postsynaptic neuron. The

sign of the signal and the inhibitory or excitatory effect of the transmission on the

target neuron only depend upon the nature and chemical properties of the receptor.

Both excitatory and inhibitory synaptic potentials can converge to the same neuron

from various incoming arborizations. Excitatory currents depolarize the neuron

stimulating an initiation of an action potential. On the other side, inhibitory poten-

tials with their hyperpolarizing effect counteract this action and make the neuron

less likely to fire. Afferent inputs are then integrated in the postsynaptic neuron by

summing the synaptic potentials.
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1.1.1 SWC Data File

The structure of a neuron (see previous Sec.1.1) can be modeled as a tree, which

is composed of a set of nodes and the edges connecting the nodes. Each node is

a ball in the 3D space and its size is specified by its radius. The edges form the

skeleton of the neuron. This simple model is defined by the commonly used SWC

format. SWC are the initials of the last names of E.W. Stockley, H.V. Wheal and

H.M. Cole, who developed a system for generating morphometric reconstructions

of neurons [Stockley et al., 1993]. Therefore, we sometimes refer to a node as a

neuron node or an SWC node. Every compartment (except the root) has exactly one

parent compartment and may have 0, 1, or 2 children compartments, corresponding

respectively to a termination, continuation, or bifurcation. A node is defined as a

root, bifurcation or termination in the tree. A tree model created from image data is

called tracing and a 3D image is also called stack.

The Groud Truth of the Morphological neuron reconstructions are often available

for download as SWC files, as in our case [Gulyanon et al., 2016] and as in DIADEM

challenge dataset [Brown et al., 2011].

A file in SWC format contains information representing a digitally reconstructed

neuron. SWC is non-proprietary and stores the minimum amount of parameters

required to represent a vector-based three-dimensional reconstruction. For this

reason, the format of an SWC file is fairly simple. It is a white-space delimited text file

with a standard set of headers beginning with a # character (for comment lines) and

a series of parameters are organized into 7 columns. From left to right these columns

are: unique identity value for trace point, structure type, x coordinate, y coordinate, z

coordinate, radius, identity value for parent (i.e. trace point that comes before and

connects to the current trace point). The file lists a set of 3D neuronal compartments,

where each line represents a point and have the following layout:

1 2 3 4 5 6 7
Data Type Sample number Structure Identifier xposi t i on yposi t i on zposi t i on r adi us Parent Sample

Data Value Integer value, Standardized swc files ’x’, ’y ’, ’z’ are spatial coordinates, The sample number.

generally continuous, 0 - undefined given in micrometers. Connectivity is expressed

starting from ’1’ 1 - soma with this value.

2 - axon ’r adi us’ is half the dendrite thickness, Parent samples

3 - (basal) dendrite also given in micrometers. should appear before

4 - apical dendrite any child samples.

5+ - custom

Table 1.1 – SWC is a file of subsequent non-empty lines each represent a single neuron
sample point with seven data items.

13



Chapter 1. Background

1.2 Retina

The eyes together with their connecting pathways to the brain form the visual system.

The visual system is beautifully crafted to transmit information of the external world

to visual processing and cognitive centers in the brain [Gregory, 2015]. The optic

nerve, a cable–like grouping of nerve fibers, transmits vision signals to the lateral

geniculate nucleus (LGN), where visual information is relayed to the visual cortex of

the brain that converts the image impulses into objects that we see (Fig. 1.3).

Figure 1.3 – The visual information system: eye images the world around us and
sends information to the lateral geniculate nucleus thorugh the optic nerve. LGN
then comunicates with visual cortex of the brain.

The visual information processing starts in the retina, lying at the back of the eye.

Its role is to process the light stimuli and to transmit information to brain through

the optic nerve (see Fig. 1.4). Light entering eye triggers photochemical reactions in

rods and cones at back of the retina. Rod cells are responsible for our night vision,

and respond well to dim light. Cone cells are placed in a central region of the retina

called the fovea; they are responsible for high acuity tasks like reading, and also for
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Figure 1.4 – Visual perception starts as soon as the eye focuses light onto the retina,
where it is absorbed by a layer of photoreceptor cells, rods and cones, that convert
light into electrochemical signals. Signals from the photoreceptor cells pass through
a network of interneurons in the second layer of the retina to RGCs in the third layer.
RGCs transmit the information received to the visual cortex of the brain through the
optic nerv.

color vision. Cones can be subcategorized into three types, depending on how they

respond to red, green, and blue light. In combination, these three cone types allow

us to perceive colors. From these photoreceptor cells, chemical reactions in turn

active bipolar and amacrine cells. The neurons in these retinal layer exhibit complex

receptive fields that enable them to detect contrast changes within an image; these

changes might indicate edges or shadows. These second layer cells then activate

the ganglion cells (also called RGCs as Retinal Ganglion Cells), the axons of which

converge to form the optic nerve. Ganglion cells gather these information along with

other information about color, and send their output into the brain through the optic

nerve. This nerve transmits information to the visual cortex in the brain’s occipital

lobe.

In the last decade there is an increasing interest into the studies of the retina. This

depends on the fact that the retina is a sophisticated distributed processing unit

of the central nervous system encoding visual stimuli in a highly parallel, adaptive

and computationally efficient way. Recent studies show that rather than being a

simple spatio-temporal filter that encodes visual information, the retina performs

15



Chapter 1. Background

sophisticated non-linear computations extracting specific spatio-temporal stimulus

features in a highly selective manner (e.g. motion selectivity) [Zordan et al., 2015],

[Cessac et al., 2017]. A lot of scientists are involved in the research activity around

the retina and one of the hotter topic is around the relation of retinal ganglion cell

morphology with the functional role [Kong et al., 2005], [Coombs et al., 2006]. More-

over, understanding the neurobiological principles beyond retinal functionality is

also essential to develop successful artificial computer vision architectures.
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1.3 State of the Art in Neuron Studies

Neuronal morphology analysis is a key determinant in the endeavor to comprehend

the structure of the brain and of the nervous system. The morphological study of

somas, axons and dendrites provides an essential support to understand more about

synaptic integration, signal transmission, network connectivity, and circuit dynamics.

Since the great advances in the cellular imaging and microscopy acquisition, there is

a important rise to massive amounts of heterogeneous and complex data collected at

multiple scales of observation. Computational approaches are necessary for integrat-

ing and analyzing these data to quantify the intricate relationship between neuronal

morphology (structure) and physiology (activity) [De Schutter and Bower, 1994],

[Borst and Haag, 1996], [Segev and Rall, 1998], [Halavi et al., 2008], [Häusser et al.,

2000], [Schmitt et al., 2004], [Ascoli et al., 2007]. Therefore, digital reconstructions of

the whole neuron are indispensable for exploring neural function [Svoboda, 2011].

While the body of literature on the subject is growing [Halavi et al., 2012], [Meijering,

2010], [Donohue and Ascoli, 2011] as well as challenging competitions have been

organized in the field, the quest for a robust and fully automated system of more

general applicability still continues.

The lack of powerful computational tools for automated neuron tracing and recon-

struction has inspired several initiatives in the recent years to establish a competition.

For example, DIADEM Challenge [Ascoli et al., 2010] (DIgital reconstructions of

Axonal and DEndritic Morphology) (with a total of $75,000 in prize money) was de-

signed to encourage the development of new algorithms to advance the field [Zhao

et al., 2011], [Wang et al., 2011], [Narayanaswamy et al., 2011], [Chothani et al., 2011],

[Türetken et al., 2011], [Bas and Erdogmus, 2011]. Even if it was not to be expected,

in view of the past decades of many constant efforts, that a one-year competition

would lead to the final solution, it aimed at attracting new generations of computer

scientists to take up the field.

Some automated tools have recently appeared in the literature and proposed so-

lutions for various tasks such as tracing, visualization and editing [Mukherjee et al.,

2015], [Wang et al., 2011]. However, most of the neuroanatomists and biologists

still continue to process the reconstruction of dendritic and axonal arborizations

manually because available tools lack of general applicability. For this reason, there

is still a need to improve automated reconstruction of the whole anatomy of neurons.

Moreover, most of the computational tools require manual interactions including

Neuromatic [Myatt and Nasuto, 2008], Simple Neurite Tracer [Longair et al., 2011],

NeuronJ [Meijering et al., 2004], Neurite Tracer [Pool et al., 2008], NeuronStudio
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[Wearne et al., 2005], neuTube [Feng et al., 2015], FARSIGHT [Wang et al., 2011], V3D

[Peng et al., 2010], Reconstruct[Fiala, 2005] and the AxonTracker [Srinivasan et al.,

2010].

Neuromatic is a free application providing semi-manual or semi-automatic 3D neu-

ron reconstruction. It can be used as an inspecting and editing software. NeuronJ

and Simple Neurite Tracer are both semi-manual tracing plug-ings of the widely

used ImageJ (https://imagej.nih.gov/ij/), an open source image processing program

designed for scientific multidimensional images [Abràmoff et al., 2004], [Collins et al.,

2007]. NeuronJ implements a minimal cost path tracing method [Meijering et al.,

2003] but it can only deal with 2D images. Instead Simple Neurite Tracer accepts also

3D volumes and requires user interaction for the definition of start and end points

for each branch. NeuroStudio performs a reconstruction method using adaptive

thresholding, skeletonization and rayburst sampling algorithm. It is semi-automatic

because the user has to manually supply a 3D point at the tree root and optional

points at locations where the tracing fails. FARSIGHT has an higher level of automa-

tion: it implements an open curve snakes that can be initialized automatically from

a single seed point. It takes the first step for a system capable of automatic and

semi-automatic tracing. V3D is a visualization tool for large-scale image datasets,

supporting up to 5D rendering (spatially 3D over time and in multiple colors) of

data that can be described as a graph (such as neuronal data), point clouds, and

landmarks. The V3D-Neuron needs user-supplied terminal points of the neurites.

Plus, it offers various image analysis functions (as add-on modules), and also enables

user-developed plug-ins with which a user can manipulate the V3D platform in devel-

oping new functions. Reconstruct is a tool for semi-automatic segmentation of serial

section electron microscopy. AxonTracker is a package developed for semi-automatic

reconstruction of Neuromuscular Junction image volumes.

Most algorithms proposed in literature are dedicated to specific neuronal image

datasets and required manual interactions. For these reasons, the interest in the field

is growing but a fully automatic method for the 3D reconstruction remains an open

question.
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2 Imaging and Dataset

This Chapter will present an overview on technical methods in the acquisition of

both structural and functional information from biological samples with a specific

focus on microscopy acquisitions and on HD-MEA technologies. Then, the datasets

under investigation are discussed in the remain of the Chapter.

2.1 Fluorescence Microscopy

Since the past century, the introduction of labeling techniques to trace neuronal net-

works have profoundly revolutionized the study of neuroanatomy [Kandel et al., 2000].

Basically, it is possible to label specific structures inside the cell by a fluorochrome

or using a fluorescent protein. The cells can be transfected by Deoxyribonucleic acid

(DNA) encoded for proteins.

Immunocytochemistry is a common laboratory technique that is used to study of

cellular processes by using highly-specific antibodies which recognize target proteins.

Thanks to their peculiarity, antibodies selectively bind to the protein of interest in the

sample. In this way, the antibody-antigen interaction can be accurately visualized by

using fluorescent detection. In this setting, a fluorochrome or fluorescent dye can be

conjugated to the antibody. Fluorochromes can be excited on specific wavelengths

and emit red shifted photons. Such a response can be detected under a fluorescence

microscope providing an image of the structures of interest. The joint use of im-

munocytochemistry with fluorescent dyes is known as immunofluorescence [Storch,

2000]. Since fifties, this technique has been used by biologists for many different

applications and biological samples, including retinal samples, cultured cells, tissues

and microarrays [Coons, 1971] .
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Figure 2.1 – A x y− (top left), xz− (bottom left) and y z−slice (top right) of a 3D
fluorescence image coming from Renvision project (Sec. 2.3.1).This example shows
the worse resolution in the z axis.

2.1.1 Confocal Microscopy

Confocal microscopy (also called confocal laser scanning microscopy (CLSM)), is

an optical imaging technique for increasing optical resolution and contrast of a

micrograph (i.e. a photograph or digital image taken through a microscope or similar

device to show a magnified image of an item). This is obtained using a spatial pinhole

to block out-of-focus light in image formation [Pawley, 2006]. In other words, a

confocal microscope creates sharp images of a sample that would otherwise appear

blurred when viewed with a conventional microscope. Excluding most of the light

from the sample that is not from the microscope’s focal plane, the image has less

haze and better contrast compares to conventional microscope one and represents a

thin cross-section of the sample. Thus, it is possible to build three-dimensional (3D)

reconstructions of a volume of the sample by assembling a series of thin slices taken

along the vertical axis [Semwogerere and Weeks, 2005] [Prasad et al., 2007].
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Fluorescence samples are usually imaged in volume (x, y and z dimensions). In

these images, edges are not clearly visible in difference to images taken in photog-

raphy. For this aspect, fluorescence images are more similar to medical images like

Magnet Resonance Imaging (MRI) or Computer Tomography (CT) images. In any

case, the issues of fluorescence acquisitions are still different from medical images.

In addition to the lack of any edge information, it has to be noticed that the axes z has

a worse resolution compared with the x- and y-axes in high-resolution fluorescence

microscopy. In fact, the Point Spread Function (PSF) is elongated in the z-direction.

For these reasons, the application of real 3D image analysis approaches and algo-

rithms is quite difficult and requires mostly to care in detail about the issues with the

z-resolution. In Figure 2.1 we show as an example a x y− (top left), xz− (bottom left)

and y z−slice (top right) representation of a 3D fluorescence acquisition of retinal

tissue. In this image the issue of the difference between horizontal (x, y) and axial (z)

resolution and sampling is well visible. In z-direction the intensity changes are not

continuous. Plus, there are also intensity changes along structures which are caused

by the neuron properties as well as the distribution of fluorescent dye or protein.

Moreover, the dendrites have only few pixels in the axial direction. This is highlighted

by the typical image resolution (image spacing) of fluorescence images: z-spacing is

about 0.5µm while the x- and y-spacing are in the range of less than 0.2µm. So, the

image intensity does not correspond to light reflected from the objects (not like in

classical photography) but it is the detected fluorescence that is emitted from the

object by light excitation. Depending on sample preparation and microscope set-

tings, huge differences in image intensities can arise in the image (and over multiple

images).

In a conventional (i.e., wide-field) fluorescence microscope, the entire specimen is

flooded in light from a light source (i.e. mercury or xenon). All parts of the specimen

in the optical path are excited at the same time and the resulting fluorescence is visible

directly by eye or projected directly onto an image capture device or photographic

film (see Fig. 2.2 left).

In contrast, a confocal microscope uses point-by-point illumination and a pinhole

in an optically conjugate plane in front of the detector to eliminate out-of-focus

signal – the name "confocal" comes from this configuration. As only light produced

by fluorescence very close to the focal plane can be detected, the image’s optical

resolution, especially in the sample depth, is much better than that of wide-field

microscopes. However, as much of the light from sample fluorescence is blocked at

the pinhole, this increased resolution is at the cost of decreased signal intensity – so

long exposures are often required. After the pinhole, the light intensity is detected by
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Figure 2.2 – Comparison of conventional wide field microscope with confocal fluores-
cence one. Two pin holes used in the confocal geometry restrict the field of view to a
single point on the focal plane.

a sensitive detector, that transforms the light signal into an electrical one recording

by a computer. Thus, the two pinholes working together effectively restrict the field

of view of the sample fluorescence to a point on the focal plane (see Fig. 2.2 right).

Successive slices make up a ’z-stack’ which can either be processed by specific

softwares to create a 3D volume or can be merged into a 2D projection image (usually

the maximum pixel intensity is taken, but there are other common methods including

the usage of the standard deviation or summing the pixels). The most popular

free software for microscopy image processing is ImageJ [Schneider et al., 2012],

[Schindelin et al., 2012].
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2.2 Micro Electrode Array : MEA

The Micro Electrode Array technology can record the electrophysiology of the extra-

cellular activity of neurons. Neuronal signals can be reordered in extracellular and

intracellular modality [Maccione et al., 2012]. Intracellular recordings are executed

by the usage of glass electrodes (e.g. patch electrodes) which allows to record both

rapid spikes and the under slowly-varying subthreshold potential. On the other side,

to register the extracellular activity the electrode is sited close to a neuron soma in

order to reveal only its overthreshold spiking activity.

The first MEA technology appeared around the seventies [Thomas et al., 1972] and

have been improving in the recording and stimulation systems [Baumann et al.,

1999], [Berdondini et al., 2006]. While the spatial resolution (about 100µm) and the

number of electrodes (a few hundreds) are limited in the first devices, in 2009 there

was a great improvement in the spatio-temporal resolution that overcome previous

constraints [Berdondini et al., 2009]. This new implementation allows the recording

of the electrical activity of in-vitro neuronal networks by thousands of electrodes at

sub-millisecond resolution at the single-cell level. The new MEA platform is called

High Density Micro Electrode Array (HD-MEA) based on the Complemenatary Metal

Oxide Semiconductor (CMOS) technology and is composed by an array of 64×64

electrodes that provides acquisitions at a full-frame rate of 7.8 KHz and with a spatial

resolution of 21µm (see Fig. 2.3).

The key feature of HD-MEA is that their high electrode density beats the spatial

undersampling that other MEA platforms suffer. Thanks to this, the cases in which

the same event is recorded by multiple electrodes should be limit. So, the number

of false positive spike detections is reduced and the system allows a more accurate

study if whole-network dynamics.

HD-MEA can be applied in a wide range of studies from the alteration in the neuron

signals under the effect of chemical compound to the investigation of high-level

coding and learning mechanisms of neuron populations [Jimbo et al., 1999], [Marom

and Eytan, 2005]. They are also applicable in the record of electrophisiology of

different biological samples, including disassociate cultures and retina or brain slices.

Thanks to their high spatial resolution, it is possible to study the high-level abstraction

of identifying neurons with the underlying electrodes. And it makes possible to link

the network structure to the functional activity.
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Figure 2.3 – High-Density Multi-Electrode Array. From left to right: 1) The HD-MEA
chip implemented in the CMOS technology, 2) A close-up on the HD-MEA circuitry.
The platform features an active area of 4096 electrodes arranged in a 64×64matr i x.
Each electrode has a square-shape with 42µm side pitch and a recording area of
21µm. 3) A cultured nerve cell lying on an HD-MEA electrode.

2.3 Reference Datasets

Our studies have been concentrated on two different groups of data: Mouse Retina

and Larva Drosophila. The first important difference between the dataset is that

Mouse Retina samples show RGCs at a population level both in 2D and in some cases

in 3D acquisitions while Larva Drosophila presents volumes of single neurons. Both

dataset are imaged using fluorescent confocal microscope and present common

challenging features:

• images are affected by low contrast between structures and background;

• the fluorescence expressed in these images is non-uniform, leading to frag-

mented appearance of the objects and to unreliable separation between somas,

dendrites and axons;

• there is a high variability of sample condition across different microscopic

acquisitions;

• in Mouse Retina dataset, there are an high cell density, shape deformations,

occlusions among neurons and processes and the presence of a large mass of

structures such as dendrites and axons on the same channel.
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2.3. Reference Datasets

Hence, pre-processing is a necessary step to improve image quality through the

enhancement of the structures of interest. To this end, in this thesis is developed

a framework addressing all the steps of morphological reconstruction, from pre-

processing to cell body and dendrite segmentation.

2.3.1 Mouse Retina

The first dataset under investigation is called Mouse Retina and contains images and

volumes from fluorescent samples of mouse retinas recorded by confocal microscope

acquired during RENVISION Project (see the following subsection). In some case,

sample activity is also recorded by MEA technology. For this reason, in some case,

sample volume imaging is blurred by the presence of MEA chips as Fig. 2.4b) shows

and they cannot be acquired easily in their 3D volume .

Figure 2.4 – a) Whole mount retina automatically stitched (with built in algorithm
in Leica SP5) from 7×7 subfield images, high resolution imaging data in mosaic
single plane. b) Image of 12×7 electrode array (taken by Leica SP5 with objective
25×/0.95N A) with the electrodes highlighted by red squares. c) The corresponding
electro-physiological recording map of b)
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Chapter 2. Imaging and Dataset

Renvision Project

RENVISION (Retina-inspired ENcoding for advanced VISION tasks) is a three-year

project funded by the European Union FP7 FET (Future Emerging technology) proac-

tive program: Neuro-Bio-Inspired Systems.

RENVISION aims at achieving a comprehensive understanding of how the biological

retina encodes visual information through the different cellular layers, and to use

such insights to develop a new generation of retina-inspired ICT systems that can

automatically accomplish real-world visual tasks, far more efficient and robust than

existing technologies.

To this aim, exploiting the recent advances in high-resolution light-sheet microscopy

(LSM) 3D imaging and high-density multi-electrode array (MEA) technologies, REN-

VISION is in an unprecedented position to investigate pan-retinal signal processing

at high spatio-temporal resolution, integrating these two technologies in a novel

experimental setup. This allows for simultaneous recording from the entire popula-

tion of ganglion cells and functional imaging of inner retinal layers at near-cellular

resolution, combined with 3D structural imaging of the whole inner retina. The com-

bined analysis of these complex datasets has then required the development of novel

multi-modal analysis methods, from which new retina models and computational

vision algorithm have been designed.

Develop activity in the project

The final aim of my activity was to investigate the relationships between the func-

tional class of RGCs and their morphology. To this end we developed tools (i) for

the segmentation of a large population of neuronal cells; and (ii) for the automatic

detection and segmentation of the dendritic arborization, at least of primary den-

drites leaving from the cell, as the density of the processes becomes too high much

before reaching the Inner Plexiform Layer (IPL, i.e. axons of bipolars and amacrines,

dendrites of ganglion cells) and processes cannot be disentangled. The segmenta-

tion should be as precise as possible since we need then to extract morphological

features/indexes characterizing cell and dendrites shape. To this end, in this thesis is

presented the specific developed framework addressing all the steps of morphological

analysis, from image pre-processing to the segmentation of cells and processes.

Selected images

Mouse retinal samples were imaged using Leica SP5 upright confocal microscope.

Images were acquired at (sub)cellular resolution and at high averaging number to
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2.3. Reference Datasets

reduce the noise level due to limited light penetration in deep layers of the tissue

where RGCs are located.

For our studies, we chose a total of 5 images (2048×2048 and 1024×1024 pixels),

containing some hundreds of cells, selected from 3 different retina samples includ-

ing: i) three images coming from samples with genetic fluorescence expression,

(i.e., Im1 from PV-EYFP and Im2 and Im5 images from Thy1-EYFP mouse), and ii)

two images from samples with immunofluorescence staining using the Calretinin

calcium-binding protein (Im3 and Im4) (Fig. 2.5 and Fig. 2.6). The samples were

selected in order to best capture the variability in terms of fluorescence expression,

cell and axonal bundle density and background.

2.3.2 Larva Drosophila

The second dataset analyzed is Larva Drosophila and includes volumes of some

sensory neurons in the wild-type larva Drosophila studied over different development

phases (see Fig.2.7, Fig. 2.8, Fig. 2.9, Fig. 2.10). This dataset is public and it is

released by Prof. Tsechpenakis’ lab [Gulyanon et al., 2015], [Gulyanon et al., 2016].

It is composed by 11 volumes of 1024x1024x20. They are representative of spatially

inhomogeneous signal-to-noise ratios. All samples are prepared and imaged from

the fruit fly type.

Larvae were mounted one per slide (75×25×1mm) in Halocarbon 1000N oil to

match the refractive index of microscope objective oil-immersion fluid. Coverslips

(22×22mm) were secured using putty in order to apply appropriate pressure without

popping the larva and to prevent larva movement while imaging. Larvae for all

experiments were 48-72 hours old. The neurons used in imaging were on the distal

left side along the larvae’s dorsal end. Image stacks (.5 micron sections) of sensory

neurons were detected with an inverse confocal laser scanning microscope (Zeiss

LSM 780) using a Plan-Neofluar 40×/1.30 Oil M27 objective (Zeiss) and the ZEN 2010

software.

In this dataset, neurons are imaged at the single scale but it happens that parts of

dendrites of other neurons appear fluorescent in the same image.
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Im1 (PV-EYFP) Detail of Im1

Im2 (Thy1-EYFP) Detail of Im2

Im3 (Calretinin) Detail of Im3

Figure 2.5 – Mouse Retina Dataset. Images containing Retinal Ganglion Cells (RGCs)
selected for testing the proposed method. The images show high variability across
samples. While in the right column there are some magnified crops showing the
complexity of images, on the left the correspondent images are visualized, where the
analyzed structures are mixed with background and other structures.
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Im4 (Calretinin) Detail of Im4

Im5 (Thy1-EYFP) Detail of Im5

Figure 2.6 – Mouse Retina Dataset. Images containing Retinal Ganglion Cells (RGCs)
selected for testing the proposed method. The images show high variability across
samples. While in the right column there are some magnified crops showing the
complexity of images, on the left the correspondent images are visualized, where the
analyzed structures are mixed with background and other structures.
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Sample #1 Maximum projection of Sample #1

Sample #2 Maximum projection of Sample #2

Sample #3 Maximum projection of Sample #3

Figure 2.7 – Larva Drosophila Dataset. Images contain some sensory neurons in wild-
type Larva Drosophila studied over different development phases (each page contains
a case study). Also in these case, images show heterogeneity across samples. While
in the left column there are the sample volumes, on the left side the correspondent
maximum projections are shown.
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Sample #4 Maximum projection of Sample #4

Sample #5 Maximum projection of Sample #5

Figure 2.8 – Larva Drosophila Dataset. Images contain some sensory neurons in wild-
type Larva Drosophila studied over different development phases (each page contains
a case study). Also in these case, images show heterogeneity across samples. While
in the left column there are the sample volumes, on the left side the correspondent
maximum projections are shown.
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Sample #6 Maximum projection of Sample #6

Sample #7 Maximum projection of Sample #7

Sample #8 Maximum projection of Sample #8

Figure 2.9 – Larva Drosophila Dataset. Images contain some sensory neurons in wild-
type Larva Drosophila studied over different development phases (each page contains
a case study). Also in these case, images show heterogeneity across samples. While
in the left column there are the sample volumes, on the left side the correspondent
maximum projections are shown.
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Sample #9 Maximum projection of Sample #9

Sample #10 Maximum projection of Sample #10

Sample #11 Maximum projection of Sample #11

Figure 2.10 – Larva Drosophila Dataset. Images contain some sensory neurons in wild-
type Larva Drosophila studied over different development phases (each page contains
a case study). Also in these case, images show heterogeneity across samples. While
in the left column there are the sample volumes, on the left side the correspondent
maximum projections are shown.
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3 Soma morphology study:

detection and segmentation

To reconstruct the whole neuron morphology, the automatic soma detection and

segmentation is required. In this chapter, a combined technique for detecting and

segmenting cell bodies in fluorescent microscopy images is presented. The method

incorporates a novel blob enhancement filtering in order to select the specific cell

shapes, an active contour process for precise border segmentation and a watershed

transform step which separates single cell contours in possible grouped segmenta-

tions.

3.1 State of art

Analyzing the morphology of neuronal networks requires automatic tools that can

detect and segment the neuron structures. The first step of this research would

be identify and segment precisely cell bodies in order to accurately study and to

classify neuron morphology. Cell segmentation approaches have been largely im-

proved in the last decades, however they generally rely on images where labeling

is limited to cell bodies. In our setting, the fluorescence is expressed by the entire

neuron (including axon and dendrites)(see from Fig. 2.5 to Fig. 2.10). This opens new

challenges from a computational perspective, because many structures are simulta-

neously labelled on the same channel. Detecting and segmenting neuron somas from

these images requires an approach that can deal with a non-uniform fluorescence

expression (typically limited to the cell nucleus or sometimes to cell membrane) that

leads to fragmented appearance of the objects and to unreliable separation between

somas, dendrites and axons. Plus, the algorithm should overcome a strong number

of occlusions and background clutter. Last but not least, the method should not be

sensible to the high variability of samples condition across different acquisitions.
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Chapter 3. Soma morphology study: detection and segmentation

This global setting introduces to new challenging computational tasks for image

segmentation. Indeed, state-of-the-art methods usually work on single neuron recon-

struction [Gulyanon et al., 2016] and can hardly be adequate for separating neurons

from the background. The automated detection and segmentation is still a critical

open problem. On the other hand, the manual interaction to generate the morpholog-

ical reconstruction is time consuming and expensive. Traditional cell detection and

segmentation approaches which use only basic techniques, such as morphological

operators and thresholding, are not powerful enough and lead to wrong segmenta-

tions [Meijering, 2012]. Another alternative approach is to start from selected seed

points in the image and to iteratively cluster connected points to form labeled regions

[Frasconi et al., 2014]. Learning approaches, such as [Arteta et al., 2013] and [Zhang

et al., 2014], require hand-labelled neurons for training and testing. In addition, they

cannot manage to extract the precise segmentation of cells because of the difficul-

ties dealing with the high variance in cell appearance. In contrast, active contour

methods have demonstrated good performance in image segmentation dealing with

challenging data [Chan et al., 2001], [Yezzi et al., 2002]. Their main limitation is related

to the strong sensitivity to the model initialization, which usually requires variable

degrees of user intervention. To this end, recent years have witnessed the spread of

active contour models in different formulations, aiming at hybrid approaches for

automating the initialization process [Ge et al., 2015], [Wu et al., 2015].

Within this scenario, we designed a method based on active contour initialized on

specific ROIs, which are automatically identified by a multiscale blob filter emphasiz-

ing only cell bodies. Several shape-based enhancement filters have been introduced

in literature. Frangi filter has been reported to be one of the most effective vessel

enhancement filter [Frangi et al., 1998]. In light of that, we introduced a novel mul-

tiscale blob filtering method derived from the Frangi filter for the enhancement of

neuron somata. Cell bodies are then segmented by a localizing region-based active

contour algorithm [Lankton and Tannenbaum, 2008] followed by a watershed-based

step to split groups of neurons and to separate cells from dendrites and axons.
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Chapter 3. Soma morphology study: detection and segmentation

3.2 Cell Detection : Multiscale Blob enhancement filtering

The aim of blob enhancement is to improve the intensity profile of neuron bodies and

reduce the contribution of dendritic and axonal structures. It is based on the analysis

of the eigenvalues of the Hessian matrix to determine the local likelihood that a pixel

belongs to a cell, i.e. to a blob structure. The proposed approach is inspired by the

work of Frangi et al. [Frangi et al., 1998] on multi-scale vessel enhancement filtering.

3.2.1 Frangi Filter

The Frangi filter essentially depends on the orientational difference or anisotropic

distribution of the second-order derivatives to delineate tubular and filament-like

structures. In this work, vessel enhancement is conceived as a filter searching for

geometrical patterns which can be associated to a tubular structure. Plus, since

vessels and dendrites have different scales in the same image, a multiscale approach

is used. In order to study locally the behavior of the image L, a common method is to

consider its Taylor expansion in the neighborhood of a point xo . Let’s consider the

second order expansion:

L(xo +δxo , s) ≈ L(xo + s)+δxT
o ∇o,s +δxT

o Hxo ,sδxo (3.1)

where ∇o,s is the gradient vector and Ho,s is the Hessian matrix of the image, both

computed in xo at scale s. Concerning the computation of the differential operators

of L, in a well posed situation, it is used the linear scale space theory [Florack et al.,

1992], [Koenderink, 1984]. According to this theory, differentiation is given by a

convolution with Gaussian derivatives:

∂

∂x
L(x, s) = sγL(x)∗ ∂

∂x
G(x, s) (3.2)

where the Gaussian function in D dimensions is:

G(x, s) = 1√
(2πs2)D

exp− ‖x‖2

2s2 (3.3)

and where γ is a normalized parameter that has to guarantee fair comparison among

the responses coming from different scales [Lindeberg, 1998]. The kernel generated

by the second derivative at scale s measures the contrast between the areas inside

and outside the range (−s, s) in the direction of the derivative (Fig. 3.2).
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3.2. Cell Detection : Multiscale Blob enhancement filtering

Frangi’s idea, as previously done in [Sato et al., 1997] and in [Lorenz et al., 1997],

follows this observation.

Figure 3.2 – Figure on the left: Plot of the second order derivative of a Gaussian kernel.
Figure on the right: The second order ellipsoid describes the principal direction locally.
Reprinted figure with courtesy of A. Frangi [Frangi et al., 1998]. ©1998 by Springer

The analysis of the Hessian eigenspace allows to extract the principal directions in

which we can decompose locally the second order structure of the image. This is less

expensive than the application of several multiple orientation filters.

Let λs,k the eigenvalue corresponding to the k th normalized eigenvector ûs,k of the

Hessian matrix Hxo ,s , computed at the scale s. From the definition of eigenspace:

Hxo ,s ûs,k =λs,k ûs,k

follows that:

ûT
s,kHxo ,s ûs,k =λs,k

From a geometrical interpretation, the eigenvector decomposition extracts three

orthonormal directions that are invariant up to scale when mapped by Hessian

matrix. These eigenvectors can represent axes of an ellipsoid that locally describes

the second order image structure and can be used as an intuitive tool for the definition

of geometric similarity measures.

In this thesis (note that this notation is different in [Frangi et al., 1998]), λk is the

eigenvalue with the k th biggest magnitude (|λ3| ≤ |λ2| ≤ |λ1|).
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Chapter 3. Soma morphology study: detection and segmentation

2D 3D Orientation Pattern
λ1 λ2 λ1 λ2 λ3

N N N N N noisy, no prefferd direction
H− L L plate-like structure (bright)
H+ L L plate-like structure (dark)

H− L H− H− L tubular structure (bright)
H+ L H+ H+ L tubular structure (dark)
H− H− H− H− H− blob-like structure (bright)
H+ H+ H+ H+ H+ blob-like structure (dark)

Table 3.1 – Possible patterns in 2D and in 3D according with the value of the eigen-
values λk (H = high, L = low, N = Noisy, + and − indicate the sign of the eigenvalue)
and |λ3| ≤ |λ2| ≤ |λ1|.

Table 3.1 shows the relations that have to been hold between eigenvalues of the

Hessian for the detection of different structures. In particular, for an ideal tubular

structure in a 3D image:
|λ3| ' 0

|λ3|¿ |λ2|
λ2 'λ1

(3.4)

and the sign of λ1 and λ2 indicate its polarity.

In Frangi Filter all the three eigenvalues play a central role in the discrimination of

the local pattern. This idea makes Frangi Filter different from the similarity measures

proposed by [Sato et al., 1997] and [Lorenz et al., 1997] that only use λ1 and λ2 in the

corresponding 3D vessel enhancement filters.

The Vesselness function computed in the point xo proposed by Frangi is define as:

Vs (xo) =


0 if λxo

1 > 0

(1−exp

(
−R2

A

2α2

)
)exp

(
−R2

B

2β2

)
(1−exp

(
−S 2

2c2

)
) otherwise

(3.5)

where RB = |λxo
3 |√

|λxo
1 ||λxo

2 |
is the blob-like component that can not distinguish between

line- and plate-like patterns; RA = |λxo
2 |

|λxo
1 | is the contribution that can do that (in fact it

will be zero in the case of plate-like pattern). Then, S = ‖H ‖F =
√∑

j≤D (λxo
j )2, with

D dimension of the image, is used to discard regions where the intensity variations
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3.2. Cell Detection : Multiscale Blob enhancement filtering

are small. Parameters α, β and c are thresholds which control the sensitivity of the

filter.

The Vesselness measure in Eq. (3.5) is computed at different scales s. The response

of the tubular filter will be maximum at a scale that approximately matches the size

of the vessel to detect. Then the information at different scales is integrated in order

to get the final vesselness estimation:

V (xo) = max
smi n≤s≤smax

Vs (xo)

where smi n and smax are the minimum and maximum scales at which structures are

expected to be found.

For 2D case, the Vesselness measure becomes:

Vs (xo) =


0 if λxo

1 > 0

exp

(
−R2

B

2β2

)
(1−exp

(
−S 2

2c2

)
) otherwise

(3.6)

where RB = λ
xo
2

λ
xo
1

is the blobness measure in 2D .

Note that Eq. (3.5) and (3.6) are defined for light structure enhancement. For the

usage with dark objects, conditions (or images) should be inverted.

3.2.2 Multiscale Blob enhancement filtering

In this thesis, we start from Frangi’s idea and modify the filtering process (in particular

Equation 3.6) in order to have a reduction of line-like patterns in favor of blob-like

structures (as [Liu et al., 2010]). Instead of a vesselness measure, we define a blobness

measure as follows:

Bs (xo) =


0, if λxo

1 > 0

e
1

2β2 ·
(
λ

xo
2

λ
xo
1

)2

, otherwise

(3.7)

where λ
xo
1 and λ

xo
2 are the eigenvalues of the Hessian matrix at point xo and at scale

s. β is a threshold which controls the sensitivity of the blob filter. Both β and the

Hessian scale have been selected as the average neuron radius. Eq.(3.7) is given for

bright structures over dark background. In case of dark objects conditions should be

reversed.
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The filter is computed at a multiscale level. The response of the blob filter would be

maximum at scale s that more suited to the diameter of the blob to detect. Our blob

enhancement filtering is said multiscale because we combine the blob measure at

different scales to obtain a final blobness estimation defined as:

B(xo) = max
smi n≤s≤smax

Bs (xo) (3.8)

where smi n and smax are the minimum and maximum scales where we expect to find

structures.

This novel filter gives an image with values between 0 and 1 corresponding to the

probability map that a specific pixel belong to a blob shape area.

This information is then binarized in order to get a binary mask for initializing the

active contour method in the following step.
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3.3. Cell Body Segmentation : Localizing Region-Based Active Contour

3.3 Cell Body Segmentation : Localizing Region-Based

Active Contour

In order to study the cell morphology, a precise definition of soma contour and size is

required. After blob enhancement filtering, we know where each cell is located. In

fact, the information coming from the introduced filter corresponds to blob areas

where with high probability there are neuron somas. Therefore, the probability

map can be binarized and used as initialization ROIs for segmenting soma profiles.

Segmentation can be performed in various ways as shown in Sec. 3.1. What follows

provides a mathematical insight for the class of segmentation methods known as

active contours.

Active contour methods have a growing success in recent years and have been

applied in a range of fields including visual tracking and image segmentation [Blake

and Isard, 1998], [Paragios et al., 2006]. Active contours are one class of variational

methods that solve complex problems via optimization. In a variational approach,

one must define a quantity or “energy” that will be at an optimum (maxima or

minima) when a desirable solution is reached. Usually an energy is minimized by

finding its first variation with respect to key arguments and iteratively reducing

the energy by manipulating those arguments through gradient descent [Morel and

Solimini, 2012]. In active contour algorithms, an energy functional is defined and its

arguments contain the image to analyze and a closed curve that partitions the image.

The energy is then minimized via iteratively deforming the contour by gradient

descent. With a well-chosen energy, the curve will be stopped when a meaningful

segmentation has been achieved.

3.3.1 Localizing Region-Based Active Contour

Localizing active contour [Lankton and Tannenbaum, 2008] is an improved version

of traditional active contour models [Chan et al., 2001], [Yezzi et al., 2002]: objects

characterized by heterogeneous statistics can be successfully segmented thanks to

localized energies where the corresponding global ones would fail. This framework

allows to remove the assumption that the foreground and background regions are

distinguishable based on their global statistics. Indeed the working hypothesis is that

interior and exterior regions of objects are locally different. Within this framework,

the energies are constructed locally at each point along the curve in order to allow

the analysis of local regions. The choice of the localization radius is driven by the size

of the object to be segmented.
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General formulation.

Let I be a given image defined in the domain Ω, and let Γ be a closed and regular

curve defined as the zero level set of a signed distance function Φ, i.e. Γ = {x ∈
RD |Φ(x) = 0} with D dimension of domain Ω [Osher and Fedkiw, 2003], [Tsai et al.,

2003]. The interior of the contour C is assigned by the smoothed version of the

Heaviside function:

H Φ(x) =
1, if Φ(x) <−ε

0, if Φ(x) > ε
(3.9)

In a complementary definition, the exterior of C is (1−H Φ(x)). In order to define

the area around the contour, the derivative of H Φ(x) is used. Then, the derivation

result is a smoothed version of the δ of Dirac:

δΦ(x) =
1, if Φ(x) = 0

0, if ‖Φ(x)‖ > ε
(3.10)

Figure 3.3 – Ball is considered at each point along the contour. This circle is split by
the contour into local interior and local exterior regions. In both images, the point
x is represented by the yellow small dot. The B(x, y) neighborhood is represented
by the larger red circle. In (a), the local interior is the shaded part of the circle and in
(b), the shaded part of the circle indicates the local exterior. Reprinted figure with
courtesy of S. Lankton [Lankton and Tannenbaum, 2008]. ©2008 by IEEE
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3.3. Cell Body Segmentation : Localizing Region-Based Active Contour

Given x and y independent spatial variables representing two different single points

in the domain, let define the characteristic function dependent on the radius r :

B(x, y) =
1, ‖x − y‖ < r

0, otherwise
(3.11)

B(x, y) is a spherical mask and it is 1 when y is in within the ball of radius r and

centre x and 0 outside. Fig. 3.3 shows how this ball B(x, y) plays on the contour. This

equation (3.11) is then used for localizing the energy functional defined in term of a

generic force function F :

E(Φ) =
∫
Ωx

δΦ(x)
∫
Ωy

B(x, y) ·F (I (y),Φ(y))d yd x (3.12)

In equation (3.12), F is an internal energy function representing local adherence to

a given structure at each point along the contour Γ. For each point x given by δΦ(x),

the computation of E is masked by B(x, y) in order to ensure that F is applied only

on local information of the image in x. Hence, the first term final contribution of the

energy E is the sum of F values given by B(x, y) neighborhood along the zero level

set.

Then, for keeping the curve smooth, a regularization term is usually added. This

term penalized the curve arclength and weight this quantity by a parameter λ. The

energy is now given as:

E(Φ) =
∫
Ωx

δΦ(x)
∫
Ωy

B(x, y) ·F (I (y),Φ(y))d yd x+λ

∫
Ωx

δΦ(x)‖∇Φ(x)‖d x (3.13)

The evolution equation is given by the first variation of the energy E respect to Φ:

∂Φ

∂t
(x) = δΦ(x) =

∫
Ωy

B(x, y)·∇Φ(y)F (I (y),Φ(y))d y+λδΦ(x)di v
( ∇Φ(x)

|∇Φ(x)|
)

(3.14)

The only request about the internal energy function F is that the first variation with

respect to Φ can be computed. This is necessary in order to ensure that all region-

based segmentation can be calculated within this framework. In this way, all global

energies (as for example in [Chan et al., 2001], [Yezzi et al., 2002]) can be localized

and improved by this method by Lankton [Lankton and Tannenbaum, 2008].
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Implementation details.

Since now, the formulation is defined in a general energy overview. In this thesis, the

adopted energy is the Mean Separation (MS) Energy, introduced in [Yezzi et al., 2002]

and localized as in [Lankton and Tannenbaum, 2008].

Concerning the radius of the ball function B(x, y), this parameter choice is important

and it is determined on how local the segmentation has to be. In particular, its scale

should be on the same scale of the object to be segmented and depending on the

surrounding background pattern.

In our case, for each image, we used a radius equal to the average soma radius,

depending on the image size and on the microscope lens. Thanks to this efficient

technique, we obtain a segmentation mask which tightly fits real cell bodies.

In some situations, where cells are contiguous and there are occlusions and unreliable

separations (Fig. 3.5), active contour approach can segment a group of cells as a

unique entities. A further step is required to split them.
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3.4 Watershed Transform and Size Filter

To separate groups of overlapping or contiguous cells, we exploit the simplicity

and computational speed of the watershed transform, introduced by Beucher and

Lantuéjoul [Beucher and Lantuéjoul, 1979].

The watershed algorithm detects catchment basins of all minima in the image. Con-

sider the image I in three dimensions: I can be represented as two spatial coordinates

versus intensity [Gonzalez and Woods, 2001]. In such "topographic" interpretation,

we suppose that a hole is located in each regional minimum and that the entire

topography is flooded from below by letting water rise through the holes at a uniform

rate. When water coming from different catchment basins is about to merge, a dam

is built to avoid the merging. These dams are the (connected) boundaries extracted

by a watershed transform algorithm (Fig. 3.4).

Figure 3.4 – Modelling of contours by watershed transform: the watersheds are the
zones dividing adjacent catchment basins.Reprinted figure with courtesy of A. El
Allaoui [El Allaoui et al., 2012] ©2012 by AIRCC.

Implementation details.

In our case , we applied watershed transform to the single connected components,

segmented after the active contour step. This would lead to the extraction of single

cell segmentation when occlusions and fuzzy boundaries drive AC model to the

wrong and grouped segmentation (see Fig. 3.5).

As a final step, we delete components which are too small or too large for being

cell bodies (an example is given in Fig.3.1, first line) applying a size filter to remove

structures with size outside an acceptable range of soma dimensions. It is possible

to fix this range by a statistical analysis of cell dimensions removing the tails of the

distribution.
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Crop of Im5

Resulted Crop Segmentation

Figure 3.5 – Some cells are not easily visible to the human eye just visualizing the
retina images, but they are discovered and segmented by our algorithm (for example,
in this cropped figure, pink and blue cells were hardly detectable). Adding contrast to
the image makes these somata clearer but it increases noise and cell heterogeneity.
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3.5 Results and Discussion

For the evaluation of soma detection and segmentation, we applied our pipeline to

two different datasets, Mouse Retina [Baglietto et al., 2017a] and Larva Drosophila

[Gulyanon et al., 2016].

As previously described in Chapter 2, Sec. 2.3, the first dataset, Mouse Retina, is

composed of 5 different retinal images representative of possible variations on the

retinal samples, such as brightness, intensity, size and number of cells, presence of

axonal structures and processes, strong background signals, etc. These samples show

images at the network scale of many dozens of RGCs with higher fluorescence expres-

sion into the soma. The ground truth have been generated manually segmenting all

cells in each image (around 280 cells in total).

The second dataset, Larva Drosophila contains fluorescent images made of 11 single

neurons representative of spatially inhomogeneous signal-to-noise ratios. Also in

this case, all the neurons (both soma and dendrites) have been manually segmented.

To give a qualitative evaluation, we report different examples of Mouse Retina in

Fig.3.1-3.5 and of Larva Drosophila in Fig. 4.3 (central column) where it is possible to

see that our approach works in different sample conditions.

To quantify the performance of our method, we adopt the Dice Coefficient (DC), a

widely used overlapped metric for comparing two segmentation. DC is defined as

follows:

DC = 2(A∩B)

(A+B)
,

where A is the binary ground truth mask and B is the binary segmentation result. The

DC value ranges between 0 (absence of agreement) and 1 (perfect agreement). A DC

higher than 0.70 usually corresponds to a satisfactory segmentation [Zijdenbos et al.,

1994].

Table 3.2 shows the quantitative results on our Mouse Retina samples. We compute

the DC for each of the three steps in the pipeline (Blob-based Filtering after bina-

rization, Active Contour and Watershed Transform). Each stage clearly improves

the segmentation, reaching satisfactory results for all images. In Im3 (Fig. 2.5), the

fluorescence is mainly expressed by the body cells; for this reason, we reach good

scores right after the first two steps. The weaker DC values on images Im2 and Im5

are due to a strong presence of axonal structures which can be hardly removed. As

an additional index of performance at the network scale, we also present the per-

centage of detected cells for each Mouse Retina image. Fig.3.6 shows the variation
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Image # of cells Blob Filter Active Contour Final
DC DC DC detected cells

Im1 (PV-EYFP) 95 0.60 0.69 0.81 86.32%
Im2 (Thy1-EYFP) 37 0.43 0.58 0.64 89.19%
Im3 (Calretinin) 64 0.62 0.82 0.83 75.00%
Im4 (Calretinin) 29 0.57 0.71 0.79 82.76%
Im5 (Thy1-EYFP) 48 0.51 0.62 0.70 85.42%

Table 3.2 – Results for soma segmentation on Mouse Retina samples. Dice Coefficient
is computed for all steps in the pipeline (Blob Filter, Active Contour and Watershed
Transform) and it shows improvements after each step. For the final stage of the
pipeline, there is also the percentage of detected cells computed assuming as detected
a cell with minimum overlap 50% with ground truth fixed at 50%.

of the percentage of detected cells at different thresholds of overlapping between

computer-aided segmentation with the ground truth to count a cell as detected. It

can be observed that 50% threshold is a good trade off between the certainty of a

cell detection and a satisfactory retrieval. So, in Table 3.2, we consider a cell as de-

tected if it is correctly segmented for more than 50% of its total area, comparing the

segmentation mask to the ground truth for each annotated RGC.

Table 3.3 reports the quantitative evaluation on the Larva Drosophila dataset. In

this case, we compute the DC and the Jaccard Index (JI). Jaccard Index [Jaccard, 1901]

is another overlap ratio measure and it is defined as follows:

J I = |A∩B |
|A∪B |

The DC is currently more popular than the Jaccard overlap ratio [Crum et al., 2006].

This is because JI is numerically more sensitive to mismatch when there is reasonably

strong overlap (as we can observe in the results in Tab. 3.3). Worst values are obtained

for Sample #4 (Fig. 2.8) and #6 (Fig. 2.9), where background noise is strong and leads

to confusing borders. In general, however, the values are significantly high with an

avarage reaching respectively, 0.88 and 0.80.

Part of this work is published in [Baglietto et al., 2017a] and in the journal paper

under review [Baglietto et al., subm].
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Figure 3.6 – Variation of the % of detected cells in Mouse Retina dataset as a function
of the % threshold of overlap between detected cell and the corresponding annotated
ground truth.

Image DC JI

#1 0.89 0.80
#2 0.95 0.90
#3 0.97 0.95
#4 0.74 0.59
#5 0.94 0.89
#6 0.69 0.53
#7 0.93 0.87
#8 0.91 0.83
#9 0.83 0.70

#10 0.89 0.80
#11 0.92 0.85

Avarage 0.88 0.80

Table 3.3 – Soma segmentation results on Larva Drosophila dataset. Dice Coefficient
has been computed for each segmented soma.

51





4 Dendrite Tracing

In this Chapter, it is described our original research contribution on dendrite segmen-

tation. When combined with our work described in Chapter 3, our method allows to

automatically segment the entirety of a neuron, from soma to arborization tree. In

Section 4.1 a state of art about dendrite tracing is presented. Section 4.2 and Section

4.3 show our proposal respectively dealing with 2D and with 3D acquisitions.

4.1 State of Art

Thanks to the great advances in cellular imaging and microscopy acquisition, we have

technological tools and techniques allowing to address fundamental questions in

neuron studies: we can capture high-resolution 2D and 3D images of single neurons

and of populations that enable neurobiologists to investigate the neuronal structure

and the morphological development associated to neurological disorders. In the

previous Chapter, a solution for the detection and segmentation of neuron bodies

is presented. The second step aims now at the dendritic arborization tracing to

complete the whole neuron reconstruction.

Neuron samples acquired by a confocal microscopy are complex for different reasons.

First of all, the dendrites appear as thin filaments or tubular structures and the arbors

are large and extremely intricate. They are affected by low contrast at the neuron

boundaries and the dendritic tree varies across different samples and acquisitions.

Indeed, the fluorescence expressed in neuron volumes is non-uniform. It has higher

value into the soma and presenting lower signal in the rest of the neuron structure.

This leads to fragmentation and gaps into dendrite appearance. Finally, there is a

high variability of samples condition on different microscopic acquisitions.
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Neuron segmentation problem has been investigated since the beginning of the ′80s

[Reuman and Capowski, 1984], when manual segmentation was the first solution

and it was so infeasible. Since that period, a large number of approaches have been

studied and described in literature. There are a lot of works in this field [Meijering,

2010], [Basu et al., 2010], [Mukherjee et al., 2015], [Longair et al., 2011]. Despite the

increasing amount of studies, the state of art is not still satisfactory. For example, the

manual interaction that some tools require [Longair et al., 2011] is time consuming,

expensive and extremely depending on the user diligence and personal expertise.

Traditional segmentation approaches that use basic method such as thresholding

and morphological operators are not precise enough and lead to wrong segmen-

tations. Learning approaches, nowadays broadly used in object segmentation, in-

cluding high-performance deep learning methods, are not suitable for these images

because they require a huge amount of hand-labeled neuron samples for training

and testing [Zheng and Hong, 2016].

Skeletonization is a global technique that extract the binary skeleton from a given

neuronal structure [Lee et al., 1994], [Palágyi and Kuba, 1998]. The key idea of these

methods is an iterative erasure of voxels from the volume of the segmented object

preserving the topology of the contained structure. Minimal path based tracing are

other global approaches and aim at linking seed points by an optimization problem

[Meijering et al., 2003] or by Fast Marching algorithm [Benmansour and Cohen, 2011].

Minimum Spanning Tree (MST) tracing deals with the link between detected points

into a tree representation [Türetken et al., 2011].

Among deformable models, active contour models have demonstrated good perfor-

mance in segmentation even when applied to challenging data [Chan et al., 2001],

[Yezzi et al., 2002]. Their main issue is the high sensitivity to the initialization, which

often requires user setting. To this aim, recent active contour models propose an

hybrid approach to automate the initial mask [Ge et al., 2015], [Wu et al., 2015].

Our first contribution to dendrite tracing is proposed in 2D dimensions. In this

framework, a novel level set exploiting local phase and Hessian information is used

to segment the whole neuron starting from the soma segmentation obtained by the

approach presented in Chapter 3.

Then, our interest is moved to the 3D datasets and a series of models and methods

have been studied and tested to perform a volume reconstruction of neurons. The

main idea is on the fact that, computing the Hessian Matrix, the principal structure

direction can be extracted. Following this information, the whole process can be

traced.
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4.2 Dendrite Segmentation in 2D

In this part of the thesis, level set propagation with local phase and with Hessian

eigenspace information is used to segment the whole dendrite arborization, once

the neuron body is detected and segmented by pipeline presented in Chapter 3. The

main idea is that local phase is extracted using quadrature filters and this allows

to distinguish lines and edges in a image [Lathen et al., 2008], [Läthén et al., 2010].

In our case study, a dendrite can appear as a line or as an edge pair, depending on

the scale on which they are observed; then a multiple scale integration is useful for

capturing information about dendrites of varying width and contrast. Our novel

idea is weighting this filter by the Hessian eigenspace that guarantees that only pixel

belonging to structures contributes [Frangi et al., 1998] (see Chapter 3 Sec. 3.2.1). The

result is a "local" filter which can drive a contour towards the dendrite arborization.

4.2.1 Quadrature filters

In signal processing, a quadrature filter is defined as a zero function in the Fourier

domain by

Fk (u) = 0, u ·nk ≤ 0

where u is the frequency and nk the filter direction. In other words, the filter is

zero over one half of the Fourier domain [Derpanis, 2005]. In the spatial domain,

the filter is defined as a complex filter pair: the real part is a line filter and the

imaginary part is an edge filter [Granlund and Knutsson, 2013]. For this reason,

when the filter finds a line-like pattern its response is mostly real, while any edge

matching will give a dominantly imaginary response (Fig. 4.1(a)-(b)). Thus, the type

of structure (line/edge) can be indicated by the argument θ of the complex response,

as indicated in Fig. 4.1(c). θ is typically indicated as the local phase. Moreover, the

response magnitude defines the strength of the structure and the angle θ indicates

the structure type (line/edge). This line/edge detector is invariant to image contrast

because the angle θ is independent of signal strength. So it becomes a more robust

alternative to edge detectors based on gradients.

Combining filter directions

In 2D and 3D images, the filter kernel is usually applied in three and six uniformly

distributed directions respectively. Thus, the local phase produces different responses

along the different directions. In order to get an orientation invariant phase map,

the filter values along different directions need to be combined. The solution is
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Figure 4.1 – Components of the quadrature filter - Reprinted figure with courtesy of
G. Läthén [Läthén et al., 2010]©2010 by Elsevier

computing the orientation of the dominant structure at each point, and flip the phase

along the real axis for a filter with direction opposing the orientation. In practice, this

produce the same phase result for an edge independent of filter direction. Solved this

ambiguity, we can produce an orientation invariant phase map by making a sum of

the filter responses for all directions.

Multi-scale integration

As we have already observed in the previous Chapter 3, our problem present an high

variability of samples, acquisitions and conditions. Moreover in the same image there

are neurons of different sizes and scales. So, our approach uses the common idea

of multi-scale filtering to handle dendrite of varying width. Within this framework,

different scales are combined for getting a local phase used for segmentation step.

The formulation of this idea is a weighted sum over all scales:

q =
∑N

i=1 |qi |βqi∑N
i=1 |qi |β

(4.1)

where N is the number of scales, qi is the phase map for each scale and β is a weight

parameter. As a final preprocessing step, a normalization step is applied to the output

magnitude:

q̂(σ) = 1/(1+ (σ/|q |)2) (4.2)

where q is the local phase function and σ is a data dependent threshold parameter.

With this normalization, scaling issues associated to different inputs are removed.
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4.2.2 Segmentation

Given the filter response on our image, we use the observation that the local phase of

π/2 corresponds to edge structures. Hence, the main idea is to consider only the real

part of the response. At the same time, positive and negative values are respectively

found inside and outside the line structures and edge information come from the

zero-crossing. Then, the segmentation of the dendrites can be done extracting the

zero level set from the real part of the phase map. As done in [Lathen et al., 2008], we

use the level set method as [Osher and Sethian, 1988] as means for front propagation.

Relating to our phase based edge detector, the idea is to extract the real part of the

phase map as a speed function driving a deforming contour. As presented in Equation

3.13 in Chapter 3, it is usually added a regularization term based on the curvature.

The resulted evolving equation is:

∂Φ

∂t
= −Re(q̂(σ)) |∇Φ| + αk|∇Φ| (4.3)

where q̂ is the normalized phase function by Eq. 4.2, α is a regularizer and k is the

mean curvature.

In order to enforce the computation in proximity of structures, we introduce an

improvement in the formulation of the evolving equation:

∂Φ

∂t
= −|λ1| Re(q̂(σ)) |∇Φ| + αk|∇Φ| (4.4)

where λ1 is the first eigenvalue computed in each pixel by the Hessian Matrix. With

this contribution, the background signal is omitted and λ1 drives the level set only

where the pixels belong to a structure (Fig. 4.2). The result is a "local" filter which can

drive a contour towards the dendrite arborization (see Fig. 4.4).

The Hessian Matrix in 2D finds two eigenvalues : λ1 and λ2. It can be noticed (both

in the example in Fig. 4.2 and in the results in Table 4.1) that the contribution of the

second eigenvalue λ2 does not add good information but noise.

4.2.3 Results and Discussion in 2D framework

For the dendrite segmentation in 2D presented in this Section, we implemented the

proposed method in Matlab. We initialize the level set contour with the segmented

somas (following the proposed pipeline in Chapter 3) and executed the segmentation

by level set until covergence, which was defined as the total difference in the contour

changing less than 25 pixels between two following time-steps.
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λ1

λ2

Figure 4.2 – Example of the eigenvalues computed on a image from the dataset. It
can be observed that λ1 brings information on the presence of a strucuture.

For the experimental part, we use Larva Drosophila dataset that contains images

with the complete dendritic tree labeled for each neuron. Sample neuronal cells

are rendered in 2D by maximum intensity projection of slices of the original 3D

fluorescence microscopy image stacks. For the dendritic ground-truth segmentation,

we adopted the tool Simple Neurite Tracer [Longair et al., 2011].
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Figure 4.3 – Some example images from Larva Drosophila dataset. In column, from
the left side: 2D maximum intensity projection of the original volume; soma detection
and segmentation applying the first part of the proposed approach (Chap. 3); whole
neuron segmentation including dendrites.
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Soma detection and segmentation Level Set evolution

Level Set evolution Level Set evolution

Level Set evolution Final neuron segmentation

Figure 4.4 – An example of the level set evolution starting from the soma segmentation
as seed point. The level set is shown at different evolution steps.
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A qualitative evaluation of the dendrite segmentation starting from seed soma is

shown in Fig. 4.4 (bottom right) and in Fig. 4.3. In particular Fig. 4.4 shows an

example of level set initialization, its evolution and the result; Fig. 4.3 proposes some

Larva Drosophila image results after the first part of the segmentation process (i.e.

cell segmentation, middle column) and at the final segmentation (column on the

right side).

To quantitatively evaluate our neuron segmentation, we compare our method with

a recent state-of-the-art automated approach proposed in [Mukherjee et al., 2015],

Tubularity Flow Field (Tuff ) . Tuff is a technique for automatic neuron segmentation

that performs directional regional growing guided by the tubularity direction of

neurites. Among the state-of-the-art tools, we decide to compare our segmentation

with Tuff because it is completely automated (the only one fully automatic among

methods introduced in Sec. 1.3) and it does not require any user intervention or

manual adjustment, as our method aims to. We compute the DC (measure presented

in Sec. 3.5) on Larva Drosophila results for both methods (see Table 4.2) and it can be

observed that our method significantly outperform Tuff.

Part of this work is in the journal paper under review [Baglietto et al., subm].

DC
Volume λ1 λ1 +λ2

#1 0.82 0.75
#2 0.71 0.74
#3 0.78 0.57
#4 0.71 0.71
#5 0.80 0.80
#6 0.91 0.91
#7 0.86 0.86
#8 0.86 0.86
#9 0.88 0.88

#10 0.83 0.83
#11 0.85 0.82

Avarage 0.82 0.79

Table 4.1 – Dice Coefficient has been computed comparing segmentation with λ1

and λ1 +λ2 contributions.
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DC
Volume Our method Tuff

#1 0.82 0.51
#2 0.71 0.39
#3 0.78 0.40
#4 0.71 0.33
#5 0.80 0.32
#6 0.91 0.77
#7 0.86 0.79
#8 0.86 0.80
#9 0.88 0.71

#10 0.83 0.76
#11 0.85 0.76

Avarage 0.82 0.56

Table 4.2 – Dice Coefficient has been computed comparing our segmentation and
Tuff segmentation with manual segmentation done by Simple Neurite Tracer [Longair
et al., 2011].
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4.3 Dendrite Segmentation in 3D

A solution for dendrite segmentation was proposed for two dimensions in the pre-

vious section. Nowadays, technological tools and imaging techniques can capture

high-resolution 3D images of single neurons and of populations. For this reason, it is

required moving from the 2D to the 3D analysis of the whole volume. This jump is

not simple and needs methods robust to noise and able to capture low signals. In our

studies, different solutions were exploited. Fig. 4.5 shows the main steps carried out.

The initial preprocessing step aims at improving the image quality and reducing

the background noise with a median filter applied to each data volume. Then, we

estimated the dendrite direction in each voxel, computing the eigenvectors of the

Hessian Matrix. To reconstruct the dendrite tracks, we connected the principal

directions by adapting a well-known deterministic brain white matter tractography

algorithm. Specifically, in diffusion MRI the Fiber Assignment by Continuous Tracking

(FACT) algorithm by Mori and van Zijl [Mori and van Zijl, 2002] follows the main

direction of the diffusion tensor starting from any voxel of a given Region of Interest

(ROI). In our case, we used as ROI a dilated mask obtained from a binarization of the

image processed with Frangi Filter [Frangi et al., 1998] applied slice by slice.

After this step, we explored three different solutions to obtain a continuous dendritic

arborization.

For the first method, tracked dendrites have been used as the initialization mask for

a Localizing Region Based Active Contour method [Lankton and Tannenbaum, 2008],

which created a continuous and precise tracing of the dendrites.

The number of fiber is huge and it is computationally heavy to use all of them

together. Active contour method results really slow in computing the result. For this

reason, we decided to keep only the main representative traces with a clustering

approach which adopted game theory, known as Dominant Set [Pavan and Pelillo,

2007]. In this way, the centroids of clusters could be seen as good representatives as

parts of the centerline.

Given the cluster centroids, we followed traces and concatenated them in a path

exploiting the main directions and distances in order to obtain the dendrite centerline.

This geometrical method was really simple and fast but resulted imprecise and too

approximate.
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Figure 4.5 – This scheme shows the main steps of our studies exploited for finding a
solution for 3D tracing of dendrites in neuron volume segmentation. The first part, in
the blue boxes, is common to all the solutions. After dendrite tracking, three different
approaches are analyzed (respectively, yellow, red and green boxes).

The third method exploited again the AC method. This time, only the centroids are

used as the initialization mask of AC model that finds good and comparable results

but runs very quicker than before (Fig. 4.13).

For the evaluation of the methods, we applied the Minimum Spanning Tree (MST)

to our segmentations in order to obtain a single trace and to compare our results with

the GT labels, given in the SWC format file.
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4.3.1 Preprocessing

In order to reduce background noise, first of all we applied a 3D median filter on each

volume [Gonzalez and Woods, 2001]. The median filter is a nonlinear digital filtering

technique, often used to remove noise from an image or signal.

Our main idea is to track the dendrites following their direction in each voxel. So, we

computed the eigenspace of the Hessian matrix that extracted the principal directions

in which the local second order structure of the image could be decomposed. At

this point, following Frangi’s method [Frangi et al., 1998] (presented in Sec. 3.2.1),

a vesselness measure is obtained on the basis of the Hessian matrix eigenvalues to

delineate tubular and filament structures. The vesselness value indicates the local

likelihood that a pixel in the 2D case or a voxel in the 3D belongs to a dendrite, i.e. to

a vessel structure. Using this measure, we created a binary mask and we performed

a morphological dilatation [Van Den Boomgaard and Van Balen, 1992]. In this way,

we defined a ROI in which with high probability we could find a dendritic structures.

We use this ROI for delimiting the tracking of neuron dendrite fibers in the next

step. As shown in Fig. 4.8, the ROI mask would help in filtering background that can

be wrongly detected and it would reduce the number of candidates decreasing the

computational cost.

Figure 4.6 – A mid-axial slice of the ICBM (International Consortium for Brain Map-
ping) diffusion tensor image template. Each voxel value is a tensor represented here
by an ellipsoid. Color denotes principal orientation: red = left-right, blue=inferior-
superior, green = posterior-anterior.
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4.3.2 Dendrite Tracking

With the Hessian matrix computation, we could obtain the directional information in

each voxel. We decide to follow these directions to trace the dendritic structures. In

neuroimaging, similar problems have been studied and solved in order to reconstruct

brain fibers [Wakana et al., 2007], [Hagmann et al., 2006]. Inspired by diffusion MRI

tractography [Mori and van Zijl, 2002], we use a deterministic approach that follows

the principal direction extracted by the Hessian matrix within the Frangi’s mask.

Using water property, in diffusion MRI the largest principal axis of the diffusion

tensor is aligned with the predominant fiber orientation in each MRI voxel. In a

microscopy image, we can use the local information extracted with the Hessian

and use it in order to reconstruct the dendrite arborization. An intuitive way to

reconstruct a 3D trajectory from a 3D vector field is to propagate a line from a seed

voxel by following its local vector orientation that, in our case, corresponds to the first

eigenvector of the Hessian matrix (Fig. 4.7). To convert the discrete voxel information

to a continuous tracing, we work below the image resolution and we propagate the

line with a predefined step smaller than the voxel size. In this way, the resulting path

is smooth respect to the image resolution. For the line propagation stopping criterion,

we decide to stop when there is an angle change between voxels that would lead to

an extreme turning into the line propagation.

Figure 4.7 – An example of the interpolation line propagation in the 2D case. Big
green arrows indicate the first eigenvector of the Hessian matrix. (Figure from [Mori
and van Zijl, 2002].)

An example of the dendrite tracking on our samples is shown in Fig. 4.8 and in Fig.

4.9 (left). The images are characterized by inhomogeneous dendrite thickness and by

gaps between the tracts due to low signal-to-noise-ratio and non-uniform fluorescent

expressions. In these conditions, the aim is to create a smoother tracing filling the

gaps. At this point, we investigated different approaches (Fig. 4.5).

66



4.3. Dendrite Segmentation in 3D

Dendrite tracking on the whole volume Dendrite tracking with Frangi ROI

Figure 4.8 – Example of dendrite tracking without and with ROI mask by Frangi Filter.
It can be noticed that in the left case (without ROI mask) the number of fibers is high
and computationally hard. Thanks to the Frangi mask we can decrease the number
of fibers also deleting a lot of noise.

The first method was based on active contours (Sec. 4.3.3) to create a smoother

tracing filling the gaps. Our dendrite tracing is given as initialization (yellow path in

Fig. 4.5). The dendrite tracking step is necessary in order to reduce the number of

points that is huge and computationally unsustainable if we try to use Frangi ROI as

direct initial mask.

To remedy the long computing time (several weeks on a standard Desktop computer),

the second method aimed at computing representative fibers. More precisely, we

clustered the traces and used the centroids of clusters to reconstruct the centerline of

our dendrites (Sec. 4.3.4).

Given the centroids, an intuitive geometrical approach can be to follow the direction

of each trace and reconstruct the whole dendrite path (red path in Fig. 4.5). This

approach, explained in Sec. 4.3.5, is simple and based on the geometry of the traces

but it is not enough effective.

The third method investigated was to apply AC model with the initialization of only

centroids (Sec. 4.3.6) (green path in Fig. 4.5). This time AC runs quicker than the

initialization with all traces and gives results on the same order.

67



Chapter 4. Dendrite Tracing

4.3.3 First Method: Active Contour Model with all traces as

Initialization

The Active Contour model applied in the 3D volumes is the Localizing Region-Based

Active Contour [Lankton and Tannenbaum, 2008] that improves active contour mod-

els by a local re-formulation of traditional region-based segmentation energies [Chan

et al., 2001], [Yezzi et al., 2002]. As already presented in details in Cap. 3, Sec. 3.3,

localized contours can segment objects with heterogeneous statistics that would be

wrongly captured by a standard global energy. Thanks to this localization, in the 3D

case the foreground and background can be described in terms of local volumes.

It avoids the assumption that the foreground and background regions are distinct

based on their global statistics. Within this framework, in each point of the border,

neighborhoods are split into local interior and local exterior by the evolving surface.

The localization radius is chosen according to the volume-size of the objects to be

segmented. In our tests we set the radius r as the average size of the dendrite diam-

eter. In our approach, the Active Contour model takes the dendrite traces as initial

mask and finds the desired continuous trace filling the gaps among tracked fibers as

Fig. 4.9 shows.

Figure 4.9 – 2D Visualization of dendrite tracking (in the green boxes) and of active
contour segmentation (in the blue boxes) on Sample 1. After the Active Contour step,
the dendrite trace becomes smoother and almost everywhere uninterrupted.

68



4.3. Dendrite Segmentation in 3D

4.3.4 Clustering : Dominant Sets

The number of tracked fibers is too high for the computational cost. In order to reduce

the number of fibers, a clustering approach was used before implementing the second

and third methods. The centroid of each cluster becomes a good representative of

the whole amount of fibers in the corresponding cluster [Dodero et al., 2014]. Among

different clustering approaches, we decided to exploit the properties of Dominant

Sets framework that comes from Game Theory concepts. It is robust to noise and

to outliers, robust to parameter settings and it automatically infers the number of

clusters.

Moreover, the tracked fibers (Fig. 4.8) have different lengths. For this reason, it is

also better to divide traces in different ranges of length both for a better comparison

among traces of the same length and for clustering similar structures.

Dominant Sets Clustering Method

Dominant Sets framework [Pavan and Pelillo, 2007] is a graph-theoretic method that

generalizes the maximal clique problem to weighted graphs. It finds a compact,

coherent and well separated subset of nodes into a graph, i.e. the dominant set (DS).

This framework defines the correspondence between clique, DS and cluster using a

graph-theoretic perspective, and provides an optimization algorithm used to extract

all DSs in a graph. Formally, a dataset is represented as a weighted undirected graph

G = (V ,E ,φ) with no self loop in which the vertices V are the data points and the

edges E ⊆V ×V represent neighborhood relations among pairs of nodes, quantified

by the weighting function φ : E → R+. A DS formalizes two crucial properties of all

clustering techniques: the intra-cluster homogeneity and inter-cluster inhomogeneity.

A graph is compactly represented by its weighted adjacency matrix A (the affinity

matrix in our approach, which is defined by Eq. 4.9) . In our setting, each trace is

represented by a node in the graph and the weighting function φ provides a measure

of the similarity between pairs of traces. Evaluating these two properties in all the

possible subset of V is obviously unfeasible, for this reason the problem is casted into

the following optimization task:

maximize xT Ax (4.5)

subject to x ∈4n
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where x lies in the standard n-dimensional simplex 4n , or equivalently,
∑

i xi =
1,∀i xi ≥ 0. In the DS framework, x is called the weighted characteristic vector and it

quantifies the degree of participation of the i -th component in the DS. If x is a strict

local solution of (4.5) then its support, defined as δ(x) = {i | xi > 0}, is a dominant set

[Pavan and Pelillo, 2003] and thus a cluster. A local maximizer of (4.5) is found using

the replicator dynamics [Pavan and Pelillo, 2003], a result from the evolutionary game

theory mimicking the temporal changes in a population, based on the fitness of its

individuals:

xi (t +1) = xi (t )
(Ax(t ))i

x(t )T Ax(t )
(4.6)

The optimization starts with a point x(t0), sited in the barycenter of the simplex(
xi (t0) = 1

n ,∀ i
)
. Eq. (4.6) is iterated until stability which is guaranteed to be reached

if the matrix A is non-negative and symmetric. Theoretical stability condition is

achieved when x(t +1) = x(t ), i.e. when the distance between two consecutive steps

||x(t +1)− x(t)|| is lower than a threshold ε (in our setting ε = 10−7). Eq.(4.6) also

guarantees the satisfaction in time of constraint in Eq.(4.5) [Pavan and Pelillo, 2003].

In practice, the algorithm operates a selection process over the components of vector

x driven by the affinity matrix A. At convergence some elements of x will emerge

(xi > 0) and others will become extinct (xi = 0). In order to extract multiple clusters

a peeling-off strategy is applied: once a DS is determined, it is removed from the

whole set of vertices V , and the process is iterated on the remaining nodes, until all

elements are clustered.

Applying the method in practical cases rarely produces a vector x whose certain

elements are equal to zero and this is mainly due to the numerical approximation or

premature stopping of the dynamics. Thresholding over x is thus integrated into the

support calculation:

δ̃(x) = {i | xi > θ∗max(x)} θ ∈ [0,1] (4.7)

Small θ values act as noise reducer, while higher values guarantee a greater number

of clusters, each one having higher internal compactness.We fixed the coherence

threshold according to the findings in a previous work [Dodero et al., 2013], which

needs to be very small to make the model stable (θ = 10−5) .
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Data Encoding

In order to build the affinity matrix A, we need to define a similarity measure between

fibers. We decided to build such measure exploiting the mean closest point distance

as it appeared to be the most appropriate in various works [O’Donnell and Westin,

2006], [Guevara et al., 2011], [Garyfallidis et al., 2012]. To achieve an uniform repre-

sentation with the same number of equidistant points, each fiber was quantized using

B-spline interpolation and sampling with k = 8 points, as proposed in [Garyfallidis

et al., 2012]. We coded the generic i -th streamline Fi as a 3D curve described by a set

of points Fi = {p1...pk} with pi ∈R3.

To cluster tracked fibers, we used the symmetrized mean closest point distance used

also for White Matter (WM) fiber clustering [Guevara et al., 2011].

dsmp (Fi ,F j ) = 1

2
(dm(Fi ,F j )+dm(F j ,Fi )) (4.8)

defined as the average of the two directed (non-symmetric) mean closest points

distances between fibers Fi and F j .

Then, the affinity matrix A = ai j was defined as follows:

ai j =
e− (d(F i ,F j ))

σ , if (i , j ) ∈E

0, otherwise
(4.9)

where σ is a normalization term that we imposed σ = maxi , j (d(Fi ,F j )) fixing a

unique bound for ai j , regardless of the used dataset.

Remove Low Cohesiveness Clusters

The quality of retrieved bundles is then evaluated measuring the cohesiveness, which

is a quantitative index measuring the internal coherence of each cluster δ as follows:

C (δ) = xT Ax (4.10)

where x is the characteristic vector corresponding to δ and A is the adjacency ma-

trix. High values of cohesiveness are related to clusters with high internal similarity

between elements while clusters with low cohesiveness aggregates fibers with little

structural significance.
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(a)

(b)

(c)

Figure 4.10 – (a) Cohesiveness value function of an example cluster. (b) Histogram of
the cohesiveness. (c) First part of the cohesiveness queue removed.
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4.3. Dendrite Segmentation in 3D

Hence, we used the cohesiveness index to remove the less significant clusters and

consider the relative fibers as singleton. Computed the cohesiveness (Fig. 4.10(a)), we

studied the histogram and removed the first 0.5 percentile of that curve (Fig. 4.10(b)-

(c)). We can also claim that the last generated clusters are generally not significant

[Pavan and Pelillo, 2007] and they are part of the small group that we removed with

very low internal cohesion.

4.3.5 Second Method: Geometrical approach

Once we obtained the centroids, as second approach, we followed the main direction

of each centroid in a geometrical framework.

First, a trace is randomly selected among all the centroids. Then, the traces that

have initial or final point within a certain range are iteratively concatenated. Before

merging two traces, the main directions are computed and the angle α between

them has to be smaller than a certain threshold in order to avoid an extreme turning

into the dendrite structures (Fig. 4.12). If the condition is respected, the algorithm

would merge the two traces by interpolation and consider the next nearest tract to the

unique bigger trace. If α is too wide, the second trace is not merged with the first one

and the algorithm goes ahead with the second nearest trace. The implementation

would stop the dendrite reconstruction when all the traces near our reconstruction

are merged or left out for an exaggerated turning into the direction.

This method is very simple and fast. The main issues of this approach are that it is

not precise enough and does not result in a smooth reconstruction and when the

centroids slightly overlap or are parallel one to another the interpolation could give a

non linear path.
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3D view

2D Projection

Figure 4.11 – An example of final centroids after low cohesiveness cluster removing.
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4.3. Dendrite Segmentation in 3D

Figure 4.12 – Two near traces are selected. Then, the main directions are computed
and the amplitude of the angle is taken as discriminator for the merging or not.

4.3.6 Third Method: Active Contour Model with Centroid

Initialization

The third approach relied upon the most representative traces and adopted an AC

model to exploit its good properties (see Sec. 3.3 and 4.3.3), given as initial mask only

the centroids instead all the tracked traces (Fig. 4.13). This time the implementation

goes quicker than with all the traces and reaches comparable results as we would

discuss in the following Section 4.3.8.

4.3.7 Minimum Spanning Tree

Finally, to get a tree trace and the same structure as in the SWC Groud Truth file (see

Sec. 1.1.1 for more details about SWC), we applied the Minimum Spanning Tree (MST)

method [Siek et al., 2001] at the skeletonization of active contour segmentation.

The Minimum-Spanning-Tree Problem is defined as follows.

Given an undirected graph G = (V ,E), find an acyclic subset of the edges T ⊂ E that

connects all of the vertices in the graph and whose total weight is minimized. The

total weight is the sum of the weight of the edges in T :

w(T ) = ∑
(u,v)∈T

w(u, v).

An acyclic subset of edges that connects all the vertices in the graph is called a

spanning tree. A tree T with minimum total weight is a minimum spanning tree.

There are two classical algorithm for solving the minimum-spanning-tree problem:

Kruskal’s [Kruskal, 1956] and Prim’s [Prim, 1957].

Kruskal’s algorithm grows the minimal spanning tree (MST) one edge at a time by

75



Chapter 4. Dendrite Tracing

finding an edge that connects two trees in a spreading forest of growing MSTs. Time

complexity is O(E +X ∗ log (N )), where X is the number of edges no longer than the

longest edge in the MST, and N and E are the number of nodes and edges respectively.

On the other side, Prim’s algorithm grows the minimal spanning tree (MST) one edge

at a time by adding a minimal edge that connects a node in the growing MST with

any other node. Time complexity is O(E ∗ l og (N )), where N and E are the number of

nodes and edges respectively.

Usually, Prim’s algorithm is the default one and it was also used in our case study by

Matlab implementation, where the weight of an edge was defined as the distance

among the nodes.
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Chapter 4. Dendrite Tracing

4.3.8 Results and Discussion in 3D framework

The algorithm is tested on a dataset acquired on sensory neurons in the wild-type

larva Drosophila published in [Gulyanon et al., 2016] and studied over different de-

velopment phases (see Sec. 2.3). The size of the volumes is 1024x1024x20 . They

are representative of spatially inhomogeneous signal-to-noise ratios. Fig. 2.7 to 2.10

show the considered volumes. As can be seen on these Figures, samples are charac-

terized by high variability in microscopic acquisition such as brightness, intensity,

background noise, soma and dendrite shapes and development. We considered as

the ground truth the same labels presented in [Gulyanon et al., 2016].

Precision
Samples All traces AC Clustering and AC

#1 0.83 0.78
#2 0.51 0.68
#3 0.72 0.70
#4 0.73 0.74
#5 0.58 0.61
#6 0.85 0.85
#7 0.88 0.88
#8 0.87 0.88
#9 0.71 0.69

#10 0.67 0.68
#11 0.67 0.66

Table 4.3 – Precision computed comparing our segmentation obtained using all
tracked traces as initialization of AC (first column and corresponding to yellow path
in Fig. 4.5) and clustering centroids as initialization of AC (second column and
corresponding to green path in Fig. 4.5).

Some qualitative results are given in Fig. 4.13 (last column), in Fig. 4.14 and in

Fig. 4.15 (right). In particular, Fig. 4.14 shows our result performed on a sample by

the third method and compared with the Ground Truth tree (top image). Our seg-

mentation (bottom image) covers almost all the dendritic tree (black circles) missing

some borderline branches (blue circles) and detecting extra points not present in the

Ground Truth labels (red circles). Fig. 4.15 shows the 2D maximum projection of a

sample volume overlapped both with the Ground Truth and with our segmentation.

This figure also supports the following discussion about the Ground Truth labels.

To quantify the performance, we adopted the same precision procedure as defined

in [Gulyanon et al., 2016]: precision is computed by measuring the length of wrong
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4.3. Dendrite Segmentation in 3D

traces as false positives (F P ) and missing traces as false negative (F N ). The length

of right traces is considered as true positive (T P ): a trace is correct if it is within a

distance (4 voxel) from the closest ground truth point. Precision is defined as

P = T P

T P +F P
.

Table 4.3 reports respectively our results for segmenting the dendritic tree using

AC initialized by all the traces in the first column and by cluster centroids in the

second one. Results about the geometrical approach are not reported since this

method leads to a poor and non linear reconstruction. However, thanks to its easier

implementation and comprehension, this approach has been useful to understand

the spatial configuration of the dendrites.

In the paper [Gulyanon et al., 2016], authors claim to reach on the considered sam-

ples the values in precision as reported in Table 4.4 (third column). They compared

their results also with the Farsight method [Wang et al., 2011] (last column in Table

4.4). The precision values are higher almost in all samples. It is important to un-

derscore that we included quantitative results for the only ground truth available.

However it can be seen on Fig. 4.14 and 4.15 that dendrites we successfully seg-

mented were not present in the published Ground Truth. As a result the quantitative

results are only meant to be interpreted as indicators of the overall performance

of our methods, but not as a precise performance measure of our approaches. For

example, in Fig.4.15 we show two different crops (in the green and yellow circles) in

which groups of dendrites are not labeled in the Ground Truth. We can observe that

the connectivity path has a low signal and there are doubts about the connections.

Our method leads to connect also these parts that have low-level fluorescence in the

connections.

For a better understanding about the connections, another one or two slices would be

required in the deep acquisitions of the stack where the signal in the low connections

can be stronger. So in these dubious points the signal would have higher values in

order to clarify these distinct interpretations.

Another point to be discussed is that our goal in this part of the thesis is tracing and

segmenting the dendrite arborization in 3D volumes and not all the neuron struc-

ture. For the soma detection and segmentation we can follow other methods in the

literature as [Ozcan et al., 2015] or our previous method [Baglietto et al., 2017a] pre-

sented in Chapter 3. The method can be applied to each single slice in 2D or can be

extend to the 3D framework just working on the blobness filtering because the other

passages in the approach have been already implemented in the three-dimensional

framework.
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To conclude, table 4.5 sums up the pros and cons of the three alternative approaches

that can merge the traces after the tracking and reconstruct the whole dendritic tree

of each sample neuron.

Part of this work is published in [Baglietto et al., 2017b] and in the paper under

preparation [Baglietto et al., ].

Next step would be to apply our pipeline to neuron population stacks in 3D images,

integrating our method with soma detection (Chapter 3) in order to distinct different

neuron trees and studying distinct neuron morphologies and functions at the network

scale.

Precision
Samples All traces AC Clustering and AC Gulyanon Farsight

#1 0.83 0.78 0.93 0.68
#2 0.51 0.68 0.91 0.50
#3 0.72 0.70 0.62 0.33
#4 0.73 0.74 0.76 0.19
#5 0.58 0.61 0.91 0.60
#6 0.85 0.85 0.89 0.91
#7 0.88 0.88 0.91 0.95
#8 0.87 0.88 0.93 0.97
#9 0.71 0.69 0.89 0.90

#10 0.67 0.68 0.89 0.91
#11 0.67 0.66 0.92 0.94

Table 4.4 – Precision computed comparing our segmentation obtained using: all
tracked traces as initialization of AC (first column and corresponding to yellow path
in Fig. 4.5) and clustering centroids as initialization of AC (second column and
corresponding to green path in Fig. 4.5). The comparison are made with The Ground
Truth labels are published in [Gulyanon et al., 2016].

Method Pros Cons

1) Geometrical approach Simple and Fast Computation Imprecise

2) AC with All Traces Precision Slow Computation

3) AC with Clustering Centroids Faster than 2) and Precision Subject to clustering parameters(∗)

Table 4.5 – Pros and Cons of the three proposed solutions for merging the traces
found out by the tracker in order to reconstruct the dendritic arborization.
(*) for more details refer to Sec. 4.3.4 where it is discussed the choice of the parameters
driven by previous theoretical works.
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GT Graph

Result Graph

Figure 4.14 – Qualitative example of the AC segmentation initialized only with centroids
applied on the sample #7. Black points are nodes that are correctly detected, while red are
nodes wrongly detected and blue are miss one.
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Conclusion

The morphological properties of the soma and the axonal and dendritic arborizations

design a key discriminant for the neuronal phenotype and play a determinant role in

network connectivity.

This thesis addressed the neuroscientific request of developing a fully automatic tool

for the detection and segmentation of the whole neuron morphology, opening new

perspective in the study about the structure and the development of the neuronal

network. The demand comes from the continuous advances in microscopy tech-

nologies and cellular imaging that capture an increasing amount of high-resolution

images of single cells and of neuronal populations at different scales. These images

are heterogeneous and complex and the need for computational tools and techniques

to integrate and analyze these data is rising rapidly.

This work proposed a novel and completely automatic approach for fully neuron

reconstruction from the detection and segmentation of the soma to the dendritic

arborization tracing.

In the first part of the thesis, we developed an ad hoc approach for the localization

and segmentation of neuron bodies. In this context, a novel and effective multiscale

blob filter is employed for cell enhancement which selects ROIs for the initialization

of an active contour step, addressing the known weakness of these methods (the

need for a good initial mask). Active contour reaches satisfactory results but needs a

further segmentation in case of multiple cell aggregations, which has been addressed

using a watershed transform followed by a filter guided by the size of structures. We

validated our approach against manual segmentations on some hundreds of neurons

representative of a variety of cell appearances and image conditions. This pipeline

can deal with different datasets and acquisitions both at the network and at the single

cell scale, without any user interventions or manual adjustment.

Then, in the second part, various methods and research lines have been investigated
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for the reconstruction of the whole dendritic arborization of each neuron, which is

solved both in 2D and in 3D images. In the 2D case, a novel hessian-phase based

level set has been developed allowing to segment the whole neuron morphology.

Tests have been performed on single scale images and high performance is obtained

against ground truth segmentation in comparison with an automatic state-of-the-art

algorithm.

To automatically trace the 3D volume of neurons, we developed an innovative

pipeline that overcomes the challenging and problematic features of the datasets.

After a preprocessing step, a ROI mask of the dendrite structures is designed by Frangi

Filter. The outcome is then used to drive a tracker exploiting the principal directions

of local structure extracted in each voxel. After, we investigated different solutions in

order to create a continuous tree starting from the tracked fibers. The first method

was based on active contours initialized by all tracked traces. To improve processing

speed, the second and third methods relied on keeping only the main representative

traces by a Dominant Set Clustering Approach. Given the centroids, a geometrical

approach is developed to merge traces in a path. This method is simple and fast

but imprecise. The third method performed the segmentation by an active contour

model, this time initialized only by clustering centroids. We validated our approaches

against ground truth on some sensory neuron stacks and discussed the possible

comparison with other methods.

The aim of this thesis was to create the premises to relate the neuronal morphology

extracted by the proposed pipeline with the functional behavior. This would be

obtained extracting features from the segmented neurons describing the morphology

of cell-body and dendrites (e.g. Hu moments, area covered by the arborization,

number of departing processes, etc.). These features could be used in a machine

learning framework [Kong et al., 2005], trying to predict the functional class of the

neurons. In case of success, sensitivity analysis can then be performed on the input

variables to understand which features are better characterizing the neuron function.

To conclude, in this thesis we have proposed novel and improved approaches to

perform a neuron segmentation. Each of the proposed solutions take into account

the complexities and the properties of neuronal samples and, of course, they present

strengths and limitations.
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Publications

The papers published or submitted during the PhD period.

• S. Baglietto, I. Kepiro, G. Hilgen, E. Sernagor, V. Murino and D. Sona, Auto-

matic Segmentation Pipeline For Neurons From Fluorescent Microscopy Imag-

ing, Communications in Computer and Information Science Journal, Springer,

accepted.

• S. Baglietto, M. Dayan, V. Murino and D. Sona, Tractography-based dendrites

reconstruction in 3D microscopic images, to be submitted (conference paper).

• S. Baglietto, M. Dayan, V. Murino and D. Sona, 3D dendrite tracing inspired

by diffusion MRI tractography , BioImage Informatics (BII) Conference, Banff,

Canada, 2017.

• S. Baglietto, I. Kepiro, G. Hilgen, E. Sernagor, V. Murino and D. Sona, Segmen-

tation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging, Best

Student Paper Award at BIOIMAGING 2017, Proceedings of the 10th Interna-

tional Joint Conference on Biomedical Engineering Systems and Technologies -

Volume 2: BIOIMAGING, BIOSTEC 2017, pages 17-23.

• P. Valentini, A. Marsella, P. Tarantino, S. Mauro, S. Baglietto, M. Congedo and

P. Pompa, Naked-eye fingerprinting of single nucleotide polymorphisms on

psoriasis patients, Nanoscale, 8, 11027-11033, 2016.
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