46 research outputs found

    Straggler handling approaches in mapreduce framework: a comparative study

    Get PDF
    The proliferation of information technology produces a huge amount of data called big data that cannot be processed by traditional database systems. These Various types of data come from different sources. However, stragglers are a major bottleneck in big data processing, and hence the early detection and accurate identification of stragglers can have important impacts on the performance of big data processing. This work aims to assess five stragglers identification methods: Hadoop native scheduler, LATE Scheduler, Mantri, MonTool, and Dolly. The performance of these techniques was evaluated based on three benchmarked methods: Sort, Grep and WordCount. The results show that the LATE Scheduler performs the best and it would be efficient to obtain better results for stragglers identification

    Intelligent Straggler Mitigation in Massive-Scale Computing Systems

    Get PDF
    In order to satisfy increasing demands for Cloud services, modern computing systems are often massive in scale, typically consisting of hundreds to thousands of heterogeneous machine nodes. Parallel computing frameworks such as MapReduce are widely deployed over such cluster infrastructure to provide reliable yet prompt services to customers. However, complex characteristics of Cloud workloads, including multi-dimensional resource requirements and highly changeable system environments, e.g. dynamic node performance, are introducing new challenges to service providers in terms of both customer experience and system efficiency. One primary challenge is the straggler problem, whereby a small subset of the parallelized tasks take abnormally longer execution time in comparison with the siblings, leading to extended job response and potential late-timing failure. The state-of-the-art approach to straggler mitigation is speculative execution. Although it has been deployed in several real-world systems with a variety of implementation optimizations, the analysis from this thesis has shown that speculative execution is often inefficient. According to various production tracelogs of data centers, the failure rate of speculative execution could be as high as 71%. Straggler mitigation is a complicated problem in its own nature: 1) stragglers may lead to different consequences to parallel job execution, possibly with different degrees of severity, 2) whether a task should be regarded as a straggler is highly subjective, depending upon different application and system conditions, 3) the efficiency of speculative execution would be improved if dynamic node performance could be modelled and predicted appropriately, and 4) there are other types of stragglers, e.g. those caused by data skews, that are beyond the capability of speculative execution. This thesis starts with a quantitative and rigorous analysis of issues with stragglers, including their root-causes and impacts, the execution environment running them, and the limitations to their mitigation. Scientific principles of straggler mitigation are investigated and new algorithms are developed. An intelligent system for straggler mitigation is then designed and developed, being compatible with the majority of current parallel computing frameworks. Combined with historical data analysis and online adaptation, the system is capable of mitigating stragglers intelligently, dynamically judging a task as a straggler and handling it, avoiding current weak nodes, and dealing with data skew, a special type of straggler, with a dedicated method. Comprehensive analysis and evaluation of the system show that it is able to reduce job response time by up to 55%, as compared with the speculator used in the default YARN system, while the optimal improvement a speculative-based method may achieve is around 66% in theory. The system also achieves a much higher success rate of speculation than other production systems, up to 89%

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Understanding and Improving the Performance of Read Operations Across the Storage Stack

    Get PDF
    We live in a data-driven era, large amounts of data are generated and collected every day. Storage systems are the backbone of this era, as they store and retrieve data. To cope with increasing data demands (e.g., diversity, scalability), storage systems are experiencing changes across the stack. As other computer systems, storage systems rely on layering and modularity, to allow rapid development. Unfortunately, this can hinder performance clarity and introduce degradations (e.g., tail latency), due to unexpected interactions between components of the stack. In this thesis, we first perform a study to understand the behavior across different layers of the storage stack. We focus on sequential read workloads, a common I/O pattern in distributed le systems (e.g., HDFS, GFS). We analyze the interaction between read workloads, local le systems (i.e., ext4), and storage media (i.e., SSDs). We perform the same experiment over different periods of time (e.g., le lifetime). We uncover 3 slowdowns, all of which occur in the lower layers. When combined, these slowdowns can degrade throughput by 30%. We find that increased parallelism on the local le system mitigates these slowdowns, showing the need for adaptability in storage stacks. Given the fact that performance instabilities can occur at any layer of the stack, it is important that upper-layer systems are able to react. We propose smart hedging, a novel technique to manage high-percentile (tail) latency variations in read operations. Smart hedging considers production challenges, such as massive scalability, heterogeneity, and ease of deployment and maintainability. Our technique establishes a dynamic threshold by tracking latencies on the client-side. If a read operation exceeds the threshold, a new hedged request is issued, in an exponential back-off manner. We implement our technique in HDFS and evaluate it on 70k servers in 3 datacenters. Our technique reduces average tail latency, without generating excessive system load

    Security of Cyber-Physical Systems

    Get PDF
    Cyber-physical system (CPS) innovations, in conjunction with their sibling computational and technological advancements, have positively impacted our society, leading to the establishment of new horizons of service excellence in a variety of applicational fields. With the rapid increase in the application of CPSs in safety-critical infrastructures, their safety and security are the top priorities of next-generation designs. The extent of potential consequences of CPS insecurity is large enough to ensure that CPS security is one of the core elements of the CPS research agenda. Faults, failures, and cyber-physical attacks lead to variations in the dynamics of CPSs and cause the instability and malfunction of normal operations. This reprint discusses the existing vulnerabilities and focuses on detection, prevention, and compensation techniques to improve the security of safety-critical systems
    corecore